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Abstract  

 

Worldwide, delta areas are under stress due to climate change. With rising sea 

levels and decreasing freshwater availability, surface water salinization due to 

groundwater exfiltration is expected to increase in these low-lying areas. To 

counteract surface water salinization, freshwater diverted from rivers is used to flush 

agricultural ditches. In this paper, we demonstrate a Model Predictive Control (MPC) 

scheme to control salinity and water levels in a water course while minimizing 

freshwater usage. A state space description of the discretized De Saint Venant and 

advection-dispersion equations for water and salt transport, respectively, is used as 

the internal model of the controller. The developed MPC scheme is tested using 

groundwater exfiltration data from two different representative Dutch polders. The 

tests demonstrate that water levels and salinity concentrations can successfully be 

controlled within set limits while minimizing the freshwater used.  

 

1. Introduction 

 

Salinization of polders is often caused by exfiltration of saline groundwater (Hof and 

Schuurmans, 2000). Land subsidence, climate change and sea level rise accelerate 

salinization by enhancing the intrusion rate (Oude Essink et al., 2010). In low-lying 

delta areas as the Rhine-Meuse delta of the Netherlands, saline groundwater will 

increasingly move towards the ground surface and exfiltrate to the surface water 

system (Delsman et al., 2014a). Saline water threatens agricultural activities and the 

freshwater ecosystem in the polders (A polder is an artificially drained catchment in 

which the surface water level in the ditch network is regulated by pumping). 
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Therefore, salinity control is necessary for both agricultural purposes and 

maintaining certain freshwater ecosystems (Hof and Schuurmans, 2000). To 

maintain acceptable surface water quality, freshwater diverted from rivers is used for 

flushing the canals and ditches in coastal areas. 

 

In the Netherlands, the largest saline groundwater exfiltration to the surface water 

are found in deep polders (de Louw et al., 2013). Freshwater from the rivers Rhine 

and Meuse is used for flushing these polders during agricultural growing season. 

This surface water flushing amounts to 15% of the total freshwater demand in the 

Netherlands (Klijn et al., 2012). However, decreasing freshwater availability (Forzieri 

et al., 2014) and expected increase of surface water salinization (Delsman et al., 

2014a; Oude Essink et al., 2010) forces water managers to reconsider the current 

water management practice in deep polders. Increasing the efficiency of surface 

water flushing is regarded as a promising way to decrease surface water demand 

(Delta Programme Commissioner, 2014). 

 

Efficient water management in polders is a challenging process since the water level 

should be kept within a narrow margin, excess water is drained to the ditches with a 

fast response time while the saline groundwater exfiltration potentially increases the 

salinity in the top layer/triggers the salinization problem. Saline groundwater 

exfiltrates to the polder ditch through boils (direct pathways between aquifer and the 

surface water), drains (exfiltration of shallow phreatic groundwater) and ditches 

(diffusive seepage below the ditch itself) (Delsman et al., 2013). When the salinity 

level in the polder ditch exceeds a certain threshold, freshwater is introduced through 

the upstream structure of the ditch to flush the surface water system. However, 

current practice of salinity control in polders generally involves constant flushing 

during the growing season, manually opening the inlet culverts at the start and 

closing them at the end of the growing season (Delsman, 2015). Water level control 

is achieved by the operation of a pumping station, responding to water level 

measurements near the pumping station. Flushing is generally not considered in 

operation and this may result in excess use of freshwater and unnecessary pumping 

(Delsman, 2015).  
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In this paper, we demonstrate a Model Predictive Control (MPC) scheme for optimal 

operation of a water course or called here test polder ditch (Fig. 2) for flushing by 

explicitly considering freshwater conservation. The focus of our research is to find a 

solution for supplying the available freshwater resources in a more efficient way for 

real polders. To the best knowledge of the authors, previous studies controlling water 

level and water quality did not consider the amount of freshwater supply. Xu et al., 

(2013) merely mentioned ‘over-flushing’ as an important topic in their discussion. 

Therefore, in this study we proposed a solution to this problem by introducing an 

additional control objective as the minimization of freshwater use and demonstrated 

how much freshwater can be saved if flushing is done only when it is necessary. 

Another novelty of this paper is using physically-based models in real time control, 

as opposed to low order numerical models derived using proper orthogonal 

decomposition (POD). We employed the discretized Saint Venant (SV) and 

advection dispersion (AD) equations as the internal model of the real time controller. 

Finally, we coupled an exfiltration model with the controller to deal with real 

exfiltration scenarios driven by real precipitation and hydrological data instead of 

using arbitrary exfiltration flux and concentration. All these three aspects of this 

paper are important steps for application of the developed MPC scheme to a real 

polder system in a follow-up research.  

 

An internal model employed a coarse discretization of SV and AD equations. A 

detailed state space description is given in section 3. For the simulations, we solved 

the discretized SV and ADE equations programmed in MATLAB (The Mathworks 

Inc., 2016). We tested the developed control scheme in closed-loop simulations for 

two representative Dutch polders with different saline groundwater exfiltration 

characteristics (Fig. 1). As described in Section 2.2 the simulation models are 

abstractions of real-world ditches (Schermer polder (Delsman et al., 2017) and 

Lissertocht catchment (Delsman et al., 2013)) and are used to simulate the system 

dynamics based on discretized SV and AD equations, where the scenarios are 

designed with real precipitation and hydrological data for the areas using the Rapid 

Saline Groundwater Exfiltration Model (RSGEM). The Lissertocht catchment (surface 

level 6 – 3.5 m below sea level (BSL), water depth 6.4 m BSL, salinity concentration 

variation in the ditches 136 – 5453 g/m3 (Delsman et al., 2013)) represents of deep 

polders, where the main salinity input is deep saline groundwater exfiltration through 
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boils (de Louw et al., 2010) (Fig. 1c). In this catchment, two different layouts are 

observed: main ditches that receives the drained water directly from the drains and 

main ditches without drain connection but connected to stagnant ditches (collected 

excessive water in the surrounding area is drained to these stagnant ditches). We 

considered both layouts in this study. On the other hand, the Schermer polder 

(surface level 4.14 – 3.86 m BSL, water depth average depth, water depth 5 m BSL, 

salinity concentration variation in the ditches 700 – 7700 g/m3 (Delsman et al., 

2014b)) is representative of polders where the main salinity input derives from 

shallow saline groundwater, viz. exfiltrating towards ditches and tile drains (Fig. 1b). 

Interested readers are referred to Delsman et al. (Delsman et al., 2017, 2013) for 

further information about the areas considered in this study. The saline groundwater 

exfiltration is modelled by the RSGEM (Delsman et al., 2017).  

 

 

Figure 1 a) Locations of the two polders in the Netherlands used for testing the developed MPC scheme: i) 
Schermer Polder, ii) Lissertocht Catchment (adapted from Delsman, 2015), b) conceptualization of fresh and 
brackish groundwater flow to a ditch in the Schermer Polder, and c) conceptualization of fresh and brackish 
groundwater flow and a boil connecting the deep saline aquifer to a ditch in the Lissertocht catchment. 

 

Water systems have hydraulic structures like weirs, gates and pumps in place. To 

control the water quantity and quality these structures have to be operated according 

to the desired state of the system. Operational water management aims to optimize 

the control of these structures by means of Real Time Control (RTC). Over the past 

decades, RTC techniques have been used in the field of operational water 

management to control water volumes and levels, such as feedback controller 

(Clemmens and Wahlin, 2004; Schuurmans, 1997), feedforward controller (Bautista 
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et al., 2003) or Model Predictive Control (MPC) (Aydin et al., 2016; Delgoda et al., 

2016; Horváth et al., 2015; Tian et al., 2017, 2016; van Overloop et al., 2014). Over 

about the past 15 years, water quality control has also been considered. Several 

examples are: an adaptive control to restrict algae development in a canal (Litrico et 

al., 2011); a dynamic control to prevent salt intrusion in a lake (Augustijn et al., 

2011); a genetic algorithm to control the water quality of a waste water system (Fu et 

al., 2008) and to control regional wastewater treatment (Cho et al., 2004); different 

combinations of proportional integral derivative control with MPC to control pollutants 

in a river (Puig et al., 2014); and an MPC scheme to control water quantity and 

quality in a polder (Xu et al., 2013, 2010).    

 

MPC uses an internal model to predict the states of the surface water system over 

the prediction horizon. The accuracy of the internal model affects the control 

performance of the MPC in terms of accuracy and computation time (Xu, 2016). 

Simple models exist for water quantity control like Integrator Delay model 

(Schuurmans et al., 1995) and Integrator Resonance model (van Overloop et al., 

2014). For water quality control, Xu et al. (2010, 2013) used a simple reservoir model 

assuming full mixing to control the average salinity concentration in a ditch and 

proceeded by applying a model reduction technique and achieve a simple internal 

model decreasing computational time requirements to control the downstream water 

salinity concentration. Moreover, no previous studies pay attention to the minimal 

freshwater use of polder flushing assuming an unlimited source. Decreasing the 

freshwater intake to the ditch for flushing will directly decrease the amount of 

pumping water from the system. This is considered as a surrogate for saving energy. 

Therefore, in this study we develop a scheme to regulate water level and salinity of a 

test polder ditch by minimizing the freshwater use. We present an internal model and 

a state space description for a MPC scheme to control the flushing of the ditch. 

Multiple objectives (water level and salinity control and minimization of freshwater 

use) while meeting the constraints of the system are satisfied.  We use the 

discretized SV and ADE equations as the internal model for the controller which 

enables us to regulate the water level and salinity concentration in any discretization 

point of the test polder ditch. 

 

2. Modelling for the simulations 
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In this section, we described the groundwater exfiltration model used to estimate the 

ditch and drain exfiltration to the ditch, and the models used for the simulation of the 

flushing of a ditch.  

 

2.1. Modelling the saline groundwater exfiltration - RSGEM 

Saline groundwater exfiltration in low-lying polders is governed by the regional 

hydraulic gradient in the upper groundwater system. Saline groundwater moves 

upward and mixes with the surface water, increasing the salinity of the surface water. 

Existing groundwater models require long run times and limit the application in 

operational freshwater management.  To support operational water management of 

freshwater resources in coastal lowlands, Delsman et al. (Delsman et al., 2017) 

formulated a hydro(geo)logical model for fast calculation of groundwater exfiltration 

flux and salinity in a low-lying catchments. RSGEM recognizes that groundwater 

exfiltration salinity critically depends on both the fast-responding pressure 

distribution, and the slow-responding salinity distribution in the shallow groundwater. 

The model was developed for a test site in Schermer polder, and was validated 

using both measured groundwater levels, exfiltration rates and salinity response and 

results of a previously applied detailed, complex model to the same area (Delsman 

et al., 2017). RSGEM is a lumped water balance model used for determining the 

saline groundwater ditch and drain exfiltration discharges and salinity concentrations. 

The model aimed to include the saline groundwater exfiltration dynamics in coastal 

lowlands and is suitable for densely drained polders where fresh rainwater overlies 

shallow saline groundwater. RSGEM uses precipitation, evaporation and 

groundwater levels as the input and the output is the groundwater exfiltration 

concentration (Fig. 5a & 7a) and discharge (Fig. 5b & 7b). Other parameters 

necessary for running RSGEM for the given cases are taken from Delsman et al. 

(2013, 2017). Interested readers can refer to Delsman et al. (2017) for detailed 

information about RSGEM.  

 

In this study, we forced RSGEM with real-world data (precipitation, evaporation and 

groundwater levels) from two Dutch polders (Schermer polder (Delsman et al., 2017) 

and Lissertocht catchment (Delsman et al., 2013)) to obtain realistic exfiltration 

scenarios. The modeled exfiltration discharge and the concentration are used as 
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known disturbance for the developed controller. We assumed full system knowledge 

and perfect predictions for the exfiltration calculated by the RSGEM, thus, no 

uncertainty assessment is conducted.  

 

2.2. Modelling the flushing of a polder ditch 

To model the flushing of a polder ditch, transport of water and transport of dissolved 

matter have to be considered (Hof and Schuurmans, 2000). These dynamics can be 

described by the SV equations given in Eqs (1) & (2) for water transport and a one-

dimensional AD equation given in Eq. (3) for salt transport.  

 

lq
x

Q

t

A =
∂
∂+

∂
∂

                                                                                               (1) 

2

( ) | |
0

Q Qu Q Q
gA g

t x x Cz R A

ς∂ ∂ ∂+ + + =
∂ ∂ ∂ ⋅ ⋅

                       (2) 

( ) ( )
( ) l l

AC QC C
KA q C

t x x x

∂ ∂ ∂ ∂+ = +
∂ ∂ ∂ ∂

        (3) 

 

where A is the cross sectional area [m2], Q is the flow [m3/s], ql is the lateral inflow 

per unit length [m3/s/m], u is the mean velocity (Q/A) [m/s], ς is the water depth 

above the reference plane [m], Cz = 40 is the Chezy coefficient [m1/2/s], R is the 

hydraulic radius (A/Pf) [m], Pf is the wetted perimeter [m] and g is the gravity 

acceleration [m/s2], K is the longitudinal dispersion coefficient [m2s], C is the salt 

concentration [g/m3], Cl is the lateral flow concentration [g/m3], t is time [s] and x is 

horizontal length [m]. The longitudinal dispersion coefficient (K) is given by Fischer et 

al. (Fischer et al., 1979) as: 

 

2 2

0.011
s

B v
K

du
=           (4) 

 

where B is the mean width [m], d is the mean water depth [m], us=(gRSb)
1/2 is the 

shear velocity [m/s], g is the gravitational acceleration (9.8 m/s2), and Sb is the 

bottom slope of the canal [-]. The parameters used for discretization of the test ditch 

are given in Fig. 2.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 8

These partial differential equations can be discretized using a staggered grid 

(Stelling and Duinmeijer, 2003) with a combination of first order upwind and theta 

method for time integration. This discretization is explained in detail by Xu et al. 

(2010) thus will not be repeated here. The equations are implemented in MATLAB 

(The Mathworks Inc., 2016) to simulate the surface water system using initial 

conditions for the water level, concentrations and updated inflow and outflow 

discharges by the controller. For every simulation time step, the discretized SV 

equation calculates the water levels and velocities at the discretization points, 

followed by calculating the concentrations using the discretized AD equations. 

 

The stability of the used models is important for a reliable control design and stable 

simulation of the system. In this study, we used a staggered grid discretization that is 

unconditionally stable (Stelling and Duinmeijer, 2003). The spatial discretization used 

in both simulation and control model is 10 m representing the drain spacing of the 

considered ditch. For the time discretization, 1 min time steps are used for the 

simulations and 2 min time steps are used for the controller. Normally, for testing the 

model performance of real time controllers the control time step can be much larger 

than the simulation time step; in this study we used a smaller control time step in 

order to capture the fast response of the controlled downstream water level and 

downstream salinity concentration to a change in flushing discharge because the 

length of the test polder ditch was only 100 m. In case of a longer ditch (where the 

travel time of the flushing water is much larger) the control time step can be selected 

to be appropriately larger. The second reason was to force the controller with a 

smaller control time step to illustrate that the computation time of control action is not 

a limitation for the scheme described in this paper. Computation time is discussed in 

Section 5. 

 

3. Controller Design 

 

MPC is an optimization based control scheme which uses an internal model to 

predict the future process outputs within a specified prediction horizon (Camacho 

and Bordons, 2007). We used discretized SV and AD equations which serve as the 

internal model of the controller. Using the internal model equations, a time variant 
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state space description (Eqn 5) is obtained and used to describe and predict the 

states over the prediction horizon. 

 

(k+1) (k) (k) (k) (k) (k) (k)dx A x B u B d+= +        (5) 

 

where x is the state vector of the system, u is the controlled variable, d is the 

disturbance and k is the discrete time step index. A, B and Bd are the time 

dependent matrices associated with system states, control input and disturbance 

input, respectively. 

 

 

In the following paragraphs, the steps to achieve a time variant state space 

description for optimal flushing control is described and then the used objective 

function is defined. The controller controls the amount of flushing discharge, salinity 

and the water level at the downstream end of the polder ditch by manipulating the 

flushing and outflow discharges. According to the state space description given in 

Eqn (5); the states (x) are the water levels (hi), concentrations (ci), flushing discharge 

(Qflush) and outflow discharge (Qout) where i represents the discretization point in 

space; the inputs (u) are the change of flushing and outflow discharges (∆Qflush, 

∆Qout); and the disturbance (d) include all the remaining terms that are not 

associated with the states or inputs.  

 

The internal model proposed uses the discretized SV and ADE as the basis. First, a 

discretization matrix is introduced that has similar terms like the state space 

description given in Eqn (5). At this stage, the water levels (hi) and concentrations 

(ci) are replaced with the deviation from water level set point (ehi=hi-href) and 

deviation from concentration set point (eci=ci-cref) since the controller aims to keep 

the water level and concentrations around the set point. Later, using algebraic 

operations, a state space description as Eqn (5) is achieved from the discretization 

matrix. Finally, additional states and inputs are introduced that are necessary for 

minimising the freshwater usage.  

 

3.1.  Discretization Matrix 
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Based on the discretization for SV and ADE given in Xu et al. (2010) and following a 

similar approach for combined open water quantity and quality model described in 

Xu et al. (2013), the discretized SV and AD equations are written in a compact matrix 

form including the flushing (Qflush) and outflow discharges (Qout) as the states and the 

change of these discharges (∆Qflush ,∆Qout) as the control input of the system. For 

the sake of simplicity, a discretization matrix with three discretization points is 

introduced here (Eqn 6) and a general notation is provided in the Appendix. All the 

terms with the next time step (k+1) are written on the left side and the terms with the 

current time step (k) are left on the right side such that the states (x(k+1) and x(k)), 

controlled variables (u(k)) and the disturbances (d(k)) in Eqn (5) are also present in 

the discretization matrix.  
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332 33
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where svij, adij (i,j=1:3), svf, svo, adf, ado and adk
ij (i,j=1:3) are the time dependent 

terms from linearized equations associated with each state or control variable (see 

the Appendix for the details). To obtain these terms, every control time step, a pre-

simulation of the system is conducted using the control variables of the optimization 

calculated at the previous control time step. This simulation is run for the entire 

prediction horizon such that the calculation of the water level and salinity 

concentration for every discretization point is conducted that will be used in the 
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discretization matrix. These procedure is referred as forward estimation in Xu et al. 

(2010). 

 

3.2.  State Space Description  

 

Equation 6 can be showed in a compact form as: 

 

1 2 3( 1) ( ) ( ) ( )D x k D x k D u k Id k+ = + +
        (7) 

 

where D1, D2 and D3 are compact forms of the corresponding matrices in Eqn (6). All 

the diagonal elements of D1 are non-zeros, thus, the inverse of this matrix exists. 

After multiplying Eqn (7) with the inverse of D1 matrix, the state space description 

given in Eqn (5) can be achieved with A (
1

1
2D D−

), B (
1

1
3D D− ) and Bd (

1

1D I− ) matrices 

and the state space description is achieved as: 

 

1 1 1

1 1 1
2 3( 1) ( ) ( ) ( )x k D D x k D D u k D Id k− − −+ = + +       (8) 

 

This description relates the deviation of water level and the concentrations at the 

discretization points according to the change of flushing and outflow discharges and 

can be used only to control water level and salinity deviations from their set point. To 

achieve the third objective of minimization of freshwater use additional states and 

control variables are required and explained in the next section. 

 

3.3. Objective Function and Constraints 

 

Objective function is used to formulate the goals of the controller subject to the 

constrains of the system. The controller has to bring the states to their desired states 

by manipulating the control variables. Therefore, control actions also have to be 

considered in the objective function to limit the change of the control setting. In MPC 

formulation, the objective function is formulated as a quadratic function to deal with 

the positive and negative deviations from set points of the variables (van Overloop, 

2006). A finite horizon objective function over the prediction horizon Np with 
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weighting matrices Q and R for states and the control variables respectively can be 

expressed as: 

 

min T TJ X QX U RU= +          (9) 

 

The most important aspect of the developed control scheme in this study is to control 

water level and salinity by minimizing the freshwater use. To achieve that, the 

controller should limit itself to use freshwater only when it is necessary by flushing 

only if the salinity is above the given threshold and stop flushing when it is below the 

threshold. This can be achieved by introducing two soft constraints to the objective 

function. Soft constraints are used for variables that are allowed to violate their 

limitations (Maciejowski, 2002; van Overloop, 2006). Thus, they become active in the 

objective function only if they violate their limitations. For example, a soft constraint 

on flushing discharge with upper limit of 0 m3/s will let the controller to violate this 

upper limit and use flushing if necessary. However, after the violation this use will be 

penalised by the objective function, thus, the controller will try to avoid this violation 

as much as possible.  

 

Soft constraints are implemented as additional virtual input and virtual state variables 

into the system dynamics. Therefore, we used e*c to limit flushing only when the 

salinity concentration is below the set point and e*q to limit the amount of flushing. 

Virtual input has no physical meaning and it is subtracted from the state that needs 

to be constrained to achieve the virtual state. The objective function that is used in 

this study is given below: 
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    (10) 

 

where Np is the prediction horizon; eh and ec are the water level and concentration 

deviations from set points at the last discretization point downstream of the polder 

ditch; ec-ec* and Qflush-eq* are the virtual states necessary for the soft constraints; 

Qeh, Qec*, Qeq* are the weights penalizing the corresponding states; R∆Qflush, R∆Qout, 

Rec* and Req* are the weights penalizing the corresponding input variables; href and 

cref are the water level and concentration set points at the last discretization point; 

max
flushQ  is the maximum capacity of flushing; max

outQ  is the maximum pumping capacity; 

∆Qi is the maximum allowed structure setting in a control time step for any control 

structure; hmin and hmax are the minimum and maximum allowed water levels. 

Updated state space description is also given here using the example given in Eqn 

(6) with three discretization points. A6, A7, B6, B7, Bd6 and Bd7 are the 6th or 7th rows 

of the original A, B and Bd matrices given in Eqn (8). Similarly, d6 and d7 are the 6th 

and 7th rows of the disturbance vector d. 

 

4. Cases and Scenarios 
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To test the proposed controller under different representative conditions, we apply it 

to three different exfiltration scenarios at two locations. For all scenarios, we control 

a simple one pool test polder ditch (Fig. 2-4) with a length of 100 m (the length of the 

ditch is selected such that it is representative of a small polder ditch and the length is 

not a limitation for the developed method). A spatial discretization spacing of 10 m is 

used for both simulations and the internal model calculations.  

 

For the first two scenarios, we used exfiltration data from the Lissertocht catchment 

(Delsman et al., 2013). This catchment is a deep polder where the main salinity input 

is deep saline groundwater exfiltration through boils (de Louw et al., 2010). The 

drainage and ditch exfiltration salinity concentrations were calculated with RSGEM, 

leading to a mean of 75 g/m3 and 336 g/m3, respectively; boils have a mean salinity 

concentration of 5453 g/m3 (Delsman et al., 2013). In the first scenario, we modelled 

and controlled a main channel directly collecting drainage water from the 

surrounding areas (Fig. 2). Saline groundwater exfiltration through the drains and 

ditches are modelled by RSGEM with daily time scales. We immediately represent 

the drain and ditch exfiltration modelled by RSGEM entering the test polder ditch. To 

test the controller, we selected a 24-day period (17 August 2010 – 9 September 

2010). In addition to the drain and ditch exfiltration modelled by RSGEM, two boils 

with a discharge of 0.002 m3/s were added at locations 40 m and 60 m downstream 

of the flushing inlet. See Fig. 5a-b for the exfiltration concentrations and discharge, 

respectively, used in the first scenario.  
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Figure 2 a. Schematization of the test polder ditch (not to scale) for the first scenario, 10 m drainage spacing, 1 
m bed width, 1:1.5 side slope, Chezy coefficient 40 m1/2/s and bottom slope 0.0001 [-] with flushing discharge 
(Qflush), outflow discharge (Qout), groundwater drain exfiltration discharge (Qdrain) and concentration (cdrain), 
locations of the two boils and two locations used in controller design that are 40 m and 60 m downstream of the 
flushing inlet, b. Cross section of the ditch (A-A in (a)) with drain exfiltration discharge (Qdrain) and concentration 
(cdrain), boil discharge (Qboil) and concentration (cboil).  

 

In the second scenario, we illustrate the performance of the controller in case of 

stagnant ditches (that collects the drained water from the surrounding areas) 

connected to a main channel without drains, an often-occurring surface water layout 

in Dutch polders (Fig. 3). Some of the stagnant ditches with boils present in them are 

observed in Lissertocht catchment; they store high salt loads during dry periods. 

After an intensive rainfall event, these ditches are flushed naturally by the collected 

water from the drains. Therefore, in this scenario we first simulated the stagnant 

ditch for the same full dry period without an inflow discharge given in the first 

scenario and recorded the outflow discharge and concentrations at the end of the 

ditch every minute. We selected a test period with the highest surface water outflow 

salinity concentration and discharge for the simulations (8 April 2010 – 5 May 2010); 

these model inputs are shown in Fig. 6a and b, respectively. We assumed two 

stagnant ditches that are used to collect the drained water on the left and right banks 

of the polder ditch. The stagnant ditches are connected to the controlled main polder 

ditch at 40 m and 60 m downstream of the flushing inlet.  
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Figure 3 Schematization of the test polder ditch (not to scale) for the second scenario with flushing discharge 
(Qflush), outflow discharge (Qout), outflow discharge (Q1,2) (see Fig 6b) and concentration (c1,2) (see Fig 6a) of the 
two stagnant ditches. The stagnant ditches have the same layout as the first scenario except no flushing 
discharge (shown as black block in this figure). 

 

For the third scenario (Fig. 4), exfiltration data from a different polder is used 

(Schermer polder, location A in Fig. 1.). Contrary to the Lissertocht catchment, the 

main salinity input derives from shallow saline groundwater, exfiltrating towards 

ditches and tile drains. Tile drain and ditch exfiltration concentrations average 321 

g/m3 and 829 g/m3 respectively and reach up to 5665 g/m3 for both of them 

(Delsman et al., 2017). Using RSGEM, ditch and drain exfiltration discharge and 

concentration is modelled hourly and a test period with the highest salt load entering 

the system is selected (13-24 July 2012). See Fig. 7a and b for the ditch and drain 

exfiltration salinity concentration and discharge modelled by RSGEM, respectively.  
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Figure 4 Schematization of the test polder ditch (not to scale) for the third scenario with flushing discharge 
(Qflush), outflow discharge (Qout), drain exfiltration discharge (Qdrain) and concentration (cdrain). 

 

For all three scenarios, drains with a spacing of 10 m are used to collect the excess 

water (fresh and saline groundwater) from the nearby areas. All of the ditches 

considered in this study have the same cross section as given in Fig. 2. The water 

level (href=-0.41 m) and the salinity concentration (cref=550 g/m3) at the downstream 

end (last discretization point) of the ditch is controlled by manipulating flushing 

(Qflush) and outflow (Qout) discharges. The reference levels for water level and 

concentration are arbitrary and in the control calculation the deviations from the 

reference level are considered, therefore, they are not crucial for the method. A 

simulation time step of 1 min, a control time step of 2 min and a prediction horizon 

(Np) of 30 steps (equal to 1-hour prediction horizon) are used in the simulations. To 

determine the weights used in the objective functions, we used the maximum 

allowed value estimate approach described by van Overloop (2006) as an initial 

guess and arranged them accordingly as summarized in Table 1. 

 

Table 1 Weights [-] used in the objective functions for the three scenarios 

 Qeh Qec*, Qeq* R∆Qflush R∆Qout Rec* Req* 

Scenario 1  16 62.5 0.01 80 80 10-4 10-2 

Scenario 2 16 62.5 0.01 80 80 10-4 10-2 

Scenario 3 16 6.25 0.01 4 4 10-4 10-2 

 

 

5. Results and Discussions 
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5.1.  Scenario 1 

 

In this scenario, we used the proposed MPC scheme to control the test polder ditch 

with drains using the exfiltration data from Lissertocht catchment for 24-day period. 

In this catchment the main source of salinity is the boils. The drain and ditch 

exfiltration are fresh after a rain event because of the shallow freshwater lens in the 

catchment. This causes a decrease of modelled groundwater exfiltration 

concentration after 23/08 in Fig. 5a while the exfiltration discharge increases (Fig 

5b). This natural flushing due to rainfall is noticed by the controller, and it reduces 

the flushing during this time. The results of the MPC scheme can be seen in Fig. 5c-

e.  

 

 

Figure 5 Disturbance data and results of the controller for the first scenario. Groundwater exfiltration a) 
concentration (cboil=5453 g/m3 is constant and not shown in the figure) and b) discharge used for the first 
scenario (dashed lines shows the first location 40 m downstream of the flushing inlet which is a combination of 
the first boil and the exfiltration modelled by RSGEM and the solid line shows the second location which is 60 m 
downstream of the flushing inlet with the second boil only). c) Controlled flushing and outflow discharge, d) 
downstream water level and e) downstream salinity concentration. 
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As can be seen in Fig. 5c, the controller reacts to the groundwater exfiltration 

modelled by RSGEM (Fig. 5a-b) and keeps the water level (Fig. 5d) around the set 

point without any violation in salinity concentration (Fig. 5e). As expected, the 

controller anticipates the additional fresh drain water entering the ditch after 23/08 

and reduces the flushing discharge (Qflush) accordingly for this period, thus achieving 

the goal of flushing only when it is necessary.  

 

5.2. Scenario 2 

 

In this scenario, we wanted to see the effect of stagnant ditches connected to the 

main ditches in Lissertocht catchment. Stagnant ditches are used to collect the 

drained water and transfer it to the main channels. The upstream ends of the 

stagnant ditches are closed, and they are naturally flushed during the rainfall events 

resulting in an inflow to the main ditch (outflow from the stagnant ditch). There is no 

control structure in between, therefore, the water levels at the stagnant ditches also 

stays at the target value of the polder system. Similar saline groundwater exfiltration 

is modelled and simulated as the first scenario for two stagnant ditches without an 

inflow at the upstream end, using the water level at the connections as a boundary 

condition. The outflow discharge (Fig. 6a) and salinity concentrations (Fig 6b) at the 

connections of the stagnant ditches to the controlled test polder ditch of the stagnant 

ditches (see Fig. 3) are simulated and used as a disturbance to the main channel 

controlled by the MPC scheme. Results are presented in Fig. 6c-e for a 28-day 

simulation. 
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Figure 6 Disturbance data and results of the controller for the second scenario. Surface water outflow a) 
concentration and b) discharge of the stagnant ditch connected to the controlled test polder ditch. c) Controlled 
flushing and outflow discharge, d) downstream water level, e) and downstream salinity concentration. 

 

As presented in Fig. 6c, the controller does not change the flushing discharge except 

for the small fluctuations throughout the simulation. This is due to the inverse relation 

between the exfiltration discharge and the concentration (Figure 6a-b) resulting in a 

more or less constant salt load entering the system. Therefore, without a step 

change in flushing or outflow discharge the controller is able to keep the water level 

around the set point and the salinity concentration below the threshold.  

 

5.3. Scenario 3 

 

In the last scenario, we examined the performance of the controller in a polder with 

different saline groundwater exfiltration dynamics. Using data from the Schermer 

polder (with shallow saline groundwater), the MPC scheme is tested for a 11-day 

period. The results of the simulations are presented in Fig. 7c-e.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 21

 

Figure 7 Disturbance data and results of the controller for the third scenario. Groundwater exfiltration a) 
concentration and b) discharge used for the second scenario. c) Controlled flushing and outflow discharge, d) 
downstream water level, e) and downstream salinity concentration. 

The results of this scenario show the ability of the proposed MPC scheme to deal 

with both increased exfiltration discharge fluxes (e.g. Fig. 7b after 14/07) and 

increased exfiltration concentration (e.g. Fig. 7a after 15/07). The initial salinity 

concentration is 500 g/m3 at the downstream end of the ditch (Fig. 7e) while the 

exfiltration concentration is almost 1000 g/m3 (Fig. 7a). The concentration drops 

below the threshold at the beginning of the simulation and the controller decreases 

the flushing until the controlled downstream concentration gets close to the threshold 

of 550 g/m3. Moreover, as can be seen in Fig. 7c, the outflow discharge Qout after 

14/07 is increased while the flushing discharge Qflush doesn’t change considerably. 

This is due to the fact that the controller needs to pump the excess water out of the 

ditch while the current flushing is enough to keep the salinity concentration below the 

threshold. On the other hand, after 15/07 the controller introduces additional 

freshwater into the system by a step increase of flushing discharge Qflush. The 

outflow discharge is adjusted with a similar increase to keep the water level at set 

point. With similar arrangements on flushing and outflow discharges the controller 

keeps the water level (Fig. 7d) and concentration (Fig. 7e) in accordance with the 

objective of the controller. Moreover, as can be seen clearly after 20/07, the flushing 
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and outflow discharges are decreased, as the saline groundwater exfiltration after 

this point requires less freshwater to achieve the salinity concentration control 

objective. This shows that the third objective of the controller to use a minimum of 

freshwater is also achieved.  

 

To demonstrate how much freshwater and pumping water can be saved by using the 

developed control scheme, we compared results of the simulations with different 

salinity concentration to the current fixed flushing practice. We did the analysis only 

for the third scenario due to its high dependency on exfiltration dynamics. We 

assumed the maximum flushing discharge achieved during the simulations using the 

proposed MPC scheme is the maximum capacity of the intake of the test polder ditch 

and used this as the fixed flushing discharge for comparison. The results are 

presented in Table 2. 

 

Table 2 Comparison between flushing with MPC and current practice of fixed flushing with different salinity 
threshold. 

Cref 

(g/m3) 
Cav (g/m3) 

Qmax 
(m3/s) 

Σ Qflush  
(103 m3) 

Σ Qpump  
(103 m3) % Saved 

MPC Fixed MPC MPC Fixed MPC Fixed Qflush Qpump 

550 512.8 374.2 0.384 198.1 365.2 296.8 463.9 45.7 36.0 
750 684.9 555.2 0.172 105.6 163.4 204.3 262.0 35.3 22.0 
900 810.8 664.8 0.115 67.7 109.2 166.4 207.9 38.0 19.9 

1000 893.7 714.7 0.096 49.2 91.6 147.9 190.2 46.2 22.2 
 

 

For all the simulations presented in Table 2, similar results are obtained as in Fig. 7. 

Flushing with MPC kept the salinity level close to the set point without any violations 

and the water level was always around the set point with fluctuations within the 

range of maximum and minimum water levels defined in the objective function. As 

can be seen in Table 2, increasing salinity set points resulted in less need for 

flushing discharge. Although in this study we used a given fixed threshold for the 

salinity concentration over the whole simulation period, in practice the concentration 

requirement will be varying, depending on the requirements. With a known but 

spatially and temporally varying demand for quantity and quality, the developed MPC 

scheme can be modified such that the demand is satisfied using the predictive 

behavior of the controller. By this way additional savings in freshwater and pumping 
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use can be achieved. Simulations with fixed flushing always resulted in more flushing 

and pumping than the flushing with MPC. More than 35% savings in freshwater use 

is achieved by using the proposed MPC scheme. Similarly, the savings in total 

pumping volume reached up to 36% in case of using MPC. With fixed flushing, the 

average salinity concentration over the simulation period is below the set point which 

results in a better water quality. However, as discussed earlier this is due to the 

unwanted excessive freshwater usage, resulting in unnecessary pumping and 

energy use.  

 

Using a discretized internal model (as opposed to an internal model achieved by 

model reduction as proposed by Xu et al. (2013)) is also an important outcome of 

this research which will give the operator to modify the controller such that the water 

level and the salinity concentration can be controlled in any discretization points. In 

this study we used 10 m discretization spacing for the internal model, resulting in 

total of 24 states and 4 control variables. We used a control time step of 2 minutes 

with 1-hour prediction horizon (i.e. 30 control time steps) resulting in total of 24*30 

states and 4*30 control variables, respectively. To illustrate the computational time, 

one closed loop simulation (calculation of control actions over the whole prediction 

horizon followed by simulation of the system dynamics with the calculated control 

action) ended in less than 0.1 seconds. All the computations performed within 

MATLAB R2017a-64 bit for macOS High Sierra (v 10.13.6) installed on a 2.9 GHz 

Intel Core i5. In a polder system without any intermediate structures between the 

ditches, the network of ditches is controlled by the intake structures and the pumps 

in the system only. However, a farmer can use the water in any intermediate location 

without a hydraulic structure, and therefore, this feature can be interesting by means 

of salinity and water availability. The flexibility of controlling the main structures 

according to the states of any intermediate location is an important outcome of the 

developed MPC scheme. 

 

6. Conclusion and Future Work 

 

In this study, a MPC scheme was developed for optimizing flushing of a polder 

catchment. We provided a MPC scheme to control the salinity concentration and 

water level in a polder ditch also considering the freshwater usage. We tested the 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 24

scheme on a test polder ditch layout. The controller was numerically tested for 

different scenarios and compared with the current operation practice in the field. The 

results showed that MPC of flushing of a polder ditch results in savings in the order 

of 35-45% freshwater use, depending on the salinity thresholds. 

 

RSGEM is used to estimate the exfiltration flux and concentration for a realistic 

scenario using past data. However, this is not a limitation for the controller. The 

weather predictions and estimations of related events can be used to run the fast 

RSGEM as a predictive model with required uncertainty assessments and the 

developed MPC scheme can be used in real time. 

 

Although in this study we focused on salinity as the source of water quality problem, 

other nutrients that are used in the fields and accumulated in the ditches by means 

of drained water can also be controlled with the developed MPC scheme. The 

limitation in such a control scheme will be obtaining real time measurements for the 

nutrient levels in the ditches. 

 

For future research, we will apply the developed controller to the whole water course 

network of the Lissertocht catchment. With multiple inlets and pumping stations, a 

network of ditches without control structures in between, higher saline groundwater 

exfiltration through boils from different locations, applying MPC to the flushing 

operation of the Lissertocht catchment will be challenging and interesting. Moreover, 

uncertainties of the system and the predictions are to be addressed.    

 

The dependency between the water used and energy consumed is an important 

issue, often referred to as ‘water-energy nexus’ (Bazilian et al., 2011; Siddiqi and 

Anadon, 2011), and needs to be considered for sustainable future planning. The 

relation between the flushing and corresponding energy consumption will be 

introduced to the optimization of the developed control scheme. This will enable the 

operators to manipulate the flushing of the polders in a sustainable manner. 
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Appendix 

 

SV and AD equations are discretized following (Xu et al., 2010) using a staggered 

grids. A discretization matrix (See Equation 6) for n discretization points is obtained 

with the terms given as: 
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• A real time control method is proposed for optimal flushing of polder systems 

• Low-order physical model is employed to formulate model predictive control 

problem 

• Water level and salinity regulation is achieved by minimizing the freshwater use 

• A quadratic program is formulated and solved to optimize regulation 

• 35-45 % savings in freshwater used is realized compared to traditional flushing 

 

 

 


