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Abstract

The Swarm satellite mission, in operation since November of 2013, has been collecting high-accuracy
GPS tracking data for over a decade. Kinematic orbit solutions derived from this data have been
used as input to gravity field estimation techniques for some time, with research initiatives such
as the "Multi-approach gravity field models from Swarm GPS data’ dedicated to the production of
highly accurate time-varying models. The production of these models is of great value to the geodetic
community, as they provide an alternative and independent source of gravity field information which
can be used to bridge gaps in the service of dedicated gravity field missions such as the Gravity
Recovery and Climate Experiment, and provide additional temporal and spatial coverage of Earth’s
gravity field. The determination of this time-varying component is of great scientific value, as these
models capture the complex motion of mass about the Earth occurring over short periods of time;
such as the melting of polar icecaps and drought. The focus of this thesis is the improvement of
the Swarm kinematic orbits used as input for such models.

We begin with an introduction to the research, including background of the topic, the scope of
the research, the current state of the art and the gap in knowledge to be addressed culminating
in the presentation of research questions. Input kinematic orbits from the Technical University of
Delft, the Astronomical Institute of the University of Bern and the Institute of Geodesy Graz are
retrieved. We apply input consolidation using interpolation to bring each input to consistent 1-
second frequency sampling. We then apply a 0.3m outlier-filtering using the residuals of each input
with respect to a reduced dynamic reference orbit. The consolidated and pre-screened input orbits
are then combined using the following techniques: arithmetic mean weighting, inverse-variance
weighting, iterative variance component estimation, weighting with the residuals with respect to a
Reduced dynamic orbit (RDQI) reference, and optimisation using an reference.

The resulting combined orbits are then assessed using Satellite Laser Ranging (SLRI]) residuals
retrieved using the ‘GNSS High Precision Orbit Determination Software Tools’ of the German
Aerospace Center. An additional analysis of the uncertainty of these orbits is performed using the
projection of the orbit uncertainty along the line-of-sight vector from the satellite laser ranging
station to the satellite. Results demonstrate that the combined orbit solutions outperform the
input orbits across a range of metrics, with the best-performing combined orbits produced using
the arithmetic mean method achieving an residual root mean-square error of 2 cm in 2022,
and 4 cm in 2023, improving upon the next-best input orbit by 20 cm of error. This improvement is
achieved without the loss of any volume of data. The combined orbits are additionally less sensitive
to poor tracking data, and are therefore more robust than the inputs. These combined orbits show
promise as use in gravity field estimation from Swarm kinematic orbits, as an improvement in the
input orbits corresponds to an improvement in the gravity field model.

Finally, we explore the advantage of using SLR residuals to re-scale the input orbit noise such
that each input is statistically consistent. We find that this technique further improves the qual-
ity of the combined orbits created using the inverse variance and variance component estimation
techniques.



Chapter 1

Introduction

Gravity field models are essential tools in Earth sciences, providing critical insights into various
geophysical processes such as ocean circulation and climate change. Of particular interest in light
of the prevalent risk presented by climate change is the time-varying component of the gravity field;
the component of the gravity field which meaningfully changes within a 5-year period. This provides
us insight into the movement of water through the Earth’s hydrosphere, and hence insight into global
groundwater supply, drought and aquifers, as well as ice loss in the Antarctic and Greenland.

Gravity field models are typically estimated using data from dedicated satellite missions, with
significant contributions from missions such as CHAllenging Minisatellite Payload (CHAMDP)), Gravity
Recovery and Climate Experiment (GRACE]), and Gravity Field and Steady-State Ocean Circula-
tion Explorer (GOCE]). The advent of high-accuracy Global Navigation Satellite System (GNSS)
technology has enabled the estimation of gravity field models from tracking data, with the only re-
quirement being an accurate dual-frequency receiver. This has the potential to significantly
improve the spatial and, most importantly, temporal resolution of estimated gravity field models,
enabling us to better monitor short-term geophysical and hydrological processes, which has in recent
history been the sole purview of the GRACE-FO mission, launched in 2018 and active since.

It is of great benefit to have additional sources of high-accuracy gravity field models as an alter-
native to those derived from the GRACE mission. This is especially pertinent given the 10-month
gap in GRACE data between the decommission of GRACE and the launch of its follow-on. Not
only that, but we additionally know that the combination of several gravity field solutions produces
more accurate models [65], and therefore that the collection of any additional gravity field informa-
tion contributes to the improvement of our understanding of Earth’s gravitational field. For this,
we take advantage of the European Space Agency (ESA]) Swarm mission, launched in 2013 and
consisting of three satellites in Low Earth Orbit (LEQI), which was specifically designed to measure
Earth’s magnetic field, but also provides valuable data for gravity field modelling through its accu-
rate onboard receivers. Therefore, kinematic orbit solutions derived from Swarm data
can be used to estimate gravity field models and provide us an alternative and independent source
for the time-varying field, for which it is most important to have frequent data collection.

Improving models derived from Swarm data, then, is of great value to the geodetic community.
Current practice is for independent analysis centres to produce unique kinematic orbit solutions from
the raw [GNSS data. They then apply their — typically unique — gravity field estimation techniques to
solve for the gravity field coefficients. The resulting collection of models is then combined by research
groups partaking in initiatives such as the International Combination Service for Time-variable



Gravity Fields (COST-G]) to produce a final combined gravity field model, typically provided on a
monthly basis.

What has not yet been investigated is the application of combination techniques to the kinematic
orbits themselves prior to gravity field estimation. By improving the quality of the inputs to gravity
field estimation, the models themselves are improved. In this thesis, we aim to improve the quality
of the Swarm kinematic orbits by combining a set of input orbits provided by the Institute of
Geodesy Graz ([FG)), Astronomical Institute of the University of Bern (AIUB]) and the Technical
University of Delft (TUDI) such that the combined orbit is closer to the underlying truth. In service
of this, several combination techniques are proposed and assessed in order to determine if this novel
approach has the potential to result in superior quality kinematic orbits for the purpose of gravity
field estimation.

This thesis opens with the necessary background and context in [chapter 2] outlining the state of
the art in Swarm kinematic and solutions, and formulating the central research questions. The
combination and evaluation methodology is then detailed in [chapter 4] Verification and sensitivity
analyses of the developed approach are presented in [chapter 5| The performance of the resulting
combined orbits for 2022 and 2023 is assessed in [chapter 6] and the findings are summarised in

chapter 7|



Chapter 2

Background

The focus of this thesis is the improvement of Swarm Kinematic Orbits (KQl)’s. To support the
formulation of research questions, required background knowledge is first provided in this chapter.
It begins by describing the Swarm mission and the nature of the orbit data it produces. The
fundamental concepts of kinematic and [RDQOI's are discussed, followed by an explanation of how
these orbits are evaluated using Then, the current state of Swarm orbit solutions is reviewed,
and finally, the open-source tools used in this thesis are introduced.

2.1 The Swarm mission

The Swarm mission, launched by [ESAlin 2013, consists of a constellation of three identical satellites
—Swarm A, B and C — designed to study the Earth’s magnetic field. Swarm A and C fly side-by-side
with an initial altitude of 462 km at 87.35 degree inclination, while Swarm B had a higher initial
altitude of 511 km and an inclination of 87.75 degrees [22]. Swarm’s main goal is to provide high-
precision and high-resolution measurements of the geomagnetic field, its temporal variations, and its
interaction with the magnetosphere. Each satellite is equipped with a vector field magnetometer,
an electric field instrument, and accelerometers, which together enable detailed mapping of the
magnetic field generated by the Earth’s core, mantle, crust, oceans, ionosphere, and magnetosphere.
The Swarm satellites carry highly accurate receivers [67].

2.2 Orbit solutions

The field of Precise Orbit Determination (PODI) deals with the determination of satellite orbits from
tracking data. The precise tracking data of the Swarm satellites is disseminated from [[ESA| servers.
Several analysis centres produce their own orbit products from this data. Of key importance to
this thesis are Swarm and solutions. In this section, we describe the theory behind these
orbits.



2.2.1 Kinematic orbits

Kinematic orbits are position time-series of a satellite’s trajectory, derived through orbit determi-
nation techniques using only the geometry of the context retrieved from [GNSS| tracking data; that
is, there are no force models or dynamics used in the kinematic orbit determination process [33].

Observation Model and Estimation Framework

The tracking data used in kinematic orbit determination consists primarily of pseudo-range
(code) and carrier-phase measurements on two frequencies, f; and f,, typically referred to as L1 and
L2. These observations can be combined to reduce atmospheric and hardware biases. A common
choice in is the use of the ionosphere-free linear combination, which effectively eliminates the
first-order ionospheric delay — the effect of free electrons in the ionosphere on the propagation speed
of the GNSS signal, introducing a frequency-dependent delay — and provides improved robustness
for orbit determination [64].

The basic observation equations for code (R) and carrier-phase (®) in their ionosphere-free forms
are expressed as:

RIF:p—I-C(St—f—dIF—f—ER, (21)

AME®@rir = p+ ¢t + A\pn + dip + €o. (22)

Here, Rip and ®1p are the ionosphere-free combinations of the raw code and phase measurements,
respectively. p denotes the geometric range between receiver and satellite, ¢ dt is the receiver clock
offset, Air is the wavelength of the ionosphere-free combination, n is the integer ambiguity, and
dir represents the combined hardware delays from the satellite and receiver. eg and e model the
measurement noise for the code and phase observations. The integer ambiguity refers to the un-
known number of full carrier wavelengths between the satellite and receiver at the start of tracking,
as this information is not directly observable from the signal. Integer ambiguity resolution algo-
rithms are applied to estimate this value and enable precise range retrieval from the carrier-phase
measurements.

In practice, the phase observations are weighted more heavily than code observations due to their
much lower noise levels (sub-centimetre compared to metre-level). However, code observations are
essential to help constrain the clock and ambiguity parameters [64].

The general linearised observation model [70] can be written in least-squares form as:
y=AZ+e. (2.3)

With y the observation vector, A the design matrix containing partial derivatives of observations
with respect to the unknown parameters Z (which include the satellite position components and
receiver clock bias), and € the residual vector.

The parameters & are obtained by minimising the cost function:

J=¢"P e (2.4)

yy &



where P, is the covariance matrix of the observation noise. The weighted least-squares solution is
then given by:

—1
i=(ATP,A)  ATP Y. (2.5)

The covariance matrix of the estimated parameters is then:

Poo=(ATPA) (2.6)

This matrix expresses the formal precision of the estimated positions and clock parameters. These
formal errors are highly sensitive to the satellite-receiver geometry and the weighting of the
observations [33]. The resulting Standard Deviation ([STD])’s and correlations (for example between
along-track and cross-track directions) provide insight into the quality of the kinematic solution.
Importantly, the covariance information primarily reflects the internal uncertainty distribution of
the solution — that is, how precisely the parameters are estimated relative to one another under
the assumed model and measurement noise. However, it does not necessarily reflect the absolute
accuracy of the orbit with respect to the true trajectory, as it neglects modelling errors, measurement
biases, and other external sources of error [33] 34].

2.2.2 Reduced-dynamic orbits

determination aims to combine the strengths of kinematic and dynamic methods by estimating
satellite positions using force models while preserving the inclusion of empirical accelerations. Unlike
purely kinematic solutions, RDOFs incorporate physical models—such as gravitational, atmospheric
drag, and solar radiation pressure forces—to constrain the trajectory over time. However, they
remain less rigid than fully dynamic orbits due to their treatment of unmodelled accelerations [33].

The observation model remains fundamentally the same as in the kinematic case, with
phase and code measurements providing the observational data. However, instead of estimating
the position at each epoch independently, a continuous trajectory is estimated by integrating the
satellite’s equation of motion, supplemented by stochastic parameters such as piecewise-constant
accelerations or process noise.

This approach introduces a smoothness constraint, which increases robustness to poor geometry
or measurement outliers, while still allowing for some model mismatches. The orbit is fit over longer
arcs (typically several minutes to hours), and additional parameters such as accelerations d(t) are
estimated to absorb unmodelled forces. This results in a solution that is both more accurate and
more stable than kinematic orbits, particularly in the along-track direction where geometry
is weakest [64].

2.2.3 Evaluation of orbit quality using SLR

Kinematic and [RDOl's are primarily evaluated through the use of observations. SLR involves
measuring the distance between a ground station and a satellite through the reflection of a laser
off a retro-reflector on the surface of it [48]. This provides exceptionally accurate measurements
of the range. These range observations are filtered for quality, corrected for known effects such as
atmospheric refraction, and then used to produce normal points. Normal points are the reported



range values, time-binned into 5-second windows, with an associated mean range. These points are
timestamped at the midpoint of each window.

SLR stations are sparse, and therefore SLR observations are not available the vast majority
of the time. In addition, there is a large discrepancy between the quality of observations from
different stations, and a reduction in the quality of observations with decreasing elevation angle
as the signal experiences a thicker atmosphere. Therefore, it is necessary to make a selection of
specific high-performing stations and to optionally define an elevation cut-off angle [44], such as by
selecting stations with a reported Root Mean Square (RMS]) of the residuals below a
certain threshold.

In this thesis, SLR normal point data is retrieved and processed using the GPS High precision
Orbit determination Software Tools (GHOST]) software toolkit further discussed in [subsection 2.4.2]
which provides station positions through the International Laser Ranging Service (ILRS) [51] and fil-
tered observations corrected for known effects, including atmospheric refraction. The observations
are time-binned into 5-second intervals, yielding normal points — reported mean ranges times-
tamped at the midpoint of each bin [68]. These are used to evaluate orbit accuracy by computing
residuals with respect to the predicted satellite-station range. The computation of this is described
in [section 4.6l

2.3 State of the art Swarm orbits

The current state of the art of [KOI's derived from Swarm data are produced by [ATUB], the
[TUD], and [FGL The full methods by which each institute derives their [KQOIs is beyond the scope
of this thesis. For a comprehensive description of the different [KQs including their background
models used, refer to[Appendix Gl These [KOl's are provided as time-series of positions along with
their covariance data. data is available for each of the Swarm satellites; Swarm A, B and C.

State of the art [RDOJ's are produced by the and disseminated by [ESAl as well as by [FGL
These are provided as position and velocity time series for each of the Swarm satellites. In this
thesis, we make use of the TUDI[RDOJs, as the retrieval and processing of them is most convenient,
and because the [TUD|[RDOl's performed better in preliminary testing; this is further detailed in

Append .

Several publications discuss the quality of these orbits. In general, Swarm orbit solutions have
centimetre-level accuracy. A paper assessing the quality of the Swarm [KOl's produced by the
for the year of 2013-2014 reported [SLRIRMS errors of 3.25, 2.74 and 3.11 ¢cm for Swarm A, B and
C [30]. errors of 2 cm were reported for the RDQOT's [29]. Another paper addressing four years
of Swarm precise orbit determination from 2013 to 2018 reported a median daily of the
residuals below 2.5 c¢m for their [KOf's and 0.5-1 cm for their RDOl's [44]. In general, Swarm [RDOl's
are 50-70% better than their counterparts, as evidenced by the referenced literature [29, 44].

This is a general indication of the performance of these orbits; an issue with directly comparing
the performance of them — especially at different points in time — is their dependence on the quality
of the tracking data which is sensitive to the satellite geometry, as well as other environmental
factors such as solar activity. Additionally, the errors reported by the validation are affected
significantly by the particular station selection. For the assessment of orbits produced in this thesis,
a direct comparison must be made using a consistent station selection.



2.4 Open-source software

Open source software is used in this thesis to synthesise orbits for verification tests, interpolate
input orbits and validate the combined orbits.

2.4.1 Tudat - TU Delft Astrodynamics Toolbox

The TU Delft produces its own astrodynamics toolbox, TU Delft Astrodynamics Toolbox (Tudadl)
[16]. In this thesis, this toolkit is taken advantage of to propagate synthetic orbits for the purpose
of testing. It is also used for interpolation functionality.

2.4.2 GHOST - GNSS High Precision Orbit Determination Software
Tool

In order to assess the performance of the combined orbits, we require SLR validation. To perform
this, we use the toolkit, which contains the SLRRES function used to retrieve the SLR
observations of the satellite and the station positions, enabling the retrieval of orbit residuals along
the station—satellite Line of Sight (LOS) vector [68].



Chapter 3

Research Proposal

This chapter outlines the motivation for this thesis, summarises the rationale for improving Swarm
kinematic orbit quality and combining existing solutions. It contextualises this work within exist-
ing efforts in gravity field modelling, introduces known combination strategies from the geodetic
community, and presents the central research we wish to address.

3.1 Why improvement in these orbits is desired

Researchers have identified a need for additional sources of gravitational field data supplementary
to dedicated missions. The highly-accurate tracking data of Swarm may be used to estimate gravity
field models, and since Swarm coverage has been continuous since its launch it is able to cover gaps in
data from dedicated gravity field missions such as[GRACEL Launched in 2002, on October 27, 2017,
the first mission finally came to an end having exceeded its planned nominal lifetime by 10
years. The follow-on mission, Gravity Recovery and Climate Experiment Follow On (GRACE-FQI),
launched in May 2018 and began operations shortly after. Between these two missions lies a gap of
around a half year wherein no high-quality satellite to satellite ranging time-varying gravity field
data is available [29]. This highlights a problem with reliance on gravity field missions; coverage is
not guaranteed, missions can fail and budgets for follow-on missions can run dry. The addition of
quality gravity field models from Swarm orbit data is therefore desired.

Swarm kinematic orbits are used to estimate these supplementary gravity field models. These
orbits are used as inputs in gravity field estimation techniques due to them not containing any a-
priori gravity field models which would bias the resulting field [66]. Therefore, the improvement of
Swarm kinematic orbits directly contributes to the improvement of gravity field models estimated
from Swarm mission data [30]. Methods by which these gravity field models are estimated are

provided in [section F.5| for the curious reader.

3.2 COST-G and the Multi-Approach Swarm Gravity Field
Initiative

[COST-Gl the International Gravity Field Service (IGES]) product centre for time-variable gravity
fields, provides monthly global gravity field models derived by combining input from several analysis
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centres. These combinations are based on solutions or systems of normal equations, and aim to
improve noise characteristics and overall model quality. The models are derived from multiple data
sources, including [GRACE] [GRACE-FO| [GNSS missions such as Swarm, and satellite laser ranging
[32].

COST-G supports the goals of the European Gravity Service for Improved Emergency Manage-
ment (EGSIEM)) initiative, seeking to improve the robustness, reliability, and frequency of time-
variable gravity field products. The contributes to COST-G through its involvement in the
generation and combination of Swarm-based gravity field models [65]. These Swarm models are
based on kinematic orbits, and their accuracy is directly affected by the quality of the input orbits.

A specific research initiative within this context is the Multi-Approach Gravity Field Models
from Swarm GPS Data initiative [65]. This group combines gravity field models generated from
diverse processing strategies and input [KOfs across multiple analysis centres.

3.3 Rationale for combining kinematic orbits

As detailed in [section 2.3 kinematic orbits produced by [ATUB| [TUD] and [EG differ due to vari-
ations in processing strategies, tracking networks, ambiguity resolution, and filtering [19]. These
differences result in discrepancies at the centimetre level, both in terms of random error and sys-
tematic biases. Moreover, these solutions contain unique data gaps, outliers, and inconsistencies in
uncertainty estimation. These variations are not aligned across Analysis Centre ([AC)’s, presenting
an opportunity for error reduction through combination.

In many areas of space geodesy, the combination of independently derived products has proven
effective for improving accuracy. This principle underpins, for example, the realisation of global
terrestrial reference frames by the International Earth Rotation and Reference Systems Service
(IERS)), the merging of Earth orientation parameters, and the combination of gravity field models
from the Swarm mission |10, 65]. The most accurate gravity field models are themselves the product
of combinations of many different forms of gravity field information, such as the XGM2019e model
which is the product of the combination of satellite data from [GOCE] with terrestrial data
and topographic information [77]. Applying a similar principle to Swarm kinematic orbits may yield
improved orbits with improved accuracy, robustness, and data density.

3.4 Overview of Time Series Combination Strategies in
Geodesy

A range of strategies have been proposed in literature — particularly in [GNSS| and gravity field
modelling — for combining independent datasets with differing accuracy, resolution, and noise char-
acteristics. Broadly speaking, combination strategies fall into two categories:

« Unweighted or equally weighted methods, which assume that all inputs are of similar
quality and simply average the available data.

o Weighted methods, which attempt to assign different levels of influence to each input based
on its quality ; either through reported uncertainty, empirical variance, or optimisation against



a reference.

Weighted approaches can further be divided by how the weights are determined:

o A priori, using errors reported by the [ACk.
o A posteriori, using residuals, variance estimates, or reference data.

o Optimisation-based, fitting weights to minimise an objective function such as [RMS difference
with a reference [RDOL

Challenges arise when input uncertainties are not comparable or are inconsistently scaled, when
biases are present, or when data gaps exist. This makes it non-trivial to define a single best
approach. Some methods, such as Variance Component Estimation (VCE]), attempt to solve this
by estimating weights iteratively from internal consistency. Additional risks arise with methods
which involve using reference data due to the possibility of biasing the combination to an
a-priori gravity field model. In this thesis, these general strategies are adapted and tested for the
Swarm orbit combination context. Full descriptions, derivations, and verification and validation

procedures are presented in [chapter 4]

3.5 Research gap and research questions

While previous efforts have combined gravity field models and normal equations from multiple
sources [10], 65|, and this principle has been applied to gravity field models estimated from Swarm
tracking data, we identify that no study has yet attempted to directly combine the state of the art
Swarm kinematic orbits from which gravity field models are estimated. This is despite the known
differences in outliers, epoch-specific accuracy and volume of data among these orbits from the
[EG] [TUD] and [AIUDB] - as discussed in —, as well as the known benefits of combination
techniques discussed in

The central hypothesis of this work is that a combined Swarm kinematic orbit product — derived
from independent state of the art solutions — will yield a more accurate, complete, and robust time
series suitable for gravity field estimation, which depends critically on the quality of the underlying
orbits. This leads to the primary research question:

What improvement in the quality of Swarm kinematic orbits can be achieved
through the combination of unique solutions?

To support this, three sub-questions are explored, each addressing a methodological challenge:

e Sub-question 1: To what extent do combination methods which utilise a reference
risk introducing bias or over-fitting?
The use of RDOJs as reference in a combination method may bias the combined solution
towards it, and therefore to an a-priori gravity field model. This is an issue, as improvement
in these orbits is sought for its downstream effect on the quality of Swarm gravity field models,
which we specifically do not want to bias towards an a-priori field. We therefore evaluate how
sensitive combination methods leveraging an reference are to this risk.
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e Sub-question 2: Can the uncertainty information of independent kinematic orbits
effectively be propagated into a combined solution?
Each analysis centre provides per-epoch uncertainty estimates. However, different analy-
sis centres compute their covariances differently, and scaling is inconsistent between them.
Therefore, this inconsistency may be propagated into the combined solution. This question
investigates whether the per epoch uncertainties can be used to construct realistic uncertainty
estimates for the combined solution, which is useful for downstream gravity field estimation.
For this purpose, it is key that the uncertainty is distributed realistically, as it is used as a
relative measure of the accuracy of the input positions. It is propagated through the models,
reflecting in the uncertainties reported for the spherical harmonic coefficients. Generally, it
is most important that the uncertainty is internally consistent; that the distribution is cor-
rect such that when the orbit performs worse this is reflected in the uncertainty information,
even if the magnitude does not map on to reality. The magnitude of the uncertainty is less
important for individual gravity field solutions, however combined gravity fields such as those
produced by COST-G use this uncertainty in the weighting of the combination [32]. In this
case, it becomes important to have realistic and consistent uncertainty values in the orbits.

e Sub-question 3: Can we utilise independent sources of validation to re-scale the
uncertainty of the input orbits in order to improve the combination?
Given the inconsistencies observed in provided uncertainty information, this question explores
the use of external validation tools such as residuals to calibrate and rescale uncertainty
information. We seek to determine whether this makes the propagated uncertainty more
realistic, and whether it improves the performance of combination methods which depend
upon the input uncertainty.

These questions motivate the design and evaluation of multiple combination strategies — including
statistical and optimisation-based approaches — which are presented in detail in[chapter 4] To frame
this research, we define a reference case to which we compare the output of our combination methods.
This is the current Swarm state of the art kinematic orbits and detailed in kection 2.3 An
advantage of the combined orbit over the input kinematic orbits is considered a success, while we
use the as a reference as it is known to be more accurate and robust.

3.6 Research requirements

In order to address the research questions outlined above, a number of requirements must be satisfied
across data availability, methodological capability, and validation strategy:

1. Input and reference orbits
To test combination strategies, we use three state of the art Swarm kinematic orbit solutions

provided by the [FG] [TUD| and [AIUB] as input. For combination methods leveraging a reference
orbit, we use a state of the art Swarm [RDO] produced by the[TUDland disseminated by [ESAl These

must be:

o Covering overlapping time periods for meaningful comparison and combination,
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e Including per-epoch formal uncertainty or covariance information,

o Of comparable accuracy.

The availability of these products and their uncertainty information is a prerequisite for combination.

2. Consistent pre-processing and epoch alignment

Differences in data sampling, data gaps, and inconsistent time tagging must be resolved. This
requires the following:

o Interpolation, truncation, or epoch matching strategies to ensure a common set of epochs for
comparison and combination,

» Robust handling of missing or corrupted data to avoid including outliers and poor data in the
combined solution.

This step ensures consistency and compatibility between input orbit solutions by enforcing the
requirement that we combine orbits one a per-epoch basis.

3. Implementation of multiple combination strategies

To investigate the potential benefits and limitations of different approaches, the following families
of methods must be implemented:

o Unweighted methods: Simple arithmetic mean to act as a baseline,

» Weighted methods: Including a-priori (uncertainty-based), a-posteriori (residual-based),
and optimisation-based techniques (e.g., RMS minimisation) and VCE]

Implementation should include propagation of uncertainties into the combined solution where pos-
sible. Furthermore, combination should be designed to retain as much data as possible. As such,
methods are required to make use of the maximum possible data per-epoch; they should use the
union of each input dataset, rather than the intersection.

4. Validation of orbits

To evaluate the quality of the combined orbits, access to external validation sources is necessary. In
this thesis, we use SLR observations which are retrieved using the software. This data must
be available across the chosen case study period. We make use of the of the SLR residuals
as a measure of orbit accuracy. In addition, we compare the number of epochs in the combined
solutions with the input data and the reference to assess data retention.
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5. Evaluation mechanisms

To properly interpret the output of each combination method, the following evaluation mechanisms
are required:

« Sensitivity analyses to bias, noise, and incomplete data inputs,
¢ Residual analysis with respect to the RDOIL

e Reduced Chi-squared metrics and RMS-to-STD ratios to assess uncertainty realism.

These tools are essential to answering the sub-questions related to over-fitting and uncertainty
propagation.

6. Reproducibility and automation

Given the scale of the orbit datasets and the number of strategies under consideration, the research
also requires:

o A reproducible and automated pipeline for data acquisition, pre-processing, combination, and
validation,

o A framework to support large-scale testing across time periods and satellites,

o The ability to apply combination methods to each Swarm satellite.
This ensures that the methodology is extensible to future missions and datasets, and that mul-

tiple test cases can be analysed. The methodology presented in is defined with these

requirements in consideration.
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Chapter 4

Methodology

In this chapter, we introduce the approach to answering the research questions proposed in
tion 3.5l The methods by which [KOlI's are combined in this thesis are defined. We discuss the
verification test set-ups, sensitivity analyses to be performed and validation methodology using
SLR observations used to assist with the answering of our research questions.

In terms of performance, there are two key metrics; the accuracy of the orbits and volume of
data. Accuracy refers to how close the combined solution is to reality, while volume refers to the
number of epochs it contains. It is clear that accuracy is important, however volume is equally so as
the more quality data points provided to gravity field inversion methods, the better their solutions
become. The goal of each combination method is to maximise both metrics. Several combination
methods will be introduced including stand-alone methods dependent only on the data and
methods using the available [RDO's.

We begin with the retrieval and pre-processing of the data used to answer our research questions
Sections and introduce the combination methods which, in conjunction with the validation
scheme defined in [section 4.6| are used to answer our primary research question. The method by
which sub-question 1 will be answered is introduced in The approach to answering
sub-questions 2 and 3 is given by the uncertainty propagation introduced along with the methods

in sections [£.2) and [£.3], with the validation scheme provided in [section 4.5

4.1 Retrieval of data and pre-processing

Before any combination methods are applied, it is necessary to pre-process data. We can separate
the data used into two types; input and validation data. The[KQl's and [RDOl's are considered input
data, while SLRI data is considered validation data.

Kinematic orbits from [EG] and [AIUB] are retrieved from the university servers.
[RDQOl's provided in sp3c format produced by the are retrieved from the [ESAl dissemination
servers [21]. In this thesis, we will henceforth refer to the RDOI's as the [ESAIRDOIs, to distinguish
them clearly from the kinematic orbits. The sp3k format is an extension of the sp3c format
[28] developed by the Multi-approach gravity fields from Swarm [GNSS]data team [19]. The relevant
change to the standard sp3c format is the increase of precision to sub-millimetre of the position
and variance information. This increased precision is valuable as kinematic (and especially reduced-
dynamic) orbits continue to improve and their uncertainties reduce. These orbit files contain the
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following information relevant to the combination:

o The trajectory data in Cartesian coordinates (x,y and z) in kilometres. The data is in the
IGS20 reference frame [52]; it is an Earth-centred, Earth-fixed reference frame. The epochs
are given in Global Positioning Service (GPS)) time; therefore currently 18 seconds ahead of
Coordinated Universal Time (UTC|). The ESA [RDOIs is in IGS20 reference frame and

time.

o NTDI and covariance information for the [KOFPs. This includes the S1D| of each parameter
(Ozz, Oyy, 02-) given in mm, and the covariances of each parameter in the form of correlation
coefficients multiplied by 10,000,000.

o The epoch information. This is used to synchronise different sets of data.

4.1.1 Pre-processing

The formats of the provided data are not consistent in terms of the time stamps, and the units of
data must be consolidated. That process is described in this section.

Consolidating data format

All files are retrieved from their respective servers automatically and parsed in order to extract the
desired information. The trajectory data is then converted from kilometres to meters, the [STDI's
converted from millimetres to meters, the correlation factors converted to covariances in m?, and the
epoch time converted to [UTC from by accounting for leap-seconds using the Astropy library
[1]; this is done for improved compatibility with the astrodynamics libraries available in Python
required for coordinate transformations. The correlation factors are converted to covariances by the
following;:

Oay = Py * (OzzOyy)- (4.1)

The variable p,, is the correlation factor between the x and y component. The end result is all
orbit data in the IGS20 reference frame.

Consolidating epoch time stamps

While the provided data each have a 1 second sampling, it was observed to not always be exact.
Similarly, the data does not have exact 10 second sampling. This presents problems; [KOl's are
to be combined at epochs at which several data sources are available, and therefore slight deviations
in time must be consolidated to ensure compatibility between them. Any methods which depend
upon data rely upon having data at each epoch, therefore it needs to be resampled to a 1
second frequency. We choose to resample the RDOJs to 1 second instead of downsampling the [KOFs
to 10 second sampling as our goal is to produce as much quality data as possible. In order to solve
these issues, interpolation is applied to resample the input data to whole seconds. Interpolation is
performed using a Lagrange interpolator from the [Tudafl package [16]. The Lagrange interpolating
polynomial is given by:

P.(t) = Z y; Li(t), (4.2)



where the Lagrange basis polynomials are defined as:

mot—t;
ti(t) = H o (4.3)
j=0 ti =1
J#
with to,t1,...,t, being the interpolation nodes and y; = f(¢;) the known function values at these

nodes.

This polynomial provides a unique fit through all n + 1 data points such that P,(t;) = y; for all
1. In this work, a polynomial of order n = 10 is used, meaning that 5 data points either side of a
central point are used to construct the interpolating polynomial.
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Figure 4.1: Presentation of gaps in AIUB input orbit for a typical day (1st January 2023) and the resulting interpo-
lation error which results if they are unaccounted for.

Straightforward application of this interpolation scheme does not work for this data, as it tends
to have gaps of missing data ranging from a few seconds to hours; especially in the [KOFs, which can
be seen in where an example of input data is presented showing the frequency
of gaps on a normal day. In total, in the first month of January 2023, the percentage of missing
epochs for each dataset is shown in [Table 4.1 Gap sizes of many minutes are observed. While
the interpolator handles consistent data with minimal gaps — that is, gaps of no more than 3-5
missing epochs —, they fail when presented with much larger gaps of minutes, as the polynomial is
essentially fit to two independent arcs of the orbit at vastly different positions in space.

Table 4.1: Percentage of missing epochs in kinematic orbit data for January 2023.

Analysis Centre Missing Epochs (%)

IFG 0.0%
AIUB 7.9%
TUD 13.2%
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By applying interpolation without taking these gaps into account, we erroneously create many
data points which are very inaccurate. In order to determine the impact of this, the data is
used as reference for comparison as it has consistent epochs and consistent frequency of 10 seconds,
meaning that interpolation can safely be applied without gap-handling. When no gap-handling is
used alongside interpolation, extremely high residuals in excess of 1km are observed as in plot b of

where gaps were present.

To avoid this, we segment the data into continuous chunks separated by gaps exceeding 5
seconds, selected as it does not reduce number of epochs as shown in figures [£.2] and [£.3] We
then apply interpolation to each chunk independently before concatenating them to retrieve the full
interpolated data, with gaps left in place. A limitation of this method is that near the boundaries
of gaps there are insufficient points from which to construct the full polynomial, leading to less
accuracy. To account for this, following the interpolation 5 points are removed from each boundary
to avoid including this data. In figures[4.2)and [£.3]the residuals of non-interpolated and interpolated
[KQr's from the and with respect to the data is presented, including the number
of epochs which do not overlap due to either missing data or unconsolidated epochs times.
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Figure 4.2: [KQOlresiduals for ATUB before and after interpolation. Demonstrates the effect of epoch interpolation on
alignment with [RDO| data.
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Figure 4.3: [KOl residuals for IFG and TUD before and after interpolation. Epoch consolidation improves alignment
with [RDOJ data while preserving orbit fidelity.

Figures[£.2]and [4.3|show that interpolation is correctly consolidating the timescale as the number
of unrounded epochs compared to the RDO reduces to 0%. It is also retaining epochs and is not
introducing error into the input orbits, demonstrated by the consistent RMS and the same number

of missing epochs before and after its application.

Screening of kinematic orbits with [RDOI| data

This step is designed to remove outliers from the input data. Due to the combined solution taking
advantage of multiple sets of input data, filtering can be applied without excessive loss of volume of
data; this takes advantage of the fact that different sets of input data are produced using different
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methods which lead to different sources of error, and therefore result in different outliers. In order
to filter outliers, the magnitude of the position difference with respect to the RDOI data is used. At
time t and position state &, we get the following:

(RDO) a—j»t(KO) H (4.4)

A maximum is defined, and input orbit data which has greater residuals than this is discarded; the
specific selection of this screening threshold is addressed in This leverages the fact that
[RDOIs are more robust than [KOP's [76] due to the dynamic model acting as a filter for outliers.

€t = Hft

4.2 Independent combination methods

In this section the independent combination methods are introduced. These are defined as combina-
tion methods which only involve information contained within the input data. The advantage
of this is that these methods are only reliant on [KQl's being available. Additionally, they are compu-
tationally inexpensive. Expectations of the performance and behaviour of the methods is discussed,

to be tested in

4.2.1 Arithmetic mean

The most straightforward approach is to take the average of the inputs. At the level of the [KOFs,
this means taking the arithmetic mean of each parameter of the positions at each epoch using:

Nsol =
— (mean) Zi:l T4t
2,t Nsol ( )
The superscript ¢ represents each epoch. Ny, is the number of input [KOPs, 7 .. is the posi-

tion of the satellite, while ¢ refers to a particular input orbit. This approach is computationally
inexpensive. Conversely, by not including available stochastic information, we ignore the estimated
variance of each solution in the combination, potentially leading the combined solution to be biased
towards inputs with greater errors. The expectation is that this solution produces a combined so-
lution superior to the set of input solutions only if the input solutions are approximately randomly
distributed about the ’true’ position of the satellite. Essentially, as the distribution of the set of
input orbit solutions approaches a random distribution about the underlying ’truth’, the mean of
the set of solutions approaches the 'true’ value. Of course, in reality each input solution can be
perceived as having a bias (or offset) with respect to the true value, as well as different variance.

In practice this means that the fewer the number of input solutions, the less confident we can
be that the combined solution is superior when using this method. In addition, this method blindly
trusts the input data by assuming equally valid inputs; therefore, it is particularly sensitive to biases
in input data.

Uncertainty propagation is applied under the assumption that the input solutions are uncorre-
lated. The combined [STDI for each component j € {x,y, z} is computed as:

(mean) 1 L 2
g = o 2 (i) (4.6)

sol =1
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The variable o; ;; is the reported 51Dl of component j from solution ¢ at epoch t.

The corresponding off-diagonal covariance terms for each pair (j,k) € {(z,v), (z, 2), (y,2)} are
computed as:

Nsol

93, Izntean) ~ N2, Z Tkt (4.7)

sol i=1

This formulation propagates the variance and covariance assuming equal confidence in all input
solutions.

4.2.2 Inverse-variance weighting

A weighted combination can be performed by taking advantage of the known variance informa-
tion. In practice, different observations of a parameter using different methods or instruments have
different variance associated with them. In this case, combining the observations of the parame-
ter by taking the mean is not an optimal estimator, as each observation is not equally accurate.
Instead, a combination method weighting the input observations by the inverse of their variance be-
comes the optimal estimator, as it accounts for the known difference in the qualities of the different
observations [71].

Our observations are different estimations of the same parameters, all based on (approximately)
the same input [GPS| data. Weights are then computed as the inverse of the variance:

(O'aclit)2 0 0
Pa=] 0 o5 0 . (4.8)
0 0 ——=

(O'z,i,t)

The weighted combination is then performed using:

—1
sol sol
’(mv) <Z R t) Z P trzt (49)
¢

In this formulation, 77, ™) is the combined position at epoch t, Ny, is the number of [KOI solutions,
7i+ is the position from solution ¢, and P;; is the weight matrix for solution ¢ at epoch t.

This method is dependent on the variance reported by the [KQl's, which, as discussed in
tion 2.2.1] is not necessarily consistent across [ACTs, particularly in magnitude. Additionally, due
to the presence of unknown biases in each input orbit, there is no guarantee that an input solution
with lower estimated variance is actually closer to the truth.

Uncertainty propagation: The propagated uncertainty of the combined solution is computed
directly from the input variances and covariances. For each component j € {z,y, 2z}, the combined
ST Dl is given by:

(. ) Nsol 1 -1
o =2 5] (4.10)
i=1 (Uj,z‘,t)



This equation assumes uncorrelated input errors between solutions. For the covariance terms be-
tween coordinates j and k, the following expression is used:

Nsol
(inv

o) =Y Wi Wit Ok (4.11)
i=1
Here, wj; is the normalised weight for component j of input ¢ at epoch ¢, and o, ;; is the reported
covariance between components j and k at epoch t for input i. This formulation enables full
covariance matrix propagation.

4.2.3 Simplified variance component estimation

[VCEI is a statistical method used to optimally combine different sets of observations. Weighting
purely using the variance information provided with each input solution has a flaw; we assume
that the variance information is consistent between [ACTs. In reality, this is not the case [2]. NCEl
accounts for this by enabling the scaling of the various information between inputs. Internal relations
of variance within each input solution are assumed fixed. Then, the variance of each input solution
is estimated with respect to the weighted combined solution, leading to a set of variance components
corresponding to each input. These newly estimated variance components are used to recompute
the combined solution, after which the variance components can be estimated once more. The
solution is iterated upon until changes in the variance components fall below a threshold. The
result of this process is a single parameter — a variance component — for each parameter for each
input solution. To start, we redefine the weighted combination as:

Nso ja g
- (vee) 2:1':11 Ug,jQiﬂfTiJ
Tt - Nsol A2 :
> i1 Uz‘,jQi,t
This is almost identical to aside from the weight matrix F;;, which has been split
2 and Q;;. The former is the variance component, and the latter the internal

(4.12)

into two terms: o

Z7j
variance. The variable Ft(vce)

is the combined solution at epoch t. As discussed, it can be seen
that the variance component acts to scale the variance of each solution, causing it to contribute
differently to the final combination while maintaining the internal structure across epochs defined

by the known variance information.

Now, the method used to estimate the variance components themselves — 62-27 ; — 1s introduced.
The first approach to [VCE| was derived by Helmert, which sought to estimate weights between
uncorrelated sets of observations. Later additions by Forstner, Kubik, and Ebner extended the
approach to consider observations with known correlation |2]. In this thesis, the approach is limited
to the estimation of variance components alone, as we assume no correlation between the sets of
input data.

Due to the reliance of more complex methods on computationally expensive matrix computa-
tions, within the scope of this thesis we limit ourselves to one of Helmert’s simplified estimators.
This approximates the variance components of each input dataset through the use of its residual
with respect to the combined solution. It was decided to use an algorithm already applied to gravity
field combination [34] with some modifications to include the a-priori variance information in the
combination.
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[VCEl is performed independently for each state component j € {x,vy, 2}, leading to three vari-
ance components for each input orbit. An initial guess of the weighted combination is made by
assuming initial variance components are equal to one. With this initial combined orbit, the variance
components of a parameter are updated as follows:

Yi,j%4,5Vi,j

os., = .
.5,k 52
, _ irgik—1
Nobs,z 1 Nool ~—2
Z¢:1 9 k—1

Here, k refers to the iteration index, ¢ to the analysis centre, j to the state component, 52 ; to the
variance of the state component at each epoch, and Nps; to the number of valid observations. A
residual vector vj ; is computed as:

~2

(4.13)

Uigk = Tejhk = Tij- (4.14)
This is evaluated for each coordinate j, where 7. ;; is the combined estimate of component j at
iteration k, and 77 ; is the corresponding vector from analysis centre ¢. These residuals represent the

difference between the input [KQl's and the combined solution at this iteration depth. Convergence
is typically achieved within 5-10 iterations, based on the convergence criterion:

|Gk — G- ]| < tol, (4.15)

where ¢ is the vector containing the variance components of each coordinate. The tolerance is set
to tol = 1 x 107°, ensuring that changes in the magnitude of the vector of variance components
between iterations are negligible compared to the scale of the [STDI's being estimated (typically on
the order of mm).

Once the variance components have been estimated, the uncertainty of the combined solution
can be propagated using a VCE-weighted formula. The [ST'DI for each coordinate is computed as:

( ) Nsol 1 -1

= 67 (0u

For each covariance pair (j,k) € {(x,y), (z, 2), (y, 2) }, the uncertainty is computed using weighted
averaging:

(vee) Zf\é? Oijk,t * Wi jk,t

Tt St wigne
Here, the composite weights w; ji, incorporate both the estimated variance components and the
uncertainties:

(4.17)

(4.18)

1
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This method retains the internal structure of the covariance while adjusting for inter-centre incon-
sistencies in scale, offering a more physically realistic estimate of uncertainty.
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4.3 Combination using reference data

Combining estimations of parameters without the use of external information is limited by the
quality of the input data. In this section, we introduce methods which leverage external data
as reference.

4.3.1 Weights derived from residuals with respect to RDO data

data is closer to reality than data [44]. Therefore, we can estimate the true variance of
our input orbits using their residuals with respect to it. Theoretically, if a set of data is much closer
to the truth than another, then the difference between the two mainly consists of the random noise
and bias inherent to the less accurate data. In our case, the difference in accuracy is approximately
50-70% as described in [ection 2.3l We have data available at each epoch; therefore, the
weighted combined solution is defined as:

Naot /> \—2 =
7:»(res) . lescl)l (Ui,t) Tit

A = —— (4.19)
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In this expression, ;, is the residual vector of the input orbit from analysis centre ¢ with respect
to the reference orbit at epoch ¢, and F’t(res) is the combined solution at that epoch. This method

assumes that errors in the reference data are negligible. In practice, this is not true, and therefore
the method may conflate errors from both the input orbits and the RDOL Additionally, there is a
risk of over-fitting to the RDOl for which there is no control in this method. Fundamentally, this
method down-weights data which is further from the RDOl and up-weights data which is closer. In
order to propagate the uncertainty of the combined orbit, we use the residual-derived weights to
combine the covariance information of each input. For each coordinate j € {z,y, z}, the weights
are defined as:

1
—_—.
(vige)” +€
Here, v; ; is the residual of coordinate j at epoch ¢ for analysis centre 7, and € is a small stabilisation

constant to prevent division by zero. Using these weights, the [STD] of the combined solution for
each coordinate is given by:

(4.20)
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i=1
For the covariance terms between coordinate pairs (7, k) € {(x,y), (z, 2), (y, 2) }, the combined value
is computed as:

(res) St Wi jt " Wikt T jkt
Uj7k7t = ~ NSO’I 7 — 7 7 ! (4'22)
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This approach allows the uncertainty structure of the input orbits to influence the uncertainty of the
combined orbit, but is highly sensitive to the accuracy of the reference data. Because the weights
are derived from differences with the[RDOL any error or bias in the reference data will directly affect

the combined solution and its uncertainty estimate.
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4.3.2 Fitting to RDO Data - optimisation

There is an assumption in the geodetic community that gravity field models ought not be estimated
from orbit solutions which themselves depend on a-priori gravity field information [66]. This is a
reasonable assumption as the a-priori gravity field model information implicitly present within the
data through the dynamic force model used to estimate them, which is likely to bias the
estimated solution towards it. Therefore, we wish to explore a method by which we can exploit
[RDO''s to inform the combination without excessively biasing the combination.

To address this, we can define a set of piece-wise constant weights across arcs, defined as a
segment of the overall trajectory with a given length of time (¢,..). If we define the arc length well,
we may avoid over-fitting. Additionally, the structure of the input orbits is retained; epochs are
not weighted independently, therefore the 'shape’ of each input orbit is preserved within each arc.
In turn, this should help to preserve the signal of the gravity field present implicitly within the
orbit data. Uncertainty propagation is not implemented in these optimisation methods due to time
constraints.

Fitting methods and algorithms

We apply determine these piece-wise constant weights with optimisation algorithms from Python
Parallel Global Multiobjective Optimizer (PyGMO]) [9], an open-source library containing a number

of state-of-the-art optimisation algorithms which can handle single and multi-objective, (un)constrained
and bounded optimization problems.

Combination

The most straightforward approach is to define weights for each parameter x,y and z for each
analysis centre. The weighted combination is then simply the weighted sum of each parameter as:

N | Wz 0 0
AL STLO0 w0 |F (4.23)
i=1 0 0 Wy,

The variable t refers to the epoch, w to the weights, and i to the input [IKOl's. This leads to 3 weights
for each input [KOl While this works in principle, due to the large magnitudes of each parameter x, y
and z coupled with the very small deviation of each input solution from the reference solution (Root
Mean Squared Error (RMSE]) between the input solutions and the is typically in the order
of 10mm), very small changes in the values of the weights lead to very large changes in the [RMSE]
leading to issues with rounding-errors due to limited floating-point resolution of the packages we
make use of in Python. When weights are constrained to sum to one for each parameter, optimisation
algorithms in the PyGMO suite struggle to make adjustments to the weights to effectively explore
the design space; they behave over-constrained and consistently fail to optimise the weights. This
is a poor definition of the problem for this application. Therefore, rather than optimising weights
on the orbit position states themselves, we redefine the weighted solution through the introduction
of the vector 4 as:
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The variable t refers to the epochs, and N to the number of input orbits. Each weight serves to shift
the arithmetic mean of the input solutions. Rather than applying the weights directly to the orbit
positions, they are multiplied by a scalar value § and added to the arithmetic mean contribution for
each analysis centre. For small values of 5 , this approach ensures that the design space is limited
to a region about the arithmetic mean of the input solutions in which superior combinations are
likely to exist.

The value of & plays a key role in shaping the optimisation landscape. It is determined auto-
matically based on the of the input solutions with respect to a reference orbit. Specifically,
for each parameter (z, y, z), § is set to one-tenth of the smallest among the input solutions.
This ensures that a weight of 1 corresponds to a shift equal to 10% of the lowest RMSE, while the
bounds of the weights are fixed at £10. As a result, the maximum possible shift for any input is
equal to the lowest RMSE, keeping the design space both bounded and interpretable.

This choice of § is justified by the fact that the RMSE provides a physically meaningful scale
characterising the deviation of the input orbits from a trusted reference. By tying perturbations
to a fraction of this scale, the optimiser is encouraged to search within a realistic and data-driven
region of the solution space. This approach is especially useful because it allows fine-grained control
when inputs are already of high quality, while still enabling broader adjustments when the input
solutions vary more significantly.

This formulation offers two main advantages: the optimisation weights remain within a con-
sistent numerical range across different input datasets, simplifying tuning and convergence, and
the scale of & adapts dynamically to the overall performance of the inputs. However, it is worth
noting that this method can be sensitive to large disparities in input quality — if one solution is
significantly worse than the others, the resulting small value of 5 may restrict the optimiser’s ability
to explore sufficiently diverse combinations.

Objective function

We define the objective function used to compute the fitness of a set of weights. In this case, we
wish to find combination weights which minimise the residuals of the combined orbit with respect
to the reference. We therefore use the between the combined arc and the as the
objective function. The objective function is the 3D [RMSE] defined as:

1 N
Rsir = \J N Z (25, RDO — Zi,comb)? + (Yi,RDO — Yi,comb)? + (2, RDO — Zicomb)?)- (4.25)
i=1

The variable Rgrr is the 3D [RMSEL This is a measure of the 3D position difference between the
combined solution and the [RDOI| data. Choosing this as an objective function means that we are
optimising to minimise the difference between our reference orbit and our combined solution.
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Algorithms

[PyGMO| offers a wide array of global and local, single and multi-objective, (un)constrained optimi-
sation algorithms. Single-objective optimisation algorithms are considered. Within this category,
the selection has been limited to a handful of better-performing algorithms described as such by
[8]. The selection to be tested includes four global genetic algorithm optimisers and one
local optimiser. Global optimisers are selected as they explore the design space about the arithmetic
mean considerably more. A local optimiser is considered as it is less computationally expensive,
although it is expected to fall into local minima.

Self-adaptive differential evolution Self-adaptive differential evolution is an adapted form of
the widely used Differential Evolution (DE]) method of global, heuristic optimisation. [DElis a genetic
algorithm which fundamentally works by direct search of the design space for objective function
minimum. A direct search is done by varying parameter vectors in a population and computing
the resulting objective function value; or fitness. How variations to the parameter vectors are done
is one of the key methods by which algorithms differ as it greatly influences the performance. In
addition, the selection criteria — how it is determined whether a variation (or evolution) is accepted
into the population or discarded — influences the convergence rate of the algorithm as well as the
likelihood of it converging to local rather than global minima; often times, evolutions are accepted
if they improve the fitness of the individual, which results in faster convergence but also a greater
likelihood of trapping in a local minimum [62]. Several adaptations exist to avoid poor convergence,
such as changes to the population size and relaxation of the evolution criteria to allow vectors to
occasionally move away from a minima; facilitating their ’escape’ from a local minimum.

works by basing changes on the population vectors on the weighted difference between two
randomly selected vectors within the population; that is, adaptations to the vectors are generated
without external input once an initial population is defined through random selection from the design
space. This operation is called 'mutation’. A uniform population distribution is the convention.
Once a new vector is created through mutation, it is then further mixed with an additional vector
known as the ’target vector’ in a process referred to as ’crossover’ to produce the ’trial vector’.
The performance of this trial vector is then assessed by evaluating the objective function, and if
it performs better than the target vector, it replaces it in the population. This final process of
replacement is known as selection. Per evolution, each vector in the population acts as the target
vector once, ensuring that each entry in the population is assessed per evolution [62].

Self-adaptive [DE] improves upon this through the introduction of parameter-self adaptation;
namely, the self-adaptation of the crossover probability and the weight coefficient applied to the
difference during mutation. There are a number of methods by which this is done; in this thesis
DE1220 is used, a variant proposed by the PyGMO] team. In essence, control parameters of the
algorithm such as the aforementioned crossover rate are encoded into the individuals themselves
and undergo genetic operators. Superior control parameters lead to superior individuals which then
go on to propagate their encoded control parameters. In this way, the control parameters self-
adapt as they evolve alongside the parameters. This self-adaptive [DE] algorithm provides superior
convergence than comparable algorithms [12], and requires less arbitrary tuning as a result of the
self-determination of control parameters.
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GACO This evolutionary algorithm is based upon the real-world behaviour of ant colonies. Ants
explore an area about their nest to find food, at first randomly. If an ant is successful, it returns to
the nest while laying a pheromone trail down. Other ants will then follow this trail, assuming that it
is more likely to lead to food than a randomly selected path. The pheromones are not permanent;
they dissipate over time ensuring that only trails which continue to be fruitful remain. Shorter
paths are preferred, as their travel time is shorter resulting in the pheromones being updated more
frequently. Over time, the shortest past to a nearby supply of food will be identified [57].

This behaviour is mimicked by modelling the movement of ants as artificial ants moving on a
graph representing a problem. An optimal 'path’ is considered to be the minimum value of an
objective function. Artificial ants are defined as decision vectors, and are part of a solution archive
(population); the number of the ant in the population is denoted [. Ants are ranked in the solution
archive by their performance, with the first ant being the best performing. The construction of a
new ant begins by selecting a mean ! for each dimension of the decision vector 7. This mean is
taken as one of the values of the decision variable from one of the ants. It is selected randomly, but
with the superior ants having a greater likelihood of being chosen; meaning y} is the most likely to
be selected. Next, a random number is sampled from a Probability Density Function (PDE]). This
process is done for each dimension of the decision vector, leading to the creation of a new ant.

The used is a weighted sum of several one-dimensional Gaussian functions. These functions
are defined by the means of each ant (p;;) and [STDf's computed by first computing the maximum
and minimum difference between an ant and every other ant in the solution archive, and then taking
the difference between these two values and dividing by the number of generations you are on (the
number of evolutions your population has undergone). Weights are linearly distributed from the
best to worst solution; i.e., the contribution of each Gaussian distribution is scaled by its rank, with
lower rank corresponding to higher scaling.

The various included Gaussian distributions are analogous to the different paths the ant could go
down. The ranking system relates to the strength of the pheromones. When a new ant is produced,
its fitness is evaluated and it is compared against every ant in the population, from the first rank
onwards until it reaches a worse-performing ant at some position k, at which point it takes the
place of this ant and shifts solution archive an index down below. The worst performing ant is
consequentially discarded, maintaining the constant size of the solution archive.

This method is suited towards highly non-convex non-linear problems, as the method by which
new ants are created avoids falling into local optimums. This is because the Gaussian distributions
contained within the [PDE] from which the ants are created effectively represent explorative paths
into different optimums, ensuring that the population remains diverse.

XNES Exponential Natural Evolution Strategies (XNES) is a member of the family of Natural
Evolution Strategies (NES), a class of black-box optimisation algorithms that iteratively update a
parameterised search distribution by following the natural gradient of expected fitness [25]. Unlike
classic genetic algorithms, NES operates on the parameters of the search distribution itself rather
than directly on candidate solutions. In XNES, the search distribution is a multivariate normal
distribution, defined by a mean vector and a covariance matrix.

XNES introduces an efficient and numerically stable parametrisation of the covariance matrix
through the use of its exponential mapping, ensuring that the covariance matrix remains symmet-
ric and positive-definite during updates. Specifically, the covariance matrix is represented as an
exponential of a symmetric matrix, which allows updates to be performed in the log-space of the
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covariance matrix. This approach avoids numerical issues commonly encountered when updating
the covariance matrix directly and allows the algorithm to perform natural gradient ascent efficiently
in the space of the distribution parameters.

At each iteration, a population of candidate solutions is sampled from the current distribution.
Their fitness values are used to estimate the natural gradient, which is then used to update both
the mean and the covariance matrix of the search distribution. This update mechanism allows
XNES to automatically adapt the shape, orientation, and scale of the search distribution to the
local structure of the objective function.

XNES is particularly effective in high-dimensional, non-linear, and non-convex optimisation
problems; as it can adaptively scale the search along directions of low and high sensitivity, effectively
handling ill-conditioned problems. By maintaining and updating a full covariance matrix, XNES
can exploit correlations between parameters, providing a powerful method for complex optimisation
landscapes [25)].

CMAES The Covariance Matrix Adaptation Evolution Strategy (CMAES) is one of the most
widely used derivative-free, population-based optimisation algorithms for continuous search spaces
[27]. Tt is particularly well-suited for high-dimensional, ill-conditioned, and non-separable problems.
CMAES works by iteratively sampling candidate solutions from a multivariate normal distribution
and updating its parameters—mean, covariance matrix, and step size—based on the performance
of these samples.

The key innovation of CMAES lies in the adaptation of the covariance matrix, which allows the
algorithm to learn the shape of the objective function landscape during the search process. The
covariance matrix encodes information about the dependencies between variables, enabling the al-
gorithm to perform efficient search in any direction, even in highly anisotropic problem spaces. This
is achieved by updating the covariance matrix using evolution paths, which accumulate informa-
tion about successful steps over multiple generations. These evolution paths enable the algorithm
to make informed updates to both the covariance matrix and the global step size, improving the
efficiency of the search.

CMAES is designed to be invariant under linear transformations of the search space, making it
highly robust to scaling and rotation of the problem. The update mechanism balances exploration
and exploitation dynamically, allowing the algorithm to efficiently converge to the global optimum
even in rugged fitness landscapes with multiple local minima. However, the computational cost
of maintaining and updating the full covariance matrix grows quadratically with the number of
variables, which can limit its application to very high-dimensional problems without using modified
variants or approximations.

Due to its robustness and versatility, CMAES is considered a state-of-the-art algorithm for
challenging optimisation problems and is often used as a benchmark against which other algorithms
are compared [27].

Nelder-Mead This is a derivative-free local optimisation method that uses a simplex-based ap-
proach to iteratively search for a minimum of an objective function in an n-dimensional space. The
algorithm begins with an initial simplex. FEach vertex represents a candidate solution, and the
objective function is evaluated at all vertices. These evaluations guide the algorithm in reshaping
the simplex to explore the search space and approach the optimum iteratively [46].
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At each iteration, the vertices are ordered based on the objective function values. The algorithm
computes the centroid of the n best vertices (excluding the worst) and applies geometric transfor-
mations to adaptively adjust the simplex. The first transformation is reflection, where the worst
vertex is reflected across the centroid to explore a new candidate solution on the opposite side. If
the reflected point is significantly better than the current best vertex, the algorithm performs an
expansion by moving further along the reflection direction to seek even greater improvements. If the
reflected point does not provide a sufficiently good solution, the algorithm attempts a contraction
by moving the worst vertex closer to the centroid, either from the outside or inside the simplex.
When none of these transformations yield satisfactory progress, the simplex is shrunk towards the
best vertex, reducing its size to focus the search in a smaller region.

These transformations allow the algorithm to balance exploration of the search space with
exploitation of promising regions. The simplex evolves iteratively, adapting its shape and size to
the problem’s landscape. The process continues until convergence criteria are met, such as the
simplex becoming sufficiently small or changes in the objective function value becoming negligible
[46].

Algorithm comparison and selection rationale

The selected algorithms represent a diverse set of evolutionary strategies and local optimisation
methods, each with unique mechanisms for navigating complex design spaces, and which are state-
of-the-art algorithms [8]. Self-adaptive Differential Evolution (DE1220) and GACO are global,
population-based optimisers that rely on population diversity and adaptive mechanisms to prevent
premature convergence to local minima. DE1220 leverages self-adaptation of control parameters
to improve convergence robustness, while GACO employs an archive-based pheromone model to
balance exploration and exploitation effectively.

XNES and CMAES both maintain and adapt a full covariance matrix, enabling them to cap-
ture correlations between parameters and adjust the search distribution accordingly. This makes
them particularly well-suited for problems where the parameter sensitivities differ significantly.
CMAES is especially robust for non-separable, ill-conditioned problems due to its adaptive step
size and evolution paths, while XNES offers efficient and stable covariance matrix updates via its
exponential parametrisation, reducing numerical instabilities and enabling reliable adaptation in
high-dimensional spaces.

Finally, the Nelder-Mead simplex method provides a simple local optimisation approach which,
despite its limitations in non-convex problems, offers a computationally inexpensive option for fine-
tuning weights around promising solutions found by global methods.

Given the non-linear, possibly non-convex nature of the orbit combination problem, and the
challenges posed by the limited scale of deviations between the input and reference orbits, global
optimisers such as DE1220, GACO, XNES, and CMAES are expected to provide the necessary ro-
bustness to navigate the design space effectively. However, due to the computational cost associated
with these methods, the combination of a global optimiser followed by a local optimiser (Nelder-
Mead) is considered a pragmatic strategy. This hybrid approach leverages the global optimisers’
capability to explore the design space and avoid local minima, while using the local optimiser to
refine the solution and ensure convergence to an optimal set of weights within the local region of
the best-found solution.
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4.4 'Test setup to assess over-fitting to the reduced-dynamic
reference orbit

In order to answer sub-question 1, we design a validation test to assess the risk of over-fitting to the
reference RDOl when it is used in the combination process targeting the CMAES, Nelder-Mead, and
residual-weighted methods. These methods rely on the RDO as a reference and may inadvertently
fit too closely to it, risking the introduction of implicit bias from the a-priori gravity field and force

models embedded in the RDO.

To test for over-fitting, we compute the residuals between each input or combined orbit and
the RDO over a long-term dataset. These residuals are calculated at each epoch t as the position
difference between the tested orbit 7" (¢) and the RDO orbit #RPO)(¢):

e(t) = || () — FRPO )| (4.26)
We then compute the [RMS of these residuals over all N epochs:

1
RMSRDO = e Z e(t)2. (427)
NI
This metric quantifies how closely each orbit fits to the RDO. A method exhibiting significantly lower
residual RMS with respect to the RDO compared to others may be over-fitting to it, especially if its
performance in independent validation using SLR residuals does not show a similar improvement.

To help contextualise these findings, we also compare each method’s RMS against the of the
residuals. The combination methods that do not use the RDO (arithmetic mean, inverse-variance,
VCE) as well as the input orbits serve as a reference group to assess what level of RMS is expected
in the absence of over-fitting.

4.5 Propagation of uncertainty verification setup

To assess the accuracy and reliability of the covariances reported by the combined orbits in order
to answer sub-questions 2 and 3, a controlled verification of this methodology is performed using
synthetic data in[section 5.3] This approach allows us to verify that the uncertainties reported by the
orbit combination methods reflect the actual variability observed in the orbit residuals. Distinction
is made between the empirical and reported covariance; the former is the values computed from the
experimental output — the residuals of the combined orbits with respect to the truth — and the latter
is the covariance information propagated through the combination. The verification procedure is
as follows:

o Truth orbit generation: A reference trajectory is generated using a Keplerian orbit model.
True positions are computed at regular intervals over a 24-hour arc, sampled at 1-minute
epochs.

o Synthetic input orbit generation: For each test run, three input orbits are created by
adding known noise to the reference trajectory. The per-epoch noise level is varied indepen-
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dently for each coordinate and input orbit, with [ST'DI's drawn uniformly from the interval
[0.5,2.5] m and covariances from [0, 0.1] m?

Missing data simulation: Each input orbit omits 0.5% of its epochs at random to simulate
asynchronous data availability across sources as is the case with real input data, which contains

between 0 and 13.2% missing data as shown in [Table 4.1|

Combination methods: The synthetic input orbits are combined using the four methods
which propagate uncertainty information detailed in sections [£.2] and .31} the arithmetic
mean, inverse-variance weighting, residual-weighted combination using differences with the
truth orbit and variance component estimation (VCE).

Statistical sampling: The entire procedure is repeated for 50 independent noise realisations.
For each run, all metrics are computed per method and per coordinate, allowing statistical
analysis over multiple realisations.

Validation metrics: The following metrics are computed:

— The mean reported and empirical S T'D| for each coordinate. The empirical STD is cal-
culated from the residuals r(¢) between the combined orbit and the ground truth:

teN

olomP) = J |J1[| ST (r(t) — 7). (4.28)

— The mean reported and empirical covariances for the zy, xz, and yz coordinate pairs.
The empirical covariance is computed as:

fomp) ‘}V‘ S (ralt) — 72) () — 7). (4.29)
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teN
where Ug(cr;p) is the reported covariance value from the combined orbit solution.

— The ratio of the empirical to reported covariance. This metric indicates whether the
reported covariance is consistent with the observed orbit errors. A ratio close to one
suggests agreement. It is computed for each off-diagonal term (zy, xz, yz), and averaged
across 50 runs to avoid the influence of randomness:

o (emp)

Ryy = —2 4.30
V= e (4.30)

— The root-mean-square (RMS) of the residuals, providing a combined error magnitude:

R(SLR) = \l |N| Z H ||2

teN

— The reduced chi-square statistic, computed as:

PRE é))Q 430

teN k=1
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where 74 (t) is the residual in coordinate k € {x,y, z} at time ¢, and oy (t) is the reported
NiND)
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— The Coefficient of Variation (CV]) of the daily RMS/STD ratio, used to assess the tem-
poral stability of the uncertainty information. It normalises the variability of the ratio
across time by its mean, enabling comparison across orbits with different uncertainty
magnitudes:

CV = M’ (4.32)
HURMS/STD

where pirms/stp and orms/stp are the mean and [STDI of the daily RMS-to-STD ratios,
respectively. Lower CV values indicate more consistent calibration between the orbit
uncertainty and the SLR residuals throughout the validation period.

— The estimated variance components (VCE weights) per coordinate and input orbit, which
quantify the relative confidence assigned to each input based on its residual statistics.

4.6 SLR observations

To validate the combined orbit solutions, we compare the computed satellite—station range against
the observed range from SLR normal point data. These observations are retrieved using the (GHOST]
software.

We make use of these timestamped range measurements to compute the residuals of our orbit
solutions. For a given epoch t, 7(s¢)(t) is the satellite position in a terrestrial reference frame
(International Terrestrial Reference Frame ([TRE]) and 7sa)(t) is the corresponding position of
the SLR ground station. The computed range based on the orbit solution is:

Plamodet) (F) = [ Flaay (£) = Ty (1) (4.33)

The observed range pns)(t) is provided by the SLR normal point data. The SLR residual is then
computed as:

Ap(t) = P(obs) (t) — P(model) (t) (434)
This residual quantifies the discrepancy between the satellite’s computed orbit and the true observed
range from the ground station. The lower this value, the better the orbit solution comports with

reality according to the independent SLR validation. The key metric to establish performance in a
given time frame is the RMS] of [SLR] residuals denoted R(spr), computed as:

Rsiry = \l ]1[ > (Ap(t:)*. (4.35)

i=1
The variable N is the number of valid SLR observations within the considered interval, and Ap(¢;)

is the residual at epoch t;. This provides a measure of orbit accuracy, with lower values indicating
better agreement between the predicted orbit and the independent SLR measurements.

4.6.1 Use of SLR residuals to validate uncertainty propagation

The line of sight vector between the stations from which we receive observations and the Swarm
satellites may be computed. With this, we then project the data reported by our combined
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orbits onto it, enabling us to compare these to the SLR residuals, thereby allowing us to gauge how
physically realistic it is.

We start by projecting the orbit STD onto the station-satellite LOS. At each epoch, the station
position vector Tsation) and the satellite position vector sy, both in the [TRE frame, are used to
compute the LOS unit vector u(,os):

T'(sat) — T(station
oz = o) —lation) (4.36)
| |T(sat) - r(station) | |

The orbit in Earth-Centred Earth-fixed (ECEF) frame is diagonal, represented by its [STDI's
0z, 0y, and o, along the X, Y, and Z axes respectively. The projected orbit STD along the LOS
direction is then computed as:

o(Los) = \/ﬁ%LOS),x 02 + W08, 08 T Uros) - 02 - (4.37)
Where (1,08),2; U(L0s)y, and (,os),. are the components of the LOS unit vector.

For the validation, the following key metrics are considered:

« Residual RMS: Root-mean-square of the [SLR]residuals. This reflects the overall magnitude
of the orbit errors, including both bias and random noise.

e Mean of the LOS projected orbit STD: This represents the reported uncertainty in the
combined orbit.

« Ratio RMS? / STD?: The ratio between the squared residual RMS and the squared
mean orbit STD LOS. A value close to 1 implies that the reported orbit uncertainties reflect
the true magnitude of the residuals, including any bias. This metric is sensitive to both
random noise and systematic offsets.

e Reduced Chi-square: Calculated as

, 11X/ &\
_ 1 i , 4.38
YON ; (%(L%)) (4.38)

where N is the number of residuals, €' is the residual at epoch 4, and o; (1,0s) is the reported
line-of-sight at that epoch. This metric evaluates whether the scatter of the residuals is
consistent with the reported uncertainty, assuming zero-mean errors. Unlike the RMS/STD
ratio, it is not sensitive to bias in the residuals. Including both metrics allows a more complete
assessment of the uncertainty modelling, distinguishing between mismatches in spread and
mismatches due to bias.
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Chapter 5

Verification

This chapter presents the verification of the implemented software and methodology, ensuring cor-
rectness, absence of bugs, and compliance with expectations outlined in [chapter 4] Verification of
the methodology is performed using synthetic data with known truth, while validation of orbits is
conducted using [SLR] observations. Where applicable, sensitivity analyses are conducted to evaluate
the chosen parameters.

5.1 Methodology Verification Using Synthetic Data

The methods and their corresponding plot labels are contained within [Table 5.1}

Table 5.1: Summary of tested combination methods with internal references to relevant sections.

Plot Label Full Method Name Reference
Corrupted arcs average - -

Mean Arithmetic Mean subsection 4.2.1
Inverse variance Inverse Variance Weighting subsection 4.2.2
VCE Variance Component Estimation subsection 4.2.3
Residual weighted Residual weighted subsection 4.3.1
del220 DE1220

gaco GACO

cmaes CMA-ES

xnes XNES

Nelder mead Nelder-Mead

del1220 LO DE1220 + Nelder-Mead

gaco LO GACO + Nelder-Mead .

cmaes LO CMA-ES + Nelder-Mead
xnes LO XNES + Nelder-Mead
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5.1.1 Approach

To rigorously test the combination methods, synthetic datasets were created by corrupting known
KOl or fully synthetic Keplerian orbits with noise sampled from known distributions. This allows
quantitative assessment of the methods’ ability to recover the uncorrupted orbits under controlled
scenarios.

Synthetic orbits are generated by adding or subtracting noise with defined [STD| o and optional
bias j:

fcorrupt =7+ v, v~ N(B? 021) (51)

The corrupted orbits, along with their defined variance information used as inputs to the combina-
tion methods listed in [Table 5.1l

5.1.2 Sensitivity of the optimisers to generation and populations size

Before the optimisation methods can be broadly tested, a sensitivity analysis of the relevant pa-
rameters — generation and population size — is conducted to fix them. The former determines how
many evolutions or iterations the population experiences, and the latter the size of the population
to evolve or be sampled from. Three synthetic input orbits are used, each constructed using noise
with increasing [STDFs; 0.0035 m, 0.006 m and 0.0075 m.

Varying generation size:

Generation sizes of 1, 3, 10, 15, 25, and 40 are tested. The results are presented in [Figure 5.1]

Average corrupted Orbit RMSE: 0.006606 Average corrupted Orbit RMSE:
0.010m 0.010m
0.0056 1
0.0064 4
0.0057 4
= = —&— gaco
E’ §, 0.0062 1 cmaes
i) L
wn wn xnes
= 0.0058 1 = de1220
—8— gaco LO 0.0060+
0.00594 nelder mead o
cmaes LO \
xnesil0 0.0058 1 g A
—v— del220 LO —-

0 10 20 30 40 0 10 20 30 40
N generations N generations
(a) Locally optimised methods. (b) Globally optimised methods

Figure 5.1: Impact of number of generations on RMS of the combined orbit with a random seed of 42.

Changing the number of generations has no effect on the locally optimised solutions, indicating
that the initial conditions are sufficiently close to a local minimum such that the local optimiser
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consistently achieves the same performance. Global optimiser performance improves steadily with
population increase, flattening out at 10 for all methods aside from xNES. This is expected be-
haviour, as more generations provide more opportunities for the evolutionary algorithms to find
superior solutions, and indeed they converge towards the same minima discovered by the combined
and locally-optimised solutions with increasing generations.

Varying population size:

Population sizes of 7, 15, 50, 75, 150, and 300 are tested. As stated in the Gaco

optimiser requires a minimum population size of 75, hence why its results begin there. The results
p q pop ) y g

are presented in [Figure 5.2

Average corrupted Orbit RMSE: Average corrupted Orbit RMSE:
0.0063 - 2.0%0m 0.0063 o.000m
0.0062 4 0.0062 -
— —&— gaco LO -
£ 0.0061 - T £ 0.0061 { —&- gaco
- - cmaes
% cmaes LO % xnes
= 0.0060 xnes LO = 0.0060 1
o —v— del220 LO 2 de1220
0.00591 0.0059 1
0.0058 0.0058 &
T —— .
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Population size Population size
(a) Local and combined optimisers (b) Global optimisers

Figure 5.2: Change in optimiser performance with increasing population size with a random seed of 42.

The purely local optimiser, Nelder-Mead, is not sensitive to population size as the initial guess
of equal weights — corresponding to the arithmetic mean — is a good initial guess for our synthetic
data. The combined optimisers require a very small population to tend towards the same minima
as Nelder-Mead. The low population results in a sparse random sampling of the design space, which
leads to poor initial conditions resulting into falling into local minima which are inferior to that
found by Nelder-Mead and higher-population optimisers. With a larger population size, this effect
is removed and they again perform equally well. The results of the global optimisers demonstrate
that the population size greatly affects their performance. However, it is not necessarily the case
that increasing the population size leads to a smooth improvement in the performance of these
algorithms. xNES in particular shows erratic behaviour with changing population size, with error
first increasing before decreasing with population size. DE1220 similarly shows this behaviour.
CMAES and GACO show smooth improvement with population size, flattening at 75 and 150
respectively, with CMAES outperforming the competition overall. Population size is affected by
the choice of random seed, as the population is sampled randomly within the design space. The
result is that an increased population could lead to a random selection of worse initial conditions,
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resulting in poorer solutions.

Optimisation parameters

The trends observed in this section remain consistent when changing the random seed of the Pygmo
optimiser. The additional plots can be observed in demonstrating this can be viewed in[Appendix C]
Based on these results, it is decided to use a population size of 150 and 25 generations, as this strikes
a balance between robustness and computational efficiency, and increasing either past this point
provides diminished returns.

5.1.3 Symmetric synthetic orbit pairs

With the configuration of the optimisers fixed, we can proceed to other tests. First, we produce
mirrored synthetic orbits. Given an uncorrupted orbit x,. and a noise vector € sampled from a
distribution with zero mean (F[e] = 0), we generate a pair of synthetic orbits:

X = Xtrue T €
{ o (5.2)
X = Xtrue — €
This pair of orbits is symmetric about the truth (X ), satisfying the relation:
1
Xtrue = §(x+ +x_). (5.3)

The objective of this is to create a set of input orbits which we know can be combined to reproduce
the uncorrupted orbit exactly. This remains true if we introduce additional pairs of corrupted orbits,
regardless of what the of the corrupting noise is.

The arithmetic mean of the sets of pairs is the optimum combination, as each pair is averaged
to the uncorrupted orbit,therefore this method of combination should perfectly reproduce the un-
corrupted orbit. Each pair of orbits has equal STDL but is mirrored, which should mean that the
inverse-variance weighting method produces equal-weights for each member of the pair. Therefore,
as you introduce more pairs, each pair simply cancels itself out in the combination, leading to a
perfect reconstruction. Variance component estimation selects variance components based on the
differing variances of each input with respect to the combined orbit. We expect this method to
cancel the corrupted pairs out, as they will result in equal variance components. The optimisation
methods use the uncorrupted orbit as reference data. Whether or not the optimisation algorithms
reproduce the uncorrupted orbit depends on the initial guess and number of generations.

The is fixed at 0.005 m. Two random seeds are tested — 42 and 20 — to ensure that results
are not a fluke and can be reproduced. 6, 10, 14, 20, 30 and 50 total input orbits are tested.

37



10724 o ---- corrupted arcs average
—e— mean

10734 inverse variance

vce

1074 residual weighted

—»— nelder mead

de1220 LO E ] £
L T
—— gaco LO wn 4 \\/
cmaes LO E

RMSE (m)
=
Q

10-71 —— Xnes LO ---- corrupted arcs average
—e— del220
10—8 ] %ﬁ aco
1074/ g
cmaes

10794 .,_-—--""__—'—-_ ® xnes

//b ,\/Q ,\/bt ’]9 ,,)Q / 4_)0 P © ,\/Q ,\/bt ) ’19 ,,)Q 4)6

% % 4 4 4 % % % % 2
AR RN RN N SR NGRS NGEIRN
Number of orbits Number of orbits

(a) Independent, local optimisers and residual-weighted (b) Global optimisers

Figure 5.3: Results for symmetric synthetic orbit pairs.

As expected, the arithmetic mean, inverse variance, and [VCE] methods perfectly reconstructed
the uncorrupted orbit, with RMS errors accounted for by rounding error due to limited machine
epsilon (~ 107! m). This confirms their theoretical behaviour under symmetric noise conditions.
Locally optimised methods remained stable and converged close to the truth. This demonstrates
that while global optimisers enable a broader search of the design space, they fail as the number of
input orbits increase due to the growth of the parameter space.

The global optimisers perform worse. While they produce combined orbits with orders of mag-
nitude lower RMS than the average of the synthetic data, they fail to reach the global minimum.
As the number of input orbit pairs increase, these methods perform worse. This is expected, as
the number of parameters the optimisers solve for scales directly with the number of orbits, and
solving the weights becomes considerably more difficult. It is likely that the local optimiser alone
well-optimises a local minimum, and the global optimiser successfully discovers a superior local
minimum which is then improved more by the local optimiser.

In addition, the variance components computed by variance component estimation were equal
pairs corresponding to the corrupted orbit pairs as expected.

5.1.4 Combining non-mirrored corrupted orbits

In this test, n corrupted orbits are created by adding noise with fixed o and mean p of 0.
As before, no bias is introduced. We test increasing values of n in order to observe whether the
combined orbits converge towards the uncorrupted orbit as n tends towards infinity. It is expect
that this occurs for the arithmetic mean, inverse variance and [VCE methods; due to the formulation
of the optimisation problem, the number of parameters to be estimated increases proportionally to
the number of orbits, meaning it becomes more challenging to solve. In practice, the number of
available [KQl's available is highly unlikely to exceed 5, so this is not envisioned to cause issues.

Results are presented in [Figure 5.4
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Figure 5.4: Impact of increasing the number of non-mirrored corrupted orbits. An % line is included as a trend-line.

A convergence towards the truth following a % trend is observed for all methods. This confirms
that independent (arithmetic mean, inverse variance, [VCE]), the residual-weighted and locally-
optimised methods converge towards the truth as number of input orbits increases, consistent with
statistical expectations. Residual-weighted in particular tends towards reproducing the original
orbit, demonstrating that determining weights from the residuals with respect to the truth is more
effective than using the variance information. The global optimisers other than DE1220 struggled
increasingly with growing input orbits due to the rising number of parameters, with divergence
from the trend observed from 5 input orbits on, once more highlighting that these methods are not
appropriate for high input orbit combinations.

5.1.5 Sensitivity to Random Seeds

Here we evaluate each method’s robustness to variations in the random seed used. The random
seed used affects several sections of the methodology; the noise used to produce the synthetic input
orbits and the initial population sampling and any randomisation used for mutation by the Pygmo
optimisers. It is important to assess the sensitivity of these to the random seed used by testing a
number of them and observing how results are affected.

Sensitivity to the random seed used to generate noise for synthetic orbits

By ensuring that the random seed is constant aside from that used to sample the noise distribution
for producing the synthetic input orbits, we can observe the sensitivity of the methods to the
particular sampling of the noise. We expect to observe no meaningful difference between the different
seeds, as the magnitude of the noise remains constant, and it is only the distribution which changes
as a result of the choice of a different seed. In practice, a positive result for this test suggests that
our methods are stable and behave predictably with variations in inputs. For this test, the three
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synthetic orbits input are regenerated with varying random seeds. The results are presented in

Figure 5.5
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(a) Independent and locally-optimised methods, as well as the (b) Global optimiser methods.
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Figure 5.5: Random seed tests for the noise instantiation used to produce the synthetic input orbits.

The average RMSE of the synthetic, corrupted orbits is provided in gray to show how changing
the random seed affects the input orbits. The independent and residual-weighted methods produced
consistent results regardless of the seed, as expected. The local optimisers similarly exhibited stable
performance. In general, the globally optimised methods show no sensitivity to the random seed.
The performance of each method tends to follow the behaviour of the initial set of synthetic inputs,
indicating — as expected — that the combination improves with increasing quality of the inputs,
regardless of method applied.

Sensitivity of the optimisers to the random seed

The optimisers introduced in are sensitive to the random seed selected in two key ways;
as input to the methods through the initially randomly sampled population, and internal to the
methods depending on how randomisation is integrated into them through, for instance, random
mutation in the evolutionary algorithms. In order to test this, the same set of input synthetic orbits
is used for each seed, limiting randomisation to that inherent to the pygmo optimiser. The results

are presented in [Figure 5.6
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Figure 5.6: Random seed tests for Pygmo optimisers.

Variation in performance is observed for global and locally-optimised methods depending on
the random seed selected. The locally optimised methods demonstrate no sensitivity to random
seed outside of xNES, which is explained by its noticeably poorer performance as demonstrated
in [Figure 5.6a] Deviation is observed between the varying global optimisers, with CMAES and
DE1220 performing the best. This difference is not described by the randomised instantiation of
the population, as it does not affect every method equally; therefore, it is a product of the algorithms
themselves. xNes and GACO perform noticeably worse, demonstrated by their greater fluctuations
in RMS. This behaviour is consistent with the theoretical characteristics of xNES, which relies on
natural gradient updates based on the curvature of the objective function. Because the natural
gradient is sensitive to the local geometry of the fitness space, even subtle changes induced by
different noise realisations can alter the direction of search and result in convergence towards a
poorer quality local minima [25].

GACO, while performing better than xNES overall, also shows slightly higher variability and
a tendency to converge to suboptimal solutions more frequently. This can be attributed to its
pheromone reinforcement mechanism, which favours early good solutions. If the input noise leads
to misleading early fitness evaluations, GACO may prematurely hone in on a suboptimal section
of the search space. Without mechanisms for reset or exploration encouragement, such behaviour
accounts for GACQO’s increased sensitivity to seed-dependent initial conditions [57].

In accordance with the results of subsection 5.1.2} this test indicates that the choice of population
and generation size contributes greatly to the sensitivity of the converged result to the random seed.
This random behaviour is observed in all but CMAES, which is the only algorithm shown in figures
and to flatten out with generation and population size.
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Summary

The results indicate that none of the methods are sensitive to the random seed used to instantiate
the noise of the synthetic orbits. The locally-optimised methods show no sensitivity to the random
seed of the pygmo optimisers other than xNES. Of the global optimisers, only CMAES is stable
with respect to random seed. Among the global optimisers, CMAES stands out as particularly
robust, displaying highly consistent performance.

5.1.6 Changing the scale and length of the input biased orbit

Random noise is not the only deviation from truth that can affect an orbit solution. Bias is also
important to consider. It describes the offset of the solution such that it can no longer be described
as a random sampling of the truth with some In practice, this is what we expect the optimised
methods to account for better than the methods dependent on variance information, which only
account for variance. The optimisation methods are able to shift the orbits by some constant, which
is independent of the of the input orbits. The of the synthetic input orbits is fixed at
0.005 m for these tests.

The change in scale (magnitude) of the bias applied to the input orbits is provided in [Figure 5.7}
with 3-orbit, 5-orbit and 8-orbit combinations included in order to show how increasing the number
of biased orbits affects the results.

Independent methods fail to correct biases, as expected. Due to the constant of the input
orbits, the mean and the inverse-variance perform exactly the same, and demonstrate that they
cannot account for bias in the input orbits at all. VCE is a worse-performing inverse-variance
method, as again it cannot account for bias, but worsens the combination due to the fact that it
tends to fit towards the combined solution of the input orbits, which in this case are all biased.
These methods performed better as the number of input orbits was increased, as the bias is sampled
between +0.5 m, meaning that as the number of input orbits increases, the mean of them approaches
the truth.

The residual-weighted method performed excellently, as it derives per-epoch weights directly
from the residuals with respect to the truth. As such, it down-weights orbits which are more biased
with respect to the truth, and up-weights orbits which are closer, ultimately resulting in a much
closer fit and a better combination.
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Figure 5.7: Impact of increasing input bias magnitude. From left to right in each panel, the number of biased input
orbits increases from 3 to 8, showing how the methods respond to progressively stronger bias contamination with
increasing number of input orbits. The un-scaled (scale=1) input bias values are provided, as well as the average of

the corrupted arcs.

The global optimisers performed consistently well, showing close to flat lines with increasing bias
scale whether local, global or a combination thereof. This demonstrates that piece-wise weighting
is most effective for accounting for systematic bias in the input orbits. Of the global optimisers,
CMAES and DE1220 perform the best with changing bias length and scale, while xXNES and GACO
begin to perform noticeably worse as the number of input orbits increase. The locally-optimised
methods prove the most robust to both increasing number of biased inputs, and increasing scale
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thereof. While none of the methods fully eliminated bias and returned the truth, all of the locally-
optimised methods, CMAES and DE1220 and the residual-weighted method produced combined
solutions with RMS values 2-3 orders of magnitude lower than the average of the synthetic input
orbits.

5.1.7 Changing input arc length

The input orbits may be segmented into arc lengths of a given duration, which affects the methods
involving the application of piece-wise weights, or piece-wise variance components. In practice, this
means that all optimisation methods and VCE are affected by the arc-length. Therefore, a test is
performed to see if there is an optimal arclength, and to determine the effect of this parameter on
the methods. For the independent and residual-weighted methods, a 1-second sampling of a day
of trajectory data is used, and arc-lengths from single-epoch (1 second) to None (the full day) are
tested. For the optimisers, this input data is resampled to 1-minute frequency, as we wish to test the
single-epoch performance, but the optimisers take considerable time to run, and so we compromise
by resampling to reduce the number of epochs to be solved for while still observing a full orbit.
Results are presented in |[Figure 5.8
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Figure 5.8: Effect of input arc length on combination performance.

Increasing arc length has no meaningful impact on the arithmetic mean, inverse-variance and
residual-weighted methods aside from some slight numerical-noise induced fluctuations as expected,
as these methods are not sensitive to this variable. On the other hand, VCE breaks down when a
single-epoch arc length is used, as the method requires having multiple epochs to well-estimate the
variance components as described in [subsection 4.2.3] Past a single-epoch arc length, no difference
is observed when using different arc lengths, indicating that the variance components tend to be
stable regardless of the length of the arc used to determine them. This is to be expected, as the input
orbits have consistent noise across epochs, which means that VCE should estimate close to identical
variance components regardless of the segmentation. Optimised methods tend to reproduce the
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reference orbit when a single-epoch arc length is used, with all of the locally-optimised methods and
CMAES reporting this. This demonstrates that piece-wise weights are required, as we specifically
wish to avoid fitting exactly to the reference data. Additionally, this demonstrates that the optimiser

design space is well-defined, as the optimisers can reproduce the reference orbit when a single-epoch
arc length is used, shown by the RMSE below e~"m in

5.2 Selection of methods from verification results

With the results of these tests, we narrow down the selection of methods to produce results with.
Each of the independent methods perform well, and moreover require very little computation time
to run. The residual-weighted method outperforms on several tests; the limitation of this method is
potential over-fitting to the RDO| which we are interested in testing. Of the optimisation methods,
CMAES and Nelder-Mead stand out as the best-performing. The former performed best of the
global optimisers across multiple tests, the latter performed very well and requires less computation
time as it is a simpler algorithm [46]. These methods similarly have the potential to suffer from
over-fitting to the reduced-dynamic reference data. For each method, an arc length of one day is
used.

5.3 Verification of the propagation of uncertainty

In sections [4.2] and [4.3.1] the combination of covariance information to propagate uncertainty from
the input orbits to the combined solution is described for four methods; the arithmetic mean, inverse-
variance, and residual-weighted. In this section, a verification of these combined covariance
values is performed using synthetic data with the method described in [section 4.5

The results of the 50-run synthetic verification are presented and analysed to assess whether
the reported uncertainties from the combined orbits reflect the true error distribution, and whether
the variance component estimation method produces statistically meaningful weights under varying
noise conditions.

5.3.1 Comparison of propagated uncertainty with true residuals

To assess the statistical validity of the reported uncertainties, we compare them to averaged empir-
ical metrics computed from the residuals across runs.

shows the ratio between the empirical and the reported for each method
and coordinate. A ratio of 1.0 indicates that the reported correctly captures the random
scatter in the residuals. Both the arithmetic mean and inverse-variance methods achieve nearly
ideal ratios across all coordinates. VCE exhibits a tendency to underestimate the true uncertainty,
as evidenced by ratios of roughly 1.3, while the residual-weighted method significantly overestimates
the variability demonstrated by its very low ratio close to 0.4.
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Figure 5.9: Comparison of empirical error metrics to reported orbit uncertainty. Each bar represents the mean ratio
over 50 runs, grouped by method and coordinate. Error bars denote +1o [STDI

Figure 5.9b| presents a similar comparison using RMS? rather than STD, thus representing both
and the mean. Results are consistent, though the underestimating of the uncertainty by VCE
and the overestimation of it by residual-weighting is exacerbated. This is expected, as VCE does
not compensate for bias in any way, therefore the further deviation is explained by the introduction
of the inclusion of bias, which simply degrades the results. The mean and inverse-variance methods
are unaffected by this change, as bias across runs cancels out as they are statistically unbiased
estimators . The residual-weighted method, which explicitly uses differences with the reference
orbit, tends to interpret bias as high variance and overestimates uncertainty accordingly.

5.3.2 Reduced chi-square analysis
To verify the global consistency of the reported uncertainty with the actual error distribution, we

compute the reduced chi-square per method and per run. shows the distribution across
all 50 runs and the mean values.

46



50
0 [—J mean T - Ideal (1.0)
inverse variance 2.001
[ vee
40 [ residual weighted 1.75+
A Y | Ideal (1.0)
o 1.50
30 5
> 301 1
S @ 1.251
e =
g =
1.00
£ 501 S
=
2
2 0.75 -
101 0.50 4
0.251
0 . I ‘ [Log
0.5 1.0 1.5 2.0 2.5 0.00 : : : :
Reduced Chi-Square mean inverse variance vce residual weighted

(a) Histogram of reduced chi-square values for each combination (b) Bar plot of the mean reduced chi-square values for each combi-
method over 50 runs. The vertical dashed line indicates the ideal nation method over 50 runs. The horizontal dashed line indicates
value of 1.0. the ideal value of 1.0, and the error bars indicate the £1o.

Figure 5.10: Comparison of the reduced chi-square of the orbit solutions across different methods, demonstrating the
quality of the uncertainty propagation with respect to the reported residuals.

The arithmetic mean and inverse-variance methods cluster tightly around 1.0, as expected. The
VCE method exhibits a much wider distribution with underestimation of the uncertainty; it is over-
confident. The spread indicates that we cannot compensate for the overconfidence of this method
by up-weighting the noise by some estimated constant, which suggests that the noise information
produced by VCE is less reliable. The residual-weighted method yields very low and consistent
chi-square values, indicating over-reported uncertainties and under-confidence. This aligns with
expectations, as residual-weighting in this case uses the residuals to the ground truth to weight the
orbit combination, which means the produced orbit is more accurate than the combined uncertainty
of the input orbits predicts.

5.3.3 Covariance assessment

A single set of test results is used to demonstrate how the covariance information maps on to the
residuals. The [STDI's are chosen at random from between 1 m and 2.5 m for each parameter, and
the covariances selected between —0.1m? and 0.1m?. Random seeds 100-150 are used for the noise
realisation. Time-varying deviations are added on top of this base by adding a sample of normally
distributed noise with a magnitude of 0.01 m at each epoch. Results are presented for the xy, xz
and yz covariances in figures [5.11al, [5.11b], [5.12] The covariances and the variances of each pair of
parameters both computed from the residuals (empirical) and retrieved from the combined orbit
data are provided numerically in [Table 5.3 and [Table 5.2 supporting the plotted residuals.
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Table 5.2: Reported vs empirical 1o variances for each method in the XY, X7, and Y Z planes. Each pair of columns
shows reported and empirical values for o7 and o3, followed by the percentage difference.

Plane Method | 07 Rep.  Emp. A% | 03 Rep. Emp. A%
Mean 1.5432 1.5016  +2.77% 0.8700 0.8458  +2.86%
Xy Inverse Variance 1.4166 1.3770 +2.88% 0.7508 0.7322 +2.55%
VCE 1.2445 1.4541 -14.42% 0.7109 0.7415 -4.12%
Residual Weighted | 2.8313  0.4698 +502.58% | 1.5095 0.2629 +474.08%
Mean 1.5432 1.5016  +2.77% 1.2307 1.2532 -1.80%
Y7 Inverse Variance 1.4166 1.3770  +2.88% 0.8495 0.8412  +0.98%
VCE 1.2445 1.4541 -14.42% 0.4746 0.9676 -50.95%
Residual Weighted | 2.8313  0.4698 +502.58% | 1.8451 0.3014 +512.36%
Mean 0.8700 0.8458 +2.86% 1.2307 1.2532 -1.80%
vz Inverse Variance 0.7508 0.7322 +2.55% 0.8495 0.8412  +0.98%
VCE 0.7109 0.7415 -4.12% 0.4746 0.9676  -50.95%
Residual Weighted | 1.5095 0.2629 +4474.08% | 1.8451 0.3014 +512.36%

Table 5.3: Reported vs empirical 1o covariances for each method in the XY, XZ, and Y Z planes. Each pair shows
the reported and empirical covariance.

Plane Method ‘ Cov Rep.  Emp
Mean 0.0140 0.0020
Xy Inverse Variance 0.0126 -0.0044
VCE 0.0416  -0.0081
Residual Weighted | 0.0416  -0.0036
Mean -0.0322  -0.0275
Yz Inverse Variance -0.0386  -0.0198
VCE -0.0959  -0.0271
Residual Weighted | -0.0959  -0.0046
Mean 0.0316 0.0642
vz Inverse Variance 0.0248 0.0485
VCE 0.0940 0.0369
Residual Weighted | 0.0940 0.0072

The arithmetic mean and inverse-variance methods demonstrate excellent performance with co-
variance combination, typically closely following the empirical covariance. Inverse-variance slightly
outperforms the arithmetic mean, remaining more consistent. VCE and residual-weighting report
variance and covariance information less consistent with the empirical results. As identified in
VCE underestimates the variance, while residual-weighting overestimates it. When it
comes to covariance, however, both methods tend produce combined covariances which are corre-
lated, despite the residuals not displaying the same correlation.
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Figure 5.11: Residuals and covariance ellipses in the XY and XZ planes. The solid red ellipse corresponds to
reported 30 uncertainty, and the dashed orange ellipse is derived from the residuals. The semi major and minor axes
of the ellipses are plotted to ensure that correlation is visible.
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In the XY plane, the mean, inverse variance and VCE methods show excellent agreement
between reported and empirical covariance, in both scale and orientation, with VCE only slightly
under-estimating o,. Conversely, the residual-weighted method overestimates uncertainty, with
the residuals considerably smaller than the 3o ellipse. In the XZ plane, the mean and inverse
variance methods again yield close alignment between reported and observed uncertainty. VCE
shows moderate underestimation of the Z variance and slight underestimation of the X variance
(consistent with the XY plane). There is some negative correlation in the covariance information
which is not observed in the residuals. Residual-weighted again overestimates variance.
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Figure 5.12: Residuals and covariance ellipses in the Y Z plane. The solid red ellipse corresponds to reported 3o
uncertainty, and the dashed orange ellipse is derived from the residuals. The semi major and minor axes of the
ellipses are plotted to ensure that correlation is visible.

In the Y Z plane, the mean and inverse variance continue to demonstrate conformity with the
data. VCE reports a similar in Y, but underestimates it in Z. The diagonal orientation of the
ellipse suggests a positive Y Z correlation we do not observe in the residuals themselves. Residual-
weighted is again very conservative with the uncertainty information, and shows a slight positive
correlation in the covariance. In all three planes there is a clustering of the residuals along each axis
for the residual-weighted method. This occurs because the weights are computed per-parameter in
this method using the residuals with respect to a reference orbit as per the methodology described
in [subsection 4.3.1] In this case the reference orbit is ground truth, meaning that any deviation
away from the axis (representing zero residuals) has been down-weighted exactly by the inverse of
this residual. The result is clustering in an x-shape along the axis, as off-axis deviation is down-
weighted. Additionally, there is no distinction between each plane; they behave similarly. This is
expected for a full orbit.
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Induced correlation by VCE and residual-weighting:

The results demonstrate that correlation is sometimes erroneously estimated in combined orbits
when it is not present in the residuals. In order to assess if there is a mistake in either method
causing correlation to be induced spuriously, we first assess a combination of input orbits with no
covariance. The results for the XY plane are presented in
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Figure 5.13: Residuals and covariance ellipses in the XY plane. The solid red ellipse corresponds to reported 3o
uncertainty, and the dashed orange ellipse is derived from the residuals. The semi major and minor axes of the
ellipses are plotted to ensure that correlation is visible.

Results remain consistent across the other planes. No covariance is introduced into the combined
orbit when there is none present in the input data. To test whether correlation is correctly preserved
when it is intentionally injected, a follow-up experiment includes input orbits with constant and
equal [STDI's and non-zero covariance only in the XY plane. The results, shown in
demonstrate that all methods correctly preserve the structure of the input covariance. The empirical

and reported ellipses align closely, and no correlation appears in the uncorrelated X7 and Y 7
planes.

Finally, to test the hypothesis that artificial correlation arises from mixing independently dom-
inated parameters, we construct a test where each coordinate (x, y, z) is dominated by a different
orbit by assigning very high noise to all parameters but x in the first orbit, y in the second and z
in the third. All inputs remain uncorrelated. The result for the XY plane is shown in
and demonstrates that no correlation is induced — all methods respect the uncorrelated structure
even under coordinate-wise orbit dominance.
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Figure 5.14: Residuals and covariance ellipses in the XY plane for input orbits with correlation injected only in
the XY direction. Reported and empirical covariances match well, confirming the methods preserve true input
correlation. The semi major and minor axes of the ellipses are plotted to ensure that correlation is visible.
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Figure 5.15: Residuals and covariance ellipses in the X $2plane when each coordinate is dominated by a different
input orbit, all uncorrelated. No artificial correlation is observed in the combined solutions. The semi major and
minor axes of the ellipses are plotted to ensure that correlation is visible.



Under controlled conditions, all methods propagate uncertainty predictably. Therefore, the
incorrect correlation introduced by residual-weighting and VCE instead must be a product of the
interaction of covariance and variance in more complex conditions. Both methods tend towards
‘selecting’ the best x, y and z parameters across each input orbit, independent to some extent
(entirely in the case of the residual-weighted method) of the variance and covariance data associated
with it. If, for example, a particular x value has much less error with respect to the combination or
the truth, then both methods will tend to fit towards it, entirely neglecting the covariance values of
that parameter. The result is that the covariance of that parameter is excessively propagated into
the combined orbit, leading to erroneous and larger covariance than is realistic.

Overall, the mean and inverse-variance demonstrated excellent consistency with empirical co-
variance estimated from the residuals. Provided the input orbit covariance is physically realistic,
these methods are demonstrated to propagate the uncertainty well. Residual weighting consistently
overestimates the variance information. Both Residual-weighting and VCE struggles to combine
more complex covariance information, erroneously injecting correlation into the covariance where
none is physically present.

5.3.4 Conclusion of the propagation of uncertainty verification

For the four implemented methods, uncertainty propagation reports values in reasonable agreement
with the reported RMS of the combined solutions. The arithmetic mean and inverse-variance report
excellent propagation of uncertainty, with uncertainties being directly comparable to the residuals.
VCE under-estimates the uncertainty and residual-weighting consistently reports overestimated
uncertainty as expected. Both VCE and residual-weighting have the potential to inject spurious
correlation into the combined orbit which is not physically present as a result of their weighting
scheme.

5.4 Verification of the estimated variance components

Following the uncertainty tests, the effect of the random noise of the input orbits on the variance
components estimated by VCE is explored. The estimated variance components (VCE weights) are
expected to increase with the input orbit noise, thereby down-weighting noisier inputs in accordance
with the methodology described in[subsection 4.2.3] We reuse the test setup introduced infsection 4.5
to observe resulting variance components across 50 random input orbit instantiations. [Figure 5.16
shows the estimated variance components for all coordinates against the corresponding input [STDI
A strong positive correlation is observed in all directions, confirming that VCE is correctly adapting
to the noise levels and behaving as expected by down-weighting noisier inputs above what inverse-
variance alone would do.
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Figure 5.16: Estimated VCE variance component versus input [STD] over all coordinates and runs. Dashed lines
show fitted trends with correlation coefficients.

For completeness, shows the same data separated by coordinate and input orbit,
where it can be observed that the results do not vary per-parameter, as expected. The observed
trends are consistent across orbits. Saturation occurs at higher noise levels as a result of VCE
down-weighting orbits in the combination which have significantly greater noise with respect to
the combined estimate to the extent that they effectively no longer contribute to the combined
orbit, resulting in this plateau effect towards the top right corner. This test has been conducted
for a different noise realisation using seeds 1000-1050, and the results presented in [subsection C.1.3|
remain consistent with the same trend-lines observed.

o4



L ]
1.2 B L AT od
. g ©¥ o8 o%
® @ %
° e g0 @ ..'0
ce g
1.0 N
2 'Y ° &
[} . °
= [ ]
g_ °
= °
S o8]
) [ ]
() [ ]
= [ ]
© °
§ °
< 0.6 | b
[ ]
[ ]
0 e s Orbit1l
1 & Orbit 2
p 800 o Orbit3
0.5 1.0 15 2.0 25
Input STD X [m]

Y variance component

Y Z
] ° . 3 L]
- ¢ o °8 BfRotag o _ng, %% 2
. s X 12, oo ® S0 gl eBa
® ° S ® 070,
° e @ o L] 80 ° ."
° ° > «$
& [ ]
° Sles ™ : O. . o
1.0 o [ 4 o 1.0 o
° S ° °
e [0}
° 5 °
» | =% ° °
° . g [ ] [ ]
{ ] [ ]
0.8 ® - [ ) ; 0.8 ..‘-O
L ] U [ ]
® L4 b
E . °
=
L4 N
] e 0.6 1
0.6 . :
" ° H
,?: s Orbit1l s o o Orbit1l
® . 0.4 1 = .
0.4 fe Orbit 2 . * e Orbit 2
[ 4 o Orbit3 » o Orbit3
05 10 15 2.0 25 0.5 1.0 15 200 25
Input STD Y [m] Input STD Z [m]

Figure 5.17: Estimated variance components vs input [STD] shown per coordinate and input orbit.

In order to demonstrate that when equal-noise input orbits are used approximately constant
variance components of 1 are estimated, we test this for 50 runs using a constant [STD| of 2.5 m,

and a constant covariance of 0.1 m. The results are presented in [Figure 5.18|
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Figure 5.18: The 50-run constant noise estimated variance components, and the resulting reduced chi-square of the

orbit solutions across different methods.

The estimated variance components cluster around 1 for the input orbits with [STD|2.5 m. there
is some slight deviation which is explained by the random noise realisations leading the variance
components for different parameters to be estimated slightly differently each run.
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The mean reduced x? is again plotted for this test in , showing that for a constant
noise realisation VCE achieves a ratio of one — a perfect uncertainty representation — when with
different-noise inputs it did not. This supports our understanding that the method tends to ex-
cessively up-weight inputs it determines are better using the estimated combination, which results
in this no longer being an unbiased estimator, but perfectly combines the uncertainty when it is
constant due to this excessive up-weighting not occurring.

5.5 Sensitivity analysis of the input-screening threshold

The application of input-screening is described in [section 4.1.1] however the actual threshold set is
important as it has both positive and negative effects. The screening threshold defines the maximum
allowable 3D position difference between any input orbit data point and the at each epoch
where this data overlaps. The purpose of this is to screen out outliers in the input data, taking
advantage of the fact that [RDOls are more stable and consistent due to the inclusion of a dynamic
model [76]. A stricter filtering by setting a lower threshold has the effect of more aggressively
removing points which differ greatly from the [RDOl which in principle should result in the quality
of the combined orbit improving in terms of RMS. However, this comes at the expense the data
points; screening removes data, and if it is too aggressive a large percentage of epochs is lost. The
goal, then, is to balance the improvement in RMS of the input orbits against the epoch loss due to
screening.

In order to do so, a particularly noisy period of actual data is selected in 2023 from 2023-04-28
to 2023-06-07. The RMS of SLR residuals is used to compare the performance of the orbits, as
well as the number of epochs of data. The unfiltered input orbit (denoted by "KONF’ - Kinematic
Orbit, No Filter) SLR residuals are shown for this period in and the daily RMS is

provided in
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Figure 5.19: SLR observation residuals and daily RMS of each unfiltered input solution for the selected period in
2023 from 2023-04-28 to 2023-06-07.
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Significant residuals in the order of meters are present on several days for each input orbit,
reflecting the exact type of input data we are aiming to clean using the pre-screening process.

This is a two-objective optimisation problem; we wish to minimise the RMS of the SLR residuals
while minimising the epoch loss. As such, we test a set of threshold values and plot the RMS against
the epoch loss. The superior solutions form the Pareto-optimal front; the set of solutions for which
no other solution improves one objective without simultaneously worsening another. This allows
us to objectively identify and compare orbit combination strategies that best balance precision and
data availability.

To assess epoch loss properly, we include the results of a combination method, otherwise we
cannot observe the total epoch loss of the combined solutions, which is required in order to properly
measure the effect of screening. To constrain this test as much as possible to the effect of screening
rather than the combination methods themselves, we use the arithmetic-mean method presented in
isubsection 4.2.1] for comparison. The inclusion of this method represents the total possible number
of epochs arising from the union of all epochs present across the set of input orbits, which we are
interesting in maximising. The resulting scatter plot including the Pareto front is presented in
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Figure 5.20: Pareto front including all input orbits tested with various filtering thresholds. Linear-log scale. The
threshold ceilings are denoted by the colour of the markers, while their shape refers to the method or analysis centre
which produced the orbit. An infinite threshold refers to no pre-screening.

A large discrepancy is observed between the optimality of the input orbits, with IFG generally
outperforming the other analysis centres. Regardless, none of the input solutions approach the
Pareto front. The Pareto front is dominated by the Arithmetic mean method, as expected as the
union of all input epochs is used meaning it consistently outperforms the input orbits in terms of
epoch loss, regardless of filtering threshold used. With no filtering, the arithmetic mean experiences
no epoch loss in accordance with theory. Epoch loss increases while RMS decreases with decreasing
filtering threshold, as expected. No filtering leads to a noticeably less accurate combined solution
with an RMS of 14 c¢m, but provides the maximum data volume. When a threshold of 5 m is
used, the mean outperforms every input orbit both in epoch loss and RMS, with the closest input
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competitor — unfiltered IFG — having similar epoch loss but more than double the RMS. Thresholds
of 0.1 and 0.05 demonstrate the very quick increase in epoch loss as the threshold becomes too
restrictive. Values of 0.5 and 0.3 m produce similar results, striking a good balance between RMS
and epoch loss. Additionally, this test indicates that the input orbits indeed demonstrate outliers
at different epochs due to the different processing strategies used to produce them, which is exactly
the behaviour we exploit in our combination methods. The exact values of each point on the Pareto
front are provided in When performing the same test with any of the other combination
methods, the Pareto front remains dominated by the combined solution; that is, there is never a
situation in which one of the input orbits lies on it. These results are available in [subsection C.1.4]

Table 5.4: Pareto Optimal Solutions.

Method Threshold [m] Unweighted RMS [m] Epoch Loss [%)]

mean 0.05 0.036444 0.011586
mean 0.10 0.038927 0.004876
mean 0.30 0.090867 0.002816
mean 0.50 0.090913 0.002364
mean 5.00 0.112590 0.000270

Based on these results, a pre-screening threshold of 0.3 m is selected for the inputs used for
the combination methods. Although it performs very similarly to 0.5 m, the slightly lower value is
chosen to be more conservative, giving some additional priority to improving RMS over epoch loss.
While values of 0.1 and 0.05 m provide significant further RMS improvements, these thresholds are
considered to be too aggressive and risk discarding too much data, as observed in the doubling of
epoch loss from 0.3-0.1 and the quadrupling of it from 0.3-0.05. Epoch loss of 0.0028% is observed,
which represents approximately 0.001% fewer epochs than IFG’s unfiltered input orbit. However,
this negligible loss of epochs leads to an improvement in RMS of more than 60% comparatively,
with an RMS of 0.1 m observed, demonstrating the benefit of pre-screening.

In order to demonstrate the change in residual RMS and number of epochs available in the
input orbits over a long period of time when applying this screening threshold, the RMS of the SLR
residuals over 2022 and 2023 are presented in for each input solution, with and without
screening.
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Figure 5.21: RMS of the SLR residuals over 2022 and 2023 for each input orbit with and without pre-screening. A
split axis is used in the right plot due to outliers present in the unfiltered AIUB data.
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The decrease in RMS observed demonstrates that performance is improved with pre-screening,

while the percentage loss in number of epochs remains minimal in the order of 0.5%. The TUD

displays no change in performance with or without screening. This is because the TUD already

employs pre-screening with the RDO in its processing strategy, using a threshold of 1 m, and are

more conservative with outlier detection [19].
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Chapter 6

Combination of Swarm Kinematic Orbits

In order to answer our primary research question — what, if any, improvement is there to be made
to the performance of kinematic orbit solutions through their combination — we produce combined
orbits over defined periods and assess their quality. With the various components of the combination
methods verified and validated in the combination of the kinematic input orbits provided
by IFG, AIUB and the TUD is conducted in accordance with the methodology detailed in [chapter 4]
Two case-study years are selected on which to apply the selected combination methods. 2022 and
2023 are chosen, the former as a more stable year, the latter as a more active year due to the steady
increase in solar activity since the beginning of the 25th solar cycle, as observed in [72).
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Figure 6.1: Solar activity from 2022-2023 demonstrating that activity is increasing. Image credit: National Oceanic
and Atmospheric Administration.

For the purpose of assessing the combination methods, only Swarm A orbits are used. Additional

results for 2023 are available for Swarm B and C in [Appendix D]

Input orbits are consolidated to consistent epoch times using interpolation and then pre-screened
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using their residuals with respect to the more accurate and reliable TUD [RDOFs disseminated by
ESA. The screening threshold is fixed at 0.3 m of 3D residual.

The final selected methods for generating results for the case study years are as follows:

Arithmetic mean

Inverse variance weighting

Variance component estimation

Residual-weighting

Optimisation using Nelder-Mead

Optimisation using CMAES

Selected based upon by their performance in the tests conducted in [chapter 5l The metrics used
to assess the performance of the combined orbits compared to the input orbits is the RMS, mean
and distribution of the SLR residuals, and the percentage of lost epochs of data with respect to the
maximum possible epochs available.

In both 2022 and 2023, coverage by the input orbits is not complete. The TUD orbits miss no
days, however ATUB misses a significant number of days totalling 44, and IFG misses a total of 4

days. This is visualised in [Figure 6.2
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Figure 6.2: Missing days for IFG and ATUB across 2022 and 2023. vertical bars represent where data is missing.

In addition, the weekly RMS of the input orbits for 2022-2023 are presented in[Figure 6.3} There
is significant variation week to week, and a general upward trend in the RMS of the residuals in
accordance with the increasing solar activity. In some weeks, RMS values ar far in excess of meters,

highlighting the value of the combination and especially the pre-screening detailed in [section 4.1.1}

61



AlUB
10t ESA (RDO)
IFG
= TUD
= 10°4 ,
< b ’
=
2 ! |y
210 11, -
[ - I
A A ¥y 7 ¥ v ! / ‘h { ’
10-21 k o atd ": -8 by \A4 bt 'K'-"‘-:.,“E‘:w:,w"'.s-,. N AL

Figure 6.3: The weekly RMS of the residuals for each input orbit and the reference [RDOI for 2022 and 2023.

6.1 SLR observation sensitivity analysis

The SLR observation residuals are used to assess the performance of orbits in accordance with
the method introduced in [section 4.6, However, as SLR observations are taken at multiple ground
stations — each with their own unique sets of uncertainties, errors and varying performance — it is
essential to make a selection of high-performance stations and to filter out observations at which
there is an issue with the station or the satellite itself. Otherwise, the RMS of the residuals can
be polluted by a small number of erroneous data points. To make a selection of SLR stations and
determine which — if any — filtering is required, we perform a sensitivity analysis.

6.1.1 Normal point outlier filtering and station quality control using
RDO

To ensure the reliability of the SLR residuals used for orbit validation, a filtering procedure is applied
to remove problematic data, both at the observation and station level. This process leverages the
ESA as a high-accuracy independent reference. The RDO solution is known for its high
precision and robustness, and is free from outliers or dynamic inconsistencies [76]. It therefore
serves as an effective benchmark for assessing the quality of SLR stations. For each normal point
observation, the residual with respect to the ESA orbit is computed as:

Apiesay(t) = provs) (£) = |[Fmsay (t) — Tisea (1) (6.1)

where rgga)(t) is the satellite position from the ESA RDO at epoch ¢, and r.)(t) is the geocentric
position of the SLR station in the same terrestrial reference frame. To eliminate the influence
of gross errors and unstable station performance, a two-stage filtering process is applied; epoch
rejection by outliers and station quality screening.
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Epoch rejection

Data at any epoch where the ESA residual exceeds 10 metres in absolute value is rejected entirely,
across all methods and stations. This ensures that all observations coinciding with known outlier
events — such as manoeuvres or corrupted tracking data — are excluded from the normal point
dataset. A threshold of 10 m is selected as we are certain that residuals above this for the RDO are
a product of the station performance rather than the orbit itself, which is known to be robust and
consistent [76]. If this is not done, SLR results are dominated by the few extremely bad residuals.
To demonstrate the effect of neglecting this poor station data filtering, the per-station RMS of the
residuals are presented in for 2022 and 2023, plotted alongside the average number of
points used to construct a normal point by each station.
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Figure 6.4: SLR residual RMS per station in 2022 and 2023 with respect to the ESA RDO orbit. The twin axis
shows the average number of data-points used to construct each normal point (NP).

In both years there are station outliers; Svetloe, Borowiec, Beijing, Arequipa, Wuhan, Potsdam
and Greenbelt each demonstrate RMSE above one meter. The increased RMS does not correlate
with the observation number, suggesting that it is not very dependent on the number of observations
used to construct the normal point and is rather the stations themselves performing worse. After
this screening, remaining outliers in the other orbits are products of their processing strategies, not
a result of poor station performance. The number of outliers removed for each orbit for each year
is provided in along with the orbits which retain unfiltered outliers.

Table 6.1: Summary of SLR outlier filtering. The second column shows the number of epochs removed using RDO
residuals > 10m. The third column includes the total the number of remaining epochs with residuals > 10 m from
non-RDO methods. The fourth column lists the orbits with non-filtered residuals > 10 m remaining.

Year Epochs Removed Remaining High Residuals Orbit solutions with > 10m resid-
uals remaining

2022 2 2 TUD
2023 1 95 AIUB, TUD, IFG
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The outliers inherent in the combined solutions align with those present in the RDO, which are
erroneous outliers; essentially, these results indicate that our combined solutions have no outliers,
or outliers are at the very least of significantly lower magnitude when compared to those present in
the input orbits.

Station benchmarking and selection

For the remaining ESA RDO residuals, the RMS is computed separately for each station. Stations
for which the sum of the RMS and the of the residuals exceeds a threshold of 0.3 metres
for the RDO data are considered unreliable and excluded from further analysis. This threshold is
selected as once we have removed outlier observations for the RDO, we know we are left with quality
observations. The threshold serves as a method to select a set of higher-performing stations, and a
conservative value is chosen above which a station’s performance is determined to be poorer.
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Figure 6.5: SLR residual RMS per station in 2022 with respect to ESA RDO orbit. The 0.3 m threshold is indicated.

The effectiveness of this selection is visualised in for 2022 and for 2023,

where the RMS per station is shown before and after outlier filtering. Once these two steps are
applied, the selected stations show residual RMS’ in the range of millimetres to tens of centimetres,
rather than the RMS values in the order of metres observed earlier.
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Figure 6.6: SLR residual RMS per station in 2023 with respect to ESA RDO orbit. The 0.3 m threshold is indicated.

Elevation cut-off angle

Finally, we perform a filtering of observations based on the elevation angle they were taken at.
Lower elevation angles introduce systematic errors into the SLR residuals, as the laser must pass
through considerably more atmosphere leading to greater atmospheric refraction . Typically,
this cut-off angle is set to between 10 and 20 degree depending on application . To determine
where to set the cut-off, an analysis of the sensitivity of the residuals to the elevation angle is
performed. The residual observations are binned between elevation angle ranges, and the RMS of
the binned residuals is computed, allowing us to observe how the RMS changes with elevation angle.
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Figure 6.7: Overall SLR residual RMS of the ESA RDO for 2022 and 2023 computed between fixed elevation angle
range bins of 10 degrees. The number of observations between each bound is provided on a second y-axis.
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The results are presented in The number of observations associated with each bin
is included to indicate the frequency of observations at different elevation angles. Residual quality
significantly reduces for observations taken at elevation angles below 10 degrees, with an RMS almost
twice that of the next greatest. Therefore, we filter out observations taken below an elevation angle
of 10°. In total, once we apply filtering, we are left with an average of 23377 SLR observations per
orbit, compared to a pre-filtered total of 31100.

6.2 Final combined orbit results

The remaining observations can be used to make an objective comparison of the orbits. We begin
by addressing our primary research question. The performance of the combined orbits for the full
years of 2022 and 2023 are presented in figures and as the RMS of the residuals across the
full years for each method. The input orbits are included for the purpose of comparison. The epoch
loss as a percentage with respect to the maximum possible epochs is annotated atop the bars.
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Figure 6.8: RMS of the SLR residuals for each orbit for the year of 2022. % epoch loss is annotated atop the bars.
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Figure 6.9: RMS of the SLR residuals for each orbit for the year of 2023. % epoch loss is annotated atop the bars.

The numerical results are provided in including the percentage epoch loss, residual
RMS, and the mean and [STD] of the residuals.

Table 6.2: Epoch loss and residual statistics for tested orbit solutions in 2022 and 2023. Total possible epochs:
31,512,665 (2022); 31,361,315 (2023). ESA RDO is shown as a reference only. The green cells indicate best perfor-
mance among the tested methods. All metrics refer to residuals (e.g. "Mean’ refers to 'Mean residual’).

Orbit Solution 2022 2023

Epoch Loss (%] RMS (m) Mean (m) STD (m) | Epoch Loss [%] RMS (m) Mean (m) STD (m)
RDO (ESA) 3.6 0.01849 0.00103 0.01846 2.3 0.02175 0.00053 0.02174
IFG 4.1 0.37272 0.01083 0.37257 2.7 0.56937 0.00583 0.56935
TUD 10.0 0.16579 0.00095 0.16579 14.3 0.25057 0.00233 0.25056
AIUB 12.8 0.16872 0.00195 0.16871 15.9 6.50626 0.31537 6.49877
Arithmetic mean 3.6 0.01936 0.00060 0.01935 2.7 0.03941 -0.00001  0.03942
Inverse variance 3.6 0.02288 0.00079 0.02287 2.7 0.04207 0.00046 0.04207
VCE 3.6 0.02276 0.00066 0.02275 2.7 0.04122 0.00048 0.04122
Residual-weighted 3.6 0.02331 0.00090 0.02330 2.7 0.04917 0.00049 0.04917
Nelder-Mead 3.6 0.01948 0.00067 0.01947 2.7 0.03937 -0.00006 ~ 0.03937
CMAES 3.6 0.01948 0.00068 0.01947 2.7 0.03937  -0.00006  0.03937

All of the combined solutions outperform each input orbit in both years, both in terms of epoch
loss and residual RMS. In 2022, the combined orbits retain 96.4% of epochs, gaining 0.5% more
than IFG, 6.4% more than TUD, and 9.2% more than ATUB. In 2023, they retain 97.3% of epochs;
matching IFG, and gaining 11.6% and 13.2% relative to TUD and AIUB, respectively.

The average percentage improvement in RMS across the combined methods exceeds 90% com-
pared to the input orbits in both years. For example, in 2022, input RMS values range from
0.16579 m (TUD) to 0.37272m (IFG), while the combined solutions range from 0.01936 m to 0.02331 m.
In 2023, input RMS values span from 0.25057m (TUD) to 6.50626 m (AIUB), while the combined
methods lie between 0.03937 m and 0.04917 m.

Compared to the [RDOl the arithmetic mean, Nelder-Mead, and CMAES methods are only
5% worse in 2022 (RMS: 0.01849m vs 0.01936 m), while the inverse-variance and VCE methods
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are 23.7% worse (RMS: 0.02288 m and 0.02276 m, respectively). In 2023, the best combined or-
bit (Nelder-Mead and CMAES, both at 0.03937m) is approximately 81% worse than the
(0.02175m), and the arithmetic mean is 81.2% worse (0.03941m). The residual-weighted method
performs the worst among the combined solutions, with an RMS of 0.04917 m — 126% higher than
the in 2023. Despite this, the RMS of the best combined orbits in 2023 is still 93.1% lower
than that of the best-performing input (IFG, 0.56937 m), indicating that the combination process
remains highly effective even under poorer tracking conditions.

The differences in RMS performance among the combined methods are modest: 0.00395m
(20.4%) in 2022 and 0.00980m (24.9%) in 2023. The arithmetic mean performs exceptionally
well in both years, yielding the lowest RMS in 2022 (0.01936 m) and the second-lowest in 2023
(0.03941m). It also maintains the lowest in both years (0.01935m in 2022; 0.03942m in
2023). In contrast, the inverse-variance method yields RMS values of 0.02288 m (18.2% worse than
the mean) in 2022 and 0.04207 m (6.7% worse) in 2023. The VCE method performs similarly, with
RMS values of 0.02276 m (17.6% worse) and 0.04122m (4.6% worse), respectively. These methods
consistently underperform the arithmetic mean, likely due to imperfections in the scaling of the
input covariance information, which leads to sub-optimal weighting. A detailed investigation of this
issue is presented in [subsection 6.2.2]

There is limited benefit in applying the optimiser-based combinations under current data con-
ditions. In 2023, the best-performing solutions — Nelder-Mead and CMAES, both at 0.03937m —
improve over the arithmetic mean by only 0.00004 m (0.04 mm). This marginal improvement is not
consistent; in 2022, the arithmetic mean outperforms all optimiser-based methods. However, this
trend aligns with the low bias of the input orbits. The optimisers are designed to shift the centre
of the combination to compensate for systematic biases; when bias is minimal, little improvement
is observed. This becomes apparent in 2023, where the AIUB input exhibits a substantial radial
bias of 0.31 m, and the optimisers yield a small improvement over the mean. This suggests that
optimiser-based approaches may offer tangible benefits when significant input bias is present.

In addition to improved accuracy and data retention, the combined solutions also exhibit lower
[STDr's than the inputs, reflecting reduced noise. For example, the arithmetic mean maintains the
lowest across all methods in both years (0.01935m in 2022; 0.03942m in 2023). To properly
observe differences in spread, histograms of the residuals are visualised in [Figure 6.10] with a 0.5m
ceiling applied to suppress outliers and focus on the core distribution. Gaussian curves are overlaid
to highlight shape and symmetry.
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Figure 6.10: Histogram of the SLR residuals, and the mean and [STDI of the residual distribution representing the
bias of the orbit solution. Gaussian curves are fit overtop. Outlier filtering of 0.5m is applied as the focus is on the
distribution, which is otherwise dominated by excessively large residuals.

The displays the narrowest distribution in both years. The combined orbits show consis-
tently tighter residual spreads than the input solutions, suggesting that the combination process
effectively suppresses measurement noise and outliers. Among the combined methods, the residual-
weighted solution yields the narrowest distribution, providing visual evidence that it closely fits to
the RDO. In contrast, the inverse-variance and VCE methods show noticeably broader spreads,
with [STDIs approximately 8% higher than other combined orbits in 2022 and 1.5% higher in 2023.
This is consistent with their tendency to up-weight inputs with low reported uncertainty, even when
those inputs exhibit greater actual residuals, leading to overconfidence. This behaviour is explored

further in [subsection 6.2.2l

Systematic bias, as indicated by the mean residual, is small across all orbits; always less than
1 mm for the combined solutions. In 2022, all methods exhibit positive mean residuals, consistent
with a small radial bias, while the TUD input has a near-zero mean (0.00095m), suggesting minimal
systemic error. In 2023, all orbits again exhibit non-zero means, with AIUB and IFG closest to
zero. These findings align with values reported in the literature [63], with any minor differences
explained by the station selection and elevation angle threshold used in this analysis.
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The displays the narrowest distribution in both years, with [STDI's of 0.01600 m in 2022
and 0.02174m in 2023. The combined orbits have consistently tighter residual spreads than the
input solutions, suggesting that combination effectively suppresses measurement noise and outliers.
Among the combined methods, the residual-weighted solution yields the narrowest distribution in
2023, with a of 0.02235m — very close to the RDO’s 0.02174m — and the lowest among the
combined solutions that year. In 2022, it achieves an of 0.01619m, just above the RDO’s
0.01600 m.

In contrast, the inverse-variance and VCE methods show noticeably broader spreads than the
other combined solutions. In 2022, their STDI's are 0.01775m and 0.01827 m, which are 6.5% and
9.6% higher than the next-best combined methods — CMAES and Nelder-Mead — both at 0.01667 m.
In 2023, their spreads increase to 0.02301 m (inverse-variance) and 0.02317 m (VCE), approximately
1.9% and 2.7% higher than CMAES and Nelder-Mead (both 0.02257m). This persistent gap high-
lights the poorer noise performance of the statistically informed methods, consistent with their
tendency to up-weight inputs with underestimated uncertainty, even when those inputs exhibit
higher actual residuals. This results in overconfident, but noisier, combinations. This behaviour is
explored further in [subsection 6.2.2]

Systematic bias, indicated by the mean residual, is small across all orbits and always less than
0.001 m for the combined solutions. In 2022, all methods exhibit positive mean residuals between
0.00066 m (arithmetic mean) and 0.00089 m (residual-weighted), consistent with a small radial bias.
The TUD input has a near-zero mean of 0.00002 m, suggesting minimal systemic error. In 2023, the
combined orbits again show low mean residuals, ranging from —0.00032m (CMAES and Nelder-
Mead) to 0.00020m (VCE), while AIUB and IFG inputs have means closest to zero at —0.00009 m
and —0.00003 m, respectively. These findings align with values reported in the literature [63], with
any minor differences explained by the station selection and elevation angle threshold used in this
analysis.

6.2.1 Over-fitting to the reference reduced dynamic orbit
In order to answer our first sub-question regarding the risk of over-fitting to the [RDOI| with the

methods which use it as reference — CMAES, Nelder-Mead and residual-weighting — we perform
an investigation following the methodology described in [section 4.4 The results are presented in
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Figure 6.11: RMS of the residuals of each input and combined orbit with respect to the [RDQO] used as reference in
the dependent combination methods, as well as the [STDI of the shown as error-bars. Due to outliers, AIUB shows
RMS comparable to the [STDI of its residuals, hence the error-bar overlaps. Results for the full year of 2023.

We notice that AIUB has a significantly higher RMS with respect to the due to the
presence of outliers. There is no sign of over-fitting in the CMAES or Nelder-Mead methods, as
these solutions both have a greater RMS with respect to the RDO than all but the AIUB input
orbit and the arithmetic mean combined orbit, indicating that the piece-wise constant weights — as
well as the narrow search space defined about the mean of the input orbits — serve to avoid this
phenomena. We apply no such compensation to the residual-weighted method, which directly uses
the residuals of the input orbits with respect to the RDO to inform the combination. As a result
there is a strong indication of over-fitting, with a 40% decrease in RMS observed with respect to
the next-closest method. In addition, it has the lowest standard deviation, further indicating that
the distribution of residuals is closer to the as well. Therefore, we conclude that the residual
weighted method presents a risk of over-fitting to the reference orbit.

This test is not conclusive, and in order to thoroughly investigate and quantify the effect — if any
— of potential biasing toward the RDO (and therefore implicitly the a-priori gravity field), gravity
field models must be estimated and analysed; something left to the recommendations of this thesis.

6.2.2 Variance information of the combined orbits

To evaluate the realism and quality of the variance information provided by the combined orbits and
compare it to the individual kinematic orbit solutions and to answer our second sub-question regard-
ing the propagation of uncertainty into the combined orbits, a dedicated assessment is performed
using the range residuals. This validation determines whether the reported orbit ade-
quately reflect the actual orbit errors as observed via independent measurements. For this, the
period of January and February 2023 is examined. The methodology used to produce this variance
information validation is presented in [subsection 4.6.1] The methods assessed are those for which
uncertainty propagation is implemented; the mean, inverse-variance, VCE and residual-weighted.
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The results are presented in . The reduced y? is plotted for input and combination
methods in If the residuals show agreement with the [STDIprojected along the
vector determined from the orbit data, we can state that the uncertainty information is physically
realistic. We include the mean of the residuals to observe whether or not there is any systematic
bias in each orbit solution.

A reduced y? greater than one indicates systematic overconfidence in the uncertainty of the
orbit, as the residuals are consistently greater than the [STDI Conversely, a value lower than one
indicates systematic under-confidence. An ideal ratio of one means that the reported uncertainty
maps on to the residuals. The ratio of residual RMS to the provides us an additional metric
to judge the correctness of the uncertainty information, which implicitly includes bias, whereas the
reduced y? does not.

To assess how this calibration behaves over time, we use the coefficient of variation of the daily
RMS/STD ratio. A lower CV indicates that the relative calibration between the orbit uncertainties
and the SLR residuals remains more consistent throughout the month. However, stability does
not imply correctness: an orbit may report highly stable yet physically unrealistic uncertainties.
Therefore, the RMS/STD ratio and its CV together allow us to assess both the accuracy and
stability of the reported uncertainty information. A description of how these metrics are computed

is available in lsubsection 4.6.1l

Table 6.3: Summary of SLR variance validation metrics for each method, including the residual RMS, the mean of
the residuals, the mean [LOS| standard deviation, ratio of the [RMS] to the [LOSISTD] the of the daily RMS/STD
ratio and the reduced-Chi squared (X%re )

Method SLR RMS (m) Mean Residual (m) Mean LOS STD (m) RMS/STD STD(RMS/STD) CV X?red)
IFG 0.0110 0.0042 0.0043 2.55 1.01 0429 7.51
AIUB 0.0138 0.0037 0.0090 1.54 0.76 0.643 2.82
TUD 0.0099 0.0038 0.0591 0.17 0.06 0.394 0.03
Mean 0.0097 0.0038 0.0205 0.47 0.26 0.567 0.28
VCE 0.0104 0.0040 0.0030 3.49 1.47 0.454 13.97
Inverse-variance 0.0103 0.0041 0.0037 2.74 1.16 0.457 8.54
Residual-weighting 0.0088 0.0038 0.0252 0.35 0.16 0.465 0.41

To complement these metrics, the ratio of residual RMS to mean orbit LOS STD is presented in
the rightmost plot of along with STD of the daily ratio error-bars indicating temporal
variability. The ideal ratio of 1 is indicated by the red dashed line.
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Figure 6.12: Left: Bar plot of the reduced x? of each input combination method. This give an indication of the
physical accuracy of the noise in terms of magnitude. Right: Residual RMS to orbit STD ratio for each orbit,
including the STD of the daily ratio to show the temporal stability.

Input orbit results

IFG is greatly overconfident; the RMS of the residuals is 2.55 times the mean reported STD, and the
reduced x? is 7.51, as shown in . Together this indicates that the reported uncertainty
underestimates the true residual scatter. The of the daily RMS/STD ratio is 0.43, indicating
moderate fluctuation in the consistency of the uncertainty calibration over time.

This is also apparent in [Figure 6.13] where the [SLRI residuals are plotted over time, including

the orbit [STDI projected along the station-satellite line of sight vector shown as daily-averaged
envelopes. The reported uncertainty envelopes are narrower than the spread of the residuals.
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Figure 6.13: SLR residuals, orbit STD projected along the line of sight vector envelope and the residual mean and
STD envelope for IFG. The uncertainty envelopes represent daily average uncertainty.

The ATUB input orbit is also overconfident, with a reduced x? of 2.82 and an RMS/STD ratio
of 1.54. The CV of the daily RMS/STD is 0.64, the highest of the three input orbits, reflecting
greater day-to-day fluctuations in uncertainty calibration despite the lower overconfidence compared
to IFG.

This is supported by where the reported STD envelope overlaps more frequently
with the residual STD, indicating improved calibration, albeit with greater temporal variation.

SLR Residual [m] Daily Residual Mean = STD ~ ----- Overall RMS = 0.0138 m
0.101 Daily Mean Residual + Daily Orbit LOS STD
: :
0.051 . .
4 NI Bt ke ] ti - L. ' T A P ot
) NS T FLITY 11 Y TR NP N 0 PTG & % BT 1 YT I TP S T
s Y L] . T '! L A B 1] e TRt e L R R {
—0.051 :
—0.10
o a D o ® a D o
3,0\0 ,5,0\’0 q),o“rX ,,),0\/’1 ,,),01’0 . n° ,,),01\’ ,,),@’L 3,0'5‘0
101' 1,01’ 101’ 7,0’)’ 'LQ’L 101' 1,01’ 'LQ’L 'LQ’L
Date

Figure 6.14: SLR residuals, orbit STD projected along the line of sight vector envelope and the residual mean and
STD envelope for AIUB. The uncertainty envelopes represent daily average uncertainty.

The TUD input orbit is systematically under-confident. It reports significantly inflated uncer-
tainty compared to the residuals, with a reduced x? ratio of 0.03 and an RMS/STD ratio of only
0.17. Despite this poor calibration, it demonstrates the most stable temporal behaviour, with a
CV of 0.39, the lowest among all orbits. This suggests that although the reported uncertainty
magnitude is unrealistic, it is more consistent over time.
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This is supported by where the reported STD envelope almost fully contains the
residuals and their spread, with minimal variation throughout the time series.
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Figure 6.15: SLR residuals, orbit STD projected along the line of sight vector envelope and the residual mean and
STD envelope for TUD. The uncertainty envelopes represent daily average uncertainty.

Combined orbit analysis

Now we assess how the uncertainty of the input orbits — demonstrated to be inconsistent — is
propagated through the combination.

The arithmetic mean is under-confident, but less so than the TUD, with a reduced x? of 0.28
and an RMS/STD ratio of 0.47. Its CV is 0.57, indicating moderate variation in how well the
uncertainty calibration matches the residuals over time. This relatively stable performance reflects
the averaging effect of the mean combination: it gives no preference to any set of input uncertainty
values, and thus tends to smooth the temporally variable uncertainty of IFG and AIUB using the
flatter uncertainty of TUD. shows that the reported STD envelope mostly encompasses
the residual STD envelope, as expected of under-confidence. On 19 February, a pronounced spike
in the mean residual of 0.02 m is observed, aligning with a peak on the same day in the AIUB orbit

(Figure 6.14)), highlighting the sensitivity of the mean combination to outliers.

The arithmetic mean is under-confident, though less so than the TUD, with a reduced x? of 0.28
and an RMS/STD ratio of 0.47. However, it exhibits relatively poor temporal stability, with a[CV]of
0.57; the highest among the combination methods. This suggests that the quality of the uncertainty
calibration fluctuates more significantly over time than for the other approaches. This instability
arises because the mean treats all inputs equally, regardless of the reliability or consistency of
their uncertainty information. As such, the temporally varying behaviour of IFG and AIUB is not
effectively damped and instead contaminates the combined uncertainty. shows that
the reported STD envelope mostly encompasses the residual STD envelope, consistent with under-
confidence. On 19 February, a pronounced spike in the mean residual of 0.02 m is observed, aligning
with the peak on the same day in the ATUB orbit , illustrating the method’s sensitivity
to outliers in the inputs.
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Figure 6.16: SLR residuals, orbit STD projected along the line of sight vector envelope and the residual mean and
STD envelope for the Mean combination. The uncertainty envelopes represent daily average uncertainty..

The inverse-variance and VCE methods both exhibit strong overconfidence, with reduced y?
values of 8.54 and 13.97, and RMS/STD ratios of 2.74 and 3.49 respectively. Their CVs are 0.46 and
0.45, showing slightly better temporal consistency than the mean but still reflecting fluctuations in
calibration. As introduced in these methods propagate uncertainty using the harmonic
mean of inverse variances, which heavily penalises high uncertainties. Since IFG and AIUB report
unrealistically small uncertainty, the combination — especially VCE — is biased towards them,
further reducing the reported uncertainty. Consequently, the output uncertainty is smaller than
any of the individual inputs, resulting in extreme overconfidence. This behaviour is shown clearly
in Figures and [6.18], where the reported STD envelopes are significantly smaller than the spread
of the residuals.

Figures [6.17 and [6.18] show this systematic overconfidence, where the reported STD envelope is
significantly smaller than the residuals over time.
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Figure 6.17: SLR residuals, orbit STD projected along the line of sight vector envelope and the residual mean and
STD envelope for the inverse-variance combination. The uncertainty envelopes represent daily average uncertainty.
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Figure 6.18: SLR residuals, orbit STD projected along the line of sight vector envelope and the residual mean and
STD envelope for the VCE combination. The uncertainty envelopes represent daily average uncertainty.

Finally, the residual-weighted method reports a consistent under-confidence, with a reduced y? of
0.41 and an RMS/STD ratio of 0.35. its CV is 0.47, reflecting moderate consistency in the reported
uncertainty. Since this method entirely bypasses the input orbit uncertainty — instead using the
empirical residuals against a reference RDO — its uncertainty behaviour is more consistent and
less biased by poor input calibration. shows that the uncertainty envelope generally
exceeds the residuals, except during periods of bias.
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Figure 6.19: SLR residuals, orbit STD projected along the line of sight vector envelope and the residual mean and
STD envelope for the residual-weighted combination. The uncertainty envelopes represent daily average uncertainty.

To conclude this validation, the uncertainty in the combined orbits is within acceptable ranges
compared to the input orbits, indicating that the combination methods propagate uncertainty cor-
rectly. The key observation is that the input orbits do not have particularly well-scaled uncertainty
information, which leads to all methods similarly reporting imperfect uncertainty. Furthermore,
methods which use the variance information in the weighted combination — inverse-variance and
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VCE - suffer from the inconsistent magnitude of the input orbit reported [STDI's with respect to
the residuals, which vary by a factor 10. This inconsistency results in these methods over-fitting to
the excessively confident input orbits — I[IFG and AIUB — leading to worse-performing combinations
with significantly overconfident uncertainty. The mean and residual-weighted methods somewhat
mitigate the poorly conditioned uncertainty of the input orbits by virtue of them not including this
information in the combination. As such, their x? values are closer to 1. However, this should not
be viewed as a general benefit of these methods, rather it is a product of the particular set of input
orbits. In his case, we have one extremely under-confident input (TUD, with a x? of 0.03) and two
overconfident inputs (ATUB, IFG, with x?’s of 2.82 and 7.51 respectively); methods which combine
without using the variance information simply report uncertainties somewhere between the three
inputs, which in our case happens to be closer to the ideal x? of 1. These results suggest that
the combination methods would benefit greatly from input orbit noise scaling to consolidate the
magnitudes of the uncertainty.

6.2.3 Scaling of input uncertainty based on reduced Chi-squared

In order to observe the effect of scaling the input uncertainty to improve its consistency with the
observed residuals and answer sub-question 3, we determine scaling factors as the square root of
the reduced x? values provided in These factors correct for discrepancies between the
reported uncertainties and the actual orbit performance as assessed via residuals. Specifically, if the
observed residuals are larger (or smaller) than expected based on the reported [STDIs, the reduced
x? value will exceed (or fall below) 1, indicating an under- (or over-) estimation of the uncertainty.

To address this, the reported [STDIs 0;;; for each coordinate j of input orbit ¢ at epoch ¢ are

scaled by a factor s; = w/X?/,zv such that the updated uncertainties better reflect the empirical error
characteristics:

(scaled) . 9
Tijt = Si " Oijt = \[Xu,i * Oiit- (6.2)

This adjustment ensures that the scaled STDI's yield reduced x? values closer to 1, thereby improving
the consistency between reported uncertainty and observed residuals.

Under the assumption that the structure of the input covariances is valid, but that their absolute
scale may be poorly estimated, we apply the square of the same factor to the covariance terms:

(scaled) 2
Tt =S; - Ojit- (6.3)

We examine the effect of applying constant scaling factors over the entire two-month period. These
factors, derived for each input solution based on the average residual statistics, are as follows: TFG
— 2.74, ATUB — 1.68, and TUD — 0.17. These are used to scale both [STD/'s and covariances prior
to orbit combination.

Result of rescaling by reduced y?

The resulting x? plot is presented for the re-scaled input orbits as well as the re-processed combined

orbits produced using them in
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Figure 6.20: Bar plot of the reduced x? of each input combination method. This give an indication of the physical
accuracy of the noise in terms of magnitude.

By applying these scaling factors to the inputs, their reduced x? values are exactly one.

By re-scaling the uncertainty of the input orbit’s we achieve much better agreement between
their reported residuals and the resulting [STDI projected along the LOS vector, indicating improved
statistical consistency. In principle, this should improve propagation of uncertainty, and methods
which use the uncertainty information in the combination. shows that the reduced x?
changes significantly for each combined orbit. Numerical results are provided in

Table 6.4: Validation metrics for orbits with rescaled input uncertainty. Input orbits (IFG, AIUB, TUD) were
individually scaled to achieve x2 ~ 1, and combined orbits generated using these scaled inputs, evaluated with
reduced x2, SLR residual RMS, mean residual, mean line-of-sight [STD], the RMS-to-STD ratio, its STD] and

Method X%red) SLR RMS (m) Mean Residual (m) Mean STD LOS (m) RMS/STD STD(RMS/STD) CV

IFG 1.0000 0.0110 0.0042 0.0118 0.93 1.0085 0.4286
AIUB 1.0000 0.0138 0.0037 0.0151 0.92 0.4533 0.6428
TUD 1.0000 0.0099 0.0038 0.0108 0.91 0.3545 0.3941
Mean 1.9723 0.0097 0.0038 0.0077 1.26 0.5742 0.4668
Invee Variance 2.2504 0.0095 0.0040 0.0065 1.46 0.6062 0.4390
VCE 8.3082 0.0098 0.0037 0.0045 2.19 1.1750 0.4688
Residual Weighted 1.0069 0.0088 0.0038 0.0101 0.88 0.3979 0.4660

Reduced x? increases from 0.28 (under-confident) to 1.972 (overconfident) for the mean. This
occurs because rescaling the input orbits increases the reported uncertainties of two of the three solu-
tions and reduces their spread, resulting in a tighter mean uncertainty and consequently an overly
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confident propagation. its falls from 0.57 to 0.47, indicating moderately improved temporal
consistency.

A significant improvement is observed in the inverse-variance method, where y? drops from 8.54
to 2.25, bringing the reported uncertainty closer to the observed residuals. However, it still remains
overconfident. This is because inverse-variance weighting assumes that input uncertainties are fully
reliable once rescaled, yet any residual correlation or un-modelled bias between the input orbits is
ignored. Correlations in errors observed across the input orbits are expected, as they each broadly
use the same input GNSS data for estimation. In addition, its CV improves from 0.46 to 0.44,
showing a minor improvement in temporal consistency.

The [VCE]l method improves markedly as well, with x? reducing from 13.97 to 8.31. However,
it continues to significantly underestimate uncertainty. This persistent overconfidence likely arises
because if one input aligns well with the combination due to chance or shared bias, it can be
overweighted, leading to unrealistically small reported variances. In this case, the CV rises from
0.45 to 0.47; a slight worsening of temporal consistency.

By contrast, the residual-weighted method based on the reduced dynamic reference orbit achieves
excellent statistical consistency after rescaling. Its reduced x? improves from 0.41 to 1.01, its RMS-
to-STD ratio likewise approaches 1, and its temporal stability remains the same with a CV of 0.47.
Unlike the other methods, it does not depend on reported variances, but instead selects inputs based
on their actual residuals with respect to the reference orbit. Once input uncertainties are correctly
scaled, the residual-weighted method assumes the RDO to be truth and at each epoch determines
weights from it which more correctly capture the full range of errors, including systemic bias.

After rescaling the input uncertainties, both the inverse-variance and VCE methods show modest
but meaningful improvements in orbit position accuracy, as reflected in their SLR residual RMS
values. The inverse-variance RMS decreases from 0.0103,m to 0.0095,m (a 7.8% improvement),
while VCE improves from 0.0104m to 0.0098m (5.8%). Notably, the inverse-variance method now
slightly outperforms the unscaled mean combination (0.0097m) in terms of accuracy, whereas it
was previously worse. VCE, while still more overconfident in uncertainty reporting, also surpasses
the unscaled mean in RMS after rescaling. However, both methods continue to be less accurate
than the residual-weighted method (0.0088m), which remains the most precise combined solution
post-scaling for this particular time period.

To conclude, this technique of noise-rescaling has the potential to improve the performance of the
inverse-variance and VCE methods significantly, producing new best-in-class orbit combinations.
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Chapter 7

Conclusion and Recommendations

In this final section, the thesis is summarised, the results of are concluded and the research
questions presented in are answered. Finally, a brief discussion of the contribution of
the work and future recommendations are presented in [section 7.2

7.1 Summary & conclusions

In the introduction of this thesis, we presented the goal of this research; to combine Swarm kinematic
orbits such that the resulting solution is superior. In [chapter 2] the concept of kinematic orbits
— satellite orbit solutions which depend only upon the geometry of the orbit, leveraging tracking
data obtained from GNSS constellations — are introduced, as well as key background knowledge
required to understand the pursuit of orbit combinations. Our interest in the improvement these
orbits arises from the fact that they are used to estimate the time-varying gravity field of Earth as
an additional source of high-accuracy data, complementary to dedicated gravity field missions such
as [66]. Improving them results in improvements in the gravity field solutions.

In this thesis, we aim to provide an incremental improvement in the performance of the orbits
used for gravity field estimation from Swarm kinematic orbits. In service of this, several combination
techniques are devised and presented in fitting into two distinct categories; combination
techniques dependent solely on the input orbit data including the position and covariance infor-
mation, and techniques which leverage additional sources of reference data to further inform the
combination. The latter techniques leverage the known greater accuracy and robustness of [RDOJs
[76] — orbit solutions determined using a combination of dynamic models with GNSS tracking data
— to inform the combination and ‘guide’ it closer to the truth.

To build upon the theory and facilitate the investigation, software has been implemented to
support the application of orbit-combination to Swarm satellite data, as well as to verify and validate
results. In the implementation of the methodology is verified, sensitivity analyses are
conducted in order to ensure proper functioning prior to producing results, and a final selection of
high-performing combination techniques is made; these being combination by the arithmetic mean,
inverse-variance weighting, iterative variance-component estimation, weighting by residuals with
respect to a reduced-dynamic reference orbit, optimisation with the Nelder-Mead local optimisation
algorithm and CMAES global optimisation algorithm.

Kinematic input orbit data is retrieved from three analysis centres; [FG] [ATUB] and the [TUD]
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with the latter additionally providing the used as reference. Input orbit data is consolidated to
consistent 1-second frequency epochs using Lagrange interpolation in order to ensure compatibility.
Consolidated input data is then pre-screened for outliers with a 0.3 m ceiling of 3D orbit residuals
with respect to the reduced-dynamic reference orbit. Pre-screening of the input data runs the risk
of losing significant epochs of data, however this is mitigated by orbit combination as input orbit
solutions tend to have outliers at different epochs due to their unique processing strategies, meaning
that overall the combination retains a greater density of data than any input.

With this processed input data, the combination techniques are applied to two case study years
— 2022, a lower solar-activity year, and 2023, a higher solar-activity year — for the Swarm A satellite;
Additional data for Swarm B and C is present in[Appendix D] These years are selected to observe the
stability of the methods across periods under different conditions. SLR observations of the Swarm
satellites computed using the GHOST software are used to perform a comprehensive assessment
of the performance of the combined solutions through the computation of RMS errors from the
residuals. The results for these years are presented in [chapter 6]

With the foundations set, we conclusively answer our primary research question: What im-
provement in the quality of Swarm kinematic orbits can be achieved through the
combination of unique solutions?.

Results across 2022 and 2023 show improvement of the combined orbits with respect to the
input orbits in terms of SLR residual RMS in the order of tens of centimetres. In particular, the
combination processes successfully filter outliers from the input data, which is especially valuable in
noisier years like 2023 where AIUB’s input orbit has significant outliers leading to an SLR RMSE
in the order of meters. These outliers are successfully removed from the combination by the pre-
screening process.

In 2022, the arithmetic mean achieves the best RMS among all methods, at 0.01936 m, which
is only 0.87 mm greater than the reduced-dynamic reference orbit provided by ESA (RMS: 0.01849
m). In 2023, the same method is narrowly outperformed by the optimiser-based combinations
(Nelder-Mead and CMAES), which yield an RMS of 0.03937 m, only 0.04 mm better than the
arithmetic mean. The RMS of the difference with respect to the orbit in 2023 (RMS: 0.02175
m) is 17.66 mm, still representing a substantial gain over the worst input (AIUB, RMS: 6.51 m),
and a significant reduction from the best input (IFG, RMS: 0.569 m).

Importantly, these improvements are achieved without loss of temporal coverage. The combina-
tion framework retains all epochs where at least one input solution is present. In 2022, this leads
to an epoch loss rate of 3.6%, matching the in coverage. In 2023, we observe an epoch loss of
2.7%, equivalent to the best-performing input (IFG), despite filtering significant outliers.

Surprisingly, the inverse variance and VCE methods — techniques which employ the a-priori
covariance information provided with the input orbits — perform worse than the others. This shows
that the input covariances are inconsistently scaled. The residual-weighting method, which uses
residuals with respect to the to assign combination weights, also underperforms. This is
consistent with the observation that the combined orbits are not significantly less accurate than
the reference orbit itself, meaning the fundamental assumption behind this method — that the
reference is far more accurate — does not hold, especially after pre-screening.

We therefore conclude that improvements of up to 0.55 m in the SLR residual RMSE with
respect to the best input orbit can be achieved through orbit combination, with reductions from
0.569 m (best individual input, IFG, 2023) to 0.03937 m (best combined solution). In 2022, the
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best combined orbit differs from the reduced-dynamic reference by just 0.87 mm in SLR RMSE,
demonstrating near-equivalence in quality. Even in the noisier year of 2023, the combined SLR
RMSE remains within 17.66 mm of the while achieving a 93% reduction relative to the best
input solution. These results confirm that orbit combination enables the generation of robust,
consistent kinematic orbits that not only outperform all individual inputs but can approach the
performance of a reduced-dynamic solution. Among the tested methods, the arithmetic mean offers
the most favourable trade-off between accuracy and simplicity. The negligible improvements from
optimisation techniques — only 0.04 mm better than the mean in 2023 — do not justify their
computational cost under current input conditions. Overall, we recommend the application of orbit
combination to Swarm kinematic orbits, as the improvement is meaningful and worthwhile.

Moving on to the sub-research questions defined, we beginning with: Sub-question 1: To
what extent do combination methods which utilise a reference risk introducing
bias or over-fitting?. To assess this, we compute the residuals of the input and combined orbits
with respect to the and the resulting RMSE. We compare how each orbit performs in terms
of this RMSE and the RMS of the SLR residuals; if a method reports closer agreement with the
[RDOL but does not show similar improvement in the SLR residuals, we take this as evidence of
over-fitting. There are no signs of over-fitting in the optimised methods — Nelder-Mead and CMAES
—, supporting the efficacy of the mitigation techniques described in [chapter 4 However, there is
strong evidence of it occurring with the residual-weighted method, with a 40% decrease in RMSE
with respect to the next-closest method. Over-fitting is prevalent for the residual weighted method,
but not present at all in the optimised methods.

We may now answer the following question — Sub-question 2: Can the uncertainty in-
formation of independent kinematic orbits effectively be propagated into a combined
solution? — may now be addressed. We perform an uncertainty analysis of the combined orbit
solutions which have uncertainty propagation implemented; the arithmetic mean, inverse variance,
VCE and residual-weighted techniques. Given that we can determine the satellite-station
vector on which the SLR residuals lie using tracking data and the known station positions, we
compute the of the residuals in direction. We then project the uncertainty reported by
the combined orbit onto this vector. The result is two uncertainty values; one empirical, another
reported. If the uncertainty is properly scaled in terms of magnitude and correct in its distribution,
we should observe similar values for both across time.

The input orbit uncertainty information is not physically realistic in terms of magnitude, with
reduced x? values of 7.51, 2.82 and 0.03 for the IFG, AIUB and TUD respectively; the ideal ratio
indicating physically realistic uncertainty information is 1, with larger values overconfident and
smaller under-confident. As a result, the combination methods propagate this physical unrealism
into the combined orbit. This explains the aforementioned worse performance of the inverse-variance
and VCE methods, which report worse RMS compared to the other combination methods and
overconfident reduced x?’s of 8.54 and 13.97 respectively as result. Conversely, the arithmetic mean
reports under-confidence with a reduced x? of 0.28 due to the under-confidence of the TUD orbit,
which leads to this uncertainty information dominating the uncertainty propagation for this method.
The residual-weighted method reports uncertainties closer to physical reality while remaining under-
confident with a reduced 2 of 0.41 as a result of its weights being determined by the rather
than the inconsistent input uncertainty information.

Regardless, we find that the reported uncertainties are internally consistent; that is, while the
magnitudes are not physically realistic, the uncertainty is correctly reported greater when the
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observed residuals are greater, and lower when they are lower. This is the most important aspect
of the uncertainty propagation, as it is this internal distribution which is used in the gravity field
estimation process in order to weight the observations by reported quality. Overall, we conclude that
the uncertainty information is correctly propagated through the combination, however the resulting
uncertainty remains physically unrealistic in terms of magnitude. Despite this, the distribution of
uncertainty over time maps on to the reported residuals, suggesting that the orbit uncertainty will
be useful for the purpose of observation weighting in gravity field estimation.

Having identified the inconsistent scaling of the input orbits, we may answer the final sub-
question: Sub-question 3: Can we utilise independent sources of validation to re-scale
the uncertainty of the input orbits in order to improve the combination?. To test this,
we use the of the residuals and the projected uncertainties on the SLR station-satellite [LOSI
vector of the input orbits to compute reduced x? scaling factors which are then used to rescale their
covariance. In this thesis, we examined the effect of constant scaling factors across a two month
period from January to February of 2023. The noise-rescaled input orbits report uncertainties in
agreement with the SLR residuals.

When we repeat the orbit combination using these rescaled inputs, both the inverse-variance
and VCE methods improve sufficiently to outperform the arithmetic mean in terms of SLR residual
RMSE. The inverse-variance method becomes the best-performing uncertainty-weighted combina-
tion, achieving an RMSE of 0.0095 m compared to 0.0097 m for the arithmetic mean. This reinforces
the idea that the input orbits possess internally consistent noise distributions but differ in their re-
ported magnitudes. Uncertainty propagation also improves for both methods: the reduced y? for
inverse-variance drops from 8.54 to 2.25, and for VCE from 13.97 to 8.31, indicating a substantial
reduction in overconfidence. The RMS-to-STD ratio for inverse-variance also improves from 2.74
to 1.46, approaching consistency with the SLR residuals.

In contrast, the arithmetic mean becomes overconfident after rescaling, with its reduced y?
increasing from 0.28 to 1.97 and its RMS-to-STD ratio rising from 0.47 to 1.26, reflecting the
uniform scaling of the inputs. Meanwhile, the residual-weighted method achieves the best overall
calibration, with a reduced x? of 1.01 and RMS/STD ratio of 0.88, along with the lowest RMSE of
0.0088 m.

Overall, rescaling the input orbit noise using the SLR-derived uncertainties leads to significant
improvements both in the realism of reported uncertainties and in the performance of methods that
depend on them.

To conclude this thesis and confirm the answer to our research questions, we state that the
combination of Swarm kinematic orbits improves their quality in terms of accuracy and data density,
and the uncertainty information propagated through the combination is valid and useful for down-
stream gravity field estimation, and the uncertainty information is improved through through input
uncertainty rescaling.

7.2 Recommendations

The output of this research is a set of combined orbits for the years of 2022 and 2023 for the Swarm
A, B and C satellites. There are many recommendations for future lines of inquiry. First and
foremost, the estimation of a gravity field model from the combined orbits is of great interest so
we may determine if the improvements in these orbits results in any improvements in the them. Of
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special interest is the estimation of gravity field models using the residual-weighted and optimisation
(Nelder-Mead, CMAES) methods in order to assess whether they bias the field towards the a-priori
gravity field present implicitly in the [RDOI reference.

Furthermore, the application of noise-rescaling using the reduced Chi-squared ratios computed
with SLR residuals should be applied to all input data in totality, as this technique is demonstrated
to improve the performance of the inverse variance and VCE combined solutions and the uncertainty
propagation; unfortunately, due to time limitations this was not applied for all input data used in
this thesis. Additionally, it is recommended to apply this noise-rescaling technique to the output
combined orbits too; ultimately, it simply serves to ensure that the reported uncertainty is more
in agreement with reality. It is also recommended to explore additional noise-rescaling techniques,
perhaps using weekly or even daily scaling factors rather than the single constant factor tested in
this thesis.

Finally, the combination methods detailed in this thesis may also be applied to other satellite
missions, and additional combination techniques this author missed should be explored and tested.
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Appendix A

Project Plan and Implementation
Reflection

Here the original project plan defined at the end of the literature review is presented. We discuss
how the thesis deviated from this plan, the reasons why this occurred and reflect upon the the thesis
went.

A.1 Original plan overview

At the outset of this research, a clear plan was defined, accompanied by a Gantt chart outlining
the projected timeline and structure of the thesis. This plan involved five distinct work packages.
The original plan is summarised as follows:

1. Retrieve kinematic orbits.
2. Combine kinematic orbits into a single combined orbit solution.
3. Apply a gravity field estimation method to recover a temporal gravity field model.

4. Compare this model to those derived from individual kinematic solutions, to established
Swarm-based models and to the state of the art combined Swarm gravity field models.

5. Validate the results and evaluate the effectiveness of the combination strategy.

A.1.1 Work packages (original plan)

The original work packages are provided here.

WP1: Retrieve and pre-process kinematic orbits
The project would begin by collecting Swarm kinematic orbit solutions from three analysis centres:

TU Delft (TUD), the Astronomical Institute of the University of Bern (AIUB), and the Institute of
Geodesy Graz (IFG). These would include position time series and formal covariance information
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for each of the three Swarm satellites. Retrieval was to be carried out from the Aristarchos server
at TU Delft, followed by preprocessing to align epochs and handle missing data.

WP2: Combine kinematic orbits

The next step would involve combining the independent kinematic orbit solutions using one or more
combination strategies. This would be performed at the time-series level — rather than at the level
of normal equations — to manage complexity within the time frame of a Master’s thesis. Multiple
methods would be tested where time permitted.

WP3: Apply the gravity field estimation method

Following orbit combination, a gravity field model would be estimated using the decorrelated ac-
celeration approach, as detailed in [subsection F.5.4l This would require using Tudat to compute
non-gravitational accelerations, in combination with appropriate dynamical force models. The re-
sulting product would be a set of spherical harmonic coefficients representing the time-variable
gravity field.

WP4: Perform validation and answer research questions

The gravity field derived from the combined orbit would then be validated against superior ex-
ternal models. This would test whether orbit combination led to meaningful improvements in
the estimated gravity field model, especially compared to combined Swarm models computed by
the Multi-approach gravity field models from Swarm GPS data initiative, addressing the primary
research objective.

WP5: Tudat development

It was expected that this approach would rely on Tudat’s force modelling and orbit propagation
framework. During implementation, any missing functionality would be identified and developed
to enable full gravity field estimation within Tudat. This work package supported the research
question on propagating orbit uncertainty into gravity field recovery.

A.1.2 Planned research outputs

The intended deliverables of the project were:

« Combined kinematic orbits for Swarm A/B/C, along with reusable software tools for perform-
ing orbit combination.

o A time-variable gravity field model estimated from the combined orbit product. And, if time
permitted:

o A gravity field estimation pipeline — based on the decorrelated acceleration approach — imple-
mented in Tudat.
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A.2 Comparison to actual thesis work

While the general structure and objectives of the project remain consistent, several deviations from
the original plan occurred during the course of the thesis. These arose both from practical challenges
and from new insights that shifted the direction of the research. The most significant changes are
summarised below:

e Focus on orbit combination and validation: The scope of the thesis was narrowed to
concentrate on orbit combination and the validation of its accuracy and uncertainty. The
gravity field estimation component was removed due to time constraints and the significant
effort required to develop the necessary software infrastructure in Tudat, as well as the large
amount of analysis which could be conducted on the combined orbits themselves.

« Emphasis on uncertainty propagation: The role of uncertainty became central to the
analysis. A larger portion of the thesis was dedicated to investigating how uncertainty infor-
mation could be propagated and validated using SLR residuals. This became mroe interesting,

o Changes to the validation framework: A comprehensive pipeline was developed for
validating orbit combinations using SLR-based residuals as an independent validation source.
This replaced validating the combination by comparing the estimated gravity field models to
existing models.

e Inclusion of optimisation and VCE methods: While originally listed as optional exten-
sions, optimisation-based and variance component estimation (VCE) methods more important
to the thesis, due to their potential to address inconsistent uncertainty information across in-
put orbits, and to account for systematic bias in the input orbits.

Essentially, work packages one, two and four were retained, with adaptation to the fourth work
package to shift validation from at the gravity field level to at the level of the orbits themselves.
Gravity field estimation and the implementation thereof in Tudat (Work packages three and five)
were both dropped; while changes have not been made to Tudat, fully functional and independent
code is implemented and ready to be provided to others. These changes are a shift from the full
gravity field estimation pipeline to a specific analysis of Swarm orbit combination.

A.3 Reflection

It is clear that my original plan was overambitious. During this project, I encountered numerous
challenges which resulted in the implementation of the combination taking more time than expected.
Dealing with managing inconsistencies in the input data, such as mismatched epochs, missing
values and outliers, was more challenging than I anticipated before starting. When the goal is the
combination of multiple years of orbits, retrieving and managing large datasets from the Aristarchos
server as well as the ESA and IFG dissemination servers is not trivial, which is something I did
not consider in advance. Automating these processes was necessary for practical reasons which
increased the complexity. Once the data was received, quite a bit of pre-processing was necessary,
and issues such as time-stamp misalignment needed to be fixed.
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A major shortcoming of my original plan was the absence of a validation method for the combined
orbits without gravity field estimation. Originally, I had not planned to use for validation.
This left me with limited options — essentially only comparisons against reduced-dynamic orbits
(RDOrs) — to assess accuracy and verify whether the combination strategies were functioning as
intended.

Around the time of the midterm review, it became evident that SLR validation was essential.
Incorporating it, however, required a significant amount of additional work that had not been
accounted for in the original plan. Although it remained technically possible to validate the final
gravity field solutions — thanks to the generous support of Ales Bezdék from the Astronomical
Institute of the Czech Academy of Sciences, who offered to assist with the estimation of gravity
models — the transition to using SLR was necessary and time-consuming. This included both the
technical implementation of software and the methodological effort to understand how to use the
SLR observations effectively.

Importantly, the availability of true external validation enabled the detection of methodological
issues that would otherwise have remained hidden; issues that would be much more difficult to
identify if validation were only performed at the gravity field level.

Fortunately, this delay lead to a number of lines of inquiry which were very interesting and
which I hadn’t thought of during the literature review, including the more objective assessment of
the accuracy of the combined orbits, and especially the assessment of the covariance information
using the SLR residuals for comparison. This culminated in the addition of the testing of whether
or not the input orbit covariances could be rescaled using SLR validation data, which ended up
quite an interesting concept with promising results.
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Appendix B

Code Structure

A flow diagram of the implemented software is presented in This includes the combi-
nation methods introduced as well as all infrastructure required to process data, save results and
perform the verification and validation described in [chapter 5 Modules have been implemented to
facilitate orbit combination. Data is retrieved when necessary from external FTP servers and the
Tu Delft Aristarchos server using the retrieve data module and pre-processed and parsed using
the parsing_utils module. Classes are defined to support data storage. The retrieve_arcs module
connects these modules into a single pipeline which acts to retrieve necessary data.

Retrieved orbits are combined using combination strategies implemented in the combine orbits
module, with support from utilities and the pygmo optimiser module containing the implemen-
tations of the optimisation functions. The produce results module contains the pipeline which
connects retrieval to pre-processing, combination and output (saving) of combined orbits. separate
verification functionality is provided in the verification module. SLR validation is conducted exter-
nally on the Aristarchos server using the software. The result of this validation — a csv
containing normal points — is then loaded in using process normal points, which processes these
observations and computes and plots the many validation metrics.
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Figure B.1: Data flow architecture of the gravtools package. This diagram illustrates the major processing modules
and their interactions, including orbit retrieval, combination, verification, and validation via SLR. The colour-coded
legend highlights the role of each component.
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Appendix C

Additional verification and sensitivity
analysis plots

In this chapter we introduce additional verification tests conducted to ensure that the results of
are not dependent on the particular random seed.

C.1 Methodology verification and sensitivity study

C.1.1 Optimisation algorithm population and generation sensitivity anal-
ysis - Random seed 20
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Figure C.1: Impact of number of generations on RMS of the combined orbit with a random seed of 20.
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These results confirm that the performance of optimiser-based combination methods is consistent
across different random seeds. Increasing the number of generations improves the performance
of globally optimised methods, though the benefit diminishes after a certain threshold. Locally
optimised methods such as Nelder-Mead and residual-weighted tend to converge earlier, and their
final performance is largely stable once a baseline number of generations is reached. This test
demonstrates that the optimal number of generations selected in the main experiments is not
dependent on random seed.
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Figure C.2: Change in optimiser performance with increasing population size with a random seed of 20.

Population size has a similar effect as generation count: performance of global methods improves
with increasing population, but only up to a point. Local optimisers are less sensitive to this
parameter. These results confirm that the optimiser parameter settings used in the main results
strike an appropriate balance between accuracy and computational efficiency. The robustness of
the outcome across seeds confirms that the chosen configuration is not over-fit to a particular noise
realisation.
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C.1.2 Non-mirrored corrupted orbits - Random seed 20
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Figure C.3: Impact of increasing the number of input corrupt orbits for random seed 20.

These results use a different random seed to apply non-mirrored corruptions to input orbits. As
before, global methods retain better robustness as the number of corrupted arcs increases. The
residual-weighted method continues to degrade quickly as the proportion of biased inputs grows,
confirming its sensitivity to the reference orbit and input outliers. The consistency with earlier
mirrored-noise results further strengthens confidence in the observed ranking of method robustness.

C.1.3 50-run variance component analysis

Here we present the results for a different noise-realisation for the 50-run VCE analysis performed

in [section 5.41
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Figure C.4: The 50-run estimated variance components for noise realisations generated from random seeds 1000-1050,
and the resulting reduced chi-square of the orbit solutions across different methods.

This test repeats the variance component estimation using a new batch of noise realisations
(seeds 1000-1050). The similarity in the structure of the estimated weights and the resulting
reduced chi-square statistics across methods confirms that the VCE method behaves consistently
across different instances of the random seed. In particular, the bias of the VCE method towards
down-weighting certain inputs remains visible, and the reduced x? values follow the same ranking.
This supports the conclusion that the previously reported variance behaviour is representative and
not unique to a specific noise seed.

C.1.4 Threshold filtering results for an additional combination method
In order to demonstrate that the Pareto front of remains dominated by the combined

solution regardless of combination method used, we present the results of a repeat test using the
VCE combination method in
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Figure C.5: Pareto front including all input orbits tested with various filtering thresholds. Linear-log scale. The
threshold ceilings are denoted by the colour of the markers, while their shape refers to the method or analysis centre
which produced the orbit. An infinite threshold refers to no pre-screening.

Despite switching to the VCE combination method, the combined orbit remains consistently
on the Pareto front. This demonstrates that the advantage of screening based on performance
thresholds is not dependent on the inverse-variance method used in the main text. Rather, it reflects
a fundamental benefit of filtering out poorly performing input orbits. These results generalise the

findings of and confirm that the screening strategy improves the combined solution
without loss of epochs.
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Appendix D

Results for Swarm B and C, 2023

Combined orbits for the full year of 2023 were produced for each Swarm satellite in order to enable
the estimation of a gravity field model from the complete set for the purpose of determining how
combining orbits affects their accuracy. The results for Swarm B and C are presented here. We
observe a significant improvement in performance for Swarm B in [Figure D.I] where the combined
orbits achieve cm-level accuracy comparable to the reduced dynamic orbit. We also observe that
residual-weighting produces the best combined orbit, likely due to the fact that the RDO is incred-
ibly accurate for this orbit. For Swarm C, there remains an improvement, however it can be seen
in that IFG’s input orbit is incredibly competitive and the improvement not as large as
a result.

The superior results of Swarm B are explained by the superior orbit solutions which result from
the higher orbit altitude (511 km vs. 462 km) leading to force model errors such as solar radiation
pressure and atmospheric drag being lower [75]. Additionally, Swarm B has roughly twice the SLR
observation data compared to Swarm A and C due to the fact that the pair in tandem compete for
SLR station observations [44].
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Figure D.1: RMS of the SLR residuals for each orbit for the year of 2022 for Swarm B. % epoch loss is annotated
atop the bars.
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atop the bars.
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Appendix E

Comparison of State-of-the-art
Reduced-dynamic Orbits

As identified in there are two sources of state of the art Swarm [RDOl's; those produced
by the TUD and disseminated by ESA (referred to as the [ESAI[RDQ]), and those produced and
disseminated by the [FEGl In this thesis, we make use of the former.

In order to justify the selection of the ESA[RDOlwe compare the two to demonstrate their relative
performance by retrieving the residuals of each using the software and computing the
RMS. For this analysis, we use the period of January 2023, comparing the orbits over this time-
frame. The results are presented in
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Figure E.1: RMS of the SLR residuals and 3D position difference for the ESA and IFG Swarm reduced-dynamic
orbits for the first month of January, 2023.

The [ESAI[RDO] beats the [EG RDO] by 0.7 cm; a 40% improvement. An investigation into
this difference was conducted, as this difference appeared larger than expected. The [EG] RDOI
is not provided in sp3 format. It is provided in celestial reference frame as opposed to the [TRE
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frame, requiring transformation using the Astropy astrodynamics library [1|. Additionally, the time
stamps are given in Modified Julian Date (MJDI) instead of Gregorian time. Therefore, we need to
convert both of these to the standardised format described in [chapter 4 Both the time conversion
and reference frame transformation was validated through comparison with PhD student Frederik
Jacobs’ implementation of the Astropy transformations and time conversion, and no differences
were found between our implementations, ruling this out as a source of error. After ruling out
implementation error, we accept the results as they are and proceeded with the thesis using the
ESA RDQOL This is not of great importance to us, as the thesis required the use of only one RDO,
the ESA orbit is state of the art and any differences between it and the RDO from IFG are minimal.
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Appendix F

Gravity Field Estimation

Gravity field models of a celestial body describe the gravitational potential in the space surrounding
that body. These models are essential tools in geodesy and planetary science as they provide insight
into the distribution of mass within and on the surface of the body. In this appendix, we introduce
key concepts related to gravity field modelling, focusing on the Earth.

F.1 Gravimetry

Gravimetry is broadly defined as the measurement of a gravitational field. In geophysics, it involves
quantifying the variations in gravitational acceleration due to the distribution of mass.

F.1.1 Earth’s Gravity Field

The gravitational forces around Earth are primarily the result of its own mass. While third-body
effects from celestial bodies such as the Moon and Sun exist, they are typically modelled and removed
when constructing gravity field models of Earth. These models aim to isolate the component of the
gravitational field arising from the Earth’s internal mass distribution.

Due to the heterogeneous distribution of mass within the Earth, the gravitational field is not
uniform. The geoid is a conceptual surface representing mean sea level, assuming a global ocean in
equilibrium under gravity and rotation alone. Variations in geoid height correspond to variations
in gravitational acceleration. Earth’s gravity field is commonly divided into static and time-varying
components.

Static Component

The static gravity field represents the time-invariant portion of Earth’s gravity field, typically
derived from long-term averages of gravity observations.
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Time-Varying Component

Time-varying gravity components reflect changes in Earth’s mass distribution due to dynamic pro-
cesses in the hydrosphere, cryosphere, and atmosphere. These are inferred by differencing time-
tagged gravity solutions with a static reference field. Such variations are of significant interest in
Earth sciences [26].

F.2 Spherical Harmonics

Gravity field models are commonly represented using spherical harmonic expansions. This is a
natural basis for representing functions on the surface of a sphere, making it well suited to global
potential fields.

F.2.1 Fourier Series

To understand spherical harmonics, it is helpful to begin with Fourier series. Any real, periodic
function can be approximated as a sum of weighted sines and cosines [69]:

f(0) = % + i a, cos(nb) + b, sin(nd) (F.1)

n=1

Here, a, and b, are the coefficients, and n determines the frequency of the component. As n
increases, higher frequency details are captured, improving the approximation.
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Figure F.1: Reconstruction of a square wave using a Fourier series. Image credit: BMS College of Engineering

F.2.2 Extension to Spherical Harmonics

Spherical harmonics extend this concept to the surface of a sphere. They are eigenfunctions of the
Laplace operator in spherical coordinates and are used to represent scalar fields such as gravitational
potential on spherical domains [45].
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The gravitational potential U outside the Earth’s mass distribution satisfies Laplace’s equation:
VU =0 (F.2)
In spherical coordinates (7,0, ¢), the Laplacian becomes:
10 ([ ,0U0 1 0 oU 1 0*U
ViU = —-— _— 60— _— F.3
( or > T 2smo 00 <s1n 89) T 2sm?0 D2 (F-3)

Separation of variables yields solutions involving associated Legendre functions and trigonometric
functions. The resulting spherical harmonic expansion of the gravitational potential is [38]:

V(r,0, ) GM i ( ) > Py n(cos8) [Crm cos(mep) + Sy sin(me)] (F.4)

m=0

Here:

R is a reference Earth radius,
e [ and m are degree and order,

IBZ,m are the fully normalised associated Legendre functions,

Cim and S;,,, are the spherical harmonic coefficients.

F.2.3 Coefficient Interpretation

The coefficients Cj,, and S;,, determine the spatial structure of the gravity field. Different classes
of harmonics describe different spatial patterns:

e Zonal harmonics: m = 0, symmetric about the rotational axis.
e Sectorial harmonics: | = m, longitudinally varying.

o Tesseral harmonics: [ # m # 0, general case with both latitudinal and longitudinal varia-
tion.
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Figure F.2: Examples of individual spherical harmonics. Image credit: Massachusetts Institute of Technology (MIT)
OpenCourseWare.

In gravity field recovery, the coefficients are estimated by applying least squares inversion to
satellite observations. Increasing the degree [ enables finer spatial features to be represented, at the
cost of increased sensitivity to noise.

F.3 Data sources

The data used for global gravity field modelling comes from a combination of terrestrial and space-
based sources. Combining multiple observation types, when done properly, improves the overall
model fidelity by compensating for the weaknesses of individual data sets [65]. For instance,
and have difficulty accurately resolving the lowest-degree coefficients, such as Cyy,
which are therefore often substituted using estimates [24].

F.3.1 Terrestrial data

Ground-based, airborne, and marine gravity measurements are available through institutions such
as the National Centers for Environmental Information (NCEI) [20]. These include isolated point
measurements, regional surveys (e.g., over Antarctica), and gridded data products. While such
data offer high spatial resolution in well-surveyed areas, coverage is uneven, particularly in remote
regions.
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F.3.2 Space-based data

Space-based gravity data encompass several techniques. [GNSSobservations enable orbit reconstruc-
tion of low-Earth orbiters using either kinematic, dynamic, or reduced-dynamic methods. This the-
sis employs kinematic orbits — position time-series estimated independently of force models.
determines satellite positions by timing laser pulses sent from ground stations. Gravity gradiometry,
such as that performed by the mission, directly measures gravity gradients.

Spaceborne sensors offer global coverage, particularly from dedicated gravity missions in [LEOL
Their ability to observe regions inaccessible to terrestrial surveys makes them indispensable for
consistent global modelling.

F.4 Combined gravity field models

Combining independently estimated gravity field models is a powerful approach to improving quality
and realism [65]. Techniques such as variance-based weighting and [VCE] help reconcile models
derived from different data sources and assumptions.

F.4.1 Existing models

Several leading gravity field models are summarised below.

GOCE-DIR-R6 (Direct Approach Gravity Model)
This model, derived from [GOCE] gravity gradient and tracking data, resolves spherical har-

monics up to degree 300. It combines satellite and terrestrial data for improved precision in oceanog-
raphy, geodynamics, and climate research [36].

GGMO05C
Produced by CSR, GGMO05C fuses data from [GRACE] [GOCE] and various terrestrial and altimetric

datasets. It resolves harmonics up to degree 360 and is widely used for hydrology and sea level
studies [H4].

XGM2019e

Developed by TUM and partners, this model integrates satellite and terrestrial gravity with topo-
graphic information, resolving up to degree 719 [77].

EGM2008

Developed by the National Geospatial-Intelligence Agency (NGAJ), this high-resolution model ex-
tends to degree and order 2190. It combines satellite, surface, and altimetry [47].
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ITSG-Grace2018

A time-variable model from TU Graz based on monthly and daily [GRACE] data. Solutions extend
to degree 180 (monthly) and 40 (daily), and are valuable for mass change studies such as glacier
melt and groundwater depletion [37].

F.5 Gravity field estimation techniques

Several advanced methods have been developed for estimating the Earth’s gravity field from satel-
lite tracking data. These techniques, applied by different research institutes, each reflect unique
modelling philosophies and trade-offs. Their diversity in assumptions and processing schemes makes
them complementary and, in many cases, suitable for combination.

F.5.1 Celestial mechanics approach

The Celestial Mechanics Approach (Celestial Mechanics Approach (CMA])), employed by the As-
tronomical Institute of the University of Bern [3], originates from classical orbit determination. It
is based on Newtonian mechanics and treats gravity field estimation as a generalisation of orbit
determination.

Satellite orbits are divided into arcs—typically 5 to 30 minutes long—and modelled using Ke-
plerian elements and additional perturbative parameters. These include the unknown spherical
harmonic coefficients, third-body effects, and empirical parameters for non-gravitational forces.

Input data consist of precise kinematic positions. A least-squares adjustment minimises residuals
between observed and modelled satellite positions, iteratively refining the model parameters. The
strength of lies in its rigorous physical foundation and ability to incorporate a wide array of
force models and perturbations.

F.5.2 Short-arc approach

The Short-Arc Approach (Short-Arc Approach ([SAAl)), implemented at the Institute of Geodesy,
Graz [42], segments the orbit into short arcs and treats each as an independent boundary value
problem. This localises errors and increases robustness.

Each arc, typically tens of minutes long, uses GNSS-derived positions and velocities—possibly
augmented by inter-satellite ranging (as in [GRACE]). Initial conditions, empirical accelerations,
and spherical harmonic coefficients are estimated via least-squares.

Because arcs are independently processed, captures short-wavelength features and high-
frequency gravity variations. It also allows for regional quality assessment and cross-validation of
estimated parameters. The trade-off is the challenge of stitching consistent models across arcs.
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F.5.3 Improved energy balance approach

The Improved Energy Balance Approach (Improved Energy Balance Approach (IEBA])), developed
at Ohio State University [60], is based on energy conservation. It relates gravitational potential and
satellite kinetic energy, forming an energy balance equation.

After modelling and subtracting non-conservative forces, satellite velocity (estimated from po-
sition data) and potential variations are used to solve for the geopotential:

L v Co
v -2l +/t0 (%dt—/tof-rdt—E (F.5)

Here, V is the gravitational potential, 7* the velocity, f non-conservative forces, and E® an integration
constant. Since velocities are derived via numerical differentiation, this method is sensitive to noise
and differentiation quality.

The potential V is separated into a known component V% (from a reference model) and an
unknown V. With sufficient force modelling and accelerometer data, V¥ can be isolated and
estimated.

F.5.4 Decorrelated acceleration approach

The Decorrelated Acceleration Approach (Decorrelated Acceleration Approach (DAA])), proposed
by the Institute of Geodesy, Graz [6], derives gravity from satellite acceleration. It is particularly
suitable for kinematic orbits, making it relevant to combined orbit processing.

Using Newton’s second law, GNSS-derived positions are double-differentiated to obtain accel-
eration. After removing known non-gravitational and third-body accelerations, the residual is at-
tributed to gravity. The fundamental equation is:

d?r
gz = Garav +ars +arrp + ager + ang (F.6)

Where a4, is the gravitational acceleration, and other terms represent lunisolar, tidal, relativistic,
and non-gravitational effects.

The second derivative is approximated via a polynomial smoothing filter:

d’r d*Q(ryps)
The gravity-induced acceleration is expressed as the gradient of the geopotential:
gran(1) = VV(r) = Y [Cro VV) + S, VV)] (F.8)

n,m
After subtracting the modelled accelerations:

d2Q<7"gp5)

e = other = ST[CumVVE + 8, VVE] + € (F.9)

n,m

This linear regression system is solved using least-squares. However, noise amplification from dif-
ferentiation and autocorrelated GNSS noise must be addressed.
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Dealing with noise amplification Differentiation of noisy GNSS positions introduces autocor-
related errors. These manifest as structured residuals, biasing parameter estimates. The regression
system is transformed using a Generalised Least Squares (Generalised Least Squares (GLS)) matrix
W derived from the differentiation filter F"

Var(e) = o*FF' = W=F" (F.10)
This transformation reduces autocorrelation and restores white-noise assumptions.
Dealing with GNSS error correlation Additional GNSS error correlations arise due to satellite

constellation geometry. A second [GLS| transformation W* is computed by fitting an autoregressive
model to the GNSS error process:

W* =T with Var(e) = TT" (F.11)

Applying both transformations yields residuals suitable for Ordinary Least Squares (OLS), pre-
serving estimator optimality. This ensures valid uncertainty estimates for the recovered spherical
harmonic coefficients.
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Appendix G

Models for kinematic orbits and gravity
field models from Swarm GPS data

These model definitions are retrieved from the 'Multi-approach gravity field models from Swarm
GPS data’ project standards and background models document [19)].

G.1 Delft University of Technology

G.1.1 Kinematic orbit

Table G.1: Delft University of Technology Kinematic Orbit Solution [19]
Attribute Details |
Software GPS High precision Orbit determination Software Tool (GHOST) [68] |

Differencing Scheme

Undifferenced

Linear combination

Ionosphere-free

GPS observations

Code and carrier phase

Estimator Bayesian weighted Least-Squares (LS)

Arc length 30 hours

Data weighting a-priori weights equal to 1m and 1mm for code and phase observations
(resp.)

Transmitter PCV

IGS08.atx model [58]

Receiver PCV

Empirical, derived from 70 days of data

Data screening

Minimum SNR of 10, minimum of 6 GPS satellites, code and phase
outlier editing threshold of 2 m and 3.5 cm, respectively, 1 meter or
larger difference between estimated KO positions and with Reduced-
Dynamic Precise Science Orbit (PSO)

Earth precession model

International Astronomical Union (IAU) 1976 [39)

Earth nutation model

TAU 1980 [59]

Earth orientation model

Centre for Orbit Determination in Europe (CODE) final Earth Rota-
tion Parameters (ERP)
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G.1.2 Gravity field model

G.2 Astronomical Institute of the University of Bern

G.2.1 Kinematic orbit

Table G.2: Astronomical Institute of the University of Bern Kinematic Orbit Solution [19]

Attribute Details
Software Bernese v5.3 [14]
Differencing Scheme Undifferenced

Linear combination

Ionosphere-free

GPS observations

Carrier phase

Estimator Batch LS
Arc length 24 hours
Data weighting N/A

Transmitter PCV

Official IGS08 ANTEX up to day 17/028, official IGS14 ANTEX from
day 17/029 on

Receiver PCV

Stacking of residuals from reduced-dynamic POD of approx. 120 days,
9 iterations, 1° binning

Data screening

2 cm/s or larger time-differences of the geometry-free linear combina-
tion of L1B GPS carrier phase observations

Earth precession model

International Earth Rotation Service (IERS) 2010 Conventions [50]

Earth nutation model

IERS 2010 Conventions [50]

Earth orientation model

CODE final ERP

G.2.2 Gravity field model

Parameter Description
Software Bernese v5.3 [15]
Approach Celestial Mechanics Approach (CMA) [3]

Reference GFM
Empirical Parameters

Drag Model

EARP and EIRP Models
Non-tidal Model

Ocean Tidal Model
Permanent Tide System

ATUB GRACE-only static model, version 3 (AIUB-GRACEO03S) [31]
Daily piecewise-constant, 15 minutes piecewise-constant (con-
strained)

None

None

Atmosphere and Ocean De-aliasing Level 1B (AOD1B) product
2011 Empirical Ocean Tide model (EOT11a) [56]

tide-free

Table G.3: Gravity field modelling parameters for the Astronomical Institute of the University of Bern.
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G.3 Institute of Geodesy Graz

G.3.1 Kinematic orbit

Table G.4: Institute of Geodesy Graz Kinematic Orbit Solution [19]

Attribute

Detalils

Software

Gravity Recovery Object Oriented Programming System (GROOPS)

Differencing Scheme

None

Linear combination

None (the ionospheric influence is co-estimated)

GPS observations

Code and carrier phase

Estimator

LS

Arc length

24 hours

Data weighting

Elevation and azimuth-dependent, epoch-wise Variance Component
Estimation (VCE)

Transmitter PCV

Empirical, estimated from 5.5 years of data, including data from sev-
eral LEO missions (GRACE, Jason 2 & 3, MetOp-A & -B, Sentinel
3A, Swarm, TanDEM-X, TerraSAR-X) [74]

Receiver PCV

Empirical, spherical harmonics (maximum D/O 60), derived from 38
months of data

Data screening

Implicit in VCE

Earth precession model

TAU 2006/2000A precession-nutation model [50]

Earth nutation model

TAU 2006/2000A precession-nutation model [50]

Earth orientation model

IERS Earth Orientation Parameter (EOP) 08 C04 [50]

G.3.2 Gravity field model

Parameter Description
Software GROOPS
Approach Short-Arcs Approach (SAA) [74]

Reference GFM
Empirical Parameters
Drag Model

EARP and EIRP Models
Non-tidal Model

Ocean Tidal Model
Permanent Tide System

GOCO release 05 satellite-only gravity field model (GOCO05S) [41]
Piecewise linear for each arc (ranging from 15 to 45 minutes)
Jacchia-Bowman 2008 (JB2008) [11]

[55]

Atmosphere and Ocean De-aliasing Level 1B RL06 (AOD1B-RL06)
product [17]

2014 Finite Element Solution (FES2014) global tide model [13]

zero tide

Table G.5: Gravity field modeling parameters for the Institute of Geodesy Graz.
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G.4 Ohio State University

G.4.1 Gravity field model

Parameter Description
Software Developed in-house
Approach Improved Energy Balance Approach (IEBA) [60]

Reference GFM
Empirical Parameters

Regularization
Drag Model

EARP and EIRP Models
Non-tidal Model

Ocean Tidal Model
Permanent Tide System

GRACE Intermediate Field 48 (GIF48) [53] up to Degree and Order
(D/O) 200

2nd order polynomial every 3 hours, 1-Cycle Per Revolution (CPR)
sinusoidal every 24 hours

None

(US) Naval Research Laboratory Mass Spectrometer and Incoherent
Scatter Radar Atmospheric model (NRLMSISE) [51]

[35]

Atmosphere and Ocean De-aliasing Level 1B (AOD1B) product [61]
2011 Empirical Ocean Tide model (EOT11a) [56]

tide-free

Table G.6: Gravity field modelling parameters for Ohio State University.

G.5 Astronomical Institute Ondrejov

G.5.1 Gravity field model

Parameter Description
Software Developed in-house
Approach Decorrelated Acceleration Approach (DAA) |5, |4

Reference GFM
Empirical Parameters
Drag Model

EARP and EIRP Models
Non-tidal Model

Ocean Tidal Model
Permanent Tide System

ITG GRACE-only static model, 2010 (ITG-GRACE2010s) [43]
Daily constant-piecewise

(US) Naval Research Laboratory Mass Spectrometer and Incoherent
Scatter Radar Atmospheric model (NRLMSISE) [51]

[35]

Atmosphere and Ocean De-aliasing Level 1B (AOD1B) product [61]
2004 Finite Element Solution (FES2004) global tide model [40]
tide-free

Table G.7: Gravity field modeling parameters for the Astronomical Institute Ondiejov.

G.6 Common

In this section the common model parameters shared between each approach are summarised.
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G.6.1 Kinematic orbits

Table G.8: Common carrier phase and GPS settings for kinematic orbit solutions shared between each institute

Attribute

Details

Carrier phase ambiguities

Float

Receiver clock corrections

Co-estimated

Sampling rate

10 or 1 seconds (depending on L1B GPS data)

Elevation cut-off angle

OO

GPS orbits and clocks

Final orbits and 5-second clocks of Centre for Orbit Determination
in Europe (CODE) (Dach et al., 2017)

Swarm attitude

L1B attitude data

G.6.2 Gravity field models

Parameter

Description

Atmospheric Tidal Model
Solid Earth Tidal Model
Pole Tidal Model

Ocean Pole Tidal Model
Third body perturbations

C2,0 coefficient

Biancale and Bode (2006) |7]

TERS2010 [49]

[ERS2010 [49]

[ERS2010 [49]

Sun, Moon, Mercury, Venus, Mars, Jupiter, and Saturn, following
the JPL Planetary and Lunar Ephemerides [23]

Estimated alongside other coefficients

Table G.9: Common gravity field modelling parameters.
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