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SUMMARY

In this thesis the question of existence and uniqueness of non-negative solutions to the
stochastic thin-film equation on the d-dimensional flat torusTd is addressed. This refers
to the initial value problem{

∂t u = −div(un∇∆u) + div(un/2W ), onΩ× [0,T ]×Td ,

u(0, ·) = u0, onΩ×Td ,

where W : Ω× [0,T ]×Td → Rd is a temporally white Gaussian noise and u0 : Ω×Td →
[0,∞) the initial value. The solution u : Ω× [0,T ]×Td → [0,∞) models the height of a
thin liquid film driven by surface tension and thermal fluctuations.

In the first chapter we give a soft introduction to the subject. We review the physical
motivation behind the equation and comment on relevant model assumptions which
are imposed throughout the thesis. Moreover, we recall different notions of solutions to
stochastic and partial differential equations to interpret the stochastic thin-film equa-
tion later on. Subsequently, we summarize the main results and techniques used in the
thesis and give a concise literature review on other mathematical works concerning the
stochastic thin-film equation.

In the second chapter we construct martingale solutions to the stochastic thin-film equa-
tion with quadratic mobility exponent n = 2 in the physically relevant two-dimensional
setting d = 2. The conservative noise term becomes linear in this case and is well-
behaved on its own. This allows for a decomposition of the deterministic and stochastic
dynamics, which was previously employed by Gess and Gnann to construct solutions in
the one-dimensional case by closing an energy estimate along the time-splitting scheme.
We generalize their approach to the two-dimensional situation and overcome the ana-
lytical challenges due to the higher spatial dimension by invoking estimates on the α-
entropy

1

α(α+1)

�
T2

uα+1 dx, α ∈ (−1,0),

and corresponding dissipation terms.

For the nonlinear noise case n ̸= 2 not many existence results are known, even in one
dimension d = 1. Specifically, existence of martingale solutions to the stochastic thin-
film equation with nonlinear noise was shown by Dareiotis, Gess, Gnann and Grün for
n ∈ [8/3,4) and initial profiles from the energy space u0 ∈ H 1(T) with finite entropy

�
T

u2−n
0 dx < ∞.

Their proof relies on a control of the energy production due to the noise by the entropy
dissipation of the thin-film operator. In the third chapter of this thesis, we close the
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x SUMMARY

resulting gap of mobility exponents by proving the existence of martingale solutions for
n ∈ (2,3) and initial values satisfying the slightly milder condition

−
�
T

log(u0)dx < ∞.

Since the log-entropy functional works less well with non-negative approximations of
the stochastic thin-film equation an additional approximation layer compared to the
aforementioned result is used.

These results only answer the question of existence of solutions for n ̸= 2 for initial values
which are positive almost everywhere. In particular, the presence of a contact line, i.e., a
triple junction of the three interfaces of liquid, solid and gas, is excluded. In the fourth
chapter of this thesis we show existence of martingale solutions to the stochastic thin-
film equation for n ∈ (2,3) and initial values without full support by discarding the en-
ergy estimate and relying the compactness argument solely on α-entropy estimates for
α > −1. Since the functionals are lower order than the energy 1

2∥∂x u∥2
L2(T)

we can treat

spatially less regular noise and allow for initial values from the space of Radon measures.

In the fifth chapter we turn our attention to the situation that the film-height is strictly
positive. In this case, many difficulties of the stochastic thin-film equation do not oc-
cur, because the coefficient un does not degenerate and the equation remains effectively
parabolic. Using recent results on quasilinear stochastic evolution equations, we show
that unique, positive, probabilistically strong solutions to the stochastic thin-film equa-
tion exist in this case until some stopping time τ> 0 for arbitrary n and d ≥ 1. Moreover,
we deduce that the solutions become as smooth as the spatial regularity of the noise
W allows for. Lastly, we show that if repulsive interaction forces between the molecules
of the fluid and the substrate are included in the equation it holds τ =∞ almost surely
for n ∈ (0,6) and d = 1 by closing first α-entropy estimates and subsequently an energy
estimate.



SAMENVATTING

In dit proefschrift wordt de kwestie van de existentie en de uniciteit van niet-negatieve
oplossingen van de stochastische dunne-filmvergelijking op de d-dimensionale vlakke
torus Td behandeld. Dit heeft betrekking op het beginwaardeprobleem{

∂t u = −div(un∇∆u) + div(un/2W ), op Ω× [0,T ]×Td ,

u(0, ·) = u0 op Ω×Td ,

waarbij W : Ω× [0,T ]×Td → Rd een in de tijd witte Gaussische ruis is en u0 : Ω×Td →
[0,∞) de beginwaarde is. De oplossing u : Ω× [0,T ]×Td → [0,∞) modelleert de hoogte
van een dunne vloeistoffilm aangedreven door oppervlaktespanning en thermische fluc-
tuaties.

In het eerste hoofdstuk geven we een zachte inleiding tot het onderwerp. We bespreken
de fysische motivatie achter de vergelijking en relevante modelaannames die in het hele
proefschrift worden opgelegd. Bovendien brengen we verschillende noties van oplossin-
gen voor stochastische en partiële differentiaalvergelijkingen in herinnering om later de
stochastische dunne-filmvergelijking te kunnen interpreteren. Vervolgens vatten we de
belangrijkste resultaten en technieken samen die in het proefschrift zijn gebruikt en ge-
ven we een beknopt literatuuroverzicht van andere wiskundige werken met betrekking
tot de stochastische dunne-filmvergelijking.

In het tweede hoofdstuk construeren we martingaaloplossingen voor de stochastische
dunne-filmvergelijking met kwadratische mobiliteitsexponent n = 2 in de fysisch rele-
vante tweedimensionale setting d = 2. De conservatieve ruisterm wordt in dit geval line-
air en is op zichzelf goed gedragen. Dit maakt een decompositie van de deterministische
en stochastische dynamica mogelijk, die eerder werd gebruikt door Gess en Gnann om
oplossingen te construeren in het eendimensionale geval door een energieafschatting
langs het tijd-splitsingsschema te sluiten. We veralgemenen hun benadering naar de
tweedimensionale situatie en overwinnen de analytische uitdagingen die voortvloeien
uit de hogere ruimtelijke dimensie door afschattingen van de α-entropie

1

α(α+1)

�
T2

uα+1 dx, α ∈ (−1,0),

en de bijbehorende dissipatietermen te gebruiken.

Voor het niet-lineaire ruisgeval n ̸= 2 zijn niet veel existentieresultaten bekend, zelfs niet
in één dimensie d = 1. Meer bepaald werd het bestaan van martingaaloplossingen voor
de stochastische dunne-filmvergelijking met niet-lineaire ruis aangetoond door Dareio-
tis, Gess, Gnann en Grün voor n ∈ [8/3,4) en beginprofielen uit de energieruimte u0 in
H 1(T) met eindige entropie �

T

u2−n
0 dx < ∞.
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xii SAMENVATTING

Hun bewijs berust op het beheersen van de energieproductie als gevolg van de ruis door
de entropiedissipatie van de dunne-filmoperator. In het derde hoofdstuk van dit proef-
schrift dichten we de resulterende kloof van mobiliteitsexponenten door het bestaan te
bewijzen van martingaaloplossingen voor n ∈ (2,3) en beginwaarden die voldoen aan de
iets mildere voorwaarde

−
�
T

log(u0)dx < ∞.

Omdat de log-entropiefunctie minder goed werkt met niet-negatieve benaderingen van
de stochastische dunne-filmvergelijking wordt een extra benaderingslaag gebruikt in
vergelijking met het bovenstaande resultaat.

Deze resultaten geven alleen antwoord op de vraag of er oplossingen zijn voor n ̸= 2 voor
beginwaarden die bijna overal positief zijn. In het bijzonder wordt de aanwezigheid van
een contactlijn, d.w.z. een drievoudige kruising van de drie grensvlakken van vloeistof,
vaste stof en gas, uitgesloten. In het vierde hoofdstuk van dit proefschrift tonen we het
bestaan aan van martingaaloplossingen voor de stochastische dunne-filmvergelijking
voor n ∈ (2,3) en beginwaarden die niet volledig gedragen zijn door de energieafschat-
ting weg te laten en het compactheidsargument alleen te baseren op α-entropieafschat-
tingen voor α > −1. Omdat de functies van lagere orde zijn dan de energie 1

2∥∂x u∥2
L2(T)

kunnen we ruimtelijk minder regelmatige ruis en beginwaarden uit de ruimte van Radon-
maten behandelen.

In hoofdstuk vijf richten we onze aandacht op de situatie dat de filmhoogte strikt posi-
tief is. In dit geval treden veel problemen van de stochastische dunne-filmvergelijking
niet op, omdat de coëfficiënt un niet ontaardt en de vergelijking in wezen parabolisch
blijft. Met behulp van recente resultaten over quasilineaire stochastische evolutieverge-
lijkingen laten we zien dat er in dit geval unieke, positieve, probabilistisch sterke oplos-
singen voor de stochastische dunne-filmvergelijking bestaan tot een bepaalde stoptijd
τ > 0 voor willekeurige n en d ≥ 1. Bovendien leiden we af dat de oplossingen zo glad
worden als de ruimtelijke regelmaat van de ruis W toelaat. Tot slot laten we zien dat
als de afstotende interactiekrachten tussen de moleculen van de vloeistof en het sub-
straat in de vergelijking worden meegenomen, het bijna zeker is dat τ = ∞ geldt voor
n ∈ (0,6) en d = 1 door eerst α-entropieafschattingen en vervolgens een energieafschat-
ting te sluiten.
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1
INTRODUCTION

In this thesis the question of existence and uniqueness of non-negative solutions to the
stochastic thin-film equation on the d-dimensional flat torusTd is addressed. This refers
to the initial value problem

{
∂t u = −div(un∇∆u) + div(un/2W ), onΩ× [0,T ]×Td ,

u(0, ·) = u0, onΩ×Td ,
(STFE)

where W : Ω× [0,T ]×Td → Rd is a temporally white Gaussian noise and u0 : Ω×Td →
[0,∞) the initial value. The solution u : Ω× [0,T ] ×Td → [0,∞) models the height of
a thin liquid film driven by surface tension and thermal fluctuations limited by viscous
friction. The parameter n is called mobility exponent and is a positive real number de-
pending on the boundary condition of the fluid velocity near the substrate. In particular,
the quasilinear stochastic partial differential equation (STFE) is degenerate parabolic.
The combination of the degenerate parabolic operator with the, generally, non-Lipschitz
continuous noise term makes establishing a solution theory to (STFE) challenging.

The purpose of this chapter is to capture the main ideas employed in the subsequent
parts of this manuscript. To this end, details are omitted with the hope to make the
introduction more accessible, while a detailed analysis is postponed to later chapters.

In Section 1.1 we derive equation (STFE) from a physical model for a thin liquid film.
On the one hand, this serves as a motivation to analyze (STFE) mathematically, while,
on the other hand, it provides intuition about the expected behavior of a solution. In
Section 1.2 we introduce some notions from stochastic calculus and the theory of partial
differential equations to prepare ourselves to give a precise meaning to a solution to
(STFE) later on. In Sections 1.3 and 1.4 we state the main results of this thesis in an
informal fashion and sketch the underlying ideas of their proofs. In Section 1.5 we review
the mathematical literature on (STFE) available at the moment and locate the results of
this thesis among them.

1
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2 1. INTRODUCTION

1.1. PHYSICAL BACKGROUND
In this section, we motivate the stochastic partial differential equation (STFE). For sim-
plicity, we restrict ourselves to the effective dimension d = 1 corresponding to a two-
dimensional liquid film supported on a one-dimensional substrate.

1.1.1. LONG-WAVE APPROXIMATION
We follow the review article [111] in the derivation of the deterministic thin-film equation
in effectively one spatial dimension{

∂t u = −∂x (un∂3
x u), on [0,T ]×R,

u(0, ·) = u0, on R,
(TFE)

using the long-wave approximation and refer additionally to [23, 56] for more informa-
tion on the physics of wetting.

The shape of a liquid film at a given time t supported on a substrate is described by the
free interface between the liquid and gas, which we assume to be given by the graph of a
function u(t , ·), see Figure 1.1. The velocity v = (v (x), v (y))T and pressure p of the liquid
are described by the incompressible Navier–Stokes equations{

∂t v + v ·∇v = ∆v − ∇p, 0 < y < u(t , x),

div(v) = 0, 0 < y < u(t , x).
(1.1.1)

We supplement the system by a no-slip boundary condition near the substrate, i.e., we
assume that

v = 0, at y = 0. (1.1.2)

At the free boundary holds instead the kinematic boundary condition

v (y) = ∂t u + v (x)∂x u, at y = u(t , x), (1.1.3)

which prescribes an element of the free boundary to move according to the fluid velocity
at that point.

We also impose the stress balance(
D(x,y)v + (D(x,y)v)T −pIR2

)
n̂ = −γκn̂, at y = u(t , x). (1.1.4)

Here, γ> 0 is the surface tension which we will later assume to be large, and n̂ and κ are
the outward unit normal vector and the mean curvature of the graph of u(t , ·), respec-
tively, i.e., we set

n̂ = (1+ (∂x u)2)−1/2(−∂x u,1)T , κ = (1+ (∂x u)2)−3/2∂2
x u.

Consequently, the equality (1.1.4) expresses that at the free interface the normal stresses
due to viscosity and pressure have to be in balance with the stresses due to surface ten-
sion. For later purposes, we write out the normal and tangential component of (1.1.4)
separately, resulting in

2(∂x u)2∂x v (x) − 2(∂x u)
(
∂x v (y) +∂y v (x)) + 2∂y v (y) − (

1+ (∂x u)2)p

= γ
(
1+ (∂x u)2)−1/2

∂2
x u,

2(∂x u)
(
∂y v (y) −∂x v (x)) + (

1− (∂x u)2)(∂x v (y) +∂y v (x)) = 0.

(1.1.5)
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The idea of the long-wave approximation is to derive a model for the dynamics of
the free boundary u alone by simplifying the described system. To this end, we integrate
the incompressibility condition from (1.1.1) from 0 to u and use the boundary condition
(1.1.2) resulting in

v (y) = −
� u

0
∂x v (x) dy, at y = u(t , x).

By inserting this in (1.1.3) and using the integral rule of Leibniz, we arrive at the conti-
nuity equation

∂t u + ∂x

(� u

0
v (x) dy

)
= 0 (1.1.6)

for the film height with the flux given by the vertically averaged fluid velocity. As a conse-
quence, we recover the conservation of mass ∂t

�
u dx = 0 due to the conservative form

of the equation.

To obtain from (1.1.6) a closed evolution equation for the film height u we impose the
additional assumption that the film is thin, i.e., that the ratio

ε = typical film heights

typical lateral scales

is small. The resulting separation of scales is schematically depicted in Figure 1.1 in
which the wave length of a droplet is significantly larger than the average film height.
As a result, the film height u is essentially constant in space and varies only slowly over
time.

1 1/ε

1

u

v (x)v (y)

Gas

Liquid

x

y

Figure 1.1: The thin-film model: We assume a separation between the vertical and lateral scales.

To nonetheless capture the dynamics of the free boundary, we zoom out of the lateral
component by defining new coordinates x̃ = εx, ỹ = y and speed up the time t̃ = εt , see
Figure 1.2. Accordingly, we obtain the rescaled velocities ṽ (x̃) = v (x), ṽ (ỹ) = ε−1v (y) and
we scale the pressure by p̃ = εp so that the Navier–Stokes system reads

ε
(
∂t̃ ṽ (x̃) + ṽ ·∇(x̃,ỹ)ṽ (x̃)

) = ε2∂2
x̃ ṽ (x) + ∂2

ỹ ṽ (x) − ∂x̃ p̃, 0 < ỹ < ũ
(
t̃ , x̃

)
,

ε3
(
∂t̃ ṽ (ỹ) + ṽ ·∇(x̃,ỹ)ṽ (ỹ)

) = ε2
(
ε2∂2

x̃ ṽ (x) + ∂2
ỹ ṽ (x)

) − ∂ỹ p̃, 0 < ỹ < ũ
(
t̃ , x̃

)
,

div(x̃,ỹ)(ṽ) = 0, 0 < ỹ < ũ
(
t̃ , x̃

)
.
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1

1 ũ

ṽ (x̃)

ṽ (ỹ)

x̃

ỹ

Figure 1.2: The thin-film model in rescaled variables, cf. Figure 1.1.

In particular, we observe that the dynamics of the rescaled velocity are dominated by the
viscous forces and the inertial terms become negligible as ε↘ 0. Consequently, the flow
is laminar if ε is small and we obtain

∂2
ỹ ṽ (x̃) = ∂x̃ p̃ and ∂ỹ p̃ = 0, 0 < ỹ < ũ

(
t̃ , x̃

)
, (1.1.7)

as the leading order terms in ε. From the latter equality we deduce that the pressure
varies only laterally, i.e., it can be written as a function solely depending on (t̃ , x̃).

To rescale the stress balance, we assume that the surface tension is large in the sense
that ε3γ= 1, then (1.1.5) becomes

2ε4(∂x̃ ũ)2∂x̃ ṽ (x̃) − 2ε2(∂x̃ ũ)
(
ε2∂x̃ ṽ (ỹ) +∂ỹ ṽ (x̃)) + 2ε2∂ỹ ṽ (ỹ) − (

1+ (ε∂x̃ ũ)2)p̃

= (
1+ (ε∂x̃ ũ)2)−1/2

∂2
x̃ ũ,

2ε2(∂x̃ ũ)
(
∂ỹ ṽ (ỹ) −∂x ṽ (x̃)) + (

1− (ε∂x̃ ũ)2)(ε2∂x̃ ṽ (ỹ) +∂ỹ ṽ (x̃)) = 0.

This reduces to the conditions

−p̃ = ∂2
x̃ ũ and ∂ỹ ṽ (x̃) = 0, at ỹ = ũ

(
t̃ , x̃

)
, (1.1.8)

as ε↘ 0. The boundary conditions (1.1.2) and (1.1.3) and the resulting continuity equa-
tion (1.1.6) on the other hand are invariant under the scaling and hold for the rescaled
variables as well.

Using the latter equality of (1.1.8) as a boundary condition and integrating the first
relation from (1.1.7) from ỹ to ũ(t̃ , x̃) results in

∂ỹ ṽ (x̃) = (
ỹ − ũ

)
∂x̃ p̃, 0 < ỹ < ũ

(
t̃ , x̃

)
. (1.1.9)

Integrating this again from 0 to ỹ and using the no-slip condition (1.1.2) yields

ṽ (x̃) = (
ỹ2/2− ũ ỹ

)
∂x̃ p̃ 0 < ỹ < ũ

(
t̃ , x̃

)
. (1.1.10)

We conclude by inserting this into the continuity equation (1.1.6) and solving the integral
with respect to ỹ resulting in

∂t̃ ũ − ∂x̃
((

ũ3/3
)
∂x̃ p̃

) = 0. (1.1.11)
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The pressure on the other hand is determined by the profile ũ according to (1.1.8) so
that, after dropping the tilde-notation, we arrive at the thin-film equation

∂t u = −∂x
((

u3/3
)
∂3

x u
)
,

corresponding to (TFE) with n = 3, as desired.

We remark that, if we started from a Navier-slip condition

v (y) = 0 and v (x) −λ∂y v (x) = 0, at y = 0, (1.1.12)

instead of (1.1.2), we would have arrived at

∂t u = −∂x
((

u3/3+λu2)∂3
x u

)
. (1.1.13)

Indeed, the no-slip condition was used as a boundary condition when integrating (1.1.9)
from 0 to y . If we allow for slip according to (1.1.12) the term λ∂y v (x) evaluated at y = 0
enters the right-hand side of (1.1.10). However, by (1.1.9) this is nothing but −λu∂x p.
After the second integration, this leads to the additional termλu2 in front of the pressure
gradient in (1.1.11) and ultimately to (1.1.13). More generally, imposing the boundary
condition (1.1.12) with a height-dependent slip length λ= un−2 results in

∂t u = −∂x
((

u3/3+un)
∂3

x u
)
.

Since the qualitative properties of the above equation, like the dynamics of the con-
tact line or positivity properties, are determined in regions where u is small, the u3-term
is less important for the dynamics, at least if n < 3. Hence, we recover the effective model
(TFE) for the height of a thin liquid film with a variable exponent n reflecting the bound-
ary condition of the fluid velocity near the substrate.

1.1.2. SURFACE ENERGY
A central assumption in the preceding derivation is that the effects due to surface tension
govern the dynamics. Consequently, the energy of a configuration is determined by the
total amount of surface energy, that is

γgs
∣∣{u = 0

}∣∣ + γls
∣∣{u > 0

}∣∣ + γgl

�
{u>0}

(
1+|∂x u|2)1/2 dx,

where γgs, γls and γgl are the surface tension constants of the three interfaces gas-solid,
liquid-solid and gas-liquid. Using the Taylor approximation of the square root around 1
and assuming that the lateral changes of the film height are small |∂x u| ≪ 1, this can be
simplified to

γgs
∣∣{u = 0

}∣∣ + γls
∣∣{u > 0

}∣∣ + γgl

�
{u>0}

1 + 1
2 |∂x u|2 dx

= const. + (
γgs − γls − γgl

)︸ ︷︷ ︸
S :=

∣∣{u = 0
}∣∣ + γgl

2

�
{u>0}

|∂x u|2 dx.
(1.1.14)
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The emerging constant S is called spreading coefficient and determines the spreading
behavior of the fluid film. Indeed, if S ≥ 0, a completely wetted substrate is energetically
advantageous so that this situation is referred to as the complete wetting regime. In
contrast, the regime S < 0 is referred to as partial wetting.

u

θ

γgl

γls

γgs

(a) Forces due to surface tension at the contact
point in the partial wetting regime.

u

γgl

γls

γgs

(b) Forces due to surface tension at the contact
point in the complete wetting regime.

Figure 1.3: In (a) an equilibrium of forces can be reached for some angle θ > 0, in (b) it holds instead θ = 0.

Young’s law states that at the contact line, i.e., the triple junction of liquid, solid and gas,
a balance of the lateral forces due to surface tension

γgs = γls − γgl cos(θ)

tries to form. Here, θ is the contact angle of the thin-film, see Figure 1.3. In particular,
in the case of complete wetting, which is the focus of this thesis, we have that θ = 0 at the
contact line.

If specifically S = 0, the term involving |{u = 0}| vanishes in (1.1.14), so that the dy-
namics is determined by

E = 1

2

�
|∂x u|2 dx, (1.1.15)

where we employed the normalizing assumption γgl = 1. If instead S < 0, the energy of
the system can be instantaneously reduced by an immediate wetting of the whole sub-
strate, which is physically observed by a microscopic precursor film shooting ahead of
the macroscopic film. Consequently, also in this case the term involving |{u = 0}| disap-
pears and, on the macroscopic level, the dynamics of the fluid film are determined by
the simplified energy (1.1.15).

1.1.3. THE EFFECTS OF THERMAL NOISE
There exists a vast body of mathematical literature on the deterministic thin-film equa-
tion (TFE), including effective numerical algorithms to simulate the expected behavior
of a thin fluid film described by the equation. Remarkably, a research group of mathe-
maticians and physicists joined in [10] to compare the numerical predictions based on
the mathematical model (TFE) to experiments involving fluid films with heights of sev-
eral nanometers, i.e., films which consist of less than a hundred layers of atoms.

While their numerical simulations beautifully matched the experiments, an overlap-
ping research group pointed out in the follow up work [78] that there was a small dis-
crepancy between the numerical and experimental time scales, in which film rupture
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takes place, compared to the onset of droplet formation. They proceeded to incorporate
the effects of thermal noise in the thin-film model, leading to the stochastic thin-film
equation (STFE). To their satisfaction, they could reproduce the time scales observed
in the experiments in numerical simulations of the stochastic equation, indicating that
thermal fluctuations should be accounted for in the modeling and analysis of nanofilms.

We sketch the derivation of the stochastic thin-film equation from [78], and refer addi-
tionally to [43] for an elaborated version. The fundamental idea is to start the long-wave
approximation from the Navier–Stokes equations of fluctuating hydrodynamics{

∂t v + v ·∇v = ∆v − ∇p + div(S ), 0 < y < u(t , x),

div(v) = 0, 0 < y < u(t , x),

in which the effects of thermal fluctuations on the fluid velocity are incorporated by the
fluctuating stress tensor S , see [99]. The latter is a mean-freeR2×2-valued Gaussian noise
whose entries S (x,x), S (y,y) and S (x,y) = S (y,x) are white in time and space, where we
refer to the forthcoming Subsection 1.2.1 for a description of Gaussian white noise. We
supplement the system with the same boundary conditions

v = 0 at x = 0, and v (y) = ∂t u + v (x)∂x u at y = u(t , x), (1.1.16)

as in the deterministic case. However, we have to account for the fluctuating stresses in
the stress balance (1.1.4) resulting in(

D(x,y)v + (D(x,y)v)T −pIR2 +S
)
n̂ = −γκn̂, at y = u(t , x).

To take again the long-wave limit, we rescale the fluctuating stress tensor in such a
way that it has the same order in ε as the dominating terms in the viscous stress tensor,
i.e., we set

S̃ (x̃,x̃) = ε−1S (x,x), S̃ (ỹ ,ỹ) = ε−1S (y,y) and S̃ (x̃,ỹ) =S (x,y),

corresponding to

∂x̃ ṽ (x̃) = ε−1∂x v (x), ∂ỹ ṽ (ỹ) = ε−1∂y v (y) and ∂ỹ ṽ (x̃) = ∂y v (x).

This ensures that also in the rescaled variables the viscous and stochastic stresses are
comparable to each other.

Hence, as the contributions of ∂x̃ ṽ (x̃) and ∂ỹ ṽ (ỹ) to the viscous stress disappeared in

the governing equations (1.1.7) and (1.1.8) after letting ε↘ 0, so do S̃ (x̃,x̃) and S̃ (ỹ ,ỹ) in
the stochastic case. On the other hand, whenever the contribution of ∂ỹ ṽ (x̃) is still visible

as ε↘ 0 so is S̃ (x̃,ỹ) resulting in the stochastic versions

∂ỹ
(
∂ỹ ṽ (x̃) + S̃ (x̃,ỹ)) = ∂x̃ p̃ and ∂ỹ p̃ = 0, 0 < ỹ < ũ

(
t̃ , x̃

)
(1.1.17)

and
−p̃ = ∂2

x̃ ũ and ∂ỹ ṽ (x̃) + S̃(x̃,ỹ) = 0, at ỹ = ũ
(
t̃ , x̃

)
(1.1.18)

of (1.1.7) and (1.1.8) for the rescaled variables.
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As in the deterministic case, it remains to solve the integral in the continuity equation

∂t̃ ũ + ∂x̃

(� ũ

0
ṽ (x̃) dỹ

)
= 0

by integrating the first equation of (1.1.17) and using (1.1.16) and (1.1.18) as boundary
conditions. As result, one obtains the equation

∂t u = ∂x

((
u3/3

)
∂3

x u +
� u

0
(u − y)S (x,y) dy

)
(1.1.19)

for the film height, where we dropped again the tilde-notation.
This is however not satisfactory, since the stochastic term still depends on the y-

variable contradicting the idea of the long-wave approximation. Consequently, the au-
thors of [78] show that the stochastic partial differential equation

∂t u = ∂x

((
u3/3

)
∂3

x u + (
u3/3

)1/2
W

)
(1.1.20)

for a spatio-temporal white noise W has the same statistical properties as (1.1.19) in the
sense that their Fokker-Planck equations coincide, at least on a spatially discretized level.
Equation (1.1.20) has indeed the form of (STFE) for n = 3. As in the deterministic case,
other values of n can be obtained by imposing (film height-dependent) slip conditions
of the fluid velocity near the substrate and we refer the interested reader to [126].

We conclude this subsection by remarking that, independently of [78], the same stochas-
tic thin-film equation was derived in [37]. The latter group of researchers applied the
fluctuation-dissipation relation to calculate the correct magnitude of thermal fluctua-
tions around a flat film profile. Together with a spatial localization of a non-flat fluid
film and requiring conservation of mass, this results in (STFE) as well.

1.2. INTERPRETATION OF THE EQUATION
In the present section we address the question what it means for u to be a solution to
(STFE). Next to the classical problem of stochastic analysis to give meaning to the prod-
uct un/2W , we also discuss different notions of weak solutions from the theory of partial
differential equations. Moreover, we comment on the subtle difference between proba-
bilistically strong and martingale, or probabilistically weak, solutions. These topics are
of course standard and we refer, e.g., to [46, 90, 97] for a more complete treatment.

1.2.1. GAUSSIAN WHITE NOISE
The aim of this subsection is to describe the properties of white noise, which we used in
the previous section to model thermal fluctuations and which appears in (STFE). To this
end, let (Ω,A,P) be a probability space and X : Ω→ R be a random variable. Then, X is
called a Gaussian random variable, if its law follows a normal distribution, i.e., if

P
({

X ∈ A
}) = 1p

2πσ2

�
A

e−
1
2 ((x−µ)/σ)2

dx, (1.2.1)
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for any Borel measurable subset A ⊂ R and parameters µ ∈ R and σ2 > 0. In this case µ
and σ2 are nothing but the mean and the variance of the random variable X :

µ = E
[

X
]
, σ2 = Var

(
X

) = E
[
(X −µ)2].

It is customary to also call X Gaussian if X is constant almost surely, meaning that

P
({

X ∈ A
}) = {

1, µ ∈ A,

0, else,
(1.2.2)

for its mean µ and that its variance equals 0.
More generally, we call a stochastic process X : Ω× [0,T ] →Rwith continuous paths

X (ω, ·) ∈C ([0,T ]) a Gaussian process if any linear combination

n∑
i=1

λi Xti , λi ∈R, ti ∈ [0,T ], (1.2.3)

of its marginals is a Gaussian random variable. As µ and σ2 determine uniquely the
distribution of a Gaussian random variable X via (1.2.1) or (1.2.2), also the probability
distribution of X on the space C ([0,T ]) is uniquely determined by the mean and variance
of the Gaussian random variables (1.2.3) for the various choices of λi and ti .

These quantities, on the other hand, can be rewritten using the linearity of the ex-
pectation and the bilinearity of the covariance operator as

E
[ n∑

i=1
λi Xti

]
=

n∑
i=1

λiE
[
Xti

]
,

Var
( n∑

i=1
λi Xti

)
= Cov

( n∑
i=1

λi Xti ,
n∑

j=1
λ j Xt j

)
=

n∑
i , j=1

λiλ j Cov
(
Xti ,Xt j

)
.

Consequently, we can uniquely determine the law of a Gaussian process X by specifying

E
[
Xt

]
and Cov(Xs ,Xt )

for all s, t ∈ [0,T ].
Probably the most famous Gaussian process is the Brownian motion appearing in

many branches of probability theory. Its law is determined by

E
[
Bt

] = 0, Cov
(
Bs ,Bt

) = min(s, t ) (1.2.4)

for all s, t ∈ [0,T ]. As a consequence, the paths of a Brownian motion B(ω, ·) lie for almost
all ω in the Hölder class C 1/2−ε([0,T ]) for each ε ∈ (0,1/2) but not in C 1/2([0,T ]).

Gaussian white noise can be thought of as the derivative of a Brownian motion. However,
since the paths of a Brownian motion are not even 1/2-times Hölder continuous, their
derivative cannot be defined in a classical way. Keeping in mind that we are dealing with
a Gaussian process in a generalized sense we formally compute the limiting mean of the
difference quotients

E
[
Wt

] = lim
ε↘0

E
[
(Bt+ε−Bt )/ε

] = 0, t ∈ [0,T ),
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Figure 1.4: Paths of a Brownian motion generated in MATLAB.

and their covariance

Cov
(
Ws ,Wt

) = lim
ε↘0

ε−2 Cov
(
(Bs+ε−Bs )(Bt+ε−Bt )

)
= lim

ε↘0
ε−2(min(s +ε, t +ε)−min(s +ε, t )−min(s, t +ε)+min(s, t )

) = 0,

for 0 ≤ s < t < T . In the last step we have used that min(s +ε, t ) = s +ε if ε is sufficiently
small, so that the terms inside of the parentheses cancel each other. We conclude that
Gaussian white noise is centered, i.e., its mean is 0, and that it is uncorrelated meaning
that Ws and Wt are independent for s ̸= t .

If we let however s = t , we obtain from (1.2.4) that

Cov
(
Wt ,Wt

) = lim
ε↘0

ε−2 Cov
(
(Bt+ε−Bt )(Bt+ε−Bt )

)
= lim

ε↘0
ε−2(min(t +ε, t +ε)−min(t +ε, t )−min(t , t +ε)+min(t , t )

)
= lim

ε↘0
ε−2(t +ε − 2t + t

) = ∞,

and we conclude that at a fixed time t the white noise Wt is a Gaussian random variable
with zero mean and infinite variance. This is in a sense expected, because we have seen
already that B does not admit a derivative in a classical sense.

To quantify the strength of Wt , we consider the covariance Cov(Ws ,Wt ) as a function
of s. Using as before that the covariation operator is bilinear, we obtain that

Cov(Ws ,Bt ) = lim
ε↘0

ε−1 Cov(Bs+ε−Bs ,Bt )

= lim
ε↘0

ε−1(min(s +ε, t ) − min(s, t )
) = d

ds min(s, t )
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and the latter can be evaluated as 1[0,t )(s) or equivalently 1[s,T ](t ). By the same reasoning
we calculate further

Cov(Ws ,Wt ) = d
dt Cov(Ws ,Bt ) = d

dt 1[s,T ](t ).

The latter is a Heaviside function, which is not classically differentiable, but admits the
Dirac delta distribution δ(t − s) as a generalized derivative. Hence, we can think of the
covariance function of W to be given by the distribution

Cov(Ws ,Wt ) = δ(t − s),

which acts on test functions Φ : [0,T ]2 →R via

〈δ(t − s),Φ〉 =
� T

0

� T

0
δ(t − s)Φ(s, t )dt ds =

� T

0
Φ(s, s)ds.

Interestingly, this determines the statistics of the Fourier coefficients

wk =
� T

0
Wt fk (t )dt

of W along an orthonormal basis ( fk )k∈N of L2([0,T ]). Indeed, they are centered Gaus-
sian random variables with covariance structure

Cov(wk , wl ) =
� T

0

� T

0
Cov(Ws ,Wt ) fk (s) fl (t )dt ds

=
� T

0

� T

0
δ(t − s) fk (s) fl (t )dt ds =

� T

0
fk (s) fl (s)ds =

{
1, k = l ,

0, else.

Consequently, (wk )k∈N is a sequence of independent, standard normally distributed ran-
dom variables. Hence, we can either write

W = d

dt
B or W = ∑

k∈N
wk fk

for such a sequence, providing a second interpretation of white noise.
Combining both interpretations we can define spatio-temporal white noise on [0,T ]×

D for a spatial domain D as the temporal derivative of

Bt = ∑
k∈N

ekβ
(k)
t (1.2.5)

for a sequence of independent Brownian motions (β(k))k∈N and an orthonormal basis
(ek )k∈N of L2(D). Using the presented ideas, one can compute that W = d

dt B admits the
covariance structure

Cov(Ws (x),Wt (y)) = δ(t − s)δ(y −x)

in analogy to the temporal case.
While the roughness of a spatio-temporal white noise W in (STFE) in time can be

dealt with using the classical ideas of stochastic integration, its roughness in space poses
questions which are beyond the scope of this thesis. Therefore, we consider in the com-
ing chapters (STFE) instead with a spatially colored noise, which can be obtained by re-
placing the orthonormal basis (ek )k∈N in (1.2.5) by a sequence of functions which decays
in L2(T) as k →∞.
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1.2.2. STOCHASTIC INTEGRAL EQUATIONS
We use the ideas from the previous subsection to give meaning to (STFE) as a stochastic
integral equation. To focus only on the challenges related to the stochasticity, we set d =
1 and n = 2 in (STFE) and disregard the thin-film operator, i.e., we consider the stochastic
partial differential equation{

∂t u = ∂x (uW ), onΩ× [0,T ]×T,

u(0, ·) = u0, on Ω×T,
(1.2.6)

instead. We assume that the noise is white in time and colored in space, i.e., that

W = d

dt

∑
k∈N

ekβ
(k)

for a sequence of independent Brownian motions (β(k))k∈N and a sequence of suffi-
ciently smooth and decaying functions ek : T→R, for k ∈N.

As discussed before, the Brownian motions β(k) admit almost surely Hölder regular-
ity C 1/2−ε in time. Accordingly, the temporal regularity W is C−1/2−ε so that we can ex-
pect at most temporal regularity C 1/2−ε of a solution u to (1.2.6). Hence, even in the best
of all cases, the sum of the smoothness of u and the smoothness of W will be negative
meaning that the product uW cannot be defined using classical tools from analysis.

The key idea of stochastic integration is to exploit the statistical properties of W to
give a meaning to the temporal integral

�
uW dt =

�
u ·

( d

dt

∑
k∈N

ekβ
(k)

)
dt = ∑

k∈N

�
uek dβ(k) (1.2.7)

instead. To this end, we equip the underlying probability space (Ω,A,P) with an increas-
ing family of sub-σ-fields F = (Ft )t∈[0,T ] encoding the information at each time. We as-
sume that the resulting filtration F suffices the usual conditions, meaning that Ft con-
tains all nullsets and that Ft =⋂

s>t Fs for all t ∈ [0,T ). A stochastic process X is called
F -adapted, if Xt is Ft -measurable for each t , i.e., if X doesn’t anticipate the future.
We assume furthermore that each β(k) is an F -Brownian motion, meaning that β(k) is
F -adapted and that the incrementsβ(k)

t −β(k)
s are independent of Fs for all 0 ≤ s < t ≤ T .

Then, assuming that also the process u is F -adapted, one calculates that the Rie-
mann sums of the integral (1.2.7) satisfy

E

[∣∣∣∣n−1∑
i=0

(u(ti , x)ek (x))(β(k)
ti+1

−β(k)
ti

)

∣∣∣∣2]
=

n−1∑
i=0

E
[
(u(ti , x)ek (x))2] ·E[(β(k)

ti+1
−β(k)

ti

)2]
= E

[n−1∑
i=0

(u(ti , x)ek (x))2(ti+1 − ti )

]
→ E

[� t

0
(u(s, x)ek (x))2 ds

]
, n →∞,

(1.2.8)

for any sequence of finer and finer partitions 0 = t0 < ·· · < tn = t . Consequently, while for
a fixed ω the Riemann sum can in general diverge, we expect it to converge as a random
variable in L2(Ω).
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This observation allowed Kiyoshi Itô in [87] to define the integral (1.2.7) as an element
of L2(Ω) based on his famous isometry, which in our situation reads

E

[∣∣∣∣ ∑
k∈N

� t

0
u(s, x)ek (x)dβ(k)

s

∣∣∣∣2]
= E

[ ∑
k∈N

� t

0
|u(s, x)ek (x)|2 ds

]
.

We can use the resulting Itô integral to give a meaning to equation (1.2.6) by integrating
in time resulting in the stochastic integral equation

u(t ) − u0 = ∑
k∈N

� t

0
∂x (u(s, ·)ek )dβ(k)

s . (1.2.9)

Moreover, by integrating the pointwise Itô isometry with respect to x, we deduce that

E

[∥∥∥∥ ∑
k∈N

� t

0
∂x (u(s, ·)ek )dβ(k)

s d s

∥∥∥∥2

L2(T)

]
= E

[ ∑
k∈N

� t

0

∥∥∂x (u(s, ·)ek )
∥∥2

L2(T) ds

]
(1.2.10)

and that as soon as the right-hand side of the above is finite, the stochastic integral
in (1.2.9) exists as an L2(T)-valued random variable. In particular, since the finiteness
of (1.2.10) does not require any smoothness of u in time, (1.2.9) is a mathematically
tractable interpretation of (1.2.6).

However, the roughness of the Brownian motions leave some ambiguity in the definition
of the stochastic integral. Indeed, the use of the left endpoints of the intervals [ti , ti +1)
in the Riemann sums from (1.2.8) is necessary to take full advantage of the adaptedness
of the integrand. If one starts in contrast from the trapezoidal rule for integration

n−1∑
i=0

u(ti , x)+u(ti+1, x)

2
ek (x) · (β(k)

ti+1
−β(k)

ti

)
,

one obtains instead the Stratonovich integral denoted by

� t

0
uek ◦dβ(k)

in the limit, as introduced independently in [52, 123]. While it falls short compared to
the Itô integral in terms of mathematical properties, it has the advantage that it behaves
like a deterministic integral under composition.

To illustrate this, we formally apply the chain rule to deduce that

∂tφ(u) = φ′(u)∂t u = φ′(u)∂x (uW ) (1.2.11)

for the composition of a function φ with a solution to (1.2.6). However, if u is a solution
in the Itô sense (1.2.9), Itô’s fomula dictates that

φ(u(t )) − φ(u0) = 1

2

∑
k∈N

� t

0
φ′′(u(s, ·))(∂x (u(s, ·)ek ))2 ds

+ ∑
k∈N

� t

0
φ′(u(s))∂x (u(s, ·)ek )dβ(k)

s ,
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which contains an additional term compared to the temporal integral of (1.2.11). If, on
the other hand, ũ solves the Stratonovich version

ũ(t ) − u0 = ∑
k∈N

� t

0
∂x (ũ(s, ·)ek ) ◦dβ(k)

s (1.2.12)

of (1.2.6), it holds instead that

φ(ũ(t )) − φ(u0) = ∑
k∈N

� t

0
φ′(ũ(s))∂x (ũ(s, ·)ek ) ◦dβ(k)

s

in line with the rule from classical calculus (1.2.11).
That we followed the rules of classical calculus in the derivation of (STFE) given in

Subsection 1.1.3 indicates that the Stratonovich integral is more suitable for our pur-
poses, as pointed out in [58]. To still be able to use the various tools from Itô’s stochastic
calculus it is customary to exploit that the difference of the respective Riemann sums

n−1∑
i=0

ũ(ti+1, x)− ũ(ti , x)

2
ek (x) · (β(k)

ti+1
−β(k)

ti

)
converges to half of the covariation process of ũek and β(k) and therefore it holds

� t

0
ũek ◦dβ(k) = 1

2

〈
ũek ,β(k)〉

t +
� t

0
ũek dβ(k)

in the limit. Inserting this conversion formula in the Stratonovich equation (1.2.12) re-
sults in the equivalent Itô formulation

ũ(t ) − u0 = 1

2

∑
k∈N

∂x
〈

ũek ,β(k)〉
t +

∑
k∈N

� t

0
∂x (ũ(s, ·)ek )dβ(k)

s . (1.2.13)

To further rewrite the covariation term, we multiply (1.2.13) with ek0 for some k0 ∈N to
deduce that

(ũek0 )(t ) − (u0ek0 ) = 1

2

∑
k∈N

(
∂x

〈
ũek ,β(k)〉

t

)
ek0 + ∑

k∈N

� t

0
∂x (ũ(s, ·)ek )ek0 dβ(k)

s .

The covariation process between the right-hand side and β(k0) can be evaluated using
the rules of Itô’s calculus resulting in

〈
ũek0 ,β(k0)〉

t =
� t

0
∂x (ũ(s, ·)ek0 )ek0 ds.

Consequently, the Itô–Stratonovich correction appearing in (1.2.13) takes the form

1

2

∑
k0∈N

∂x
〈

ũek0 ,β(k0)〉
t = 1

2

∑
k0∈N

� t

0
∂x

(
∂x (ũ(s, ·)ek0 )ek0

)
ds.
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Inserting this in (1.2.13) results in the fully converted Itô formulation

ũ(t ) − u0 = 1

2

∑
k∈N

� t

0
∂x

(
∂x (ũ(s, ·)ek )ek

)
ds + ∑

k∈N

� t

0
∂x (ũ(s, ·)ek )dβ(k)

s

of the Stratonovich equation (1.2.12).

We conclude by remarking that we can analogously give meaning to the full equation
(STFE) as an Itô or Stratonovich integral equation and that the Itô–Stratonovich correc-
tion term is not affected by the presence of the thin-film operator. Moreover, to ease
notation, one commonly uses the differential notation for stochastic integral equations,
which we will employ in the following chapters of this thesis. For example, one writes

dut = ∑
k∈N

∂x (ut ek )dβ(k)
t and dut = ∑

k∈N
∂x (ut ek )◦dβ(k)

t

for (1.2.9) and (1.2.12), respectively.

1.2.3. ANALYTICALLY WEAK SOLUTIONS
So far, we have understood how to solve the problems related to the noise when defin-
ing solutions to (STFE). In this subsection on the contrary, we turn our attention to the
deterministic thin-film equation{

∂t u = −∂x (u2∂3
x u), on [0,T ]×T,

u(0, ·) = u0, on T,
(1.2.14)

with a quadratic mobility n = 2 in one spatial dimension, complementing the purely
stochastic part (1.2.6). While interpreting (1.2.14) for a sufficiently smooth function u
is not a problem, it can be advantageous for the construction of solutions to relax the
regularity requirements for u by introducing a weaker solution concept. In fact, this can
also be helpful in the construction of classical, smooth solutions to partial differential
equations by first showing existence of a weak solution and as a second step additional
regularity properties.

A fruitful tool to introduce weaker solution concepts is the weak derivative. The defi-
nition of the latter relies on the fact that whenever ∂l

x f = g for two continuous functions
f , g : D →R on a domain D and l ∈N, it holds�

D
f ∂l

xϕdx = (−1
)l
�

D
gϕdx (1.2.15)

for any smooth and compactly supported test function ϕ : D → R by repeated integra-
tion by parts. Using the fact that (1.2.15) can be evaluated for merely locally integrable
functions, we call g ∈ L1

loc(D) the l-th weak derivative of f ∈ L1
loc(D) as soon as (1.2.15)

holds for each ϕ ∈ C∞
c (D). Moreover, by the fundamental lemma of the calculus varia-

tion, (1.2.15) determines g d x-almost everywhere, so that, if it exists, the weak derivative
is unique.

In the same spirit, we can remove derivatives from the thin-film operator by testing
it with a smooth function ϕ : T→R resulting in�

T

(−∂x (u2∂3
x u)

)
ϕdx =

�
T

u2∂3
x u∂xϕdx.



1

16 1. INTRODUCTION

Additionally, we can assume that the appearing ∂3
x u is the third derivative of u in the

weak sense. As a result, we have already significantly reduced the smoothness assump-
tions on u compared to the classical notion of solution to (1.2.14).

However, this is not quite sufficient for our purposes since also the existence of the third
weak derivative of a solution to (1.2.14) onT is hard to show due to the degeneracy of the
problem, i.e., the possibility of the coefficient u2 in the thin-film operator to become 0.
In this case, the thin-film equation loses parabolicity and the corresponding smoothing
effect so that we do not expect u to be three times weakly differentiable on the whole
domain. However, we can use the trivial observation that�

T

u2∂3
x u∂xϕdx =

�
{u>0}

u2∂3
x u∂xϕdx,

so that it suffices to require weak differentiability only on the positivity set {u > 0}, on
which the equation remains effectively parabolic.

Hence, by integrating (1.2.14) against ϕ and subsequently in the time variable we
obtain the weak formulation of the thin-film equation, namely that�

T

u(t )ϕdx −
�
T

u0ϕdx =
� t

0

�
{u(s,·)>0}

u2(s)∂3
x u(s)∂xϕdx ds

for all t ∈ [0,T ] and ϕ ∈ C∞(T). The weak derivative ∂3
x u is only required to exist on

{u > 0}, which, as demonstrated in [15], allows for the construction of a weak solution
with a given initial profile u0.

In other situations, the condition that u is three times weakly differentiable on its
positivity set is still too restrictive. Then, one can further integrate by parts to deduce
that �

{u>0}
u2∂3

x u∂xϕdx = −2

�
{u>0}

u∂x u∂2
x u∂xϕdx −

�
{u>0}

u2∂2
x u∂2

xϕdx

=
�

{u>0}
(∂x u)3∂xϕdx + 3

�
{u>0}

u(∂x u)2∂2
xϕdx +

�
{u>0}

u2∂x u∂3
xϕdx,

where the boundary terms vanish because u = 0 on the boundary of the set {u > 0}. We
obtain the very weak formulation of (1.2.14) by requiring that�

T

u(t )ϕdx −
�
T

u0ϕdx =
� t

0

�
{u(s,·)>0}

(∂x u(s))3∂xϕdx ds

+ 3

� t

0

�
{u(s,·)>0}

u(s)(∂x u(s))2∂2
xϕdx ds +

� t

0

�
{u(s,·)>0}

u2(s)∂x u(s)∂3
xϕdx ds,

for anyϕ ∈C∞(T) and t ∈ [0,T ], as introduced in [33]. In particular, to evaluate the above
u needs to be only one time weakly differentiable on its positivity set.

1.2.4. MARTINGALE SOLUTIONS
Combining the observations from the preceding subsections, we can give an exemplary
definition of a solution to (STFE) with n = 2 in one dimension, namely{

∂t u = −∂x (u2∂3
x u) + ∂x (uW ), onΩ× [0,T ]×T,

u(0, ·) = u0, on Ω×T.
(1.2.16)
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Let (Ω,A,P) be again a probability space with a filtration F that satisfies the usual con-
ditions and (β(k))k∈N a family of independent F -Brownian motions. We assume that the
noise in (1.2.16) admits the expansion

W = d

dt

∑
k∈N

ekβ
(k) (1.2.17)

for sufficiently smooth and decaying functions (ek )k∈N and that u0 is an F0-measurable
initial value. Then, an F -adapted process u is a very weak solution to the Stratonovich
interpretation of (1.2.16), if it satisfies

�
T

u(t )ϕdx −
�
T

u0ϕdx =
� t

0

�
{u(s,·)>0}

(∂x u(s))3∂xϕdx ds

+ 3

� t

0

�
{u(s,·)>0}

u(s)(∂x u(s))2∂2
xϕdx ds +

� t

0

�
{u(s,·)>0}

u2(s)∂x u(s)∂3
xϕdx ds

− 1

2

∑
k∈N

� t

0

�
T

(
∂x (u(s)ek )ek

)
∂xϕdx ds − ∑

k∈N

� t

0

�
T

u(s)ek∂xϕdx dβ(k)
s

for all t ∈ [0,T ] and any test function ϕ ∈C∞(T). We remark that, analogously as for the
thin-film operator, we transferred one spatial derivative of the Itô–Stratonovich correc-
tion term and the stochastic integrand to the test function.

Such a process constitutes a probabilistically strong solution to (1.2.16), express-
ing the fact that we considered the stochastic basis consisting of the probability space
(Ω,A,P), the filtration F and the Brownian motions (β(k))k∈N as given. In contrast, a
probabilistically weak or martingale solution does not only consist of the process, which
solves the stochastic partial differential equation, but also the underlying stochastic ba-
sis.

For example, a very weak martingale solution to the Stratonovich interpretation of
(1.2.16) consists of

• a complete probability space (Ω̌,Ǎ, P̌),

• a filtration F̌ on (Ω̌,Ǎ, P̌) satisfying the usual conditions,

• a family (β̌(k))k∈N of independent F̌ -Brownian motions,

• an F̌0-measurable ǔ0 which has the same distribution as u0,

• and an F̌ -adapted process ǔ, such that
�
T

ǔ(t )ϕdx −
�
T

ǔ0ϕdx =
� t

0

�
{ǔ(s,·)>0}

(∂x ǔ(s))3∂xϕdx ds

+ 3

� t

0

�
{ǔ(s,·)>0}

ǔ(s)(∂x ǔ(s))2∂2
xϕdx ds +

�
{ǔ(s,·)>0}

ǔ2(s)∂x ǔ(s)∂3
xϕdx ds

− 1

2

∑
k∈N

� t

0

�
T

(
∂x (ǔ(s)ek )ek

)
∂xϕdx ds − ∑

k∈N

� t

0

�
T

ǔ(s)ek∂xϕdx dβ̌(k)
s

for all t ∈ [0,T ] and ϕ ∈C∞(T).
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Since the solution process ǔ is defined on the (not necessarily) different probability
space (Ω̌,Ǎ, P̌), we can unfortunately not prescribe its initial value as a random variable.
However, as indicated in the fourth bullet point, we can specify the probability distri-
bution of ǔ at time 0. Along the same vein, while ǔ is driven by a different sequence of
Brownian motions (β̌k )k∈N, the laws of

W̌ = d

dt

∑
k∈N

ek β̌
(k)

and (1.2.17) do coincide.

1.3. EXISTENCE OF MARTINGALE SOLUTIONS
The aim of this section is to summarize the results of Chapters 2–4 on the existence of
(very) weak martingale solutions to (STFE). We start by illustrating the stochastic com-
pactness method, a general construction scheme for martingale solutions to stochas-
tic (partial) differential equations, on the example of the stochastic thin-film equation
as considered in [58]. Subsequently, we review typical a-priori estimates for the deter-
ministic thin-film equation which we will (partially) generalize to the stochastic setting.
Finally, we discuss how a combination of these ideas culminates in the results of the
aforementioned chapters.

1.3.1. THE STOCHASTIC COMPACTNESS METHOD
The stochastic compactness method is a general procedure to construct martingale so-
lutions to a given stochastic (partial) differential equation. It is the probabilistic ana-
logue to a compactness argument for deterministic equations dealing additionally with
the ω-dependence of an approximating sequence.

To illustrate it, we consider the construction of weak martingale solutions to (STFE)
with quadratic mobility exponent n = 2 in one dimension{

∂t u = −∂x (u2∂3
x u) + ∂x (uW ), onΩ× [0,T ]×T,

u(0, ·) = u0, on Ω×T,
(1.3.1)

from [58] and refer for a more general introduction to [25]. The starting point of the
stochastic compactness method is the approximation of the equation by equations for
which the question of existence is less delicate. Here, we use a Trotter–Kato scheme, i.e.,
a temporal decomposition of the deterministic and stochastic dynamics as illustrated in
Figure 1.5.

For a given non-negative initial value u0 from H 1(T), there exists a non-negative
weak solution udet

ε to the deterministic thin-film equation (1.2.14) on the time interval
[0,ε) by the aforementioned result of [15]. Here, H 1(T) denotes the space of weakly dif-
ferentiable L2(T)-functions with weak derivative in L2(T) carrying the norm

∥ f ∥2
H 1(T) = ∥ f ∥2

L2(T) + ∥∂x f ∥2
L2(T). (1.3.2)

Using a viscous regularization, one constructs a non-negative weak solution ustoch
ε on

[0,ε) to the Stratonovich interpretation of the stochastic part (1.2.6) with the initial value



1.3. EXISTENCE OF MARTINGALE SOLUTIONS

1

19

uε
time step ε

udet
ε

∂t u = −∂x (u2∂3
x u)

ustoch
ε ∂t u = ∂x (uW )

Figure 1.5: The splitting-up ansatz for the stochastic thin-film equation as used in [58].

limt↗εustoch
ε (t ), which persists in H 1(T). Hence, one can use limt↗εustoch

ε again as an
initial value for the solution udet

ε to (1.2.14) on the time interval [ε,2ε) and iterate this
procedure ⌈T /ε⌉ times until one reaches the final time T . Concatenating the processes
udet
ε and ustoch

ε yields an approximate solution uε to (1.3.1) and we expect a limit of uε as
ε↘ 0 to solve the original equation.

To extract a convergent subsequence, the authors of [58] show, among other, an esti-
mate on

E

[
sup

0≤t≤T
∥uε∥q

H 1(T)
+
� T

0
∥uε(t )∥q−2

H 1(T)

�
{uε(t ,·)>0}

u2
ε(t )

(
∂3

x uε(t )
)2 dx dt

]
, q ∈ [2,∞),

(1.3.3)
which is uniform in ε. Such an estimate is very natural since, for q = 2, the leading or-
der part ∥∂x u∥2

L2(T)
of the H 1(T)-norm quantifies the surface energy of the system as

elaborated in Subsection 1.1.2, while the second term is the energy dissipation due to
the thin-film operator. Since the thermal fluctuations can lead to an increase in energy
compared to the deterministic setting, the estimate on (1.3.3) expresses a control on the
averaged energy production by the noise.

Using (1.3.3) and the Sobolev embedding theorem we can estimate the norms

∥uε∥q
Lq (Ω;L∞(0,T ;H 1(T)))

and
∥∥uε1{uε>0}∂

3
x uε

∥∥2
L2(Ω;L2([0,T ]×T)) (1.3.4)

uniformly in ε, so that by the Banach-Alaoglu theorem there exists a subsequence along
which

uεl *
∗ u in Lq (Ω;L∞(0,T ; H 1(T))),

u2
εl

1{uεl
>0}∂

3
x uεl * J in L2(Ω;L2([0,T ]×T)).

Of course, one wants the weak limit J to equal again u21{u>0}∂
3
x u, but weak convergences

alone do usually not suffice to identify nonlinear terms. To demonstrate the latter, we
consider the sequence sin(2πn·) ∈ L2(T), which converges weakly to 0 as the Fourier co-
efficients of any L2(T)-function are square summable. The squared sequence sin2(2πn·)
is bounded in L2(T) and hence converges weakly to some g ∈ L2(T) up to tasking a sub-
sequence. Since however

�
T

g dx ←
�
T

sin(2πn·)2 dx = ∥∥sin(2πn·)∥∥2
L2(T) = 1/2,
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the limit g cannot coincide with (the square of) 0. Even after combining the estimate
on (1.3.3) with the time splitting scheme to estimate the increments of uε resulting in a
uniform bound on ∥∥uε

∥∥q
Lq (Ω;C 1/16((0,T );C 1/8(T)))

, q ∈ [2,∞), (1.3.5)

any convergence we can hope for would still be weak in ω.

The idea of the stochastic compactness method is to consider the probability laws of
(uε)ε instead of dealing with the random variables themselves. Then, the celebrated The-
orem of Prokhorov characterizes compactness of the family of probability distributions
by uniform tightness, namely that for every δ> 0 there exists a compact set Kδ with

P
({

uε ∈ Kδ

}) ≥ 1 − δ (1.3.6)

for all ε > 0. Hence, if we can verify (1.3.6) it follows that a subsequence of (uε)ε>0 con-
verges in distribution. By the Skorokhod representation theorem there exists another
probability space (Ω̌,Ǎ, P̌) supporting an equidistributed sequence which converges P̌-
almost surely to a random variable ǔ. For example, by compactness of the embedding

C 1/16((0,T );C 1/8(T)) ,→ C ([0,T ]×T)

and the Chebyshev–Markov inequality

P
({∥∥uε

∥∥
C 1/16(0,T ;C 1/8(T)) ≥ 1

δ

})
≤ δq∥∥uε

∥∥q
Lq (Ω;C 1/16(0,T ;C 1/8(T)))

,

uniform tightness of uε on C ([0,T ]×T) readily follows from the uniform bound on (1.3.5).
Hence, by the aforementioned procedure, we obtain another probability space (Ω̌,Ǎ, P̌)
and an equidistributed subsequence ǔεl ∼ uεl which converges in C ([0,T ]×T), P̌-almost
surely.

If we also want to exploit the bound on (1.3.4), we quickly run into the problem that
the weak-* topology on L∞(0,T ; H 1(T)), and the weak toplogy on L2([0,T ]×T), are not
metrizable and therefore the theorems of Prokhorov and Skorokhod are not applicable.
However, this problem can be solved in an ad hoc way by applying the theorems in-
stead to the sequence of norms ∥uε∥L∞(0,T ;H 1(T)). As a consequence, the previously con-
structed subsequence can be chosen in such a way that also ∥ǔεl ∥L∞(0,T ;H 1(T)) converges
P̌-almost surely and is in particular bounded. Since we know already that ǔεl → ǔ in
C ([0,T ]×T) it follows by a subsequence-subsequence argument that this convergence
holds also in the weak-* topology of L∞(0,T ; H 1(T)). We can apply the same idea to
u2
ε1{uε>0}∂

3
x uε by first showing convergence for an equidistributed subsequence in some

ambient space and, by the additional convergence of ∥ǔεl 1{ǔεl
>0}∂

3
x ǔεl ∥L2([0,T ]×T), con-

cluding the desired weak convergence P̌-almost surely. Alternatively, one can also use
the Skorokhod–Jakubowski theorem, which generalizes the described method to more
general topological spaces, and yields an almost surely convergent, equidistributed sub-
sequence under rather mild assumptions.

The resulting convergences are that

ǔεl → ǔ in C ([0,T ]×T),
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ǔεl *
∗ ǔ in L∞(0,T ; H 1(T)),

ǔ2
εl

1{ǔεl
>0}∂

3
x ǔεl * J̌ in L2([0,T ]×T),

P̌-almost surely. Consequently, for any fixed ω̌ the convergences are similiar to the de-
terministic case considered in [15] and therefore J̌ = ǔ21{ǔ>0}∂

3
x ǔ can be identified in an

analogous fashion.

We still need to show that ǔ solves the stochastic partial differential equation (1.3.1) for
a Gaussian noise W̌ . A natural candidate for the latter can be constructed by also ap-
plying the theorems of Prokhorov and Skorokhod to the Brownian motions resulting in
equidistributed β̌(k)

εl
∼β(k) such that

β̌(k)
εl

→ β̌(k) in C ([0,T ]),

as l →∞. A corresponding filtration F̌ is readily defined as the smallest filtration mak-
ing the limiting processes (β̌(k))k∈N and ǔ adapted which also satisfies the usual condi-
tions. To show that (β̌(k))k∈N is indeed a family of independent F̌ -Brownian motions,
one shows first that each β̌(k) is an F̌ -martingale, meaning that the best prediction for
the future value of β̌(k) is nothing but the current state:

E
[
β̌(k)

t

∣∣F̌s
] = β̌(k)

s , 0 ≤ s < t ≤ T. (1.3.7)

Because this is a property determined by the probability laws, we can use the joint equi-
distribution

(ǔεl , (β̌(k)
εl

)k∈N) ∼ (uεl , (β(k))k∈N)

to verify (1.3.7). This can also be used to show that the covariation processes obey

〈
β̌( j ), β̌(k)〉

t =
{

t , j = k,

0, else,

identifying (β̌(k))k∈N as a family of independent F̌ –Brownian motions by Levy’s charac-
terization theorem.

To deduce that the quadruple (Ω̌,Ǎ, P̌), F̌ , (β̌(k))k∈N and ǔ constitutes a weak mar-
tingale solution to the Stratonovich interpretation of (1.3.1), it remains to verify that�

T

ǔ(t )ϕdx −
�
T

ǔ(0)ϕdx −
� t

0

�
{ ˇu(s,·)>0}

ǔ2(s)∂3
x ǔ∂xϕdx ds

+ 1

2

∑
k∈N

� t

0

�
T

(
∂x (ǔ(s)ek )ek

)
∂xϕdx ds = − ∑

k∈N

� t

0

�
T

ǔ(s)ek∂xϕdx dβ̌(k)
s , t ∈ [0,T ],

for all test functionϕ ∈C∞(T). This can be achieved similarly as the identification of the
Brownian motions and one starts again by showing that the left-hand side of the above
equation constitutes an F̌ -martingale, which we denote by M̌ . As a second step, we
show that M̌ admits the expected (co-) variation processes, i.e., that〈

M̌
〉

t = ∑
k∈N

� t

0

(�
T

ǔ(s)ek∂xϕdx

)2

ds,

〈
M̌ , β̌(k)〉

t = −
� t

0

�
T

ǔ(s)ek∂xϕdx ds.

(1.3.8)
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The rules of Itô’s calculus dictate〈
M̌ + ∑

k∈N

� ·

0

�
T

ǔ(s)ek∂xϕdx dβ̌(k)
s

〉
t

= 〈
M̌

〉
t + 2

∑
k∈N

� t

0

(�
T

ǔ(s)ek∂xϕdx

)
d
〈

M̌ , β̌(k)〉
s +

∑
k∈N

� t

0

(�
T

ǔ(s)ek∂xϕdx

)2

ds,

and, by (1.3.8), we can evaluate the quadratic variation process as 0. This implies that the
sum of martingales vanishes, completing the construction of a weak martingale solution.

1.3.2. A-PRIORI ESTIMATES FOR THE THIN-FILM EQUATION
While the machinery of the stochastic compactness method applies to various stochastic
(partial) differential equations, the sequence of approximations needs to be carefully
chosen in order to close uniform estimates, which are sufficient to identify the limit as a
solution to the original problem. For example, the time-splitting ansatz employed in the
previous section can be used for (STFE) with quadratic mobility, while for n ̸= 2 it fails
since the existence of a solution to the nonlinear stochastic conservation law{

∂t u = ∂x (un/2W ), onΩ× [0,T ]×T,

u(0, ·) = u0, onΩ×T,

in the energy space H 1(T) is unclear.
To come up a with another, more suitable approximation of{

∂t u = −∂x (un∂3
x u) + ∂x (un/2W ), onΩ× [0,T ]×Td ,

u(0, ·) = u0, onΩ×Td ,
(1.3.9)

for n ̸= 2 it is helpful to consider the fact that whichever uniform estimates we derive for
the approximations will carry over to the constructed solution to (1.3.9). For example,
in the situation of the previous subsection, we see by the lower semicontinuity of the
norms with respect to weak(-∗) convergence and Fatou’s lemma that

∥ǔ∥q

Lq (Ω̌;L∞(0,T ;H 1(T)))
and

∥∥ǔ1{ǔ>0}∂
3
x ǔ

∥∥2
L2(Ω̌;L2([0,T ]×T))

admit the same upper bounds as (1.3.4). Since also any uniform estimate on approxima-
tions of (1.3.9) will result in a bound on the solution itself, it is fruitful to first show an
a-priori estimate for (1.3.9) and then look for a compatible approximation scheme.

With this in mind, we review some a-priori estimates of the deterministic thin-film equa-
tion {

∂t u = −∂x (un∂3
x u), on [0,T ]×Td ,

u(0, ·) = u0, on Td ,
(1.3.10)

which provide a natural starting point to derive estimates in the stochastic setting. To
justify all the involved integrations by parts we assume that u is a strictly positive and
smooth solution to (1.3.10). The assumption of strict positivity is not necessarily ex-
pected for the solutions that we construct, but can physically be justified in the com-
plete wetting regime discussed in Subsection 1.1.2. Indeed, in this case the film height
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is strictly positive on a microscopic level and consequently the macroscopic film height
can be obtained as a limit of strictly positive solutions to (1.3.10).

By integrating (1.3.10) against −∂2
x u we obtain

1

2
∂t∥∂x u∥2

L2(T) = −
�
T

un(∂3
x u)2 dx,

which, after integration in time, results in the energy estimate

1

2
sup

0≤t≤T
∥∂x u(t )∥2

L2(T) +
� T

0

�
T

un(t )(∂3
x u(t ))2 dx dt ≤ ∥∂x u0∥2

L2(T). (E -Est)

The name alludes to the fact that 1
2∥∂x u∥2

L2(T)
is the excess surface energy of the profile u,

see again Subsection 1.1.2, which is a very natural quantity to estimate. Correspondingly,
the integral in (E -Est) quantifies the dissipated surface energy until the final time T .

Integrating (1.3.10) instead against g ′(u) for

g (u) =
� u

1

� r

1

1

(r ′)n dr ′ dr, (1.3.11)

results in

∂t

�
T

g (u)dx = −
�
T

(∂2
x u)2 dx

and ultimately in the entropy estimate

sup
0≤t≤T

�
T

g (u(t ))dx + ∥∂2
x u∥2

L2([0,T ]×T) ≤ 2

�
T

g (u0)dx. (G -Est)

The choice of the lower integration bounds in (1.3.11) ensures that g is convex and at-
tains its global minimum at g (1) = 0 and is therefore non-negative. Moreover, for n ≥ 2,
g admits a singularity of the order

g (r ) ∼
{
− log(r ), n = 2,

r 2−n , n > 2,

near 0. Consequently, as soon as the left-hand side of (G -Est) is finite for an arbitrary
function u : [0,T ]×T→ [0,∞), then u(t , ·) is dx-almost everywhere strictly positive for
every t ∈ [0,T ]. This preservation of positivity is special to (1.3.10), as the linear equation
∂t v = −∂4

x v satisfies no comparison principle in contrast to second order equations.
The entropy estimate can be further generalized by introducing the α-entropy func-

tions

gα(u) =
� u

1

� r

1
(r ′)α−1 dr ′ dr, α ∈ [1/2−n,2−n],

containing the entropy function as the special case g1−n . Following [11], we calculate

∂t

�
T

gα(u)dx =
�
T

uα+n−1∂3
x u∂x u dx

= −
�
T

uα+n−1(∂2
x u)2 dx − (α+n −1)

�
T

uα+n−2∂2
x u(∂x u)2 dx

= −
�
T

uα+n−1(∂2
x u)2 dx + (α+n−1)(α+n−2)

3

�
T

uα+n−3(∂x u)4 dx,

(1.3.12)
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1

α+n

γ

Figure 1.6: Admissible values of γ depending on α+n.

by integrating (1.3.10) against g ′
α(u) and repeated integration by parts. The prefactor of

the last integral is non-positive if

Cα,n = −(α+n−1)(α+n−2)
3 ≥ 0 or equivalently α ∈ [1−n,2−n],

in which case we recover the α-entropy estimate

sup
0≤t≤T

�
T

gα(u(t ))dx +
� T

0

�
T

uα+n−1(∂2
x u)2 dx + Cα,n

�
T

uα+n−3(∂x u)4 dx dt

≤ 2

�
T

gα(u0)dx. (1.3.13)

To also obtain an a-priori estimate for smaller values of α, it is useful to substitute

(∂2
x u)2 = 1

γ2 u2−2γ(∂2
x uγ)2 − (γ−1)2u−2(∂x u)4 − 2(γ−1)u−1(∂x u)2∂2

x u,

for a second parameter γ ̸= 0 in the last line of (1.3.12), resulting in

∂t

�
T

gα(u)dx = − 1

γ2

�
T

uα+n−2γ+1(∂2
x uγ)2 dx + 2(γ−1)

�
T

uα+n−2(∂x u)2∂2
x u dx

+
(

(α+n−1)(α+n−2)
3 + (γ−1)2

)�
T

uα+n−3(∂x u)4 dx

= − 1

γ2

�
T

uα+n−2γ+1(∂2
x uγ)2 dx − Cα,γ,n

�
T

uα+n−3(∂x u)4 dx,

with
Cα,γ,n = −

(
(α+n−1−2(γ−1))(α+n−2)

3 + (γ−1)2
)
.

A corresponding version of (1.3.13) can be established as soon as Cα,γ,n ≥ 0, which is
equivalent to

α+n +1−p
(2− (α+n))(2(α+n)−1)

3
≤ γ ≤ α+n +1+p

(2− (α+n))(2(α+n)−1)

3
(1.3.14)
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with the boundary cases corresponding to Cα,γ,n = 0. Moreover, there exists an admissi-
ble γ if and only if α is in the previously specified range

1
2 − n ≤ α ≤ 2−n. (1.3.15)

We arrive at the general α-entropy estimate

sup
0≤t≤T

�
T

gα(u(t ))dx + 1

γ2

� T

0

�
T

uα+n−2γ+1(∂2
x uγ)2 dx dt

+ Cα,γ,n

� T

0

�
T

uα+n−3(∂x u)4 dx dt ≤ 2

�
T

gα(u0)dx (Gα-Est)

for α and γ according to (1.3.14) and (1.3.15).
The lower values α < 1−n improve the implications regarding the positivity of the

solution compared to (G -Est), while the higher valuesα> 1−n can be useful in situations
in which the entropy of the initial value is infinite, for example if {u0 = 0} has positive
measure.

1.3.3. THE RESULTS OF CHAPTERS 2–4
After having reviewed the stochastic compactness method and relevant a-priori esti-
mates for the deterministic thin-film equation, we summarize the results from this thesis
on the existence of (very) weak martingale solutions to (STFE).

In Chapter 2 based on the article [116] we consider (STFE) in the physical situation of
effective dimension d = 2 with a quadratic mobility function n = 2. We recall that in
the higher-dimensional case the temporally white, spatially colored Gaussian noise W is
vector-valued, i.e., that

W = d

dt

∑
k∈N

ekβ
(k), ek : T2 →R2,

for a sequence of independent Brownian motions (β(k))k∈N. We assume that the smooth
functions ek decay sufficiently fast so that W is two times differentiable in space and im-
pose a mild symmetry assumption on the ek to close all the estimates involved. The latter
essentially expresses that the vector components of W are independent and identically
distributed.

The restriction to the case n = 2 is convenient since then the stochastic part is lin-
ear and therefore well-behaved on its own, at least when interpreted in the Stratonovich
sense. Hence, analogously to [58] for the one-dimensional equation, we employ a time-
splitting scheme in conjunction with a viscous regularization of the stochastic part lead-
ing to approximate solutions uδ,ε as depicted in Figure 1.7.

Assuming that u0 ∈ H 1(T2) we show, as in the one-dimensional case, that a stochastic
version of the energy estimate (E -Est) holds with a right-hand side which is independent
of δ and ε. Unlike in the one-dimensional situation however, the energy estimate itself
does not suffice to identify a limit as δ,ε→ 0 as a solution to (STFE). Indeed, already
in the deterministic case the authors of [33] derive additionally uniform α-entropy esti-
mates (Gα-Est) for approximations of the deterministic thin-film equation to show the
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uδ,ε

time step δ

udet
δ,ε

∂t u = −div(u2∇∆u)

ustoch
δ,ε ∂t u = ε∆u + div(uW )

Figure 1.7: Time-splitting scheme for (STFE) with d = n = 2 and a regularized stochastic part as employed in
Chapter 2.

existence of very weak solutions in higher dimensions. We follow their approach and de-
rive a stochastic version of (Gα-Est) along the time-splitting scheme, which is uniform in
δ and ε as well. This suffices to let us first pass ε→ 0 and subsequently δ→ 0 to construct
a very weak martingale solution to (STFE) with d = n = 2 based on the stochastic com-
pactness method. Since it suffices to take someα>−1 in line with (1.3.15), no additional
positivity assumption on u0 needs to be imposed.

The aim of the following Chapters 3 and 4 based on the preprints [36, 117] is to prove the
existence of (very) weak martingale solutions to (STFE) also in the case of a nonlinear
noise term n ̸= 2. Since this is quite challenging by itself, we restrict ourselves there to
the case of effective dimension d = 1.

Indeed, the only other existence result for (STFE) in the nonlinear noise case was
obtained in [35]. Their result relies on the observation that, while the energy estimate
(E -Est) can even in the case of Stratonovich noise not be closed on its own, the energy
production of the noise up to a time T can be quantified as

� T

0

�
T

un−4(∂x u)4 dx dt . (1.3.17)

After further integration by parts, (1.3.17) can be controlled using the terms from the
entropy estimate (G -Est), at least for n ∈ [8/3,4). Luckily, the entropy estimate (G -Est)
is in contrast compatible with the nonlinear Stratonovich noise and a combined energy-
entropy estimate can be established. Since the resulting convergences suffice to identify
a solution to the thin-film equation it remains to find a suitable approximation scheme.
To this end, the authors of [35] use a stochastic thin-film equation with a non-degenerate
mobility function

∂t uε = −∂x
(
mε(uε)∂3

x uε
) + ∂x

(
m1/2
ε (uε)W

)
, mε(r ) = (

r 2 + ε2)n/2, (1.3.18)

for which the existence of solutions is less difficult to show. Using a corresponding ap-
proximate version of the energy-entropy estimate, they succeed in extracting a weak
martingale solution to (STFE) with d = 1 and n ∈ [8/3,4) as ε→ 0. In particular, while
uε may become negative, the limiting solution is positive almost everywhere due to the
estimate on the entropy of the solution.

In Chapter 3 we resolve the resulting gap of mobility exponents n ∈ (2,8/3) for which
no existence result for (STFE) was known. The underlying observation is that the energy
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production of the noise (1.3.17) coincides with the last integral on the left-hand side of
(Gα-Est) for α=−1 corresponding to the logarithmic α-entropy function

g−1(u) = u − 1 − log(u)

with a positive constant C−1,1,n for n ∈ (2,3). Unfortunately, while the approximations
(1.3.18) work well with (G -Est), they are not compatible with the log-entropy estimate
due to the possible negativity of uε.

We resolve this by adding another approximation layer and solving first

∂t uδ,ε = −∂x
(
mδ,ε(uδ,ε)∂3

x uδ,ε
) + ∂x

(
m1/2
δ,ε (uδ,ε)W

)
,

mδ,ε(r ) = mδ

(
(r 2 + ε2)1/2), mδ(r ) = r n+ν/(

r ν/2 + δ(ν−n)/2r n/2)2

for suitable ν ∈ (3,4). Since mδ(u) ∼ uν near 0, we can adapt the proof from [35] to let
ε→ 0 and obtain a non-negative weak martingale solution to

∂t uδ = −∂x
(
mδ(uδ)∂3

x uδ
) + ∂x

(
m1/2
δ (uδ)W

)
.

The non-negativity of the solution allows us to prove a log-entropy estimate and finally
establish a δ-uniform version of the energy-log-entropy estimate. Then we pass also to
δ→ 0 and deduce the existence of a weak martingale solution to (STFE) with d = 1 and
n ∈ (2,3) for initial values u0 ∈ H 1(T) satisfying

−
�
T

log(u0)dx < ∞. (1.3.19)

As before, we need to assume additionally that the noise W is two times differentiable in
space to close all the aforementioned estimates.

We remark that the assumption (1.3.19) requires the initial profile to be strictly positive
almost everywhere, and that the resulting solution remains positive almost everywhere
by the log-entropy estimate, similarly to the result from [35]. This excludes the situation
that |{u = 0}| > 0, and in particular that a contact line, i.e., a triple junction of gas, liquid
and solid, is present. It is the aim of Chapter 4 to show existence of very weak martingale
solutions to (STFE), again with d = 1 and n ∈ (2,3), without any strict positivity assump-
tion on u0.

The main challenge is that, as suggested by the discussed results, the control of the
energy production (1.3.17) by the noise requires an estimate on the smallness of the solu-
tion. Since such a control, e.g. by (Gα-Est), would require again for the initial value to be
positive almost everywhere, our approach is to completely discard the energy estimate
and instead rely the whole analysis on (Gα-Est) for α ∈ (−1,2−n).

In particular, for a non-negative convolution kernel (ηε)ε>0, the problem

∂t uε = −∂x (un
ε ∂

3
x uε) + ∂x (un/2

ε Wε),

uε(0) = ηε∗u0 + ε, Wε = ηε∗W , ε ∈ (0,1),

falls within the scope of Chapter 3 and the existence of weak martingale solutions fol-
lows. Since�

T

gα(ηε∗u0 +ε)dx ≤ cα,n

(�
T

ηε∗u0 dx + 1

)
≤ cα,n

(
∥u0∥M (T) + 1

)
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for α ∈ (−1,2−n), an ε-uniform version of (Gα-Est) can be established for non-negative
initial values u0 from the space of Radon measures M (T). In particular, since the α-
entropy functional is lower order than the surface energy, we need only to assume that
W is one time differentiable in space in contrast to the previously discussed results. As
observed in [32], the resulting convergences suffice in one spatial dimension to identify
a limit as a very weak solution to the thin-film equation. Consequently, we can take ε↘ 0
and, after another application of the stochastic compactness method, obtain a very weak
martingale solution to (STFE) with d = 1 and n ∈ (2,3) attaining the initial value u0 in
distribution.

1.4. EXISTENCE, UNIQUENESS OF PROBABILISTICALLY STRONG

SOLUTIONS
The purpose of this section is to present the results of Chapter 5 on the existence and
uniqueness of probabilistically strong solutions to (STFE) as well as the methods used in
their proofs. To this end, we demonstrate in a simple example how to reformulate the
deterministic thin-film equation as a fixed-point problem and solve it using the Banach
fixed-point theorem. We also comment on the advances in the theory on quasilinear
stochastic evolution equations made in [5, 6]. Subsequently, we review how the effects
of intermolecular forces can be incorporated in the thin-film model from Section 1.1,
providing an interesting situation in which the aforementioned theory yields global in
time well-posedness of the equation, at least in one spatial dimension. Finally, we give a
summary of the results on the stochastic thin-film equation from Chapter 5.

1.4.1. QUASILINEAR STOCHASTIC EVOLUTION EQUATIONS
Next to the compactness method, another classical approach to address the question
of existence (and uniqueness) of a partial differential equation is to reformulate it as a
fixed-point problem. If one can show that for sufficiently small times the solution map is
a contraction, existence and uniqueness of a solution follows. By consecutive extension,
there is then a maximal time until which the unique solution exists, solving the problem
locally in time.

To illustrate this idea, we consider once more the deterministic thin-film equation{
∂t u = −∂x (u2∂3

x u), on [0,T ]×T,

u(0, ·) = u0, on T
(1.4.1)

in one dimension with a quadratic mobility exponent n = 2 and refer for a more general
exposition of the fixed-point method to [86, Chapter 18]. Concerning the initial value we
assume that u0 ∈ H 1(T), but this time additionally that u0 is strictly positive on whole T.
By adding ∂x (u2

0∂
3
x u) on both sides of (1.4.1), we can reformulate the equation as

∂t u + ∂x (u2
0∂

3
x u) = ∂x

((
u2

0 −u2)∂3
x u

)
,

i.e., as in a linearization around the initial profile. Now, the existence and uniqueness
of a solution for small times follows, if we can show suitable estimates for the solution
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operator of the linear problem

S : f 7→ u s.t. ∂t u + ∂x (u2
0∂

3
x u) = ∂x f , u(0) = u0, (1.4.2)

as well as a compatible estimate on the nonlinearity

N : u 7→ (
u2

0 −u2)∂3
x u.

The estimates being compatible means here that they should suffice to apply the Banach
fixed point theorem to the composition S ◦N .

We start by deriving a Lipschitz estimate on the nonlinearity. A very natural estimate
is given for the norm

∥N (u)−N (v)∥L2(T) =
∥∥(u2

0 −u2)∂3
x u − (u2

0 − v2)∂3
x v

∥∥
L2(T)

≤ ∥∥(u2
0 −u2)∂3

x u − (u2
0 −u2)∂3

x v
∥∥

L2(T) +
∥∥(u2

0 −u2)∂3
x v − (u2

0 − v2)∂3
x v

∥∥
L2(T)

≤ ∥∥u2
0 −u2∥∥

L∞(T)

∥∥∂3
x (u − v)

∥∥
L2(T) +

∥∥u2 − v2∥∥
L∞(T)

∥∥∂3
x v

∥∥
L2(T), (1.4.3)

since we can employ Hölder’s inequality to obtain an upper bound on the products.
To obtain a corresponding estimate for (1.4.2) we consider the difference u − v for

two solutions u =S ( f ) and v =S (g ), which satisfies

∂t (u − v) + ∂x (u2
0∂

3
x (u − v)) = ∂x ( f − g ), (u − v)(0) = 0,

so that integration against −∂2
x (u − v) yields

1
2∂t∥∂x (u − v)∥2

L2(T) +
�
T

un
0 (∂3

x (u − v))2 dx ≤ −
�
T

∂x ( f − g )∂2
x (u − v)dx

≤ ∥ f − g∥L2(T)∥∂3
x (u − v)∥L2(T).

To proceed we use our assumption that the initial profile is strictly positive, and therefore
that un

0 ≥ δ for some δ> 0. By Young’s inequality for products we deduce

1
2∂t∥∂x (u − v)∥2

L2(T) + δ

�
T

(∂3
x (u − v))2dx ≤ 1

2

(
δ−1∥ f − g∥2

L2(T) + δ∥∂3
x (u − v)∥2

L2(T)

)
and consequently

sup
0≤s≤t

∥∂x (u − v)∥2
L2(T) + ∥∂3

x (u − v)∥2
L2([0,t ]×T) ≤ Cδ∥ f − g∥2

L2([0,t ]×T), (1.4.4)

after absorbing the last term on the right-hand side and integrating in time.
We can combine this with the estimate on the nonlinearity (1.4.3) and obtain that

sup
0≤s≤t

∥∂x (S ◦N (u)−S ◦N (v))∥2
L2(T) + ∥∂3

x (S ◦N (u)−S ◦N (v))∥2
L2([0,t ]×T)

≤ Cδ∥N (u)−N (v)∥2
L2([0,t ]×T)

≤ Cδ

∥∥u0 −u
∥∥2

L∞([0,t ]×T)

∥∥u0 +u
∥∥2

L∞([0,t ]×T)

∥∥∂3
x (u − v)

∥∥2
L2([0,t ]×T)

+ Cδ

∥∥u − v
∥∥2

L∞([0,t ]×T)

∥∥u + v
∥∥2

L∞([0,t ]×T)

∥∥∂3
x v

∥∥2
L2([0,t ]×T),

(1.4.5)
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after enlarging the constant Cδ. Using the fact that the solutions S ◦N (u) and S ◦N (v)
to the conservative equation (1.4.2) have the same mass, we see that the left-hand side
is equivalent to the norm in the space

Xt = C ([0, t ]; H 1(T)) ∩ L2(0, t ; H 3(T)), t ∈ [0,T ],

where H 1(T) was defined in (1.3.2), and the space H 3(T) is defined in an analogous fash-
ion. We can estimate furthermore the right-hand side of (1.4.5) using the Sobolev em-
bedding

H 1(T) ,→ L∞(T), (1.4.6)

resulting in∥∥S ◦N (u)−S ◦N (v)
∥∥2
Xt

≤ Cδ

∥∥u0 −u
∥∥2

C ([0,t ];H 1(T))

∥∥u0 +u
∥∥2

C ([0,t ];H 1(T))

∥∥u − v
∥∥2

L2(0,t ;H 3(T))

+ Cδ

∥∥u − v
∥∥2

C ([0,t ];H 1(T))

∥∥u + v
∥∥2

C ([0,t ];H 1(T))

∥∥v
∥∥2

L2(0,t ;H 3(T)),

(1.4.7)

after enlarging Cδ once more. To turn (1.4.7) into a contraction estimate, we need to
make sure that the factors of the norms of u − v are small and to this end, we define

Xt ,ε =
{

u ∈Xt

∣∣∣u(0) = u0, ∥u −u0∥C ([0,t ];H 1(T)) + ∥u∥L2(0,t ;H 3(T)) ≤ ε
}

, ε> 0.

In particular, we can choose ε > 0 small enough so that (1.4.7) implies a 1/4-Lipschitz
estimate for the Xt -norm for any t ∈ [0,T ] under the additional assumption that u, v ∈
Xt ,ε.

Since (Xt ,ε,∥·∥Xt ) is a complete metric spaces, it remains to check that S ◦N : Xt ,ε→
Xt ,ε for sufficiently small t . We first observe by inserting v = 0 in (1.4.3) that N : XT →
L2([0,T ]×T). On the other hand, by integrating in (1.4.2) against −∂2

x u, we see that

sup
0≤s≤T

∥∂xS ( f )∥2
L2(T) + ∥∂3

xS ( f )∥2
L2([0,T ]×T)

≤ Cδ

(
∥∂x u0∥2

L2(T) + ∥ f ∥2
L2([0,T ]×T)

)
,

(1.4.8)

analogously to (1.4.4) and therefore S : L2([0,T ]×T) →Xt . Consequently, if we take any
ū ∈XT,ε, we see that S ◦N (ū) is an element of XT starting at u0. Hence, there exists a
time T ∗ ∈ (0,T ] such that

∥S ◦N (ū)−u0∥C ([0,T ∗];H 1(T)) + ∥S ◦N (ū)∥L2(0,T ∗;H 3(T)) ≤ ε/2

and in particular S ◦N (ū) ∈XT ∗,ε. Since any element u ∈XT ∗,ε satisfies∥∥S ◦N (u)−S ◦N (ū)
∥∥
XT∗ ≤ 1

4∥u − ū∥XT∗ ≤ ε/2

by the choice of ε and ū ∈XT ∗,ε, we deduce that also S ◦N (u) ∈XT ∗,ε, as desired.
It follows by the Banach fixed-point theorem that there exists a unique solution on

the time interval [0,T ∗] to equation (1.4.1). One can iterate this procedure as long as the
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solution stays positive and in H 1(T) so that existence and uniqueness of a strictly posi-
tive, H 1(T)-valued solution follows. This solution exists either on the whole time interval
[0,T ] or ceases to exist before the final time T . Since the surface energy is dissipated by
(E -Est), the latter can only happen if the film height touches down.

If we want to use a similar approach to solve the stochastic thin-film equation{
∂t u = −∂x (u2∂3

x u) + ∂x (uW ), on [0,T ]×T,

u(0, ·) = u0, on T,
(1.4.9)

for a Gaussian noise

W = d

dt

∑
k∈N

ekβ
(k),

we need to interpret the noise term as a comparable perturbation to the nonlinearity N

due to the quasilinear operator.
To this end, we emphasize that the linear estimate (1.4.8) is the best we can expect

for the solution S ( f ) to (1.4.2). Indeed, since

S ( f ) = (
∂t + ∂x (u2

0(∂3
x ·)

)−1
∂x f , (1.4.10)

S ( f ) admitting four derivatives more than ∂x f is optimal. Here we consider ∂x f as −1-
times differentiable as it is the derivative of an L2(T)-function and hence an element
of the accordingly defined space H−1(T). For this reason, the estimate (1.4.8) is called
maximal regularity and it implies moreover that

∥∂t S ( f )∥L2(0,T ;H−1(T)) ≤
∥∥∂x (u2

0∂
3
xS ( f ))

∥∥
L2(0,T ;H−1(T)) + ∥∂x f ∥L2(0,T ;H−1(T))

≤ ∥u0∥2
L∞(T)∥∂3

xS ( f )∥L2([0,T ]×T) + ∥ f ∥L2([0,T ]×T)

≤ Cδ∥u0∥2
L∞(T)

(
∥∂x u0∥L2(T) + ∥ f ∥L2([0,t ]×T)

)
+ ∥ f ∥L2([0,T ]×T)

by inserting it in equation (1.4.2) satisfied by S ( f ). That means, not only gains the solu-
tion S ( f ) to (1.4.10) four derivatives in space compared to ∂x f , but also one derivative
in time.

By interpolating the corresponding estimates one can trade a fraction of the gained
temporal regularity for four times as many spatial derivatives, meaning that S ( f ) can,
for example, be shown to be 1/2-times differentiable in time with values in H 1(T). This
gives a good indication about the right space for the stochastic nonlinearity in (1.4.9)
to lie in. Indeed, since the temporally white noise W is (−1/2− ε)-times differentiable
in time we need to use half of the regularizing effect of the solution operator S to turn
∂x (uW ) into a function, as opposed to a distribution, in time. Then we can still use the
other half of the regularizing effect to gain two derivatives in space. As a result, if we want
solve (1.4.9) again in L2(0,T ; H 3(T)) we need to treat ∂x (u(t )W (t )) as an H 1(T)-valued
nonlinearity.

To make this precise, we consider again the linearized equation

u(t ) − u0 +
� t

0
∂x (u2

0∂
3
x u)ds =

� t

0
∂x f ds + ∑

k∈N

� t

0
gk dβ(k)

s , (1.4.11)
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with a possibly random drift ∂x f ∈ L2(Ω× [0,T ]; H−1(T)) and a generic Itô noise defined
by gk ∈ L2(Ω×[0,T ]; H 1(T)), k ∈N. To derive a stochastic version of the maximal regular-
ity estimate (1.4.8), we apply ∂x to both sides of equation (1.4.11) and use Itô’s formula
to compute the square, resulting in

1
2 (∂x u(t ))2 − 1

2 (∂x u0)2 +
� t

0
∂x u∂2

x (u2
0∂

3
x u)ds

=
� t

0
∂x u∂2

x f ds + 1

2

∑
k∈N

� t

0
(∂x gk )2 ds + ∑

k∈N

� t

0
∂x u∂x gk dβ(k)

s .

Integration in space, using integration by parts and again Young’s inequality results in

∥∂x u(t )∥2
L2(T) − ∥∂x u0∥2

L2(T) + δ∥∂3
x u∥2

L2([0,t ]×T) (1.4.12)

≤ Cδ∥ f ∥2
L2([0,t ]×T) +

∑
k∈N

∥∂x gk∥2
L2([0,t ]×T) + 2

∑
k∈N

� t

0

�
T

∂x u∂x gk dx dβ(k)
s .

To estimate the supremum in time of the stochastic integral, we apply the Burkholder–
Davis–Gundy inequality, which yields that

E

[
sup

0≤t≤T

∣∣∣∣ ∑
k∈N

� t

0

�
T

∂x u∂x gk dx dβ(k)
s

∣∣∣∣]

≤ C E

[( ∑
k∈N

� T

0

(�
T

∂x u∂x gk dx

)2

ds

)1/2]

≤ C E

[( ∑
k∈N

∥∂x gk∥2
L2([0,T ]×T)

)1/2

× sup
0≤t≤T

∥∂x u∥L2(T)

]
≤C 2E

[ ∑
k∈N

∥∂x gk∥2
L2([0,T ]×T)

]
+ 1

4
E

[
sup

0≤t≤T
∥∂x u∥2

L2(T)

]
.

Hence, after taking the supremum over t ∈ [0,T ] in (1.4.12) and then the expectation, we
obtain

E

[
sup

0≤t≤T
∥u(t )∥2

L2(T) + ∥∂3
x u∥2

L2([0,T ]×T)

]
≤ CδE

[
∥∂x u0∥2

L2(T) + ∥ f ∥2
L2([0,T ]×T) +

∑
k∈N

∥∂x gk∥2
L2([0,T ]×T)

]
,

(1.4.13)

where we enlarged again the constant Cδ. This estimate is called stochastic maximal
regularity and can be used to set up a fixed point argument to treat quasilinear stochastic
partial differential equations as we have seen for the deterministic case. In particular,
our intuition to require the stochastic term in (1.4.9) to be H 1(T)-valued is confirmed by
the norm of gk on the right-hand side of (1.4.13).

A recent contribution to the theory of quasilinear stochastic evolution equations was
made in [5, 6]. While we presented in this subsection the concept of stochastic maximal
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regularity in the Hilbert space-valued setting and with an L2-norm in time, this frame-
work allows to treat stochastic evolution equations in Banach spaces and to use Lp -
norms in time instead. The appropriate generalization of (1.4.13) is then called stochas-
tic maximal Lp -regularity and taking p > 2 allows the authors of [5, 6] to additionally
involve weights of the form tκ, κ > 0. The latter is a key point of their theory, since, us-
ing the fact that on [ε,T ] for ε > 0 the weight tκ becomes irrelevant, different regularity
classes of solutions can be connected capturing the smoothing effect of parabolic equa-
tions. Additionally, the weighted setting allows for less regular initial values.

1.4.2. THE INTERFACE POTENTIAL
We have shown in the preceding subsection that the deterministic thin-film equation
admits unique solutions on the whole time interval if the film height remains strictly
positive, at least in one spatial dimension. While we have seen some positivity preserv-
ing mechanisms of the equation in Subsection 1.3.2, these do not suffice to conclude that
the film height is bounded away from 0, as we would need to iterate the fixed-point ar-
gument. However, if we consider fluid films of the height of several nanometers only, the
interaction forces between the molecules of the fluid and the substrate become prevalent
and lead to a strictly positive film height on the microscopic level.

In the thin-film model discussed in Subsection 1.1.1, intermolecular forces can be
modeled by a body force of the form ∇Π in the Navier–Stokes system, where Π is the
disjoining pressure given by the negative derivative of the effective interface potential

Π(y) = −φ′(y). (1.4.14)

After rescaling Π̃= εΠ in the (deterministic) long-wave approximation, the leading order
terms are

∂2
ỹ ṽ (x̃) = ∂x̃ (p̃ − Π̃) and ∂ỹ (p̃ − Π̃) = 0,

as opposed to (1.1.7). Assuming a no-slip condition on the liquid-solid interface, we
obtain the closed equation

∂t u = −∂x
((

u3/3
)
∂x

(
∂2

x u + Π(u)
))

for the film height, see [111], and other mobility exponents result again from slip condi-
tions near the substrate. Inserting (1.4.14) yields the equation

∂t u = −∂x
((

u3/3
)
∂x

(
∂2

x u − φ′(u)
))

(1.4.15)

in terms of the effective interface potential. The latter is nothing but the surface aver-
age of the molecular pair-potentials, e.g., modeling the repulsive and attractive van der
Waals forces by a 6-12 Lennard–Jones potential results in

φ(u) = 1

u8 − 1

u2 + 1. (1.4.16)

The same term as in (1.4.15) arises when including molecular interaction forces in
the stochastic model. Indeed, in the derivation from [78] the interface potential φ is
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Figure 1.8: The effective interface potential (1.4.16).

actually present from the start, because at the length scales of several nanometers, in
which thermal fluctuations are the most relevant, the van der Waals forces play also a
role for the dynamics. The resulting version of (STFE) reads

∂t u = −∂x
(
un∂x (∂2

x u − φ′(u))
) + ∂x (un/2W )

in one spatial dimension.
The additional interaction forces need also to be accounted for when evaluating the

energy of the system. Next to the surface energy considered in Subsection 1.1.2 the po-
tential energy enters the energy of a film profile, which is then given by

Eφ =
�

1
2 |∂x u|2 + φ(u)dx. (1.4.17)

Concerning the positivity of the solution, we make the observation that if Eφ <∞ and x0

is a zero of the profile u, then

u(x) = u(x) − u(x0) ≤
� x

x0

|∂x u|dx ≤ |x −x0|1/2∥∂x u∥L2(T)

by Hölder’s inequality. Hence, assuming that φ(u) ∼ u−ϑ for u near 0, we deduce that
φ(u) admits a non-integrable singularity at x0 if ϑ ≥ 2 contradicting the finiteness of
Eφ. As a consequence, Eφ <∞ implies strict positivity of the film height for sufficiently
repulsive interface potentials.

1.4.3. THE RESULTS OF CHAPTER 5
Finally, we summarize the results of Chapter 5, which is based on the prepint [3]. There,
we apply the well-posedness theory from [5, 6] to stochastic partial differential equations
of the form{

∂t u + div(m(u)∇∆u) = div(Φ(u)∇u) + div(g (u)W ), onΩ× [0,T ]×Td ,

u(0, ·) = u0, on Ω×Td ,
(1.4.18)

in any spatial dimension d ≥ 1 for smooth coefficient functions m : (0,∞) → (0,∞) and
g ,Φ : (0,∞) →R. The temporally white Gaussian noise is vector-valued, i.e.,

W = d

dt

∑
k∈N

ekβ
(k), ek : Td →Rd ,
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and u0 is assumed to be positive and bounded away from 0. Unlike in the previously
discussed results, we interpret (1.4.18) in the sense of Itô. Whence, the Itô interpretation
of (STFE) falls into this class of equations, if we set m(u) = un , g (u) = un/2 and also the
interface potential can be included by definingΦ(u) = m(u)φ′′(u). As pointed out in [75,
107], under reasonable symmetry assumptions on the noise, also the Itô–Stratonovich
correction term of the stochastic thin-film equation can be incorporated in the Φ-term,
so that also its Stratonovich interpretation admits the Itô form (1.4.18).

To apply the theory of [5, 6] we show stochastic maximal Lp -regularity of the linear
part

u(t ) − u0 + div(m(u0)∇∆u) =
� t

0
f d s + ∑

k∈N

� t

0
gk dβ(k)

s (1.4.19)

in suitable function spaces and corresponding estimates on the nonlinearities and the
quasilinear operator. A natural scale of spaces to consider (1.4.19) in are the Bessel-
potential spaces H s,q (Td ) for q ∈ [2,∞) generalizing the Sobolev spaces to fractional
smoothness indices s ∈ R. In this case we consider the linearized thin-film operator
u 7→ div(m(u0)∇∆u) as a mapping from H s+2,q (Td ) → H s−2,q (Td ), while f should lie in
H s−2,q (Td ) and the stochastic perturbation should satisfy gk ∈ H s,q (Td ) for each k ∈N,
analogously to the case discussed in Subsection 1.4.1. To use the full strength of the ab-
stract framework, we consider weighted Lp spaces in time, i.e., the solution u to (1.4.19)
should satisfy � T

0
∥u∥p

H s+2,q (Td )
tκdt < ∞,

almost surely, for p ∈ [2,∞) and κ> 0.
To show these estimates we naturally need to require some assumption on the pa-

rameters (p,κ, s, q) since, for example, if s is too low then the products and nonlineari-
ties may be ill-defined. A particular role is played by the stochastic nonlinearity, since
the smoothness and decay of the family (ek )k∈N as k →∞ determines the spatial regu-
larity of div(g (u)W ) and ultimately of the solution. As part of Chapter 5, we show that
whenever the noise W admits smoothness (1/2+ε) in space for some ε> 0, then there is
a suitable choice of function spaces (or equivalently parameters (p,κ, s, q)) for which a
unique, positive solution to (1.4.18) exists locally in time. We remark that in the stochas-
tic setting the life time of the solution may depend onω, and is therefore given by a stop-
ping time. Moreover since, in contrast to the previously discussed results, no compact-
ness arguments are used, the solution is probabilistically strong, see Subsection 1.2.4 for
a discussion.

As mentioned in Subsection 1.4.1, we can use that the weights tκ become negligi-
ble after an arbitrarily small time to show that the solutions regularize instantaneously
and therefore connect different regularity classes of solutions, if the noise is sufficiently
regular in space. In particular, if W is smooth in space, the local solution to (1.4.18) is
spatially smooth as well.

It remains to prove that the solution can be extended to the whole time interval for
which we consider the setting (p,κ, s, q) = (2,0,1,2) from Subsection 1.4.1, and we re-
quire W accordingly to be two times differentiable in space. Moreover, we consider
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specifically the stochastic thin-film equation with an interface potential{
∂t u = −∂x (un∂3

x u) + ∂x (un∂xφ
′(u)) + ∂x (un/2W ), onΩ× [0,T ]×T,

u(0, ·) = u0, onΩ×T,
(1.4.20)

and restrict ourselves to the one-dimensional situation due to the failure of the Sobolev
embedding (1.4.6) for d > 1.

By the discussed result, we know that there exists a unique, probabilistically strong
solution to (1.4.20) if the initial value is positive and lies in H 1(T), and this argument
can be iterated as long as u remains strictly positive and in the energy space. The latter
follows if we can show that

E

[
sup

0≤t<τ
Eφ(u(t ))

]
< ∞,

for the maximal life time τ of the solution and the energy Eφ of (1.4.20) as defined in
(1.4.17). Indeed, as laid out in the previous subsection Eφ bounds ∥∂x u∥2

L2(T)
and also

yields strict positivity of the profile, at least if φ is sufficiently repulsive. We establish
such an estimate by first closing a version of (Gα-Est) and then of (E -Est) tailored to
the energy Eφ. While in Chapters 2, 3 and 4 the Itô–Stratonovich correction term was
indispensable to close such estimates, the estimates from Chapter 5 apply to both, the Itô
and the Stratonovich interpretation of (1.4.20), since the φ-term also has a regularizing
effect.

As a result, we obtain that (1.4.20) admits unique, strictly positive, probabilistically
strong solutions for n ∈ (0,6) and φ(r ) ∼ rϑ for r ∼ 0 and some ϑ > max{2,6−2n}. The
fact that we require the interface potential to be more repulsive near 0 for small values
of n is due to the increased energy production by the noise coefficient u 7→ un/2, which
is not differentiable at 0 for n < 2. Moreover, while the solution is a-priori analytically
weak, the discussed regularization results yield that

u(t , x) − u0(x) =
� t

0

[−∂x
(
un(s)∂3

x u(s)
) + ∂x

(
un(s)∂x (φ′(u(s)))

)]
(x)ds

+ ∑
k∈N

� t

0
∂x (u(s)ek )(x)dβ(k)

s ,

for all x ∈T whenever u0 and W are smooth enough, i.e., (1.4.20) is then satisfied in the
analytically classical sense.

1.5. FURTHER LITERATURE
Concerning the existence of weak solutions to the deterministic thin-film equation, ad-
ditionally to the aforementioned works [11, 15, 32, 33], we refer to [17, 70, 73] for the
complete wetting regime and to [19, 106, 112] for partial wetting. Moreover, next to the
reviewed a-priori estimates for the thin-film equation, also a modified energy is dissi-
pated by the equation [41, 96]. A list of references on the properties of weak solutions to
the thin-film equation and the strong solution theory can be found in Chapter 6.

Besides the already discussed results [35, 58] on the stochastic thin-film equation, we
should mention the pioneering work [51] on the existence of weak martingale solutions
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to the stochastic thin-film equation. There, based on a spatial discretization of the equa-
tion, the existence of solutions to the Itô interpretation of (1.4.20) with n = 2 is proved.
By letting the interface potential φ appearing in [51] tend to 0, a similiar result to the
one of [58], was derived in [75] by closing additionally α-entropy estimates for the so-
lutions. A version of [51] in the two-dimensional setting was obtained in [107]. Both of
these works share some of their advances with Chapter 2, i.e., the stochastic α-entropy
estimates and the physical dimension d = 2, and were developed independently of [116].
Moreover, a positive result on the finite speed of propagation of a regularized version of
(STFE) is proved in a series of three works starting with [76, 77].

Comments on the stochastic gradient flow structure of (STFE) with spatio-temporal
white noise W can be found in [59], where a corresponding numerical scheme is de-
rived and analyzed. Also regarding the white noise case, an effort to treat (STFE) using
regularity structures was recently initiated in [80], where appropriate counterterms are
provided to give sense to the classically ill-defined nonlinearities.





2
EXISTENCE IN THE

TWO-DIMENSIONAL SETTING†

This chapter is concerned with the construction of very weak martingale solutions to the
Stratonovich interpretation of (STFE) with a quadratic mobility n = 2 in the physically
relevant two-dimensional setting d = 2. The proof is based on a generalization of the
approach of [58] to the case d = 2, i.e., we use a decomposition of the deterministic and
stochastic dynamics.

The higher spatial dimension leads to additional mathematical challenges due to the
reduced gain of integrability after employing the Sobolev embedding theorem. Indeed,
in [58] the control of the surface energy

�
T

|u′|2 dx

suffices to show convergence of the nonlinear terms from the sequence of approximate
solutions. As apparent from the deterministic setting [33], the additional control of the
dissipation terms of the α-entropy

−
�
T2

uα+1 dx, α ∈ (−1,0)

is necessary to deduce convergence of the nonlinear terms in the two-dimensional case.
Hence, to adapt the time splitting approach from [58], we have to additionally control the
α-entropy along the splitting scheme and use the more delicate limiting procedure from
[33] compared to the one-dimensional case [15]. Combining this with the stochastic
compactness method is the key challenge which we overcome in this chapter. Moreover,

†This chapter is based on the article [116]: M. Sauerbrey. "Martingale solutions to the stochastic
thin-film equation in two dimensions". In: Ann. Inst. Henri Poincaré Probab. Stat. 60.1 (2024),
pp. 373–412.
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compared to the independently proven result in [107], where an existence result in the
two-dimensional case based on the dissipation of the entropy

−
�
T2

log(u)dx

is given, we do allow for solutions with a contact line between the fluid film and the solid.

2.1. INTRODUCTION TO CHAPTER 2
In this section, we state and discuss the result of this chapter, we outline the strategy of
its proof and collect the used notation.

2.1.1. MAIN RESULT
We state the existence result which we will prove in the course of this chapter. Choosing
n = d = 2 in (STFE) and interpreting the noise in the Stratonovich sense, we obtain the
SPDE

dut = −div(u2
t ∇∆ut )dt + div(ut ◦dWt ) on T2, (2.1.1)

where Wt is specified as follows. We let (ψl )l∈N be the orthonormal basis in H 2(T2;R2)
consisting of the eigenfunctions to the periodic Laplacian in the first and second com-
ponent respectively, i.e., every ψl is of the form (ξk ,0) or (0,ξk ) for some k ∈Z2, where

ξk (x, y) = ξ̃k1 (x) ξ̃k2 (y)√
1+ (2π|k|)2 + (2π|k|)4

(2.1.2)

and

ξ̃ j (x) =


p

2cos(2π j x), j < 0,

1, j = 0,p
2sin(2π j x), j > 0.

(2.1.3)

Moreover, we letΛ= (λl )l∈N ∈ l 2(N) satisfy the symmetry relation

λl =λl̃ whenever ψl = (ξk ,0) ∧ψl̃ = (0,ξk ) for some k ∈Z2. (2.1.4)

Then

WΛ(t ) =
∞∑

l=1
λlβ

(l )
t ψl (2.1.5)

for independent Brownian motions (β(l ))l∈N defines a centered Gaussian process on
H 2(T2;R2) with the covariance operator Q f = ∑∞

l=1λ
2
l ( f ,ψl )H 2(T2;R)ψl . Inserting WΛ as

the driving process in (2.1.1), writing the Stratonovich integral in Itô form, and writing
J = u2∇∆u in the weak form from [33, Eq. (3.2)] yields the following notion of very weak
martingale solutions to (2.1.1), see also Section 1.2.

Definition 2.1.1. Let T ∈ (0,∞) and q ∈ (2,∞). A very weak martingale solution to (2.1.1)
with q ′-regular nonlinearity on [0,T ] consists out of a filtered probability space satisfy-
ing the usual conditions, a family of independent Brownian motions (β(l ))l∈N, a contin-
uous process (u(t ))t∈[0,T ] in H 1

w (T2) together with a random variable J with values in
L2(0,T ;Lq ′

(T2 ;R2)) such that
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(i) u(t ), J |[0,t ] are Ft -measurable in H 1(T2) and L2(0, t ;Lq ′
(T2;R2)), respectively, for

every t ∈ [0,T ],

(ii) it holds almost surely |∇u| ∈ L3({u > 0}) and

� T

0

�
T2

J ·ηdx dt =
� T

0

�
{u(t )>0}

|∇u|2∇u ·ηdx dt

+
� T

0

�
{u(t )>0}

u|∇u|2 divηdx dt

+ 2

� T

0

�
{u(t )>0}

u∇T uDη∇u dx dt

+
� T

0

�
T2

u2∇u ·∇divηdx dt ,

(2.1.6)

for all η ∈ L∞(0,T ;W 2,∞(T2;R2)),

(iii) and for all ϕ ∈W 1,q (T2) we have

〈u(t ),ϕ〉 − 〈u0,ϕ〉 =
� t

0
−〈div(J ),ϕ〉 ds + 1

2

∞∑
l=1

� t

0
λ2

l 〈div(div(u(s)ψl )ψl ),ϕ〉 ds

+
∞∑

l=1
λl

� t

0
〈div(u(s)ψl ),ϕ〉 dβ(l )

s ,

(2.1.7)

almost surely for all t ∈ [0,T ].

Remark 2.1.2. (i) By the weak continuity in H 1(T2) any solution u in the sense of Def-
inition 2.1.1 satisfies

sup
0≤t≤T

∥u(t )∥H 1(T2) < ∞, (2.1.8)

almost surely.

(ii) The measurability assumption on J in item (i) ensures that all the terms on the
right-hand side of (2.1.7) are adapted. Interpreting J as an element of the distribu-
tion space D′(R×T2;R2), one can equivalently demand that J is adapted toF in the
sense of distributions [25, Definition 2.2.13]. This follows by density of C∞

c ((0, t )×
T2;R2) in L2(0, t ;Lq (T2;R2)), separability of L2(0, t ;Lq ′

(T2;R2)), and the equiva-
lence of weak and Borel measurability in separable Banach spaces [84, Proposition
1.1.1].

In the course of this chapter, we will derive the following existence result.

Theorem 2.1.3. Let µ be a probability distribution on H 1(T2) supported on the non-
negative functions, T ∈ (0,∞), q ∈ (2,∞) and α ∈ (−1,0). Then there exists a very weak
martingale solution to (2.1.1) on [0,T ] with q ′-regular nonlinearity satisfying u(0) ∼ µ.
Moreover,

(i) u(t ) ≥ 0 almost surely for all t ∈ [0,T ],
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(ii) we have for p ∈ (0,∞) the estimates

E

[
sup

0≤t≤T
∥u∥p

H 1(T2)

]
≲Λ,p,T

�
∥ ·∥p

H 1(T2)
dµ, (2.1.9)

E

[
∥J∥

p
2

L2(0,T ;Lq′ (T2;R2))

]
≲Λ,p,q,T

�
∥ ·∥p

H 1(T2)
dµ, (2.1.10)

(iii) and it holds the additional spatio-temporal regularity

u
α+3

2 ∈ L2(0,T ; H 2(T2)) and u
α+3

4 ∈ L4(0,T ;W 1,4(T2)) (2.1.11)

almost surely.

Remark 2.1.4. (i) We point out that we allow for the right-hand sides of (2.1.9) and
(2.1.10) to be infinite, in which case the corresponding estimate trivializes.

(ii) We note that the differential identity

∇u = 4

α+3
u

1−α
4 ∇u

α+3
4 ,

the Sobolev embedding theorem, (2.1.11) and (2.1.8) imply that |∇u| ∈ L4−([0,T ]×
T2) almost surely and hence the integrability condition from Definition 2.1.1 (ii).

2.1.2. DISCUSSION OF THE RESULT
Theorem 2.1.3 generalizes [58, Theorem 1.2] to the setting in two dimensions and is
therefore together with the independently developed result [107, Theorem 3.5] the first
existence result for the stochastic thin-film equation in higher dimension. As in the one-
dimensional case, the time splitting approach is not only suitable to construct solutions
to the stochastic thin-film equation, but suggests a numerical approach for their simu-
lation as well. The assumptionΛ ∈ l 2(N) on the noise (2.1.5) is the same as in [35, 51, 58],
where we refer the reader for an interpretation of the expansion (2.1.5) in terms of a spa-
tial correlation function of the noise to the exposition in [20]. The additionally imposed
symmetry condition (2.1.4) expresses that the coordinate-wise noise processes are dis-
tributed according to the same Gaussian law in H 2(T2). This is a physically reasonable
assumption since the noise is induced by thermal fluctuations and its distribution de-
pends consequently on its position but not on its direction. The same symmetry condi-
tion appears in [107, Eq. (2.19)], where the use of Stratonovich noise is discussed, which
indicates that it is an important assumption to treat the stochastic thin-film equation in
higher dimensions. We point out that in [107], the expansion (2.1.5) in terms of eigen-
functions of the periodic Laplacian is relaxed to a slightly more general assumption.

In contrast to the existence results from the mentioned articles, there is no integra-
bility assumption on the initial distribution required in Theorem 2.1.3. This is achieved
by using a decomposition of the initial value in countably many parts which are each
almost surely bounded in H 1(T2). Then one can construct approximate solutions and
apply tightness arguments for each of these parts separately and add them together af-
terwards. The only important feature of (2.1.1) for this to work is that u(t ) = 0 is a so-
lution to it. We remark that these kind of reductions to bounded or integrable initial
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values are well-known and can be achieved in the setting of probabilistically strong so-
lutions via localization or changing the probability measure, see [6, Proposition 4.13] or
[94, Theorem 6.9.2] for examples. We use the decomposition of the initial value instead,
since it is more compatible with the stochastic compactness method as well as the esti-
mates (2.1.9) and (2.1.10). The moment estimates (2.1.9) and (2.1.10) for p < 2 are also
new for the stochastic thin-film equation and are obtained from the estimates for higher
moments.

2.1.3. OUTLINE AND DISCUSSION OF THE PROOF
In Section 2.2 we review the existence result for very weak solutions to the deterministic
thin-film equation in two dimensions from [33] and state properties of the obtained so-
lutions which are immediate from their construction. Additionally, we show that there is
a measurable solution operator using the measurable selection theorem, which is impor-
tant to combine these results with the stochastic setting. This approach is to the author’s
knowledge new and might be of interest also for other situations, where a measurable
solution operator is required.

In Section 2.3 we consider the regularized Stratonovich SPDE

dut = ε∆ut dt + div(ut ◦dWt ) on T2 (2.1.12)

and establish well-posedness in H 1(T2) using the monotone operator theory for SPDEs.
The coercivity estimates (2.3.7), (2.3.8) are obtained analogously to the one-dimensional
case [58, Eq. (A.9)] and require only some adaptions to multivariable calculus, where the
symmetry condition (2.1.4) is used. Their uniformity in ε is key to letting later on ε↘ 0
and eliminating the regularization term ε∆ut from (2.1.12). We note that this procedure
is well-known and refer the reader to the article [57] and the references therein for more
information on degenerate parabolic SPDEs. However, the general result [57, Theorem
2.1] does not directly apply to

dut = div(ut ◦dWt ) on T2 (2.1.13)

and the coercivity estimates are unique to our particular situation.
In Section 2.4, we start to construct approximate solutions to (2.1.1) by splitting the

stochastic and deterministic dynamics along a time-splitting scheme with step length
δ. Using the properties of the solutions to the deterministic thin-film equation and the
solutions to (2.1.12), we derive estimates on the approximate solutions which are uni-
form in ε and δ. The procedure is analogous to the one-dimensional case, but we note
that we take the slightly different approach to let ε↘ 0 afterwards to be able to apply
Itô’s formula to the whole time splitting scheme. After these estimates are obtained, it
is straightforward to deduce tightness statements on the approximating sequence in ε

and employ the Skorokhod–Jakubowski theorem to obtain an almost surely convergent,
equally distributed subsequence. Usually, the parabolic regularization procedure does
not require to pass to another probability space, see again [57], but it is in our case con-
venient to ensure convergence of the solutions to the deterministic equation as well.

Finally, in Section 2.5, we derive additional estimates on the approximating sequence
by controlling theα-entropy production along the stochastic dynamics by means of Itô’s
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formula. Using the obtained estimates, we show additional tightness properties of pow-
ers of the solution by an adaption of the compactness argument in [33, Lemma 2.5],
which is compatible with our splitting scheme. This line of arguments is unique to the
higher-dimensional setting and distinguishes our approach from the one-dimensional
case. We employ the Skorokhod–Jakubowski theorem once more to let δ↘ 0 and iden-
tify the limit as a solution to (2.1.1) combining the methods from [33, Theorem 3.2] and
[58, Section 5.2]. As a result of the construction the additional estimates (2.1.9), (2.1.10),
and the regularity properties (2.1.11) follow.

The reason to use the time-splitting approach instead of a linear parabolic regular-
ization is that it directly yields non-negative solutions, because the deterministic result
[33] provides non-negative solutions and the regularized stochastic part of the equation
admits a maximum principle. Since we are dealing with a fourth order equation, a linear
parabolic regularization of the whole equation would yield possibly negative solutions,
which lack a reasonable physical interpretation. However, a more delicate, nonlinear
regularization is possible as demonstrated in the one-dimensional case [35] or [75], but
would require a longer proof.

2.1.4. NOTATION FOR CHAPTER 2
We use the notation ≲ to indicate that an inequality holds up to a universal constant and
write ≲p1,... if the constant depends on nothing but the parameters p1, . . . . Similarly, we
write C for a universal constant and Cp1,..., if the constant depends on p1, . . . . We write

Gα(t ) =
� t

1

� s

1
τα−1dτds, α ∈R

for the (mathematical) α-entropy, and point out for later reference that

Gα(t ) = tα+1

α(α+1)
+ rα(t ), t ≥ 0, (2.1.14)

if α ∈ (−1,0), where rα is a first order polynomial. We use classical notation for differen-
tial operators, i.e., write ∇ f , div( f ), ∆ f for the gradient, divergence and Laplacian of a
function or a vector field f , respectively. Moreover, we write H f for the Hessian matrix
and use the notational convention that a differential operator is only applied to the first
function appearing afterwards so that, e.g.,

∇ f g = g (∇ f ), but ∇( f g ) = f (∇g ) + g (∇ f ).

We denote our domain, the 2-torus, byT2. We write Lp (T2), W k,p (T2) and H k (T2) for the
Lebesgue, Sobolev and Bessel-potential spaces on T2 with integrability and smoothness
exponents p,k, where more information on periodic spaces can be found in [119, Section
3]. We note that if k is an integer, we equip H k (T2) with the equivalent W k,2(T2)-inner
product. We write Lp (T2;R2), W k,p (T2;R2) and H k (T2;R2) for the corresponding spaces
of vector fields and equip them with the direct sum norm and set for the special case
p = 2

∥( f1, f2)∥2
L2(T2;R2)

= ∥ f1∥2
L2(T2) + ∥ f2∥2

L2(T2), ∥( f1, f2)∥2
H k (T2;R2)

= ∥ f1∥2
H k (T2)

+ ∥ f2∥2
H k (T2)
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to preserve the Hilbert space structure. We write 〈 f , g 〉 for the dual pairing in L2(T2) and
in L2(T2;R2) depending on f , g being functions or vector fields. If (S,ν) is a measure
space and X is a Banach space, we write Lp (S,ν; X ) for the Bochner space of strongly
measurable, p-integrable, X -valued functions on (S,ν). For details we refer to [84, Sec-
tion 1]. If it is clear which measure is considered, we use also the notation Lp (S; X )
and if S = [s, t ] and ν the Lebesgue measure Lp (s, t ; X ). Moreover, we write C ([0,T ]; X ),
H 1(0,T ; X ), Cγ(0,T ; X ) and W γ,p (0,T ; X ), for the space of continuous functions, first-
order Sobolev space, Hölder and Sobolev-Slobodeckij space on [0,T ] with values in X ,
where we will only consider fractional exponents γ ∈ (0,1). The corresponding Hölder
semi-norm is denoted by [·]γ,X and for precise definitions of these spaces we refer to [9,
Section 2]. If a Banach space X is considered with its weak or weak-* topology, we ex-
press this by writing Xw or Xw∗ respectively. Lastly we mention that we write L(H1, H2)
and L2(H1, H2) for the space of bounded linear operators and Hilbert–Schmidt operators
between two Hilbert spaces H1 and H2, respectively.

2.2. THE DETERMINISTIC THIN-FILM EQUATION
In this section we summarize the existence result for very weak solutions to the deter-
ministic thin-film equation in the special case of quadratic mobility

∂t v = −div(v2∇∆v) (2.2.1)

from [33]. Moreover, we show that the solutions can be chosen in a measurable way,
which will be important later. We remark that in [33] solutions to (2.2.1) are constructed
on a domain with Neumann boundary conditions, but the arguments translate verbatim
to the periodic setting. First, we recall the definition of very weak solutions to (2.2.1) from
[33, Definition 3.1].

Definition 2.2.1. Let q ∈ (2,∞) and T > 0. A very weak solution to the (deterministic)
thin-film equation on [0,T ] with q ′-regular nonlinearity is a tuple

(v, J ) ∈ L∞(0,T ; H 1(T2))∩H 1(0,T ;W −1,q ′
(T2)) × L2(0,T ;Lq ′

(T2;R2)),

such that ∂t v =−div J in L2(0,T ;W −1,q ′
(T2)), |∇v | ∈ L3({v > 0}) and

� T

0

�
T2

J ·ηdx dt =
� T

0

�
{v(t )>0}

|∇v |2∇v ·ηdx dt

+
� T

0

�
{v(t )>0}

v |∇v |2 divηdx dt

+ 2

� T

0

�
{v(t )>0}

v ∇T vDη∇v dx dt

+
� T

0

�
T2

v2∇v ·∇divηdx dt

(2.2.2)

for all η ∈ L∞(0,T ;W 2,∞(T2;R2))).
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Remark 2.2.2. By Rellich’s theorem, see [1, Theorem 6.3, p.168], and the Aubin-Lions
lemma [121, Corollary 5] there is a compact embedding

L∞(0,T ; H 1(T2))∩H 1(0,T ;W −1,q ′
(T2)) ,→ C ([0,T ];Lr (T2))

for any r ∈ [1,∞). In the following, we will always identify a solution to the thin-film
equation with its Lr (T2)-continuous version. By [24, Lemma II.5.9] this version is weakly
continuous as a mapping with values in H 1(T2).

The identity (2.2.2) is a weak formulation of J = u2∇∆u. The following existence
statement is given in [33, Theorem 3.2], where we add some quantitative estimates which
follow from the construction in [33] and are proved in detail in Appendix 2.A.

Theorem 2.2.3. Let v0 ∈ H 1(T2) be non-negative, q ∈ (2,∞), T > 0 and α ∈ (−1,0). Then
there exists a very weak solution (v, J ) to the thin-film equation on [0,T ] with q ′-regular
nonlinearity and v(0) = v0, which satisfies the following properties for universal constants
0 <Cα,Cq <∞.

(i) We have for all t ∈ [0,T ] that�
T2

v(t , ·)dx =
�
T2

v0 dx and v(t , ·) ≥ 0.

(ii) It holds the energy estimate

sup
0≤t≤T

∥∇v(t )∥L2(T2;R2) ≤ ∥∇v0∥L2(T2;R2).

(iii) It holds that

∥J∥2
L2(0,T ;Lq′ (T2;R2))

+ Cq∥∇v(T )∥2
L2(T2;R2)

(
∥∇v(T )∥2

L2(T2;R2)
+

∣∣∣∣�
T2

v0 dx

∣∣∣∣2)
≤ Cq∥∇v0∥2

L2(T2;R2)

(
∥∇v0∥2

L2(T2;R2)
+

∣∣∣∣�
T2

v0 dx

∣∣∣∣2)
.

(iv) We have the α-entropy estimate
�
T2

Gα(v(T, ·))dx + 1

Cα

� T

0

�
T2

|H v
α+3

2 |2 +|∇v
α+3

4 |4 dx dt ≤
�
T2

Gα(v0)dx.

The following result can be proved along the lines of [33, Lemma 2.5, Proposition 2.6,
Corollary 2.7, Theorem 3.2].

Proposition 2.2.4. Let q ∈ (2,∞), T > 0 and (vn , Jn)n∈N be a sequence of non-negative
very weak solutions to the deterministic thin-film equation on [0,T ] with q ′-regular non-

linearity. Assume that there is anα ∈ (−1,0) such that vn , Jn , v
α+3

2
n and v

α+3
4

n are uniformly
bounded in

L∞(0,T ; H 1(T2)), L2(0,T ;Lq ′
(T2;R2)), L2(0,T ; H 2(T2)), L4(0,T ;W 1,4(T2)) (2.2.3)

respectively. Then for a subsequence we have
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(i) vn *
∗ v in L∞(0,T ; H 1(T2)),

(ii) Jn * J in L2(0,T ;Lq ′
(T2;R2)),

(iii) v
α+3

2
n * v

α+3
2 in L2(0,T ; H 2(T2)),

(iv) v
α+3

4
n * v

α+3
4 in L4(0,T ;W 1,4(T2))

and the limit (v, J ) is a non-negative very weak solution to the thin-film equation with
q ′-regular nonlinearity.

Finally, we give proof to the existence of a measurable solution operator. To this end,
we define the set Xq,T as the topological product of the spaces (2.2.3) equipped with
the respective weak and weak-* topologies. Moreover, we write BX (r ) for the ball in X
centered at the origin with radius r , if X is a normed space.

Corollary 2.2.5. Let q ∈ (2,∞), T > 0 and α ∈ (−1,0). There is a Borel-measurable map-
ping

Sα,q,T :
{

v0 ∈ H 1(T2)|v0 ≥ 0
}→Xq,T , v0 7→ (v, J , v

α+3
2 , v

α+3
4 ), (2.2.4)

which assigns to every initial value a very weak solution to the thin-film equation on [0,T ],
which satisfies the properties (i)–(iv) of Theorem 2.2.3.

Proof. We define for v0 in the domain of (2.2.4) the set of all very weak solutions to the
stochastic thin-film equation with initial value v0 and q ′-regular nonlinearity satisfying
(i)–(iv) from Theorem 2.2.3 together with its corresponding powers by Sol(v0) ⊂ Xq,T .
We write Xi for the i -th space in (2.2.3) and observe that if ∥v0∥H 1(T2) ≤ n for some n ∈N
the a-priori bounds of Theorem 2.2.3 yield that

Sol(v0) ⊂ X (n)
q,T :=

4×
i=1

BXi (ri ,n)

for suitably chosen ri ,n . We equip each BXi (ri ,n) again with the weak (weak-*) topology of

the respective space Xi and X (n)
q,T with the resulting product topology. We note that each

BXi (ri ,n) is metrizable by the separability of the (pre-) dual of Xi , see [84, Proposition

1.2.29, Corollary 1.3.22] and consequently also the topological product X (n)
q,T . Moreover,

X (n)
q,T is compact as a consequence of Tychonoff’s and the Banach-Alaoglu theorem and

therefore in particular a Polish space. Let (v0, j ) j∈N be a sequence in{
v0 ∈ H 1(T2)|v0 ≥ 0,∥v0∥H 1(T2) ≤ n

}
converging to v0,∗ in H 1(T2) and

(v j , J j , v
α+3

2
j , v

α+3
4

j ) ∈ Sol(v0, j ). (2.2.5)

Then the measurable selection theorem as in [45, Corollary 103, p.506] yields a Borel-
measurable solution map

S (n)
α,q,T :

{
v0 ∈ H 1(T2)|v0 ≥ 0,∥v0∥H 1(T2) ≤ n

}→X (n)
q,T ,

v0 7→ (v, J , v
α+3

2 , v
α+3

4 ) ∈ Sol(v0),
(2.2.6)
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if we can verify that a subsequence of

(v j , J j , v
α+3

2
j , v

α+3
4

j ) j∈N

converges to an element of Sol(v0,∗). Since (2.2.5) lies in X (n)
q,T , its components are uni-

formly bounded in (2.2.3). Therefore, we can apply Proposition 2.2.4 and obtain that

(v j , J j , v
α+3

2
j , v

α+3
4

j ) → (v, J , v
α+3

2 , v
α+3

4 )

for a subsequence in X (n)
q,T , where (v, J ) is a non-negative very weak solution to the thin-

film equation with q ′-regular nonlinearity. By [121, Corollary 5] we deduce that v j →
v in C ([0,T ];L2(T2)) and in particular v j (0) → v(0) in L2(T2). Consequently we must
have v(0) = v0,∗. By lower semi-continuity of the norm with respect to weak and weak-*
convergence we deduce that (v, J ) satisfies all the properties (i)–(iv) of Theorem 2.2.3 and
therefore

(v, J , v
α+3

2 , v
α+3

4 ) ∈ Sol(v0,∗).

Hence, the measurable selection theorem indeed yields a Borel measurable map (2.2.6).
Finally, we define Sα,q,T v0 =S (n)

α,q,T v0 if n −1 ≤ ∥v0∥ < n. Since balls in H 1(T2) are Borel
sets, Sα,q,T has the desired properties.

2.3. THE REGULARIZED LINEAR STRATONOVICH SPDE IN THE

ENERGY SPACE
In this section we show that the regularized version of the stochastic part in (2.1.1)

dwt = ε∆wt dt + div(wt ◦dWt ) (2.3.1)

is well-posed using the variational approach to SPDEs [100, Chapter 4]. A key ingredient
to checking the sufficient conditions for well-posedness is the spatial isotropy condition
on the noise (2.1.4). Throughout this section, we fix a filtered probability space (Ω,A,P)
satisfying the usual conditions with a sequence of independent real-valued Brownian
motions (β(l ))l∈N and an ε ∈ (0,1). The main statement of this section reads as follows.

Theorem 2.3.1. Let p ∈ [2,∞), T ∈ [0,∞) and w0 ∈ Lp (Ω; H 1(T2)) be F0-measurable.
Then there exists a unique continuous, adapted H 1(T2)-valued process w such that w ∈
L2([0,T ]×Ω; H 2(T2)) and

w(t ) = w0 +
� t

0
ε∆w(s) + 1

2

∞∑
l=1

λ2
l div(div(w(s)ψl )ψl )ds +

∞∑
l=1

λl

� t

0
div(w(s)ψl )dβ(l )

s

(2.3.2)
for every t ∈ [0,T ]. Moreover, w satisfies

E

[
sup

0≤t≤T
∥w(t )∥p

H 1(T2)

]
≲p,T E

[
∥w0∥p

H 1(T2)

]
, (2.3.3)

almost surely we have �
T2

w(t )dx =
�
T2

w0 dx (2.3.4)

and if w0 ≥ 0 also w(t ) ≥ 0 for all t ∈ [0,T ].
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Remark 2.3.2. We convince ourselves that all the terms from (2.3.2) are well-defined. By
(2.1.2) it holds

sup
|α|≤2

sup
k∈Z2

∥∂αξk∥L∞(T2) < ∞. (2.3.5)

and therefore we have

∥div(div(wψl )ψl )∥L2(T2) ≲ ∥w∥H 2(T2) and ∥div(wψl )∥H 1(T2) ≲ ∥w∥H 2(T2), (2.3.6)

for every w ∈ H 2(T2). Using the first estimate we derive that

E

[� T

0

∥∥∥∥∥ε∆w(t ) + 1

2

∞∑
l=1

λ2
l div(div(wψl )ψl )

∥∥∥∥∥
2

L2(T2)

dt

]
≲Λ ∥w∥2

L2([0,T ]×Ω;H 2(T2)),

and consequently the deterministic integral in (2.3.2) exists almost surely as a Bochner
integral in L2(T2). Using the second estimate from (2.3.6), one derives by the martingale
moment inequality and Itô’s isometry that

E

[
sup

0≤t≤T

∥∥∥∥∥ m∑
l=n

λl

� t

0
div(w(s)ψl )dβ(l )

s

∥∥∥∥∥
2

H 1(T2)

]

≲ E

[∥∥∥∥∥ m∑
l=n

λl

� T

0
div(w(t )ψl )dβ(l )

t

∥∥∥∥∥
2

H 1(T2)

]

= E

[
m∑

l=n
λ2

l

� T

0

∥∥div(w(t )ψl )
∥∥2

H 1(T2) dt

]

≲

(
m∑

l=n
λ2

l

)
∥w∥2

L2([0,T ]×Ω;H 2(T2))

and the latter part converges to 0 as n,m →∞. Therefore, the series of stochastic inte-
grals in (2.3.2) converges to a continuous square-integrable martingale in H 1(T2).

In order to treat the equation (2.3.2) within the variational setting [100, Chapter 4],
we introduce the operators

Aε : H 2(T2) → L2(T2), w 7→ ε∆w + 1

2

∞∑
l=1

λ2
l div(div(wψl )ψl ),

B : H 2(T2) → L2(H 2(T2;R2), H 1(T2)), w 7→
[

v 7→
∞∑

l=1
λl (v,ψl )H 2(T2 ;R2) div(wψl )

]
.

As in Remark 2.3.2 we conclude that the operators Aε and B are well-defined, linear and
bounded. In the following lemma we verify coercivity of (Aε,B). Its proof is similar to [58,
Lemma A.3], but nevertheless contained to stress the necessity of assumption (2.1.4).

Lemma 2.3.3. There exists a constant CΛ <∞ such that

2〈Aεw, w〉 +
∞∑

l=1

∥∥B(w)[ψl ]
∥∥2

L2(T2) ≤ CΛ∥w∥2
L2(T2) − 2ε∥w∥2

H 1(T2), (2.3.7)
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2〈∇Aεw,∇w〉 +
∞∑

l=1

∥∥∇B(w)[ψl ]
∥∥2

L2(T2;R2) ≤ CΛ∥w∥2
H 1(T2) − 2ε∥∇w∥2

H 1(T2;R2)
(2.3.8)

for all w ∈ H 2(T2).

Proof. By continuity of the involved operators, it suffices to verify (2.3.7) and (2.3.8) for
w ∈C∞(T2). We first observe that

〈Aεw, w〉 = −ε∥∇w∥2
L2(T2;R2) −

1

2

∞∑
l=1

λ2
l 〈div(wψl )ψl ,∇w〉

= −ε∥∇w∥2
L2(T2;R2) −

1

2

∞∑
l=1

λ2
l ∥ψl ·∇w∥2

L2(T2) +
1

4

∞∑
l=1

λ2
l 〈w2,div(div(ψl )ψl )〉 ,

where we have used the identity 1
2∇w2 = w∇w in the second line. Utilizing the same

identity again, we obtain∥∥B(w)[ψl ]
∥∥2

L2(T2) = λ2
l ∥div(wψl )∥2

L2(T2)

= λ2
l

(
∥ψl ·∇w∥2

L2(T2) +2〈w∇w,div(ψl )ψl 〉+〈w2,div(ψl )2〉
)

= λ2
l

(
∥ψl ·∇w∥2

L2(T2) −〈w2,ψl ·∇div(ψl )〉
)

.

Considering the bound (2.3.5) we can calculate

2〈Aεw, w〉 +
∞∑

l=1

∥∥B(w)[ψl ]
∥∥2

L2(T2)

= −2ε∥∇w∥2
L2(T2;R2) +

1

2

∞∑
l=1

λ2
l 〈w2,div(div(ψl )ψl )−ψl ·∇div(ψl )〉

≤ CΛ∥w∥2
L2(T2) − 2ε∥∇w∥2

L2(T2;R2)

for a suitable constant CΛ <∞. Enlarging CΛ by 2 yields (2.3.7). For (2.3.8) we observe
that

〈∇Aεw,∇w〉 = −1

2

∞∑
l=1

λ2
l 〈div(div(wψl )ψl ),∆w〉 − ε∥∆w∥2

L2(T2).

To further analyze the involved series, we setµk =λl in the situation of (2.1.4) and rewrite

−1

2

∞∑
l=1

λ2
l 〈div ·(div(wψl )ψl ),∆w〉 = −1

2

∑
k∈Z2

µ2
k 〈div(ξk∇(wξk )),∆w〉 .

Before moving on, we notice that

ξ̃2
j (x)

(2.1.3)=


1+cos(4π j x), j < 0,

1, j = 0,

1−cos(4π j x), j > 0

(2.3.9)

and therefore

ξ2
k (x, y) =

ξ̃2
k1

(x) ξ̃2
k2

(y)

1+ (2π|k|)2 + (2π|k|)4
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yields the bound
sup
|α|≤4

sup
k∈Z2

∥∂αξ2
k∥L∞(T2) < ∞.

Using this estimate, the product rule for∆, integration by parts, as well as the differential
identities

∇(∇ f ·∇g ) = H f ∇g +H g∇ f and H f ∇ f = 1

2
∇|∇ f |2, (2.3.10)

we calculate

〈div(ξk∇(wξk )),∆w〉 = 〈∇ξk ·∇(wξk )+ξk∆(wξk ),∆w〉
= 〈ξ2

k∆w + 3

2
∇w ·∇ξ2

k +
1

2
w∆ξ2

k ,∆w〉

= ∥ξk∆w∥2
L2(T2) −

3

2
〈H w∇ξ2

k +Hξ2
k∇w,∇w〉+ 1

2
〈∆ξ2

k ,
1

2
∆w2 −∇w ·∇w〉

≥ ∥ξk∆w∥2
L2(T2) +

3

4
〈∆ξ2

k , |∇w |2〉+ 1

2
〈∆2ξ2

k , w2〉−C∥w∥2
H 1(T2)

≥ ∥ξk∆w∥2
L2(T2) −C∥w∥2

H 1(T2).

Here, we have enlarged the constant C < ∞ from the second last to the last line. Con-
cerning the other summand in (2.3.8), we observe that by integration by parts

∥∇B(w)[(ξk ,0)]∥2
L2(T2;R2)

= µ2
k∥∇∂1(wξk )∥2

L2(T2;R2)
= µ2

k 〈∆(wξk ),∂11(wξk )〉 .

Rewriting the expression ∥∇B(w)[(0,ξk )]∥2
L2(T2;R2)

analogously yields that

∥∇B(w)[(ξk ,0)]∥2
L2(T2;R2)

+∥∇B(w)[(0,ξk )]∥2
L2(T2;R2)

= µ2
k∥∆(wξk )∥2

L2(T2).

Using again the product rule for ∆, the bound (2.3.5), integration by parts and the for-
mulas from (2.3.10), we can estimate the latter term by

∥∆(wξk )∥2
L2(T2) = ∥ξk∆w +2∇w ·∇ξk +w∆ξk∥2

L2(T2)

= ∥ξk∆w∥2
L2(T2) +∥2∇w ·∇ξk +w∆ξk∥2

L2(T2) + 2〈ξk∆w,2∇w ·∇ξk +w∆ξk〉
≤ ∥ξk∆w∥2

L2(T2) +C∥w∥2
H 1(T2) −2〈∇w,∇ [ξk w∆ξk +2ξk∇w ·∇ξk ]〉

= ∥ξk∆w∥2
L2(T2) +C∥w∥2

H 1(T2) −2〈∇w,ξk∆ξk∇w +w∇[ξk∆ξk ]〉
−4〈∇w, (∇ξk ⊗∇ξk )∇w +ξk H w∇ξk +ξk Hξk∇w〉

≤ ∥ξk∆w∥2
L2(T2) +C∥w∥2

H 1(T2) +〈w2,∆(ξk∆ξk )〉+2〈|∇w |2,div(ξk∇ξk )〉
≤ ∥ξk∆w∥2

L2(T2) +C∥w∥2
H 1(T2).

We enlarged again the constant C < ∞ from line to line. Moreover, in the last line we
have employed that

∥∆(ξk∆ξk )∥L∞(T2) = (2π|k|)2∥∆ξ2
k∥L∞(T2) ≤

2(2π|k|)2(4π|k|)2

1+ (2π|k|)2 + (2π|k|)4 ≤ 8
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by ∆ξk =−(2π|k|2)ξk and (2.3.9). Combining all the previous estimates we finally obtain
that

2〈∇Aεw,∇w〉+
∞∑

l=1

∥∥∇B(w)[ψl ]
∥∥2

L2(T2;R2)

≤ −2ε∥∆w∥2
L2(T2) −

∑
k∈Z2

µ2
k

[
∥ξk∆w∥2

L2(T2) −C∥w∥2
H 1(T2)

]
+ ∑

k∈Z2

µ2
k

[
∥ξk∆w∥2

L2(T2) +C∥w∥2
H 1(T2)

]
≤ CΛ∥w∥2

H 1(T2) −2ε∥∆w∥2
L2(T2).

We arrive at (2.3.8) by enlarging CΛ by 2.

Proof of Theorem 2.3.1. The existence and uniqueness assertion follows, if we verify the
assumptions of [100, Theorem 4.2.4] on the couple (Aε,B) considered on the Gelfand
triple

H 2(T2) ⊂ H 1(T2) ⊂ L2(T2).

Here we equip H 2(T2) with the equivalent Bessel-potential norm to ensure that the usual
norm in L2(T2) coincides with the norm of the dual of H 2(T2) under the pairing in
H 1(T2), for details see Appendix 2.B. Hemicontinuity and boundedness of Aε follow
from Aε ∈ L(H 2(T2),L2(T2)). Coercivity is obtained by adding (2.3.7) and (2.3.8) together.
By linearity, coercivity implies weak monotonicity. The proof of (2.3.3) translates verba-
tim from the one-dimensional case [58, Proposition A.2] and (2.3.4) follows from testing
(2.3.2) with 1T2 . The claim regarding non-negativity of w is a consequence of the max-
imum principle for second-order parabolic SPDEs [95, Theorem 4.3], which holds by
analogous reasoning also on T2.

2.4. TIME DISCRETIZATION SCHEME WITH DEGENERATE LIMIT
In this section we fix N ∈N. The goal of this section is to construct for a given end time
T and an initial value u0 a (very) weak martingale solution to the split-up problem

u(t ) = v(2(t − jδ)+ jδ), jδ≤ t < ( j + 1
2 )δ,

u(t ) = w(2(t − ( j + 1
2 )δ)+ jδ), ( j + 1

2 ) ≤ t < ( j +1)δ,

∂t v = −div(v2∇∆v), on [ jδ, ( j +1)δ),

dwt = div(wt ◦dWt ), on [ jδ, ( j +1)δ),

where δ = T
N+1 and j ∈ {0, . . . , N }. Starting at the initial value u0 the process u(t ) sat-

isfies alternately the deterministic thin-film equation and the purely stochastic equa-
tion (2.1.13) on time intervals of length δ

2 and yields thus a time splitting scheme for the
stochastic thin-film equation (2.1.1). During the construction we derive bounds which
are uniform in N , and will be important in the final section, where we take the time
step limit N →∞ to construct a solution to the original problem. We refer the interested
reader for more information on the time-splitting procedure to [81]. The main statement
of this section is the following.
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Theorem 2.4.1. Let T ∈ (0,∞), q ∈ (2,∞) and α ∈ (−1,0). We assume that u0 is a non-
negative random variable in H 1(T2) and set R(k) = {k − 1 ≤ ∥u0∥H 1(T2) < k} and u(k)

0 =
1R(k) u0 for every k ∈ N. Then there exists a probability space (Ω̃,Ã, P̃) with a filtration F̃
satisfying the usual conditions, a family of independent Brownian motions (β̃(l ))l∈N, ran-
dom variables 1R̃(k) , H 1

w (T2)-continuous processes ũ(k) and L2(0,T ;Lq ′
(T2;R2))-valued

random variables J̃ (k) for k ∈ N, such that ũ(k), J̃ (k) and the processes ṽ (k) and w̃ (k) de-
fined by {

ũ(k)(t ) = ṽ (k)(2(t − jδ)+ jδ), jδ≤ t < ( j + 1
2 )δ,

ũ(k)(t ) = w̃ (k)(2(t − ( j + 1
2 )δ)+ jδ), ( j + 1

2 ) ≤ t < ( j +1)δ

satisfy the following.

(i) The sequence (1R̃(k) , ũ(k)(0))k∈N has the same distribution as (1R(k) ,u(k)
0 )k∈N, in par-

ticular we have
∑∞

k=1 ũ(k)(0) ∼ u0. Moreover, ũ(k) and J̃ (k) are P̃-almost surely zero

outside of the set R̃(k).

(ii) ũ(k)(t ) and J̃ (k)|[0,t ] are F̃t -measurable in H 1(T2) and L2(0, t ;Lq ′
(T2;R2)) for every

t ∈ [0,T ] and k ∈N.

(iii) The tuples (ṽ (k), J̃ (k)) are P̃-almost surely solutions to the deterministic thin-film
equation on [ jδ, ( j + 1)δ) satisfying property (iv) from Theorem 2.2.3 with initial
value ũ(k)( jδ) for every j = 0, . . . , N .

(iv) For k ∈N, ϕ ∈ H 1(T2) and t ∈ [ jδ, ( j +1)δ) we have that

〈w̃ (k)(t ),ϕ〉 − 〈w̃ (k)( jδ),ϕ〉 = 1

2

∞∑
l=1

λ2
l

� t

jδ
〈div(div(w̃ (k)(s)ψl )ψl ),ϕ〉 ds

+
∞∑

l=1
λl

� t

jδ
〈div(w̃ (k)(s)ψl ),ϕ〉 dβ(l )

s .

(v) For every k ∈N, p ∈ (0,∞) we have

Ẽ

[
sup

0≤t≤T
∥ũ(k)∥p

H 1(T2)

]
≲Λ,p,T E

[
∥u(k)

0 ∥p
H 1(T2)

]
,

Ẽ

[
∥ J̃ (k)∥

p
2

L2(0,T ;Lq′ (T2;R2))

]
≲Λ,p,q,T E

[
∥u(k)

0 ∥p
H 1(T2)

]
.

(vi) Moreover, for any γ ∈ (0, 1
2 ) and K ∈ (1,∞) it holds

P̃

({[
ũ(k)

]
γ,W −1,q′ (T2)

> K

})
≲Λ,q,γ,T

1+E
[
∥u(k)

0 ∥2
H 1(T2)

]
K

.

2.4.1. CONSTRUCTION AND ANALYSIS OF A REGULARIZED SCHEME

Let u0 ∈ L∞(Ω; H 1(T2)) be non-negative. Up to extension and completion of the proba-
bility space we can assume that there exists a filtration F satisfying the usual conditions
with a family of independent Brownian motions (β(l ))l∈N such that u0 is F0-measurable.
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Remark 2.4.2. The construction with initial value u0 within this subsection will in Sub-
section 2.4.2 be applied to each of the cut-off parts u(k)

0 from Theorem 2.4.1. This justifies
the strong assumption u0 ∈ L∞(Ω; H 1(T2)) here.

We fix for the rest of this subsection also T ∈ (0,∞), q ∈ (2,∞), α ∈ (−1,0), ε ∈ (0,1)
and apply the operator Sα,q,δ from Corollary 2.2.5 to the initial value u0. We define
vε|[0,δ), Jε|[0,δ) as the version of the solution which is in C ([0,δ];L2(T2)) and in particu-
lar continuous in H 1

w (T2), see Remark 2.2.2. Moreover, we define wε|[0,δ) as the solution
to (2.3.2) with initial value limt↗δ vε(t ). Notice that since vε|[0,δ) fulfills the properties (i)
and (ii) of Theorem 2.2.3, we have

E

[
∥ lim

t↗δ
vε∥p

H 1(T2)

]
≲E

[
∥u0∥p

H 1(T2)

]
for any p ∈ [2,∞), and therefore Theorem 2.3.1 is indeed applicable and yields a non-
negative solution wε|[0,δ). In particular, the terminal value limt↗δ wε(t ) lies again in
Lp (Ω; H 1(T2)). We repeat this and obtain inductively very weak solutions v |[ jδ,( j+1)δ) to
(2.2.1) and variational solutions wε|[ jδ,( j+1)δ) to (2.3.1) for j ∈ {1, . . . , N }. Finally, we define
the H 1

w (T2)-continuous, adapted process

uε(t ) =
{

vε(2(t − jδ)+ jδ), jδ≤ t < ( j + 1
2 )δ,

wε(2(t − ( j + 1
2 )δ)+ jδ), ( j + 1

2 ) ≤ t < ( j +1)δ.

for t ∈ [0,T ). We note that we set for the final time uε(T ) = limt↗δ wε(t ). The divergence
form of (2.2.1), (2.3.1), and an application of Itô’s formula yield the following estimates
along the whole time-splitting scheme.

Lemma 2.4.3. It holds almost surely that

�
T2

uε(t )dx =
�
T2

u0 dx. (2.4.1)

for all t ∈ [0,T ]. Moreover, we have additionally

E

[
sup

0≤t≤T
∥uε∥p

H 1(T2)

]
≲Λ,p,T E

[
∥u0∥p

H 1(T2)

]
(2.4.2)

for p ∈ (0,∞).

Proof. The equality (2.4.1) follows from its respective counterparts from Theorem 2.2.3
(i) and (2.3.4). Next, we apply Itô’s formula to the composition of ∥∇ · ∥2

L2(T2;R2)
with the

process wε, which yields that

∥∇wε(t )∥2
L2(T2;R2)

= ∥∇wε( jδ)∥2
L2(T2;R2)

+2

� t

jδ
〈∇wε(s),∇Aε(wε(s))〉 ds

+
∞∑

l=1
λl

� t

jδ
2〈∇div(wε(s)ψl ),∇wε(s)〉 dβl

s +
∞∑

l=1
λ2

l

� t

jδ
∥∇div(wε(s)ψl )∥2

L2(T2;R2)
ds.

(2.4.3)
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for t ∈ [ jδ, ( j+1)δ). A justification of the applicability of Itô’s formula is given in Appendix
2.C. As pointed out in (2.C.6), the martingale given by the series of stochastic integrals,
which we denote by M2, j , has quadratic variation

4
∞∑

l=1
λ2

l

� t

jδ
〈∇div(wε(s)ψl ),∇wε(s)〉2 ds.

Combining (2.4.3) with (2.3.8) we conclude that

∥∇wε(t )∥2
L2(T2;R2)

− ∥∇wε( jδ)∥2
L2(T2;R2)

−M2, j (t ) ≲Λ

� t

jδ
∥wε(s)∥2

H 1(T2) ds

and for the endpoint t = ( j +1)δ

∥∇vε(( j +1)δ)∥2
L2(T2;R2)

− ∥∇wε( jδ)∥2
L2(T2;R2)

−M2, j (( j +1)δ))

≲Λ

� ( j+1)δ

jδ
∥wε(s)∥2

H 1(T2) ds.
(2.4.4)

By Theorem 2.2.3 (ii) we have

∥∇wN ,ε( jδ)∥2
L2(T2;R2)

≤ ∥∇vN ,ε( jδ)∥2
L2(T2;R2)

,

so that a telescoping sum argument yields

∥∇wε(t )∥2
L2(T2;R2)

− ∥∇u0∥2
L2(T2;R2)

−M2(t ) ≲Λ

� t

0
∥wε(s)∥2

H 1(T2) ds (2.4.5)

for t ∈ [0,T ]. The appearing process M2 is defined by the sum of orthogonal martingales

M2(t ) =
j−1∑
k=0

M2,k ((k +1)δ) + M2, j (t ), t ∈ [ jδ, ( j +1)δ)

and has therefore quadratic variation

4
∞∑

l=1
λ2

l

� t

0
〈∇div(wε(s)ψl ),∇wε(s)〉2 ds.

For p ≥ 2 we deduce from (2.4.5) with help of the inequality (a+b+c)
p
2 ≲p a

p
2 +b

p
2 +c

p
2

and the Burkholder–Davis–Gundy inequality that
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+
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0
〈∇div(wε(s)ψl ),∇wε(s)〉2 ds

) p
4
]

.

(2.4.6)

To estimate the latter expression we observe that

∇div(wψl ) = H wψl + Dψl∇w + w∇divψl + div(ψl )∇w
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and due to (2.3.5) and (2.3.10) consequently∣∣〈∇div(wψl ),∇w〉∣∣ ≲ ∥∇w∥L2(T2;R)∥w∥H 1(T2), (2.4.7)

for w ∈ H 2(T2). We conclude with help of Young’s inequality that

E

[(� t

0
〈∇div(wε(s)ψl ),∇wε(s)〉2 ds

) p
4
]
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p
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0
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H 1(T2) ds

) p
4
]

≤ κ

2
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]
+ 1

2κ
E

[(� t

0
∥wε(s)∥2

H 1(T2) ds

) p
2
]

for any κ> 0. An appropriate choice of κ and (2.4.6) yield that

1

2
E
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]
− CpE
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L2(T2;R)

]
≲Λ,p E

[(� t

0
∥wε(s)∥2

H 1(T2) ds

) p
2
]

≲p,T E

[� t

0
∥wε(s)∥p

H 1(T2)
ds

]
≲p E

[(� t

0

(�
T2

u0 dx

)p

+ ∥∇wε(s)∥p

L2(T2;R2)
ds

)]
≲T E

[
∥u0∥p

L2(T2)

]
+
� t

0
E

[
sup

0≤τ≤s
∥∇wε(τ)∥p

L2(T2;R2)

]
ds.

We additionally employed Jensen’s and the Poincaré inequality here. Because of u0 ∈
Lp (Ω; H 1(T2)), the monotone function

t 7→ E

[
sup

0≤s≤t
∥∇wε(s)∥p

L2(T2;R2)

]
takes finite values by (2.3.3) and Theorem 2.2.3 (i), (ii) and therefore an application of
Grönwall’s inequality yields

E

[
sup

0≤s≤T
∥∇wε(s)∥p

L2(T2;R2)

]
≲Λ,p,T E

[
∥u0∥p

H 1(T2)

]
(2.4.8)

In order to obtain the above inequality also for p ∈ (0,2) we observe that 1R uε coincides
with the process uε,R obtained by constructing the splitting scheme with initial value
1R u0 for R ∈F0. Indeed, from the properties in Theorem 2.2.3 (i) we conclude that Sα,q,δ

maps 0 to the solution which is 0 for all times. Consequently, we have

vε,R |[0,δ) = 1R vε|[0,δ) and wε,R (0) = 1R wε(0).

Therefore wε,R |[0,δ) and 1R wε|[0,δ) are both solutions to (2.3.2) and have the same initial
value so that w (R)

ε |[0,δ) = 1R wε|[0,δ). It is left to apply the uniqueness statement from The-
orem 2.3.1 and repeat these arguments on [ jδ, ( j +1)δ) for j = 1, . . . N . Hence applying
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(2.4.8) to wε,R with exponent p = 2 yields

E

[
1R sup

0≤s≤T
∥∇wε(s)∥2

L2(T2;R2)

]
≲Λ,T E

[
1R∥u0∥2

H 1(T2)

]
.

Since R ∈F0 was arbitrary, it follows that

E

[
sup

0≤s≤T
∥∇wε(s)∥2

L2(T2;R2)

∣∣∣∣F0

]
≲Λ,T ∥u0∥2

H 1(T2).

For p ∈ (0,2) we can use Jensen’s inequality to deduce that

E

[
sup

0≤s≤T
∥∇wε(s)∥p

L2(T2;R2)

∣∣∣∣F0

]
≤ E

[
sup

0≤s≤T
∥∇wε(s)∥2

L2(T2;R2)

∣∣∣∣F0

] p
2

≲Λ,T ∥u0∥p
H 1(T2)

and it is left to take the expectation. Finally, we use Theorem 2.2.3 (ii) to obtain (2.4.8)
with wε replaced by uε which together with (2.4.1) implies (2.4.2).

Lemma 2.4.4. We have

E

[
∥Jε∥

p
2

L2(0,T ;Lq′ (T2;R2))

]
≲Λ,p,q,T E

[
∥u0∥p

H 1(T2)

]
for p ∈ (0,∞).

Proof. We observe that as a consequence of Theorem 2.2.3 (iii) and (2.4.1)

∥Jε∥2
L2( jδ,( j+1)δ;Lq′ (T2;R2))

≲q ∥∇vε( jδ)∥4
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+
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u0 dx
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)
.

Using that

∥Jε∥2
L2(0,T ;Lq′ (T2;R2))

=
N∑

j=0
∥Jε∥2

L2( jδ,( j+1)δ;Lq′ (T2;R2))

we obtain the bound

∥Jε∥2
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N∑
j=0

∥∇vε( jδ)∥4
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+
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u0 dx
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−∥∇wε( jδ)∥2

L2(T2;R2)

)
.
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Applying the p
4 -th power and using that (a1 +·· ·+a4)

p
4 ≲p a

p
4

1 +·· ·+a
p
4

4 we conclude

∥Jε∥
p
2
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u0 dx
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+
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u0 dx

)2 N−1∑
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∥∇vε(( j +1)δ)∥2
L2(T2;R2)

−∥∇wε( jδ)∥2
L2(T2;R2)

∣∣∣∣∣
p
4

.

(2.4.9)

The expectation of the first and the third summand of the right-hand side of (2.4.9) can
be each estimated by E

[∥u0∥p
H 1(T2)

]
. To control also the second term we apply Itô’s for-

mula, see, e.g., [90, Theorem 15.19], to the composition of (·)2 with the real-valued semi-
martingale (2.4.3) and obtain that

∥∇wε(t )∥4
L2(T2;R2)

=∥∇wε( jδ)∥4
L2(T2;R) + 2

� t
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+ 4

� t
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〈∇wε(s),∇Aε(wε(s))〉 ds

+ 2

� t

jδ
∥∇wε(s)∥2
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λ2
l
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∥∇div(wε(s)ψl )∥2

L2(T2;R2)
ds

+ 4
∞∑

l=1
λ2

l

� t

jδ
〈∇div(wε(s)ψl ),∇wε(s)〉2 ds.

Using (2.3.8), (2.4.7) we conclude for the endpoint t = ( j +1)δ that

∥∇vε(( j +1)δ)∥4
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∥wε(s)∥4

H 1(T2) ds

Summing up over j , taking the p
4 -power, applying the Burkholder–Davis–Gundy inequal-

ity, as well as (2.4.2) and (2.4.7) yields

E
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≲p,T E

[
sup

0≤t≤T
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]
≲Λ,p,T E

[
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]
.

Similarly, by summing up over j in (2.4.4) and taking the power p
4 we obtain∣∣∣∣∣
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Taking the expectation, using the Burkholder–Davis–Gundy inequality, (2.4.2) and (2.4.7)
yields the estimate
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Finally, taking the expectation of (2.4.9) and using the estimates on the individual sum-
mands yields the claim.

We also show tail estimates of the powers of vε in their respective space. We note that
the obtained bound depends on N and will therefore be improved to a bound, which is
uniform in N after letting ε↘ 0.

Lemma 2.4.5. We have for K ∈ (1,∞) the estimate
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Proof. As a consequence of Theorem 2.2.3 (iv), (2.1.14) and Hölder’s inequality we have
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Summing up over j and taking the expectation yields that
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(2.4.10)

Moreover, by the Sobolev embedding theorem we have the estimate
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which implies by taking the 2
α+3 -th power and the expectation that
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Combining (2.4.10) and (2.4.11) with Chebyshev’s inequality yields respectively that
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Combining these estimates, the assumption K ∈ (1,∞) and the interpolation inequality

∥ f ∥2
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we obtain that
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It is left to apply (2.4.2) to conclude the claim.

In the final part of the analysis of the approximate scheme, we show Hölder regularity
in time of uε.
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Lemma 2.4.6. Let γ ∈ (0, 1
2 ) and K ∈ (1,∞), then

P
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H 1(T2)

]
K

. (2.4.13)

Proof. We divide the proof into three steps.
Step 1 (Deterministic integrals). By Hölder’s inequality we have∥∥∥∥� t
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for any s, t ∈ [0,T ]. Analogously, using that Aε maps H 1(T2) continuously to H−1(T2) due
to (2.3.5) (with operator norm depending solely on Λ) we obtain that∥∥∥∥� t
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From the above inequalities, Lemma 2.4.4, and (2.4.2), we deduce that
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(2.4.14)

Step 2 (Stochastic integral). By [110, Theorem 3.2] we conclude that for
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is dominated by 2e−Cγ,T K , where Cγ,T ∈ (0,∞) is a suitable constant. We observe that
due to (2.3.5), B maps continuously from H 1(T2) to L2(H 2(T2;R2),L2(T2)) with operator
norm only depending on Λ. Using additionally (2.4.2), we obtain the estimate
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(2.4.15)
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Step 3 (Combination of the estimates). Let 0 ≤ s < t ≤ T . Splitting the process uε in its
increments corresponding to vε and wε we obtain that

uε(t )−uε(s) =
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with an appropriate choice of s′, s′′, t ′, t ′′ ∈ [0,T ] satisfying in particular |t ′−s′|, |t ′′−s′′| <
2|t − s|. Therefore, we can estimate [uε(t )−uε(s)]γ,W −1,q′ (T2) by
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]
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,

where Cq,T <∞ is an appropriate constant. Invoking the estimates (2.4.14), (2.4.15) as
well as the assumption K ∈ (1,∞) we conclude (2.4.13).

2.4.2. THE VANISHING VISCOSITY LIMIT

In this subsection we let T, q,α,u0 and R(k) as in Theorem 2.4.1 and assume, as in the
previous subsection, that u0 is an F0-measurable random variable on a filtered proba-
bility space subject to the usual conditions with a family of independent Brownian mo-
tions (β(l ))l∈N. We let I be a sequence converging to zero and apply for every k ∈N and
ε ∈ I the construction from the previous subsection to the initial value u(k)

0 = 1R(k) u0

and obtain a regularized splitting scheme consisting of u(k)
ε , v (k)

ε , w (k)
ε , J (k)
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(2.4.16)

in the topological product space

∞∏
l=1

R×C ([0,T ])×C ([0,T ];L2(T2))×L∞
w∗(0,T ; H 1(T2))×L∞

w∗(0,T ; H 1(T2))

×L2
w (0,T ;Lq ′

(T2;R2))×L2
w (0,T ; H 2(T2))×L4

w (0,T ;W 1,4(T2)).

(2.4.17)

Proposition 2.4.7. The sequence (2.4.16) is tight on (2.4.17)

Proof. By Tychonoff’s theorem it is sufficient to show tightness of every component of
(2.4.16) separately, so we fix an l ∈N. The distribution of 1R(l ) and β(l ) is independent of
ε and since the corresponding space is a Radon space, the sequences

(
1R(l )

)
ε∈I ,

(
β(l )

)
ε∈I

are tight. Using (2.4.2) we deduce that

P
({
∥v (l )

ε ∥L∞(0,T ;H 1(T2)) > K
})

≲Λ,T

E
[
∥u(l )

0 ∥2
H 1(T2)

]
K 2 → 0

as K →∞ uniformly in ε so that tightness is a consequence of the Banach-Alaoglu the-

orem. The components w (l )
ε , J (l )

ε , (v (l )
ε )

α+3
2 , (v (l )

ε )
α+3

4 can be treated analogously using
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(2.4.2) and Lemmas 2.4.4 and 2.4.5. Lastly, we obtain from (2.4.2) and (2.4.13) that

P

({
max

{
∥u(l )

ε ∥L∞(0,T ;H 1(T2)),
[

u(l )
ε

]
γ,W −1,q′ (T2)

}
> K

})
≲Λ,q,γ,T

1+E
[
∥u(l )

0 ∥2
H 1(T2)

]
K

for K ∈ (1,∞) so that tightness of u(l )
ε follows by [121, Theorem 5].

An application of [88, Theorem 2] yields that there exists for a subsequence, which
we index again by I , a complete probability space (Ω̃,Ã, P̃) and a sequence of Borel-
measurable random variables((

1R̃(l )
ε

, β̃(l )
ε , ũ(l )

ε , ṽ (l )
ε , w̃ (l )

ε , J̃ (l )
ε , f̃ (l )

ε , g̃ (l )
ε

)
l∈N

)
ε∈I

with values in (2.4.17) such that(
1R̃(l )

ε
, β̃(l )

ε , ũ(l )
ε , ṽ (l )

ε , w̃ (l )
ε , J̃ (l )

ε , f̃ (l )
ε , g̃ (l )

ε

)
l∈N (2.4.18)

has the same distribution as(
1R(l ) ,β(l ),u(l )

ε , v (l )
ε , w (l )

ε , J (l )
ε , (v (l )

ε )
α+3

2 , (v (l )
ε )

α+3
4

)
l∈N

for every ε ∈I . Moreover, as ε↘ 0, (2.4.18) converges to a B-measurable random vari-
able (

1R̃(l ) , β̃(l ), ũ(l ), ṽ (l ), w̃ (l ), J̃ (l ), f̃ (l ), g̃ (l )
)

l∈N
in (2.4.17).

Remark 2.4.8. In order to apply [88, Theorem 2] one needs to check that there exists
a countable sequence of [−1,1]-valued continuous functions on (2.4.17) which sepa-
rate the points. Such a sequence is straightforward to construct using point-evaluations
for the spaces of continuous functions and separability of the respective (pre-) dual for
the spaces equipped with weak (weak-*) topology, see [84, Proposition 1.2.29, Corollary
1.3.22].

Lemma 2.4.9. The sets (R̃(k))k∈N form up to P̃-null sets a disjoint partition of Ω̃. Moreover,
the following holds P̃-almost surely for every k ∈N.

(i) The random variables

ũ(k), ṽ (k), w̃ (k), J̃ (k), f̃ (k) and g̃ (k)

vanish outside of of R̃(k).

(ii) ũ(k)(t ) ≥ 0 for all t ∈ [0,T ].

(iii) For almost all t ∈ [0,T ] we have

ũ(k)(t ) =
{

ṽ (k)(2(t − jδ)+ jδ), jδ≤ t < ( j + 1
2 )δ,

w̃ (k)(2(t − ( j + 1
2 )δ)+ jδ), ( j + 1

2 ) ≤ t < ( j +1)δ.
(2.4.19)
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(iv) The tuples (ṽ (k), J̃ (k)) are solutions to the deterministic thin-film equation on the
intervals [ jδ, ( j +1)δ) satisfying property (iv) from Theorem 2.2.3 with initial value
ũ(k)( jδ) for every j = 0, . . . , N .

(v) f̃ (k) = (ṽ (k))
α+3

2 and g̃ (k) = (ṽ (k))
α+3

4 .

Proof. For every ε ∈I we have

Ẽ
[

1
R̃

(k1)
ε

1
R̃

(k2)
ε

]
= δk1,k2P

(
R(k1)

)
,

so that by letting ε↘ 0 we conclude the first part of the claim. Part (i) follows by letting
ε↘ 0 in 1R̃(k)

ε
∥ũ(k)

ε ∥C ([0,T ];L2(T2)) = 0 and the same argument for the other random vari-

ables. Part (ii) is a consequence of ũ(k)
ε (t ) ≥ 0 together with conservation of this property

under limits in C ([0,T ];L2(T2)). Analogously, we deduce (iii) from the respective prop-
erty in of ũ(k)

ε , ṽ (k)
ε and w̃ (k)

ε . For (iv) and (v) we observe first that by measurability of
Sα,q,δ we have

Sα,q,δũ(k)
ε ( jδ) =

(
ṽ (l )
ε |[ jδ,( j+1)δ), J̃ (k)

ε |[ jδ,( j+1)δ), f̃ (k)
ε |[ jδ,( j+1)δ), g̃ (k)

ε |[ jδ,( j+1)δ)

)
. (2.4.20)

In particular, we have f̃ (k)
ε = ( f̃ (k)

ε )
α+3

2 , g̃ (k)
ε = ( f̃ (k)

ε )
α+3

4 and the right-hand side of (2.4.20)
fulfills the properties stated in Theorem 2.2.3. If we let ε↘ 0 we deduce that the limit(

ṽ (k)|[ jδ,( j+1)δ), J̃ (k)|[ jδ,( j+1)δ)

)
is a solution to the thin-film equation and that (v) holds true by Proposition 2.2.4. In
light of Remark 2.2.2 the initial value of (2.4.20) is indeed ũ(k)

ε ( jδ). It is left to observe
that property (iv) of Theorem 2.2.3 is preserved due to lower semi-continuity of the norm
with respect to weak convergence.

By (2.4.19) we deduce that ũ(k)
ε converges to ũ(k) also in L∞

w∗(0,T ; H 1(T2)) and that
ũ(k) is weakly continuous in H 1(T2) again. Moreover, we identify in the following ṽ (k)

and w̃ (k) with their versions such that (2.4.19) holds for all t ∈ [0,T ]. We define F̃ as the
augmentation of the filtration G̃ given by

G̃t = σ
({

1R̃(l ) , J̃ (l )|[0,t ]

∣∣∣ l ∈N
}
∪

{
ũ(l )(s), β̃(l )(s)

∣∣∣0 ≤ s ≤ t , l ∈N
})

,

where we consider J̃ (l )|[0,t ] as a B-random variable in L2(0, t ;Lq ′
(T2;R2)).

Lemma 2.4.10. The processes (β̃(l ))l∈N are a family of independent F̃-Brownian motions.
Moreover, we have for every k ∈N, j ∈ {0, . . . , N } and ϕ ∈ H 1(T2) that P̃-almost surely

〈w̃ (k)(t ),ϕ〉 − 〈w̃ (k)( jδ),ϕ〉 = 1

2

∞∑
l=1

λ2
l

� t

jδ
〈div(div(w̃ (k)(s)ψl )ψl ),ϕ〉 ds

+
∞∑

l=1
λl

� t

jδ
〈div(w̃ (k)(s)ψl ),ϕ〉 dβ(l )

s

for all t ∈ [ jδ, ( j +1)δ).
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The proof of the lemma above is a simpler version of the proof of Theorem 2.5.12 and
is therefore omitted. Finally, we observe that many of the estimates from the previous
subsection carry over to their limit.

Proposition 2.4.11. For every k ∈N and p ∈ (0,∞) we have

Ẽ

[
sup

0≤t≤T
∥ũ(k)∥p

H 1(T2)

]
≲Λ,p,T E

[
∥u(k)

0 ∥p
H 1(T2)

]
,

Ẽ

[
∥ J̃ (k)∥

p
2

L2(0,T ;Lq′ (T2))

]
≲Λ,p,q,T E

[
∥u(k)

0 ∥p
H 1(T2)

]
.

(2.4.21)

Moreover, for any γ ∈ (0, 1
2 ) and K ∈ (1,∞) it holds

P̃

({[
ũ(k)

]
γ,W −1,q′ (T2)

> K

})
≲Λ,q,γ,T

1+E
[
∥u(k)

0 ∥2
H 1(T2)

]
K

.

Proof. The estimates (2.4.21) follow from lower semi-continuity of the norm with respect
to weak (weak-*) convergence, (2.4.2), Lemma 2.4.4 and Fatou’s lemma. Moreover, we
observe that

[ũ(l )]
γ,W −1,q′ (T2) ≤ liminf

ε↘0
[ũ(l )

ε ]
γ,W −1,q′ (T2)

by convergence in C ([0,T ];L2(T2)). Therefore, we have

P̃
({

[ũ(l )]
γ,W −1,q′ (T2) > K

})
≤ P̃

({
liminf
ε↘0

[ũ(l )
ε ]

γ,W −1,q′ (T2) > K

})
≤ P̃

(
liminf
ε↘0

{
[ũ(l )

ε ]
γ,W −1,q′ (T2) > K

})
≤ liminf

ε↘0
P̃

({
[ũ(l )

ε ]
γ,W −1,q′ (T2) > K

})
and it is left to apply (2.4.13).

Proof of Theorem 2.4.1. The limiting random variables (β(l ))l∈N, 1R̃(k) , ũ(k) and J̃ (k) have
the desired properties. Indeed, (i) is a consequence of

(1R̃(k)
ε

, ũ(k)
ε (0))k∈N ∼ (1R(k) ,u(k)

0 )k∈N, ε ∈I ,

the convergence
(1R̃(k)

ε
, ũ(k)

ε (0))k∈N → (1R̃(k) , ũ(k)(0))k∈N

in (R×L2(T2))∞ and Lemma 2.4.9 (i). Part (ii) follows by the choice of F̃. Parts (iii), (iv),
(v) and (vi) are the content of Lemma 2.4.9 (iv), Lemma 2.4.10 and Proposition 2.4.11.

2.5. CONSTRUCTION OF SOLUTIONS
Let finally µ,T, q,α as in Theorem 2.1.3. We apply Theorem 2.4.1 for every N ∈ N to a
random variable which is distributed according to µ and obtain processes u(k)

N , families

of Brownian motions β(l )
N and random variables 1R(k)

N
, J (k)

N for l ,k ∈N satisfying the stated

properties. We assume that these random variables are defined on the same probability
space (Ω,A,P) with filtration F and moreover, that β(l ) = β(l )

N is independent of N . This
does not influence the mathematical analysis since we analyze the solutions for each N
separately and serves only notational convenience.
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Remark 2.5.1. Alternatively, one can also apply the limiting procedure from Subsection
2.4.2 for all step numbers N ∈ N simultaneously to end up in the assumed situation.
This, however, would lead to a notational overload in the previous section.

We remark also that we have dropped the ∼-notation since we want to pass to an-
other probability space once more. For k, N ∈N and we define v (k)

N and w (k)
N by{

u(k)
N (t ) = v (k)

N (2(t − jδ)+ jδ), jδ≤ t < ( j + 1
2 )δ,

u(k)
N (t ) = w (k)

N (2(t − ( j + 1
2 )δ)+ jδ), ( j + 1

2 ) ≤ t < ( j +1)δ,
(2.5.1)

where again δ= δ(N ) = T
N+1 .

2.5.1. ADDITIONAL TIGHTNESS PROPERTIES

The approximate solutions u(k)
N , J (k)

N satisfy the bounds from Theorem 2.4.1 (v), (vi),
which can as in Proposition 2.4.7 be used to derive tightness in suitable spaces.

Remark 2.5.2. In light of Theorem 2.4.1 (i), the right-hand sides of the aforementioned
bounds can be expressed in terms of the cut-off moments

νk,p =
�

1{
k−1≤∥·∥H1(T2)<k

}∥ ·∥p
H 1(T2)

dµ (2.5.2)

of the initial distribution µ. We remark that the notation (2.5.2) will be used during the
remainder of this section.

In this subsection we provide an additional tightness property, which can be seen
as the adaption of the compactness statement [33, Lemma 2.5] to our setting. Its proof
relies on deriving a version of Lemma 2.4.5 with a uniform estimate in N and a simplified
proof of [33, Lemma 2.5]. The former is based on a control of the α-entropy production
along the stochastic dynamics. We point out that the simplification of the compactness
proof is only possible due to the assumption α ∈ (0,1), which is less general than the
situation in [33, Lemma 2.5].

Lemma 2.5.3. It holds for every k, N ∈N that

E

[∥∥∥∥(
v (k)

N

) α+3
2

∥∥∥∥2

L2(0,T ;H 2(T2))
+

∥∥∥∥(
v (k)

N

) α+3
4

∥∥∥∥4

L4(0,T ;W 1,4(T2))

]
≲Λ,α,T 1 + νk,α+3.

Proof. An application of Theorem 2.2.3 (iv) yields the estimate

� T

0

�
T2

∣∣∣∣H
(
v (k)

N

) α+3
2

∣∣∣∣2

+
∣∣∣∣∇(

v (k)
N

) α+3
4

∣∣∣∣4

dx dt ≲α

N∑
j=0

�
T2

Gα(v (k)
N ( jδ))−Gα(w (k)

N ( jδ))dx

=
�
T2

Gα(v (k)
N (0))−Gα(w (k)

N (Nδ))dx +
N−1∑
j=0

�
T2

Gα(v (k)
N (( j +1)δ))−Gα(w (k)

N ( jδ))dx.

(2.5.3)

The first summand can be estimated directly using the expression (2.1.14) by

Cα

(
∥v (k)

N (0)∥α+1
L2(T2) + ∥v (k)

N (0)∥L2(T2) + ∥w (k)
N (0)∥α+1

L2(T2) + ∥w (k)
N (0)∥L2(T2)

)
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≲α sup
0≤t≤T

∥u(k)
N (t )∥L2(T2) + 1.

Taking the expectation and employing Theorem 2.4.1 (v) we obtain the estimate

E

[�
T2

Gα(v (k)
N (0))−Gα(w (k)

N (Nδ))dx

]
≲Λ,α,T 1 + νk,1. (2.5.4)

To estimate the second summand of the right-hand side of (2.5.3), we fix a function η ∈
C∞(R) such that 0 ≤ η ≤ 1, η = 1 on [2,∞) and η = 0 on (−∞,1]. We define smooth
functions

ηκ(x) = η
( x

κ

)
, Gα,κ(x) = Gα(x)ηκ(x).

for κ> 0. Correspondingly, we define the regularized functional

φκ : L2(T2) →R, w 7→
�
T2

Gα,κ(w)dx (2.5.5)

We observe that there is a constant Cα,κ <∞ such that

|Gα,κ(x)| ≤Cα,κ|x|2, |G ′
α,κ(x)| ≤Cα,κ|x| and |G ′′

α,κ(x)| ≤Cα,κ

for each x ∈ R. An application of Itô’s formula to the composition of the functional φκ
with the process w (k)

N satisfying the SPDE from Theorem 2.4.1 (iv) yields that

φκ(w (k)
N (t )) =φκ(w (k)

N ( jδ)) +
∞∑

l=1
λl

� t

jδ

�
T2

G ′
α,κ(w (k)

N (s))div(w (k)
N (s)ψl )dx dβ(l )(s)

− 1

2

∞∑
l=1

� t

jδ

�
T2
λ2

l G ′′
α,κ(w (k)

N (s))[div(w (k)
N (s)ψl )][ψl ·∇w (k)

N (s)]dx ds

+ 1

2

∞∑
l=1

λ2
l

� t

jδ

�
T2

G ′′
α,κ(w (k)

N (s))
[

div(w (k)
N (s)ψl )

]2
dx ds (2.5.6)

for t ∈ [ jδ, ( j +1)δ). For a justification of the applicability of Itô’s formula see Appendix
2.C. We note that as pointed out there, the above formula is also valid for the end-point
t = ( j + 1)δ, but then the term on the left-hand side has to be replaced by φκ(v (k)

N (( j +
1)δ)). Due to the smoothness of ψl it holds

[div(wψl )][ψl ·∇w] = [div(wψl )]2 − [div(wψl )][w divψl ]

= [div(wψl )]2 − [
w divψl

]2 −w∇w · [ψl divψl
]

.

The derivative of ζκ(x) = � x
0 yG ′′

α,κ(y)dy is bounded so that an application of [26, Propo-
sition 9.5] yields

�
T2

G ′′
α,κ(w)w∇w · [ψl divψl

]
dx = −

�
T2
ζκ(w)div

[
ψl divψl

]
dx,
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for w ∈ H 1(T2). We also introduce the function θκ(x) = x2G ′′
α,κ(x) and rewrite (2.5.6)

using the previous identities as

φκ(w (k)
N (t )) =φκ(w (k)

N ( jδ)) +
∞∑

l=1
λl

� t

jδ

�
T2

G ′
α,κ(w (k)

N (s))div(w (k)
N (s)ψl )dx dβ(l )(s)

+ 1

2

∞∑
l=1

λ2
l

� t

jδ

�
T2
θκ(w (k)

N (s))(divψl )2 dx ds

− 1

2

∞∑
l=1

λ2
l

� t

jδ

�
T2
ζκ(w (k)

N (s))div
[
ψl divψl

]
dx ds.

(2.5.7)

Using that

G ′′
α,κ(x) = 1

κ2 η
′′
( x

κ

)
Gα(x)+ 2

κ
η′

( x

κ

)[
xα

α
+ r ′

α(x)

]
+η

( x

κ

)
xα−1

and that η′ and η′′ vanish outside of [1,2] we deduce that |θκ(x)| ≤Cα(1+|x|). The same
argument yields that |ζκ(x)| ≤Cα(1+|x|), indeed we can estimate for example∣∣∣∣� x

0

y

κ2 η
′′
( y

κ

)
Gα(y)dy

∣∣∣∣ ≲ 1

κ

� |x|∧2κ

0

∣∣Gα(y)
∣∣ dy ≲α

|x|∧2κ+ (|x|∧2κ)2

κ
≲ 1+|x|.

Using (2.3.5) we obtain the estimates∣∣∣∣∣1

2

∞∑
l=1

λ2
l

� ( j+1)δ

jδ

�
T2
θκ(w (k)

N (s))(divψl )2 dx ds

∣∣∣∣∣
≲Λ,α δ

(
1+ess sup

0≤t≤T
∥w (k)

N (t )∥L2(T2)

)
,∣∣∣∣∣1

2

∞∑
l=1

λ2
l

� ( j+1)δ

jδ

�
T2
ζκ(w (k)

N (s))div
[
ψl divψl

]
dx ds

∣∣∣∣∣
≲Λ,α δ

(
1+ess sup

0≤t≤T
∥w (k)

N (t )∥L2(T2)

)
.

For the series of stochastic integrals in (2.5.7) we observe that

E

[ ∞∑
l=1

λ2
l

� ( j+1)δ

jδ

(�
T2

G ′
α,κ(w (k)

N (s))div(w (k)
N (s)ψl )dx

)2

ds

]

≲α,κ E

[ ∞∑
l=1

λ2
l

� ( j+1)δ

jδ

(
∥w (k)

N (s)∥H 1(T2)

)2
ds

]
<∞

We used (2.3.5) and that the function G ′
α,κ is bounded in the first inequality and Theo-

rem 2.4.1 (v) for the second one. Hence, the series of stochastic integrals has integrable
quadratic variation and is therefore a martingale. Therefore, taking the expectation of
(2.5.7) with t = ( j +1)δ, using the previous estimates, as well as Theorem 2.4.1 (v) once
more, yields that

E
[
φκ(v (k)

N (( j +1)δ)) − φκ(w (k)
N ( jδ))

]
≲Λ,α δ

(
1+E

[
ess sup

0≤t≤T
∥w (k)

N (t )∥L2(T2)

])
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≲Λ,T δ
(
1 + νk,1

)
Finally, taking the expectation of (2.5.3) and using additionally (2.5.4), we end up with

E

[� T

0

�
T2

∣∣∣∣H
(
v (k)

N

) α+3
2

∣∣∣∣2

+
∣∣∣∣∇(

v (k)
N

) α+3
4

∣∣∣∣4

dx dt

]
≲Λ,α,T 1 + νk,1.

As in the proof of Lemma 2.4.5, we use that

E

[� T

0

�
T2

∣∣∣∣(v (k)
N (t )

) α+3
2

∣∣∣∣2

+
∣∣∣∣(v (k)

N (t )
) α+3

4

∣∣∣∣4

dx dt

]
≲α,T E

[
sup

0≤t≤T
∥u(k)

N (t )∥α+3
H 1(T2)

]
≲Λ,α,T νk,α+3

as a consequence of Theorem 2.4.1 (v) and therefore

E

[∥∥∥∥(
v (k)

N

) α+3
2

∥∥∥∥2

L2(0,T ;H 2(T2))
+

∥∥∥∥(
v (k)

N

) α+3
4

∥∥∥∥4

L4(0,T ;W 1,4(T2))

]
≲Λ,α,T 1 + νk,α+3

by (2.4.12).

Lemma 2.5.4. For every k ∈N, the laws of

((
v (k)

N

) α+3
2

)
N∈N

are tight on L2(0,T ; H 1(T2)).

Proof. We divide the proof into three steps.
Step 1 (Hölder regularity of u(k)

N in L2(T2)). First, we observe that the paths of u(k)
N

are weakly continuous in H 1(T2) and in particular ∥u(k)
N (t )∥H 1(T2) ≤ ∥u(k)

N ∥L∞(0,T ;H 1(T2))
for every t ∈ [0,T ]. The Sobolev embedding theorem, see [119, Section 3.5.5], states that

W −1,q ′
(T2) ,→ H

−2
q′ (T2) and therefore we can estimate the seminorm [u(k)

N ]
γ,H

−2
q′ (T2)

by

Cq [u(k)
N ]

γ,W −1,q′ (T2) for γ ∈ (0,1). The interpolation inequality

∥ f ∥L2(T2) ≤ ∥ f ∥θ
H 1(T2)

∥ f ∥1−θ
H

−2
q′ (T2)

, f ∈ H 1(T2),

with θ =
2

q′
1+ 2

q′
can be derived using Fourier methods. We obtain the estimate

∥u(k)
N (t )−u(k)

N (s)∥L2(T2) ≤ ∥u(k)
N (t )−u(k)

N (s)∥θ
H 1(T2)

∥u(k)
N (t )−u(k)

N (s)∥1−θ
H

−2
q′ (T2)

≲q [u(k)
N ]1−θ

γ,W −1,q′ (T2)
∥u(k)

N ∥θ
L∞(0,T ;H 1(T2))

|t − s|(1−θ)γ

on the increments, which yields that

[u(k)
N ](1−θ)γ,L2(T2) ≲q [u(k)

N ]1−θ
γ,W −1,q′ (T2)

∥u(k)
N ∥θ

L∞(0,T ;H 1(T2))
. (2.5.8)

Step 2 (Integral estimate on the increments of v (k)
N ). In this step, we deduce from the

first step an estimate on
∥τh v (k)

N − v (k)
N ∥L4(0,T−h;L2(T2)),
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in similar terms, where τh denotes the translation operator by h > 0 in the time variable.
To quantify the jumps in the paths of of v (k)

N we introduce the function

φN ,h : [0,T ] →N, N 7→ ⌊t +h⌋δ−⌊t⌋δ,

which counts how many discretization points lie between t and t +h. The function ⌊·⌋δ
denotes here the biggest integer multiple of δ which is less or equal to its input value.
Then we have

∥v (k)
N (t +h)− v (k)

N (t )∥L2(T2) ≤ [u(k)
N ](1−θ)γ,L2(T2)

(
h +φN ,h(t )δ

)(1−θ)γ (2.5.9)

for t ∈ [0,T −h]. We introduce the sets

CN ,h = {
t ∈ [0,T −h]|φN ,h(t ) ̸= 1

}
and DN ,h = {

t ∈ [0,T −h]|φN ,h(t ) = 1
}

,

distinguishing between points t , where one can estimate the right-hand side of (2.5.9) in
terms of h or not. Indeed, if t ∈ CN ,h it holds either φN ,h(t ) = 0 or φN ,h(t ) ≥ 2 so that in
any case φN ,h(t )δ≤ 2h and therefore(

h +φN ,h(t )δ
)(1−θ)γ ≤ (3h)(1−θ)γ .

We deduce that

∥τh v (k)
N − v (k)

N ∥4
L4(0,T−h;L2(T2)) =

� T−h

0
∥v (k)

N (t +h)− v (k)
N (t )∥4

L2(T2) dt

≤ [u(k)
N ]4

(1−θ)γ,L2(T2)

(
(3h)4(1−θ)γ|CN ,h |+ (h +δ)4(1−θ)γ |DN ,h |

)
.

(2.5.10)

If h ≥ δ, we use the trivial estimate |CN ,h |+ |DN ,h | ≤ T to conclude

(3h)4(1−θ)γ|CN ,h | + (h +δ)4(1−θ)γ |DN ,h | ≤ (3h)4(1−θ)γT. (2.5.11)

For h < δ we use instead that

t ∈ [ jδ, ( j +1)δ−h) ⇒ φN ,h(t ) = 0 ⇒ t ∈CN ,h

and consequently |DN ,h | ≤ (N +1)h. We define the function

fh(x) =
(
h + T

x +1

)4(1−θ)γ

(x +1)h, x ∈
[

1,
T

h
−1

]
so that

(h +δ)4(1−θ)γ |DN ,h | ≤ fh(N )

and it suffices to estimate the maximum of fh . Its derivative is given by

f ′
h(x) = h

(
h + T

x +1

)4(1−θ)γ

− 4(1−θ)γT
(
h + T

x+1

)4(1−θ)γ−1
h(x +1)

(x +1)2 ,
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which can vanish only if

4(1−θ)γT

(x +1)
(
h + T

x+1

) = 1 ⇒ h(x +1) = (4(1−θ)γ−1)T.

We choose for the rest of the proof that γ = 1
4 so that the above is not feasible for x ∈[

1, T
h −1

]
. Hence fh can attain its maximum only at the boundary points 1 and T

h − 1.
Evaluating fh gives

fh(1) =
(
h + T

2

)1−θ
2h ≤ 2T 1−θh, fh

(
T

h
−1

)
= (2h)1−θT.

We end up with the estimate

(3h)1−θ|CN ,h | + (h +δ)1−θ |DN ,h | ≤ 2T (3h)1−θ + 2T 1−θh.

We define the right-hand side as gθ,T (h) and obtain from (2.5.8) and (2.5.10) that

∥τh v (k)
N − v (k)

N ∥L4(0,T−h;L2(T2)) ≲q [u(k)
N ]1−θ

1
4 ,W −1,q′ (T2)

∥u(k)
N ∥θ

L∞(0,T ;H 1(T2))
(gθ,T (h))

1
4 . (2.5.12)

By (2.5.11), this holds also if h ≥ δ.
Step 3 (Proof of tightness). Due to Theorem 2.4.1 (v), (vi) and Lemma 2.5.3 we have

P

({
sup

0≤t≤T
∥u(k)

N ∥H 1(T2) > K

})
≲Λ,T

νk,2

K 2 ,

P

({[
u(k)

N

]
1
4 ,W −1,q′ (T2)

> K

})
≲Λ,q,T

1 + νk,2

K
,

P

{∥∥∥∥(
v (k)

N

) α+3
2

∥∥∥∥
L2(0,T ;H 2(T2))

> K

}
≲Λ,α,T

1 + νk,α+3

K 2

for K ∈ (1,∞). In particular,

P
((

F (k)
N ,K

)c)
≲Λ,α,q,T

1 + νk,α+3

K
, (2.5.13)

where we define

F (k)
N ,K =

{
max

{
sup

0≤t≤T
∥u(k)

N ∥H 1(T2),
[

u(k)
N

]
1
4 ,W −1,q′ (T2)

,

∥∥∥∥(
v (k)

N

) α+3
2

∥∥∥∥
L2(0,T ;H 2(T2))

}
≤ K

}
.

Moreover, using that for a,b ≥ 0 we have

|a α+3
2 −b

α+3
2 | ≤ α+3

2
|a −b|max(a,b)

α+1
2 ≲ |a −b|

[
a
α+1

2 +b
α+1

2

]
as a consequence of the fundamental theorem of calculus, we deduce that∥∥∥∥τh

(
v (k)

N

) α+3
2 −

(
v (k)

N

) α+3
2

∥∥∥∥
L2

(
0,T−h;L

4
α+3 (T2)

)
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≲
∥∥∥∥(
τh v (k)

N − v (k)
N

)(
τh

(
v (k)

N

) α+1
2 +

(
v (k)

N

) α+1
2

)∥∥∥∥
L2

(
0,T−h;L

4
α+3 (T2)

)
≲ ∥τh v (k)

N − ṽN∥L4(0,T−h;L2(T2))

∥∥∥∥(
v (k)

N

) α+1
2

∥∥∥∥
L4

(
0,T ;L

4
α+1 (T2)

)
from Hölder’s inequality. We estimate the latter term by∥∥∥∥(

v (k)
N

) α+1
2

∥∥∥∥
L4

(
0,T ;L

4
α+1 (T2)

) =
(� T

0

(�
T2

(
v (k)

N

)2
dx

)α+1

dt

) 1
4

≲T sup
0≤t≤T

∥v (k)
N ∥

α+1
2

L2(T2)
.

We conclude by (2.5.12) that∥∥∥∥τh

(
v (k)

N

) α+3
2 −

(
v (k)

N

) α+3
2

∥∥∥∥
L2

(
0,T−h;L

4
α+3 (T2)

)
≲q,T [u(k)

N ]1−θ
1
4 ,W −1,q′ (T2)

∥u(k)
N ∥θ+

α+1
2

L∞(0,T ;H 1(T2))
(gθ,T (h))

1
4 .

Hence, for ω ∈ F (k)
N ,K we have that∥∥∥∥τh

(
v (k)

N (ω)
) α+3

2 −
(
v (k)

N (ω)
) α+3

2

∥∥∥∥
L2

(
0,T−h;L

4
α+3 (T2)

) ≲q,T K
α+3

2 (gθ,T (h))
1
4 .

and ∥∥∥∥(
v (k)

N (ω)
) α+3

2

∥∥∥∥
L2(0,T ;H 2(T2))

≤ K

and therefore v (k)
N (ω) lies in a compact subset of L2(0,T ; H 1(T2)) by [121, Theorem 5,

p.84], which we denote by χq,α,T,K . From (2.5.13) we deduce that

P
({

v (k)
N ∉χq,α,T,K

})
≲Λ,α,q,T

1+νk,α+3

K
.

The tightness assertion follows since the right-hand side goes uniformly in N to 0 as
K →∞.

2.5.2. THE TIME-STEP LIMIT
In this last subsection, we finally let N →∞ and show that the limit satisfies the asser-
tions of Theorem 2.1.3. This time we consider the sequence((

1R(l )
N

,β(l ),u(l )
N , v (l )

N , w (l )
N , J (l )

N , (v (l )
N )

α+3
2 , (v (l )

N )
α+3

4 , (v (l )
N )

α+3
2

)
l∈N

)
N∈N

(2.5.14)

in the topological space

∞∏
l=1

R×C ([0,T ])×C ([0,T ];L2(T2))×L∞
w∗(0,T ; H 1(T2))×L∞

w∗(0,T ; H 1(T2))

×L2
w (0,T ;Lq ′

(T2;R2))×L2
w (0,T ; H 2(T2))×L4

w (0,T ;W 1,4(T2))×L2(0,T ; H 1(T2)).

(2.5.15)

Notice that this differs from (2.4.17) by the additional appearance of L2(0,T ; H 1(T2)).
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Corollary 2.5.5. The sequence (2.5.14) is tight on (2.5.15).

Proof. This can be shown analogously to Proposition 2.4.7, using Theorem 2.4.1 (v) and
(vi) and invoking additionally the findings from Lemma 2.5.3 and Lemma 2.5.4.

As in Subsection 2.4.2, we obtain that for a subsequence indexed by N ⊂ N, there
exists a sequence of B-measurable random variables((

1R̃(l )
N

, β̃(l )
N , ũ(l )

N , ṽ (l )
N , w̃ (l )

N , J̃ (l )
N , f̃ (l )

N , g̃ (l )
N , h̃(l )

N

)
l∈N

)
N∈N

defined on a complete probability space (Ω̃,Ã, P̃), such that(
1R̃(l )

N
, β̃(l )

N , ũ(l )
N , ṽ (l )

N , w̃ (l )
N , J̃ (l )

N , f̃ (l )
N , g̃ (l )

N , h̃(l )
N

)
l∈N

(2.5.16)

has the same distribution on (2.5.15) as(
1R(l )

N
,β(l ),u(l )

N , v (l )
N , w (l )

N , J (l )
N , (v (l )

N )
α+3

2 , (v (l )
N )

α+3
4 , (v (l )

N )
α+3

2

)
l∈N

(2.5.17)

for every N ∈ N . Moreover, as N →∞, (2.5.16) converges to a B-measurable random
variable (

1R̃(l ) , β̃(l ), ũ(l ), ṽ (l ), w̃ (l ), J̃ (l ), f̃ (l ), g̃ (l ), h̃(l )
)

l∈N (2.5.18)

in (2.5.15). The following properties are inherited from the approximating sequence.

Lemma 2.5.6. The sets (R̃(k))k∈N form, up to P̃-null sets, a disjoint partition of Ω̃. More-
over, the following holds P̃-almost surely for every k ∈N.

(i) The random variables

ũ(k), ṽ (k), w̃ (k), J̃ (k), f̃ (k), g̃ (k) and h̃(k)

vanish outside of of R̃(k).

(ii) ũ(k)(t ) ≥ 0 for all t ∈ [0,T ].

(iii) ũ(k) = ṽ (k) = w̃ (k).

(iv) f̃ (k) = h̃(k) = (ũ(k))
α+3

2 and g̃ (k) = (ũ(k))
α+3

4 .

Proof. The claim regarding the sets R̃(k), as well as part (i) and (ii) follow as in the proof
of Lemma 2.4.9. For part (iii) we conclude first form (2.5.1) that P̃-almost surely

ṽ (k)
N (t ) = ũ(k)

N

(
jδ+ t− jδ

2

)
, t ∈ [ jδ, ( j +1)δ), (2.5.19)

for almost all t ∈ [0,T ]. Fixing such t that (2.5.19) holds for all N ∈N and using that ũ(k)
N

converges uniformly to an L2(T2)-continuous function we conclude that

∥ṽ (k)
N (t )− ũ(k)(t )∥L2(T2) < ε (2.5.20)
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for sufficiently large N . It follows that ṽ (k)
N → ũ(k) in L∞(0,T ;L2(T2)) and therefore the

limit has to coincide with ṽ (k). The proof of ũ(k) = w̃ (k) works analogously. Since in
contrast to the proof of Lemma 2.4.9 we cannot just rely on Proposition 2.2.4 for the
identification of powers in (iv), we carry out the argument by hand. Since (2.5.16) and
(2.5.17) have the same distribution, it holds

f̃ (k)
N = (ṽ (k)

N )
α+3

2 (2.5.21)

for every N ∈ N . Due to the verified convergence ṽ (k)
N → ũ(k) in L∞(0,T ;L2(T2)) it fol-

lows that the same convergence holds [0,T ]×T2-almost everywhere up to taking a sub-
sequence. Moreover, since ṽ (k)

N is also weakly convergent in L∞(0,T ; H 1(T2)), we con-
clude that it is uniformly in N bounded in Lr ([0,T ]×T2) for every r > 0 by the Sobolev
embedding theorem. Vitali’s convergence theorem yields that

(ṽ (k)
N )

α+3
2 → (ũ(k))

α+3
2

in Lr ([0,T ]×T2) for every r > 0. Invoking (2.5.21) and that f̃ (k)
N * f (k) in L2(0,T ; H 2(T2))

the identification f̃ (k) = (ũ(k))
α+3

2 follows. The remaining part of (iv) can be shown anal-
ogously.

Proposition 2.5.7. For all η ∈ L∞(0,T ;W 2,∞(T2;R2)) it holds

� T

0

�
T2

J̃ (k) ·ηdx dt =
� T

0

�
{ũ(k)(s)>0}

|∇ũ(k)|2∇ũ(k) ·ηdx ds

+
� T

0

�
{ũ(k)(s)>0}

ũ(k)|∇ũ(k)|2 divηdx ds

+ 2

� T

0

�
{ũ(k)(s)>0}

ũ(k)∇T ũ(k)Dη∇ũ(k) dx ds

+
� T

0

�
T2

(ũ(k))
2∇ũ(k) ·∇divηdx ds

P̃-almost surely.

Proof. Since (2.5.16) and (2.5.17) have the same distribution, we conclude that

� ( j+1)δ

jδ

�
T2

J̃ (k)
N ·ηdx dt =

� ( j+1)δ

jδ

�
{ṽ (k)

N (s)>0}
|∇ṽ (k)

N |2∇ṽ (k)
N ·ηdx ds

+
� ( j+1)δ

jδ

�
{ṽ (k)

N (s)>0}
ṽ (k)

N |∇ṽ (k)
N |2 divηdx ds

+ 2

� ( j+1)δ

jδ

�
{ṽ (k)

N (s)>0}
ṽ (k)

N ∇T ṽ (k)
N Dη∇ṽ (k)

N dx ds

+
� ( j+1)δ

jδ

�
T2

(ṽ (k)
N )2∇ṽ (k)

N ·∇divηdx ds
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by Theorem 2.4.1 (iii) for every N ∈N and j ∈ {0, . . . , N }. Summing up over j yields that

� T

0

�
T2

J̃ (k)
N ·ηdx dt =

� T

0

�
{ṽ (k)

N (s)>0}
|∇ṽ (k)

N |2∇ṽ (k)
N ·ηdx ds

+
� T

0

�
{ṽ (k)

N (s)>0}
ṽ (k)

N |∇ṽ (k)
N |2 divηdx ds

+ 2

� T

0

�
{ṽ (k)

N (s)>0}
ṽ (k)

N ∇T ṽ (k)
N Dη∇ṽ (k)

N dx ds

+
� T

0

�
T2

ṽ (k)
N ∇ṽ (k)

N ·∇divηdx ds.

It is left to take the limit N → ∞ in the above equality, which works exactly as in the
deterministic case [33, Corollary 2.7, Theorem 3.2].

Remark 2.5.8. We stress the role of the additional convergence (ṽ (k)
N )

α+3
2 → (ũ(k))

α+3
2 in

L2(0,T ; H 1(T2)) for the limiting argument [33, Corollary 2.7, Theorem 3.2].

The previous statement shows that the weak formulation of J̃ (k) = (ũ(k))2∇∆(ũ(k)) as
in (2.1.6) is satisfied. We gather some more convergence and integrability results before
we recover (2.1.7) as well. We note that we use again the convention to identify ṽ (k)

N ∈
L∞(0,T ; H 1(T2)) with its version defined by (2.5.19) as well as the rounding function ⌊·⌋δ
from the proof of Lemma 2.5.4.

Lemma 2.5.9. For every ϕ ∈W 1,q (T2), k ∈N and t ∈ [0,T ] it holds

〈ṽ (k)
N (t ),ϕ〉 → 〈ũ(k)(t ),ϕ〉 , (2.5.22)� t

0
〈div( J̃ (k)

N ),ϕ〉 ds →
� t

0
〈div( J̃ (k)

N ),ϕ〉 ds, (2.5.23)

∞∑
l=1

� ⌊t⌋δ

0
λ2

l 〈div(div(w̃ (k)
N (s)ψl )ψl ),ϕ〉 ds (2.5.24)

→
∞∑

l=1

� t

0
λ2

l 〈div(div(ũ(k)(s)ψl )ψl ),ϕ〉 ds,

� ⌊t⌋δ

0

∞∑
l=1

λ2
l 〈div(ψl w̃ (k)

N ),ϕ〉2
ds →

� t

0

∞∑
l=1

λ2
l 〈div(ψl ũ(k)),ϕ〉2

ds, (2.5.25)

� ⌊t⌋δ

0
λl 〈div(ψl w̃ (k)

N ),ϕ〉dτ →
� t

0
λl 〈div(ψl ũ(k)),ϕ〉dτ, (2.5.26)

β̃(l )
N (⌊t⌋δ) → β̃(l )(t ) (2.5.27)

P̃-almost surely as N →∞.

Proof. The convergence (2.5.22) follows by (2.5.20). Part (2.5.23) is a direct consequence
of J̃ (k)

N * J̃ (k) in L2(0,T ;Lq ′
(T2;R2)). Next, we observe that

∥ψl ·∇(ψl ·∇ϕ)∥H−1(T2) ≲ ∥ϕ∥H 1(T2)
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due to (2.3.5). Using w̃ (k)
N *∗ ũ(k) in L∞(0,T ; H 1(T2)) we deduce that

∞∑
l=1

� t

0
λ2

l 〈w̃ (k)
N (s),ψl ·∇(ψl ·∇ϕ)〉 ds →

∞∑
l=1

� t

0
λ2

l 〈ũ(k)(s),ψl ·∇(ψl ·∇ϕ)〉 ds. (2.5.28)

Since weak-* convergent sequences are norm bounded, we obtain (2.5.24) by combining∣∣∣∣∣ ∞∑
l=1

λ2
l

� t

⌊t⌋δ
〈w̃ (k)

N (s),ψl ·∇(ψl ·∇ϕ)〉ds

∣∣∣∣∣
≤ δ

∞∑
l=1

λ2
l ∥w̃ (k)

N ∥L∞(0,T ;H 1(T2))∥ψl ·∇(ψl ·∇ϕ)∥H−1(T2)

with (2.5.28). For (2.5.25), we estimate∣∣∣∣∣
� t

0

∞∑
l=1

λ2
l 〈div(ψl w̃ (k)

N ),ϕ〉2
ds −

� t

0

∞∑
l=1

λ2
l 〈div(ψl ũ(k)),ϕ〉2

ds

∣∣∣∣∣
≤

∞∑
l=1

λ2
l

� T

0

∣∣∣〈w̃ (k)
N ,ψl ·∇ϕ〉

2 −〈ũ(k),ψl ·∇ϕ〉2
∣∣∣ ds

≲
∞∑

l=1
λ2

l

� T

0

∣∣∣〈w̃ (k)
N ,ψl ·∇ϕ〉−〈ũ(k),ψl ·∇ϕ〉

∣∣∣(∣∣∣〈w̃ (k)
N ,ψl ·∇ϕ〉

∣∣∣ + ∣∣∣〈ũ(k),ψl ·∇ϕ〉
∣∣∣) ds,

where we employed that

a2 −b2 ≤ 2|a −b|max(|a|, |b|) ≤ 2|a −b|(|a|+ |b|)

for a,b ∈R. Since ∥ψl ·∇ϕ∥L2(T2) is uniformly bounded in l , we obtain further that∣∣∣∣∣
� t

0

∞∑
l=1

λ2
l 〈div(ψl w̃ (k)

N ),ϕ〉2
ds −

� t

0

∞∑
l=1

λ2
l 〈div(ψl ũ(k)),ϕ〉2

ds

∣∣∣∣∣
≲Λ,ϕ

� T

0
∥w̃ (k)

N − ũ(k)∥L2(T2)

(
∥ũ(k)∥L2(T2) + ∥w̃ (k)

N ∥L2(T2)

)
dt

≲T ∥w̃ (k)
N − ũ(k)∥L∞(0,T ;L2(T2))

(
∥ũ(k)∥L∞(0,T ;L2(T2)) + sup

N∈N
∥w̃ (k)

N ∥L∞(0,T ;L2(T2))

)
.

(2.5.29)

As a consequence of the proof of Lemma 2.5.6 (iii) we have w̃ (k)
N → ũ(k) in L∞(0,T ;L2(T2))

as N →∞ and therefore the right-hand side of (2.5.29) tends to 0. Using that by the same
arguments ∣∣∣∣∣

� t

⌊t⌋δ

∞∑
l=1

λ2
l 〈div(ψl w̃ (k)

N ),ϕ〉2
ds

∣∣∣∣∣ ≲Λ,ϕ δ∥w̃ (k)
N ∥2

L∞(0,T ;L2(T2)),

we obtain indeed (2.5.25). The assertion (2.5.26) can be shown analogously to (2.5.24).
The last convergence (2.5.27) is a consequence of β̃(l )

N → β̃(l ) in C ([0,T ]).
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Lemma 2.5.10. It holds for every k ∈N that

Ẽ

[
sup

0≤t≤T
∥ũ(k)∥p

H 1(T2)

]
≲Λ,p,T νk,p ,

Ẽ

[
∥ J̃ (k)∥

p
2

L2(0,T ;Lq′ (T2;R2))

]
≲Λ,p,q,T νk,p ,

Ẽ

[∥∥∥∥(
ũ(k)

) α+3
2

∥∥∥∥2

L2(0,T ;H 2(T2))
+

∥∥∥∥(
ũ(k)

) α+3
4

∥∥∥∥4

L4(0,T ;W 1,4(T2))

]
≲Λ,α,T 1+νk,α+3.

Proof. This follows since (2.5.16) and (2.5.17) have the same distribution, the lower semi-
continuity of the norm with respect to weak and weak-* convergence, as well as the
bounds from Theorem 2.4.1 (v) and Lemma 2.5.3.

Finally, we define, as in Subsection 2.4.2, F̃ as the augmentation of the filtration G̃
given by

G̃t = σ
({

1R̃(l ) , J̃ (l )|[0,t ]

∣∣∣ l ∈N
}
∪

{
ũ(l )(s), β̃(l )(s)

∣∣∣0 ≤ s ≤ t , l ∈N
})

,

where we consider J |[0,t ] again as a B-random variable in L2(0, t ;Lq ′
(T2;R2)).

Remark 2.5.11. The smallest σ-field H̃t on Ω̃ such that φ(X ) with

X =
(
1R̃(l ) , β̃(l )|[0,t ], ũ(l )|[0,t ], J̃ (l )|[0,t ]

)
l∈N

is measurable for every bounded and continuous function

φ :
∞∏

l=1
R×C ([0, t ])×C ([0, t ];L2(T2))×L2

w (0, t ;Lq ′
(T2;R2)) → R (2.5.30)

coincides with G̃t . Indeed, the inclusion G̃t ⊂ H̃t follows since one can choose φ as a
function depending only on one of the components of

∞∏
l=1
R×C ([0, t ])×C ([0, t ];L2(T2))×L2

w (0, t ;Lq ′
(T2;R2)).

For the reverse inclusion H̃t ⊂ G̃t , we assume thatφ as in (2.5.30) is bounded and contin-
uous, so that it suffices to show thatφ(X ) is measurable with respect to G̃t . In particular,
φ is continuous as mapping from

∞∏
l=1
R×C ([0, t ])×C ([0, t ];L2(T2))×L2(0, t ;Lq ′

(T2;R2)) (2.5.31)

into R. But (2.5.31) is a complete separable metric space so that G̃t -B measurability of
the (2.5.31)-valued random variable X can be checked using a suitable family of func-
tions separating the points by [22, Theorem 6.8.9].
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Theorem 2.5.12. The processes (β̃(l ))l∈N are a family of independent F̃-Brownian mo-
tions. Moreover, we have for every k ∈N, ϕ ∈W 1,q ′

(T2) and t ∈ [0,T ]

〈ũ(k)(t ),ϕ〉 − 〈ũ(k)(0),ϕ〉 =
� t

0
−〈div( J̃ (k)),ϕ〉 ds +

∞∑
l=1

� t

0
λ2

l 〈div(div(ũ(k)(s)ψl )ψl ),ϕ〉 ds

+
∞∑

l=1
λl

� t

0
〈div(ũ(k)(s)ψl ),ϕ〉 dβ̃l

s ,

P̃-almost surely.

Proof. For the claim regarding the family (β̃(l ))l∈N we refer to [51]. For the remainder of
the proof we fix k ∈N and ϕ ∈W 1,q (T2) and define the F̃-adapted process

M(t ) = 〈ũ(k)(t ),ϕ〉 − 〈ũ(k)(0),ϕ〉 +
� t

0
〈div( J̃ (k)),ϕ〉 ds

−
∞∑

l=1

� t

0
λ2

l 〈div(div(ũ(k)(s)ψl )ψl ),ϕ〉 ds

and the approximating processes

MN (t ) = 〈ṽ (k)
N (t ),ϕ〉 − 〈ũ(k)

N (0),ϕ〉 +
� t

0
〈div( J̃ (k)),ϕ〉 ds

−
∞∑

l=1

� ⌊t⌋δ

0
λ2

l 〈div(div(ũ(k)(s)ψl )ψl ),ϕ〉 ds

As a consequence of (2.5.22), (2.5.23) and (2.5.24), MN (t ) converges to M(t ) for every
t ∈ [0,T ] as N →∞. Moreover, we let

φ :
∞∏

l=1
R×C ([0, s])×C ([0, s];L2(T2))×L2

w (0, s;Lq ′
(T2;R2)) → R (2.5.32)

be bounded and continuous and consider the random variables

ρ = φ
((

1R̃(l ) , β̃(l )|[0,s], ũ(l )|[0,s], J̃ (l )|[0,s]

)
l∈N

)
,

ρN = φ

((
1R̃(l )

N
, β̃(l )

N |[0,s], ũ(l )
N |[0,s], J̃ (l )

N |[0,s]

)
l∈N

)
.

As consequence of the convergence of (2.5.16) to (2.5.18) in (2.5.15) we have ρN → ρ as
N →∞. Using that as a consequence of Theorem 2.4.1 (iii) and (iv)

〈v (k)
N (t ),ϕ〉 − 〈u(k)

N (0),ϕ〉 +
� t

0
〈div(J (k)

N ),ϕ〉 ds

−
∞∑

l=1

� ⌊t⌋δ

0
λ2

l 〈div(div(w (k)
N (s)ψl )ψl ),ϕ〉 ds

=
∞∑

l=1
λl

� ⌊t⌋δ

0
〈div(w (k)

N ψl ),ϕ〉 dβl
s ,
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we conclude by additionally invoking Theorem 2.4.1 (ii) that

Ẽ
[
(MN (t )−MN (s +κ))ρN

] = 0,

Ẽ

[(
M 2

N (t )−M 2
N (s +κ)−

� ⌊t⌋δ

⌊s+κ⌋δ

∞∑
l=1

λ2
l 〈div(ψl w̃ (k)

N ),ϕ〉2
dτ

)
ρN

]
= 0,

Ẽ

[(
β̃(l )

N (⌊t⌋δ)MN (t )− β̃(l )
N (⌊s +κ⌋δ)MN (s +κ)−

� ⌊t⌋δ

⌊s+κ⌋δ
λl 〈div(ψl w̃ (k)

N ),ϕ〉dτ

)
ρN

]
= 0,

(2.5.33)

for s, t ∈ [0,T ], κ > 0 such that s +κ ≤ t , and N large enough so that ⌊s +κ⌋δ ≥ s. Due to
Theorem 2.4.1 (v) and the Burkholder–Davis–Gundy inequality we have

sup
N∈N

Ẽ

[
∥w̃ (k)

N ∥p
L∞(0,T ;H 1(T2))

+ sup
τ∈[0,T ]

|MN (τ)|p + |β̃(l )
N (τ)|p

]
< ∞

for every p ∈ (0,∞) so that Vitali’s convergence theorem and (2.5.25), (2.5.26), (2.5.27)
yield

Ẽ
[
(M(t )−M(s +κ))ρ

] = 0,

Ẽ

[(
M 2(t )−M 2(s +κ)−

� t

s+κ

∞∑
l=1

λ2
l 〈div(ψl ũ(k)),ϕ〉2

dτ

)
ρ

]
= 0,

Ẽ

[(
β̃(l )(t )M(t )− β̃(l )(s +κ)M(s +κ)−

� t

s+κ
λl 〈div(ψl ũ(k)),ϕ〉dτ

)
ρ

]
= 0,

(2.5.34)

by letting N →∞ in (2.5.33). Using that{{
φ

((
1R̃(l )

N
, β̃(l )

N |[0,s], ũ(l )
N |[0,s], J̃ (l )

N |[0,s]

)
l∈N

)
∈ B

}∣∣∣∣φ as in (2.5.32) cont. bdd., B ∈B(R)

}
is an intersection stable generator of G̃t by Remark 2.5.11, we conclude that (2.5.34)
holds for every G̃t -measurable and bounded random variable ρ. Finally, we let 0 ≤ s′ ≤
t ′ ≤ T and ρ be a F̃s′-measurable and bounded random variable. If we can show that

Ẽ
[(

M(t ′)−M(s′)
)
ρ
] = 0,

Ẽ

[(
M 2(t ′)−M 2(s′)−

� t ′

s′

∞∑
l=1

λ2
l 〈div(ψl ũ(k)),ϕ〉2

dτ

)
ρ

]
= 0,

Ẽ

[(
β̃(l )(t )M(t ′)− β̃(l )(s′)M(s′)−

� t ′

s′
λl 〈div(ψl ũ(k)),ϕ〉dτ

)
ρ

]
= 0,

(2.5.35)

the claim follows by [82, Proposition A.1], because M is F̃-adapted and square-integrable
due to Lemma 2.5.10. To this end, we let κ′ > 0 and define κ = κ′

2 , s = s′ +κ and t =
t ′+2κ. By definition of the augmented filtration, there exists a P̃-version of ρ which is
G̃s -measurable and moreover we have s +κ ≤ t . Therefore, we can apply (2.5.34) and
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rephrase in terms of s′, t ′,κ′ to deduce that

Ẽ
[
(M(t ′+κ′)−M(s′+κ′))ρ

] = 0,

Ẽ

[(
M 2(t ′+κ′)−M 2(s′+κ′)−

� t ′+κ′

s′+κ′

∞∑
l=1

λ2
l 〈div(ψl ũ(k)),ϕ〉2

dτ

)
ρ

]
= 0,

Ẽ

[(
β̃(l )(t ′+κ′)M(t ′+κ′)− β̃(l )(s′+κ′)M(s′+κ′)−

� t ′+κ′

s′+κ′
λl 〈div(ψl ũ(k)),ϕ〉dτ

)
ρ

]
= 0.

Since κ′ > 0 was arbitrary, we can use continuity of β̃(l ) and M , Vitali’s theorem and the
consequence

Ẽ

[
sup
τ∈[0,T ]

∥ũ(k)(τ)∥p
H 1(T2)

+ |M(τ)|p + |β̃(l )(τ)|p
]
< ∞

of Lemma 2.5.10 to let κ′ ↘ 0 and obtain (2.5.35).

Finally, we put

ũ =
∞∑

k=0
ũ(k), J̃ =

∞∑
k=0

J̃ (k), (2.5.36)

which is in light of Lemma 2.5.6 equivalent to require

ũ = ũ(k) and J̃ = J̃ (k) on R̃(k).

Proof of Theorem 2.1.3. We first show that (Ω̃,Ã, P̃), F̃, (β̃(l ))l∈N, ũ together with J̃ con-
stitute a solution to the stochastic thin-film equation with q ′-regular nonlinearity in the
sense of Definition 2.1.1. By definition, F̃ fulfills the usual conditions and (β̃(l ))l∈N is a
family of independent Brownian motions by Theorem 2.5.12. Furthermore, ũ and J̃ are,
as each of their summands, an H 1

w (T2)-continuous, F̃-adapted process and a random
variable in L2(0,T ;Lq ′

(T2;R2)), respectively. Moreover, J̃ |[0,t ] is F̃t -measurable by defini-
tion of F̃ and we have sup0≤t≤T ∥ũ(t )∥H 1(T2) <∞ because of Lemma 2.5.10. Proposition
2.5.7 together with (2.5.36) yield that (2.1.6) is indeed fulfilled. Similarly, we obtain (2.1.7)
from Theorem 2.5.12, (2.5.36) and the fact that one can pull the F̃0-measurable random
variable 1R̃(k) outside of the stochastic integrals in (2.1.7). For the initial condition, we
observe that

(1R̃(k)
N

, ũ(k)
N (0))k∈N ∼ (1R(k)

N
,u(k)

N (0))k∈N, N ∈N ,

and
(1R̃(k)

N
, ũ(k)

N (0))k∈N → (1R̃(k) , ũ(k)(0))k∈N

as N →∞ in (R×L2(T2))∞. Hence, we have

(1R̃(k) , ũ(k)(0))k∈N ∼ (1R(k)
N

,u(k)
N (0))k∈N

and therefore

ũ(0) =
∞∑

k=1
ũ(k)(0) ∼

∞∑
k=1

u(k)
N (0) ∼ µ
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by Theorem 2.4.1 (i). The non-negativity of ũ(t ) follows from Lemma 2.5.6 (ii). From
Lemma 2.5.10 together with the monotone convergence theorem we deduce the energy
estimates (2.1.9) and (2.1.10). Finally due to Lemma 2.5.6 (iv) we conclude that the addi-
tional spatial regularity property (2.1.11) is by construction fulfilled.

APPENDIX TO CHAPTER 2

2.A. PROPERTIES OF THE SOLUTIONS TO THE DETERMINISTIC

THIN-FILM EQUATION

Proof of Theorem 2.2.3. Since α ∈ (−1,0) and v ∈ H 1(T2) we have due to (2.1.14) that

�
T2

Gα(v0)dx < ∞.

Therefore, [33, Theorem 3.2] applies and yields that a very weak solution (v, J ) with q ′-
regular nonlinearity and initial value v0 exists. The first part of (i) follows by testing the
equation ∂t u =−div J with ϕ⊗1T2 for arbitrary ϕ ∈C∞

c ((0,T )). For the other properties
we consider the approximation procedure in [33], which takes place in two steps. First
problems of the form

∂t (vδε) + div(Jδε) = 0, in L2(0,T ; H−1(T2)),

Jδε = mδε(vδε)∇∆vδε, weakly,

esslimt→0 vδε(t , ·) = v0 +δ+εθ , in H 1(T2),

(Pδε)

are solved by [70, Theorem 1.1]. Letting ε↘ 0 yields solutions to
∂t (uδ) + div(Jδε) = 0,

Jδ = mδ(vδ)∇∆vδ,

vδ(0, ·) = v0 +δ,

in the sense of [33, Definition 3.1] which again are used to construct v . The functions mδ

and mδε are auxiliary mobilities, which take the form mδ(τ) = τ2

1+δτ2 and mδε = τs mδ(τ)
εmδ(τ)+τs

for some s > 4, see [33, p.323, p.331], so we can choose for example s = 5. The number θ
from (Pδε) is a sufficiently small constant. By [33, Lemma 2.1] it follows that

∥∇vδε∥L∞(0,T ;L2(T2;R2)) ≤ ∥∇v0∥L2(T2;R2). (2.A.1)

Since vδε*
∗ vδ and vδ*

∗ v in L∞(0,T ; H 1(T2)), see [33, Proposition 2.6], we conclude
under additional consideration of Remark 2.2.2 that part (ii) holds true. Moreover, since
also vδε* vδ and vδ* v in H 1(0,T ;W −1,q ′

(T2)), it follows that strong convergence takes
place in C ([0,T ];L2(T2)) by Remark 2.2.2. Hence non-negativity is preserved and the
second part of (i) follows by the non-negativity of vδε, see [33, Lemma 2.1]. Furthermore,
in [33, Equation (2.26)] one finds the estimate (iv). Finally, to convince ourselves also of
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part (iii), we conclude that as consequence of [33, Lemma 2.1] it holds

ess sup
T−ρ≤t≤T

∥∇vδε(t )∥2
L2(T2;R2)

+ 2

� T−ρ

0
∥
√

mδε(vδε(t ))∇∆vδε(t )∥2
L2(T2;R2)

dt ≤ ∥∇v0∥2
L2(T2;R2)

(2.A.2)
for any ρ > 0. Since by definition

mδε(τ) ≤ mδ(τ) ≤ τ2

we obtain by Sobolev’s inequality, see [1, Theorem 4.51], the periodic Poincaré inequality
and (2.A.1) that

∥
√

mδε(vδε(t ))∥2
Lr (T2) ≤ ∥vδε(t )∥2

Lr (T2) ≲r ∥vδε(t )∥2
H 1(T2)

≲ ∥∇vδε(t )∥2
L2(T2;R2)

+
∣∣∣∣�
T2

vδε(t )dx

∣∣∣∣2

≤ ∥∇v0∥2
L2(T2;R2)

+
∣∣∣∣�
T2

v0 +δ+εθ dx

∣∣∣∣2

for any 0 ≤ t ≤ T and r ∈ [1,∞). Because we have Jδε(t ) = mδε(vδε(t ))∇∆vδε(t ) for almost
all 0 ≤ t ≤ T , see [33, Lemma 2.1], we obtain by (2.A.1), (2.A.2), Hölder’s inequality and
the choice 1

2 + 1
r = 1

q ′ that

Cq ess sup
T−ρ≤t≤T

[
∥∇vδε(t )∥2

L2(T2;R2)

(
∥∇vδε(t )∥2

L2(T2;R2)
+

∣∣∣∣�
T2

v0 +δ+εθ dx

∣∣∣∣2)]

+
� T−ρ

0
∥Jδε(t )∥2

Lq′ (T2;R2)
dt ≤ Cq∥∇v0∥2

L2(T2;R2)

(
∥∇v0∥2

L2(T2;R2)
+

∣∣∣∣�
T2

v0 +δ+εθ dx

∣∣∣∣2)
.

Using that Jδε * Jδ and Jδ * J in L2(0,T ;Lq ′
(T2;R2)) as well as that ∇vδε *

∗ ∇vδ and
∇vδ*

∗ ∇v in L∞(0,T ;L2(T2;R2)), see [33, Proposition 2.6], we infer that

Cq ess sup
T−ρ≤t≤T

[
∥∇v(t )∥2

L2(T2;R2)

(
∥∇v(t )∥2

L2(T2;R2)
+

∣∣∣∣�
T2

v0 dx

∣∣∣∣2)]

+
� T−ρ

0
∥J (t )∥2

Lq′ (T2;R2)
dt ≤ Cq∥∇v0∥2

L2(T2;R2)

(
∥∇v0∥2

L2(T2;R2)
+

∣∣∣∣�
T2

v0 dx

∣∣∣∣2)
The claimed estimate follows by letting ρ↘ 0 together with the weak continuity of v in
H 1(T2).

2.B. GELFAND TRIPLE OF BESSEL-POTENTIAL SPACES
The purpose of this section is to verify that H 2(T2) ⊂ H 1(T2) ⊂ L2(T2) is a Gelfand triple,
when equipping H 2(T2) with the Bessel-potential norm, as claimed in the proof of The-
orem 2.3.1. We recall that the Bessel-potential norm on H 2(T2) is defined by∣∣∣∣∣∣ f

∣∣∣∣∣∣2
H 2(T2) =

∑
k∈Z2

(1+|2πk|2)2| f̂ (k)|2,
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where

f̂ (k) =
�
T2

f (x)e−2πi k·x dx, k ∈Z2, (2.B.1)

is the k-th Fourier coefficient of a function f ∈ L2(T2). Moreover, by definition of the
Bessel-potential spaces

H 2(T2) =
{

f ∈ L2(T2) | ∣∣∣∣∣∣ f
∣∣∣∣∣∣

H 2(T2) <∞
}

.

The pairing of two functions f ∈ H 1(T2), g ∈ H 2(T2) in H 1(T2) can be rewritten by Parse-
val’s relation [69, Proposition 3.2.7] as

( f , g )H 1(T2) = ( f , g )L2(T2) + (∇ f ,∇g )L2(T2;R2) =
∑

k∈Z2

(1+|2πk|2) f̂ (k)ĝ (k) (2.B.2)

and therefore

|( f , g )H 1(T2)| ≤
( ∑

k∈Z2

| f̂ (k)|2
)( ∑

k∈Z2

(1+|2πk|2)2|ĝ (k)|2
)
= ∥ f ∥L2(T2)

∣∣∣∣∣∣g ∣∣∣∣∣∣
H 2(T2)

by the Cauchy-Schwarz inequality. Hence,

∥( f , ·)H 1(T2)∥(H 2(T2))′ ≤ ∥ f ∥L2(T2). (2.B.3)

Moreover, since the coefficients are square summable, the series

∑
k∈Z

f̂ (k)

1+|2πk|2 e2πi k·x

converges to an element g f ∈ L2(T2). Since

∣∣∣∣∣∣g f
∣∣∣∣∣∣2

H 2(T2) =
∑

k∈Z2

(1+|2πk|2)2

(
| f̂ (k)|

1+|2πk|2
)2

= ∥ f ∥2
L2(T2) < ∞, (2.B.4)

it satisfies g f ∈ H 2(T2). Using (2.B.2), we obtain that

( f , g f )H 1(T2) =
∑

k∈Z2

(1+|2πk|2) f̂ (k)
f̂ (k)

1+|2πk|2 = ∥ f ∥2
L2(T2),

so that
∥( f , ·)H 1(T2)∥(H 2(T2))′ ≥ ∥ f ∥L2(T2)

by (2.B.4). Due to (2.B.3), the above inequality is an equality. Consequently, identifying
f ∈ H 1(T2) with ( f , ·)H 1(T2) and taking the completion of these functions with respect to

∥( f , ·)H 1(T2)∥(H 2(T2))′

yields the space L2(T2). With this identification, the dual pairing between a function
g ∈ H 2(T2) and a function f ∈ L2(T2) is given by

〈〈 f , g 〉〉H 1(T2) = 〈 f , g 〉 + 〈∇ f ,∇g 〉 ,
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where we recall that 〈·, ·〉 is the dual pairing in L2(T2). Indeed, for f ∈ H 1(T2) this follows
since it was identified with ( f , ·)H 1(T2). For f ∈ L2(T2) we take a sequence ( fn)n∈N from
H 1(T2) converging to f in L2(T2). Then also ∇ fn →∇ f in H−1(T2;R2) and hence

〈〈 f , g 〉〉H 1(T2) ← 〈〈 fn , g 〉〉H 1(T2) = 〈 fn , g 〉 + 〈∇ fn ,∇g 〉 → 〈 f , g 〉 + 〈∇ f ,∇g 〉

for all g ∈ H 2(T2).

2.C. JUSTIFICATIONS OF ITÔ’S FORMULA
First, we justify the use of Itô’s formula in the proof of Lemma 2.4.3. To this end, we
introduce the equivalence relation

f ∼ g ⇐⇒ ∃c ∈R : f = g + c

for f , g ∈ H s (T2), s ≥ 0 and write ḟ for the respective equivalence class in H s (T2). We
recall that the Bessel-potential space is given by

H s (T2) =
{

f ∈ L2(T2) | ∣∣∣∣∣∣ f
∣∣∣∣∣∣

H s (T2) <∞
}

,

where the appearing Bessel-potential norm is defined as∣∣∣∣∣∣ f
∣∣∣∣∣∣2

H s (T2) =
∑

k∈Z2

(1+|2πk|2)s | f̂ (k)|2

with f̂ (k) being the k-th Fourier coefficient (2.B.1) of a function f ∈ L2(T2). Under this
norm, the quotient space H s (T2)/ ∼ is equipped with∣∣∣∣∣∣ ḟ

∣∣∣∣∣∣2
H s (T2)/∼ = inf

g∈ ḟ

∑
k∈Z2

(1+|2πk|2)s |ĝ (k)|2 = inf
g∈ ḟ

|ĝ (0)|2 + ∑
k∈Z2 \{(0,0)}

(1+|2πk|2)s | f̂ (k)|2

= ∑
k∈Z2 \{(0,0)}

(1+|2πk|2)s | f̂ (k)|2.

Here, we used in the second equality that
�
T2

e−2πki ·x dx = 0

for k ∈Z2 \{(0,0)} and therefore
f̂ (k) = ĝ (k)

for all g ∈ ḟ . In the following, we write Ḣ s (T2) for H s (T2)/ ∼ and equip it with the equiv-
alent norm

∥ ḟ ∥2
Ḣ s (T2)

= ∑
k∈Z2 \{(0,0)}

|2πk|2s | f̂ (k)|2.

Analogously to Appendix 2.B, one verifies that Ḣ 0(T2) can be identified with the dual of
Ḣ 2(T2) under the pairing in Ḣ 1(T2). Moreover, the dual pairing is given by

〈〈 ḟ , ġ 〉〉Ḣ 1(T2) =
∑

k∈Z2 \{(0,0)}

|2πk|2 f̂ (k)ĝ (k) = 〈∇ f ,∇g 〉 (2.C.1)
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for ḟ ∈ Ḣ 1(T2) and ġ ∈ Ḣ 2(T2) by Parseval’s relation [69, Proposition 3.2.7]. For general
ḟ ∈ Ḣ 0(T2) the equality (2.C.1) holds by an approximation argument as in Appendix 2.B.

Next, we denote by Phom the operator mapping a function f ∈ H s (T2) to its equiva-
lence class in Ḣ s (T2), i.e., Phom f = ḟ . Then

Phom ∈ L(L2(T2), Ḣ 0(T2))∩L(H 1(T2), Ḣ 1(T2))

and applying Phom to equation (2.3.2) satisfied by wε on [ jδ, ( j +1)δ) yields that

Phom wε(t ) =Phom wε( jδ) +
� t

jδ
Phom Aε(wε(s))ds

+
� t

jδ
PhomB(wε(s))dVt , t ∈ [ jδ, ( j +1)δ),

(2.C.2)

where V is the cylindrical Wiener process in H 2(T2;R2) given by

Vt =
∞∑

l=1
β(l )

t ψl . (2.C.3)

Because of Phom ∈ L(H 2(T2), Ḣ 2(T2)), wε ∈ L2([ jδ, ( j + 1)δ] ×Ω; H 2(T2)) by Theorem
2.3.1, and the boundedness of the operators Aε and B , it holds

Phom wε ∈ L2([ jδ, ( j +1)δ]×Ω; Ḣ 2(T2)),

Phom Aε(wε) ∈ L2([ jδ, ( j +1)δ]×Ω; Ḣ 0(T2)), (2.C.4)

PhomB(wε) ∈ L2([ jδ, ( j +1)δ]×Ω;L2(H 2(T2;R2), Ḣ 0(T2))). (2.C.5)

Moreover, because of right-continuity in H 1(T2), wε admits a progressively measurable,
H 2(T2)-valued dt ⊗P-version by [100, Exercise 4.2.3]. Since later in the proof of Lemma
2.4.3 we integrate in time and take the expectation anyways, we denote this progressive
version again by wε to ease the notation. By continuity of the involved operators, also the
processes (2.C.4) and (2.C.5) are progressive when choosing this dt ⊗P-version of wε, so
that Itô’s formula for the squared norm in Ḣ 1(T2) from [100, Theorem 4.2.5] is applicable
to (2.C.2). Noting that by Parseval’s relation, the norm in Ḣ 1(T2) can be written as

∥ ḟ ∥2
Ḣ 1(T2)

= ∥∇ f ∥2
L2(T2;R2)

,

we obtain that

∥∇wε(t )∥2
L2(T2;R2)

= ∥∇wε( jδ)∥2
L2(T2;R2)

+2

� t

jδ
〈∇wε(s),∇Aε(wε(s))〉 ds

+ 2

� t

jδ
〈∇wε(s),∇B(wε(s))dVs〉 +

∞∑
l=1

λ2
l

� t

jδ
∥∇div(wε(s)ψl )∥2

L2(T2;R2)
ds

for t ∈ [ jδ, ( j +1)δ). Writing the stochastic integral with respect to V as its series repre-
sentation results in (2.4.3). Moreover, its quadratic variation is given by

4

� t

jδ
∥〈∇wε(s),∇B(wε(s)) ·〉∥2

L2(H 2(T2;R2),R)
ds = 4

∞∑
l=1

λ2
l

� t

jδ
〈∇div(wε(s)ψl ),∇wε(s)〉2 ds.

(2.C.6)
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Secondly, we justify the use of Itô’s formula in the proof of Lemma 2.5.3, where we
use instead [39, Proposition A.1]. Choosing ψ = 1T2 , ϕ = Gα,κ in the notation of this
proposition, we see that the functional (2.5.5) is of the required form. Next, we observe
that as a consequence of Theorem 2.4.1 (iv), the process w (k)

N satisfies

dw (k)
N = div(G(t ))dt + H(t )dVt

on [ jδ, ( j +1)δ), where

G(t ) = 1

2

∞∑
l=1

λ2
l div(w (k)

N (t )ψl )ψl ,

H(t )[v] =
∞∑

l=1
λl (v,ψl )H 2(T2 ;R2) div(w (k)

N (t )ψl ), v ∈ H 2(T2;R2)

and Vt as in (2.C.3). By Theorem 2.4.1 (v), we have

w (k)
N ∈ L2(Ω;L2( jδ, ( j +1)δ; H 1(T2))) (2.C.7)

and
w (k)

N ∈ L2(Ω;C ([ jδ, ( j +1)δ];L2(T2))),

if we replace its terminal value w (k)
N (( j +1)δ) by v (k)

N (( j +1)δ). By (2.3.5) andΛ ∈ l 2(N) we
have that

∥G(t )∥L2(T2;R2) ≤
1

2

∞∑
l=1

λ2
l ∥div(w (k)

N (t )ψl )ψl∥L2(T2;R2)

≲
∞∑

l=1
λ2

l ∥(w (k)
N (t )∥H 1(T2) ≲Λ ∥(w (k)

N (t )∥H 1(T2)

and consequently (2.C.7) implies that

G ∈ L2(Ω;L2( jδ, ( j +1)δ;L2(T2;R2))).

Similarly, we estimate

∥H(t )∥2
L2(H 2(T2;R2),L2(T2))

=
∞∑

l=1
λ2

l ∥div(w (k)
N (t )ψl )∥2

L2(T2)

≲
∞∑

l=1
λ2

l ∥w (k)
N (t )∥2

H 1(T2) ≲Λ ∥w (k)
N (t )∥2

H 1(T2),

so that
H ∈ L2(Ω;L2( jδ, ( j +1)δ;L2(H 2(T2;R2),L2(T2)))).

Hence, all the assumptions of [39, Proposition A.1] are satisfied, which results in (2.5.6).



3
EXISTENCE WITH NONLINEAR

NOISE: POSITIVE INITIAL DATA†

In this chapter we construct weak martingale solutions to the Stratonovich interpreta-
tion of (STFE) with n ∈ (2,3) and d = 1 for initial values which are positive almost ev-
erywhere. This can be seen as an extension of [35, Theorem 2.2], which is limited to
n ∈ [ 8

3 ,4), to the case n ∈ (2, 8
3 ). Indeed, the authors of [35] write ’We expect that the lim-

itations n ≥ 8
3 and n < 4 are due to technical reasons and that these restrictions can be

potentially removed in future work by making use of so-called α-entropies’. We employ
this suggested strategy as follows: At the core of previous existence results for (STFE) are
suitable approximations, which are compatible with the energy estimate. Namely, one
formally derives for the deterministic thin-film equation

∂t u = −∂x (un∂3
x u) (3.0.1)

using integration by parts that

1
2∂t∥∂x u∥2

L2
x
= −∥u

n
2 ∂3

x u∥2
L2

x
. (3.0.2)

If the energy estimate is fulfilled also by a sequence of approximations of (3.0.1), it pro-
vides sufficient compactness to show that a limit solves (3.0.1) in a weak sense, as demon-
strated in [15]. For (STFE) with Stratonovich noise a formal application of Itô’s formula
shows that

1
2 d∥∂x u∥2

L2
x
= −∥u

n
2 ∂3

x u∥2
L2

x
dt + dM + dR,

where M is a local martingale and R is the remainder after canceling the energy pro-
duction due to the noise with the energy dissipation of the Stratonovich correction. As

†This chapter is based on the preprint [117]: M. Sauerbrey. "Solutions to the stochastic thin-
film equation for the range of mobility exponents n ∈ (2,3)". In: arXiv preprint arXiv:2310.02765
(2024).
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calculated in [35, Eq. (4.10)], this remainder term takes the form

dR =
(
. . . +

�
un−4(∂x u)4 dx

)
dt , (3.0.3)

where the left out terms are less difficult to estimate than the one made explicit. In this
chapter we use that this term appears in the log-entropy dissipation

∂t

�
(u −1)− log(u)dx = −

�
un−2(∂2

x u)2 dx − (n−2)(3−n)
3

�
un−4(∂x u)4 dx (3.0.4)

for a solution to (3.0.1), which is indeed a special case of the α-entropy estimates as
introduced in [11, Proposition 2.1]. This allows us to close an energy estimate and set up
a compactness argument.

3.1. INTRODUCTION TO CHAPTER 3
We state the results of this chapter and outline the strategy of their proof.

3.1.1. MAIN RESULT
We consider the Stratonovich interpretation of (STFE) on the one-dimensional torus T.
To state our result, we first specify our assumption on the spatial smoothness of the
noise. Following the notation of [35], we write

ek (x) =


p

2cos(2πkx), k < 0,

1, k = 0,p
2sin(2πkx), k > 0,

k ∈Z,

for the eigenfunctions of the periodic Laplace operator and define σk = λk ek for a se-
quence (λk )k∈Z. We let (β(k))k∈Z be a family of independent Brownian motions and de-
fine the Wiener process

B(t , x) = ∑
k∈Z

σk (x)β(k)(t ).

We insert W = dB
dt in (STFE), set F0(r ) = r

n
2 and, as in [35, Eq. (2.4)], obtain the following

Itô formulation of the Stratonovich interpretation of (STFE)

du = −∂x (F 2
0 (u)∂3

x u)dt + 1

2

∑
k∈Z

∂x (σk F ′
0(u)∂x (σk F0(u)))dt + ∑

k∈Z
∂x (σk F0(u))dβ(k).

(3.1.1)
We use the notion of weak martingale solutions to (3.1.1) from [35, Definition 2.1]. We
point out that, in contrast to [35, Definition 2.1], we restrict our definition to the relevant
case of non-negative solutions.

Definition 3.1.1. A weak martingale solution to the SPDE (3.1.1) with initial value u0 ∈
L2(Ω,F0; H 1(T)) consists of a probability space (Ω̃,Ã, P̃) with a filtration F̃ satisfying the
usual conditions, a family (β̃(k))k∈Z of independent F̃-Brownian motions and a weakly
continuous, F̃-adapted, non-negative, H 1(T)-valued process ũ such that



3.1. INTRODUCTION TO CHAPTER 3

3

89

(i) ũ(0) has the same distribution as u0,

(ii) Ẽ
[
supt∈[0,T ] ∥ũ(t )∥2

H 1(T)

]<∞,

(iii) for P̃⊗dt-almost all (ω̃, t ) ∈ Ω̃× [0,T ] the weak derivative of third order ∂3
x ũ exists

on {ũ > 0} and satisfies Ẽ
[∥1{ũ>0}F0(ũ)∂3

x ũ∥2
L2([0,T ]×T)

]<∞,

(iv) for all ϕ ∈C∞(T), P̃-almost surely, we have

(ũ(t ),ϕ)L2(T) = (ũ(0),ϕ)L2(T) +
� t

0

�
{ũ(s)>0}

F 2
0 (ũ)∂3

x ũ∂xϕdx ds

− 1

2

∑
k∈Z

� t

0
(σk F ′

0(ũ)∂x (σk F0(ũ)),∂xϕ)L2(T) ds

− ∑
k∈Z

� t

0
(σk F0(ũ),∂xϕ)L2(T) dβ̃(k),

(3.1.2)

for all t ∈ [0,T ].

The main result of this chapter reads as follows. We remark that for n ∈ [ 8
3 ,3), a com-

parable existence result is already available, see [35, Theorem 2.2], and that A (u0) de-
notes the spatial average of u0.

Theorem 3.1.2. Let T ∈ (0,∞), n ∈ (2,3), p > n+2 and u0 ∈ Lp (Ω,F0; H 1(T)) non-negative
with

E
[
|A (u0)| p(n+2)

8−2n

]
+ E

[(�
T

(u0 −1)− log(u0)dx

) p
2
]
< ∞ (3.1.3)

and moreover ∑
k∈Z

λ2
k k4 < ∞. (3.1.4)

Then (3.1.1) admits a weak martingale solution{
(Ω̃,Ã, F̃, P̌), (β̃(k))k∈Z, ũ

}
in the sense of Definition 3.1.1 with initial value u0 satisfying ũ > 0, P̃⊗dt ⊗dx-almost
everywhere. Moreover, this solution satisfies the estimate

Ẽ

[
sup

t∈[0,T ]
∥∂x ũ(t )∥p

L2(T)
+ sup

t∈[0,T ]

(�
T

(ũ(t )−1)− log(ũ(t ))dx

) p
2
]

+ Ẽ
[
∥1{ũ>0}F0(ũ)∂3

x ũ∥p
L2([0,T ]×T)

]
≲n,σ,p,T E

[
∥∂x u0∥p

L2(T)
+ |A (u0)| p(n+2)

8−2n +
(�
T

(u0 −1)− log(u0)dx

) p
2
]
+ 1

(3.1.5)

and
ũ ∈ Lq (Ω̃;C

γ
4 ,γ([0,T ]×T)) for all γ ∈ (

0, 1
2

)
and q ∈ [

1, 2p
n+2

)
. (3.1.6)
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Moreover, in case that the initial value has finite entropy, we also recover an entropy
estimate in the spirit of [35, Eq. (2.6)].

Proposition 3.1.3. Under the assumptions of Theorem 3.1.2, the constructed solution ũ
satisfies

Ẽ
[

sup
t∈[0,T ]

∥∥(ũ(t ))2−n∥∥q
L1(T)

+ ∥∂2
x ũ∥2q

L2([0,T ]×T)

]
≲n,q,σ,T E

[∥∥u2−n
0

∥∥q
L1(T)

+ |A (u0)|2q
]
+ 1

(3.1.7)

for each q ≥ 1.

3.1.2. STRATEGY OF THE PROOF
As laid out in the beginning of this chapter, our idea is to use a stochastic version of
the log-entropy estimate (3.0.4) to bound the energy production (3.0.3) due to the noise
for suitable approximations of (3.1.1). While the entropy estimate used in [35] is com-
patible with non-negative approximations, the log-entropy or more generally α-entropy
estimates require usually non-negative approximations. This is also evident from the de-
terministic case [11], where to find an approximating sequence of (3.0.1) which is in line
with (3.0.4) the authors use a special nonlinear regularization, which ensures that the ap-
proximations are non-negative. We will follow this idea and first construct non-negative
solutions to

duδ = −∂x (F 2
δ (uδ)∂3

x uδ)dt

+ 1

2

∑
k∈Z

∂x (σk F ′
δ(uδ)∂x (σk Fδ(uδ)))dt + ∑

k∈Z
∂x (σk Fδ(uδ))dβ(k),

(3.1.8)

where

Fδ(r ) = r
n+ν

2

r
ν
2 +δ ν−n

2 r
n
2

,

for appropriate ν ∈ (3,4). In particular Fδ(r ) ∼ r
ν
2 for r close to 0, so that up to mi-

nor modifications the strategy from [35] can be employed. Subsequently, we use the
aforementioned idea and show a version of the log-entropy estimate (3.0.4) and then of
the energy estimate (3.0.2), which are uniform in δ. This again enables us to apply the
stochastic compactness method to extract a weak martingale solution to (3.1.1) as δ↘ 0.

To implement the laid out idea, we need to carefully introduce approximate versions
of the functions involved in the desired a-priori estimates, which is the content of Section
3.2. Further conventions regarding notation can be found in Section 3.3. The proof of
existence of solutions to (3.1.8) is given in Section 3.4. Since this is mainly analogous to
the proof of [35, Theorem 2.2], this section is kept as short as possible, but also detailed
enough to explain how to treat the slightly more delicate situation of the inhomogeneous
mobility function Fδ. Finally, in Section 3.5 we obtain a δ-uniform version of the energy
and log-entropy estimate and based on this extract a solution to the original equation
(3.1.1). Since this is the main innovation of this chapter, Section 3.5 is as self-contained
as possible. This comes at the expense that some estimates derived in Section 3.5 are
used in the preceding Section 3.4, instead of the other way around, which the author
would like to excuse.
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3.2. APPROXIMATE MOBILITIES AND FUNCTIONALS
For the rest of this chapter we fix n ∈ (2,3) and a corresponding ν ∈ (3,4) subject to the
conditions

ν < 6−n, (3.2.1)

ν2 + ν(2−4n) + n(n +2) ≤ 0. (3.2.2)

We convince ourselves that these conditions are compatible as follows. Since (3.2.1) is
satisfied as soon as we choose ν close to 3, it suffices to check that

15 − 10n + n2 = 32 + 3(2−4n) + n(n +2) < 0

for all n ∈ (2,3). This, however, is an easy exercise. The assumption that ν< 4 is necessary
to ensure that the strategy of [35] carries over to Section 3.4, while the reasons for (3.2.1)
and (3.2.2) are subtle, see, e.g., (3.5.17) and (3.5.44), where these conditions are used. We
moreover use throughout the chapter the regularization parameters

δ,ε ∈ (0,1) (3.2.3)

and R ∈ (0,∞). Furthermore, to make this chapter more readable, we introduce the fol-
lowing notation:

l = ν−n
2 ,

F0(r ) = r
n
2 , r ≥ 0,

Fδ(r ) = r
n+ν

2

r
ν
2 +δl r

n
2

, r ≥ 0, (3.2.4)

Kε(r ) = (r 2 +ε2)
1
2 ,

Fδ,ε(r ) = Fδ(Kε(r )),

Jδ(r ) =
� r

0

� ∞

r ′
(F ′′
δ (r ′′))2 dr ′′ dr ′, r ≥ 0, (3.2.5)

Jδ,ε(r ) =
� r

0

� ∞

r ′
(F ′′
δ,ε(r ′′))2 dr ′′ dr ′, (3.2.6)

Lδ(r ) =
� r

1

� r ′

1

Jδ(r ′′)
F 2
δ

(r ′′)
dr ′′ dr ′, r > 0, (3.2.7)

Lδ,ε(r ) =
� r

1

� r ′

1

Jδ,ε(r ′′)
F 2
δ,ε(r ′′)

dr ′′ dr ′, (3.2.8)

Gδ(r ) =
� ∞

r

� ∞

r ′

1

F 2
δ

(r ′′)
dr ′′ dr ′, r > 0,

Gδ,ε(r ) =
� ∞

r

� ∞

r ′

1

F 2
δ,ε(r ′′)

dr ′′ dr ′, (3.2.9)

Hδ,ε(r ) =
� ∞

r

1

Fδ,ε(r ′)
dr ′. (3.2.10)
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The parameter l is chosen in this way to ensure that the denominator of Fδ scales appro-
priately. While F0 is the square-root of the original mobility un , Fδ is its approximation in
the spirit of [11, Eq. (1.6)]. The smooth approximations of the modulus function Kε and
the corresponding mobility function Fδ,ε appear in the regularization procedure from
[35]. To interpret Jδ and Lδ, we calculate that, when inserting F0 instead of its modifica-
tions, one obtains

J0(r ) =
� r

0

� ∞

r ′
(F ′′

0 (r ′′))2 dr ′′ dr ′ ≂n

� r

0

� ∞

r ′
(r ′′)n−4 dr ′′ dr ′ ≂n r n−2, r > 0,

and consequently

L0(r ) =
� r

1

� r ′

1

J0(r ′′)
F 2

0 (r ′′)
dr ′′ dr ′ ≂n

� r

1

� r ′

1

(r ′′)n−2

(r ′′)n dr ′′ dr ′ = (r −1) − log(r ), r > 0.

Hence, Lδ and Lδ,ε are approximations of the log-entropy functional.
Also a remark concerning the existence of the integrals in the definitions of Jδ and

Jδ,ε is in order. We calculate explicitly that

F ′
δ(r ) = r

n+ν
2 −1 nr

ν
2 +δlνr

n
2

2(r
ν
2 +δl r

n
2 )2

, r > 0, (3.2.11)

F ′′
δ (r ) = r

n+ν
2 −2 δ2l (ν−2)νr n −δl (ν2+ν(2−4n)+n(n+2))r

n+ν
2 +n(n−2)r ν

4(r
ν
2 +δl r

n
2 )3

, r > 0, (3.2.12)

from which we conclude

|F ′
δ(r )| ≲n,ν r

n
2 −1, r > 0, (3.2.13)

|F ′′
δ (r )| ≲n,ν r

n
2 −2, r > 0. (3.2.14)

In particular (3.2.14) implies that

(F ′′
δ (r ))2 ≲n,ν r n−4, r > 0,

is integrable at infinity with
� ∞

r
(F ′′
δ (r ′))2 dr ′ ≲n,ν r n−3, r > 0.

This again is integrable at 0 so that (3.2.5) is well-defined.
To argue in the same way for the definition of Jδ,ε, we observe first that by the chain

rule
F ′′
δ,ε(r ) = F ′′

δ (Kε(r ))(K ′
ε(r ))2 + F ′

δ(Kε(r ))K ′′
ε (r ) (3.2.15)

and furthermore

K ′
ε(r ) = r

(r 2 +ε2)
1
2

∈ (−1,1), (3.2.16)

K ′′
ε (r ) = ε2

(r 2 +ε2)
3
2

≤ 1

Kε(r )
. (3.2.17)
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Combining (3.2.13)–(3.2.17), we conclude that

|F ′′
δ,ε(r )| ≲n,ν K

n
2 −2
ε (r ) + K

n
2 −1
ε (r )

Kε(r )
≂ K

n
2 −2
ε (r ). (3.2.18)

Taking the square results in

(F ′′
δ,ε(r ))2 ≲n,ν K n−4

ε (r ). (3.2.19)

The right-hand side is integrable at infinity and since Fδ,ε is smooth also� ∞

r
(F ′′
δ,ε(r ′))2 dr ′

defines a smooth function and in particular (3.2.6) is well-defined.
Since, by the previous considerations, the integrands in (3.2.7) and (3.2.8) are smooth

functions on the domains of integration, also the definitions of Lδ and Lδ,ε are meaning-
ful. Lastly, the functions Gδ, Gδ,ε and Hδ,ε are defined analogously to [35, Eq. (4.1)] and
Gδ, Gδ,ε are approximations of the entropy function for (3.0.1).

3.3. FURTHER NOTATION FOR CHAPTER 3
For the remainder of this chapter we fix the finite time horizon T ∈ (0,∞) and a sequence
(λk )k∈Z subject to the condition (3.1.4). Moreover, we write T for the flat torus, i.e. for
the interval [0,1] with its endpoints identified. For a function f , we write f+ and f− for
its positive and negative part, respectively. To not overload the subscript, we may also
use the notations f + and f −.

Let X be a Banach space and ν a non-negative measure on a measurable space
S. Then we write Lp (S;X ), p ∈ [1,∞], for the Bochner space on S with values in X ,
equipped with the norm

∥ f ∥p
Lp (S;X ) =

�
S
∥ f ∥p

X
dν, p ∈ [1,∞),

and the usual modification for p = ∞. For a sub-σ-field H, we denote the subspace
of H-measurable functions in Lp (S;X ) by Lp (S,H;X ). If [0,T ] is an interval, we use
Lp (0,T ;X ) to denote Lp ([0,T ];X ). In the case X = R, we simply write Lp (S). For a
function f ∈ L1(T) we write

A ( f ) =
�
T

f dx

for the averaging operator.
If T is a compact topological space, we write C (T ;X ) for the space of continuous,

X -valued functions equipped with the norm

∥ f ∥C (T ;X ) = sup
y∈T

∥ f (y)∥X .

In the case X = R, we simply write C (T ). For β ∈ (0,1), we write Cβ([0,T ];X ) for the
Hölder space of X -valued functions, which carries the norm

∥ f ∥Cβ([0,T ];X ) = ∥ f ∥C ([0,T ];X ) + [ f ]Cβ([0,T ];X ),
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where

[ f ]Cβ([0,T ];X ) = sup
s,t∈[0,T ]

s ̸=t

∥ f (t )− f (s)∥X

|t − s|β .

For l ∈N, we denote the space of l -times continuously differentiable functions on T
by C l (T) and equip it with the norm

∥ f ∥C l (T) =
l∑

j=0
∥∂ j

x f ∥C (T).

For the smooth functions on T we write C∞(T). We also write H l (T) for the Sobolev
space of order l equipped with the norm

∥ f ∥2
H l (T)

=
l∑

j=0
∥∂ j

x f ∥2
L2(T).

For two exponentsβ,γ ∈ (0,1), we write Cβ,γ([0,T ]×T) for the mixed exponent Hölder
space carrying the norm

∥ f ∥Cβ,γ([0,T ]×T) = ∥ f ∥C ([0,T ]×T) + [ f ]Cβ,γ([0,T ]×T),

where

[ f ]Cβ,γ([0,T ]×T) = sup
x∈T

sup
s,t∈[0,T ]

s ̸=t

| f (t , x)− f (s, x)|
|t − s|β + sup

t∈[0,T ]
sup

x,y∈T
x ̸=y

| f (t , x)− f (t , y)|
|x − y |γ .

If (Ω,A,P) is a probability space, we write E[ · ] for the expectation. For two quantities
A and B , we write A ≲ B , if there exists a universal constant C such that A ≤ C B . If this
constant depends on parameters p1, . . . , we write A ≲p1,... B instead. We write A ≂p1,... B ,
whenever A ≲p1,... B and B ≲p1,... A.

3.4. SOLUTIONS TO THE STFE WITH INHOMOGENEOUS MO-
BILITY FUNCTION

The aim of this section is to construct weak martingale solutions to (3.1.8) and follows
essentially along the lines of the proof [35, Theorem 2.2]. Since, unlike in the situation of
[35, Theorem 2.2], Fδ is not homogeneous, the proof has to be adapted to our situation
nevertheless and we include an appropriate amount of details.

The starting point is a Galerkin approximation to construct weak martingale solu-
tions to the non-degenerate SPDE

duδ,ε,R = −∂x (F 2
δ,ε(uδ,ε,R )∂3

x uδ)dt

+ 1

2
g 2

R (∥uδ,ε,R∥C (T))
∑

k∈Z
∂x (σk F ′

δ,ε(uδ,ε,R )∂x (σk Fδ,ε(uδ,ε,R )))dt

+ gR (∥uδ,ε,R∥C (T))
∑

k∈Z
∂x (σk Fδ,ε(uδ,ε,R ))dβ(k).

(3.4.1)
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Here, g : [0,∞) → [0,1] is a smooth function with g (r ) = 1 for r ∈ [0,1] and g (r ) = 0 for
r ∈ [2,∞) and gR (r ) = g ( r

R ). We use the following notion of weak martingale solutions to
(3.4.1) from [35, Definition 3.2].

Definition 3.4.1. A weak martingale solution to the SPDE (3.4.1) with initial value u0 ∈
L2(Ω,F0; H 1(T)) consists of a probability space (Ω̂,Â, P̂) with a filtration F̂ satisfying the
usual conditions, a family (β̂(k))k∈Z of independent F̂-Brownian motions and a continu-
ous, F̂-adapted, H 1(T)-valued process ûδ,ε,R such that

(i) ûδ,ε,R (0) has the same distribution as u0,

(ii) Ê
[
supt∈[0,T ] ∥ûδ,ε,R (t )∥2

H 1(T)

]<∞,

(iii) for P̂⊗dt-almost all (ω̂, t ) ∈ Ω̂× [0,T ] the weak derivative of third order ∂3
x ûδ,ε,R

exists and satisfies Ê
[∥Fδ,ε(ûδ,ε,R )∂3

x ûδ,ε,R∥2
L2([0,T ]×T)

]<∞,

(iv) for all ϕ ∈C∞(T), P̂-almost surely, we have

(ûδ,ε,R (t ),ϕ)L2(T) = (ûδ,ε,R (0),ϕ)L2(T) +
� t

0

�
T

F 2
δ,ε(ûδ,ε,R )∂3

x ûδ,ε,R ∂xϕdx ds

− 1

2

∑
k∈Z

� t

0
g 2

R (∥ûδ,ε,R∥C (T))(σk F ′
δ,ε(ûδ,ε,R )∂x (σk Fδ,ε(ûδ,ε,R )),∂xϕ)L2(T) ds

− ∑
k∈Z

� t

0
gR (∥ûδ,ε,R∥C (T))(σk Fδ,ε(ûδ,ε,R ),∂xϕ)L2(T) dβ̂(k),

for all t ∈ [0,T ].

The proof of existence of solutions to (3.4.1) is completely analogous to the one of
[35, Proposition 3.4] with mobility exponent n.

Lemma 3.4.2. Let p ≥ n+2 and u0 ∈ Lp (Ω,F0; H 1(T)), then there exists a weak martingale
solution {

(Ω̂,Â, F̂, P̂), (β̂(k))k∈Z, ûδ,ε,R
}

to (3.4.1) in the sense of Definition 3.4.1 with initial value u0. Moreover, this solution
satisfies the estimate

Ê
[

sup
t∈[0,T ]

∥∂x ûδ,ε,R (t )∥p
L2(T)

+ ∥Fδ,ε(ûδ,ε,R )∂3
x ûδ,ε,R∥p

L2([0,T ]×T)

]
≲δ,ε,n,ν,p,R,σ,T E

[
∥∂x u0∥p

L2(T)

]
+ 1.

(3.4.2)

Proof. The proof of [35, Proposition 3.4] is based on a Galerkin scheme, which, by [35,
Lemma 3.1], is compatible with the energy inequality for (3.4.1). With the energy esti-
mate [35, Eq. (3.6)] at hand, it suffices to use that the function Fδ,ε is bounded away from

zero and Fδ,ε(r ) ∼ |r | n
2 for |r | large to take the limit in the Galerkin scheme. The esti-

mate (3.4.2) follows by using lower semicontinuity of the norm with respect to weak-*
convergence and Fatou’s lemma to take N →∞ in [35, Eq. (3.6)].
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We provide a version of the entropy estimate [35, Lemma 4.3], which is uniform in δ,
ε and R.

Lemma 3.4.3. Let p ≥ 1 and u0 ∈ Ln+2(Ω,F0; H 1(T)). Then any weak martingale solution{
(Ω̂,Â, F̂, P̂), (β̂(k))k∈Z, ûδ,ε,R

}
to (3.4.1) in the sense of Definition 3.4.1 with initial value u0 satisfies

Ê
[

sup
t∈[0,T ]

∥Gδ,ε(ûδ,ε,R (t ))∥p
L1(T)

+ ∥∂2
x ûδ,ε,R∥2p

L2([0,T ]×T)

]
≲n,ν,p,σ,T E

[
∥Gδ,ε(u0)∥p

L1(T)
+ |A (u0)|2p

]
+ 1.

(3.4.3)

Proof. The proof follows along the lines of [35, Lemma 4.3] using the analogs of [35,
Lemma 4.1, Lemma 4.2] provided in the following Lemma 3.4.4 and Lemma 3.4.5.

Lemma 3.4.4. It holds that
H 2
δ,ε(r ) ≲n,ν Gδ,ε(r ). (3.4.4)

Proof. We use that Fδ is increasing on (0,∞) together with (3.5.26) to conclude that

Hδ,ε(r )
(3.2.10),(3.5.26)≤

� ∞

r

1

Fδ
( 1p

2
(r ′+ε)

) dr ′ (3.2.4)=
� ∞

r
2

n
4 (r ′+ε)−

n
2 + 2

ν
4 δl (r ′+ε)−

ν
2 dr ′

≂n,ν (r +ε)1− n
2 + δl (r +ε)1− ν

2 , r ≥ 0.
(3.4.5)

Next, we use that

Fδ(r ) ≤ r
n
2 , r > 0, (3.4.6)

Fδ(r ) ≤ δ−l r
ν
2 , r > 0, (3.4.7)

by (3.2.4) to derive

Gδ,ε(r )
(3.2.9),(3.5.26)≥

� ∞

r

� ∞

r ′

1

F 2
δ

(r ′′+ε)
dr ′′ dr ′

(3.4.6)≥
� ∞

r

� ∞

r ′

1

(r ′′+ε)n dr ′′ dr ′ ≂n (r +ε)2−n , r ≥ 0,

(3.4.8)

and

Gδ,ε(r )
(3.2.9),(3.4.7),(3.5.26)

≳ν δ2l (r +ε)2−ν, r ≥ 0.

Inserting these estimates in (3.4.5), we arrive at (3.4.4) for r ≥ 0. For r < 0, we use that
Fδ,ε is an even function together with Gδ,ε being decreasing to conclude that

H 2
δ,ε(r )

(3.2.10)≤ (2Hδ,ε(0))2 ≲n,ν Gδ,ε(0) ≤ Gδ,ε(r ), r < 0,

finishing the proof.
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Lemma 3.4.5. It holds that

| log(Fδ,ε(r ))| ≲n,ν Gδ,ε(r ) + |r | + 1. (3.4.9)

Proof. We distinguish several cases of r . Firstly we assume that r ≥ 0 and Kε(r ) ≥ δ, in
which case we deduce from (3.4.6), (3.5.15) and (3.5.26) that

1

2
n+4

4
(r +ε)

n
2 ≤ 1

2 K
n
2
ε (r ) ≤ Fδ,ε(r ) ≤ K

n
2
ε (r ) ≤ (r +ε)

n
2 , r ≥ 0 ∧ Kε(r ) ≥ δ.

Thus, we have

n
2 log(r +ε) − n+4

4 log(2) ≤ log(Fδ,ε(r )) ≤ n
2 log(r +ε), r ≥ 0 ∧ Kε(r ) ≥ δ

and therefore

| log(Fδ,ε(r ))| ≲n | log(r +ε)| + 1, r ≥ 0 ∧ Kε(r ) ≥ δ. (3.4.10)

Next, we consider the case that r ≥ 0 and Kε(r ) < δ and use (3.2.3), (3.4.6), (3.5.18)
and (3.5.26) to estimate

1

2
ν+4

4
(r +ε)

ν
2 ≤ 1

2δl K
ν
2
ε (r ) ≤ Fδ,ε(r ) ≤ K

n
2
ε (r ) ≤ 1, r ≥ 0 ∧ Kε(r ) < δ

Hence,

ν
2 log(r +ε) − ν+4

4 log(2) ≤ log(Fδ,ε(r )) ≤ 0, r ≥ 0 ∧ Kε(r ) < δ.

Combining this with (3.2.3), (3.4.8) and (3.4.10), we obtain

| log(Fδ,ε(r ))| ≲n,ν | log(r +ε)| + 1

≲n (r +ε)2−n + (r +ε) + 1 ≲n Gδ,ε(r ) + r + 1, r ≥ 0.

For r < 0, (3.4.9) follows as well, because Fδ,ε is even and Gδ,ε is decreasing.

The following version of the energy estimate corresponding to [35, Lemma 4.6] is
uniform in R and ε, but not in δ.

Lemma 3.4.6. Let p ≥ 1 and u0 ∈ Ln+2(Ω,F0; H 1(T)). Then any weak martingale solution{
(Ω̂,Â, F̂, P̂), (β̂(k))k∈Z, ûδ,ε,R

}
to (3.4.1) in the sense of Definition 3.4.1 with initial value u0 satisfies

Ê

[
sup

t∈[0,T ]
∥∂x ûδ,ε,R (t ))∥p

L2(T)
+

(� T

0

�
T

F 2
δ,ε(ûδ,ε,R )(∂3

x ûδ,ε,R )2 dx dt

) p
2
]

≲δ,n,ν,σ,p,T E
[
∥∂x u0∥p

L2(T)
+ |A (u0)| pn

2

]
+ Ê

[
∥∂2

x ûδ,ε,R∥2p
L2([0,T ]×T)

]
+ 1.

(3.4.11)
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Proof. To ease notation, we drop the hat notation and write u for uδ,ε,R and abbreviate
γu = gR (∥u∥C (T)) during this proof. Analogously to the proof of [35, Lemma 4.6], we start
from (3.5.30) and estimate the terms on the right-hand side. We postpone again the
technical parts to Lemmas 3.4.7–3.4.9, which can be seen as analogs of [35, Lemma 4.4,
Lemma 4.5].

(∂x u)4-Term. Using Lemma 3.4.7 and the interpolation inequality

∥∂x u∥L∞(T) ≲ ∥∂x u∥
1
2

L2(T)
∥∂2

x u∥
1
2

L2(T)
(3.4.12)

from [35, Eq. (4.12)], we see that

∑
k∈Z

� t

0
γ2

u

�
T

σ2
k (F ′′

δ,ε(u))2(∂x u)4 dx ds

(3.5.4)
≲σ

� t

0

�
T

(F ′′
δ,ε(u))2(∂x u)4 dx ds

= −3

� t

0

�
T

(� u

1
(F ′′
δ,ε(r ))2 dr

)
(∂x u)2(∂2

x u)dx ds

(3.4.13)
≲δ,n,ν

� t

0
∥∂x u∥2

L∞(T)∥∂2
x u∥L2(T) ds

(3.4.12)
≲

� t

0
∥∂x u∥L2(T)∥∂2

x u∥2
L2(T) ds

≤ sup
s∈[0,t ]

∥∂x u(s)∥L2(T) ×∥∂2
x u∥2

L2([0,t ]×T)

≤ κ sup
s∈[0,t ]

∥∂x u(s)∥2
L2(T) + 1

κ∥∂2
x u∥4

L2([0,T ]×T),

for each κ> 0.
(∂x u)3-Term. Using Lemma 3.4.8 we retrieve moreover that∣∣∣∣ ∑

k∈Z

� t

0
γ2

u

�
T

∂x (σ2
k )

(
(F 2
δ,ε)′′′(u) + 4((F ′

δ,ε)2)′(u)
)
(∂x u)3 dx ds

∣∣∣∣
(3.4.14),(3.4.15),(3.5.4)

≲δ,n,ν,σ

� t

0

�
T

|∂x u|3 dx ds

≤
� t

0
∥∂x u∥3

L∞(T) ds

(3.4.12)
≲

� t

0
∥∂x u∥L2(T)∥∂2

x u∥2
L2(T) ds

≤ sup
s∈[0,t ]

∥∂x u(s)∥L2(T)∥∂2
x u∥2

L2([0,t ]×T)

≤ κ sup
s∈[0,t ]

∥∂x u(s)∥2
L2(T) + 1

κ∥∂2
x u∥4

L2([0,T ]×T),

for each κ> 0.
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(∂x u)2-Term. We use Lemma 3.4.9, the embedding H 1(T) ,→ L∞(T), Poincaré’s in-
equality and the conservation of mass of u to conclude furthermore∣∣∣∣ ∑

k∈Z

� t

0
γ2

u

�
T

(
8((∂xσk )2 −σk (∂2

xσk ))(F ′
δ,ε(u))2 + (∂2

x (σ2
k ))(F 2

δ,ε)′′(u)
)
(∂x u)2 dx ds

∣∣∣∣
(3.5.4)
≲σ

� t

0

�
T

(
(F ′
δ,ε(u))2 + ∣∣(F 2

δ,ε)′′(u)
∣∣)(∂x u)2 dx ds

(3.4.17),(3.4.18)
≲n,ν

� t

0

�
T

(|u|n−2 +1)(∂x u)2 dx ds

≤
� t

0
(∥u∥n−2

L∞(T) +1)∥∂x u∥2
L2(T) ds

≲
� t

0

(∥∂x u∥n−2
L2(T) + |A (u(0))|n−2 + 1

)∥∂2
x u∥2

L2(T) ds

≤
(

sup
s∈[0,t ]

∥∂x u(s)∥n−2
L2(T) + |A (u(0))|n−2 + 1

)
×∥∂2

x u∥2
L2([0,t ]×T)

n−2
2 + 4−n

2 =1

≲n κ sup
s∈[0,t ]

∥∂x u(s)∥2
L2(T) + κ|A (u(0))|2 + κ + ( 1

κ

) n−2
4−n ∥∂2

x u∥
4

4−n

L2([0,T ]×T)
,

where again κ> 0.
(∂x u)0-Term. We use once more Lemma 3.4.9, the embedding H 1(T) ,→ L∞(T),

Poincaré’s inequality and the conservation of mass of u to obtain∣∣∣∣ ∑
k∈Z

� t

0
γ2

u

�
T

(4σk∂
4
xσk −∂4

x (σ2
k ))F 2

δ,ε(u)dx ds

∣∣∣∣
(3.5.4),(3.5.31)

≲σ

� t

0

�
T

F 2
δ,ε(u)dx ds

(3.4.19)
≲n

� t

0

�
T

|u|n + 1dx ds

≤
� t

0
∥u∥n

L∞(T) + 1ds

≲
� t

0

(∥∂x u∥L2(T) + |A (u(0))|)n + 1ds

≲n,T

� t

0
∥∂x u∥n−2

L2(T)∥∂2
x u∥2

L2(T) ds + |A (u(0))|n + 1

≤ sup
s∈[0,t ]

∥∂x u(s)∥n−2
L2(T)∥∂2

x u∥2
L2([0,t ]×T) + |A (u(0))|n + 1

n−2
2 + 4−n

2 =1
≤ κ sup

t ′∈[0,t ]
∥∂x u∥2

L2(T) + |A (u(0))|n + 1 + ( 1
κ

) n−2
4−n ∥∂2

x u∥
4

4−n

L2([0,T ]×T)

for κ> 0.
Closing the estimate. We insert the previous estimates in the Itô expansion (3.5.30)
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and conclude that

1
2∥∂x u(t )∥2

L2(T) +
� t

0

�
T

F 2
δ,ε(u)(∂3

x u)2 dx ds

≤ 1
2∥∂x u(0)∥2

L2(T) + |M(t )|

+ Cδ,n,ν,σ,T

[
κ sup

s∈[0,t ]
∥∂x u(s)∥2

L2(T) + 1
κ∥∂2

x u∥4
L2([0,T ]×T) + ( 1

κ )
n−2
4−n ∥∂2

x u∥
4

4−n

L2([0,T ]×T)

]
+ Cδ,n,ν,σ,T

[
|A (u(0))|n + κ|A (u(0))|2 + κ + 1

]
,

where M(t ) is given by (3.5.32). Choosing κ small enough, taking the supremum in t
until the stopping time

τm = inf

{
t ∈ [0,T ] : sup

s∈[0,t ]
∥∂x u(s)∥2

L2(T) +
� t

0

�
T

(Fδ,ε(u))2(∂3
x u)2 dx ds ≥ m

}
and absorbing the intermediate powers, we proceed to

1
4 sup

t∈[0,τm ]
∥∂x u(t )∥2

L2(T) +
� τm

0

�
T

F 2
δ,ε(u)(∂3

x u)2 dx ds

≤ ∥∂x u(0)∥2
L2(T) + 2 sup

t∈[0,τm ]
|M(t )|

+ Cδ,n,ν,σ,T

[
|A (u(0))|n + ∥∂2

x u∥4
L2([0,T ]×T) + 1

]
.

We raise both sides to the power p
2 and use the Burkholder–Davis–Gundy inequality to

conclude

E

[
sup

t∈[0,τm ]
∥∂x u(t )∥p

L2(T)
+

(� τm

0

�
T

F 2
δ,ε(u)(∂3

x u)2 dx ds

) p
2
]

≲δ,n,ν,σ,p,T E
[
∥∂x u(0)∥p

L2(T)
+ 〈M〉

p
4
τm

]
+ E

[
|A (u(0))| pn

2 + ∥∂2
x u∥2p

L2([0,T ]×T)

]
+ 1.

From (3.5.34), we deduce that

E
[
〈M〉

p
4
τm

]
≲σ,p E

[(� τm

0

�
T

(Fδ,ε(u))2(∂3
x u)2 dx ds

) p
4
]

≤ κE

[(� τm

0

�
T

(Fδ,ε(u))2(∂3
x u)2 dx ds

) p
2
]
+ 1

κ

and therefore

E

[
sup

t∈[0,τm ]
∥∂x u(t )∥p

L2(T)
+

(� τm

0

�
T

F 2
δ,ε(u)(∂3

x u)2 dx ds

) p
2
]

≲δ,n,ν,σ,p,T E
[
∥∂x u(0)∥p

L2(T)
+ |A (u(0))| pn

2 + ∥∂2
x u∥2p

L2([0,T ]×T)

]
+ 1

by choosing κ> 0 again sufficiently small. Letting m →∞, applying Fatou’s lemma and
using that u(0) ∼ u0, we obtain (3.4.11).
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Lemma 3.4.7. It holds that � ∞

−∞
(F ′′
δ,ε(r ))2 dr ≲δ,n,ν 1. (3.4.13)

Proof. We use that Fδ,ε is an even function together with (3.2.18) and (3.5.13), to estimate
� ∞

−∞
(F ′′
δ,ε(r ))2 dr = 2

� ∞

0
(F ′′
δ,ε(r ))2 dr

≲δ,n,ν

� 1

0
K ν−4
ε (r )dr +

� ∞

1
K n−4
ε (r )dr

≤
� 1

0
r ν−4 dr +

� ∞

1
r n−4 dr ≲n,ν 1.

Lemma 3.4.8. It holds that ∣∣(F 2
δ,ε)′′′(r )

∣∣ ≲δ,n,ν 1, (3.4.14)∣∣((F ′
δ,ε)2)′(r )

∣∣ ≲δ,n,ν 1. (3.4.15)

Proof. We observe that by (3.5.36) and (3.5.37), it suffices to show

(Fδ,ε(r ))
1
2 (F ′′

δ,ε(r ))
3
2 ≲δ,n,ν 1 (3.4.16)

to conclude (3.4.14) and (3.4.15). To this end, we combine (3.2.18) and (3.5.2) to conclude
that

(Fδ,ε(r ))
1
2 (F ′′

δ,ε(r ))
3
2 ≲n,ν K n−3

ε (r ) ≤ |r |n−3 ≤ 1, |r | ≥ 1.

On the other hand, (3.5.13) and (3.5.28) yield that

(Fδ,ε(r ))
1
2 (F ′′

δ,ε(r ))
3
2 ≲δ,n,ν K ν−3

ε (r )
(3.2.3)≤ (12 + 12)

ν−3
2 ≲ν 1, |r | < 1.

Consequently, (3.4.16) holds and the proof is complete.

Lemma 3.4.9. It holds that

|F ′
δ,ε(r )|2 ≲n,ν |r |n−2 + 1, (3.4.17)∣∣(F 2
δ,ε)′′(r )

∣∣ ≲n,ν |r |n−2 + 1, (3.4.18)∣∣(F 2
δ,ε(r ))

∣∣ ≲n |r |n + 1. (3.4.19)

Proof. As a consequence of (3.5.38) and (3.5.39), it suffices to verify

|Fδ,ε(r )F ′′
δ,ε(r )| ≲n,ν |r |n−2 + 1

to conclude (3.4.17) and (3.4.18). Combining (3.2.18) and (3.5.2), we estimate

|Fδ,ε(r )F ′′
δ,ε(r )| ≲n K n−2

ε (r ) ≤ |r |n−2 + εn−2 (3.2.3)≤ |r |n−2 + 1,

as desired. The remaining (3.4.19) follows from (3.5.2).
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For the sake of completeness, we repeat Definition 3.1.1 for the approximate equa-
tion (3.1.8). We remark that we restrict ourselves also here to the case of non-negative
solutions.

Definition 3.4.10. A weak martingale solution to the SPDE (3.1.8) with initial value u0 ∈
L2(Ω,F0; H 1(T)) consists of a probability space (Ω̌,Ǎ, P̌) with a filtration F̌ satisfying the
usual conditions, a family (β̌(k))k∈Z of independent F̌-Brownian motions and a weakly
continuous, F̌-adapted, non-negative, H 1(T)-valued process ǔδ such that

(i) ǔδ(0) has the same distribution as u0,

(ii) Ě
[
supt∈[0,T ] ∥ǔδ(t )∥2

H 1(T)

]<∞,

(iii) for P̌⊗dt-almost all (ω̌, t ) ∈ Ω̌× [0,T ] the weak derivative of third order ∂3
x ǔδ exists

on {ǔδ > 0} and satisfies Ě
[∥1{ǔδ>0}Fδ(ǔδ)∂3

x ǔδ∥2
L2([0,T ]×T)

]<∞,

(iv) for all ϕ ∈C∞(T), P̌-almost surely, we have

(ǔδ(t ),ϕ)L2(T) = (ǔδ(0),ϕ)L2(T) +
� t

0

�
{ǔδ(s)>0}

F 2
δ (ǔδ)∂3

x ǔδ∂xϕdx ds

− 1

2

∑
k∈Z

� t

0
(σk F ′

δ(ǔδ)∂x (σk Fδ(ǔδ)),∂xϕ)L2(T) ds

− ∑
k∈Z

� t

0
(σk Fδ(ǔδ),∂xϕ)L2(T) dβ̌(k),

for all t ∈ [0,T ].

Since, as in [35], we have obtained an (R,ε)-uniform estimate on the entropy and
energy of the approximate solutions, we can take the limit R → ∞ and then ε ↘ 0 to
extract a weak martingale solution to (3.1.8) as in [35, Proposition 4.7, Section 5].

Lemma 3.4.11. Let p > n + 2 and u0 ∈ Lp (Ω,F0, H 1(T)) with u0 ≥ 0, E[|A (u0)|2p ] < ∞
and E[∥Gδ(u0)∥p

L1(T)
] <∞. Then there exists a weak martingale solution

{
(Ω̌,Ǎ, F̌, P̌), (β̌(k))k∈Z, ǔδ

}
to (3.1.8) in the sense of Definition 3.4.10 with initial value u0. Moreover, this solution
satisfies the estimate

Ě
[

sup
t∈[0,T ]

∥∂x ǔδ(t ))∥p
L2(T)

+ sup
t∈[0,T ]

∥Gδ(ǔδ(t ))∥p
L1(T)

]
+ Ě

[
∥1{ǔδ>0}Fδ(ǔδ)∂3

x (ǔδ)∥p
L2([0,T ]×T)

+ ∥∂2
x ǔδ∥2p

L2([0,T ]×T)

]
≲δ,n,ν,σ,p,T E

[
∥∂x u0∥p

L2(T)
+ |A (u0)|2p + ∥Gδ(u0)∥p

L1(T)

]
+ 1

(3.4.20)

and in particular ǔδ > 0, P̌⊗dt ⊗dx-almost everywhere.
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Proof. By Lemma 3.4.2, there exists for each R and ε a weak martingale solution{
(Ω̂,Â, F̂, P̂), (β̂(k))k∈Z, ûδ,ε,R

}
to (3.4.1) in the sense of Definition 3.4.1 with initial value u0, where we notationally dis-
regard the (R,ε)-dependence of the stochastic basis. Due Lemma 3.4.3 and Lemma 3.4.6,
ûδ,ε,R satisfies the estimate

Ê
[

sup
t∈[0,T ]

∥∂x ûδ,ε,R (t ))∥p
L2(T)

+ sup
t∈[0,T ]

∥Gδ,ε(ûδ,ε,R (t ))∥p
L1(T)

]
+ Ê

[(� T

0

�
T

F 2
δ,ε(ûδ,ε,R )(∂3

x ûδ,ε,R )2 dx dt

) p
2

+ ∥∂2
x ûδ,ε,R∥2p

L2([0,T ]×T)

]
≲δ,n,ν,σ,p,T E

[
∥∂x u0∥p

L2(T)
+ |A (u0)|2p + ∥Gδ,ε(u0)∥p

L1(T)

]
+ 1.

(3.4.21)

The right-hand side is uniformly in R and ε bounded by [35, Remark 4.8] and we can take
the limits R → ∞ and ε↘ 0 along the lines of [35, Proposition 4.7, Section 5]. Indeed,
while our mobility function Fδ is not homogeneous, the approximations Fδ,ε still satisfy
the growth bounds (3.5.2) and (3.5.3), which is sufficient to estimate the nonlinear terms
appearing in (3.4.1) and thereby identify their limits. The estimate (3.4.20) follows by
lower semicontinuity of the norm with respect to weak-* convergence and Fatou’s lemma
from (3.4.21).

3.5. SOLUTIONS TO THE STFE WITH THE ORIGINAL MOBILITY

FUNCTION
In this section we take the limit δ↘ 0 following the strategy explained in Section 3.1.2,
i.e., we first derive a stochastic version of (3.0.4) and subsequently of (3.0.2). From a
technical viewpoint, the main obstacle is the application of Itô’s formula for the energy
of ǔδ for which one would require ǔδ ∈ L2(0,T ; H 3(T)). We solve this issue by applying
Itô’s formula on the level of the approximations, namely for ûδ,ε,R , instead. The possible
negativity of ûδ,ε,R leads to problems when closing the estimate, which is reflected by
the right hand side of (3.5.1) containing constants which depend on δ. As we will show
in Lemma 3.5.5 and Lemma 3.5.7, the terms containing these constants disappear when
ε↘ 0. Before proceeding, we recall the notation f ± and f± for the positive and negative
part of a function f .

Lemma 3.5.1. Let p > n +2 and u0 ∈ L∞(Ω,F0; H 1(T)) such that u0 ≥ δ. Then any weak
martingale solution {

(Ω̂,Â, F̂, P̂), (β̂(k))k∈Z, ûδ,ε,R
}

to (3.4.1) in the sense of Definition 3.4.1 with initial value u0 constructed in Lemma 3.4.2
satisfies

Ê

[
sup

t∈[0,T ]

(�
T

L+
δ,ε(ûδ,ε,R (t ))dx

) p
2

+
(� T

0

�
T

J+δ,ε(ûδ,ε,R )(∂2
x ûδ,ε,R )2 dx ds

) p
2
]
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+ Ê
[(� T

0

�
T

(F ′′
δ,ε(ûδ,ε,R ))2(∂x ûδ,ε,R )4 dx ds

) p
2
]

≲n,ν,p,σ,T Cδ,n,ν,p,T Ê
[
∥û−

δ,ε,R∥
p
C ([0,T ]×T)

] 1
2
(
E
[
∥Gδ,ε(u0)∥p

L1(T)
+ |A (u0)|2p

]
+ 1

) 1
2

+ Ê
[

sup
t∈[0,T ]

∥û+
δ,ε,R (t )∥(n−2) p

2

L1(T)

]
+ Cδ,n,ν,p Ê

[
∥û−

δ,ε,R∥
(4−n) p

2
C ([0,T ]×T) + ∥û−

δ,ε,R∥
(4−ν) p

2
C ([0,T ]×T)

]
+ E

[(�
T

(u0 −1)− log(u0)dx

) p
2
]

. (3.5.1)

Proof. Since we assumed u0 ∈ L∞(Ω,F0; H 1(T)), Lemma 3.4.2 is applicable. To ease no-
tation we write u for ûδ,ε,R and drop the hat notation during this proof. We apply Itô’s
formula as in [39, Proposition A.1] to the composition of Lδ,ε with u and check its as-

sumptions. Firstly, by (3.2.8), Lδ,ε admits
Jδ,ε

F 2
δ,ε

as its second derivative, which needs to be

bounded. Since Fδ,ε is bounded away from 0, we have

|Jδ,ε(r )|
F 2
δ,ε(r )

≲δ,ε
|Jδ,ε(r )|
Fδ,ε(r )

,

which is seen to be bounded by the estimates (3.5.16) and (3.5.21) which we prove later.
Furthermore, we observe that u ∈ L2(Ω;C ([0,T ]; H 1(T))) and additionally that

Fδ,ε(r ) ≤ K
n
2
ε (r ) ≲n |r | n

2 + 1 (3.5.2)

by (3.2.3) and (3.2.4). Thus, also the quantity

E
[
∥F 2

δ,ε(u)∂3
x u∥2

L2([0,T ]×T)

]
≤ E

[
∥Fδ,ε(u)∥2

C ([0,T ]×T)∥Fδ,ε(u)∂3
x u∥2

L2([0,T ]×T)

]
≤ E

[
∥Fδ,ε(u)∥

2(n+2)
n

C ([0,T ]×T)

] n
n+2

E
[
∥Fδ,ε(u)∂3

x u∥n+2
L2([0,T ]×T)

] 2
n+2

(3.5.2)
≲n E

[
∥u∥n+2

C ([0,T ]×T) +1
] n

n+2
E
[
∥Fδ,ε(u)∂3

x u∥n+2
L2([0,T ]×T)

] 2
n+2

≤
(
E
[
∥u∥n+2

C ([0,T ]×T)

] n
n+2 +1

)
×E

[
∥Fδ,ε(u)∂3

x u∥n+2
L2([0,T ]×T)

] 2
n+2

is finite due to (3.4.2). We observe that

|F ′
δ,ε(r )| = |F ′

δ(Kε(r ))K ′
ε(r )| ≲n,ν K

n
2 −1
ε (r ) ≤ |r | n

2 −1 + 1 (3.5.3)

by the chain rule, (3.2.3), (3.2.13) and (3.2.16) and recall the consequence∑
k∈Z

∥σk∥2
C 2(T) < ∞ (3.5.4)

of condition (3.1.4), see [35, Eq. (2.2f)]. Hence, we can follow the calculations of Propo-
sition 4.2.2 from Chapter 4 to obtain that

E

[� T

0

�
T

∣∣∣∣ ∑
k∈Z

σk F ′
δ,ε(ûδ,ε,R )∂x (σk Fδ,ε(ûδ,ε,R ))

∣∣∣∣2

dx dt

]
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(3.5.2),(3.5.3),(3.5.4)
≲n,ν,σ,T E

[
sup

t∈[0,T ]
∥u∥2n−2

H 1(T)

]
+ 1

and

E

[ ∑
k∈Z

� T

0

∥∥∂x (σk Fδ,ε(u))
∥∥2

L2(T) dt

] (3.5.2),(3.5.3),(3.5.4)
≲n,ν,σ,T E

[
sup

t∈[0,T ]
∥u∥n

H 1(T)

]
+ 1

are finite by (3.4.2). Hence, the assumptions of [39, Proposition A.1] are verified and it
follows �

T

Lδ,ε(u(t ))dx −
�
T

Lδ,ε(u(0))dx

=
� t

0

�
T

L′′
δ,ε(u)∂x u

(
F 2
δ,ε(u)∂3

x u
)

dx ds

− 1
2

∑
k∈Z

� t

0
γ2

u

�
T

L′′
δ,ε(u)∂x u

(
σk F ′

δ,ε(u))∂x (σk Fδ,ε(u)
)

dx ds

+ 1
2

∑
k∈Z

� t

0
γ2

u

�
T

L′′
δ,ε(u)(∂x (σk Fδ,ε(u)))2 dx ds

+ ∑
k∈Z

� t

0
γu

�
T

L′
δ,ε(u)∂x (σk Fδ,ε(u))dx dβ(k)

s ,

where we use again the notation γu = gR (∥u∥C (T)). Integrating by parts several times
leads to �

T

Lδ,ε(u(t ))dx −
�
T

Lδ,ε(u(0))dx

(3.2.8)=
� t

0

�
T

Jδ,ε(u)∂x u∂3
x u dx ds

+ 1
2

∑
k∈Z

� t

0
γ2

u

�
T

L′′
δ,ε(u)∂xσk Fδ,ε(u)∂x (σk Fδ,ε(u))dx ds

+ ∑
k∈Z

� t

0
γu

�
T

L′
δ,ε(u)∂x (σk Fδ,ε(u))dx dβ(k)

s

= −
� t

0

�
T

Jδ,ε(u)(∂2
x u)2 dx ds

−
� t

0

�
T

J ′δ,ε(u)(∂x u)2∂2
x u dx ds

+ 1
2

∑
k∈Z

� t

0
γ2

u

�
T

L′′
δ,ε(u)(∂xσk )2(Fδ,ε(u))2 dx ds

+ 1
2

∑
k∈Z

� t

0
γ2

u

�
T

L′′
δ,ε(u)(∂xσk )σk Fδ,ε(u)F ′

δ,ε(u)∂x u dx ds

+ ∑
k∈Z

� t

0
γu

�
T

L′
δ,ε(u)∂x (σk Fδ,ε(u))dx dβ(k)

s
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(3.2.8)= −
� t

0

�
T

Jδ,ε(u)(∂2
x u)2 dx ds

+ 1
3

� t

0

�
T

J ′′δ,ε(u)(∂x u)4 dx ds

+ 1
2

∑
k∈Z

� t

0
γ2

u

�
T

Jδ,ε(u)(∂xσk )2 dx ds

− 1
2

∑
k∈Z

� t

0
γ2

u

�
T

� u

0
L′′
δ,ε(r )Fδ,ε(r )F ′

δ,ε(r )dr ∂x ((∂xσk )σk )dx ds

+ ∑
k∈Z

� t

0
γu

�
T

L′
δ,ε(u)∂x (σk Fδ,ε(u))dx dβ(k)

s .

We introduce the function

Iδ,ε(r ) =
� r

0
L′′
δ,ε(r ′)Fδ,ε(r ′)F ′

δ,ε(r ′)dr ′ (3.5.5)

and use (3.2.6) to rearrange this to

�
T

L+
δ,ε(u(t ))dx +

� t

0

�
T

J+δ,ε(u)(∂2
x u)2 dx ds + 1

3

� t

0

�
T

(F ′′
δ,ε(u))2(∂x u)4 dx ds

=
� t

0

�
T

J−δ,ε(u)(∂2
x u)2 dx ds +

�
T

L−
δ,ε(u(t ))dx +

�
T

Lδ,ε(u(0))dx

+ 1
2

∑
k∈Z

� t

0
γ2

u

�
T

Jδ,ε(u)(∂xσk )2 dx ds − 1
2

∑
k∈Z

� t

0
γ2

u

�
T

Iδ,ε(u)∂x ((∂xσk )σk )dx ds

+ ∑
k∈Z

� t

0

�
T

L′
δ,ε(u)∂x (σk Fδ,ε(u))dx dβ(k)

s .

Taking absolute values, the p
2 -th power and the supremum in time on both sides, this

results in

sup
t∈[0,T ]

(�
T

L+
δ,ε(u(t ))dx

) p
2

+
(� T

0

�
T

J+δ,ε(u)(∂2
x u)2 dx ds

) p
2

+
(� T

0

�
T

(F ′′
δ,ε(u))2(∂x u)4 dx ds

) p
2

≲p

(� T

0

�
T

J−δ,ε(u)(∂2
x u)2 dx ds

) p
2

+ sup
t∈[0,T ]

(�
T

L−
δ,ε(u(t ))dx

) p
2

+
(�
T

L+
δ,ε(u(0))dx

) p
2

+
( ∑

k∈Z

� T

0

�
T

|Jδ,ε(u)|(∂xσk )2 dx ds

) p
2

+
( ∑

k∈Z

� T

0

�
T

|Iδ,ε(u)∂x ((∂xσk )σk )|dx ds

) p
2

+ sup
t∈[0,T ]

∣∣∣∣ ∑
k∈Z

� t

0

�
T

L′
δ,ε(u)∂x (σk Fδ,ε(u))dx dβ(k)

s

∣∣∣∣
p
2

.
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Taking the expectation and applying the Burkholder–Davis–Gundy inequality, we con-
clude

E

[
sup

t∈[0,T ]

(�
T

L+
δ,ε(u(t ))dx

) p
2

+
(� T

0

�
T

J+δ,ε(u)(∂2
x u)2 dx ds
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]

+ E
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�
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δ,ε(u))2(∂x u)4 dx ds
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2
]

≲p E
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�
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J−δ,ε(u)(∂2
x u)2 dx ds
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2
]
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) p
4
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.

To simplify the last term, we obtain through integration by parts that
�
T

L′
δ,ε(u)∂x (σk Fδ,ε(u))dx = −

�
T

L′′
δ,ε(u)∂x uσk Fδ,ε(u)dx

=
�
T

� u

0
L′′
δ,ε(r )Fδ,ε(r )dr ∂xσk dx.

Using again (3.5.4), it follows
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(3.5.6)
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We use the properties of the approximate functions appearing in the right-hand side of
(3.5.6), whose proof is postponed to the following Lemmas 3.5.2–3.5.4, to estimate
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0
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.

We note that we have used the assumption u0 ≥ δ, when applying (3.5.22). Employing
the entropy estimate (3.4.3) from Lemma 3.4.3 we arrive at (3.5.1).

Lemma 3.5.2. It holds that

J+δ,ε(r ) ≲n,ν r n−2
+ , (3.5.7)

J−δ,ε(r ) ≲δ,n,ν r−, (3.5.8)

|Iδ,ε(r )| ≲n,ν r n−2
+ + Cδ,n,νr−. (3.5.9)

Proof. Ad (3.5.7). From (3.2.6) and (3.2.19), we conclude that

Jδ,ε(r ) ≲n,ν

� r

0

� ∞

r ′
(Kε(r ′′))n−4 dr ′′ dr ′ ≤

� r

0

� ∞

r ′
(r ′′)n−4 dr ′′ dr ′ ≂n r n−2, r ≥ 0.
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Ad (3.5.8). We observe that

0 ≥ Jδ,ε(r ) ≥ −
� 0

r

� ∞

−∞
(F ′′
δ,ε(r ′′))2 dr ′′ dr ′ ≳δ,n,ν r, r ≤ 0

follows, as soon as we can verify

� ∞

−∞
(F ′′
δ,ε(r ))2 dr ≲δ,n,ν 1. (3.5.10)

To this end, we use that Fδ,ε is an even function to obtain

� ∞

−∞
(F ′′
δ,ε(r ))2 dr ≂

� ∞

0
(F ′′
δ,ε(r ))2 dr =

� δ
2

0
(F ′′
δ,ε(r ))2 dr +

� ∞

δ
2

(F ′′
δ,ε(r ))2 dr. (3.5.11)

By (3.2.19) we can estimate the latter integral by

� ∞

δ
2

(F ′′
δ,ε(r ))2 dr ≲n,ν

� ∞

δ
2

(Kε(r ))n−4 dr ≤
� ∞

δ
2

r n−4 dr ≂
(
δ
2

)n−3. (3.5.12)

From (3.2.11) and (3.2.12), we conclude furthermore that

|F ′
δ(r )| ≲n,ν

r
ν
2 −1

δl
, r > 0,

|F ′′
δ (r )| ≲n,ν

r
ν
2 −2

δl
, r > 0.

Using (3.2.15)–(3.2.17), we proceed to

|F ′′
δ,ε(r )| ≲n,ν δ

−l
(
(Kε(r ))

ν
2 −2 + (Kε(r ))

ν
2 −1

Kε(r )

)
≲δ,n,ν (Kε(r ))

ν
2 −2. (3.5.13)

Using this estimate, we derive that

� δ
2

0
(F ′′
δ,ε(r ))2 dr ≲δ,n,ν

� δ
2

0
(Kε(r ))ν−4 dr ≤

� δ
2

0
r ν−4 dr ≂ν

(
δ
2

)ν−3.

Combining this with (3.5.11) and (3.5.12), we conclude (3.5.10).
Ad (3.5.9). By (3.2.8) and (3.5.5), it holds

Iδ,ε(r ) =
� r

0
Jδ,ε(r ′)

F ′
δ,ε(r ′)

Fδ,ε(r ′)
dr ′,

where we can express the fraction as

F ′
δ,ε(r )

Fδ,ε(r )
= F ′

δ
(Kε(r ))

Fδ(Kε(r ))
K ′
ε(r ),
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using the chain rule. From (3.2.4) and (3.2.11) we deduce

F ′
δ

(r )

Fδ(r )
≲n,ν r−1, r > 0,

so that ∣∣∣∣F ′
δ,ε(r )

Fδ,ε(r )

∣∣∣∣ ≲n,ν
1

Kε(r )

by (3.2.16). Using (3.5.7), we observe that

|Iδ,ε(r )| ≲n,ν
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dr ′ ≲n,ν
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(r ′)n−2

Kε(r ′)
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≤
� r

0
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For r < 0, we use instead (3.5.8) to conclude

|Iδ,ε(r )| ≲n,ν

� 0

r

J−
δ,ε(r ′)

Kε(r ′)
dr ′ ≲δ,n,ν

� 0

r

r ′−
Kε(r ′)

dr ′ ≤ r−, r < 0.

Lemma 3.5.3. It holds that∣∣∣∣� r

0
L′′
δ,ε(r ′)Fδ,ε(r ′)dr ′

∣∣∣∣ ≲n,ν r
n
2 −1
+ + Cδ,n,ν

(
r

2− n
2− + r

2− ν
2−
)
.

Proof. We notice that

L′′
δ,ε(r )Fδ,ε(r ) = Jδ,ε(r )

Fδ,ε(r )
(3.5.14)

by (3.2.8) and estimate this term by distinguishing different cases of r .
For r ≥ δ we have

Fδ,ε(r ) ≥ Fδ(r ) ≥ r
n+ν

2

2r
ν
2

≂ r
n
2 , r ≥ δ, (3.5.15)

by (3.2.4). Hence, using (3.5.7), we conclude that

Jδ,ε(r )

Fδ,ε(r )
≲n,ν

r n−2

r
n
2

≤ r
n
2 −2, r ≥ δ. (3.5.16)

For r ∈ (0,δ), we provide another estimate on Jδ,ε(r ), namely, we recall that in (3.5.13)
we proved that

|F ′′
δ,ε(r )| ≲n,ν

(Kε(r ))
ν
2 −2

δl
.
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Hence, using (3.2.1), (3.2.6) and (3.2.18), we compute

Jδ,ε(r ) ≲n,ν δ
−l
� r

0

� ∞

r ′
(Kε(r ′′))

ν+n
2 −4 dr ′′ dr ′
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(3.5.17)

We moreover have that

Fδ,ε(r ) ≥ Fδ(r ) ≥ r
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2

2δl r
n
2
≂ δ−l r

ν
2 , r ∈ (0,δ), (3.5.18)

and consequently we arrive also in this case at
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Combining (3.5.14), (3.5.16) and (3.5.19), we deduce∣∣∣∣� r

0
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(r ′)

n
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For r < 0, we use that Fδ,ε is an even function to conclude that

Fδ,ε(r ) ≳ r
n
2− , r ≤−δ, (3.5.20)

Fδ,ε(r ) ≳ δ−l r
ν
2− , r ∈ (−δ,0)

from (3.5.15) and (3.5.18). Invoking (3.5.8), we arrive at

|Jδ,ε(r )|
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≲δ,n,ν r
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2− , r < 0. (3.5.21)

Hence, integration together with (3.5.14) yields∣∣∣∣� 0
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Lemma 3.5.4. It holds that

L+
δ,ε(r ) ≤ (r −1) − log(r ), r ≥ δ, (3.5.22)

L−
δ,ε(r ) ≲δ,n,ν

(
Gδ,ε(r ) + 1

)
r−. (3.5.23)

Proof. Ad (3.5.22). We let r ≥ δ and use (3.5.7) and (3.5.15) to conclude

Lδ,ε(r ) =
� r

1

� r ′

1

Jδ,ε(r ′′)
F 2
δ,ε(r ′′)

dr ′′ dr ′ ≲n,ν

� r

1

� r ′

1
(r ′′)−2 dr ′′ dr ′ = (r −1) − log(r ), r ≥ δ.
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Ad (3.5.23). We point out that Lδ,ε(r ) ≥ 0 for r ≥ 0, since it is convex on (0,∞) by
(3.2.6) and (3.2.8) with a minimum at r = 1. For r < 0, we use that

Lδ,ε(r ) =
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� 1
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)
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(3.5.24)

We use (3.5.8) and (3.5.20) to estimate

� −δ

−∞

J−
δ,ε(r ′)

F 2
δ,ε(r ′)

dr ′ ≲δ,n,ν

� −δ
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r ′−
(r ′−)n dr ′ ≂δ,n 1. (3.5.25)

For the remaining part, we deduce form (3.5.18) and the fact that Fδ,ε is even

Fδ,ε(r ) ≳ δ−l (Kε(r ))
ν
2 , r ∈ (−δ,0).

Thus, using that
1p
2

(r +ε) ≤ Kε(r ) ≤ r +ε, r > 0 (3.5.26)

and again (3.5.8), we obtain

� 0
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ε
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Combining this with (3.5.25) we obtain that

� 0
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J−
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F 2
δ,ε(r ′)

dr ′ ≲δ,n,ν 1+ε2−ν. (3.5.27)

Next, from (3.2.4), we deduce that

Fδ,ε(r ) ≤ δ−l (Kε(r ))
ν
2 , (3.5.28)

which together with (3.2.9) and (3.5.26) leads to

Gδ,ε(0) ≥ δ2l
� ∞
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r ′
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2l
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Since Gδ,ε(r ) is decreasing, we conclude

Gδ,ε(r ) ≥ Gδ,ε(0) ≳δ,n,ν ε
2−ν, r ≤ 0.

In combination with (3.5.24) and (3.5.27), we arrive at (3.5.23).

Lemma 3.5.5. Let p > n + 2, u0 ∈ L∞(Ω,F0; H 1(T)) such that u0 ≥ δ. Then any weak
martingale solution {

(Ω̌,Ǎ, F̌, P̌), (β̌(k))k∈Z, ǔδ
}

to (3.1.8) in the sense of Definition 3.4.10 with initial value u0 constructed in Lemma
3.4.11 satisfies

Ě

[
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t∈[0,T ]
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�
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8−2n + E
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(u0 −1)− log(u0)dx

) p
2
]
+ 1.

(3.5.29)

Proof. Since we assumed u0 ∈ L∞(Ω,F0; H 1(T)) and u0 ≥ δ, we have in particular that
E[|A (u0)|2p ] < ∞ and E[∥Gδ(u0)∥p

L1(T)
] < ∞ so that Lemma 3.4.11 is indeed applicable.

We verify a version of (3.5.29) on the level of the approximations ûδ,ε,R of ǔδ. To this end,
we use the Itô expansion of the energy functional
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(3.5.30)

see [35, Eq. (4.10)], where we use again the notation γûδ,ε,R = gR (∥ûδ,ε,R∥C (T)). We pro-
ceed as in the proof of [35, Lemma 4.6] and estimate the deterministic terms on the right-
hand side separately. Here we use in particular (3.5.4) together with the relation

∂xσk = 2πkσ−k , k ∈Z (3.5.31)
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from [35, Eq. (2.2b)] to estimate the terms involving σk . Technical estimates on the
approximating functions are postponed to Lemma 3.5.6.

(∂x u)4-Term. We readily see that
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(∂x u)3-Term. We estimate this term by absorbing it into the highest and lowest
order term. To this end, we use the properties of the approximate function Fδ,ε, which
we prove in Lemma 3.5.6, to conclude that∣∣∣∣ ∑
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(3.5.4),(3.5.31)
≲σ

� t

0

�
T

F 2
δ,ε(ûδ,ε,R )dx ds.

Inserting all this in (3.5.30), we arrive at
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,

with

M(t ) = ∑
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� t

0
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�
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σk Fδ,ε(ûδ,ε,R )∂3
x ûδ,ε,R dx dβ(k). (3.5.32)

We apply the Gagliardo Nirenberg inequality with the choice of exponents

−1
n = θ(−1

1 ) + (1−θ)(1− 1
2 ) ⇐⇒ θ = n+2

3n

and Young’s inequality with 4−n
3 + n−1

3 = 1 to estimate further

�
T

F 2
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4−n ∥ûδ,ε,R∥

3θn
4−n

L1(T)
+ κ∥∂x ûδ,ε,R∥
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In the last step we used that n > 2. Choosing κ sufficiently small, we obtain that
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x ûδ,ε,R )2 dx ds

≤ 1
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.

We take the supremum in time and take the p
2 -th power on both sides to obtain

1
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+ Cn,ν,p,σ,T
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.

Taking the expectation and employing the Burkholder–Davis–Gundy inequality leads to
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(3.5.33)

Since
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(3.5.4)
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we can estimate
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Inserting this as well as the approximate log-entropy estimate (3.5.1) from Lemma 3.5.1
in (3.5.33), and choosing κ sufficiently small, we conclude
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[

sup
t∈[0,T ]
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(3.5.35)

where we also used
p(n +2)

8−2n
> p(n −2)

2
.

When the limit R → ∞ is taken in the proof of Lemma 3.4.11, which follows along the
lines of [35, Proposition 4.7], the estimate (3.5.35) is preserved. By taking the limit ε↘
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0, we derive (3.5.29) as follows. We denote the sequence from [35, Eq. (5.14a)] which
converges P̌-almost surely to ǔδ in C ([0,T ]×T) by ǔδ,ε, so that in particular

sup
t∈[0,T ]

∥ǔδ,ε(t )∥L1(T) → sup
t∈[0,T ]

∥ǔδ(t )∥L1(T),

∥ǔ−
δ,ε∥C ([0,T ]×T) → 0,

P̌-almost surely. By [35, Eq. (4.24)] the sequence ǔδ,ε is uniformly ε bounded in the space
Lq (Ω̌,C ([0,T ]×T)) for all q ∈ (1,∞), and we obtain by Vitali’s convergence theorem that

Ě
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δ,ε∥
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] 1
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(4−ν) p

2
C ([0,T ]×T)

]
→ 0

as ε↘ 0. Since ǔδ is non-negative and preserves mass, (3.5.29) follows.

We provide the technical estimates on the nonlinearities from the (∂x u)3- and (∂x u)2-
term in (3.5.30). They correspond to the trivial estimates

un−3 ≤ (u
n
2 )

1
2 (u

n
2 −2)

3
2 ,

un−2 ≤ u
n
2 u

n
2 −2

for u > 0 on the unregularized level.

Lemma 3.5.6. It holds that∣∣((F ′
δ,ε)2)′(r )

∣∣ ≲n,ν (Fδ,ε(r ))
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and hence it suffices to show

n2r ν + δ2lν2r n ≲n,ν δ
2l (ν−2)νr n − δl (ν2+ν(2−4n)+n(n+2))r

n+ν
2 +n(n−2)r ν, r > 0.

(3.5.44)
However, this follows from the assumption (3.2.2), so that (3.5.42) indeed holds. Together
with (3.5.41), we proceed to estimate∣∣((F ′
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By combining (3.2.11), (3.2.15) and (3.2.17), we see that
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by (3.5.36) and (3.5.41). For T3, we use (3.5.43) to conclude that
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sgn(T1) = sgn(T4) = sgn(r ) and therefore
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by Young’s inequality. Using (3.2.11),(3.2.12) and (3.5.44) we observe that
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The bound |T2| ≲n,ν |T1| follows, which again is bounded by (3.5.46) and (3.5.47). It is
left to estimate T5 and to this end we compute

K ′′′
ε (r ) = −3ε2r

(ε2 + r 2)
5
2
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and we obtain the estimate |T5|≲ |T4| as soon as we can show that
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so that (3.5.37) is a consequence of (3.5.46) and (3.5.47).
Ad (3.5.38). From (3.5.40) and (3.5.42), we conclude that

(F ′
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Inserting (3.5.45), we obtain
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as desired.
Ad (3.5.39). We have that
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and thus (3.5.39) is a consequence of (3.5.38).

Lemma 3.5.7. Let p > n + 2, u0 ∈ L∞(Ω,F0; H 1(T)) such that u0 ≥ δ. Then any weak
martingale solution {

(Ω̌,Ǎ, F̌, P̌), (β̌(k))k∈Z, ǔδ
}

to (3.1.8) in the sense of Definition 3.4.10 with initial value u0 constructed in Lemma
3.4.11 satisfies
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Proof. As in the proof of Lemma 3.5.5 we first take R →∞ in (3.5.1) and obtain that
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holds for the sequence ǔδ,ε converging P̌-almost surely to ǔδ from [35, Eq. (5.14)]. Con-
tinuing as in the proof of Lemma 3.5.5, we obtain
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by letting ε↘ 0 and additionally employing Fatou’s lemma. It is left to argue that

liminf
ε↘0

L+
δ,ε(ǔδ,ε) ≥ Lδ(ǔδ). (3.5.48)

To this end, we use that ǔδ,ε becomes eventually positive P̌⊗dt ⊗dx-almost everywhere
by Lemma 3.4.11 and the notation
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to deduce
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(r ′′)
dr ′′ dr ′ (3.2.7)= Lδ(ǔδ).

Here, we repeatedly applied Fatou’s lemma together with the the properties of the limes
inferior. This shows (3.5.48) and finishes the proof.
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With a δ-uniform energy estimate at hand, the proof of Theorem 3.1.2 follows along
the lines of the proof of [35, Theorem 2.2].

Proof of Theorem 3.1.2. Let p > n+2 and u0 ∈ Lp (Ω,F0; H 1(T)) in accordance with (3.1.3).
Moreover, for the given n, we fix one feasible ν, so that we can drop the ν-dependence in
the following estimates. We define

u0,δ = 1{
∥u0∥H1(T)<e

1
δ
}u0 + δ. (3.5.49)

In particular, Lemma 3.4.11 is applicable and yields existence of weak martingale solu-
tions (ǔδ)δ>0 to (3.1.8) in the sense of Definition 3.4.10 with initial value u0,δ. For ease
of notation, we assume these solutions to be defined with respect to the same stochastic
basis {

(Ω̌,Ǎ, F̌, P̌), (β̌(k))k∈Z
}
.

Also Lemma 3.5.5 and Lemma 3.5.7 are applicable by (3.5.49) and yield that the solutions
satisfy the uniform estimate

Ě

[
sup

t∈[0,T ]
∥∂x ǔδ(t )∥p

L2(T)
+ sup

t∈[0,T ]

(�
T

Lδ(ǔδ(t ))dx

) p
2

+
(� T

0

�
T

F 2
δ (ǔδ)(∂3

x ǔδ)2 dx ds

) p
2
]

≲n,p,σ,T E

[
∥∂x u0,δ∥p

L2(T)
+ |A (u0,δ)| p(n+2)

8−2n +
(�
T

(u0,δ−1)− log(u0,δ)dx

) p
2
]
+ 1. (3.5.50)

Proceeding as in [35, Lemma 5.1], we obtain the estimate

Ě
[
∥ǔδ∥q

C
1
4 ([0,T ];L2(T))

]
≲n,p,q,σ,T

(
Ě
[

sup
t∈[0,T ]

∥∂x ǔδ∥p
L2(T)

+ |A (ǔδ(0))|p
]) (n+2)q

2p

+
(
Ě

[(� T

0

�
T

F 2
δ (ǔδ)(∂3

x ǔδ)2 dx dt

) p
n+2

]) (n+2)q
2p

+ 1,

for any q ∈ [1, 2p
n+2 ) from the last equation of the proof of [35, Lemma 5.1]. Indeed, to

achieve this one has to estimate the nonlinearities from (3.1.8), which satisfy the same
bounds

Fδ(r ) ≤ r
n
2 , r > 0,

and (3.2.13) as in the case of a homogeneous mobility function. Moreover we remark
that our parameters (p, q) are labeled ((n+2)p, p ′) in [35, Lemma 5.1]. Inserting (3.5.50),
we conclude

Ě
[
∥ǔδ∥q

C
1
4 ([0,T ];L2(T))

]
≲n,p,q,σ,T

(
E
[
∥∂x u0,δ∥p

L2(T)
+ |A (u0,δ)| p(n+2)

8−2n

]) (n+2)q
2p

+
(
E

[(�
T

(u0,δ−1)− log(u0,δ)dx

) p
2
]) (n+2)q

2p

+ 1.

(3.5.51)

Next, we verify that

limsup
δ↘0

E

[(�
T

(u0,δ−1)− log(u0,δ)dx

) p
2
]
≤ E

[(�
T

(u0 −1)− log(u0)dx

) p
2
]

(3.5.52)



3

122 3. EXISTENCE WITH NONLINEAR NOISE: POSITIVE INITIAL DATA

to ensure that (3.5.50) and (3.5.51) have a uniformly bounded right-hand side in δ. To
this end, we calculate

limsup
δ↘0

E

[(�
T

(u0,δ−1)− log(u0,δ)dx

) p
2
]

(3.5.49)≤ limsup
δ↘0
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}(�
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E
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+ limsup
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log
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)
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≤ E
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(u0 −1)− log(u0)dx
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+ limsup
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E
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∥u0∥H1(T)≥e

1
δ
}(

log
(
log

(∥u0∥H 1(T)

))) p
2

]
= E

[(�
T

(u0 −1)− log(u0)dx

) p
2
]

,

(3.5.53)

where in the last step we used dominated convergence and u0 ∈ Lp (Ω,F0; H 1(T)). This
shows (3.5.52) and following [35, Corollary 5.2, Proposition 5.4, Lemma 5.5], we obtain a
new filtered probability space (Ω̃,Ã, F̃, P̃) with a family of independent F̃-Brownian mo-
tions (β̃k )k∈Z and an equidistributed subsequence ũδ ∼ ǔδ converging to an F̃-adapted

process ũ in C
1
8 −, 1

2 −([0,T ]×T), P̃-almost everywhere. As in [58, Proposition 5.6], we con-
clude that

1{ũδ>0}Fδ(ũδ)∂3
x ũδ * 1{ũ>0}F0(ũ)∂3

x ũ

in L2([0,T ]×T), P̃-almost surely. Estimate (3.1.5) follows as in [35, Proposition 5.6] from
(3.5.50) and (3.5.52) and consequently also that ũ > 0 P̃⊗dt ⊗dx-almost everywhere. As
in [35, Proof of Theorem 2.2], we show that equation (3.1.2) holds. Lastly, the temporal
regularity statement (3.1.6) can be deduced in the same way as [35, Eq. (5.15)].

Proof of Proposition 3.1.3. We remark again, that, since we chose one particular ν in the
proof of Theorem 3.1.2, we can drop the ν-dependence in the following estimates. Let
ûδ,ε,R be the sequence of solutions to (3.4.1) used in Lemma 3.4.11 to construct the ǔδ
from the proof of Theorem 3.1.2. By Lemma 3.4.3, ûδ,ε,R suffices the estimate

Ê
[

sup
t∈[0,T ]

∥Gδ,ε(ûδ,ε,R (t ))∥q
L1(T)

+ ∥∂2
x ûδ,ε,R∥2q

L2([0,T ]×T)

]
≲n,q,σ,T E

[
∥Gδ,ε(u0,δ)∥q

L1(T)
+ |A (u0,δ)|2q

]
+ 1.

(3.5.54)
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We use (3.5.15) to estimate

Gδ,ε(r ) ≲
� ∞

r

� ∞

r ′

1

(r ′′)n dr ′′ dr ′ ≂n r 2−n , r ≥ δ

and since u0,δ ≥ δ by (3.5.49), we can use (3.5.54) to obtain

Ê
[

sup
t∈[0,T ]

∥Gδ,ε(ûδ,ε,R (t ))∥q
L1(T)

+ ∥∂2
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]
≲n,q,σ,T E

[
∥u2−n

0,δ ∥q
L1(T)

+ |A (u0,δ)|2q
]
+ 1.

Estimate (3.1.7) follows by Fatou’s lemma and

limsup
δ↘0

E
[
∥u2−n

0,δ ∥q
L1(T)

]
≤ E

[
∥u2−n

0 ∥q
L1(T)

]
,

which can be derived analogously to (3.5.53).





4
EXISTENCE WITH NONLINEAR

NOISE: THE GENERAL CASE†

The aim of this chapter is to prove the existence of very weak martingale solutions to
(STFE) in the nonlinear noise case also for non-fully supported initial values, comple-
menting [35] and Chapter 3. More precisely, we consider again the Stratonovich inter-
pretation of (STFE) with n ∈ (2,3) and d = 1, but require u0 only to be non-negative.

Constructions of martingale solutions to (STFE) rely on closing a-priori estimates,
known for the deterministic thin-film equation

∂t u = −∂x (un∂3
x u), (4.0.1)

for suitable approximations of (STFE). In the deterministic setting, these a-priori esti-
mates are given by the energy estimate

1
2∂t

�
(∂x u)2 dx ≤ −

�
(un∂3

x u)2 dx, (4.0.2)

the entropy estimate

∂t

�
G(u)dx ≤ −

�
(∂2

x u)2 dx, (4.0.3)

and the α-entropy estimate

∂t

�
Gα(u)dx ≂α,n,θ −

�
uα+n−2θ+1(∂2

x uθ)2 dx −
�

uα+n−3(∂x u)4 dx, (4.0.4)

where G(u) = � u � t s−n ds dt and more generally Gα(u) = � u � t sα−1 ds dt , see Subsec-
tion 1.3.2. We point out that Gα =G for α= 1−n. Moreover, (4.0.4) holds if

1
3 (α+n −2)(2θ−1− (α+n))− (θ−1)2 > 0, (4.0.5)

†This chapter is based on the preprint [36]: K. Dareiotis, B. Gess, M. V. Gnann, and M. Sauerbrey.
"Solutions to the stochastic thin-film equation for initial values with non-full support". In: arXiv
preprint arXiv:2305.06017 (2023).
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and a parameter θ ∈ (0,∞) subject to (4.0.5) exists if α ∈ ( 1
2 −n,2−n). If α ∈ (1−n,2−n),

the particular choice θ = 1 satisfies (4.0.5), while for the boundary cases α ∈ { 1
2 −n,2−n}

a version of (4.0.4) applies too.
By Itô’s formula, the time increments of these quantities consist in the stochastic

setting next to the negative dissipation terms from the thin-film operator and the mar-
tingale part also of possibly positive terms arising from the Itô correction of the mul-
tiplicative noise term. The main challenge in the nonlinear noise case is that the Itô
expansion of the energy contains terms, which can explode for u = 0, see [35, Eq. (4.10)]
and (3.0.3), and hence a control on the smallness of the solution is required. The strat-
egy in this chapter is to discard the energy estimate and to base the whole analysis on
the α-entropy estimates as well as the conservation of mass ∂t

�
u dx = 0 as performed

successfully in [32, Section 6] for the deterministic case. By restricting ourselves to the
range of mobility exponents n ∈ (2,3), we can take α ∈ (−1,2−n), such that (4.0.4) holds
true with θ = 1 and

�
Gα(u)dx <∞ also for functions u without full support. Since the

α-entropy estimates yield less control on the spatial derivatives of the solution, we use
the very weak form of the thin-film operator in accordance with [32]. In particular, in
contrast to [35] and Chapter 3, we treat measure-valued initial data and noise with less
spatial regularity.

4.1. INTRODUCTION TO CHAPTER 4
In this section, we state and discuss the results of this chapter, outline their proof and
review the used notation.

4.1.1. MAIN RESULT
In this chapter, we write

m(u) = |u|n and q(u) =
√

m(u) = |u| n
2

for the mobility function and its square-root, respectively, and restrict ourselves to mo-
bility exponents from the following range.

Assumption 4.1.1. We assume that n ∈ (2,3).

Moreover, we assume W in (STFE) to be spatio-temporal Gaussian noise, which is
white in time and colored in space. Specifically, we assume that the noise W is given by
the time derivative of the Wiener process B , defined by

B(t ) = ∑
k∈Z

σkβ
(k)
t (4.1.1)

for a family of independentF-Brownian motions (β(k))k∈Z defined on a probability space
(Ω,A,P) with filtration F. Here, we assume that

σk = λk fk , (4.1.2)

where Λ= (λk )k∈Z is a sequence of real numbers and

fk (x) =


p

2cos(2πkx), k < 0,

1, k = 0,p
2sin(2πkx), k > 0

(4.1.3)
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are the eigenfunctions of the periodic Laplace operator. We impose the following condi-
tion on the smoothness of the process B in terms of the sequence Λ.

Assumption 4.1.2. It holds
∑

k∈Z(kλk )2 < ∞.

As initial values to (STFE), we allow for non-negative Borel measure-valued random
variables. To be precise, we introduce the σ-field Z on M (T) as the σ-field generated
by the pre-dual space C (T), i.e. an M (T)-valued random variable X is Z -measurable, iff
〈X ,ϕ〉 is measurable for each ϕ ∈C (T).

Assumption 4.1.3. The initial value u0 : Ω→ M (T) is F0-Z measurable and u0 ≥ 0 al-
most surely.

Interpreting (STFE) in Stratonovich form, using the notation q(u) = |u| n
2 and the de-

scription of the noise (4.1.1), we obtain the equivalent Itô formulation

du = − ∂x (un∂3
x u)dt + 1

2

∑
k∈Z

∂x (σk q ′(u)∂x (σk q(u)))dt

+ ∑
k∈Z

∂x (σk q(u))dβ(k)
(4.1.4)

of the stochastic thin-film equation. In order to obtain a sufficiently weak formulation
for the case of a possibly compactly supported initial value u0, we test (4.1.4) with a
smooth function ϕ ∈C∞(T) in the dual pairing 〈·, ·〉 on T and rewrite the thin-film oper-
ator in the very weak form introduced in [33, Eq. (3.2)], see also [32, Definition 1]. We
obtain the formulation

d〈u,ϕ〉 =
[

n(n−1)
2 〈un−2(∂x u)3,∂xϕ〉 + 3n

2 〈un−1(∂x u)2,∂2
xϕ〉 + 〈un∂x u,∂3

xϕ〉
]

dt

− 1
2

∑
k∈Z

〈σk q ′(u)∂x (σk q(u)),∂xϕ〉dt − ∑
k∈Z

〈σk q(u),∂xϕ〉dβ(k),
(4.1.5)

which gives rise to the following notion of very weak martingale solutions to the stochas-
tic thin-film equation up to a fixed time horizon T ∈ (0,∞).

Definition 4.1.4. A very weak martingale solution to (4.1.5) consists out of a probability
space (Ω̃,Ã, P̃) with a filtration F̃ satisfying the usual conditions, a family of indepen-
dent F̃-Brownian motions (β̃(k))k∈Z and a non-negative, vaguely continuous, F̃-adapted
(M (T),Z )-valued process ũ defined on [0,T ] such that P̃⊗ dt-almost everywhere ũ ∈
W 1,1(T) with

ũn−2(∂x ũ)3, ũn−1(∂x ũ)2, ũn∂x ũ, ũn−2∂x ũ, ũn ∈ L1([0,T ]×T) (4.1.6)

almost surely and for every ϕ ∈C∞(T), t ∈ [0,T ] we have

〈ũ(t ),ϕ〉 − 〈ũ(0),ϕ〉 = n(n−1)
2

� t

0
〈ũn−2(∂x ũ)3,∂xϕ〉ds + 3n

2

� t

0
〈ũn−1(∂x ũ)2,∂2

xϕ〉ds

+
� t

0
〈ũn∂x ũ,∂3

xϕ〉ds − 1
2

∑
k∈Z

� t

0
〈σk q ′(ũ)∂x (σk q(ũ)),∂xϕ〉ds

− ∑
k∈Z

� t

0
〈σk q(ũ),∂xϕ〉dβ̃(k)

s . (4.1.7)
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Remark 4.1.5. (i) The requirement (4.1.6) ensures that the deterministic and stochas-
tic integrals in (4.1.7) converge.

(ii) We demand in Definition 4.1.4 that for every ϕ ∈ C∞(T), t ∈ [0,T ] the identity
(4.1.7) holds outside of some P̃-nullset. Since the vague continuity of ũ implies
that all the processes in (4.1.7) are continuous in time, this nullset can be chosen
independently of t .

In the course of this chapter, we prove the existence of very weak martingale solu-
tions to the stochastic thin-film equation in the sense of Definition 4.1.4 under the pre-
vious assumptions.

Theorem 4.1.6. Under the Assumptions 4.1.1–4.1.3 and σk given by (4.1.2), there exists a
very weak martingale solution (Ω̃,Ã, P̃), F̃, (β̃(k))k∈Z, ũ to (4.1.5) in the sense of Definition
4.1.4 such that ũ(0) has the same distribution as u0 on (M (T),Z ). Moreover, ũ admits the
following properties.

(i) Mass is conserved, i.e., almost surely 〈ũ(t ),1T〉 = 〈ũ(0),1T〉 for all t ∈ [0,T ].

(ii) Almost surely, ũ ∈ Lp ([0,T ]×T)∩ Lr (0,T ;W 1,r (T)) for each p ∈ (n + 4,7) and r ∈
( n+4

2 , 7
2 ) with

Ẽ
[∥ũ∥p

Lp ([0,T ]×T)

]
≲n,p,Λ,T E

[∥u0∥p−n
M (T) +∥u0∥p

M (T)

]
, (4.1.8)

Ẽ
[∥∂x ũ∥r

Lr ([0,T ]×T)

]
≲n,r,Λ,T E

[∥u0∥r−n
M (T) +∥u0∥r

M (T)

]
, (4.1.9)

whenever the respective right-hand side is finite.

(iii) Almost surely, we have ũ ∈ C ([0,T ]; Hκ(T)) for κ ∈ (−∞, −1
2 ) and if γ ∈ (0, 1

2 ), µ ∈
( n+4

n+2 , 7
n+2 ) and ν ∈ (1, 7

n+4 ), it holds

Ẽ
[
∥ũ∥ν

W γ, 2ν
2−ν (0,T ;W −3,µ(T))

]
≲γ,n,µ,ν,Λ,T E

[
∥u0∥

(n−1− n2
pµ,ν

)ν

M (T) + ∥u0∥(n+1)ν
M (T)

]
,

(4.1.10)

where pµ,ν = max{µ(n +2),ν(n +4)}, whenever the right-hand side is finite.

(iv) For α ∈ (−1,2−n) we have almost surely

ũ
α+n+1

4 ∈ L4(0,T ;W 1,4(T)), ũ
α+n+1

2 ∈ L2(0,T ; H 2(T))

and it holds the α-entropy type estimate

Ẽ
[∥∥∂x ũ

α+n+1
4

∥∥4
L4([0,T ]×T)+

∥∥∂2
x ũ

α+n+1
2

∥∥2
L2([0,T ]×T)

]
≲α,n,Λ,T E

[∥u0∥α+1
M (T)+∥u0∥α+n−1

M (T)

]
,

(4.1.11)
if the right-hand side is finite.

Remark 4.1.7. We convince ourselves, that the regularity statements from Theorem 4.1.6
suffice to deduce the most restrictive integrability assumption from Definition 4.1.4,
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namely that ũn−2(∂x ũ)3 ∈ L1([0,T ]×T). As a consequence of Theorem 4.1.6 (ii), we have
that almost surely

ũ ∈ Ln+4([0,T ]×T), ∂x ũ ∈ L
n+4

2 ([0,T ]×T).

Hence, using Hölder’s inequality, we can indeed conclude that

∥ũn−2(∂x ũ)3∥L1([0,T ]×T) ≤ ∥ũn−2∥
L

n+4
n−2 ([0,T ]×T)

∥(∂x ũ)3∥
L

n+4
6 ([0,T ]×T)

is almost surely finite.

Remark 4.1.8. Let ũ be the very weak martingale solution to (4.1.5) obtained from Theo-
rem 4.1.6. For α ∈ (−1,2−n), the α-entropy type estimate from Theorem 4.1.6 (iv) yields
the following additional properties of ũ.

(i) We have that P̃⊗dt-almost everywhere ũ
α+n+1

2 ∈ H 2(T). Hence, by the Sobolev-
embedding ũ ∈ C (T) and therefore ũ is uniformly supported away from zero and
bounded on compact subsets of {ũ > 0}. Thus, ũ ∈ H 2

loc({ũ > 0}) and we have

∂x ũ
α+n+1

4 = α+n+1
4 ũ

α+n−3
4 ∂x ũ,

∂2
x ũ

α+n+1
2 = α+n+1

2 ũ
α+n−1

2 ∂2
x ũ + (α+n+1)(α+n−1)

4 ũ
α+n−3

2 (∂x ũ)2,

on {ũ > 0}. We conclude that

� T

0

�
{ũ>0}

ũα+n−3(∂x ũ)4 dx dt ≲α,n ∥∂x ũ
α+n+1

4 ∥4
L4([0,T ]×T)

and consequently

� T

0

�
{ũ>0}

ũα+n−1(∂2
x ũ)2 dx dt ≲α,n

� T

0

�
{ũ>0}

(∂2
x ũ

α+n+1
2 )2 + ũα+n−3(∂x ũ)4 dt

≲α,n ∥∂2
x ũ

α+n+1
2 ∥2

L2([0,T ]×T) + ∥∂x ũ
α+n+1

4 ∥4
L4([0,T ]×T).

As a result, (4.1.11) implies that

Ẽ

[� T

0

�
{ũ>0}

ũα+n−3(∂x ũ)4 + ũα+n−1(∂2
x ũ)2 dx dt

]
≲α,n,Λ,T E

[∥u0∥α+1
M (T) +∥u0∥α+n−1

M (T)

] (4.1.12)

appealing to the classical form of the α-entropy estimate (4.0.4) with θ = 1.

(ii) We demonstrate, that as a consequence of (4.1.11) one can also recover an estimate
in the spirit of (4.0.4) for θ ̸= 1. Arguing as in (i), we conclude that P̃⊗dt-almost
everywhere ũθ ∈ H 2

loc({ũ > 0}) for any θ > 0, with

∂2
x ũθ = θũθ−1∂2

x ũ + θ(θ−1)ũθ−2(∂x ũ)2.



4

130 4. EXISTENCE WITH NONLINEAR NOISE: THE GENERAL CASE

By taking the square on both sides, we obtain that

(∂2
x ũθ)2 ≲θ ũ2θ−2(∂2

x ũ)2 + ũ2θ−4(∂x ũ)4.

Hence, using (4.1.12) we infer

E

[� T

0

�
T

ũα+n−2θ+1(∂2
x ũθ)2 dx dt

]
≲α,n,θ,Λ,T E

[∥u0∥α+1
M (T) +∥u0∥α+n−1

M (T)

]
.

(iii) In [75, Corollary 3.2] it is shown that the solutions to the stochastic thin-film equa-
tion constructed in [75] admit a zero contact angle almost everywhere based on
the finiteness of the α-entropy dissipation. Following the proof of [75, Corllary
3.2] we obtain the same statement as a consequence of Theorem 4.1.6 (iv), namely
that P̃⊗dt-almost everywhere, ũ admits 0 as its classical derivative at every point
from its zero set.

4.1.2. OUTLINE AND DISCUSSION OF THE PROOF
As pointed out in the introduction, the main innovation of this chapter is to provide solu-
tions to (STFE) for initial data without full support in the case of a non-quadratic mobility
n ̸= 2. A difficulty in the analysis of (STFE) is to close the deterministic a-priori estimates
(4.0.2)–(4.0.4) in the stochastic setting, where at least in the case of Stratonovich noise,
the entropy and α-entropy estimate seem to hold for a wide range of n, see [35, Lemma
4.3], [75, Eq. (3.2)], Lemma 2.5.3 and Proposition 3.1.3. However, the additional energy
production due to the stochastic term in (STFE) seems to require a control on the small-
ness of the solution, which we are unable to provide in the case of initial data without full
support. Since at least for the case n ≥ 2, the entropy estimate also fails for such initial
values, we rely the whole analysis on the remainingα-entropy estimate (4.0.4) forα>−1
as well as the conservation of mass. As observed in [32, Section 6] for the deterministic
case, this still suffices to extract a limit which solves the equation in the very weak sense.

To review the argument in the deterministic setting, we set w = u
α+n+1

4 , where u is
a solution to (4.0.1) and α ∈ (−1,2−n). Then, by the chain rule, integration of (4.0.4)
provides an estimate on

� T

0
∥∂x w∥4

L4(T) dt ≂α,n

� T

0

�
T

(
u

α+n−3
4 ∂x u

)4 dx dt =
� T

0

�
T

uα+n−3(∂x u)4 dx dt

(4.1.13)
and the conservation of mass on

sup
t∈[0,T ]

∥w∥
4

α+n+1

L
4

α+n+1 (T)
= sup

t∈[0,T ]
∥u∥L1(T),

for non-negative u. An application of the Gagliardo-Nirenberg interpolation inequality

allows to find between this estimate in L4(0,T ;Ẇ 1,4(T)) and L∞(0,T ;L
4

α+n+1 (T)) an esti-
mate on w , which has the same integrability in space and time, see (4.2.38). Using the
identity

∥u∥Lp ([0,T ]×T) = ∥w∥
4

α+n+1

L
4p

α+n+1 ([0,T ]×T)
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and that the admissible range for α is (−1,2−n), this can be translated to an estimate
on u for p < 7. Together with the estimate on (4.1.13) and the application of Hölder’s
inequality

∥∂x u∥Lr ([0,T ]×T) ≂α,n
∥∥u

3−(α+n)
4 ∂x w

∥∥
Lr ([0,T ]×T)

≤ ∥∥u
3−(α+n)

4
∥∥

L
4p

3−(α+n) ([0,T ]×T)
∥∂x w∥L4([0,T ]×T)

a space-time integral estimate on ∂x u for r < 7
2 is obtained in Lemma 4.2.4. Then, for

example, the first term on the right-hand side of (4.1.5) can be estimated via Hölder’s
inequality

∥un−2(∂x u)3∥
L

7
n+4 −([0,T ]×T)

≤ ∥un−2∥
L

7
n−2 −([0,T ]×T)

∥(∂x u)3∥
L

7
6 −([0,T ]×T)

,

where 7
n+4 > 1 by Assumption 4.1.1. This turns out to be enough to conclude some tem-

poral regularity and also identify the term un−2(∂x u)3 in the limit using Vitali’s conver-
gence theorem.

We generalize this to the stochastic setting by estimating moments of the involved
quantities and accounting additionally for the nonlinear conservative noise term from
(STFE). For optimal control inω, we express these estimates conditioned on F0 reducing
effectively to the situation of a deterministic initial value. Subsequently, we carry out the
limiting procedure and identify the stochastic integrals using the stochastic compact-
ness method.

4.1.3. DISCUSSION OF THE RESULT
The fact that the approach from [32] can be applied also in the stochastic setting is es-
sentially due to the use of Stratonovich noise, which is compatible with the α-entropy
estimates. This allows us to construct solutions to (STFE) for non-negative initial val-
ues from the space of measures, including the interesting case of the Dirac distribu-
tion. Moreover, only closing the α-entropy estimates requires less spatial regularity of
the noise compared to cases in which also the energy estimate is used. Indeed, Assump-
tion 4.1.2 essentially expresses that B is a Q-Wiener process in H 1(T), while the results
from [35, 51, 58, 75, 107] and Chapters 2 and 3 require that B lies in H 2(Td ), d ∈ {1,2}.
Although it would be preferable to have solutions satisfying also the energy estimate,
our result is the only one so far providing solutions to the stochastic thin-film equation,
which allows for initial values without full support in the nonlinear noise case.

4.1.4. NOTATION FOR CHAPTER 4
Let X be a Banach space and ν a non-negative measure on a measurable space S. Then
we write Lp (S;X ), p ∈ [1,∞], for the Bochner space on S with values in X , equipped
with the norm

∥ f ∥p
Lp (S;X ) =

�
S
∥ f ∥p

X
dν, p ∈ [1,∞),

and the usual modification for p =∞. In the case X =R, we simply write Lp (S) or, if S is
equipped with the counting measure, l p (S).
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If [0,T ] is an interval, we use the notation Lp (0,T ;X ) for Lp ([0,T ];X ). Moreover, we
write C ([0,T ];X ) for the space of continuous, X -valued functions equipped with the
norm

∥ f ∥C ([0,T ];X ) = sup
0≤t≤T

∥ f (t )∥X .

We write W κ,p (0,T ;X ), κ ∈ (0,1), p ∈ [1,∞), for the Sobolev–Slobodeckij space equipped
with the norm

∥ f ∥p
W κ,p (0,T ;X ) = ∥ f ∥p

Lp (0,T ;X ) +
� T

0

� T

0

∥ f (t )− f (s)∥p
X

|t − s|1+κp dt ds.

For l ∈N and p ∈ [1,∞], W l ,p (0,T ;X ) denotes the usual Sobolev space with norm

∥ f ∥p

W k,p (0,T ;X )
=

l∑
j=0

∥∂l
t f ∥p

Lp (0,T ;X ).

We write T for the flat torus, i.e. the interval [0,1] with its endpoints identified. We
write C (T) and C l (T), l ∈N, for the continuous and l-times continuously differentiable
functions on T, respectively, equipped with the norms

∥ f ∥C (T) = sup
x∈T

| f (x)|, ∥ f ∥C l (T) =
l∑

j=0
∥∂ j

x f ∥C (T).

The smooth functions on T we denote by C∞(T) and we write W l ,p (T), l ∈N, p ∈ [1,∞],
for the Sobolev space equipped with the norm

∥ f ∥p

W l ,p (T)
=

l∑
j=0

∥∂ j
x f ∥p

Lp (T).

For the case p = 2 we use the notation H l (T) = W l ,2(T). If p ∈ (1,∞), we write W −l ,p (T)
for the dual space of W l ,p ′

(T) under the duality pairing 〈·, ·〉 in L2(T), where p ′ is the
Hölder conjugate of p, and equip it with the norm

∥ f ∥W −l ,p (T) = sup
∥g∥

W l ,p′ (T)
≤1

|〈 f , g 〉|.

Denoting by f̂ (k) = 〈 f ,e2πi k·〉, k ∈Z, the k-th Fourier coefficient of a distribution f onT,
we denote by Hκ(T) for κ ∈R\N the Bessel-potential space consisting of all distributions
with

∥ f ∥2
Hκ(T) =

∑
k∈Z

| f̂ (k)|2(1+|2πk|2)κ

being finite. Moreover, we write M (T) for the space of Radon measures on T and equip
it with the total variation norm ∥ν∥M (T) = |ν|(T).

Lastly, for separable Hilbert spaces G and H we denote the space of Hilbert–Schmidt
operators between G and H by L2(G , H), which carries the norm

∥Ψ∥2
L2(G ,H) =

∑
k∈N

∥Ψgk∥2
H



4.2. APPROXIMATE SOLUTIONS

4

133

for an orthonormal basis (gk )k∈N of G . If (Ω,A,P) is a probability space, we write E[ · ]
and E[ · |H] for the expectation and conditional expectation with respect to a sub-σ-field
H⊂A, respectively. For two quantities A and B , we write A ≲B , if there exists a universal
constant C such that A ≤ C B . If this constant depends on parameters p1, . . . , we write
A ≲p1,... B instead. We write A ≂p1,... B , whenever A ≲p1,... B and B ≲p1,... A.

4.2. APPROXIMATE SOLUTIONS
In the course of this chapter, we prove the existence of solutions to (4.1.5) under Assump-
tions 4.1.1–4.1.3. For this purpose, we use solutions to the stochastic thin-film equation
with a strictly positive and regularized initial value and spatially smooth noise as ap-
proximations, which exist by the results of Chapter 3. To regularize u0, we let (ηε)ε>0 be
a family of non-negative, smooth functions ηε : T→R sufficing ∥ηε∥L1(T) = 1 and

�
T\Bδ(0)

|ηε|dx → 0

as ε↘ 0 for every δ> 0. Then, we define

u0,ε = 1{∥u0∥M (T) < 1
ε }(u0 ∗ηε) + ε,

which is strictly positive and smooth by [69, Theorem 2.3.20] with

∂l
x u0,ε = 1{∥u0∥M (T) < 1

ε }(u0 ∗∂l
xηε) (4.2.1)

for l ∈N. By the convolution inequality

∥ν∗η∥L1(T) ≤ ∥η∥L1(T)∥ν∥M (T) (4.2.2)

for general ν ∈ M (T), η ∈ C∞(T), see [54, Proposition 8.49], we conclude with (4.2.1)
that the F0-measurable u0,ε lies in L∞(Ω; H 1(T)). Moreover, since ϕ∗ (ηε(−·)) converges
uniformly to ϕ for ϕ ∈C (T) by [69, Theorem 1.2.21], we have that

〈u0 ∗ηε,ϕ〉 =
�
T

�
T

ηε(x − y)du0(y)ϕ(x)dx =
�
T

�
T

ηε(x − y)ϕ(x)dx du0(y) → 〈u0,ϕ〉,

so that u0,ε converges almost surely to u0 in the vague topology of M (T) as ε↘ 0. More-
over, we introduce the cut-off weights

λk,ε =
{
λk , |k| < 1

ε ,

0, else,
(4.2.3)

and define correspondingly
σk,ε = λk,ε fk . (4.2.4)

Assumption 4.1.1 in conjunction with Theorem 3.1.2 from Chapter 3 implies that for
each ε ∈ (0,1) there exists a weak martingale solution in the sense of Definition 3.1.1 to

du = −∂x (un∂3
x u)dt + 1

2

∑
k∈Z

∂x (σk,εq ′(u)∂x (σk,εq(u)))dt + ∑
k∈Z

∂x (σk,εq(u))dβ(k)
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with initial value u0,ε. Moreover, by Proposition 3.1.3 this solution also satisfies an en-
tropy estimate. More precisely, the consequences of Assumption 4.1.1 and Chapter 3,
which we use in the proof of Theorem 4.1.6, are listed below.

Consequence 4.2.1. Assumption 4.1.1 implies the following.

(i) We have n ∈ (2,3).

(ii) Let ε> 0. Then there exists a probability space (Ω̃ε,Ãε, P̃ε) with a filtration F̃ε satis-
fying the usual conditions, a family of independent F̃ε-Brownian motions (β̃(k)

ε )k∈Z,
an F̃ε-adapted, weakly continuous H 1(T)-valued process ũε together with an F̃ε,0-
measurable random variable ξ̃ε, subject to the following properties.

(iii) (ũε(0), ξ̃ε) has the same distribution as
(
u0,ε,∥u0∥M (T)

)
.

(iv) We have P̃ε⊗dt ⊗dx-almost everywhere ũε > 0.

(v) It holds

Ẽε

[
sup

0≤t≤T
∥ũε(t )∥2n

H 1(T) + ∥1{ũε>0}q(ũε)∂3
x ũε∥4

L2([0,T ]×T) + ∥ũε∥4
L2(0,T ;H 2(T))

]
< ∞.

(vi) For all ϕ ∈C∞(T) and t ∈ [0,T ], it holds

〈ũε(t ),ϕ〉 − 〈ũε(0),ϕ〉 =
� t

0

�
{ũε>0}

m(ũε)∂3
x ũε∂xϕdx ds

− 1
2

∑
k∈Z

� t

0
〈σk,εq ′(ũε)∂x (σk,εq(ũε)),∂xϕ〉ds

− ∑
k∈Z

� t

0
〈σk,εq(ũε),∂xϕ〉dβ̃(k)

ε,s .

(4.2.5)

For technical reasons, we also demanded existence of the random variable ξ̃ε, which
can be obtained from Theorem 3.1.2 by including the random variable ∥u0∥M (T) in the
application of the stochastic compactness method. This will be important later, since
we will define the decomposition (4.2.60) on the new probability space, which cannot be
recovered from the regularized initial value u0,ε.

To simplify the notation, we assume that all martingale solutions are defined on the
original filtered probability space (Ω,A,F,P) with respect to the given family of Brownian
motions (β(k))k∈Z, attain the original initial value u0,ε, and denote them by uε. Moreover,
by equidistribution, we can assume that the auxiliary random variables ξ̃ε are given by
∥u0∥M (T). This simplification is possible, since the forthcoming estimates only depend
on the distribution of the solutions.

4.2.1. APPLICATION OF ITÔ’S FORMULA
In this section, we establish estimates on the dissipation terms of the α-entropy

�
T

Gα(uε)dx, (4.2.6)
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which are uniform in ε, where

Gα(u) = 1
α(α+1) uα+1 (4.2.7)

and
−1 < α < 2−n. (4.2.8)

These estimates are expressed conditionally onF0, where we remark that the conditional
expectation is also well-defined for non-negative random variables which do not lie in
L1(Ω), for details see [90, Chapter 5].

Proposition 4.2.2. Assume (4.2.8). Then for every ε ∈ (0,1) we have

E

[� T

0

�
T

uα+n−1
ε (∂2

x uε)2 dx dt +
� T

0

�
T

uα+n−3
ε (∂x uε)4 dx dt

∣∣∣∣F0

]
≲α,n,Λ,T ∥u0∥α+1

M (T) +∥u0∥α+n−1
M (T) +εα+1.

(4.2.9)

Proof. Throughout this proof we fix an ε ∈ (0,1) and introduce the functions

f = −1{uε>0}m(uε)∂3
x uε,

g = 1
2

∑
k∈Z

σk,εq ′(uε)∂x (σk,εq(uε)),

and the L2(l 2(Z),L2(T))-valued process Ψ, defined by

Ψek = ∂x (σk,εq(uε)),

where ek denotes the k-th unit vector in l 2(Z). We convince ourselves that

f , g ∈ L2(Ω;L2(0,T ;L2(T))) (4.2.10)

and
Ψ ∈ L2(Ω,L2(0,T ;L2(l 2(Z),L2(T)))). (4.2.11)

To this end, we observe that

E
[∥ f ∥2

L2(0,T ;L2(T))

] = E

[� T

0

�
T

|1{uε>0}m(uε)∂3
x uε|2 dx dt

]
≤ E

[� T

0
∥q(uε)∥2

L∞(T)∥1{uε>0}q(uε)∂3
x uε∥2

L2(T) dt

]
≤ E

[
sup

0≤t≤T
∥uε(t )∥2n

H 1(T)

] 1
2
E
[∥1{uε>0}q(uε)∂3

x uε∥4
L2([0,T ]×T)

] 1
2 < ∞

by Consequence 4.2.1 (v). By Assumption 4.1.2 we have∑
k∈Z

∥σk∥2
C 1(T) =

∑
k∈Z

(λk (1+|k|))2 < ∞,∑
k∈Z

∥σk∥C 2(T)∥σk∥C (T) =
∑

k∈Z
λ2

k (1+|k|+ |k|2) < ∞,
(4.2.12)
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and hence

E
[∥g∥2

L2(0,T ;L2(T))

] ≤ E

[� T

0

�
T

∣∣∣∣ ∑
k∈Z

σk,εq ′(uε)∂x (σk,εq(uε))

∣∣∣∣2

dx dt

]

≲ E

[� T

0

( ∑
k∈Z

∥σk,ε∥2
L∞(T)

)2�
T

((q ′(uε))2∂x uε)2 dx dt

]

+ E
[� T

0

( ∑
k∈Z

∥σk,ε∥L∞(T)∥∂xσk,ε∥L∞(T)

)2�
T

(q ′(uε)q(uε))2 dx dt

]
≲n,Λ E

[� T

0

�
T

u2n−4
ε (∂x uε)2 dx dt +

� T

0

�
T

u2n−2
ε dx dt

]
≤ E

[� T

0
∥uε∥2n−4

L∞(T)∥∂x uε∥2
L2(T) dt +

� T

0
∥uε∥2n−2

L∞(T) dt

]
≲T E

[
sup

0≤t≤T
∥uε(t )∥2n−2

H 1(T)

]
< ∞,

where we have used again Consequence 4.2.1 (v). By the same arguments, we also have

E
[∥Ψ∥2

L2(0,T ;L2(l 2(Z),L2(T)))

] = E

[� T

0

∑
k∈Z

∥∂x (σk,εq(uε))∥2
L2(T) dt

]
≲ E

[� T

0

∑
k∈Z

�
T

(∂xσk,ε)2m(uε)dx dt

]
+ E

[� T

0

∑
k∈Z

�
T

σ2
k,ε(q ′(uε)∂x uε)2 dx dt

]
≲n E

[� T

0

∑
k∈Z

∥∂xσk,ε∥2
L∞(T)∥uε∥n

L∞(T) dt

]
+ E

[� T

0

∑
k∈Z

∥σk,ε∥2
L∞(T)∥uε∥n−2

L∞(T)∥∂x uε∥2
L2(T) dt

]
≲Λ,T E

[
sup

0≤t≤T
∥uε(t )∥n

H 1(T)

]
< ∞,

(4.2.13)

so that (4.2.10) and (4.2.11) indeed hold. Denoting the cylindrical Wiener process ek 7→
β(k) in l 2(Z) by β, we see that

uε(t ) = u0,ε +
� t

0
∂x ( f + g )ds +

� t

0
Ψdβs

suffices all the assumptions of Itô’s formula [39, Proposition A.1] on the involved pro-
cesses by Consequence 4.2.1 (v) and the integrability statements (4.2.10) and (4.2.11). We
would like to apply [39, Proposition A.1] to calculate the Itô expansion of the functional
(4.2.6). Since, however, the function (4.2.7) is not twice continuously differentiable, we
instead use the shifted version of (4.2.7) as introduced in [33, Proposition 2.2]. Specifi-
cally, we let Gα,δ ∈C∞(R) such that

Gα,δ(u) =
{

Gα(u +δ), u ≥ 0,

0, u ≤−1,
(4.2.14)
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for δ ∈ (0,1). In particular, Gα,δ has bounded second derivative and hence evaluating
Itô’s formula [39, Proposition A.1] at time T yields

�
T

Gα,δ(uε(T ))dx −
�
T

Gα,δ(u0,ε)dx

=
� T

0

�
{uε>0}

G ′′
α,δ(uε)∂x uεm(uε)∂3

x uεdx dt

− 1
2

∑
k∈Z

� T

0

�
T

G ′′
α,δ(uε)∂x uεσk,εq ′(uε)∂x (σk,εq(uε))dx dt

+
� T

0
〈G ′

α,δ(uε)Ψdβt ,1T〉 + 1
2

∑
k∈Z

� T

0

�
T

G ′′
α,δ(uε)(∂x (σk,εq(uε)))2 dx dt .

(4.2.15)

To simplify the second and fourth term appearing on the right-hand side, we observe
that

I2,4(k, t ) := −
�
T

G ′′
α,δ(uε)∂x uεσk,εq ′(uε)∂x (σk,εq(uε))dx

+
�
T

G ′′
α,δ(uε)(∂x (σk,εq(uε)))2 dx

=
�
T

G ′′
α,δ(uε)∂xσk,εq(uε)∂x (σk,εq(uε))dx

=
�
T

G ′′
α,δ(uε)m(uε)(∂xσk,ε)2 dx

+
�
T

G ′′
α,δ(uε)q(uε)q ′(uε)∂x uεσk,ε∂xσk,εdx.

(4.2.16)

We define

ζα,δ(u) =
� u

0
G ′′
α,δ(r )q(r )q ′(r )dr = n

2

� u

0
(r +δ)α−1r n−1 dr

for u ≥ 0, so that
�
T

G ′′
α,δ(uε)q(uε)q ′(uε)∂x uεσk,ε∂xσk,εdx = −

�
T

ζα,δ(uε)∂x (σk,ε∂xσk,ε)dx. (4.2.17)

By the definition of ζα,δ we have

ζα,δ(u) ≤ n

2

� u

0
(r +δ)α+n−2 dr,

and consequently

|ζα,δ(u)| ≲α,n (u +δ)α+n−1. (4.2.18)

Moreover, it holds

|G ′′
α,δ(u)m(u)| ≤ (u +δ)α+n−1 (4.2.19)
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for u ≥ 0 by (4.2.14) and

∥uε(t )∥L1(T) = ∥u0,ε∥L1(T) ≤ ∥u0∥M (T)∥ηε∥L1(T) +ε = ∥u0∥M (T) +ε (4.2.20)

by the divergence form of (4.2.5), non-negativity of uε and (4.2.2). Inserting (4.2.17)–
(4.2.19) in (4.2.16) and using (4.2.8), (4.2.12) and (4.2.20), we conclude∣∣∣∣ 1

2

∑
k∈Z

� T

0
I2,4(k, t )dt

∣∣∣∣
≲α,n

∑
k∈Z

� T

0

�
T

(uε+δ)α+n−1((∂xσk,ε)2 +|∂x (σk,ε∂xσk,ε)|)dx dt

≲Λ,T

(
sup

0≤t≤T
∥uε∥L1(T) + δ

)α+n−1 ≤ (∥u0∥M (T) +ε+δ
)α+n−1.

(4.2.21)

Next, we estimate the first term on the right-hand side of (4.2.15). The calculations
are the same as in the proof of [33, Proposition 2.2] and only contained for convenience
of the reader. Namely by integration by parts, which can be justified using a cut-off func-
tion near 0, we can rewrite�

{uε>0}
G ′′
α,δ(uε)∂x uεm(uε)∂3

x uεdx

=
�

{uε>0}
(uε+δ)α+n−1

(
m(uε)

m(uε+δ)

)
∂x uε∂

3
x uεdx

= −
�
T

(uε+δ)α−1m(uε)(∂2
x uε)2 dx

− (α+n −1)

�
T

(
m(uε)

m(uε+δ)

)
(uε+δ)α+n−2(∂x uε)2∂2

x uεdx

−
�
T

(
m′(uε)

m(uε+δ) − m(uε)m′(uε+δ)
(m(uε+δ))2

)
(uε+δ)α+n−1(∂x uε)2∂2

x uεdx

= K1 + K2 + R1,

(4.2.22)

P⊗dt-almost everywhere. Integrating by parts and employing Young’s inequality, we
retrieve

K2 = − (α+n −1)

�
T

(uε+δ)α+n−2(∂x uε)2∂2
x uεdx

− (α+n −1)

�
T

(uε+δ)
α+n−3

2 (∂x uε)2
(

m(uε)
m(uε+δ) −1

)
(uε+δ)

α+n−1
2 ∂2

x uεdx

≤
(

(α+n−1)(α+n−2)
3 +κ1

)�
T

(uε+δ)α+n−3(∂x uε)4 dx

+ (α+n−1)2

κ1

�
T

(
m(uε)

m(uε+δ) −1
)2

(uε+δ)α+n−1(∂2
x uε)2 dx,

(4.2.23)

for every κ1 > 0. Moreover, by inserting m(u) = un , we obtain the estimate∣∣∣ m′(u)
m(u+δ) − m(u)m′(u+δ)

(m(u+δ))2

∣∣∣ = n
( u

u+δ
)n−1 δ

(u+δ)2 ≤ nδ
(u+δ)2 ,
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for u ≥ 0. Hence for each κ2 > 0, we have

|R1| ≤
�
T

(uε+δ)
α+n−3

2 (∂x uε)2( nδ
uε+δ

)
(uε+δ)

α+n−1
2 |∂2

x uε|dx

≤ κ2

�
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(uε+δ)α+n−3(∂x uε)4 dx + 1
κ2

�
T

( nδ
uε+δ

)2(uε+δ)α+n−1(∂2
x uε)2 dx,

(4.2.24)

again by Young’s inequality. Choosing

κ1 = κ2 = −(α+n−1)(α+n−2)
12 ,

which is positive by (4.2.8), and inserting (4.2.23) and (4.2.24) in (4.2.22) yields

�
{uε>0}

G ′′
α,δ(uε)∂x uεm(uε)∂3

x uεdx
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T
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x uε)2 dx
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(uε+δ)α+n−3(∂x uε)4 dx

− 12(α+n−1)
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x uε)2 dx

− 12n2

(α+n−1)(α+n−2)

�
T

(
δ

uε+δ
)2(uε+δ)α+n−1(∂2

x uε)2 dx.

By using the preceding estimate and (4.2.21) in (4.2.15), we obtain moreover

�
T

Gα,δ(uε(T ))dx −
�
T

Gα,δ(u0,ε)dx +
� T

0
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(uε+δ)α−1m(uε)(∂2
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� T

0

�
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m(uε+δ) −1
)2

(uε+δ)α+n−1(∂2
x uε)2 dx dt
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∣∣∣∣� T

0
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∣∣∣∣.

(4.2.25)

We have, by (4.2.8) and (4.2.14),

−
�
T

Gα,δ(u0,ε)dx ≥ 0. (4.2.26)

Moreover, it holds |Gα,δ(u)| ≲α (u +δ)α+1 for u ≥ 0, so that∣∣∣∣�
T

Gα,δ(uε(T ))dx

∣∣∣∣ ≲α

(∥uε(T )∥L1(T) + δ
)α+1 ≤ (∥u0∥M (T) +ε+δ

)α+1, (4.2.27)
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by further invoking (4.2.20). Inserting (4.2.26) and (4.2.27) in (4.2.25) yields
� T

0

�
T

(uε+δ)α−1m(uε)(∂2
x uε)2 dx dt

− (α+n−1)(α+n−2)
6

� T

0
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(uε+δ)α+n−3(∂x uε)4 dx dt −
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0
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∣∣∣∣� T

0

�
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(
δ
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)2(uε+δ)α+n−1(∂2

x uε)2 dx dt

∣∣∣∣.

(4.2.28)

We point out that the prefactor
(α+n−1)(α+n−2)

6

of the second term on the left-hand side of (4.2.28) is negative by (4.2.8). Due to (4.2.8)
and (4.2.14) the function G ′

α,δ is bounded and thus

E
[∥〈G ′

α,δ(uε)Ψ·,1T〉∥2
L2(0,T ;L2(l 2(Z),R))

] = E

[� T
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dt

]
≲α,δ E

[� T

0

∑
k∈Z

∥∥∂x (σk,εq(uε))
∥∥2

L2(T) dt

]
,

which is finite by (4.2.13). Consequently, the stochastic integral in (4.2.28) is a square
integrable martingale. In order to estimate the conditional expectation on the left-hand
side of (4.2.9), we let A ∈ F0. Multiplying both sides in (4.2.28) with 1A and taking the
expectation, we conclude that
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)α+1 + (∥u0∥M (T) +ε+δ

)α+n−1)]
+ E

[∣∣∣∣� T

0

�
T

(
m(uε)

m(uε+δ) −1
)2

(uε+δ)α+n−1(∂2
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∣∣∣∣] = E1 + R2 + R3.

(4.2.29)

Due to Fatou’s lemma and Consequence 4.2.1 (iv), we can deduce that

E

[
1A

� T

0

�
T

uα+n−1
ε (∂2

x uε)2 dx dt

]
+ E

[
1A

� T

0

�
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ε (∂x uε)4 dx dt

]
≲α,n,Λ,T E

[
1A

(∥u0∥α+1
M (T) +∥u0∥α+n−1

M (T) +εα+1)] (4.2.30)

by letting δ↘ 0 in (4.2.29), if we can argue that R2 +R3 → 0 as δ↘ 0. To this end, we
observe first that

(uε+δ)α+n−1(∂2
x u)2 ≤ (1+|uε|)(∂2

x u)2,
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(
m(uε)

m(uε+δ) −1
)2 ≤ 1,(

δ
uε+δ

)2 ≤ 1,

by (4.2.8). Moreover, (
m(uε)

m(uε+δ) −1
)2 → 0,(

δ
uε+δ

)2 → 0,

P⊗dt ⊗dx-almost everywhere as δ↘ 0, by Conseuqence 4.2.1 (iv). Due to Consequence
4.2.1 (v), we have that

E
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] 1
2
)
E
[∥uε∥4

L2(0,T ;H 2(T))

] 1
2 ,

and thus R2+R3 → 0 by the dominated convergence theorem. Therefore, (4.2.30) holds
true, and (4.2.9) follows, since A ∈F0 was arbitrary.

4.2.2. SPATIAL REGULARITY
In this section, we proceed as explained in Section 4.1.2 and use the Gagliardo–Nirenberg
interpolation inequality in conjunction with the α-entropy estimate (4.2.9) and con-
servation of mass (4.2.20) to obtain estimates on uε in suitable Lebesgue and Sobolev
norms.

Lemma 4.2.3. Let p ∈ (n +4,7), then

E
[∥uε∥p

Lp ([0,T ]×T)

∣∣F0
]
≲n,p,Λ,T (∥u0∥M (T)+ε)4(∥u0∥p−n−4

M (T) +∥u0∥p−4
M (T)+εp−n−4). (4.2.31)

Proof. We choose α in accordance with

p = α+n +5 (4.2.32)

so that in particular (4.2.8) is satisfied and thus Proposition 4.2.2 applies. We define the

random function wε = u
α+n+1

4
ε and claim that wε ∈ W 1,4(T), P⊗dt-almost everywhere,

and that the chain rule holds for it. To verify this, we observe that wε,κ = (uε+κ)
α+n+1

4

has the weak derivative α+n+1
4 (uε+κ)

α+n−3
4 ∂x uε by the chain rule [26, Corollary 8.11] for

each κ> 0. Hence,( 4
α+n+1

)4∥∂x wε,κ∥4
L4(T) =

�
T

(uε+κ)α+n−3(∂x uε)4 dx ≤
�
T

uα+n−3
ε (∂x uε)4 dx, (4.2.33)

which is P⊗dt-almost everywhere finite by (4.2.9) so that taking κ↘ 0, wε,κ admits a
subsequence converging weakly in W 1,4(T). This limit coincides with wε, since wε,κ →
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wε almost everywhere. Moreover, using the weak convergence ∂x wε,κ* ∂x wε in L4(T)
and the dominated convergence theorem, we conclude that

〈∂x wε,ϕ〉 ← 〈∂x wε,κ,ϕ〉 = α+n+1
4

〈
(uε+κ)

α+n−3
4 ∂x uε,ϕ

〉 → α+n+1
4

〈
u

α+n−3
4

ε ∂x uε,ϕ
〉

,
(4.2.34)

for a subsequence κ↘ 0 and every ϕ ∈ C∞(T), and therefore the chain rule applies to
wε, too.

By the Gagliardo-Nirenberg interpolation inequality [26, Eq. (42), p.233] it holds

∥wε∥Ls (T) ≲α,n ∥wε∥νW 1,4(T)∥wε∥1−ν
L

4
α+n+1 (T)

(4.2.35)
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s = 4(α+n+4)+4
α+n+1 , ν = α+n+1− 4

s
α+n+4 .

Moreover, by the Poincaré–Wirtinger inequality∥∥∥∥wε−
�
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wεdx

∥∥∥∥
L4(T)

≲ ∥∂x wε∥L4(T),
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Inserting this in (4.2.35) and using that L
4

α+n+1 (T) ,→ L1(T) due to (4.2.8) yields
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. (4.2.36)

Since
sν = s(α+n+1)−4

α+n+4 = 4, (4.2.37)

we obtain by integrating the s-th power of (4.2.36) in time
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(4.2.38)

By (4.2.32) we have 4p
α+n+1 = s and consequently
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Using these two identities in (4.2.38), taking the conditional expectation with respect to
F0 and applying estimate (4.2.20), we conclude that

E
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Lp ([0,T ]×T)

∣∣F0
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≲α,n,T E
[
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Using that by (4.2.32) and (4.2.37)

s(α+n+1)
4 = p,

s(1−ν)(α+n+1)
4 = p − sν(α+n+1)

4 = 4,

and estimates (4.2.9), (4.2.33), we obtain
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We use Consequence 4.2.1 (i), (4.2.32) and that ε ∈ (0,1) to simplify the right-hand side
to

E
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Finally, (4.2.31) follows by observing that α depends only on n and p.
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2 ), then
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(4.2.39)

Proof. We define p = 2r and α according to (4.2.32), so that in particular the assump-
tions of Proposition 4.2.2 and Lemma 4.2.3 are satisfied. We consider again the function

wε = u
α+n+1

4
ε , which satisfies the chain rule by (4.2.34). Hence, using Hölder’s inequality

and that
1
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we can estimate
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Taking the r -th power on both sides, taking the conditional expectation with respect to
F0, and employing the conditional Hölder inequality yields
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By (4.2.40) we have r (3−(α+n))
4p = 1− r

4 , so that inserting (4.2.9), (4.2.31) and the definitions
of α, p results in

E
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M (T) +ε2r−n−4).

Finally, using that α, p only depend on n and r , we infer that (4.2.39) holds.

4.2.3. TEMPORAL REGULARITY
In what follows, we use the estimates derived in Subsection 4.2.2 to deduce uniform es-
timates on the time increments of uε with values in a suitable negative Sobolev space
on T. Since the estimates from Subsection 4.2.2 only give estimates on ∂x uε and uε, we
need to rewrite the thin-film operator in the very weak form [33, Eq. (3.2)] discussed in
Subsection 1.2.3. Specifically, by integrating by parts we obtain that

�
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m(uε)∂3
x uεηdx
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ε (∂x uε)3,η〉 + 3n
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ε ∂x uε,∂2

xη〉
(4.2.41)

P⊗dt-almost everywhere for every η ∈C∞(T). The integration by parts is justified by the
regularity of uε stated in Consequence 4.2.1 (v). In the subsequent lemma, we deduce
estimates on the terms on the right-hand side of (4.2.41).

Lemma 4.2.5. Let l ∈ {0,1,2} and νl ∈ ( n+4
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Proof. We choose p = 2r = νl (n+4−l ), so that in particular p ∈ (n+4,7) and r ∈ ( n+4
2 , 7

2 ),
meaning that the assumptions of Lemma 4.2.3 and Lemma 4.2.4 are satisfied. Moreover,
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Hence, using that
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0 un−2+l
ε (∂x uε)3−l dt is starting at 0 and admits its integrand as weak

derivative, as well as Hölder’s inequality, we can estimate∥∥∥∥� ·
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Taking the νl -th power on both sides and the conditional expectation with respect to F0,
using (4.2.31) and (4.2.39), and employing the conditional Hölder’s inequality we con-
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clude

E

[∥∥∥∥� ·

0
un−2+l
ε (∂x uε)3−l dt

∥∥∥∥νl

W 1,νl (0,T ;Lνl (T))

∣∣∣∣F0

]
≲νl ,T E

[∥uε∥νl (n−2+l )
Lp ([0,T ]×T)∥∂x uε∥νl (3−l )

Lr ([0,T ]×T)

∣∣F0
]

≤ E
[∥uε∥p

Lp ([0,T ]×T)

∣∣F0
] νl (n−2+l )

p E
[∥∂x uε∥r

Lr ([0,T ]×T)

∣∣F0
] νl (3−l )

r

≲n,p,r,Λ,T (∥u0∥M (T) +ε)
4νl (n−2+l )

p
(∥u0∥p−n−4

M (T) +∥u0∥p−4
M (T) +εp−n−4) νl (n−2+l )

p

× (∥u0∥M (T) +ε)
(4−r )νl (3−l )

r
(∥u0∥2r−n−4

M (T) +∥u0∥2r−4
M (T) +ε2r−n−4) νl (3−l )

r .

(4.2.44)

The claim follows by using (4.2.43) and inserting the definitions of p and r .

We derive similar estimates on terms appearing in the Stratonovich correction term
in (4.2.5).

Lemma 4.2.6. Let l ∈ {3,4} and νl ∈ ( n+4
n+3−l , 7

n+3−l ), then

E

[∥∥∥∥ ∑
k∈Z

� ·

0
σ2

k,ε(q ′(uε))2∂x uεdt

∥∥∥∥ν3

W 1,ν3 (0,T ;Lν3 (T))

∣∣∣∣F0

]
≲n,ν3,Λ,T (∥u0∥M (T) +ε)4−ν3

(∥u0∥nν3−n−4
M (T) +∥u0∥nν3−4

M (T) +εnν3−n−4) (4.2.45)

and

E

[∥∥∥∥ ∑
k∈Z

� ·

0
σk,ε∂xσk,εq(uε)q ′(uε)dt

∥∥∥∥ν4

W 1,ν4 (0,T ;Lν4 (T))

∣∣∣∣F0

]
≲n,ν4,Λ,T (∥u0∥M (T) +ε)4(∥u0∥(n−1)ν4−n−4

M (T) +∥u0∥(n−1)ν4−4
M (T) +ε(n−1)ν4−n−4).

(4.2.46)

Proof. We first consider (4.2.45) and define p,r by p = 2r = nν3, so that the assumptions
of Lemma 4.2.3 and Lemma 4.2.4 are satisfied. Then

n−2
p + 1

r = 1
ν3

. (4.2.47)

We use that
∑

k∈Z
� ·

0σ
2
k,ε(q ′(uε))2∂x uεdt starts at 0 and (4.2.12) to estimate∥∥∥∥ ∑

k∈Z

� ·

0
σ2

k,ε(q ′(uε))2∂x uεdt

∥∥∥∥
W 1,ν3 (0,T ;Lν3 (T))

≲T

∥∥∥∥ ∑
k∈Z

σ2
k,ε(q ′(uε))2∂x uε

∥∥∥∥
Lν3 ([0,T ]×T)

≲n
∑

k∈Z
∥σk,ε∥2

C (T)∥un−2
ε ∂x uε∥Lν3 ([0,T ]×T) ≲Λ ∥un−2

ε ∂x uε∥Lν3 ([0,T ]×T).

Proceeding as in (4.2.44), we obtain that

E

[∥∥∥∥ ∑
k∈Z

� ·

0
σ2

k,ε(q ′(uε))2∂x uεdt

∥∥∥∥ν3

W 1,ν3 (0,T ;Lν3 (T))

∣∣∣∣F0

]
≲n,Λ,T E

[∥uε∥p
Lp ([0,T ]×T)

∣∣F0
] ν3(n−2)

p E
[∥∂x uε∥r

Lr ([0,T ]×T)

∣∣F0
] ν3

r
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≲n,p,r,Λ,T (∥u0∥M (T) +ε)
4ν3(n−2)

p
(∥u0∥p−n−4

M (T) +∥u0∥p−4
M (T) +εp−n−4) ν3(n−2)

p

× (∥u0∥M (T) +ε)
(4−r )ν3

r
(∥u0∥2r−n−4

M (T) +∥u0∥2r−4
M (T) +ε2r−n−4) ν3

r .

The claimed estimate (4.2.45) follows by using (4.2.47) and inserting the definitions of p
and r . The second estimate (4.2.46) can be derived analogously with the choice p = 2r =
(n −1)ν3.

Lastly, we obtain temporal regularity of the stochastic integral in (4.2.5).

Lemma 4.2.7. Let ν5 ∈ ( 2(n+4)
n , 14

n ), γ5 ∈ (0, 1
2 ). Then

E

[∥∥∥∥ ∑
k∈Z

� ·

0
σk,εq(uε)dβ(k)

t

∥∥∥∥ν5

W γ5,ν5 (0,T ;L2(T))

∣∣∣∣F0

]
≲γ5,n,ν5,Λ,T (∥u0∥M (T) +ε)4

(
∥u0∥

nν5
2 −n−4

M (T) +∥u0∥
nν5

2 −4
M (T) +ε

nν5
2 −n−4

)
.

(4.2.48)

Proof. We define the linear operator Φε : l 2(Z) → L2(T) by setting Φεek = σk,εq(uε) so
that we can write in what follows∑

k∈Z

� ·

0
σk,εq(uε)dβ(k)

t =
� ·

0
Φεdβt ,

whereβ is the cylindrical Wiener process in l 2(Z) given by ek 7→β(k). We let A ∈F0. Then,
using [53, Lemma 2.1], we calculate

E

[
1A

∥∥∥∥� ·

0
Φεdβt

∥∥∥∥ν5

W γ5,ν5 (0,T ;L2(T))

]
= E

[∥∥∥∥� ·

0
1AΦεdβt

∥∥∥∥ν5

W γ5,ν5 (0,T ;L2(T))

]
≲γ5,ν5 E

[� T

0
∥1AΦε∥ν5

L2(l 2(Z),L2(T))
dt

]
= E

[
1A

� T

0
∥Φε∥ν5

L2(l 2(Z),L2(T))
dt

]
.

To further estimate the latter, we use (4.2.12) and that ν5 ≥ 2 to infer

� T

0
∥Φε∥ν5

L2(l 2(Z),L2(T))
dt =

� T

0

( ∑
k∈Z

∥σk,εq(uε)∥2
L2(T)

) ν5
2

dt

≤
� T

0

( ∑
k∈Z

∥σk,ε∥2
C (T)

∥∥u
n
2
ε

∥∥2
L2(T)

) ν5
2

dt ≲Λ

� T

0
∥uε∥

ν5n
2

Ln (T) dt ≤ ∥uε∥
ν5n

2

L
ν5n

2 ([0,T ]×T)
.

Finally, we set p = ν5n
2 in accordance with the assumption of Lemma 4.2.3 and conse-

quently we can use (4.2.31) to conclude that

E

[
1A

∥∥∥∥� ·

0
Φεdβt

∥∥∥∥ν5

W γ5,ν5 (0,T ;L2(T))

]
≲γ5,ν5,Λ E

[
1A ∥uε∥p

Lp ([0,T ]×T)

]
= E

[
1A E

[∥uε∥p
Lp ([0,T ]×T)

∣∣F0
]]

≲n,p,Λ,T E
[
1A(∥u0∥M (T) +ε)4(∥u0∥p−n−4

M (T) +∥u0∥p−4
M (T) +εp−n−4)].

It remains to use that A ∈F0 was arbitrary and to insert the definition of p.
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Finally, we combine the previous results from this subsection to deduce a uniform
estimate on the temporal increments of uε in terms of its Sobolev–Slobodeckij norm.

Lemma 4.2.8. Let γ ∈ (0, 1
2 ), µ ∈ ( n+4

n+2 , 7
n+2 ) and ν ∈ (1, 7

n+4 ), then

E
[
∥uε∥ν

W γ, 2ν
2−ν (0,T ;W −3,µ(T))

∣∣∣F0

]
≲γ,n,µ,ν,Λ,T

(∥u0∥M (T) +ε
)(n−1− n2

p )ν + (∥u0∥M (T) +ε
)(n+1)ν,

(4.2.49)

where p = max{µ(n +2),ν(n +4)}.

Proof. By Consequence 4.2.1 (vi) and (4.2.41), the equality

uε =u0,ε − n(n−1)
2

� ·

0
∂x (un−2

ε (∂x uε)3)dt + 3n
2

� ·

0
∂2

x (un−1
ε (∂x uε)2)dt

−
� ·

0
∂3

x (un
ε ∂x uε)dt + 1

2

∑
k∈Z

� ·

0
∂x (σ2

k,ε(q ′(uε))2∂x uε)dt

+ 1
2

∑
k∈Z

� ·

0
∂x (σk,ε∂xσk,εq(uε)q ′(uε))dt + ∑

k∈Z

� ·

0
∂x (σk,εq(uε))dβ(k)

t

(4.2.50)

holds almost surely, where the integrals on the right-hand side converge in suitable neg-
ative Sobolev spaces by Lemmas 4.2.5–4.2.7. We proceed by separately estimating the

W γ, 2ν
2−ν (0,T ;W −3,µ(T))-norm of each of the terms on the right-hand side of (4.2.50). Since

u0,ε is constant in time, we can estimate by the Sobolev embedding theorem and (4.2.20)

∥u0,ε∥
W γ, 2ν

2−ν (0,T ;W −3,µ(T))
≲µ ∥u0,ε∥

L
2ν

2−ν (0,T ;L1(T))
≲ν,T ∥u0,ε∥L1(T) ≤ ∥u0∥M (T) + ε.

(4.2.51)
For the remaining terms, we choose

νl = p
n+4−l , l ∈ {0,1,2},

νl = p
n+3−l , l ∈ {3,4},

ν5 = 2p
n , γ5 = γ,

(4.2.52)

where p is defined in the claim. In particular, we have νl ≥ ν and therefore

1− 1
νl

≥ 1− 1
ν = 1

2 − 2−ν
2ν > γ− 2−ν

2ν , l ∈ {0, . . . ,4}. (4.2.53)

Using additionally that ν2 ≥ µ and employing the Sobolev embedding theorem in time
and space, we obtain that∥∥∥∥� ·

0
∂l+1

x (un−2+l
ε (∂x uε)3−l )dt

∥∥∥∥
W γ, 2ν

2−ν (0,T ;W −3,µ(T))

≤
∥∥∥∥� ·

0
un−2+l
ε (∂x uε)3−l dt

∥∥∥∥
W γ, 2ν

2−ν (0,T ;W l−2,µ(T))

≲l ,γ,µ,ν,νl ,T

∥∥∥∥� ·

0
un−2+l
ε (∂x uε)3−l dt

∥∥∥∥
W 1,νl (0,T ;Lνl (T))

(4.2.54)
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for l ∈ {0,1,2}. For l ∈ {3,4}, we proceed similarly and use again (4.2.53) and the Sobolev
embedding to conclude∥∥∥∥ ∑

k∈Z

� ·

0
∂x (σ2

k,ε(q ′(uε))2∂x uε)dt
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(4.2.55)

and ∥∥∥∥ ∑
k∈Z

� ·
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.

(4.2.56)

Lastly, we observe that by Consequence 4.2.1 (i) and ν< 7
n+4 , it also holds ν5 ≥ 2(n+4)ν

n ≥
2ν

2−ν . Hence, by the Sobolev embedding theorem, we infer∥∥∥∥ ∑
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.

(4.2.57)

Employing the triangle inequality in W γ, 2ν
2−ν (0,T ;W −3,µ(T)) as well as the conditional

Minkowski inequality in (4.2.50) yields
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.

The estimates (4.2.51), (4.2.54)–(4.2.57) and the conditional Jensen inequality lead to
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+ E
[∥∥∥∥ ∑
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,

where we also used that the νl only depend on n, ν, µ. Since p ∈ (n +4,7), the parame-
ters from (4.2.52) satisfy the assumptions of Lemmas 4.2.5–4.2.7. Hence, using (4.2.42),
(4.2.45), (4.2.46) and (4.2.48), we obtain that
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] 1
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)] 1
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(4.2.58)

To simplify the right-hand side, we estimate ε and ∥u0∥M (T) in (4.2.58) by (ε+∥u0∥M (T))
to conclude

E
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W γ, 2ν
2−ν (0,T ;W −3,µ(T))
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] 1
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n
2 .

(4.2.59)

We notice that the largest power on the right-hand side of (4.2.59) is n + 1. By Conse-
quence 4.2.1 (i), the smallest power is either 1, n −1− n

ν3
or n

2 − n
ν5

. To find the smallest
one, we insert (4.2.52) to rewrite the powers to

1, n −1− n
ν3

= n −1− n2

p , n
2 − n

ν5
= n

2 − n2

2p

and consider the respective parabolas

g1(s) = 1, g2(s) = s −1− s2

p , g3(s) = s
2 − s2

2p .
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We notice that all three parabolas attain their maximum value at p
2 , with

g1
( p

2

) = 1 ≥ g3
( p

2

) = p
8 ≥ g2

( p
2

) = p
4 −1,

since p ≤ 8. Because the second derivatives of the parabolas obey the same ordering, we

conclude g1(s) ≥ g3(s) ≥ g2(s) for all s ∈R and in particular that n −1− n2

p is the smallest
power in (4.2.59). Whence,

E
[
∥uε∥ν

W γ, 2ν
2−ν (0,T ;W −3,µ(T))

∣∣∣F0

] 1
ν ≲γ,n,µ,ν,Λ,T (∥u0∥M (T) +ε)n−1− n2

p + (∥u0∥M (T) +ε)n+1

and raising both sides of the preceding inequality to the ν-th power yields (4.2.49).

4.2.4. SIMPLIFIED ESTIMATES
In the previous subsections, we derived uniform estimates on the conditional expecta-
tions of the approximate solutions (uε)ε∈(0,1). To work with these estimates efficiently in
the preceding section, we derive corresponding moment estimates with a simpler right-
hand side. To this end, we introduce the sets

A j = {∥u0∥M (T) ∈ [ j −1, j )
}
, j ∈N, (4.2.60)

providing an F0-measurable partition of the probability space Ω and point out that it
suffices to show tightness on each of the sets A j separately in light of Lemma 4.B.3. Using
that

∥u0∥M (T) +ε ≤ j + 1 (4.2.61)

on A j , we obtain by multiplying (4.2.9) with 1A j and taking the expectation

∀α ∈ (−1,2−n) :
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�
T
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0

�
T
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]
≲α,n,Λ,T ( j +1)α+n−1.

(4.2.62)

In the same way, we conclude from Lemma 4.2.3 that

∀p ∈ [1,7) : E
[
1A j ∥uε∥p

Lp ([0,T ]×T)

]
≲n,p,Λ,T ( j +1)p , (4.2.63)

where the fact that the inequality also holds for p ∈ [1,n+4] follows by Hölder’s inequal-
ity. Analogously, we conclude from Lemma 4.2.4 that

∀r ∈ [1, 7
2 ) : E

[
1A j ∥∂x uε∥r

Lr ([0,T ]×T)

]
≲n,r,Λ,T ( j +1)r . (4.2.64)

Using additionally the Sobolev embedding theorem in space, we conclude from Lemma
4.2.8

∀γ ∈ (0, 1
2 )∀µ ∈ (1, 7

n+2 )∀ν ∈ [1, 7
n+4 ) :

E
[

1A j ∥uε∥ν
W γ, 2ν

2−ν (0,T ;W −3,µ(T))

]
≲γ,n,µ,ν,Λ,T ( j +1)ν(n+1).

(4.2.65)
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4.3. LIMITING PROCEDURE
In this section, we construct a very weak martingale solution in the sense of Definition
4.1.4 to the stochastic thin-film equation with initial value u0. To this end, we show
tightness of the approximating family (uε)ε∈(0,1) in suitable spaces in Subsection 4.3.1
and extract an equidistributed convergent subsequence converging to a solution in the
following Subsection 4.3.2.

4.3.1. TIGHTNESS PROPERTIES

We define Xind = R, XBM = C ([0,T ]), Xpower = L2(0,T ; H 2(T)), where we equip the latter
space with its weak topology. Moreover, we choose sequences −1 ≤ κl ↗ −1

2 , 1 < pl ↗ 7
and 1 < rl ↗ 7

2 . Then, we define Xcont, XLebesgue and XSobolev as the projective limit
of the sequences (C ([0,T ]; Hκl (T)))l∈N, (Lpl ([0,T ] ×T))l∈N and (Lrl (0,T ;W 1,rl (T)))l∈N,
where we consider the latter sequence of spaces with their weak typologies, for details
see Appendix 4.A. Finally, we define the space

X = X∞
ind×X∞

BM×Xcont×XLebesgue×XSobolev×X∞
power, (4.3.1)

and equip it with the product topology.

Lemma 4.3.1. Let αl ↗ 2−n be a sequence satisfying (4.2.8). Then the family((
(1A j ) j∈N, (β(k))k∈Z,uε,uε,uε,

(
u

αl +n+1
2

ε

)
l∈N

))
ε∈(0,1)

(4.3.2)

lies tight on X.

Proof. By Lemma 4.B.2 it suffices to show tightness of each of the components of (4.3.2)
in their respective space separately.

Tightness of the indicator functions and Brownian motions. The set of real numbers
Xind is a Radon space and thus the law of 1A j is inner regular for every j ∈ N. Conse-
quently, the family (1A j )ε∈(0,1) lies tight onXind. Tightness of the sequence ((1A j ) j∈N)ε∈(0,1)

on X∞
ind follows by Lemma 4.B.2. Similarly, since XBM is a Radon space, the law of β(k) is

inner regular, and consequently the family (β(k))ε∈(0,1) lies tight on it. Another applica-
tion of Lemma 4.B.2 yields tightness of ((β(k))k∈Z)ε∈(0,1) on X∞

BM.
Tightness on Xcont. By Lemma 4.B.1 and Lemma 4.B.3 it suffices to show tightness

of (1A j uε)ε∈(0,1) on C ([0,T ]; Hκl (T)) for each j , l ∈ N. To this end, we choose γ ∈ (0, 1
2 ),

µ ∈ (1, 7
n+2 ) and ν ∈ [1, 7

n+4 ) so that γ− 2−ν
2ν > 0 and in particular the embedding

L∞(0,T ;L1(T))∩W γ, 2ν
2−ν (0,T ;W −3,µ(T)) ,→ C ([0,T ]; Hκl (T))

is compact by [121, Corollary 5] and the Rellich–Kondrachov theorem. Consequently,
the set

Kδ =
{

u
∣∣∣∥u∥L∞(0,T ;L1(T)) ≤ 1

δ , ∥u∥
W γ, 2ν

2−ν (0,T ;W −3,µ(T))
≤ 1

δ

}
lies compact in C ([0,T ]; Hκl (T)) for δ> 0. By (4.2.20) and (4.2.61), we have that

E
[
1A j ∥uε∥L∞(0,T ;L1(T))

] ≤ j +1
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and hence together with (4.2.65) and Chebychev’s inequality, we conclude that

P({1A j uε ∉ Kδ}) ≤ P
({

1A j ∥uε∥L∞(0,T ;L1(T)) > 1
δ

}) + P({
1A j ∥uε∥

W γ, 2ν
2−ν (0,T ;W −3,µ(T))

> 1
δ

})
≤ δE

[
1A j ∥uε∥L∞(0,T ;L1(T))

] + δνE
[

1A j ∥uε∥ν
W γ, 2ν

2−ν (0,T ;W −3,µ(T))

]
≲γ,n,µ,ν,Λ,T δ( j +1) + δν( j +1)ν(n+1).

(4.3.3)

Tightness follows, since the right-hand side tends to 0 as δ↘ 0.
Tightness on XLebesgue. By Lemma 4.B.1 and Lemma 4.B.3 it is enough to show tight-

ness of (1A j uε)ε∈(0,1) on Lpl ([0,T ]×T) for each j , l ∈N. We let again γ ∈ (0, 1
2 ), µ ∈ (1, 7

n+2 ),

ν ∈ [1, 7
n+4 ) with γ− 2−ν

2ν > 0 and define the set

Kδ =
{

u
∣∣∣ max

{
∥u∥Lpl+1 ([0,T ]×T),∥∂x u∥L1([0,T ]×T),∥u∥

W γ, 2ν
2−ν (0,T ;W −3,µ(T))

}
≤ 1

δ

}
.

The set Kδ is bounded in L1(0,T ;W 1,1(T)) and thus compact in L1([0,T ]×T) by com-
pactness of the embedding

L1(0,T ;W 1,1(T))∩W γ, 2ν
2−ν (0,T ;W −3,µ(T)) ,→ L1(0,T ;L1(T)),

see again [121, Corollary 5]. Since Kδ is moreover bounded in Lpl+1 ([0,T ]×T), it is com-
pact in Lpl ([0,T ]×T) by interpolation. Lastly, with the help of (4.2.63)–(4.2.65), we can
conclude that P({1A j uε ∉ Kδ}) → 0 uniformly in ε as δ↘ 0, analogously to (4.3.3).

Tightness on XSobolev. By Lemma 4.B.1 and Lemma 4.B.3 it is again sufficient to verify
that (1A j uε)ε∈(0,1) lies tight on Lrl (0,T ;W 1,rl (T)), equipped with its weak topology for
each j , l ∈N. To this end, we define the set

Kδ = {
u

∣∣∥u∥Lrl ([0,T ]×T) ≤ 1
δ , ∥∂x u∥Lrl ([0,T ]×T) ≤ 1

δ

}
,

which is bounded in Lrl (0,T ;W 1,rl (T)) and consequently compact with respect to the
weak topology by the Banach–Alaoglu theorem. Following the lines of (4.3.3), we con-
clude that P({1A j uε ∉ Kδ}) → 0 uniformly in ε as δ↘ 0 by (4.2.63) and (4.2.64), which
implies tightness.

Tightness of the powers. A last application of Lemma 4.B.2 and Lemma 4.B.3 yields

that it suffices to show tightness of
(
1A j u

αl +n+1
2

ε

)
ε∈(0,1) on Xpower for all j , l ∈ N. To this

end, we define vε = u
αl +n+1

2
ε and arguing as for wε at the beginning of the proof of Lemma

4.2.3, we conclude that vε admits

(αl+n+1)(αl+n−1)
4 u

αl +n−3
2

ε (∂x uε)2 + αl+n+1
2 u

αl +n−1
2

ε ∂2
x uε

as a second weak derivative. In particular, since Parseval’s relation yields

∥vε∥2
H 2(T) =

∑
k∈Z

(1+ (2πk)2 + (2πk)4)|v̂ε(k)|2

≲ |v̂ε(0)|2 + ∑
k∈Z

(2πk)4|v̂ε(k)|2 ≤ ∥vε∥2
L2(T) + ∥∂2

x vε∥2
L2(T),
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we can estimate

∥vε∥2
L2(0,T ;H 2(T))

≲
� T

0
∥vε∥2

L2(T) + ∥∂2
x vε∥2

L2(T) dt

≲αl ,n

� T

0

∥∥u
αl +n+1

2
ε

∥∥2
L2(T) dt +

� T

0

�
T

uαl+n−1
ε (∂2

x uε)2 + uαl+n−3
ε (∂x uε)4 dx dt

= ∥uε∥αl+n+1

Lαl +n+1([0,T ]×T)
+
� T

0

�
T

uαl+n−1
ε (∂2

x uε)2 + uαl+n−3
ε (∂x uε)4 dx dt .

Hence, by invoking (4.2.62) and (4.2.63) we obtain

E
[
1A j ∥vε∥2

L2(0,T ;H 2(T))

]
≲αl ,n E

[
1A j ∥uε∥αl+n+1

Lαl +n+1([0,T ]×T)

]
+ E

[
1A j

� T

0

�
T

uαl+n−1
ε (∂2

x uε)2 + uαl+n−3
ε (∂x uε)4 dx dt

]
≲αl ,n,Λ,T ( j +1)αl+n+1.

Tightness of (1A j vε)ε∈(0,1) in Xpower follows by Chebychev’s inequality and the Banach–
Alaoglu theorem.

Since the sequence (4.3.2) lies tight on the space (4.3.1), we can extract an equidis-
tributed convergent subsequence.

Corollary 4.3.2. There exists a complete probability space (Ω̃,Ã, P̃) and an equidistributed
subsequence ((

(χ̃( j )
ε ) j∈N, (β̃(k)

ε )k∈Z, ũε, ũε, ũε,
(
ũ

αl +n+1
2

ε

)
l∈N

))
ε

(4.3.4)

of (4.3.2), consisting of B(X)-measurable, X-valued random variables as well as a B(X)-
measurable, X-valued random variable(

(χ̃( j )) j∈N, (β̃(k))k∈Z, ũ, ũ, ũ,
(
ũ

αl +n+1
2

)
l∈N

)
, (4.3.5)

defined on (Ω̃,Ã, P̃) such that(
(χ̃( j )

ε ) j∈N, (β̃(k)
ε )k∈Z, ũε, ũε, ũε,

(
ũ

αl +n+1
2

ε

)
l∈N

)
→

(
(χ̃( j )) j∈N, (β̃(k))k∈Z, ũ, ũ, ũ,

(
ũ

αl +n+1
2

)
l∈N

)
(4.3.6)

P̃-almost surely in X, as ε↘ 0.

Proof. The existence of an equidistributed subsequence follows from Lemma 4.3.1, if
we can verify the technical assumption of [88, Theorem 2], i.e. that X admits a count-
able family of continuous functions separating its points and A-measurability of these
functions, when composed with (4.3.2). To construct such a family of functions, sepa-
rating the points in X, we can project on a component of (4.3.1) and then apply func-
tions separating the points in this component, so that we can consider the spaces Xind,



4

154 4. EXISTENCE WITH NONLINEAR NOISE: THE GENERAL CASE

XBM, Xcont, XLebesgue, XSobolev and Xpower individually. For Xcont, we let ρ : R→ [−1,1]
be a continuous injection and take the functions Xcont → [−1,1],u 7→ ρ(〈u(t ), fk〉) for
t ∈ [0,T ]∩Q and k ∈Z, where we recall that fk was defined by (4.1.3). For XBM the same
construction applies and for Xind the function ρ itself separates the points. Since the
spaces XLebesgue, XSobolev and Xpower embed into L2([0,T ]×T) with its weak topology,
the family u 7→ ρ(〈u, f j (T −1·)⊗ fk〉), j ,k ∈Z separates the points in them.

To also check A-measurability of these functions composed with (4.3.2), we first ob-
serve that ρ(1A j ) and ρ(β(k)(t )) are random variables in R for every j ∈N and k ∈Z. For

the other cases, we note that uε is adapted in H 1(T) and hence uε(t , x) is A-measurable
for each (t , x) ∈ [0,T ]×T and thus also uε as a random variable in C ([0,T ]×T). In partic-
ular, the compositions

ρ(〈uε(t ), fk〉), ρ(〈uε, f j (T −1·)⊗ fk〉)

are A-measurable, too. Lastly, we use that

C ([0,T ]×T) →C ([0,T ]×T), u 7→ u
αl +n+1

2

is continuous, to conclude that

ρ
(〈

u
αl +n+1

2
ε , f j (T −1·)⊗ fk

〉)
is A-measurable.

Hence, [88, Theorem 2] is indeed applicable and there exists an equidistributed, con-
vergent subsequence (4.3.4) of (4.3.2), which converges almost surely to a random vari-
able (

(χ̃( j )) j∈N, (β̃(k))k∈Z, ũ, f̃ , g̃ , (ṽl )l∈N
)

in X. Since ũε converges almost surely to ũ, f̃ and g̃ in the space of distributions on

(0,T )×T, it holds ũ = f̃ = g̃ . Moreover, since ũε→ ũ in XLebesgue we have that ũ
αl +n+1

2
ε →

ũ
αl +n+1

2 in L2([0,T ]×T) by Vitali’s convergence theorem. With the help of ũ
αl +n+1

2
ε → ṽl in

Xpower, we conclude ṽl = ũ
αl +n+1

2 , which finishes the proof.

4.3.2. CONVERGENCE TO A SOLUTION AND A-PRIORI ESTIMATES

For the rest of this chapter, we consider the complete probability space (Ω̃,Ã, P̃) with
the random variables (4.3.4) and (4.3.5) obtained in Corollary 4.3.2. We introduce the
filtration F̃ on (Ω̃,Ã, P̃) as the augmentation of G̃, defined by

G̃t = σ
{
χ̃( j ), ũ(s), β̃(k)(s) | j ∈N, 0 ≤ s ≤ t , k ∈Z}

.

Here, we consider ũ(s) as a random element in H−1(T).

Lemma 4.3.3. The family (β̃(k))k∈Z is a family of independent F̃-Brownian motions.

Proof. The proof is standard and we refer to [51, Lemma 5.7].
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Lemma 4.3.4. The family (χ̃( j )) j∈N consists of indicator functions of a measurable parti-
tion (Ã j ) j∈N of Ω̃.

Proof. The family (χ̃( j )
ε ) j∈N ∼ (1A j ) j∈N converges to (χ̃ j ) j∈N almost surely and thus in law

by [42, Proposition 9.3.5]. Hence, the law of (χ̃ j ) j∈N coincides with the law of (1A j ) j∈N
and the claim follows.

Additionally to the convergences (4.3.6), we obtain also strong convergence for the
powers of ũε.

Lemma 4.3.5. For each l ∈N one has

ũ
αl +n+1

2
ε → ũ

αl +n+1
2 (4.3.7)

almost surely in L2(0,T ; H 1(T)), as ε↘ 0.

Proof. At the end of the proof of Corollary 4.3.2, we showed that ũ
αl +n+1

2
ε → ũ

αl +n+1
2 al-

most surely in L2([0,T ]×T). Hence, the claim follows by the weak convergence ũ
αl +n+1

2
ε →

ũ
αl +n+1

2 in Xpower and interpolation.

Lemma 4.3.6. For each ϕ ∈ C∞(T) and t ∈ [0,T ], the following holds almost surely as
ε↘ 0.

(i)
〈ũε(t ),ϕ〉 → 〈ũ(t ),ϕ〉,

(ii) � t

0
〈ũn−2

ε (∂x ũε)3,∂xϕ〉ds →
� t

0
〈ũn−2(∂x ũ)3,∂xϕ〉ds,

(iii) � t

0
〈ũn−1

ε (∂x ũε)2,∂2
xϕ〉ds →

� t

0
〈ũn−1(∂x ũ)2,∂xϕ〉ds,

(iv) � t

0
〈ũn

ε ∂x ũε,∂3
xϕ〉ds →

� t

0
〈ũn∂x ũ,∂3

xϕ〉ds,

(v)

∑
k∈Z

� t

0
〈σk,εq ′(ũε)∂x (σk,εq(ũε)),∂xϕ〉ds → ∑

k∈Z

� t

0
〈σk q ′(ũ)∂x (σk q(ũ)),∂xϕ〉ds,

(vi) ∑
k∈Z

� t

0
〈σk,εq(ũε),∂xϕ〉2 ds → ∑

k∈Z

� t

0
〈σk q(ũ),∂xϕ〉2 ds,
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(vii) � t

0
〈σk,εq(ũε),∂xϕ〉ds →

� t

0
〈σk q(ũ),∂xϕ〉ds, k ∈Z .

Proof. We fix ω̃ ∈ Ω̃ such that (4.3.6) holds in X and (4.3.7) holds in L2(0,T ; H 1(T)) for
each l ∈ N. The convergence (i) follows from ũε → ũ in Xcont. For (ii)–(v), we con-
sider an arbitrary subsequence so that it suffices to show that for another subsequence

the respective convergence holds. Because ũε → ũ in XLebesgue and ũ
αl +n+1

2
ε → ũ

αl +n+1
2

in L2(0,T ; H 1(T)), we can choose this subsequence such that ũε → ũ and ∂x ũ
αl +n+1

2
ε →

∂x ũ
αl +n+1

2 almost everywhere on [0,T ]×T and therefore ∂x ũε→ ∂x ũ on the set {ũ > 0}.
We verify (ii) by showing separately that

� t

0

�
{ũ=0}

ũn−2
ε (∂x ũε)3∂xϕdx ds → 0, (4.3.8)

� t

0

�
{ũ>0}

ũn−2
ε (∂x ũε)3∂xϕdx ds →

� t

0

�
{ũ>0}

ũn−2(∂x ũ)3∂xϕdx ds. (4.3.9)

Using Consequence 4.2.1 (i) together with ũε → ũ in XLebesgue and XSobolev, (4.3.8) fol-
lows by Hölder’s inequality and (4.3.9) by Vitali’s convergence theorem. The claims (iii)
and (iv) can be shown analogously.

For (v) we rewrite

∑
k∈Z

� t

0
〈σk,εq ′(ũε)∂x (σk,εq(ũε)),∂xϕ〉ds

= ∑
k∈Z

� t

0
〈σ2

k,ε(q ′(ũε))2∂x ũε,∂xϕ〉 + 〈σk,ε∂xσk,εq(ũε)q ′(ũε),∂xϕ〉ds

and observe that for the individual summands

n2

4

� t

0
〈σ2

k,εũn−2
ε ∂x ũε,∂xϕ〉ds → n2

4

� t

0
〈σ2

k ũn−2∂x ũ,∂xϕ〉ds,

n
2

� t

0
〈σk,ε∂xσk,εũn−1

ε ,∂xϕ〉ds → n
2

� t

0
〈σk∂xσk ũn−1,∂xϕ〉ds,

as ε↘ 0, since ũε → ũ in XLebesgue, XSobolev and σk,ε → σk in C 1(T) for fixed k ∈ Z by
(4.1.2), (4.2.3) and (4.2.4). Hence, by the dominated convergence theorem, it suffices to
find a summable, dominating sequence of(� t

0
|〈σ2

k,εũn−2
ε ∂x ũε,∂xϕ〉| + |〈σk,ε∂xσk,εũn−1

ε ,∂xϕ〉|ds

)
k∈Z

independent of ε to conclude (v). To this end, we estimate using Hölder’s inequality

� t

0
|〈σ2

k,εũn−2
ε ∂x ũε,∂xϕ〉| + |〈σk,ε∂xσk,εũn−1

ε ,∂xϕ〉|ds
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≤ ∥∂xϕ∥L∞(T)

� t

0
∥σk,ε∥2

L∞(T)∥ũε∥n−2
L2(n−2)(T)

∥∂x ũε∥L2(T) ds

+ ∥∂xϕ∥L∞(T)

� t

0
∥σk,ε∥L∞(T)∥∂xσk,ε∥L∞(T)∥ũε∥n−1

Ln−1(T) ds

≤ ∥∂xϕ∥L∞(T)
(∥ũε∥n−2

L2(n−2)([0,T ]×T)
∥∂x ũε∥L2([0,T ]×T) + ∥ũε∥n−1

Ln−1([0,T ]×T)

)∥σk∥2
C 1(T).

The prefactor on the right-hand side is uniformly bounded in ε, since ũε→ ũ inXLebesgue,
XSobolev and the sequence (∥σk∥2

C 1(T)
)k∈Z is summable by (4.2.12), which finishes the

proof of (v). For (vi), we proceed analogously and observe first that for each summand∣∣∣∣� t

0
〈σk,εq(ũε),∂xϕ〉2 −〈σk q(ũ),∂xϕ〉2 ds

∣∣∣∣
≤
� t

0

∣∣〈σk,εq(ũε),∂xϕ〉−〈σk q(ũ),∂xϕ〉
∣∣ ∣∣〈σk,εq(ũε),∂xϕ〉+〈σk q(ũ),∂xϕ〉

∣∣ds

≤ ∥∂xϕ∥2
L2(T)

� t

0
∥σk,εq(ũε)−σk q(ũ)∥L2(T)∥σk,εq(ũε)+σk q(ũ)∥L2(T) ds

≤ ∥∂xϕ∥2
L2(T)∥σk,εq(ũε)−σk q(ũ)∥L2([0,T ]×T)∥σk,εq(ũε)+σk q(ũ)∥L2([0,T ]×T),

which tends to 0 as ε↘ 0, since ũε→ ũ in XLebesgue and σk,ε→σk in C (T). We use again
the dominated convergence theorem together with

� t

0
〈σk,εq(ũε),∂xϕ〉2 ds ≤

� t

0
∥σk,ε∥2

L∞(T)∥ũε∥n
Ln (T)∥∂xϕ∥2

L2(T) ds

≤ ∥∂xϕ∥2
L2(T)∥ũε∥n

Ln ([0,T ]×T)∥σk∥2
C (T),

the convergence ũε→ ũ in XLebesgue and (4.2.12) to conclude (vi). The convergence (vii)
follows from ũε→ ũ in XLebesgue and σk,ε→σk in C (T).

Lemma 4.3.7. For every ϕ ∈C∞(T), j ∈N and t ∈ [0,T ] we have that

1Ã j

[〈ũ(t ),ϕ〉 − 〈ũ(0),ϕ〉] = 1Ã j

[
n(n−1)

2

� t

0
〈ũn−2(∂x ũ)3,∂xϕ〉ds

+ 3n
2

� t

0
〈ũn−1(∂x ũ)2,∂2

xϕ〉ds +
� t

0
〈ũn∂x ũ,∂3

xϕ〉ds

− 1
2

∑
k∈Z

� t

0
〈σk q ′(ũ)∂x (σk q(ũ)),∂xϕ〉ds

− ∑
k∈Z

� t

0
〈σk q(ũ),∂xϕ〉dβ̃(k)

s

]
.

(4.3.10)

Proof. Throughout this proof, we fix j ∈N and ϕ ∈C∞(T) and define the process

M̃(t ) = 1Ã j

[
〈ũ(t ),ϕ〉 − 〈ũ(0),ϕ〉 − n(n−1)

2

� t

0
〈ũn−2(∂x ũ)3,∂xϕ〉ds

− 3n
2

� t

0
〈ũn−1(∂x ũ)2,∂2

xϕ〉ds −
� t

0
〈ũn∂x ũ,∂3

xϕ〉ds



4

158 4. EXISTENCE WITH NONLINEAR NOISE: THE GENERAL CASE

+ 1
2

∑
k∈Z

� t

0
〈σk q ′(ũ)∂x (σk q(ũ)),∂xϕ〉ds

]
and the approximating processes

M̃ε(t ) = χ̃
( j )
ε

[
〈ũε(t ),ϕ〉 − 〈ũε(0),ϕ〉 − n(n−1)

2

� t

0
〈ũn−2

ε (∂x ũε)3,∂xϕ〉ds

− 3n
2

� t

0
〈ũn−1

ε (∂x ũε)2,∂2
xϕ〉ds −

� t

0
〈ũn

ε ∂x ũε,∂3
xϕ〉ds

+ 1
2

∑
k∈Z

� t

0
〈σk,εq ′(ũε)∂x (σk,εq(ũε)),∂xϕ〉ds

]
.

(4.3.11)

As a consequence of Lemma 4.3.6 we have indeed M̃ε(t ) → M̃(t ) as ε↘ 0. Now let

φ :
∞∏

j=1
R×C ([0, s]; H−1(T))× ∏

k∈Z
C ([0, s]) → R (4.3.12)

be continuous and bounded and define

ρ̃ = φ
(
(χ̃( j )) j∈N, ũ, (β̃(k))k∈Z

)
,

ρ̃ε = φ
(
(χ̃( j )

ε ) j∈N, ũε, (β̃(k)
ε )k∈Z

)
,

so that ρ̃ε→ ρ̃ as ε↘ 0 by (4.3.6). Defining Mε on the original probability space (Ω,A,P)
as the right-hand side of (4.3.11) with ũε replaced by uε, we find that

Mε(t ) = −1A j

� t

0
〈Φεdβs ,∂xϕ〉,

because of Consequence 4.2.1 (vi) and (4.2.41), where Φε and β are defined as in the
proof of Lemma 4.2.7. The quadratic variation process of Mε is given by

1A j

∑
k∈Z

� t

0
〈σk,εq(uε),∂xϕ〉2 ds ≤ 1A j

∑
k∈Z

� t

0
∥σk,ε∥2

L∞(T)∥uε∥n
Ln (T)∥∂xϕ∥2

L2(T) ds

≲Λ 1A j ∥∂xϕ∥2
L2(T)∥uε∥n

Ln ([0,T ]×T), (4.3.13)

where we used (4.2.12) in the second inequality, which is integrable by Consequence

4.2.1 (v) and thus Mε is a square integrable martingale. Since (M̃ε, (χ̃( j )
ε ) j∈N, ũε, (β̃(k)

ε )k∈Z)
has the same distribution as (Mε, (1A j ) j∈N,uε, (β(k))k∈Z) by Corollary 4.3.2, we obtain that

Ẽ
[
(M̃ε(t )− M̃ε(s))ρ̃ε

] = 0,

Ẽ

[(
M̃ 2
ε (t )− M̃ 2

ε (s)− χ̃( j )
ε

∑
k∈Z

� t

s
〈σk,εq(ũε),∂xϕ〉2 dτ

)
ρ̃ε

]
= 0,

Ẽ

[(
M̃ε(t )β̃(k)

ε (t )− M̃ε(s)β̃(k)
ε (s)− χ̃( j )

ε

� t

s
〈σk,εq(ũε),∂xϕ〉dτ

)
ρ̃ε

]
= 0.

(4.3.14)
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Next, we note that by (4.3.13) and the Burkholder–Davis–Gundy inequality

Ẽ
[

sup
0≤t≤T

|M̃ε(t )|ρ
]
= E

[
sup

0≤t≤T
|Mε(t )|ρ

]
≲ρ,Λ ∥∂xϕ∥ρL2(T)

E
[

1A j ∥uε∥
ρn
2

Ln ([0,T ]×T)

]
,

(4.3.15)

which is uniformly in ε bounded by (4.2.63) for ρ ∈ (2, 14
n ). Using (4.3.13) and (4.2.63)

again, we also obtain that

Ẽ

[(
χ̃

( j )
ε

∑
k∈Z

� T

0
〈σk,εq(ũε),∂xϕ〉2 dt

) ρ
2
]

(4.3.16)

and more simply

Ẽ

[(
χ̃

( j )
ε

� T

0
|〈σk,εq(ũε),∂xϕ〉|dt

)ρ]
≤ (∥σk,ε∥L∞(T)∥∂xϕ∥L∞(T)

)ρ
E
[

1A j ∥uε∥
ρn
2

L
n
2 ([0,T ]×T)

] (4.3.17)

are uniformly in ε bounded for these values of ρ. Since also

Ẽ
[

sup
0≤t≤T

|β̃(k)
ε (t )|υ

]
= E

[
sup

0≤t≤T
|β(0)(t )|υ

]
< ∞ (4.3.18)

for all ε and υ ∈ (1,∞), we can use uniform integrability of the random variables in
(4.3.14) and the almost sure convergences M̃ε(t ) → M̃(t ), ρ̃ε → ρ̃, Lemma 4.3.6 (vi) and

(vii), β̃(k)
ε → β̃(k) in XBM as well as χ̃( j )

ε → 1Ã j
in Xind as ε↘ 0, to conclude

Ẽ
[
(M̃(t )− M̃(s))ρ̃

] = 0,

Ẽ

[(
M̃ 2(t )− M̃ 2(s)−1Ã j

∑
k∈Z

� t

s
〈σk q(ũ),∂xϕ〉2 dτ

)
ρ̃

]
= 0,

Ẽ

[(
M̃(t )β̃(k)(t )− M̃(s)β̃(k)(s)−1Ã j

� t

s
〈σk q(ũ),∂xϕ〉dτ

)
ρ̃

]
= 0.

(4.3.19)

An application of the monotone class theorem [22, Theorem 2.12.9] yields that (4.3.19)
holds for any ρ̃, which is bounded and measurable with respect to the σ-field generated
by random variables of the form

φ
(
(χ̃( j )) j∈N, ũ, (β̃(k))k∈Z

)
withφ as in (4.3.12) continuous and bounded. Arguing as in Remark 2.5.11 from Chapter
2 one finds that this σ-field coincides with G̃s . Another application of Vitali’s conver-
gence theorem, using continuity in time of the random variables in (4.3.19) and the mo-
ment estimates (4.3.15)–(4.3.18) once more yields that (4.3.19) holds also for bounded,
F̃s -measurable ρ̃. Consequently, an application of [82, Proposition A.1] leads to (4.3.10).
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Before completing the proof of Theorem 4.1.6, we deduce versions of the a-priori
estimates, which we derived for uε, also for ũ.

Lemma 4.3.8. We assume that p ∈ (n + 4,7), r ∈ ( n+4
2 , 7

2 ), γ ∈ (0, 1
2 ), µ ∈ ( n+4

n+2 , 7
n+2 ), ν ∈

(1, 7
n+4 ) and α ∈ (−1,2−n).

(i) The estimates (4.1.8) and (4.1.9) hold, whenever their right-hand side is finite.

(ii) The estimate (4.1.10) holds with pµ,ν = max{µ(n+2),ν(n+4)}, if the right-hand side
is finite.

(iii) We have almost surely ũ
α+n+1

4 ∈ L4(0,T ;W 1,4(T)), ũ
α+n+1

2 ∈ L2(0,T ; H 2(T)) and it
holds (4.1.11), whenever its right-hand side is finite.

Proof. For (i), we only verify (4.1.9), because (4.1.8) can be derived analogously. Since
almost surely ũε→ ũ in XSobolev, we conclude

Ẽ
[∥∂x ũ∥r

Lr ([0,T ]×T)

]
≤ Ẽ

[
liminf
ε↘0

∥∂x ũε∥r
Lr ([0,T ]×T)

]
≤ liminf

ε↘0
Ẽ
[∥∂x ũε∥r

Lr ([0,T ]×T)

]
= liminf

ε↘0
E
[
E
[∥∂x uε∥r

Lr ([0,T ]×T)

∣∣F0
]]

≲n,r,Λ,T liminf
ε↘0

E
[
(∥u0∥M (T) +ε)4−r (∥u0∥2r−n−4

M (T) +∥u0∥2r−4
M (T) +ε2r−n−4)]

= E
[∥u0∥r−n

M (T) +∥u0∥r
M (T)

]
,

using Fatou’s lemma and Lemma 4.2.4.
For (ii), we use Lemma 4.2.8 to conclude

Ẽ
[∥∥χ̃ε( j )ũε

∥∥ν
W γ, 2ν

2−ν (0,T ;W −3,µ(T))

]
= E

[
1A j E

[
∥uε∥ν

W γ, 2ν
2−ν (0,T ;W −3,µ(T))

∣∣∣F0

]]
≲γ,n,µ,ν,Λ,T E

[
1A j

((∥u0∥M (T) +ε
)(n−1− n2

pµ,ν
)ν + (∥u0∥M (T) +ε

)(n+1)ν
)]

,

(4.3.20)

yielding a uniform bound on χ̃ε
( j )ũε in Lν(Ω̃;W γ, 2ν

2−ν (0,T ;W −3,µ(T))). Hence, up to tak-
ing another subsequence, we can assume that χ̃ε

( j )ũε admits a weak limit in the space

Lν(Ω;W γ, 2ν
2−ν (0,T ;W −3,µ(T))). Since almost surely χ̃ε

( j ) → 1Ã j
in Xind and ũε → ũ in

Xpower, we also have χ̃ε
( j )ũε → 1Ã j

ũ in Lp ([0,T ]×T). Hence, using Vitali’s convergence

theorem and (4.2.63), we deduce that

E
[∥∥χ̃ε( j )ũε−1Ã j

ũ
∥∥p

Lp ([0,T ]×T)

] → 0,

and therefore the weak limit of χ̃ε
( j )ũε has to be 1Ã j

ũ. By lower semicontinuity of the

norm with respect to weak convergence, Fatou’s lemma and (4.3.20), we conclude that

Ẽ
[

1Ã j
∥ũ∥ν

W γ, 2ν
2−ν (0,T ;W −3,µ(T))

]



4.3. LIMITING PROCEDURE

4

161

≤ liminf
ε↘0

Ẽ
[∥∥χ̃ε( j )ũε

∥∥ν
W γ, 2ν

2−ν (0,T ;W −3,µ(T))

]
≲γ,n,µ,ν,Λ,T liminf

ε↘0
E
[

1A j

((∥u0∥M (T) +ε
)(n−1− n2

pµ,ν
)ν + (∥u0∥M (T) +ε

)(n+1)ν
)]

= E
[

1A j

(
∥u0∥

(n−1− n2
pµ,ν

)ν

M (T) + ∥u0∥(n+1)ν
M (T)

)]
.

It remains to sum over j ∈N to obtain (4.1.10). Analogously, (iii) follows from Proposition
4.2.2.

Proof of Theorem 4.1.6. We first show that (Ω̃,Ã, P̃), F̃, (β̃(k))k∈Z and ũ indeed constitute
a very weak martingale solution to (4.1.5) in the sense of Definition 4.1.4. To this end,
we observe that almost surely ũε(t ) ≥ 0 for all t ∈ [0,T ] since it is equidistributed to uε.
Consequently, its limit ũ in Xcont satisfies almost surely ũ(t ) ≥ 0 as well and in particular
ũ(t ) is a non-negative measure on T for all t ∈ [0,T ] by [98, Theorem 6.22]. Moreover,
since ũ(t ) is F̃t -B(H−1(T))-measurable by the definition of F̃, the real valued random
variables 〈ũ(t ),ϕ〉 for ϕ ∈ C∞(T) are F̃t -measurable. By approximation, the same holds
when ϕ ∈ C (T), so that ũ is F̃-adapted with values in (M (T),Z ). Moreover, by the di-
vergence form of (4.3.10), the total variation norm ∥ũ(t )∥M (T) = 〈ũ(t ),1T〉 is constant in
time. Using this, we show vague continuity of ũ in M (T) and assume for contradiction
that ũ is not continuous at some time t . Then, there is a vaguely open neighborhood
O ⊂ M (T) of ũ(t ) and a sequence tn → t with ũ(tn) ∉ O for all n ∈ N. However, since
ũ is bounded in M (T), a subsequence of ũ(tn) converges vaguely to some ν ∈ M (T) by
the Banach–Alaoglu theorem and since ũ ∈ Xcont it must hold ν = ũ(t ), contradicting
ũ(tn) ∉ O . As demonstrated in Remark 4.1.7, the integrability conditions (4.1.6) follow
from ũ lying in XLebesgue and XSobolev. Lemma 4.3.3 states that (β̃(k))k∈Z is a family of

independent F̃-Brownian motions. Since Lemma 4.3.4 and Lemma 4.3.7 imply that ũ
satisfies (4.1.7), we showed that the quadruple (Ω̃,Ã, P̃), F̃, (β̃(k))k∈Z, ũ suffices Defini-
tion 4.1.4.

To verify that ũ(0) ∼ u0, we observe that the sets of the form

{
ν ∈M (T)

∣∣ (〈ν,ϕ1〉, . . . ,〈ν,ϕl 〉) ∈ A
}

forϕ1, . . . ,ϕl ∈C∞(T) and Borel sets A ⊂Rl form an intersection stable generator of Z by
density of C∞(T) in C (T). Since ũε(0) ∼ u0,ε as H−1(T)-valued random variables, almost
surely u0,ε→ u0 vaguely and ũε(0) → ũ(0) in H−1(T) as ε↘ 0, it holds

(〈u0,ϕ1〉, . . . ,〈u0,ϕl 〉) ∼ (〈ũ(0),ϕ1〉, . . . ,〈ũ(0),ϕl 〉),

yielding that the laws of u0 and ũ(0) on (M (T),Z ) coincide. Due to Corollary 4.3.2, we
have ũ ∈Xcont∩XLebesgue∩XSobolev. Together with Lemma 4.3.8 (i), (ii) this leads to (ii)
and (iii). The claim in (i) was already checked at the beginning of this proof. Part (iv) is
the content of Lemma 4.3.8 (iii).



4

162 4. EXISTENCE WITH NONLINEAR NOISE: THE GENERAL CASE

APPENDIX TO CHAPTER 4

4.A. PROJECTIVE LIMITS OF LOCALLY CONVEX VECTOR SPACES
We give a short summary of useful facts on topological vector spaces following [118, Sec-
tion II.4, Section II.5]. In the following, we consider vector spaces over R equipped with
a topology. Such a tuple is a topological vector space, if addition and scalar multiplica-
tion are continuous mappings. A Hausdorff topological vector space X is called locally
convex, if every neighborhood of a point x ∈ X contains a convex neighborhood of x.
Since balls are convex, every normed vector space is locally convex. Moreover, if X is a
normed vector space, and we denote its topological dual by X ∗, the weak topology on
X admits the collection of sets{

y ∈X
∣∣ |〈y −x, x∗

i 〉| < δ, i ∈ {1, . . . , j }
}

(4.A.1)

for x∗
i ∈ X ∗, δ > 0 as a neighborhood basis at x ∈ X . Since the set (4.A.1) is convex, X

with its weak topology is locally convex as well. Now, let X l for l ∈ N be a Hausdorff,
locally convex space, such that X l+1 ,→ X l continuously. Then the projective limit of
(X l )l∈N is the space X = ⋂

l∈NX l equipped with the coarsest topology, such that each
of the embeddings X ,→X l is continuous, and is itself a Hausdorff, locally convex topo-
logical vector space again.

Lemma 4.A.1. Let K be a subset of the projective limit X of a sequence of Hausdorff,
locally convex spaces (X l )l∈N. Then K is compact in the topology of X , iff K =⋂

l∈NKl for
compact subsets Kl of X l .

Proof. If K is compact with the topology of X , it is also compact with the topology of
X l since the embedding X ,→ X l is continuous. The claim follows since K = ⋂

l∈NK ,
trivially. For the reverse implication, we note that X is homeomorphic to the subset

D =
{

(xl )l∈N ∈ ∏
l∈N

X l

∣∣∣∣∀i , j : xi = x j

}
of the topological product space

∏
l∈NX l by [118, p.52]. Denoting the homeomorphism

by f : D → X , we notice that K = f (D ∩∏
l∈NKl ). Because

∏
l∈NKl is compact by Ty-

chonoff’s theorem, it suffices to show that D ⊂ ∏
l∈NX l is closed, since then K is com-

pact as it is the image of a compact set under a continuous mapping. To do so, let
(xl )l∈N ∈∏

l∈NX l not in D , i.e. we assume that there are indices i < j with xi ̸= x j . Since
X j ⊂ X i and X i is Hausdorff, there exist disjoint open neighborhoods Bi ,B j ⊂ X i of
xi and x j , respectively. By the continuity of the embedding X j ,→ X i , B j is also open
in X j . Hence, denoting by pi , p j the continuous projection from

∏
l∈NX l onto the i -th

and j -th component, we have constructed the open neighborhood p−1
i (Bi )∩p−1

j (B j ) of

(xl )l∈N which is disjoint from D . Hence, D is closed and the proof is finished.

4.B. TIGHTNESS CRITERIA
Let (Ω,A,P) be a probability space. We recall that a family (Yi )i∈I of mappings defined
onΩwith values in a topological space X is called tight, if for every δ there is a compact
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set Kδ ⊂X such that

P({Yi ∉ Kδ}) < δ

for all i ∈ I . For this definition to make sense, we only require {Yi ∉ Kδ} ∈ A for the
compact sets Kδ, which is in line with the setting in [88]. This is the case when (Yi )i∈I

is a family of random variables and X is Hausdorff, since then the compact sets Kδ are
closed and in particular Borel measurable.

Lemma 4.B.1. Let X be the projective limit of a sequence of Hausdorff, locally convex
spaces (X l )l∈N and Yi : Ω→X for i ∈I a random variable in each of the spaces X l . The
family (Yi )i∈I is tight on X iff it is tight on X l for each l ∈N.

Proof. If (Yi )i∈I is tight on X it is also tight on X l by continuity of the embedding X ,→
X l . Conversely, if (Yi )i∈I is tight on X l for each l ∈N, we can for δ> 0 choose compact
subsets Kδ,l ⊂X l such that

P({Yi ∉ Kδ,l }) < δ
2l

for all i ∈ I . The set Kδ = ⋂
l∈NKδ,l is compact with the topology of X by Lemma 4.A.1

and since

P({Yi ∉ Kδ}) ≤ ∑
l∈N

P({Yi ∉ Kδ,l }) < δ,

the family (Yi )i∈I is tight on X .

Using the same argument, one can also reduce tightness in a countable product of
topological spaces to tightness in each of the separate spaces.

Lemma 4.B.2. Let X (l ) be a topological space and (Y (l )
i )i∈I be a family of X (l )-valued

mappings defined onΩ for each l ∈N. If (Y (l )
i )i∈I is tight on X (l ) for each l ∈N, then also

the family ((Y (l )
i )l∈N)i∈I lies tight on the topological product

∏
l∈NX (l ).

Proof. For δ> 0, l ∈N there are compact sets Kδ,l ⊂X (l ) such that

P({Y (l )
i ∉ Kδ,l }) < δ

2l

for all i ∈I . The set Kδ =
∏

l∈NKδ,l is compact by Tychonoff’s theorem and

P({(Y (l )
i )l∈N ∉ Kδ}) ≤ ∑

l∈N
P({Y (l )

i ∉ Kδ,l }) < δ

yields the claim.

Lastly, we also show that it suffices to show tightness locally onΩ.

Lemma 4.B.3. Let X be a Hausdorff topological vector space, (Yi )i∈I a family of X -
valued random variables and (A j ) j∈N a measurable partition ofΩ. If (1A j Yi )i∈I lies tight
on X for every j ∈N, then (Yi )i∈I lies also tight on X .
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Proof. For a given δ> 0 we choose J0 ∈N such that

∞∑
j=J0+1

P
(

A j
) < δ

2 .

Since (1A j Yi )i∈I lies tight on X for every j ∈ {1, . . . , J0}, there exist compact sets K ( j )
δ

⊂X

such that
P
({

1A j Yi ∉ K ( j )
δ

}) < δ
2J0

for all i ∈I . Then, defining the compact set

Kδ =
J0⋃

j=1
K ( j )
δ

∪ {0},

we can calculate that

P ({Yi ∉ Kδ}) = P

( ⋃
j∈N

{
1A j Yi ∉ Kδ

}) ≤ ∑
j∈N

P
({

1A j Yi ∉ Kδ

})
≤

J0∑
j=1
P
({

1A j Yi ∉ K ( j )
δ

}) + ∞∑
j=J0+1

P(A j ) < δ

for every i ∈I .



5
WELL-POSEDNESS WITH AN

INTERFACE POTENTIAL†

In this chapter, we prove existence and uniqueness of probabilistically strong solutions
to (STFE) in the situation that u0 is positive and bounded away from 0 until some stop-
ping time σ> 0. This holds for any mobility exponent n and spatial dimension d ≥ 1 as
long as the initial value and the noise are sufficiently regular in space. Moreover, in the
one-dimensional case and for n ∈ [0,6) we show that the solution persists in the trace
space and remains strictly positive if the effects of repulsive intermolecular forces are
included in (STFE), so that the unique solution exits globally in time. In contrast to the
previous chapters, the results of this chapter apply to the Itô and Stratonovich interpre-
tation of the equation.

5.1. INTRODUCTION TO CHAPTER 5
More generally, we consider fourth-order quasilinear stochastic PDEs of the form{

du + div(m(u)∇∆u)dt = div(Φ(u)∇u)dt + ∑
k∈Ndiv(g (u)ψk )dβ(k),

u(0) = u0,
(5.1.1)

on the d-dimensional torus Td . Throughout this chapter, we assume that

m : (0,∞) → (0,∞) and g ,Φ : (0,∞) →R are smooth functions,

and we only specify them for positive values of u, since we are interested in the situation
in which (5.1.1) preserves positivity, and the initial value u0 is a strictly positive function.
Moreover, (ψk )k∈N is a family of vector fieldsψk : Td →Rd and (β(k))k∈N a corresponding

†This chapter is based on the preprint [3]: A. Agresti, and M. Sauerbrey. "Well-posedness of the
stochastic thin-film equation with an interface potential". In: arXiv preprint arXiv:2403.12652
(2024).
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family of independent standard Brownian motions. We remark that the stochastic PDE
(5.1.1) is understood in the Itô sense.

The class of equations of the form (5.1.1) contains, in particular, the stochastic thin-
film equation with an interface potential

∂t u = −div(m(u)∇(∆u −φ′(u))) + div(m1/2(u)W ) (5.1.2)

as discussed in Subsection 1.4.2, which results from setting g (u) = m1/2(u) as well as
Φ(u) = m(u)φ′′(u) in (5.1.1) and defining the sequences (ψk )k∈N and (β(k))k∈N in a way
such that the time derivative of

∑
k∈Nψkβ

(k) is the temporally white Gaussian noise W .
Then (5.1.1) becomes indeed the Itô interpretation of (5.1.2), but we stress that under
reasonable symmetry conditions on the noise W also the Stratonovich interpretation of
(5.1.2) can be cast into the form (5.1.1) by adjusting the coefficient Φ, see [107, Remark
2.1], [75, Appendix A] and the comments below (5.1.30).

The main results of this chapter can be summarized as follows:

• Local well-posedness and blow-up criteria for (5.1.1) in any space dimension—
Theorem 5.1.6 and Proposition 5.1.8.

• Global well-posedness for (5.1.2) with a repulsive potential in one dimension—
Theorems 5.1.12 and 5.1.13 (Itô & Stratonovich noise).

Let us stress that, since the derivations of the stochastic thin-film equation in [37] and
[78], the results of the current chapter are the first ones on the well-posedness of (5.1.2).
Indeed, only existence and no uniqueness results for solutions to (5.1.2) are available at
the moment. In particular, at least if the interface potential is sufficiently singular near 0
as in [51] we can prove the uniqueness of global solutions, as conjectured in [51, Section
6] for (5.1.2) with m(u) = u2. Interestingly, our results cover the typical example

φ(u) = u−8 −u−2 +1, (5.1.3)

corresponding to conjoining and disjoining van der Waals forces modeled by the 6-12
Lennard–Jones potential, even in presence of a non-quadratic mobility, cf., Assumption
5.1.9. Of course, the main obstacle in obtaining well-posedness for the stochastic thin-
film equation is the degeneracy of the leading order operator. However, in the presence
of a repulsive potential, the solutions are strictly positive for all times and therefore the
thin-film operator remains parabolic a posteriori. As a consequence, pathwise unique-
ness is amenable to be proven.

Further novelties of our approach are:

• Global well-posedness for various mobility functions—see Assumption 5.1.9.

• Reduced regularity of the initial data—Theorem 5.1.6 and Remark 5.1.2.

• Instantaneous high-order regularization—Proposition 5.1.7.

The global well-posedness results of Theorems 5.1.12 and 5.1.13 hold for a wide range
of mobility functions including power laws of the form m(u) = un with n ∈ [0,6), but also
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m(u) = u3+λ3−nun for some λ> 0. While the former is often assumed in the mathemat-
ical literature on (5.1.2) it usually serves as a simplification of the latter mobility function
obtained from the lubrication approximation, see Subsection 1.1.1. Moreover, the liter-
ature on martingale solutions to the stochastic thin-film equation, including Chapters
2–4, imposes more restrictive assumptions on the exponent n.

Since our global well-posedness result relies on the positivity preserving mechanism
of the effective interface potential φ, it comes at the expense of excluding the interesting
case in which a contact line, i.e., a triple junction of liquid-solid and gas, is present. Nev-
ertheless, if one is interested in the situation of a non-fully supported fluid film, Theo-
rems 5.1.12 and 5.1.13 can be useful to construct solutions by takingφ↘ 0, as performed
successfully in [75] for m(u) = u2. This limit is of particular interest for future research
since positive approximations of the thin-film equation are often compatible with for-
mal a-priori estimates of the equation. Additionally, the uniqueness part of Theorems
5.1.12 and 5.1.13 has also numerical implications—for example in the case m(u) = u2

in which a subsequence of a finite difference discretization of (5.1.2) was shown to con-
verge in law to a solution in [51, Theorem 3.2]. Indeed, the pathwise uniqueness implies
by the Gyöngy–Krylov lemma [25, Theorem 2.10.3] that the finite difference scheme con-
verges in probability to the unique solution to (5.1.2) on the original probability space,
at least for a subsequence. Since this solution is unique, the convergence holds also for
the full sequence of approximations.

Concerning the regularity of the initial data u0, in all dimensions, we can allow u0 ∈
H 1/2+ε,q (Td ) with ε> 0 arbitrary and q ≥ 2 large, and thus below the energy level H 1(Td ).
Moreover, in the case d = 1, we can choose u0 ∈ H 1/2+ε(T) for ε > 0. Proposition 5.1.7
shows that the regularity of the initial data only affects the regularity of u at times t ∼
0, while for t > 0 the solutions become smooth. More precisely, if (ψ)k∈N are regular
enough, then u becomes smooth in space regardless the regularity of u0:

u ∈Cθ,∞
loc ((0,σ)×Td ) a.s. where σ is the explosion time of u. (5.1.4)

Let us remark that σ =∞ a.s. if d = 1 and φ is sufficiently singular, cf., Theorems 5.1.12
and 5.1.13.

The proof of these results relies on the following three advances. Firstly, we show
stochastic maximal regularity estimates for thin film-type operators with strictly positive
coefficients which depend only measurably on time. The latter is central in the deriva-
tion of suitable blow-up criteria for the quasilinear stochastic PDE (5.1.1). Secondly, we
adapt the theory [5, 6] on quasilinear stochastic evolution equations to stochastic PDEs
which are a-priori only degenerate parabolic. Thirdly, we estimate the energy production
of (5.1.2) by theα-entropy dissipation for differentα leading to new a-priori estimates for
the stochastic thin-film equation with an interface potential. In particular, this allows us
to deduce that the equation remains a.s. parabolic, a-posteriori.

The rest of this section is organized as follows. In Subsection 5.1.1 we discuss the
local well-posedness of (5.1.1) in all dimensions d ≥ 1, while in Subsection 5.1.2 we state
the global well-posedness result for (5.1.2) in d = 1. Finally, we review the unexplained
notation in Subsection 5.1.3.
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5.1.1. LOCAL WELL-POSEDNESS, REGULARITY, BLOW-UP CRITERIA IN ANY

DIMENSION
For the local well-posedness of (5.1.1), we use the well-posedness theory for quasilinear
stochastic evolution equations developed by Agresti and Veraar in [5, 6]. To consider
(5.1.1) as a quasilinear stochastic evolution equation we introduce the operators

A[u]( f ) = div(m(u)∇∆ f ), F (u) = div(Φ(u)∇u), Gk (u) = div(g (u)ψk ), (5.1.5)

where the latter gives rise to the operator on ℓ2(N) defined by G[u](ek ) = Gk (u) for the
k-th unit vector ek ∈ ℓ2(N). If we introduce the cylindrical Brownian motion

W (t ) = ∑
k∈N

ekβ
(k)
t

on ℓ2(N), (5.1.1) takes the form of a quasilinear stochastic evolution equation [5, Eq.
(1.1)]:

du + A[u](u)dt = F (u)dt + G[u]dW, u(0) = u0. (5.1.6)

We let the solution u lie for almost all times in the Bessel potential space H s+2,q (Td )
while the deterministic and stochastic nonlinearities take values in the spaces H s−2,q (Td )
and H s,q (Td ;ℓ2(N)), respectively. The trajectory of the solution u is continuous in the

trace space B
s+2−4 1+κ

p
q,p (Td ) depending on the temporal integrability of u, which is de-

scribed by the parameters p and κ. More precisely, we require u itself and the nonlinear-
ities in (5.1.6) to be p-integrable in time with respect to the power weight wκ(t ) = |t |κ. By
the trace theory of anisotropic spaces, see e.g. [2] or [114, Section 3.4], this determines
the above trace space as the optimal space for the initial value u0. The use of temporal
weights plays a central role in the proof of high-order regularity and of blow-up criteria,
see Propositions 5.1.7 and 5.1.8 below.

In what follows, we employ the following condition on the parameters (p,κ, s, q).

Assumption 5.1.1 (Admissible parameters). The parameters s ∈ (−1
2 ,∞), p, q ∈ [2,∞) and

κ ∈ [0,∞) satisfy the following conditions:

p ∈ (2,∞), κ ∈ [
0, p

2 −1
)

or q = p = 2, κ= 0, (5.1.7)

s + 2 − 4 1+κ
p − d

q > 0, (5.1.8)

s + 2 − 4 1+κ
p > 1− s. (5.1.9)

We also say that (p,κ, s, q) are admissible parameters if they satisfy Assumption 5.1.1.

The restriction of the smoothness parameter s > −1
2 is made explicit in Assumption

5.1.1 because it is anyways implied by (5.1.9). We impose the condition q ∈ [2,∞) to
make sure that the spaces H s±2,q (Td ) are UMD-Banach spaces of type 2, see [84, Ex.
3.6.13, Prop. 4.2.15, Prop. 4.2.17 (1)]. Together with p ∈ [2,∞) and (5.1.7) this ensures
that [5, Assumption 3.1] is satisfied. Condition (5.1.8) on the other hand implies that

the trace space B
s+2−4 1+κ

p
q,p (Td ) embeds into a space of Hölder continuous functions by
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Sobolev embeddings. Therefore, we can control the oscillations of the coefficient m(u)
and the operator A[u] behaves locally like the Bi-Laplacian, which is a key ingredient in
proving stochastic maximal regularity of A[u] required to apply [5, 6]. On the other hand,
condition (5.1.9) is imposed to give sense to the product

m(u)∇∆ f (5.1.10)

in the definition of A[u] using Sobolev pointwise multipliers. Indeed, for u in the trace

space B
s+2−4 1+κ

p
q,p (Td ) we expect smoothness s + 2 − 4 1+κ

p from m(u) and s −1 from ∇∆ f

where f ∈ H s+2,q (Td ). If s −1 ≥ 0, there is no problem in giving sense to the pointwise
multiplication (5.1.10) and the condition (5.1.9) is implied by (5.1.8). However if s −1 <
0, the function ∇∆ f becomes a distribution and m(u) must admit smoothness 1− s to
define the product (5.1.10), which is expressed in (5.1.9).

Remark 5.1.2. We investigate which choices of parameters are compatible with Assump-
tion 5.1.1. Firstly, we observe that for any s ∈ (−1

2 ,∞) choosing p, q ∈ [2,∞) large and κ=
0 guarantees that (5.1.7), (5.1.8) and (5.1.9) are satisfied. Therefore, for each s ∈ (−1

2 ,∞)
there is a feasible choice of parameters (p,κ, q) subject to Assumption 5.1.1. Secondly,
we analyze how low we can choose the smoothness s +2−4 1+κ

p of the trace space, deter-
mining the roughness of initial values we can allow for (5.1.6). Condition (5.1.7) implies
that

s + 2 − 4 1+κ
p ≥ s,

which together with (5.1.9) yields

s + 2 − 4 1+κ
p > 1

2 .

We convince ourselves that it is possible to choose admissible parameters (p,κ, s, q) such
that s + 2− 4 1+κ

p becomes arbitrarily close to 1
2 . If d = 1, we can choose simply p = q = 2,

κ = 0 for any s > 1
2 , resulting in the trace space B s

2,2(T) = H s (T). If however d ≥ 2, we

choose q > d
s for s > 1

2 , p ∈ (2,∞) and κ close to p
2 −1. Then the smoothness of the trace

space is close to s which can be chosen arbitrarily close to 1
2 .

We can now define local solutions to (5.1.1). Recall that we are interested in the situa-
tion where the solution remains positive for all times due to the possible loss of parabol-
icity of A[u] for non-positive u.

Definition 5.1.3 (Local solution). Let (p,κ, s, q) be admissible parameters as in Assump-
tion 5.1.1. Let σ : Ω → [0,∞] be a stopping time and u : J0,σM → H s+2,q (Td ) be a pro-
gressively measurable process. Then the tuple (u,σ) is called a positive local (p,κ, s, q)-
solution to (5.1.1), if there exists a sequence of stopping times (σl )l∈N such that 0 ≤σl ↗σ

and a.s. for all l ∈Nwe have

u ∈ Lp (0,σl , wκ; H s+2,q (Td )) ∩ C ([0,σl ];B
s+2−4 1+κ

p
q,p (Td )), (5.1.11)

F (u) ∈ Lp (0,σl , wκ; H s−2,q (Td )), G[u] ∈ Lp (0,σl , wκ; H s,q (Td ;ℓ2(N))), (5.1.12)

inf
[0,σl ]×Td

u > 0 (local positivity), (5.1.13)
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and a.s. for all t ∈ [0,σl ]:

u(t ) − u(0) +
� t

0
A[u(r )](u(r ))dr =

� t

0
F (u(r ))dr +

� t

0
G[u(r )]dWr . (5.1.14)

Here, the term local refers to the fact that the requirements (5.1.11)–(5.1.13) are de-
manded only away from the stopping time σ. Note that, due to the latter conditions and
Lp (wκ) ,→ L2 for κ < p

2 −1, the deterministic and the stochastic integrals in (5.1.14) are
well-defined as H s−2,q - and H s,q -valued Bochner and Itô integral, respectively (see, e.g.,
[109, Theorem 4.7 and Proposition 5.3] for Itô integration in type 2 spaces). We some-
times refer to a sequence (σl )l∈N of stopping times as in Definition 5.1.3 as localizing
sequence for (u,σ). Finally, we define positive maximal unique (p,κ, s, q)-solutions.

Definition 5.1.4 (Maximal unique positive solution). A positive local (p,κ, s, q)-solution
(u,σ) to (5.1.1) is called positive maximal unique (p,κ, s, q)-solution, if for every positive
local (p,κ, s, q)-solution (v,τ) to (5.1.1), one has τ≤σ a.s. and u = v a.s. on [0,τ).

It remains to specify the regularity of the noise coefficients needed for the local well-
posedness of (5.1.1). In what follows, we use the parameters sψ > −1/2 and qψ ∈ [2,∞)
to capture the smoothness of the noise.

Assumption 5.1.5(sψ, qψ) (Noise regularity—Local well-posedness). For sψ ∈R and qψ ∈
[2,∞), we have ∥∥∥∥( ∑

k∈N

∣∣(1−∆)(1+sψ)/2ψk
∣∣2

)1/2∥∥∥∥
Lqψ (Td )

< ∞. (5.1.15)

The above condition expresses that (ψk )k∈N ∈ H 1+sψ,qψ (Td ;ℓ2(N;Rd )) and holds in
particular if (ψk )k∈N ∈ ℓ2(N; H 1+sψ,qψ (Td ;Rd )), see [85, Theorem 9.2.10] and (5.2.4) be-
low. For the local well-posedness of (5.1.1) formulated below, we only need Assumption
5.1.5(sψ, qψ) for some sψ >−1/2 and qψ large depending on d , see the discussion in Re-
mark 5.1.2. In particular, this includes less regular noise than assumed in the literature
on (global in time) martingale solutions to (5.1.2). Indeed, the most general condition
treated so far, Assumption 4.1.2 from Chapter 4, implies that Assumption 5.1.5(sψ, qψ)
holds for sψ = 0 and any qψ <∞. A more restrictive condition on (ψk )k∈N for the global
well-posedness of (5.1.2) with d = 1 is given below in Assumption 5.1.11.

We are ready to state our first result on local well-posedness of (5.1.1) in all dimen-
sions d ≥ 1.

Theorem 5.1.6 (Local well-posedness). Let Assumptions 5.1.1 and 5.1.5(sψ, qψ) be satis-
fied with (sψ, qψ) = (s, q), and

u0 ∈ L0
F0

(Ω;B
s+2−4 1+κ

p
q,p (Td )) satisfies inf

Td
u0 > 0 a.s.

Then there exists a positive maximal unique (p,κ, s, q)-solution (u,σ) to (5.1.1) as defined
in Definitions 5.1.3 and 5.1.4 such that a.s. σ> 0 and

u ∈ Hθ,p
loc ([0,σ), wκ; H s+2−4θ,q (Td ))∩C ((0,σ);B

s+2− 4
p

q,p (Td ))

for all θ ∈ [0, 1
2 ), if p > 2.
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Next, we discuss how the regularity of the noise coefficients affects the regularity of
solutions. Let us stress that the following result is independent of the regularity of the
initial data u0.

Proposition 5.1.7 (Instantaneous regularization). Let the assumptions of Theorem 5.1.6
be satisfied, and (u,σ) be the corresponding positive maximal unique (p,κ, s, q)-solution
to (5.1.1). Assume that Assumption 5.1.5(sψ, qψ) holds for some sψ ≥ s and all qψ ∈ [2,∞).
Then

u ∈ Hθ,r
loc (0,σ; H 2+sψ−4θ,ζ(Td )) a.s. for all θ ∈ [0, 1

2 ), r,ζ ∈ (2,∞).

In particular u ∈ Cθ1,θ2
loc ((0,σ)×Td ) a.s. for all θ1 ∈ [0, 1

2 ) and θ2 ∈ (0,2+ sψ).

The above shows that, if Assumption 5.1.5(sψ, qψ) is satisfied for all sψ > 0 and qψ ∈
[2,∞), then the solution (u,σ) provided by Theorem 5.1.6 is smooth in space as claimed
in (5.1.4). Moreover, the above regularization result for sψ = 1 will play an important role
in the study of global well-posedness as it allows us to justify the integrations by parts
when working on intervals (t0,T ) with t0 > 0 even if u0 ̸∈ H 1(Td ).

Now, we turn to the question of how to determine whetherσ=∞ a.s. or not. Usually,
one needs to obtain a-priori estimates for solutions to the corresponding stochastic PDE
in a sufficiently regular norm. In practice, the smoothness needed in the blow-up criteria
reflects the one used for the initial data in local well-posedness results. In particular, the
lower the regularity allowed from the initial data, the better the corresponding blow-up
criteria. Since we allow for a leading order operator which degenerates near 0, we also
need to assume a positivity condition in the following blow-up criterion.

Proposition 5.1.8 (Blow-up criteria). Let the assumptions of Theorem 5.1.6 be satisfied,
and let (u,σ) be the corresponding positive maximal unique (p,κ, s, q)-solution to (5.1.1).
Assume that Assumption 5.1.5(sψ, qψ) holds for some sψ ≥ s and all qψ ∈ [2,∞). Moreover,
let (p0,κ0, s0, q0) be admissible exponents (cf., the comments below Assumption 5.1.1) sat-
isfying s0 ≤ sψ and set γ0 := s0 +2−4 1+κ0

p0
. Then, for all 0 < ε< T <∞,

P
(
ε<σ< T , sup

t∈[ε,σ∧T )
∥u(t )∥B

γ0
q0,p0

(Td ) <∞ , inf
[ε,σ∧T )×Td

u > 0
)
= 0.

The norm in the above blow-up criterion is well-defined even if s0 ≫ s by Proposition
5.1.7. Moreover, due to (5.1.8) in the admissibility condition, Bγ0

q0,p0
,→ Cα0 for some

α0 > 0. Finally, if d = 1 and Assumption 5.1.5(sψ, qψ) holds with sψ = 1 and for all qψ <∞,
then one can choose p0 = q0 = 2, κ0 = 0 and s0 = 1 corresponding to the usual energy
space for the thin-film equation.

The key point in the above result is the independence of the blow-up criteria on the
original set (p,κ, s, q) of admissible parameters. Such independence is essentially a con-
sequence of the instantaneous regularization of solutions as given in Proposition 5.1.7.
Indeed, at any time t > ε, the regularity of u|[ε,σ) does not depend on the original admis-
sible parameters, and thus one can restart (5.1.1) with any new set of admissible param-
eters (p0,κ0, s0, q0) as long they are compatible with the noise, i.e., s0 ≤ sψ (see the proof
of [7, Theorem 2.10]).
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5.1.2. GLOBAL WELL-POSEDNESS IN ONE DIMENSION
We turn our attention to the global in time well-posedness of the stochastic thin-film
equation (5.1.2) which is of the form (5.1.1) with g (u) = m1/2(u). This stochastic PDE
admits several dissipated quantities, see Subsection 1.3.2. This allow us in one dimen-
sion to extend the local well-posedness and regularization results globally in time by
means of the blow-up criteria of Proposition 5.1.8. In particular, as in many works on
the stochastic thin-film equation, our analysis is centered around the energy functional

E (u) =
�
T

[
1
2 |ux |2 + φ(u)

]
dx (5.1.16)

of the solution u to (5.1.2). The key point is that the functional E estimates at the same
time the norm ∥u∥2

H 1(T)
by virtue of mass conservation and the smallness of u due to the

singularity ofφwhich we demand in Assumption 5.1.10 to obtain global well-posedness,
see (5.1.22) and Subsection 1.4.2.

In general, it is challenging to close an a-priori estimate on (5.1.16), especially in the
nonlinear noise case, where m(u) is not proportional to u2 and therefore g (u) = m1/2(u)
is nonlinear. In [35] and Chapter 3 this is achieved for the Stratonovich interpretation
of (5.1.2) with φ= 0 by controlling the smallness of the solution leading to a film height
which is positive a.e. for all times. In [51] however, a repulsive interface potential φ was
used instead of the Stratonovich correction to close an a-priori estimate on (5.1.16) to-
gether with the entropy functional

H0(u) =
�
T

h0(u)dx, h0(r ) =
� r

1

� r ′

1

1

m(r ′′)
dr ′′ dr ′

in the linear noise case m(u) = u2. We extrapolate this approach using so-called α-
entropy functionals

Hβ(u) =
�
T

hβ(u)dx, hβ(r ) =
� r

1

� r ′

1

(r ′′)β

m(r ′′)
dr ′′ dr ′ (5.1.17)

for β ∈ (−1/2,1) originally defined in [11] for β=α+n−1. Notably, while a key ingredient
in [51] is the spatial discretization of (5.1.2) developed in [79, 127], which is compatible
with the entropy estimate, an α-entropy consistent discretization of (5.1.2) is to the au-
thors’ knowledge not available and may depend on the specific choice of α. Thus, work-
ing directly with the maximal local solutions provided by Theorem 5.1.6 enables us to use
a wider class of a-priori estimates and to cover many different cases of m. Specifically,
we impose the following assumptions on the smooth function m : (0,∞) → (0,∞).

Assumption 5.1.9 (Mobility coefficient). There exist n ∈R and ν ∈ [0,6) such that, for all
r ∈ (0,∞),

lim
r↘0

m(r )/r n ∈ (0,∞), (5.1.18)

limsup
r→∞

m(r )/r ν < ∞, liminf
r→∞ m(r ) > 0, (5.1.19)

|m′(r )| ≲ m(r )/r, |m′′(r )| ≲ m(r )/r 2. (5.1.20)
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In this case, we call n and ν the exponent of degeneracy and growth exponent of m, re-
spectively.

We remark that the exponent of degeneracy is uniquely determined by m, but if ν is
a growth exponent any other ν̃ ∈ (ν,6) is a growth exponent of m as well. While (5.1.18)
expresses that m(r ) behaves like the power r n near 0, the condition (5.1.19) bounds the
growth of m and assumes non-degeneracy near ∞. The technical condition (5.1.20) as-
sumes that m behaves under differentiation like a power-law.

One can readily check that the following examples of mobility coefficients satisfy As-
sumption 5.1.9.

(i) (Power laws) m(r ) = r n for n ∈ [0,6).

(ii) (Mixed powers) m(r ) = c1r n1 + . . . + c J r n J , c j ∈ (0,∞), n j ∈ (−∞,6) provided that
max

j∈{1,...,J }
n j ≥ 0.

(iii) (Nonlinear Interpolation) Let m and m̃ be two mobility functions satisfying As-
sumption 5.1.9 with respective exponents of degeneracy n, ñ and growth expo-
nents ν, ν̃. Then, for all δ> 0

mδ(r ) = m(r )m̃(r )

δm(r )+m̃(r )

suffices Assumption 5.1.9 with exponent of degeneracy max{n, ñ} and growth ex-
ponent min{ν, ν̃}.

As mentioned before, when deriving the stochastic thin-film equation using a lubrica-
tion approximation, one obtains the mobility function m(u) = u3+λ3−nun with n ∈ [1,3]
and λ≥ 0 depending on the boundary condition of the fluid velocity near the substrate.
Since the physically relevant regime is u ≪ 1 this is usually approximated by un in the
mathematical literature which is covered by (i), but we can also cover the former mobility
function with (ii). The class (iii) is of mathematical interest since these nonlinear inter-
polations of two mobility functions can be used to construct solutions to the (stochastic)
thin-film equation as a limit of strictly positive solutions to regularized equations, see
[15, Section 6] and Chapter 3. We impose a corresponding assumption on the effective
interface potential given by a smooth function φ : (0,∞) → (0,∞).

Assumption 5.1.10 (Interface potential). Let n be the exponent of degeneracy of the mo-
bility function m as in Assumption 5.1.9. There exists ϑ > max{2,6−2n} and c0 ∈ (0,∞)
such that, for all r ∈ (0,∞),

r−ϑ ≲ φ(r ) and r−ϑ−2 − c0 ≲ φ′′(r ) ≲ r−ϑ−2. (5.1.21)

The above assumption includes effective interface potentials of the formφ(u) = u−ϑ−
u−2 + cϑ with ϑ > max{2,6−2n} as long as cϑ is large enough to ensure that φ(r ) > 0 for
all r > 0. For ϑ = 8, this becomes (5.1.3) corresponding to the 6-12 Lennard–Jones pair
potential for the van der Waals forces between the fluid and solid molecules. For n ≥ 2
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Assumption 5.1.10 reduces precisely to the assumption on the interface potential im-
posed in [51, Hypothesis (H2)]. In particular, the continuous version

sup
x∈T

u(2−ϑ)/2(x) ≲ E (u) +
(�
T

u dx

)(2−ϑ)/2

(5.1.22)

of [51, Lemma 4.1] implies that a profile u is strictly positive, if its energy (5.1.16) is finite.
Moreover, for n < 2 the coefficient m1/2(u) is not differentiable at 0 anymore leading to
increased production of energy by the noise for small film heights. Thus an improved
control of the smallness of u is required which is reflected by the additional condition
ϑ> 6−2n. Finally, we state the main assumption on the noise which allows us to obtain
global well-posedness of the stochastic thin-film equation in dimension one.

Assumption 5.1.11 (Noise regularity—Global well-posedness). We assume that (ψk )k∈N
satisfies ∑

k∈N
∥ψk∥2

W 2,∞(Td ;Rd )
< ∞.

Note that the above implies that Assumption 5.1.5(sψ, qψ) holds with sψ = 1 and for
all qψ <∞. We are ready to state our result on global well-posedness in one spatial di-
mension.

Theorem 5.1.12 (Global well-posedness in one dimension—Itô). Fix d = 1 as well as
s ∈ (1/2,1]. Suppose that Assumptions 5.1.9–5.1.11 are satisfied and

u0 ∈ L0
F0

(Ω; H s (T)) satisfies inf
T

u0 > 0 a.s. (5.1.23)

Then there exists a unique progressively measurable process u : J0,∞M → H s+2(T), such
that, a.s.,

inf
[0,t )×T

u > 0 for all t <∞, (5.1.24)

u ∈ L2
loc([0,∞); H s+2(T)) ∩ C ([0,∞); H s (T)), (5.1.25)

and, a.s. for all t > 0 and ϕ ∈C∞(T),

�
T

(u(t )−u0)ϕdx =
� t

0

〈
ϕx m(u), (uxx −φ′(u))x

〉
H 1−s (T)×H s−1(T) dr (5.1.26)

− ∑
k∈N

� t

0

�
T

ϕx m1/2(u)ψk dx dβ(k).

Finally, the solution u instantaneously regularizes in time and space:

u ∈ Hθ,r
loc (0,∞; H 3−4θ,ζ(T)) for all θ ∈ [0, 1

2 ), r,ζ ∈ (2,∞), (5.1.27)

u ∈Cθ1,θ2
loc ((0,∞)×T) for all θ1 ∈ [0, 1

2 ), θ2 ∈ (0,3). (5.1.28)

By Proposition 5.1.7, in case of more regular noise, the assertions (5.1.27)–(5.1.28) can
be improved. It follows from the instantaneous regularization result of (5.1.27)–(5.1.28)
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that, in the PDE formulation of the stochastic thin-film equation (5.1.26), we can replace
the term 〈ϕx m(u), (uxx −φ′(u))x〉H 1−s (T)×H s−1(T) by

�
T

ϕx m(u)(uxx −φ′(u))x dx (5.1.29)

for the solution u, recovering the usual weak formulation.

Next, we turn our attention to the stochastic thin-film equation with noise in the
Stratonovich form in one dimension:

du = −(m(u)(uxx −φ′(u))x )x dt + ∑
k∈N

(m1/2(u)ψk )x ◦dβ(k), u(0) = u0. (5.1.30)

Note that, as d = 1, the Stratonovich correction takes the form

1
4

∑
k∈N

(m′(u)m−1/2(u)ψk (m1/2(u)ψk )x )x

= 1
8

∑
k∈N

((m′(u))2m−1(u)uxψ
2
k )x + 1

4

∑
k∈N

(m′(u)ψkψ
′
k )x .

Whenever
∑

k∈Nψ2
k sums up to a constant C independent of x the above simplifies to

C
8 ((m′(u))2m−1(u)ux )x ,

which can be included in the second order term of (5.1.1) if one modifiesΦ appropriately.
Therefore, the local well-posedness result Theorem 5.1.6 holds also for the Stratonovich
interpretation of (5.1.2) in this case. Since the aforementioned a-priori estimates on the
α-entropy (5.1.17) and the energy (5.1.16) can be carried out analogously as for the Itô
interpretation of (5.1.2), we obtain also the following result.

Theorem 5.1.13 (Global well-posedness in one dimension—Stratonovich). Fix d = 1 as
well as s ∈ (1/2,1]. Let u0 be as in (5.1.23). Suppose that Assumptions 5.1.9–5.1.11 are
satisfied, and that there exists C > 0 such that∑

k∈N
ψ2

k (x) ≡C for all x ∈T. (5.1.31)

Then there exists a unique progressively measurable process u : J0,∞M→ H s+2(T) satisfy-
ing (5.1.24), (5.1.25) and, for all t > 0 and ϕ ∈C∞(T),

�
T

(u(t )−u0)ϕdx =
� t

0

〈
ϕx m(u), (uxx −φ′(u))x

〉
H 1−s (T)×H s−1(T) dr (5.1.32)

− C
8

� t

0

�
T

ϕx (m′(u))2m−1(u)ux dx dr

− ∑
k∈N

� t

0

�
T

ϕx m1/2(u)ψk dx dβ(k).

Moreover, the solution u enjoys the additional regularity (5.1.27) and (5.1.28).
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The assumption (5.1.31) is for instance satisfied by the noise specified in [75, (H3)].
As for the Itô formulation of the stochastic thin-film equation, we can replace the inte-
grand of the deterministic integral on the right-hand side of (5.1.32) by (5.1.29) for the
solution u.

We moreover remark that in the case of Stratonovich noise additional cancellations
occur, which allow for closing the (α-) entropy estimate and subsequently the energy
estimate for (5.1.2) even if no interface potential is present, as carried out in [35] and
Chapter 3. Moreover, the α-entropy function hβ(r ) behaves like rβ−n+2 near 0 and the
latter can become as singular as the interface potential φ(r ) for mobility functions with
an exponent of degeneracy n > 7/2. Therefore, we expect preservation of positivity in the
spirit of [11, Theorem 4.1 (iii)] and consequently also global well-posedness of (5.1.30)
without the interface potential for sufficiently degenerating mobility functions. How-
ever, this lies beyond the scope of this chapter.

Lastly, we remark that global well-posedness in the physical dimension d = 2 seems
out of reach using our approach. The main obstacle is that the blow-up criteria in Propo-
sition 5.1.8 require an a-priori estimate at least in Cα for some α > 0. However, the en-
ergy functional only provides an estimate in H 1(Td ), and the latter embeds in a space of
Hölder continuous functions precisely if d = 1.

5.1.3. NOTATION FOR CHAPTER 5

We write Td for the flat d-dimensional torus Rd /Zd . The usual Sobolev space on an
open subset O of Rd orTd is denoted by W s,q (O ) for an integer smoothness index s ∈N0.
For the definition of the Besov spaces B s

q,p (Rd ) and Bessel-potential spaces H s,q (Rd )

the reader is referred to [115, Section 2.1.2] and for the periodic spaces B s
q,p (Td ) and

H s,q (Td ) to [119, Section 3.5.4]. The Besov and Bessel-potential space on an open subset
O of Rd or Td is defined as the set of restrictions of functions from the Besov and Bessel-
potential space on the whole space and equipped with the induced quotient norm. The
corresponding spaces of vector fields W s,q (O ;Rd ), B s

q,p (O ;Rd ) and H s,q (O ;Rd ) are de-
fined as the d-fold direct sum of these spaces. In any of these situations the symbol H s

stands for H s,2.

We write Lp (S,µ;X ) for the Bochner space of strongly measurable, p-integrable X -
valued functions for a measure space (S,µ) and a Banach space X as defined in [84,
Section 1.2b]. If X = R, we write Lp (S,µ) and if it is clear which measure we refer to we
also leave out µ. Moreover, if S is countable and equipped with the counting measure we
write ℓp (S) instead of Lp (S). If on the other hand I is an open interval and w a density,
we write Lp (I , w ;X ) for Lp (I , w dt ;X ). In particular, we are interested in power weights
of the form w s

κ(t ) = |t − s|κ. The corresponding fractional Sobolev space with weight w s
κ

as defined in [5, Definition 2.2] is denoted by Hθ,p (I , w s
κ;X ) and Hθ,p

loc (I , w s
κ;X ) as the

intersection of Hθ,p (J , w s
κ;X ) for all intervals J , which are compactly contained in I .

Whenever we write ’a,b’ instead of an interval in the above spaces we mean the open
interval I = (a,b), e.g., Hθ,p (a,b, w s

κ;X ) stands for Hθ,p ((a,b), w s
κ;X ).

If (S,d) is a metric space we write C (S;X ) for the continuous function and Cθ(S;X )
for the subset of θ-Hölder continuous functions for θ ∈ (0,∞) \N, where we leave X out
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again if X =R. If I is an open interval, we define the anisotropic Hölder space

Cθ1,θ2 (I ×Td ) = Cθ1 (I ;C (Td ))∩C (I ;Cθ2 (Td ))

for θi ∈ (0,∞) \N, i ∈ {1,2} and accordingly Cρ1−,ρ2−
loc (I ×Td ) as the intersection of the

spaces Cθ1,θ2 (J ×Td ) for all θi ∈ (0,ρi )\N and intervals J which are compactly contained
in I .

To ease the notation of these spaces we introduce for a given quadruple (p,κ, s, q) the
notation X0 = H s−2,q (Td ) and X1 = H s+2,q (Td ). Following [5, 6], we write

Xθ := [X0, X1]θ, X Tr
κ,p := (X0, X1)1− 1+κ

p ,p , X Tr
p := X Tr

0,p

for θ ∈ (0,1) and p,κ as in (5.1.7) for the complex and real interpolation spaces of X0 and
X1, see [103, Chapter 1 and Chapter 2] for a definition. In particular, it holds

Xθ = H s+2−4θ,q (Td ), X Tr
κ,p = B

s+2−4 1+κ
p

q,p (Td ) (5.1.33)

by [119, Section 3.6.1] meaning that the Banach spaces coincide as sets and carry equiv-
alent norms.

We also fix throughout the chapter a filtered probability space (Ω,A,F ,P) carrying a
family of independent F -Brownian motions (β(k))k∈N. We write E for the expectation on
(Ω,A,P) and P for the progressive σ-field. For a Banach space X we denote the sub-
spaces of Ft and progressively measurable random variables in Lp (Ω;X ) by Lp

Ft
(Ω;X )

and Lp
P

(Ω;X ), respectively. If additionally Y is another Banach space and H is a Hilbert
space, we write L (X ,Y ) for the space of bounded linear operators and γ(H ,X ) for the
space of γ-radonifying operators, see [85, Chapter 9]. The latter plays a central role in the
definition of the X -valued stochastic integral [109]. For a stopping time τ : Ω→ [s,T ],
we define

Js,τM := {
(ω, t ) ∈Ω× [s,T ]

∣∣ t < τ(ω)
}
.

Let (Xt )t∈[s,T ] be a family of Banach spaces such that Xt consists of functions from [s,T ]
to another Banach space X such that f |[s,t ] ∈ Xt for each f ∈ XT and ∥ f |[s,t ]∥Xt

is in-
creasing in t . Then we define Lp

P
(Ω;Xτ) as the restrictions of processes from Lp

P
(Ω;XT )

to Js,τM and equip it with the norm

∥u|Js,τM∥Lp (Ω;Xτ) := E
[∥u|[s,τ]∥p

Xτ

] 1
p ,

which is well-defined by [5, Lemma 2.15]. In the situation that Xt = Lp ((s, t ), w s
κ;X ), we

write Lp
P

((s,τ)×Ω, w s
κ;X ) for Lp

P
(Ω;Xτ).

For two quantities x and y , we write x ≲ y , if there exists a universal constant C such
that x ≤C y . If a constant depends on parameters (p1, . . . ) we either mention it explicitly
or indicate this by writing C(p1,... ) and correspondingly x ≲(p1,... ) y whenever x ≤C(p1,... ) y .
Finally, we write x ≂(p1,... ) y , whenever x ≲(p1,... ) y and y ≲(p1,... ) x.
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5.2. LOCAL WELL-POSEDNESS OF THIN-FILM TYPE EQUATIONS

IN ANY DIMENSION
The purpose of this section is to show local well-posedness, blow-up criteria and instan-
taneous regularization for (5.1.1) as stated in Subsection 5.1.1. To this end, we fix in this
subsection the smooth coefficients m : (0,∞) → (0,∞) and g ,Φ : (0,∞) → R and do not
indicate if an implicit constant depends on them. Our strategy is to use the general the-
ory for quasilinear parabolic stochastic evolution equations developed in [5, 6] and apply
the results [5, Theorem 4.7] and [6, Theorem 4.9, Theorem 6.3] to (5.1.1). However, since
we allow for a degeneracy of the operator A[u] when u approaches 0, we need to con-
sider regularized versions of (5.1.1) instead. Specifically, we fix a smooth and increasing
function η : R→ R with η(r ) = 1 for r ≥ 2 and η(r ) = 0 for r ≤ 1 and define η j (r ) = η( j r )
for j ∈N. Setting

m j (r ) = η j (r )m(r ) + (1−η j (r )), Φ j (r ) = η j (r )Φ(r ), g j (r ) = η j (r )g (r ), (5.2.1)

gives rise to smooth functions m j ,Φ j , g j : R→R. The new coefficient m j is positive and
bounded away from 0 and consequently the leading order operator of{

du + div(m j (u)∇∆u)dt = div(Φ j (u)∇u)dt + ∑
k∈Ndiv(g j (u)ψk )dβ(k),

u(0) = u0,
(5.2.2)

is non-degenerate, so that the theory for parabolic stochastic evolution equations devel-
oped in [5, 6] becomes applicable. Analogously to (5.1.5), we define

A( j )[u]( f ) = div(m j (u)∇∆ f ), F ( j )(u) = div(Φ j (u)∇u), G ( j )
k (u) = div(g j (u)ψk )

and G ( j )[u](ek ) =G ( j )
k (u), so that (5.2.2) takes the form

du + A( j )[u](u)dt = F ( j )(u)dt + G ( j )[u]dW, u(0) = u0, (5.2.3)

of [5, Eq. (1.1)].

The rest of this section is organized as follows. In Subsection 5.2.1 we check the lo-
cal Lipschitz conditions on the coefficients A( j ), F ( j ) and G ( j ) from [5, Hypothesis (H’)].
Subsection 5.2.2 is devoted to proving the stochastic maximal regularity of the linear
problem

du + div(a∇∆u)dt = f dt + g dW, u(0) = u0,

with a positive and bounded coefficient a : [0,∞)×Ω→ B
s+2−4 1+κ

p
q,p (Td ), which allows us

to prove local well-posedness and the blow-up criteria for (5.2.2) in Subsection 5.2.3. In
Subsection 5.2.4 we show instantaneous regularization of solutions to (5.2.2) for suffi-
ciently smooth noise. Finally, in Subsection 5.2.5 we transfer these statements to the
original equation (5.1.1) and prove Theorem 5.1.6 and Propositions 5.1.7–5.1.8.

Before proceeding, we point out that Assumption 5.1.5(sψ, qψ) is equivalent to de-
manding that the operator Ψ : ℓ2(N) → H 1+sψ,qψ (Td ;Rd ) defined by Ψ(ek ) = ψk is γ-
radonifying, see [85, Chapter 9]. More generally, by the γ-Fubini theorem [85, Theorem
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9.4.8] and the fact that (1−∆)r /2 : H s+r,q (Td ) → H s,q (Td ) is an isomorphism, it follows
that

γ(ℓ2(N), H s,q (Td )) = H s,q (Td ;ℓ2(N)) with equivalent norms. (5.2.4)

In the above γ(ℓ2(N), H s,q (Td )) denotes the set of γ-radonifying operators from ℓ2(N) to
H s,q (Td ), cf., [85, Definition 9.1.4]. The identification (5.2.4) in particular implies

∥Ψ∥γ(ℓ2(N),H 1+sψ ,qψ (Td ;Rd )) ≂∥ψ∥H 1+sψ ,qψ (Td ;ℓ2(N;Rd ))

≂
∥∥∥∥( ∑

k∈N

∣∣(1−∆)(1+sψ)/2ψk
∣∣2

)1/2∥∥∥∥
Lqψ (Td )

.

Below, we will frequently use the equivalence (5.2.4) without further mentioning it. For
more information on the role of γ-radonifying operators in the context of the Lp -theory
of stochastic evolution equations, the reader is referred to [4–6, 28, 102, 108, 109, 113]
and the references therein.

Additionally, we recall the shorthand notation

Xθ = H s+2−4θ,q (Td ), X Tr
κ,p = B

s+2−4 1+κ
p

q,p (Td )

for function spaces, cf., (5.1.33).

5.2.1. LOCAL LIPSCHITZIANITY OF THE REGULARIZED COEFFICIENTS
As laid out earlier, this subsection is devoted to showing local Lipschitz and growth esti-
mates of the coefficients of (5.2.3). The main ingredients are composition and product
estimates in Bessel-potential estimates which result from a frequency decomposition of
the involved functions, see [124, Chapter 2] or [115, Chapter 4 and 5] for an introduction.
To this end, we fix a quadruple (p,κ, s, q) and a sequence (ψk )k∈N subject to Assumptions
5.1.1 and 5.1.5(sψ, qψ) with (sψ, qψ) = (s, q) for the remainder of this subsection and allow
for all constants to depend on this particular choice.

Lemma 5.2.1. For all j ,n ∈N there exist constants C j ,n ,L j ,n ∈ (0,∞) such that

∥A( j )[u]∥L (X1,X0) ≤ C j ,n
(
1+∥u∥X Tr

κ,p

)
, (5.2.5)

∥A( j )[u]− A( j )[v]∥L (X1,X0) ≤ L j ,n∥u − v∥X Tr
κ,p

(5.2.6)

for all u, v ∈ X Tr
κ,p with ∥u∥X Tr

κ,p
,∥v∥X Tr

κ,p
≤ n.

Proof. We first verify the local Lipschitz condition (5.2.6) and observe that

∥(A( j )[u]− A( j )[v]) f ∥X0 ≲ ∥(m j (u)−m j (v))∇∆ f ∥H s−1,q (Td ;Rd ). (5.2.7)

We distinguish several cases and start with s −1 = 0. Due to Hölder’s inequality we
can bound (5.2.7) further by

∥m j (u)−m j (v)∥L∞(Td )∥∇∆ f ∥Lq (Td ;Rd ) ≲ ∥m j (u)−m j (v)∥L∞(Td )∥ f ∥H s+2,q (Td )
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and it remains to use that X Tr
κ,p ,→ L∞(Td ) by (5.1.8) together with local Lipschitz conti-

nuity of m j to deduce (5.2.6).
Next, we assume that s−1 > 0, in which case we employ the paraproduct estimate [8,

Proposition 4.1 (1)] to bound (5.2.7) by

∥m j (u)−m j (v)∥L∞(Td )∥∇∆ f ∥H s−1,q (Td ;Rd )

+ ∥m j (u)−m j (v)∥H s−1,l (Td )∥∇∆ f ∥Lr (Td ;Rd )

(5.2.8)

for l ∈ (1,∞), r ∈ (1,∞] subject to
1
q = 1

l + 1
r . (5.2.9)

We claim that we can choose l ,r such that additionally X Tr
κ,p ,→ H s−1,l (Td ) and the em-

bedding H s−1,q (Td ) ,→ Lr (Td ) holds. Indeed, if s −1− d
q > 0, the choice l = q , r =∞ is

feasible. Otherwise, if s −1− d
q ≤ 0, we can choose r such that

s −1− d
q > −d

r > s −1− d
q −ε

for ε> 0. Then, by (5.2.9)

d
l > s −1−ε ⇐⇒ s −1− d

l < ε
and by (5.1.8) we can choose ε smaller than

s + 2 − 4 1+κ
p − d

q (5.2.10)

resulting in the embedding X Tr
κ,p ,→ H s−1,l (Td ). Thus, we can estimate (5.2.8) by(∥m j (u)−m j (v)∥L∞(Td ) + ∥m j (u)−m j (v)∥H s−1,l (Td )

)∥∇∆ f ∥H s−1,q (Td ;Rd )

≲ ∥m j (u)−m j (v)∥L∞(Td )∩H s−1,l (Td )∥ f ∥H s+2,q (Td ).

The desired estimate (5.2.6) follows by local Lipschitz continuity of u 7→ m j (u) in the
space L∞(Td )∩ H s−1,l (Td ), see [115, Theorem 1, p.373], together with the embedding
X Tr
κ,p ,→ L∞(Td )∩H s−1,l (Td ).

Lastly, we consider the case s − 1 < 0, in which also the condition (5.1.9) becomes
relevant. Then, an application of [8, Proposition 4.1 (3)] yields the bound

∥m j (u)−m j (v)∥L∞(Td )∥∇∆ f ∥H s−1,q (Td ;Rd ) + ∥m j (u)−m j (v)∥Hτ,ζ(Td )∥∇∆ f ∥H s−1,q (Td ;Rd )

(5.2.11)

on the right-hand side of (5.2.7) for any τ> max{ d
ζ ,1−s} and ζ ∈ [q ′,∞). If we can choose

τ,ζ such that X Tr
κ,p ,→ Hτ,ζ(Td ) the claimed estimate (5.2.6) follows as in the previous

case. But we can choose simply ζ= q and τ slightly smaller than

s + 2 − 4
1+κ

p

by (5.1.8) and (5.1.9). The growth condition (5.2.5) follows in all cases by choosing v = 0
in (5.2.6) and noticing that A( j )[0] =∆2, completing the proof.
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Lemma 5.2.2. For all j ,n ∈N there exist constants C j ,n ,L j ,n ∈ (0,∞) such that

∥F ( j )(u)∥X0 ≤ C j ,n∥u∥X Tr
κ,p

, (5.2.12)

∥F ( j )(u)−F ( j )(v)∥X0 ≤ L j ,n∥u − v∥X Tr
κ,p

(5.2.13)

for all u, v ∈ X Tr
κ,p with ∥u∥X Tr

κ,p
,∥v∥X Tr

κ,p
≤ n.

Proof. We start again with (5.2.13) and calculate

∥F ( j )(u)−F ( j )(v)∥X0 ≲ ∥Φ j (u)∇u −Φ j (v)∇v∥H s−1,q (Td ;Rd )

≤ ∥Φ j (u)(∇u −∇v)∥H s−1,q (Td ;Rd ) + ∥(Φ j (u)−Φ j (v))∇v∥H s−1,q (Td ;Rd ).

Since these terms compare structurally to (5.2.7), we continue as in the proof of Lemma
5.2.1. If s −1 = 0, we proceed by estimating

∥Φ j (u)(∇u −∇v)∥H s−1,q (Td ;Rd ) ≲ ∥Φ j (u)∥L∞(Td )∥∇u −∇v∥Lq (Td ;Rd )

≲ ∥Φ j (u)∥L∞(Td )∥u − v∥H s,q (Td ) ≲ ∥Φ j (u)∥L∞(Td )∥u − v∥X Tr
κ,p

,

where we used in the last step that X Tr
κ,p ,→ X1/2. Moreover, we have

∥(Φ j (u)−Φ j (v))∇v∥H s−1,q (Td ;Rd ) ≲ ∥Φ j (u)−Φ j (v)∥L∞(Td )∥∇v∥Lq (Td ;Rd )

≲ ∥Φ j (u)−Φ j (v)∥L∞(Td )∥v∥X Tr
κ,p

by the same argument. The desired estimate (5.2.13) follows by local Lipschitz continuity
of Φ j and the embedding X Tr

κ,p ,→ L∞(Td ) by (5.1.8).
If instead s − 1 > 0, we choose l ,r again such that (5.2.9) holds and additionally

X Tr
κ,p ,→ H s−1,l (Td ) and H s−1,q (Td ) ,→ Lr (Td ). Then [8, Proposition 4.1 (1)] yields that

∥Φ j (u)(∇u −∇v)∥H s−1,q (Td ;Rd )

≲ ∥Φ j (u)∥L∞(Td )∥∇u −∇v∥H s−1,q (Td ;Rd ) + ∥Φ j (u)∥H s−1,l (Td )∥∇u −∇v∥Lr (Td ;Rd )

≲
(∥Φ j (u)∥L∞(Td ) + ∥Φ j (u)∥H s−1,l (Td )

)∥∇u −∇v∥H s−1,q (Td ;Rd )

≤ L j ,n∥u − v∥H s,q (Td ),

where in the last step we used X Tr
κ,p ,→ L∞(Td )∩H s−1,l (Td ) together with local Lipschitz

continuity of u 7→ Φ j (u) in the latter space, see again [115, Theorem 1, p.373]. Because
of X Tr

κ,p ,→ X1/2, we obtain

∥Φ j (u)(∇u −∇v)∥H s−1,q (Td ;Rd ) ≲ L j ,n∥u − v∥X Tr
κ,p

. (5.2.14)

Analogously, we derive that

∥(Φ j (u)−Φ j (v))∇v∥H s−1,q (Td ;Rd )

≲ ∥Φ j (u)−Φ j (v)∥L∞(Td )∥∇v∥H s−1,q (Td ;Rd ) + ∥Φ j (u)−Φ j (v)∥H s−1,l (Td )∥∇v∥Lr (Td ;Rd )

≲
(∥Φ j (u)−Φ j (v)∥L∞(Td ) + ∥Φ j (u)−Φ j (v)∥H s−1,l (Td )

)∥v∥H s,q (Td )
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≲ L j ,n∥u − v∥X Tr
κ,p

.

Together with (5.2.14), we conclude that (5.2.13) holds.
Lastly, if s − 1 < 0, we choose τ and ζ such that τ > max{ d

ζ ,1 − s}, ζ ∈ [q ′,∞) and

X Tr
κ,p ,→ Hτ,ζ(Td ) and apply [8, Proposition 4.1 (3)] to estimate

∥Φ j (u)(∇u −∇v)∥H s−1,q (Td ;Rd )

≲ ∥Φ j (u)∥L∞(Td )∥∇u −∇v∥H s−1,q (Td ;Rd ) + ∥Φ j (u)∥Hτ,ζ(Td )∥∇u −∇v∥H s−1,q (Td ;Rd )

≲
(∥Φ j (u)∥L∞(Td ) + ∥Φ j (u)∥Hτ,ζ(Td )

)∥∇u −∇v∥H s−1,q (Td ;Rd )

≤ L j ,n∥u − v∥X Tr
κ,p

and

∥(Φ j (u)−Φ j (v))∇v∥H s−1,q (Td ;Rd )

≲ ∥Φ j (u)−Φ j (v)∥L∞(Td )∥∇v∥H s−1,q (Td ;Rd ) + ∥Φ j (u)−Φ j (v)∥Hτ,ζ(Td )∥∇v∥H s−1,q (Td ;Rd )

≲
(∥Φ j (u)−Φ j (v)∥L∞(Td ) + ∥Φ j (u)−Φ j (v)∥Hτ,ζ(Td )

)∥v∥H s,q (Td )

≲ L j ,n∥u − v∥X Tr
κ,p

using once more [115, Theorem 1, p.373]. Also in this case we deduce (5.2.13) and the
growth estimate (5.2.12) can be obtained by inserting v = 0 in (5.2.13) and using that
F ( j )(0) = 0.

Lemma 5.2.3. For all j ,n ∈N there exist constants C j ,n ,L j ,n ∈ (0,∞) such that

(i) if s +1− d
q > 0, then

∥G ( j )[u]∥γ(ℓ2(N),X1/2) ≤ C j ,n∥u∥X3/4 , (5.2.15)

∥G ( j )[u]−G ( j )[v]∥γ(ℓ2(N),X1/2) ≤ L j ,n
(∥u − v∥X3/4 + ∥u − v∥X Tr

κ,p

(∥u∥X3/4 + ∥v∥X3/4

))
,

(5.2.16)

(ii) and if s +1− d
q ≤ 0, then

∥G ( j )[u]∥γ(ℓ2(N),X1/2) ≤ C j ,n∥u∥X Tr
κ,p

, (5.2.17)

∥G ( j )[u]−G ( j )[v]∥γ(ℓ2(N),X1/2) ≤ L j ,n∥u − v∥X Tr
κ,p

(5.2.18)

for all u, v ∈ X Tr
κ,p with ∥u∥X Tr

κ,p
,∥v∥X Tr

κ,p
≤ n.

Proof. To prove the assertions concerning the local Lipschitz estimates, we introduce
the operator

H ( j )[u] : H s+1,q (Td ;Rd ) → H s,q (Td ), f 7→ div(g j (u) f )
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so that G ( j )[u] = H ( j )[u]◦Ψ for the operator Ψ introduced below (5.1.15). Therefore, by
the ideal property [85, Theorem 9.1.10] of γ-radonifying operators we deduce that

∥G ( j )[u]−G ( j )[v]∥γ(ℓ2(N),H s,q (Td ))

≤ ∥H ( j )[u]−H ( j )[v]∥L (H s+1,q (Td ;Rd ),H s,q (Td ))∥Ψ∥γ(ℓ2(N),H s+1,q (Td ;Rd ))

and recall that the latter term is finite by Assumption 5.1.5(sψ, qψ). First, we treat the case

from (i), namely that s +1− d
q > 0. Then we can apply [8, Proposition 4.1 (1)] to obtain

∥(H ( j )[u]−H ( j )[v]) f ∥H s,q (Td )

≲ ∥(g j (u)− g j (v)) f ∥H s+1,q (Td ;Rd )

≲ ∥g j (u)− g j (v)∥H s+1,q (Td )∥ f ∥L∞(Td ;Rd ) + ∥g j (u)− g j (v)∥L∞(Td )∥ f ∥H s+1,q (Td ;Rd )

≲ ∥g j (u)− g j (v)∥H s+1,q (Td )∥ f ∥H s+1,q (Td ;Rd ).

By [115, Theorem 1, p.373], we can estimate

∥g j (u)− g j (v)∥H s+1,q (Td )

≤ L j ,n
(∥u − v∥H s+1,q (Td ) + ∥u − v∥X Tr

κ,p

(∥u∥H s+1,q (Td ) + ∥v∥H s+1,q (Td )

))
using the embedding X Tr

κ,p ,→ L∞(Td ) implied by (5.1.8). Hence, (5.2.16) follows.

Next, we assume that s +1− d
q ≤ 0 as in (ii) and recall that s +1 > 0 by Assumption

5.1.1. Thus, we can use again [8, Proposition 4.1 (1)] to estimate

∥(H ( j )[u]−H ( j )[v]) f ∥H s,q (Td )

≲ ∥g j (u)− g j (v)∥L∞(Td )∥ f ∥H s+1,q (Td ;Rd ) + ∥g j (u)− g j (v)∥H s+1,l (Td )∥ f ∥Lr (Td ;Rd )

(5.2.19)

for l ∈ (1,∞), r ∈ (1,∞] subject to (5.2.9). As in the proof of Lemma 5.2.1 we find that l ,r
can be chosen such that X Tr

κ,p ,→ H s+1,l (Td ) and H s+1,q (Td ) ,→ Lr (Td ). Indeed for each
ε> 0, we can choose r such that

s +1− d
q > −d

r > s +1− d
q −ε.

Then we have
d
l > s +1−ε ⇐⇒ s +1− d

l < ε

due to (5.2.9). Invoking additionally (5.1.8) and choosing ε smaller than (5.2.10) yields
that also X Tr

κ,p ,→ H s+1,l (Td ). We estimate (5.2.19) further by

∥g j (u)− g j (v)∥L∞(Td )∩H s+1,l (Td )∥ f ∥H s+1,q (Td ;Rd )

and since u 7→ g j (u) is locally Lipschitz continuous in L∞(Td )∩H s+1,l (Td ) by [115, The-
orem 1, p.373] the embedding X Tr

κ,p ,→ L∞(Td )∩ H s+1,l (Td ) yields (5.2.18). The corre-
sponding growth estimates (5.2.15) and (5.2.17) follow by inserting v = 0 in (5.2.16) and
(5.2.18) and using that G ( j )[0] = 0.
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Remark 5.2.4. We convince ourselves that the assertions from Lemmas 5.2.1–5.2.3 imply
[5, Hyptohesis (H’)] for fixed j ∈N. Indeed, Lemma 5.2.1 yields [5, Hypothesis (HA)] and
Lemma 5.2.2 yields the estimate in terms of the trace space from [5, Hypothesis (HF’)].
Similarly, if s +1− d

q ≤ 0, Lemma 5.2.3 (ii) implies the estimate on the trace part from [5,

Hypothesis (HG’)]. If instead s +1− d
q > 0, Lemma 5.2.3 (i) yields

∥G ( j )[u]∥γ(ℓ2(N),X1/2) ≤ C j ,n

2∑
l=1

(1+∥u∥ρl
Xϕl

)∥u∥Xβl
,

∥G ( j )[u]−G ( j )[v]∥γ(ℓ2(N),X1/2) ≤ L j ,n

2∑
l=1

(1+∥u∥ρl
Xϕl

+∥v∥ρl
Xϕl

)∥u − v∥Xβl

for u, v ∈ X Tr
κ,p with ∥u∥X Tr

κ,p
,∥v∥X Tr

κ,p
≤ n, if we choose

ϕl ∈
(
max

{
1− 1+κ

p , 3
4

}
,1

)
, l ∈ {1,2},

β1 = ϕ1, ρ1 = 0, β2 ∈ (1− 1+κ
p ,ϕ2] close to 1− 1+κ

p and ρ2 = 1. This implies the estimate
on the (possibly) critical part from [5, Hypothesis (HG’)]. In particular, we have

ρl
(
ϕl −1+ 1+κ

p

) + βl < 1, l ∈ {1,2} (5.2.20)

for sufficiently small β2 and are therefore in the subcritical regime of the theory devel-
oped in [5, 6].

5.2.2. STOCHASTIC MAXIMAL REGULARITY OF THIN-FILM TYPE OPERATORS
Next to the local Lipschitz estimates established in the previous subsection, the local
well-posedness theory from [5, 6] also requires optimal regularity estimates for linear
problems of the form{

du + A (u)dt = f dt + g dW, t ∈ [t0,T ],

u(t0) = ut0 ,
(5.2.21)

called stochastic maximal regularity. Here A : [t0,T ]×Ω→ L (X1, X0) is strongly pro-
gressively measurable, X0, X1 are UMD Banach spaces of type 2 (see, e.g., [85, Chapter
7]) and T <∞, t0 ∈ [0,T ] are fixed.

The purpose of this subsection is to verify that if (p,κ, s, q) are admissible,

A (u) = div(a∇∆u) (5.2.22)

for a positive and P-measurable coefficient a : [0,∞)×Ω→ X Tr
κ,p and (X0, X1) is as in

Subsection 5.1.3, then the problem (5.2.21) indeed admits stochastic maximal regular-
ity estimates, which can be seen as a generalization of [8, Theorem 5.2] to fourth-order
operators. Let us note that, the time dependence of the coefficient a in (5.2.22) appears
naturally when considering the nonlinear problem (5.2.2) by choosing a = m(u). One of
the key points here is that we will allow coefficients which are only measurable in time.
This will be crucial in the proof of the blow-up criteria of Proposition 5.1.8 (cf., (5.2.41)
below) used in the proof of the global well-posedness result in Subsection 5.1.2.
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Before going into the details, we recall some definitions. For a stopping time τ : Ω→
[t0,T ], an initial value ut0 ∈ L0

Ft0
(Ω; X0) and inhomogeneities f ∈ L0

P
(Ω;L1(t0,τ; X0)) and

g ∈ L0
P

(Ω;L2(t0,τ;γ(l 2(N), X1/2))) of (5.2.21), we call a strongly progressive measurable

map u : Jt0,τK→ X1 a strong solution to (5.2.21) on Jt0,τK, if u ∈ L0(Ω;L2(t0,τ; X1)) and

u(t ) − ut0 +
� t

t0

A (u)dr =
� t

t0

f dr +
� t

t0

g dWr

a.s. for all t ∈ [t0,τ].

Definition 5.2.5 (Stochastic maximal regularity). Let κ̂ ∈ [0, p
2 −1) for p > 2 and κ̂= 0 for

p = 2 be possibly different from κ and ∥A ∥L (X1,X0) ≤ CA for some constant CA <∞. We
write A ∈ SMRp,κ̂(t0,T ) if for every

f ∈ Lp
P

((t0,T )×Ω, w t0
κ̂

; X0), and g ∈ Lp
P

((t0,T )×Ω, w t0
κ̂

;γ(H , X1/2))

there exists a strong solution u to (5.2.21) with ut0 = 0 such that u ∈ Lp
P

((t0,T )×Ω, w t0
κ̂

; X1),

and moreover for all stopping time τ : Ω→ [t0,T ] and strong solutions u ∈ Lp
P

((t0,τ)×
Ω, w t0

κ̂
; X1) to (5.2.21) with ut0 = 0 the estimate

∥u∥
Lp ((t0,τ)×Ω,w

t0
κ̂

;X1)
≲ ∥ f ∥

Lp ((t0,τ)×Ω,w
t0
κ̂

;X0)
+ ∥g∥

Lp ((t0,τ)×Ω,w
t0
κ̂

;γ(H ,X1/2)) (5.2.23)

holds, where the implicit constant is independent of f , g and τ. In addition:

(1) If p ∈ (2,∞), we write A ∈ SMR•
p,κ̂(t0,T ) if A ∈ SMRp,κ̂(t0,T ) and

∥u∥
Lp (Ω;Hθ,p ((t0,T ),w

t0
κ̂

;X1−θ))

≲ ∥ f ∥
Lp ((t0,T )×Ω,w

t0
κ̂

;X0)
+ ∥g∥

Lp ((t0,T )×Ω,w
t0
κ̂

;γ(H ,X1/2))

(5.2.24)

for each θ ∈ [0, 1
2 ), where the implicit constant is independent of f and g .

(2) If p = 2, we write A ∈ SMR•
2,0(t0,T ) if A ∈ SMR2,0(t0,T ) and it holds

∥u∥L2(Ω;C ([t0,T ];X1/2)) ≲ ∥ f ∥L2((t0,T )×Ω;X0) + ∥g∥L2((t0,T )×Ω;γ(H ,X1/2)), (5.2.25)

where the implicit constant is independent of f and g .

The choice ut0 = 0 in the above definition is not essential. Indeed, stochastic maxi-
mal Lp -regularity estimates with zero initial data directly imply corresponding ones with
non-trivial data [5, Proposition 3.10].

If A ∈ SMR•
p,κ̂(t0,T ), we define C det,θ,p,κ̂

A
(t0,T ) as the smallest implicit constant such

that (5.2.23) for θ = 0 and (5.2.24)–(5.2.25) for θ > 0 holds for all f ∈ Lp
P

((t0,T )×Ω, w t0
κ̂

; X0)

and g = 0. Analogously, we define C sto,θ,p,κ̂
A

(t0,T ) as the smallest implicit constant such

that (5.2.23)–(5.2.25), respectively, holds for all g ∈ Lp
P

((t0,T )×Ω, w t0
κ̂

;γ(H , X1/2)) and
f = 0. For ℓ ∈ {det,sto}, we set finally

K ℓ,θ,p,κ̂
A

(t0,T ) := Cℓ,θ,p,κ̂
A

(t0,T ) + Cℓ,0,p,κ̂
A

(t0,T ).

We are ready to state the main result of this subsection.
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Theorem 5.2.6 (Stochastic maximal regularity—Thin-film type operators). Let the pa-
rameters (p,κ, s, q) be admissible (i.e., Assumption 5.1.1 holds). Assume that the mapping
a : [t0,T ]×Ω→ X Tr

κ,p is P-measurable and there exist positive constantsλ,µ> 0 such that,
for a.a. (t ,ω) ∈ [t0,T ]×Ω,

λ≤ inf
Td

a(t ,ω, ·) and ∥a(t ,ω, ·)∥X Tr
κ,p

≤µ.

Then A defined in (5.2.22) satisfies A ∈ SMR•
p,κ̂(t0,T ) and

max
{
K det,θ,p,κ̂

A
(t0,T ),K sto,θ,p,κ̂

A
(t0,T )} ≲λ,µ,θ,T 1

for each θ ∈ [0, 1
2 ) and κ̂ ∈ {0,κ}.

Note that no regularity of the coefficient a is assumed w.r.t. the time variable. The
proof of the above result is given at the end of this subsection and it requires some prepa-
ration. We begin by considering the situation of a spatially constant coefficient a.

Lemma 5.2.7. Assume that a(t , x) = ā(t ) for a progressive measurable random variable
ā : [t0,T ]×Ω→R satisfying λ≤ ā ≤λ−1 for some λ ∈ (0,1). Then A ∈ SMR•

p,κ̂(t0,T ) and

max
{
K det,θ,p,κ̂

A
(t0,T ),K sto,θ,p,κ̂

A
(t0,T )

}
≲λ,T 1 (5.2.26)

for κ̂ ∈ {0,κ}.

Proof. Analogously to [85, Theorem 10.2.25], one can show that the Bi-Laplace operator
∆2 : H s+2,q (Td ) → H s−2,q (Td ) admits a bounded H∞-calculus of angle 0 and therefore
∆2 ∈ SMR•

p,κ̂(t0,T ) by [8, Theorem 2.4]. Moreover, by the periodic version of [55, Theo-

rem 5.1] (cf., Step 1 in the proof of [55, Theorem 5.4]), for a.e. (t ,ω), A (t ,ω) = ā(t ,ω)∆2

has deterministic maximal Lp
κ-regularity on X1 with constants depending only on λ and

is therefore independent of (t ,ω). Note that, to apply the results of [55], one needs to re-
call that (1−∆)r /2 : H r+t ,ζ(Td ) → H t ,ζ(Td ) is an isomorphism for all r, t ∈R and ζ ∈ (1,∞).
Using that ∆2 ∈ SMR•

p,κ̂(t0,T ) and the transference result [113, Theorem 3.9] yields that

A ∈ SMR•
p,κ̂(t0,T ) and that (5.2.26) holds.

Using estimates similar to the ones in the proof of Lemma 5.2.1, we can include also
small perturbations of a spatially constant coefficient.

Lemma 5.2.8. Let ā and λ as in Lemma 5.2.7 and let a be as in the statement of Theorem
5.2.6. Then there exists some ε> 0 depending on λ,T such that if

ess sup
[t0,T ]×Ω

∥a − ā∥L∞(Td ) < ε, (5.2.27)

then we have A ∈ SMR•
p,κ̂(t0,T ) with

max
{
C det,0,p,κ̂

A
(t0,T ),C sto,0,p,κ̂

A
(t0,T )

}
≲λ,µ,T 1

for κ̂ ∈ {0,κ}.
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Proof. By repeating the proof of the estimate (5.2.5) for the operator A , one obtains that,
a.e. on [t0,T ]×Ω,

∥A ∥L (X1,X0) ≲ ∥a∥X Tr
κ,p

≤ µ. (5.2.28)

By the previous Lemma 5.2.7, we have ā∆2 ∈ SMR•
p,κ̂(t0,T ) and ā∆2 ∈ SMR•

p,0(t0,T ). We

define C∗
λ,T as the maximum of the corresponding upper bounds on K det,0,p,κ̂

A
(t0,T ) and

K det,0,p,0
A

(t0,T ) from (5.2.26). Then, since we can write

A (u) = div(ā∇∆u) + div((a − ā)∇∆u)

the claim follows by the perturbation result [8, Theorem 3.2] as soon as we can verify that

∥div((a − ā)∇∆u)∥ ≤ (2C∗
λ,T )−1∥u∥X1 + L∥u∥X0 (5.2.29)

for a suitable constant L ∈ (0,∞). To this end, we assume (5.2.27) and obtain

∥div((a − ā)∇∆u)∥X0 ≤ ∥a − ā∥L∞(Td )∥u∥X1 < ε∥u∥X1

for s −1 = 0 implying (5.2.29) for sufficiently small ε> 0. For s −1 > 0, we derive

∥div((a − ā)∇∆u)∥X0

≲ ∥a − ā∥L∞(Td )∥∇∆u∥H s−1,q (Td ;Rd ) + ∥a − ā∥H s−1,l (Td )∥∇∆u∥Lr (Td ;Rd )

for l ,r as in the proof of Lemma 5.2.1, analogously to (5.2.8). We observe moreover that
the embedding H s−1,q (Td ) ,→ Lr (Td ) is not sharp and hence it also holds H s−1−δ,q (Td ) ,→
Lr (Td ) for a sufficiently small δ> 0. Then, using (5.2.27), that X Tr

κ,p ,→ H s−1,l (Td ), the in-
terpolation inequality

∥u∥X1−δ/4 ≤ ∥u∥δ/4
X0

∥u∥1−δ/4
X1

(5.2.30)

and Young’s inequality we can estimate

∥div((a − ā)∇∆u)∥X0 ≲ ε∥u∥X1 + ∥a − ā∥X Tr
κ,p

∥u∥X1−δ/4

≤ ε∥u∥X1 + Cλ,µ∥u∥δ/4
X0

∥u∥1−δ/4
X1

≤ 2ε∥u∥X1 + Cδ,ε,λ,ν∥u∥X0 .

Therefore, (5.2.29) follows also in this case as long as ε> 0 is small enough. For s −1 < 0,
we proceed again as in Lemma 5.2.1 and apply [8, Proposition 4.1 (3)] to obtain

∥div((a − ā)∇∆u)∥X0

≲ ∥a − ā∥L∞(Td )∥∇∆u∥H s−1,q (Td ;Rd ) + ∥a − ā∥Hτ,ζ(Td )∥∇∆u∥H s−1−δ,q (Td ;Rd )

for τ,ζ as in Lemma 5.2.1 and some δ> 0. We remark that we used the slightly worse esti-
mate (5.2.11) previously because it was sufficient to verify Lemma 5.2.1. Employing again
(5.2.27), the inequality (5.2.30), Young’s inequality and the embedding X Tr

κ,p ,→ Hτ,ζ(Td )
we conclude

∥div((a − ā)∇∆u)∥X0 ≲ 2ε∥u∥X1 + Cδ,ε,λ,µ∥u∥X0 .

The desired estimate (5.2.29) follows again for sufficiently small ε> 0.
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Before giving a proof of stochastic maximal regularity in the general situation we pro-
vide first the a-priori estimate on sufficiently small time intervals. The proof relies on a
spatial localization procedure known as freezing the coefficients, which allows us to ap-
ply Lemma 5.2.8 locally in space.

Lemma 5.2.9. Let a be as in the statement of Theorem 5.2.6. Then there exists a time T ∗ >
0 depending onλ,µ,T for which the following holds. For any t ∈ [t0,T ], κ̂ ∈ {0,κ}, stopping
time τ : Ω→ [t ,T ∧ (t +T ∗)], f ∈ Lp

P
((t ,τ)×Ω, w t

κ̂
; X0), g ∈ Lp

P
((t ,τ)×Ω, w t

κ̂
;γ(H , X1/2))

and strong solution u ∈ Lp
P

((t ,τ)×Ω, w t
κ̂

; X1) to{
du + A (u)dr = f dr + g dW, r ∈ [t ,τ],

u(t ) = 0,
(5.2.31)

it holds

∥u∥Lp ((t ,τ)×Ω,w t
κ̂

;X1) ≲λ,µ,T ∥ f ∥Lp ((t ,τ)×Ω,w t
κ̂

;X0) + ∥g∥Lp ((t ,τ)×Ω,w t
κ̂

;γ(H ,X1/2)). (5.2.32)

Proof. We follow the strategy employed to prove [8, Lemma 5.4] and split the proof into
three steps to improve its readability. We do not display the time dependence of a as it
does not play any role here.

Construction of suitable extension operators. We first derive the existence of exten-
sion operators with a uniform operator norm which can be seen as a variant of [8, Lemma
5.8] for Besov spaces. The main difference compared to [8, Lemma 5.8] is that constant
functions are contained in Hölder spaces onRd , but not necessarily in B s

q,p (Rd ). Let E be

Stein’s total extension operator from the unit ball BRd (0,1) to Rd as introduced in [122,
Theorem 5, p.181], then

E : W l ,r (BRd (0,1)) →W l ,r (Rd )

continuously for each l ∈ N0 and r ∈ [1,∞]. We let ϕ ∈ C∞
c (Rd ) such that ϕ = 1 on

BRd (0,1) and ϕ= 0 outside of BRd (0,2) and define

ER
d

y,r [ f ](x) = (ϕ ·E [ f (y + r ·)])
( x−y

r

)
for y ∈Rd and r ∈ (0, 1

8 ) and obtain extension operators from BRd (y,r ) to Rd with

∥ER
d

y,r ∥L (L∞(B
Rd (y,r )),L∞(Rd ))

independent of y and r . Analogously to [8, Lemma 5.8] they induce extension operators

ET
d

y,r from BTd (y,r ) to Td with the same property. To ensure also that constant functions
are mapped to constant functions, we define new extension operators by setting

ẼT
d

y,r f = ET
d

y,r

[
f −

 
B
Td (y,r )

f dx

]
+
 

B
Td (y,r )

f dx,

where
�

B
Td (y,r ) := |BTd (y,r )|−1

�
, and observe that again

∥ẼT
d

y,r ∥L (L∞(B
Td (y,r )),L∞(Td ))



5.2. LOCAL WELL-POSEDNESS OF THIN-FILM TYPE EQUATIONS IN ANY DIMENSION

5

189

is independent of y and r . By real interpolation, we conclude that also

ẼT
d

y,r : B
s+2−4 1+κ

p
q,p (BTd (y,r )) → X Tr

κ,p

continuously.
Spatial localization. Next, analogously to the proof of [8, Lemma 5.4], we introduce

the operators

Ay (u) = div(a(y)∇∆u), A E
y,r (u) = div

(
ẼT

d

y,r [a|B
Td (y,r )]∇∆u

)
.

Let (yι)ι∈I ⊂ Td and r ∈ (0, 1
8 ) such that (BTd (yι,r ))ι∈I is a finite cover of Td . Moreover,

let (ϕι)ι∈I be a partition of unity subordinate to (BTd (yι,r ))ι∈I . We observe that for suf-
ficiently small γ> 0 we have X Tr

κ,p ,→Cγ(Td ) by (5.1.8) and consequently

∥a(yι)−a|B
Td (yι,r )∥L∞(B

Td (yι,r )) ≲µ r γ.

After applying the extension operators ẼT
d

yι,r we constructed, we conclude that∥∥a(yι)− ẼT
d

yι,r [a|B
Td (yι,r )]

∥∥
L∞(Td ) =

∥∥ẼT
d

yι,r [a(yι)−a|B
Td (yι,r )]

∥∥
L∞(Td ) ≲µ r γ.

Thus, if we choose ε as in Lemma 5.2.8 according to the given constant λ, we can ensure
that ∥∥a(y)− ẼT

d

yι,r [a|B
Td (y,r )]

∥∥
L∞(Td ) < ε,

if we choose r < r∗
λ,µ,T ∈ (0, 1

8 ) small enough. Setting then

C∗
λ,µ,T = max

ι∈I

∥∥ẼT
d

yι,r

∥∥
L

(
B

s+2−4 1+κ
p

q,p (B
Td (yι,r )),X Tr

κ,p

),

we deduce that∥∥ẼT
d

yι,r [a|B
Td (yι,r )]

∥∥
X Tr
κ,p

≤ C∗
λ,µ,T ∥a|B

Td (yι,r )∥
B

s+2−4 1+κ
p

q,p (B
Td (yι,r ))

≤ C∗
λ,µ,T ∥a∥X Tr

κ,p
≤ C∗

λ,µ,Tµ.

Therefore, the functions ẼT
d

yι,r [a|B
Td (yι,r )] satisfy the assumptions of Lemma 5.2.8 with

uniform constants and thus A E
yι,r ∈ SMR•

p,κ̂(t0,T ) with

Cℓ,0,p,κ̂

A E
yι ,r

(s,T ) ≲λ,µ,T 1, ℓ ∈ {det,sto}. (5.2.33)

With this at hand, we finally consider the strong solution u to (5.2.31) and using the
partition of unity (ϕι)ι∈I , we can write u = ∑

ι∈I uι, if we set uι = uϕι. Introducing anal-
ogously fι = f ϕι and gι = gϕι, we find that

duι + A E
yι,r (uι)dt = duι + A (uι)dt

= ϕι
(
du + A (u)dt

) + [A ,ϕι]u dt = (
fι + [A ,ϕι]u

)
dt + gιdW,
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where we use the commutator notation [A ,ϕι]u = A (ϕιu)−ϕιA u. Hence, applying
(5.2.33), we deduce that

∥u∥Lp ((t ,τ)×Ω,w t
κ̂

;X1)

≤ ∑
ι∈I

∥uι∥Lp ((t ,τ)×Ω,w t
κ̂

;X1)

≲λ,µ,T

∑
ι∈I

(
∥[A ,ϕι]u∥Lp ((t ,τ)×Ω,w t

κ̂
;X0) + ∥ fι∥Lp ((t ,τ)×Ω,w t

κ̂
;X0) + ∥gι∥Lp ((t ,τ)×Ω,w t

κ̂
;γ(H ,X1/2))

)
≲λ,µ,T

∑
ι∈I

(
∥[A ,ϕι]u∥Lp ((t ,τ)×Ω,w t

κ̂
;X0)

)
+ ∥ f ∥Lp ((t ,τ)×Ω,w t

κ̂
;X0) + ∥g∥Lp ((t ,τ)×Ω,w t

κ̂
;γ(H ,X1/2)),

(5.2.34)

where in the last step we used that multiplication ϕι is a bounded linear mapping on
H s+2,q (Td ) and H s,q (Td ) for each ι ∈I .

Absorbing the commutator terms. To conclude the proof, we show that the commu-
tator terms [A ,ϕι]u are of lower order and expand

A (ϕιu) = div(a∇∆(ϕιu)) = div(a∇(ϕι∆u + 2∇ϕι ·∇u + u∆ϕι))

= div(a(ϕι∇∆u + ∇ϕι∆u)) + div(a∇(2∇ϕι ·∇u + u∆ϕι))

= ϕιA u + a∇ϕι ·∇∆u + div(a∇ϕι∆u) + div(a∇(2∇ϕι ·∇u + u∆ϕι))

to conclude

[A ,ϕι]u = a∇ϕι ·∇∆u + div(a∇ϕι∆u) + div(a∇(2∇ϕι ·∇u + u∆ϕι)). (5.2.35)

We claim that
∥[A ,ϕι]u∥X0 ≲λ,µ,T ∥u∥X1−δ/4 (5.2.36)

for sufficiently small δ > 0 and estimate only the first term on the right-hand side of
(5.2.35), since the others are easier to treat. Firstly, we observe that

∥a∇ϕι∥
B

s+2−4 1+κ
p

q,p (Td ;Rd )
≲λ,µ,T ∥a∥X Tr

κ,p
≲µ 1 (5.2.37)

since the ϕι are smooth. If s −1 ≤ 0, we choose δ ∈ (0,1) such that

s + 2 − 4 1+κ
p > 1+δ− s (5.2.38)

by (5.1.9). Since s −1−δ< 0, we can use [8, Proposition 4.1 (3)] to estimate

∥a∇ϕι ·∇∆u∥X0 ≲ ∥a∇ϕι ·∇∆u∥H s−1−δ,q (Td )

≲ ∥a∇ϕι∥L∞(Td ;Rd )∥∇∆u∥H s−1−δ,q (Td ;Rd ) + ∥a∇ϕι∥Hσ,ζ(Td ;Rd )∥∇∆u∥H s−1−δ,q (Td ;Rd )

as soon as σ > max{ d
ζ ,1+δ− s} and ζ ∈ [q ′,∞). Arguing as in Lemma 5.2.1, we see that

we can choose σ and ζ such that X Tr
κ,p ,→ Hσ,ζ(Td ) due to (5.1.8) and (5.2.38). Because

also X Tr
κ,p ,→ L∞(Td ) by (5.1.8), we obtain

∥a∇ϕι ·∇∆u∥X0 ≲λ,µ,T ∥u∥H s+2−δ,q (Td )
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by (5.2.37). If instead s −1 > 0, we choose δ ∈ (0,min{1, s −1}). Then an application of [8,
Proposition 4.1 (1)] as in the proof of Lemma 5.2.1 yields

∥a∇ϕι ·∇∆u∥X0 ≤ ∥a∇ϕι ·∇∆u∥H s−1−δ,q (Td )

≲ ∥a∇ϕι∥L∞(Td ;Rd )∥∇∆u∥H s−1−δ,q (Td ;Rd ) + ∥a∇ϕι∥H s−1−δ,l (Td ;Rd )∥∇∆u∥Lr (Td ;Rd )

for l ∈ (1,∞), r ∈ (1,∞] whenever (5.2.9) holds. If we can show that l ,r can be chosen in
a way such that X Tr

κ,p ,→ H s−1−δ,l (Td ) and H s−1−δ,q (Td ) ,→ Lr (Td ), we can conclude as in
Lemma 5.2.1 that

∥a∇ϕι ·∇∆u∥X0 ≲λ,µ,T ∥u∥H s+2−δ,q (Td ),

using additionally X Tr
κ,p ,→ L∞(Td ) and (5.2.37). If s −1−δ− d

q > 0, the choice l = q and

r =∞ suffices. If s −1−δ− d
q ≤ 0, we take r in accordance with

s −1−δ− d
q > −d

r > s −1−δ− d
q −η

for η> 0. Using (5.2.9) we obtain that

d
l > s −1−δ−η ⇐⇒ s −1−δ− d

l < η.

Choosing η> 0 smaller than the left-hand side of (5.1.8) ensures that the desired embed-
dings hold. We conclude that (5.2.36) is valid in any case.

With this at hand, we can proceed as in the proof of [8, Lemma 5.4], namely we use
that

∥[A ,ϕι]u∥Lp ((t ,τ)×Ω,w t
κ̂

;X0) ≲λ,µ,T ∥u∥Lp ((t ,τ)×Ω,w t
κ̂

;X1−δ/4)

≤ ∥u∥δ/4
Lp ((t ,τ)×Ω,w t

κ̂
;X0)

∥u∥1−δ/4
Lp ((t ,τ)×Ω,w t

κ̂
;X1)

≤ Cδ,η∥u∥Lp ((t ,τ)×Ω,w t
κ̂

;X0) + η∥u∥Lp ((t ,τ)×Ω,w t
κ̂

;X1)

for any η> 0 by the interpolation inequality for Bochner spaces [84, Theorem 2.2.6] and
Young’s inequality. Choosing η sufficiently small and inserting this in (5.2.34) we obtain
that

∥u∥Lp ((t ,τ)×Ω,w t
κ̂

;X1)

≲λ,µ,T ∥u∥Lp ((t ,τ)×Ω,w t
κ̂

;X0) + ∥ f ∥Lp ((t ,τ)×Ω,w t
κ̂

;X0) + ∥g∥Lp ((t ,τ)×Ω,w t
κ̂

;γ(H ,X1/2)).

If τ≤ t +T ∗ for sufficiently small T ∗ depending on λ,µ,T , the term containing u on the
right-hand side can once more be absorbed by the first statement of [5, Lemma 3.13]
together with (5.2.28) leading to the desired a-priori estimate (5.2.32).

Having established the necessary a-priori estimate, Theorem 5.2.6 now follows by
the method of continuity together with a partition of the time interval [t0,T ] into pieces
t0 < t1 < ·· · < tN = T of the length T ∗ from Lemma 5.2.9.
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Proof of Theorem 5.2.6. We firstly remind ourselves of the uniform estimate (5.2.28) on
the operator norm of A . By Lemma 5.2.7 the set SMR•

p,κ̂(t0,T ) is non-empty and there-

fore it suffices by [8, Proposition 2.6] to show that A ∈ SMRp,κ̂(t0,T ) with

max
{
C det,0,p,κ̂

A
(t0,T ),C sto,0,p,κ̂

A
(t0,T )} ≲λ,µ,T 1.

This again can be deduced by [8, Proposition 3.1], if we can provide a partition t0 < t1 <
·· · < tN = T such that A ∈ SMRp,κ̂(t0, t1) and A ∈ SMRp,0(ti , ti+1) for i ≥ 1 with

max
{
C det,0,p,κi

A
(ti , ti+1),C sto,0,p,κi

A
(ti , ti+1)} ≲λ,µ,T 1, κi = κ̂δi 0

for i ∈ {0, . . . , N −1}. The required a-priori estimate follows from Lemma 5.2.9 if we set
ti = (t0 + i T ∗)∧T for i ≥ 1. Moreover, the existence of strong solutions on the respective
intervals [ti , ti+1] follows from the method of continuity [6, Proposition 3.13] applied to
the family of operators

Ar (u) = r A (u) + (1− r )λ∆2u = div
(
(r a + (1− r )λ)∇∆u

)
, r ∈ [0,1],

because the coefficients ar = r a + (1− r )λ suffice the assumptions of Lemma 5.2.9 with
the same constants λ,µ as the original coefficient a.

5.2.3. LOCAL WELL-POSEDNESS AND BLOW-UP CRITERIA I
In this subsection, we use the preceding findings to apply the framework for quasilin-
ear stochastic evolution equations from [5, 6] to the regularized equation (5.2.2). To this
end, we fix again compatible parameters (p,κ, s, q) and a sequence (ψk )k∈N subject to
Assumptions 5.1.1 and 5.1.5(sψ, qψ) with (sψ, qψ) = (s, q), and start with the definition of
maximal local solutions to (5.2.2), similar to the one of (5.1.1). We remark that this def-
inition deviates from the corresponding Definition 5.1.3 and Definition 5.1.4 for (5.1.1)
in which the solution is required to be positive.

Definition 5.2.10. Let (p,κ, s, q) be as in Assumption 5.1.1. Let σ : Ω→ [0,∞] be a stop-
ping time and u : J0,σM → X1 progressively measurable. Then the tuple (u,σ) is a local
(p,κ, s, q)-solution to (5.2.2), if there exists a localizing sequence 0 ≤ σl ↗ σ of stopping
times such that for all l ∈N, we have a.s.

u ∈ Lp (0,σl , wκ; X1) ∩ C ([0,σl ]; X Tr
κ,p ),

F ( j )(u) ∈ Lp (0,σl , wκ; X0), G ( j )[u] ∈ Lp (0,σl , wκ;γ(ℓ2(N), X1/2)),

and a.s. for all t ∈ [0,σl ]

u(t )−u(0)+
� t

0
A( j )[u(r )](u(r ))dr =

� t

0
F ( j )(u(r ))dr +

� t

0
G ( j )[u(r )]dWr . (5.2.39)

As for Definition 5.1.3, all the integrals in (5.2.39) are well-defined due to the required
integrability conditions.

Definition 5.2.11. We call a local (p,κ, s, q)-solution (u,σ) to (5.2.2) maximal unique
(p,κ, s, q)-solution, if for every local (p,κ, s, q)-solution (v,τ) to (5.2.2), one has τ≤ σ a.s.
and u = v a.e. on J0,σ∧τM.
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The existence of a maximal unique (p,κ, s, q)-solution to (5.2.2) follows from our preced-
ing findings.

Proposition 5.2.12. Let the Assumptions 5.1.1 and 5.1.5(sψ, qψ) with (sψ, qψ) = (s, q) be
satisfied. Let u0 ∈ L0

F0
(Ω; X Tr

κ,p ). Then there exists a maximal unique (p,κ, s, q)-solution

(u,σ) to (5.2.2) in the sense of Definition 5.2.11 such that a.s. σ> 0 and

u ∈ Hθ,p
loc ([0,σ), wκ; X1−θ)∩C ((0,σ); X Tr

p ) (5.2.40)

for all θ ∈ [0, 1
2 ), if p > 2. Additionally, for all T <∞, the following blow-up criterion holds

P
(
σ< T , sup

t∈[0,σ)
∥u(t )∥X Tr

κ,p
<∞

)
= 0. (5.2.41)

Proof. Let T <∞ be arbitrary. We check the assumptions of [5, Theorem 4.7] and define
the localization

u0,n = 1{∥u0∥X Tr
κ,p

≤n}u0, n ∈N,

of the initial value. Since m j : R→ R is smooth, we deduce that m j (u0,n) ∈ L∞
F0

(Ω; X Tr
κ,p )

by [115, Theorem 1, p.373] and moreover uniformly bounded away from 0. Thus, Theo-
rem 5.2.6 applies to the operator A( j )[u0,n]( f ) = div(m j (u0,n)∇∆ f ) and yields that

A( j )[u0,n] ∈ SMR•
p,κ(0,T )

for each n ∈N. Therefore, the assumption regarding stochastic maximal regularity holds
and we convinced ourselves already in Remark 5.2.4 that [5, Hypothesis (H’)] is satis-
fied. Furthermore, due to Theorem 5.2.6 and [6, Remark 5.6], our definition of maxi-
mal unique (p,κ, s, q)-solution to (5.2.2) is equivalent to [5, Definition 4.4] and therefore
an application of [5, Theorem 4.7] yields the existence of a maximal unique (p,κ, s, q)-
solution (u,σ) to (5.2.2) and the regularity assertions. Next, we prove the blow-up crite-
rion (5.2.41). Firstly, as pointed out in the aforementioned Remark 5.2.4, the equation
(5.2.2) is subcritical in our choice of spaces so that we obtain

P
(
σ< T , lim

t↗σ
u(t ) exists in X Tr

κ,p

)
= 0 (5.2.42)

from [6, Theorem 4.9 (2)]. Before going further, let us comment on the technical require-
ments needed to apply [6, Theorem 4.9 (2)]. The condition from [6, Assumption 4.5]
regarding stochastic maximal regularity follows as before from Theorem 5.2.6. Following
again Remark 5.2.4 we can choose β1 = ϕ1 and ρ2 = 1 to estimate the nonlinearity G ( j )

and therefore [6, Assumption 4.7] is satisfied by [6, Remark 4.8].
To conclude the proof, we show that (5.2.42) implies the seemingly weaker statement

of (5.2.41). To this end, we use that the stochastic maximal regularity estimates of Theo-
rem 5.2.6 hold for coefficients with measurable dependence on time. To prove (5.2.41),
it is enough to show that, for all M <∞,

P(ΩM ) = 0 where ΩM :=
{
σ< T , sup

t∈[0,σ)
∥u(t )∥X Tr

κ,p
≤ M

}
. (5.2.43)
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For the sake of clarity, we split the proof of (5.2.43) into three steps. Moreover, we define
ũ0 = 1{∥u0∥X Tr

κ,p
≤M }u0 which coincides with u0 on ΩM and satisfies ũ0 ∈ Lp

F0
(Ω; X Tr

κ,p ).

For all ε> 0 there exists Cε > 0 such that, for v ∈ X1,

∥F ( j )(v)∥X0 + ∥G ( j )[v]∥γ(ℓ2(N),X1/2) ≤ ε∥v∥X1 + Cε(1+∥v∥δ
X Tr
κ,p

) (5.2.44)

where δ > 0 is independent of ε > 0. The estimate (5.2.44) is a straightforward conse-
quence of the subcriticality of the nonlinearity for the regularized thin-film equation
(5.2.2), see Remark 5.2.4. Indeed, by the reiteration theorem for real-interpolation (see,
e.g., [12, Theorem 3.5.3]), for all β ∈ (1− 1+κ

p ,1) one has

∥v∥Xβ
≲ ∥v∥1−θ

X Tr
κ,p

∥v∥θX1
for v ∈ X1, with θ = β−1+ (1+κ)/p

(1+κ)/p
.

One can readily check that (5.2.44) follows from the above and the subcriticality condi-
tion (5.2.20).

For all M <∞, it holds that

E∥u∥p
Lp (0,τ,wκ;X1) < ∞, where τ := inf

{
t ∈ [0,σ) : ∥u∥X Tr

κ,p
≥ M

}∧T (5.2.45)

with inf∅ :=σ. Let σn be the stopping time given by

σn := inf
{

t ∈ [0,σ) : ∥u∥Lp (0,t ,wκ;X1) ≥ n
}∧T,

where, as above, inf∅ := σ. Now the idea is to apply stochastic maximal regularity es-
timates of Theorem 5.2.6 to the problem (5.2.2). To this end, note that u ∈ Lp (J0,σn ∧
τK, wκ; X1) solves, on J0,τM,{

du + div(a∇∆u)dt = 1J0,τMF ( j )(u)dt +1J0,τMG ( j )[u]dW,

u(0) = ũ0,
(5.2.46)

where a := 1J0,τMm j (u)+1Jτ,T K. Recall that X Tr
κ,p ,→ L∞(Td ) by (5.1.8). Hence, by [115,

Theorem 1, p.373],

ess inf
[0,T ]×Ω

a ≳ j 1 and ess sup
[0,T ]×Ω

∥a∥X Tr
κ,p

< ∞.

Combining (5.2.46), Theorem 5.2.6 and [5, Proposition 3.12(b)], we obtain the existence
of a constant C (0)

M > 0 such that, for all n ≥ 1,

E∥u∥p
Lp (0,τ∧σn ,wκ;X1)

≤ C (0)
M E∥ũ0∥p

X Tr
κ,p

+ C (0)
M E

� τ∧σn

0

(∥F ( j )(u)∥p
X0

+∥G ( j )[u]∥p
γ(ℓ2(N),X1/2)

)
wκdt

≤ C (0)
M E∥ũ0∥p

X Tr
κ,p

+ 1
2E∥u∥p

Lp (0,τ∧σn ,wκ;X1) + C (1)
δ,M

where we applied (5.2.44) with ε = (2C (0)
M )−1 and used that supt∈[0,τ) ∥u∥X Tr

κ,p
≤ M . The

above implies
E∥u∥p

Lp (0,τ∧σn ,wκ;X1) ≤ C (0)
M E∥ũ0∥p

X Tr
κ,p

+ C (1)
δ,M .
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The claim of Step 2 follows by letting n →∞ and using Fatou’s lemma.
Proof of (5.2.43). Let τ be defined as in (5.2.45). By the first two steps we have

F ( j )(u) ∈ Lp ((0,τ)×Ω, wκ; X0) and G ( j )[u] ∈ Lp ((0,τ)×Ω, wκ;γ(ℓ2(N), X1/2)).

Again, by (5.2.46), Theorem 5.2.6 with a := 1J0,τMm j (u)+1Jτ,T K and [5, Proposition 3.12(b)],

u ∈ Lp (Ω;C ([0,τ]; X Tr
κ,p )).

In particular, limt↗σu(t ) exists in X Tr
κ,p a.s. on {τ = σ}. Since {τ = σ} ⊇ΩM by definition

of τ, we have

P(ΩM ) = P
(
ΩM ∩

{
σ< T , lim

t↗σ
u(t ) exists in X Tr

κ,p

})
≤ P

(
σ< T , lim

t↗σ
u(t ) exists in X Tr

κ,p

)
(5.2.42)= 0.

Thus (5.2.43) is proved. The claimed blow-up criterion (5.2.41) follows from the arbi-
trariness of M .

5.2.4. INSTANTANEOUS REGULARIZATION AND BLOW-UP CRITERIA II
This subsection is dedicated to understanding how the regularity of the noise affects the
regularity of solutions to the regularized problem (5.2.2) and its consequences in terms
of blow-up criteria.

The following result is the key ingredient in the proof of Proposition 5.1.7.

Proposition 5.2.13 (Instantaneous regularization—Regularized problem). Let (p,κ, s, q)
be as in Assumption 5.1.1. Let u0 ∈ L0

F0
(Ω; X Tr

κ,p ) and (u,σ) the maximal unique (p,κ, s, q)-

solution to (5.2.2) provided by Proposition 5.2.12. Suppose that Assumption 5.1.5(sψ, qψ)
holds for some sψ ≥ s and all qψ ∈ [2,∞). Then, a.s.,

u ∈ Hθ,r
loc (0,σ; H 2+sψ−4θ,ζ(Td )) for all θ ∈ [0, 1

2 ) and r,ζ ∈ [2,∞). (5.2.47)

In particular u ∈ Cθ1,θ2
loc ((0,σ)×Td ) a.s. for all θ1 ∈ [0, 1

2 ) and θ2 ∈ (0,2+ sψ).

Proof. The last assertion follows from (5.2.47) and Sobolev embeddings. Thus, below
we only prove (5.2.47). Our strategy is to apply the instantaneous regularization theory
for stochastic parabolic evolution equations from [6, Section 6] to (5.2.2) which, as we
have commented in the proof of Proposition 5.2.12, we see as the stochastic evolution
equation (5.2.3). The proof of improved regularity is structured as follows:

• Reduction to the case of a positive weight κ> 0.

• Bootstrap time integrability.

• Bootstrap spatial integrability.

• Bootstrap spatial smoothness.
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The reduction in the first step is convenient in light of instantaneous regularization re-
sults for weighted function spaces, see, e.g., [2, Theorem 1.2].

We can assume that p > 2 and κ > 0. In this step, we assume that (5.2.47) is valid in
the case p > 2 and κ > 0 and show that it carries over to the general case p ≥ 2, κ ≥ 0.
To this end, it suffices to show that if either p = 2 or κ = 0, there exists a new set of
parameters (p̂, κ̂, ŝ, q) with p̂ > 2 and κ̂ > 0, such that (u,σ) coincides with the maximal
unique (p̂, κ̂, ŝ, q)-solution to (5.2.2) in the sense of Definitions 5.2.10 and 5.2.11. Let us
start with the case p = 2. By (5.1.7) in Assumption 5.1.1, this forces κ = 0 and q = 2. By
standard interpolation inequalities, a.s.,

u ∈ L2
loc([0,σ); H s+2(Td ))∩C ([0,σ); H s (Td )) (5.2.48)

,→ L2/θ
loc ([0,σ); H s+2θ(Td )) ,→L2/θ

loc ([0,σ), wκ̂; H s+2θ(Td )),

where θ ∈ (0,1) and in the last embedding we used that the weight wκ is bounded. Now,
by continuity, there exist θ̂ ∈ (0,1) and κ̂ > 0 for which Assumption 5.1.1 with (p,κ, s)
replaced by (p̂, κ̂, ŝ) holds, where p̂ := 2/θ̂, and that ŝ+2−4/p̂ < s. The previous condition

ensures that H s (Td ) ,→ B
s+2−4 1+κ̂

p̂

2,p̂ (Td ). Thus, by (5.2.48), a.s.,

u ∈ Lp̂
loc([0,σ); H ŝ+2(Td ))∩C ([0,σ);B

s+2−4 1+κ̂
p̂

2,p̂ (Td )).

In particular (u,σ) is a local (p̂, κ̂, ŝ,2)-solution to (5.2.2). Let (û, σ̂) be the maximal unique
(p̂, κ̂, ŝ,2)-solution to (5.2.2) provided by Proposition 5.2.12. By maximality (cf., Defini-
tion 5.2.11), we obtain

σ ≤ σ̂ a.s. and u = û a.e. on J0,σM.

Hence, the claim of this step follows in this case, since the regularity of the (p̂, κ̂, ŝ,2)-
solution (û, σ̂) transfers to (u,σ). For completeness, let us show that such improved
regularity also yields σ = σ̂ a.s. Indeed, if (5.2.47) holds with (u,σ) replaced by (û, σ̂),
it follows that

u = û ∈ C ((0,σ]; H s (Td )) a.s. on {σ< σ̂}.

Thus, for all T <∞,

P(σ< σ̂ , σ< T ) ≤ P
(
σ< T , sup

t∈[0,σ)
∥u(t )∥H s (Td ) <∞

)
= 0,

where the last equality follows from (5.2.41) with p = 2 and κ = 0. The arbitrariness of
T <∞ yields σ= σ̂ a.s. on {σ<∞}. Since σ≤ σ̂ a.s., it follows that σ= σ̂ a.s., as desired.

For the case that p > 2 and κ = 0 the same procedure works by passing to the new
parameters (p, κ̂, s, q) with κ̂ slightly larger than 0.

Temporal regularity. We continue with the initial set of parameters (p,κ, s, q) and
can assume by the previous step that p > 2 and κ > 0. To deduce additional temporal
regularity of (u,σ), we verify the assumptions of [6, Corollary 6.5] with Y0 = X0, Y1 = X1,
r = p and α= κ. The technical conditions [6, Assumption 4.5, Assumption 4.7] follow as
in the proof of Proposition 5.2.12. Assumption [6, Corollary 6.5 (1)] holds by κ > 0 and
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the regularity assertion (5.2.40) of Proposition 5.2.12 for p > 2. To check [6, Corollary
6.5 (2)], we let r̂ ∈ [p,∞) and α̂ ∈ [0, r̂

2 −1) with 1+α̂
r̂ < 1+κ

p and observe that Assumption
5.1.1 holds for the parameters (r̂ , α̂, s, q) too. Thus, again by the same reasoning as in
the proof of Proposition 5.2.12 we obtain that [6, Assumption 4.5, Assumption 4.7] holds
for the choice of parameters (r̂ , κ̂, s, q) as well. Consequently [6, Corollary 6.5] indeed
applies and yields that

u ∈ ⋂
θ∈[0, 1

2 )

Hθ,r̂
loc (0,σ; H s+2−4θ,q (Td )) a.s. for all r̂ ∈ [p,∞). (5.2.49)

Integrability in space. We again consider the maximal unique (p,κ, s, q)-solution
(u,σ) with p > 2 and κ > 0. As a next step, we show that, for all r̂ ≥ p, there exists a
sequence ql ↗∞ with q1 = q such that

u ∈ ⋂
θ∈[0, 1

2 )

Hθ,r̂
loc (0,σ; H s+2−4θ,ql (Td )) a.s. (5.2.50)

implies
u ∈ ⋂

θ∈[0, 1
2 )

Hθ,r̂
loc (0,σ; H s+2−4θ,ql+1 (Td )) a.s.

Then, by a recursive application starting from (5.2.49), one concludes that

u ∈ ⋂
θ∈[0, 1

2 )

Hθ,r̂
loc (0,σ; H s+2−4θ,q̂ (Td )) (5.2.51)

a.s. for all r̂ ∈ [2,∞) and q̂ ∈ [2,∞). To this end, we apply [6, Theorem 6.3] with

Y0 = H s−2,ql (Td ), Y1 = H s+2,ql (Td ) Ŷ0 = H s−2,ql+1 (Td ), Ŷ1 = H s+2,ql+1 (Td )

and r = r̂ , α= α̂= κ> 0 and ql+1 ≥ ql ≥ q1 = q for l ∈N. As in the previous step, the tech-
nical conditions of [6, Theorem 6.3] follow from the fact that Assumption 5.1.1 remains
valid if q and p increase. Therefore, (5.2.50) implies that [6, Theorem 6.3 (1)] holds and
[6, Theorem 6.3 (2)] follows because we are in the subcritical regime as observed in Re-
mark 5.2.4. Since [6, Eq. (6.1)] trivializes by [6, Lemma 6.2 (1)] it remains to ensure that
Y Tr

r ,→ Ŷ Tr
r,κ for [6, Theorem 6.3 (3)] to hold. The desired inclusion

B
s+2− 4

r
ql ,p (Td ) ,→ B

s+2−4 1+κ
r

ql+1,p (Td )

holds if the condition
s +2− 4

r − d
ql

> s +2−4 1+κ
r − d

ql+1

is satisfied. The previous inequality is equivalent to

d
ql

− d
ql+1

< 4κ
r

for which it suffices to choose ql+1 < ql+ 4κq2

r d . Then [6, Theorem 6.3] is indeed applicable
and yields the improved regularity (5.2.51), finishing this part of the proof.
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Smoothness in space. For the last step, we apply once more [6, Theorem 6.3] to the
maximal unique (p,κ, s, q)-solution (u,σ) with p > 2 and κ > 0. Similar to the previous
step, we show the existence of a finite set of values (sl )L

l=1 with s1 = s and sL = sψ (here sψ
is as in Assumption 5.1.5(sψ, qψ)) such that

u ∈ ⋂
θ∈[0, 1

2 )

Hθ,r̂
loc (0,σ; H sl+2−4θ,q̂ (Td )) (5.2.52)

a.s. for all r̂ , q̂ ∈ [2,∞), implies

u ∈ ⋂
θ∈[0, 1

2 )

Hθ,r̂
loc (0,σ; H sl+1+2−4θ,q̂ (Td )) (5.2.53)

a.s. for all r̂ , q̂ ∈ [2,∞).
We prove the above implication with sl+1 := (sl +1)∧ sψ. By the previous steps, we

can assume that r̂ > p ∨4 and q̂ ≥ q . To begin, note that (5.2.52) with s1 = s holds due to
the previous step. Now we prove that (5.2.52) implies (5.2.53) by using [6, Theorem 6.3]
with

Y0 = H sl−2,q̂ (Td ), Y1 = H sl+2,q̂ (Td ), Ŷ0 = H sl+1−2,q̂ (Td ), Ŷ1 = H sl+1+2,q̂ (Td )

for q̂ ∈ [q,∞) and we set r = r̂ , α= 0, and

α̂ := r (sl+1 − sl )

4
> 0. (5.2.54)

Note that, if r > 4, then α̂ < r
2 −1 since sl+1 ≤ sl +1. The motivation behind the choice

of α̂ is that the trace spaces corresponding to the settings (Y0,Y1,α,r ) and (Ŷ0, Ŷ1, α̂, r̂ )
coincide:

Y Tr
r = Ŷ Tr

α̂,r̂ = B
2+sl− 4

r
q̂ ,r (Td ). (5.2.55)

It remains to check the assumptions of [6, Theorem 6.3]. Firstly, note that Assumption
5.1.1 is valid for (r,α, sl , q̂) as it is valid for (p,κ, s, q) and sl ≥ s, r ≥ p as well as α = 0.
Since sl+1 − 1+α̂

r = sl − 1
r and sl+1 > sl by construction, Assumption 5.1.1 is valid for

(r, α̂, sl+1, q̂) as well. Hence, by Remark 5.2.4, we are again in the subcritical regime and
consequently (5.2.52), which holds by the inductive assumption, yields that the condi-
tions [6, Theorem 6.3 (1)] and [6, Theorem 6.3 (2)] are fulfilled. Due to (5.2.55), to check
the conditions in [6, Theorem 6.3 (3)] it remains to verify [6, Eq. (6.1)]. Then, choosing
ε= sl+1−sl

4 it holds that
1+ α̂

r̂
= 1

r
+ sl+1 − sl

4
= 1+α

r
+ ε

by (5.2.54) and α = 0. Moreover ε ∈ (0, 1
2 − 1

r ) as sl+1 − sl ≤ 1 and r > 4. Finally, it is
straightforward to check that Ŷ1−ε = Y1 and Ŷ0 = Yε and therefore [6, Lemma 6.2 (4)]
implies [6, Eq. (6.1)]. In conclusion [6, Theorem 6.3] is applicable and yields the desired
regularity (5.2.53).
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As commented below the statement of Proposition 5.1.8, the independence of the
regularity of solutions at positive times allows us to deduce the independence of the
blow-up criteria from the original choice of the admissible parameters. This observation
and the blow-up criterion in Proposition 5.2.12 readily imply the following result, which
is the key ingredient in the proof of Proposition 5.1.8.

Corollary 5.2.14 (Blow-up criteria—Regularized problem). Let (p,κ, s, q) be as in As-
sumption 5.1.1. Moreover, suppose that Assumption 5.1.5(sψ, qψ) holds for some sψ ≥ s
and all qψ ∈ [2,∞). Let u0 ∈ L0

F0
(Ω; X Tr

κ,p ) and (u,σ) the maximal unique (p,κ, s, q)-

solution to (5.2.2) provided by Proposition 5.2.12. Then, for any quadruple of admissible
parameters (p0,κ0, s0, q0) with s0 ≤ sψ and 0 < ε< T <∞,

P
(
ε<σ< T , sup

t∈[ε,σ)
∥u(t )∥B

γ0
q0,p0

(Td ) <∞
)
= 0 (5.2.56)

where γ0 := s0 +2−4 1+κ0
p0

.

Note that the norm in (5.2.56) can be evaluated even if (p0,κ0, s0, q0) ̸= (p,κ, s, q) due
to Proposition 5.2.13.

Proof. By Proposition 5.2.13 and the blow-up criterion in Proposition 5.2.12, (5.2.56) fol-
lows as in the proof of [7, Theorem 2.10]. We include some details for the reader’s con-
venience. We begin by collecting some useful facts. Let (u,σ) be the maximal unique
(p,κ, s, q)-solution to (5.2.2) provided by Proposition 5.2.12. Proposition 5.2.13 ensures
that, for all ε> 0,

1{σ>ε}u(ε) ∈ L0
Fε

(Ω;Bγ0
q0,p0

(Td )).

Since Assumption 5.1.5(sψ, qψ) holds for some sψ ≥ s0∨s and all qψ ∈ [2,∞), Proposition
5.2.12 yields the existence of maximal unique (p0,κ0, s0, q0)-solution (v,τ) to{

dv = −div(m j (v)∇∆v)dt + div(Φ j (v)∇v)dt + ∑
k∈Ndiv(g j (v)ψk )dβ(k),

v(0) = 1{σ>ε}u(ε).
(5.2.57)

with
P
(
ε< τ< T , sup

t∈[ε,τ)
∥v(t )∥B

γ0
q0,p0

(Td ) <∞
)
= 0. (5.2.58)

Finally, Proposition 5.2.13 and a translation argument ensure that

v ∈C ((ε,τ);C 2+sψ−(Td )) a.s. (5.2.59)

We now turn to the proof of Corollary 5.2.14. By (5.2.58), it is enough to prove that

σ = τ a.s. on {ε<σ≤ T } and u = v a.e. on [ε,σ)× {ε<σ≤ T }. (5.2.60)

To this end, we note that, due to Proposition 5.2.13, (u|Jε,σM,σ1{σ>ε} +ε1{σ≤ε}) is a local
(p0,κ0, s0, q0)-solution to (5.2.57). The maximality of (v,τ) yields

σ ≤ τ a.s. on {ε<σ≤ T } and u = v a.e. on [ε,σ)× {ε<σ≤ T }. (5.2.61)
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Therefore, since C 2+sψ−(Td ) ,→ B
2+s−4 1+κ

p
q,p (Td ) = X Tr

κ,p as s ≤ sψ, (5.2.59) and the previous
yield

P(ε<σ< τ≤ T ) ≤ P
(
{ε<σ< τ}∩

{
σ< T , sup

t∈[0,σ)
∥u(t )∥X Tr

κ,p
<∞

})
(5.2.41)= 0.

Hence σ= τ a.s. on {ε<σ≤ T }, and therefore (5.2.60) follows from (5.2.61).

5.2.5. TRANSFERENCE TO THE ORIGINAL EQUATION
Finally, we are concerned with transferring the previously obtained results on (5.2.2) to
positive solutions to the original equation (5.1.1) which leads to the results stated in Sub-
section 5.1.1. The main idea is that as long as a solution to (5.2.2) remains above the
threshold 2 j−1 it is also a solution to (5.2.3) and vice versa due to the choice of the regu-
larization (5.2.1).

In the proof of Theorem 5.1.6 below, as an intermediate step to obtain maximal solu-
tions, we also employ the notion of positive local unique solutions to (5.1.1). Recall that
positive local solutions of (5.1.1) are defined in Definition 5.1.3.

Definition 5.2.15 (Local unique positive solution for (5.1.1)). Let (p,κ, s, q) be as in As-
sumption 5.1.1. A positive local (p,κ, s, q)-solution (u,σ) to (5.1.1) is called positive local
unique (p,κ, s, q)-solution, if for every positive local (p,κ, s, q)-solution (v,τ) to (5.1.1) one
has u = v a.s. on [0,σ∧τ).

In contrast to maximal solutions as defined in Definition 5.1.4, the lifetime σ of the
unique solution u does not necessarily extend the one of the other solution v , i.e., τ.

Proof of Theorem 5.1.6. Recall that (p,κ, s, q) are as in Assumption 5.1.1, (ψk )k∈N satisfy
Assumption 5.1.5(sψ, qψ) with (sψ, qψ) = (s, q) and infTd u0 > 0 a.s., respectively.

Existence of a positive local unique solution. Set

Ω1 :=
{

inf
Td

u0 ≥ 1
}

, and Ω j :=
{

1
j+1 ≤ inf

Td
u0 < 1

j

}
for j ≥ 1.

From the positivity assumption on the initial data, it follows that P(∪ j∈NΩ j ) = 1. Hence,
to construct a positive local (p,κ, s, q)-solution to (5.1.1) it is enough to construct a solu-
tion on Ω j for j ∈N. To this end, recall that, Proposition 5.2.12 ensures the existence of
maximal unique (p,κ, s, q)-solution (u( j ),σ( j )) to

du( j ) = [−div(m2 j+3(u( j ))∇∆u( j )) + div(Φ2 j+3(u( j ))∇u( j ))
]

dt

+ ∑
k∈Ndiv(g2 j+3(u( j ))ψk )dβ(k),

u( j )(0) = 1Ω j u0.

(5.2.62)

Now, let us define

σ̃( j ) := inf
{

t ∈ [0,σ( j )) : inf
Td

u(t , ·) ≤ 2
2 j+3

}
where inf∅ :=σ( j ). Note that σ̃( j ) > 0 a.s. on Ω j by construction, and a.e. on [0, σ̃( j )),

m2 j+3(u( j )) = m(u( j )), Φ2 j+3(u( j )) = Φ(u( j )), g2 j+3(u( j )) = g (u( j )).
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In particular, for j ∈N, letting

σ̃ := σ̃( j ) on Ω j and u := u( j ) on [0, σ̃ j )×Ω j ,

one can check that (u, σ̃) is a positive local (p,κ, s, q)-solution to the original equation
(5.1.1). To conclude this step, it remains to discuss its uniqueness, see Definition 5.2.15.
To this end, let (v,τ) be a positive local (p,κ, s, q)-solution to (5.1.1). We define

τ( j ) := inf
{

t ∈ [0,τ) : inf
Td

v(t , ·) ≤ 2
2 j+3

}
where, as usual, inf∅ := τ. Now, arguing as above, it readily follows that (v |Ω j ,1Ω j τ

( j ))

is a local (p,κ, s, q)-solution to (5.2.62). By maximality of the solution (u( j ),σ( j )) we have
τ( j ) ≤σ( j ) a.s. onΩ j and v = u( j ) a.e. on [0,τ( j ))×Ω j . Hence, for all j ∈N, we have v = u( j )

a.e. on [0, σ̃( j ) ∧τ( j ))×Ω j . The latter implies σ̃( j ) ∧τ( j ) = σ̃( j ) ∧τ a.s. and therefore v = u
a.e. on J0, σ̃∧τM.

Maximality within the class of local unique solutions. In this step, we build a posi-
tive unique local (p,κ, s, q)-solution to (5.1.1) which is maximal within the set of positive
unique local (p,κ, s, q)-solution. We set

T :=
{
τ : τ is a stopping time for which there exists a (5.2.63)

positive local unique (p,κ, s, q)-solution (v,τ) to (5.1.1)
}

.

Note that, the above set is non-empty as σ̃ ∈ T , where σ̃ is as in the previous step. Pro-
ceeding as in [5, Step 5b, proof of Theorem 4.5], the uniqueness requirement for local
solutions in T yields τ0,τ1 ∈T implies τ0 ∨τ1 ∈T . In particular, by [91, Theorem A.3],
we conclude that σ := ess supτ∈T τ is a stopping time and there exists a positive local
(p,κ, s, q)-solution (u,σ) to (5.1.1) with a localizing sequence (σl )l∈N, cf., Definition 5.1.3.
Let us conclude by noticing that σ≥ σ̃> 0 a.s.

At this stage, we do not know whether (u,σ) constructed in this step is a positive
maximal unique (p,κ, s, q)-solution as we are not excluding the existence of a positive
local (but not unique) (p,κ, s, q)-solution (v,τ) satisfying P(τ > σ) > 0. To prove that
(u,σ) is actually a positive maximal unique (p,κ, s, q)-solution to (5.1.1) we employ a
blow-up criterion for (u,σ) as constructed above, cf., [6, Remark 5.6].

A blow-up criterion. Let (u,σ) be the positive unique local (p,κ, s, q)-solution con-
structed in the previous step. Then, for all T <∞,

P
(
σ< T , sup

t∈[0,σ)
∥u(t )∥X Tr

κ,p
<∞ , inf

[0,σ)×Td
u > 0

)
= 0. (5.2.64)

We prove the claim by contradiction using the maximality among unique solutions of
(u,σ) and the blow-up criterion (5.2.41). To begin, let us assume that (5.2.64) is false,
and therefore, for some T⋆ > 0 and j⋆ ∈N,

P(O⋆) > 0 where O⋆ :=
{
σ< T⋆ , sup

t∈[0,σ)
∥u(t )∥X Tr

κ,p
<∞ , inf

[0,σ)×Td
u ≥ 2

j⋆

}
.
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Let τ⋆ be the following stopping time

τ⋆ := inf
{

t ∈ [0,σ) : inf
Td

u(t , ·) ≤ 2
j⋆

}
with inf∅ := σ. By construction τ⋆ = σ on O⋆. By the choice of the cut-off in the regu-
larized equation (5.2.2), (u,τ⋆) is a local (p,κ, s, q)-solution to (5.2.2) for all j ≥ j⋆.

Now, by Proposition 5.2.12, there exists a maximal unique (p,κ, s, q)-solution (u⋆,σ⋆)
to (5.2.2) with j = j⋆ + 1. By maximality of (u⋆,σ⋆), it follows that τ⋆ ≤ σ⋆ a.s. and
u = u⋆ a.e. on J0,τ⋆M. The latter fact and the definition of O⋆ yield

P({τ⋆ = σ⋆}∩O⋆) ≤ P
(
{τ⋆ = σ⋆}∩

{
σ⋆ < T⋆ , sup

t∈[0,σ⋆)
∥u⋆(t )∥X Tr

κ,p
<∞

})
(5.2.41)= 0.

Thus, σ⋆ > τ⋆ a.s. onΩ⋆. Consider the following stopping time

τ⋆⋆ := inf
{

t ∈ [0,σ⋆) : inf
Td

u⋆(t , ·) ≤ 2
j⋆+1

}
with inf∅ := σ⋆. Since τ⋆ < σ⋆ and τ⋆ = σ a.s. on O⋆, it follows that τ⋆⋆ > σ a.s. on O⋆.
Arguing as in the first step of the current proof, by maximality of (u⋆,σ⋆), one can check
that (u⋆,τ⋆⋆) is a positive local unique (p,κ, s, q)-solution to the original problem (5.1.1)
which extends (u,σ) as τ⋆⋆ > σ a.s. on a set of positive probability O⋆. This contradicts
the maximality ofσ in the set of positive local unique solutions T , see (5.2.63). Therefore
(5.2.64) holds.

Maximality in the class of positive local solution. Now we show that the positive local
unique (p,κ, s, q)-solution (u,σ) to (5.1.1) constructed above is actually maximal. In-
deed, let (v,τ) be another positive local (p,κ, s, q)-solution to (5.1.1). By uniqueness of
(u,σ) we have u = v a.s. on J0,τ∧σM. Hence, it remains to prove that τ ≤ σ a.s. By the
regularity of local (p,κ, s, q)-solutions, a.s. on {σ < τ}, we have

u = v ∈C ([0,σ]; X Tr
κ,p ) and inf

(0,σ)×Td
u = inf

(0,σ)×Td
v > 0.

Therefore, for all T <∞,

P(σ< τ , σ< T ) = P
(
{σ< τ}∩

{
σ< T , sup

t∈[0,σ)
∥u(t )∥X Tr

κ,p
<∞ , inf

[0,σ)×Td
u > 0

})
(5.2.64)= 0.

The arbitrariness of T <∞ implies that τ≤σ a.s. on {σ=∞}. Hence τ≤σ a.s. as desired.
Additional regularity. Next, we assume that p > 2 and prove the additional assertions

regarding the regularity of the positive maximal unique (p,κ, s, q)-solution (u,σ). To this
end, for all j ≥ 1, let

τ j := inf
{

t ∈ [0,σ) : inf
Td

u(t , ·) ≤ 2
j

}
with inf∅ := σ.

Arguing as in the previous step, (u|J0,τ j M,τ j ) is a local (p,κ, s, q)-solution to (5.2.2). Hence,
it is extended by the maximal unique (p,κ, s, q)-solution to (5.2.2) provided by Proposi-
tion 5.2.12 with j replaced by j + 1, and admits consequently the regularity stated in
Proposition 5.2.12.
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Proof of Proposition 5.1.7. Analogously to the proof of the regularity assertion of Theo-
rem 5.1.6, by a stopping time argument and the maximality of solutions to (5.2.2), we
conclude that u inherits the regularity from the solutions to the regularized problems
stated in Proposition 5.2.13.

Proof of Proposition 5.1.8. The proof is analogous to the one of (5.2.64), where instead
of the blow-up criterion (5.2.41) in Proposition 5.2.12, one uses the blow-up criteria of
Corollary 5.2.14.

5.3. GLOBAL WELL-POSEDNESS IN ONE DIMENSION
The aim of this section is to show the global well-posedness of the stochastic thin-film
equation (5.1.2). As laid out in the introduction of this chapter, (5.1.2) can be cast into
the form (5.1.1) if one sets

Φ(u) = m(u)φ′′(u), g (u) = m1/2(u), (5.3.1)

so that Theorem 5.1.6 yields that the equation is well-posed locally in time. It remains
to use the blow-up criterion from Proposition 5.1.8 to deduce that the unique solution
exists even globally in time. We achieve this by first establishing an a-priori estimate on
the α-entropy (5.1.17) and subsequently estimating the energy (5.1.16) along the trajec-
tory of a solution. To this end, we restrict ourselves to d = 1 and s ∈ (1/2,1] and impose
Assumption 5.1.11 on the noise and Assumption 5.1.9 and 5.1.10 on the mobility func-
tion m and the effective interface potential φ, respectively. Accordingly, we denote the
exponent of degeneracy and growth exponent of m by n and ν, and let ϑ and c0 be as in
(5.1.21) and allow for all implicit constants in this section to depend on (ψk )k∈N, m and
φ and in particular on n, ν, ϑ, and c0. Moreover, we fix an initial value u0 ∈ L0

F0
(Ω; H s (T))

with infTu0 > 0 a.s. and let (u,σ) be the maximal unique positive local (2,0, s,2)-solution
to (5.1.1) with coefficients (5.3.1) given by Theorem 5.1.6. We focus our analysis on the
Itô formulation, i.e., Theorem 5.1.12, which is more delicate since no cancellations oc-
cur. The proof of Theorem 5.1.13 on the Stratonovich formulation can be obtained anal-
ogously by estimating the terms due to the Stratonovich correction in the same way as
the Itô correction terms. We recall both the energy and the α-entropy functional

E (u) =
�
T

[
1
2 |ux |2 + φ(u)

]
dx,

Hβ(u) =
�
T

hβ(u)dx, hβ(r ) =
� r

1

� r ′

1

(r ′′)β

m(r ′′)
dr ′′ dr ′, β ∈ (−1/2,1),

which appear in the following a-priori estimate on the energy at the heart of Theorem
5.1.12.

Lemma 5.3.1. For any 0 < t0 < T < ∞, q ∈ [1,∞) and max{0,ν− 5} < β < 1 holds the
energy estimate

E
[

1Γ sup
t0≤t<σ∧T

E q (u(t ))
]
+ E

[(� σ∧T

t0

�
T

1Γm(u)(uxx −φ′(u))2
x dx dt

)q]
(5.3.2)
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≲β,q,T E
[

1ΓE
q (u(t0)) + 1ΓH

6q/(5+β−ν̃)
β

(u(t0)) + 1ΓH
(ϑ−2)q/(ϑ+2ñ−6)

0 (u(t0))
]

+ E
[

1Γ

(�
T

u0 dx

)min
{

6(β−ϑ)q
5+β−ν̃ , −ϑ(ϑ−2)q

ϑ+2ñ−6

}
+ 1Γ

(�
T

u0 dx

)max
{

9(β+3)q
5+β−ν̃ , 9(ϑ−2)q

2ϑ+4ñ−12

}]
,

where ñ = min{2,n}, ν̃= max{3,ν} and

Γ =
{
σ> t0, E (u(t0)) + Hβ(u(t0)) + H0(u(t0)) ≤ l , 1

l ≤
�
T

u0 dx ≤ l

}
for some l ∈N.

We proceed to show an α-entropy estimate in Subsection 5.3.1 which is used to give
the proof of Lemma 5.3.1 in Subsection 5.3.2. Before all this, however, we demonstrate
how Lemma 5.3.1 leads to the global well-posedness result Theorem 5.1.12.

Proof of Theorem 5.1.12. Any process satisfying (5.1.24)–(5.1.26) constitutes a positive
(2,0, s,2)-solution to (5.1.1) with infinite lifetime. Therefore, the claim follows if we can
verify that the positive maximal unique (2,0, s,2)-solution (u,σ) to (5.1.1) provided by
Theorem 5.1.6 satisfies a.s. σ=∞. Indeed, this immediately yields the existence of a pro-
cess satisfying (5.1.24)–(5.1.26) and uniqueness follows by the uniqueness part of Defini-
tion 5.1.4. The additional regularity assertions (5.1.27) and (5.1.28) will then follow from
Proposition 5.1.7 and the fact that Assumption 5.1.11 implies Assumption 5.1.5(sψ, qψ)
for sψ = 1 and any qψ <∞.

To this end, we recall that u preserves mass, as follows by integrating (5.1.1), and
therefore

sup
t∈(0,σ)

�
T

u(t , x)dx =
�
T

u0(x)dx. (5.3.3)

Moreover, Lemma 5.3.1 and Proposition 5.1.7 show that, for all 0 < ε< T <∞ and a.s. on
{σ> ε},

sup
t∈[ε,σ∧T )

E (u(t )) <∞. (5.3.4)

Combining the previous with (5.1.22), which is rigorously stated in Lemma 5.3.4, and
ϑ> 2 as imposed in Assumption 5.1.10 we deduce that(

inf
[ε,σ∧T )×T

u
)−1 = sup

t∈[ε,σ∧T )
sup
x∈T

u−1

≲ sup
t∈[ε,σ∧T )

E 2/(ϑ−2)(u) +
(�
T

u0(x)dx

)−1

< ∞,

(5.3.5)

a.s. on {σ> ε}. In particular, u is bounded from below on (ε,σ∧T )×T. Since Assumption
5.1.11 implies Assumption 5.1.5(sψ, qψ) for sψ = 1 and all qψ <∞, Proposition 5.1.8 with
s0 = 1, p0 = q0 = 2 and κ0 = 0 is applicable, and combined with (5.3.3)–(5.3.5) and the
Poincaré-Wirtinger inequality, it yields

P(ε<σ< T ) = 0 for all 0 < ε< T <∞.

Now the fact that σ =∞ a.s. follows by letting ε↘ 0 and T ↗∞ as well as σ > 0 a.s. by
Theorem 5.1.6.
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5.3.1. ALPHA-ENTROPY ESTIMATES
As a tool to close an α-entropy estimate we show how to control the minimum and
maximum of a function in terms of the α-entropy dissipation, see [51, Lemma 4.1] and
Lemma 4.2.3 from Chapter 4 for similar estimates.

Lemma 5.3.2. Let β ∈ (−1/2,1), then it holds

sup
x∈T

f β−ϑ(x) ≤ (β−ϑ)2

2

�
T

f β−ϑ−2 f 2
x dx + 2

(�
T

f dx

)β−ϑ
, (5.3.6)

sup
x∈T

f β+5(x) ≲β

(�
T

f β−2 f 4
x dx

)(�
T

f dx

)3

+
(�
T

f dx

)β+5

(5.3.7)

for every positive function f ∈C 1(T) bounded away from 0.

Proof. By the fundamental theorem of calculus

sup
x∈T

f (β−ϑ)/2(x) − inf
x∈T

f (β−ϑ)/2(x) ≤
(�
T

|( f (β−ϑ)/2)x |2 dx

)1/2

= ϑ−β
2

(�
T

f β−ϑ−2 f 2
x dx

)1/2

,

and therefore

sup
x∈T

f (β−ϑ)/2(x) ≤ ϑ−β
2

(�
T

f β−ϑ−2 f 2
x dx

)1/2

+
(�
T

f dx

)(β−ϑ)/2

.

By squaring both sides, we conclude (5.3.6).
For (5.3.7), we introduce the function

g = f (β+2)/4 −
�
T

f (β+2)/4 dx

so that �
T

|g |4/(β+2) dx ≲β

�
T

f dx. (5.3.8)

We can estimate again by the fundamental theorem of calculus

sup
x∈T

|g |(β+5)/(β+2)(x) ≲β

�
T

|gx ||g |3/(β+2) dx ≤
(�
T

|gx |4 dx

)1/4(�
T

|g |4/(β+2) dx

)3/4

,

because g is mean free. Thus, we deduce that

sup
x∈T

f (β+5)/4(x) =
(
sup
x∈T

f (β+2)/4(x)
)(β+5)/(β+2)

=
(
sup
x∈T

g (x) +
�
T

f (β+2)/4 dx

)(β+5)/(β+2)

≲β sup
x∈T

|g |(β+5)/(β+2)(x) +
(�
T

f dx

)(β+5)/4

≲β

(�
T

|gx |4 dx

)1/4(�
T

|g |4/(β+2) dx

)3/4

+
(�
T

f dx

)(β+5)/4

and it remains to insert gx = β+2
4 f

β−2
4 fx , (5.3.8) and raise both sides to the power 4.
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To give the following proof we recall the additional regularity properties of u stated
in Proposition 5.1.7 justifying all the performed integrations by parts.

Lemma 5.3.3. Let 0 < t0 < T <∞, q ∈ [1,∞), β ∈ (−1/2,1) and

γ ∈
[
β+2−

p
(1−β)(1+2β)

3 ,
β+2+

p
(1−β)(1+2β)

3

]
,

then holds the α-entropy estimate

E
[

1Γ sup
t0≤t<σ∧T

H
q
β

(u(t ))
]
+ E

[(� σ∧T

t0

�
T

1Γuβ−ϑ−2u2
x dx dt

)q]
+ E

[(� σ∧T

t0

�
T

1Γuβ−2γ+2(uγ)2
xx dx dt

)q

+
(� σ∧T

t0

�
T

1Γuβ−2u4
x dx dt

)q]
≲β,γ,q,T E

[
1ΓH

q
β

(u(t0))
] + E[1Γ

(�
T

u0 dx

)(β−ϑ)q

+ 1Γ

(�
T

u0 dx

)3(β+3)q/2]
,

(5.3.9)

for any Ft0 -measurable subset Γ of{
σ> t0, Hβ(u(t0)) ≤ l , 1

l ≤
�
T

u0 dx ≤ l

}
for some l ∈N.

Proof. For a localizing sequence 0 ≤σ j ↗σ for (u,σ) as in Definition 5.1.3 we define

σ̃ j = 1Γ inf
{

t ∈ [t0,σ j ∧T ] : inf
x∈T

u(t ) ≤ 1
j or ∥u(t )∥C 2(T) + ∥u∥L2((t0,t );H 3(T)) ≥ j

}
+ 1Γc t0,

(5.3.10)
so that σ̃ j ↗ σ∧T as j →∞ on Γ by Proposition 5.1.7. Correspondingly, we define the
process

u( j )(t ) = 1Γu(t ∧ σ̃ j ) + 1Γc 1T (5.3.11)

for t ∈ [t0,T ] and let h̃β : R→ R be twice continuously differentiable with bounded sec-

ond derivative such that h̃β = hβ on [1/ j , j ]. Then the assumptions of [39, Proposition
A.1] are satisfied and an application of Itô’s formula yields that

�
T

h̃β(u( j )(t ))dx =
�
T

h̃β(u( j )(t0))dx

+
� t

t0

�
T

1[t0,σ̃ j ]×Γh̃′′
β(u( j ))u( j )

x m(u( j ))
(
u( j )

xxx −φ′′(u( j ))u( j )
x

)
dx dr

+ 1
2

∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γh̃′′
β(u( j ))(g (u( j ))ψk )2

x dx dr

+ ∑
k∈N

� t

0

�
T

1[t0,σ̃ j ]×Γh̃′
β(u( j ))(g (u( j ))ψk )x dx dβ(k).
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Moreover, we can replace again h̃β by hβ since they coincide on the range of u( j ) and u( j )

by u to conclude that

1ΓHβ(u(t ∧ σ̃ j )) =1ΓHβ(u(t0)) +
� t

t0

�
T

1[t0,σ̃ j ]×Γuβux (uxxx −φ′′(u)ux )dx dr

+ 1
2

∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γh′′
β(u)(g (u)ψk )2

x dx dr

+ ∑
k∈N

� t

0

�
T

1[t0,σ̃ j ]×Γh′
β(u)(g (u)ψk )x dx dβ(k)

(5.3.12)

for t ∈ [t0,T ]. Using the classical calculation for the deterministic α-entropy [11, Propo-
sition 2.1], see also Subsection 1.3.2, and the assumption (5.1.21) on φ′′, we deduce

�
T

uβux (uxxx −φ′′(u)ux )dx ≤ − 1
γ2

�
T

uβ+2−2γ(uγ)2
xx dx − c(β,γ)

�
T

uβ−2u4
x dx

− c1

�
T

uβ−ϑ−2u2
x dx + c2

�
T

uβu2
x dx,

on [t0, σ̃ j ]×Γ for a constant c(β,γ) > 0. To estimate the Itô correction we calculate more-
over that

(g (u)ψk )2
x ≲ (g ′(u))2u2

xψ
2
k + m(u)(ψ′

k )2.

Since

(g ′(u))2 =
(

m′(u)
2m1/2(u)

)2
≲ u−2m(u) (5.3.13)

by (5.1.20), we obtain

∑
k∈N

�
T

h′′
β(u)(g (u)ψk )2

x dx ≲
�
T

uβ−2u2
x + uβdx.

Using Young’s inequality twice we arrive at

�
T

uβux (uxxx −φ′′(u)ux )dx + ∑
k∈N

�
T

h′′
β(u)(g (u)ψk )2

x dx

≤ − 1
γ2

�
T

uβ+2−2γ(uγ)2
xx dx − c(β,γ)

2

�
T

uβ−2u4
x dx

− c1
2

�
T

uβ−ϑ−2u2
x dx + C

�
T

uβ+2 + uβdx

on [t0, σ̃ j ]×Γ. Inserting this in (5.3.12), taking the q-th power on both sides, the supre-
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mum in time and using the Burkholder–Davis–Gundy inequality, we arrive at

E
[

1Γ sup
t0≤t≤σ̃ j

H
q
β

(u(t ))
]
+ E

[(� σ̃ j

t0

�
T

1Γuβ−ϑ−2u2
x dx dt

)q]

+ E
[(� σ̃ j

t0

�
T

1Γuβ−2γ+2(uγ)2
xx dx dt

)q

+
(� σ̃ j

t0

�
T

1Γuβ−2u4
x dx dt

)q]
≲β,γ,q E

[
1ΓH

q
β

(u(t0))
] + E[(

1Γ

� σ̃ j

t0

�
T

uβ+2 + uβdx dt

)q]
+ E

[(
1Γ

∑
k∈N

� σ̃ j

t0

(�
T

h′′
β(u)ux g (u)ψk dx

)2

dt

)q/2]
.

(5.3.14)

To estimate the latter term, we integrate by parts and obtain that(�
T

h′′
β(u)ux g (u)ψk dx

)2

=
(�
T

� u

1
h′′
β(r )g (r )dr ψ′

k dx

)2

≤
�
T

(� u

1
rβm−1/2(r )dr

)2

(ψ′
k )2 dx.

Using (5.1.18) and (5.1.19), we estimate separately(� u

1
rβm−1/2(r )dr

)2

≲
(� u

1
rβdr

)2

≲β u2β+2, on {u > 1},

and(� u

1
rβm−1/2(r )dr

)2

≲
(� u

1
rβ−n/2 dr

)2

≲β

{
u2β−n+2, 2β−n +2 < 0,

log2(u), 2β−n +2 ≥ 0,
on {u ≤ 1}.

Thus, we arrive at

∑
k∈N

� σ̃ j

t0

(�
T

h′′
β(u)ux g (u)ψk dx

)2

dt

≲β

� σ̃ j

t0

�
{u>1}

u2β+2 dx dt +
� σ̃ j

t0

�
{u≤1}

u2β−n+2 + log2(u)dx, dt

on [t0, σ̃ j ]×Γ. To estimate the power u2β−n+2, we use that

hβ(r ) ≳
� r

1

� r ′

1
(r ′′)β−n dr ′′ dr ′ =


1

β−n+1

(
rβ−n+2−1
β−n+2 − r +1

)
, β−n ∉ {−1,−2},

r −1− log(r ), β−n =−2,

r log(r )− r +1, β−n =−1,

by (5.1.18) for r ≤ 1 so that
�

{u≤1}
uβ−n+2 dx ≲β

�
{u≤1}

hβ(u)+ (u +1)dx ≤ Hβ(u) +
�
T

u0 dx + 1,
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due to the positivity of u and conservation of mass. Therefore, we deduce that
� σ̃ j

t0

�
{u≤1}

u2β−n+2 dx dt ≤
(

sup
t0≤t≤σ̃ j

�
{u≤1}

uβ−n+2 dx

)(� σ̃ j

t0

sup
x∈T

uβdt

)

≤ ε
(

sup
t0≤t≤σ̃ j

Hβ(u(t )) +
�
T

u0 dx + 1

)2

+ Cβ,ε

(� σ̃ j

t0

sup
x∈T

uβdt

)2

for any ε> 0. Inserting all this in (5.3.14) yields

E
[

1Γ sup
t0≤t≤σ̃ j

H
q
β

(u(t ))
]
+ E

[(� σ̃ j

t0

�
T

1Γuβ−ϑ−2u2
x dx dt

)q]

+ E
[(� σ̃ j

t0

�
T

1Γuβ−2γ+2(uγ)2
xx dx dt

)q

+
(� σ̃ j

t0

�
T

1Γuβ−2u4
x dx dt

)q]
≲β,γ,q E

[
1ΓH

q
β

(u(t0))
] + E[(

1Γ

�
T

u0 dx

)q

+ 1Γ

]
+ E

[
1Γ

(� σ̃ j

t0

sup
x∈T

(
uβ+2 + uβ + u2β+2 + log2(u)

)
dt

)q]
.

(5.3.15)

To estimate also the latter term, we observe that all the powers lie betweenβ−ϑ andβ+3
and hence an application of Young’s inequality leads to

sup
x∈T

(
uβ+2 + uβ + u2β+2 + log2(u)

)
≤ εsup

x∈T
uβ−ϑ + Cβ,ε sup

x∈T
uβ+3,

for each ε> 0. By applying Lemma 5.3.2, once more Young’s inequality and conservation
of mass, we can estimate this further by

ε(β−ϑ)2

2

�
T

uβ−ϑ−2u2
x dx + 2ε

(�
T

u0 dx

)β−ϑ
+ Cβ,ε

(�
T

uβ−2u4
x dx

)(β+3)/(β+5)(�
T

u0 dx

)3(β+3)/(β+5)

+ Cβ,ε

(�
T

u0 dx

)β+3

≤ ε(β−ϑ)2

2

�
T

uβ−ϑ−2u2
x dx + 2ε

(�
T

u0 dx

)β−ϑ
+ ε

(�
T

uβ−2u4
x dx

)
+ Cβ,ε

(�
T

u0 dx

)3(β+3)/2

+ Cβ,ε

(�
T

u0 dx

)β+3

.

Choosing ε sufficiently small to absorb the resulting terms in the left-hand side of (5.3.15)
and dropping the intermediate powers of the mass yields

E
[

1Γ sup
t0≤t≤σ̃ j

H
q
β

(u(t ))
]
+ E

[(� σ̃ j

t0

�
T

1Γuβ−ϑ−2u2
x dx dt

)q]

+ E
[(� σ̃ j

t0

�
T

1Γuβ−2γ+2(uγ)2
xx dx dt

)q

+
(� σ̃ j

t0

�
T

1Γuβ−2u4
x dx dt

)q]
≲β,γ,q,T E

[
1ΓH

q
β

(u(t0))
] + E[1Γ

(�
T

u0 dx

)(β−ϑ)q

+ 1Γ

(�
T

u0 dx

)3(β+3)q/2]
.
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We obtain the claimed estimate (5.3.9) by letting j →∞ and using Fatou’s lemma.

5.3.2. PROOF OF THE ENERGY ESTIMATE—LEMMA 5.3.1
To close the a-priori estimate from Lemma 5.3.1 on the energy of the solution u we use
additionally an estimate on the minimum and maximum of a function in terms of the
energy functional. Moreover, we recall once more the additional regularity properties of
u from Proposition 5.1.7.

Lemma 5.3.4. It holds

sup
x∈T

f (2−ϑ)/2(x) ≲ E ( f ) +
(�
T

f dx

)(2−ϑ)/2

, (5.3.16)

sup
x∈T

f 3(x) ≲ E ( f )

(�
T

f dx

)
+

(�
T

f dx

)3

(5.3.17)

for every positive function f ∈C 1(T) bounded away from 0.

Proof. The proof is completely analogous to the proof of Lemma 5.3.2 using additionally
(5.1.21), for a discrete version of (5.3.16) see also [51, Lemma 4.1].

Proof of Lemma 5.3.1. We again make use of the stopping time σ̃ j introduced in (5.3.10)
and the process u( j ) defined in (5.3.11). As in the proof of Lemma 5.3.3, we replace φ
by a two times differentiable function φ̃ : R→ R with bounded second derivative, which
agrees with φ on [1/ j , j ]. Then the assumptions of [39, Proposition A.1] are satisfied and
an application of Itô’s formula yields

�
T

φ̃(u( j )(t ))dx =
�
T

φ̃(u( j )(t0))dx

+
� t

t0

�
T

1[t0,σ̃ j ]×Γφ̃′′(u( j ))u( j )
x m(u( j ))(u( j )

xxx −φ′′(u( j ))u( j )
x )dx dr

+ 1
2

∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γφ̃′′(u( j ))(g (u( j ))ψk )2
x dx dr

+ ∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γφ̃′(u( j ))(g (u( j ))ψk )x dx dβ(k).

Itô’s formula is also applicable to the functional ∥u( j )
x ∥2

L2(T)
. Indeed, as carried out in

detail in Appendix 2.C from Chapter 2, one can for example identify u( j ) with its equiva-
lence class ū( j ) of homogeneous distributions so that the functional ∥ux∥2

L2(T)
coincides

with the squared Ḣ 1(T)-norm of ū( j ). Then [100, Theorem 4.2.5] becomes applicable on
the Gelfand triple Ḣ 3(T) ⊂ Ḣ 1(T) ⊂ Ḣ−1(T) leading to

1
2

�
T

(u( j )
x )2(t )dx = 1

2

�
T

(u( j )
x )2(t0)dx

−
� t

t0

�
T

1[t0,σ̃ j ]×Γu( j )
xxx m(u( j ))

(
u( j )

xxx −φ′′(u( j ))u( j )
x

)
dx dr
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+ 1
2

∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γ(g (u( j ))ψk )2
xx dx dr

− ∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γu( j )
xx (g (u( j ))ψk )x dx dβ(k).

By inserting the definition of u( j ), using that φ̃ and φ coincide on its range and adding
the two Itô expansions together, we conclude that

1ΓE (u(t ∧ σ̃ j )) = 1ΓE (u(t0)) −
� t

t0

�
T

1[t0,σ̃ j ]×Γm(u)(uxx −φ′(u))2
x dx dr

+ 1
2

∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γ
[
φ′′(u)(g (u)ψk )2

x + (g (u)ψk )2
xx

]
dx dr

+ ∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γ(φ′(u)−uxx )(g (u)ψk )x dx dβ(k),

(5.3.18)

for t ∈ [t0,T ]. To estimate the Itô correction, we use (5.1.18), (5.1.19), (5.1.21) and (5.3.13)
to deduce that∑

k∈N

�
T

φ′′(u)(g (u)ψk )2
x dx ≲

∑
k∈N

�
T

u−ϑ−2(g ′(u))2u2
xψ

2
k + u−ϑ−2m(u)(ψ′

k )2 dx

≲
�
T

u−ϑ−4m(u)u2
x + u−ϑ−2m(u)dx

≲
�

{u>1}
uν−ϑ−4u2

x + uν−ϑ−2 dx +
�

{u≤1}
un−ϑ−4u2

x + un−ϑ−2 dx.

Similarly, using that

(g (u)ψk )xx = (g ′(u)uxx + g ′′(u)u2
x )ψk + 2g ′(u)uxψ

′
k + g (u)ψ′′

k ,

we obtain ∑
k∈N

�
T

(g (u)ψk )2
xx dx (5.3.19)

≲
�
T

(g ′(u))2u2
xx + (g ′′(u))2u4

x + (g ′(u))2u2
x + m(u)dx.

Because of (5.1.20) it holds

(g ′′(u))2 =
(

2m′′(u)m(u)− (m′(u))2

4m3/2(u)

)2
≲ u−4m(u),

which together with (5.1.18), (5.1.19) and (5.3.13) yields that (5.3.19) is bounded by
�
T

u−2m(u)u2
xx + u−4m(u)u4

x + u−2m(u)u2
x + m(u)dx

≲
�
T

u−2m(u)u2
xx + u−4m(u)u4

x + m(u)dx
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≲
�

{u>1}
uν−2u2

xx + uν−4u4
x + uνdx +

�
{u≤1}

un−2u2
xx + un−4u4

x + un dx.

In summary, we have verified the estimate

∑
k∈N

�
T

φ′′(u)(g (u)ψk )2
x + (g (u)ψk )2

xx dx

≲
�

{u>1}
uν−ϑ−4u2

x + uν−ϑ−2 + uν−2u2
xx + uν−4u4

x + uνdx

+
�

{u≤1}
un−ϑ−4u2

x + un−ϑ−2 + un−2u2
xx + un−4u4

x + un dx

on [t0, σ̃ j ]×Γ. Inserting this in (5.3.18) and taking the supremum in time, we arrive at

1Γ sup
t0≤t≤σ̃ j

E (u(t )) +
� σ̃ j

t0

�
T

1Γm(u)(uxx −φ′(u))2
x dx dt

≲ 1ΓE (u(t0)) + 1Γ

� σ̃ j

t0

�
{u>1}

uν−ϑ−4u2
x + uν−ϑ−2 + uν−2u2

xx + uν−4u4
x + uνdx dt

+ 1Γ

� σ̃ j

t0

�
{u≤1}

un−ϑ−4u2
x + un−ϑ−2 + un−2u2

xx + un−4u4
x + un dx dt

+ sup
t0≤t≤T

∣∣∣∣ ∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γ(φ′(u)−uxx )(g (u)ψk )x dx dβ(k)
∣∣∣∣.

(5.3.20)

For the sake of clarity, we divide the rest of the proof into three steps.
Estimate on the integral over {u > 1}. We define ν̃ = max{3,ν} and estimate using

(5.3.6), (5.3.7), (5.3.17) and Young’s inequality

�
{u>1}

uν−ϑ−4u2
x + uν−ϑ−2 + uν−2u2

xx + uν−4u4
x + uνdx

≤
�
T

uν̃−ϑ−4u2
x + uν̃−ϑ−2 + uν̃−2u2

xx + uν̃−4u4
x + uν̃dx

≤
(
sup
x∈T

uν̃−β−2
)�

T

uβ−ϑ−2u2
x + uβ−ϑ + uβu2

xx + uβ−2u4
x + uβ+2 dx

≲β

(
E (ν̃−β−2)/3(u)

(�
T

u0 dx

)(ν̃−β−2)/3

+
(�
T

u0 dx

)ν̃−β−2)
×

(�
T

uβ−ϑ−2u2
x + uβu2

xx + uβ−2u4
x dx +

(�
T

u0 dx

)β−ϑ
+

(�
T

u0 dx

)β+2)
.

We denote the terms in the last row as I (u) and obtain due to Young’s inequality the
bound

� σ̃ j

t0

�
{u>1}

uν−ϑ−4u2
x + uν−ϑ−2 + uν−2u2

xx + uν−4u4
x + uνdx dt
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≲β

(
sup

t0≤t≤σ̃ j

E (ν̃−β−2)/3(u) +
(�
T

u0 dx

)2(ν̃−β−2)/3)
×

(�
T

u0 dx

)(ν̃−β−2)/3

×
� σ̃ j

t0

I (u)dt

≤ ε
(

sup
t0≤t≤σ̃ j

E (u) +
(�
T

u0 dx

)2)
+ Cβ,ε

((�
T

u0 dx

)(ν̃−β−2)/3

×
� σ̃ j

t0

I (u)dt

)3/(5+β−ν̃)

≤ ε

(
sup

t0≤t≤σ̃ j

E (u) +
(�
T

u0 dx

)2)

+ Cβ,ε

((�
T

u0 dx

)2(ν̃−β−2)/(5+β−ν̃)

+
(� σ̃ j

t0

I (u)dt

)6/(5+β−ν̃))
(5.3.21)

on Γ for any ε> 0. To estimate the I (u)-term later on, we remark that

E

[
1Γ

(� σ̃ j

t0

I (u)dt

)6q/(5+β−ν̃)]
≲β,q,T E

[
1ΓH

6q/(5+β−ν̃)
β

(u(t0))
]

+ E
[

1Γ

(�
T

u0 dx

)6(β−ϑ)q/(5+β−ν̃)

+ 1Γ

(�
T

u0 dx

)9(β+3)q/(5+β−ν̃)] (5.3.22)

by an application of Lemma 5.3.3 with γ= 1 and additionally absorbing the intermediate
power of the mass.

Estimate on the integral over {u ≤ 1}. We set ñ = min{2,n}, so that
�

{u≤1}
un−ϑ−4u2

x + un−ϑ−2 + un−2u2
xx + un−4u4

x + un dx

≤
�
T

uñ−ϑ−4u2
x + uñ−ϑ−2 + uñ−2u2

xx + uñ−4u4
x + uñ dx

≤
(
sup
x∈T

uñ−2
)�

T

u−ϑ−2u2
x + u−ϑ + u2

xx + u−2u4
x + u2 dx

≲
(
E 2(2−ñ)/(ϑ−2)(u) +

(�
T

u0 dx

)ñ−2)
×

(�
T

u−ϑ−2u2
x + u2

xx + u−2u4
x dx +

(�
T

u0 dx

)−ϑ
+

(�
T

u0 dx

)2)
.

(5.3.23)

because of (5.3.6), (5.3.7) and (5.3.16). We define K (u) as the last row of (5.3.23) and
observe that for ñ = 2 its prefactor equals 1 so that the following estimate trivializes.
Otherwise we have 0 < 2(2−ñ)

ϑ−2 < 1 by Assumption 5.1.10 and an application of Young’s
inequality yields the bound

� σ̃ j

t0

�
{u≤1}

un−ϑ−4u2
x + un−ϑ−2 + un−2u2

xx + un−4u4
x + un dx dt

≲
(

sup
t0≤t≤σ̃ j

E (u)2(2−ñ)/(ϑ−2)(u) +
(�
T

u0 dx

)ñ−2)
×
� σ̃ j

t0

K (u)dt

≤ ε

(
sup

t0≤t≤σ̃ j

E (u) +
(�
T

u0 dx

)(2−ϑ)/2)
+ Cε

(� σ̃ j

t0

K (u)dt

)(ϑ−2)/(ϑ+2ñ−6)

(5.3.24)
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on Γ. As in the previous step we remark that Lemma 5.3.3 with β′ = 0, γ′ = 1 yields

E

[
1Γ

(� σ̃ j

0
K (u)dt

)(ϑ−2)q/(ϑ+2ñ−6)]
≲β,q E

[
1ΓH

(ϑ−2)q/(ϑ+2ñ−6)
0 (u(t0))

]
+ E

[
1Γ

(�
T

u0 dx

)−ϑ(ϑ−2)q/(ϑ+2ñ−6)

+ 1Γ

(�
T

u0 dx

)9(ϑ−2)q/(2ϑ+4ñ−12)] (5.3.25)

for later purposes.
Closing the energy estimate. Inserting (5.3.21) and (5.3.24) in (5.3.20) and choosing ε

sufficiently small yields

1Γ sup
t0≤t≤σ̃ j

E (u(t )) +
� σ̃ j

t0

�
T

1Γm(u)(uxx −φ′(u))2
x dx dt

≲β 1ΓE (u(t0)) + 1Γ

(�
T

u0 dx

)(2−ϑ)/2

+ 1Γ

(�
T

u0 dx

)max
{

2(ν̃−β−2)
5+β−ν̃ ,2

}

+ 1Γ

(� σ̃ j

t0

I (u)dt

)6/(5+β−ν̃)

+ 1Γ

(� σ̃ j

t0

K (u)dt

)(ϑ−2)/(ϑ+2ñ−6)

+ sup
t0≤t≤T

∣∣∣∣ ∑
k∈N

� t

t0

�
T

1[t0,σ̃ j ]×Γ(φ′(u)−uxx )(g (u)ψk )x dx dβ(k)
∣∣∣∣.

We take the q-th power on both sides, use the estimates (5.3.22) and (5.3.25) and the
Burkholder–Davis–Gundy inequality to estimate further

E

[
1Γ sup

t0≤t≤σ̃ j

E q (u(t ))

]
+ E

[(� σ̃ j

t0

�
T

1Γm(u)(uxx −φ′(u))2
x dx dt

)q]
≲β,q,T E

[
1ΓE

q (u(t0)) + 1ΓH
6q/(5+β−ν̃)
β

(u(t0)) + 1ΓH
(ϑ−2)q/(ϑ+2ñ−6)

0 (u(t0))
]

+ E
[

1Γ

(�
T

u0 dx

)min
{

6(β−ϑ)q
5+β−ν̃ , −ϑ(ϑ−2)q

ϑ+2ñ−6

}
+ 1Γ

(�
T

u0 dx

)max
{

9(β+3)q
5+β−ν̃ , 9(ϑ−2)q

2ϑ+4ñ−12

}]
+ E

[(
1Γ

∑
k∈N

� σ̃ j

t0

(�
T

(φ′(u)−uxx )(g (u)ψk )x dx

)2

dt

)q/2]
,

where we absorb again the intermediate power of the mass. Since( ∑
k∈N

� σ̃ j

t0

(�
T

(φ′(u)−uxx )(g (u)ψk )x dx

)2

dt

)q/2

≲
(� σ̃ j

t0

�
T

(φ′(u)−uxx )2
x g 2(u)dx dt

)q/2

≤ ε

(� σ̃ j

t0

�
T

m(u)(φ′(u)−uxx )2
x dx dt

)q

+ Cε,

by another application of Young’s inequality, we deduce (5.3.2) by taking the limit j →∞
and using Fatou’s lemma.



6
CONCLUSION AND OUTLOOK

We summarize the findings from this thesis regarding the solution theory of the stochas-
tic thin-film equation with temporally white and spatially colored Gaussian noise as fol-
lows.

In Chapter 5 based on [3] we showed that while the film height remains strictly posi-
tive, unique solutions exist and become instantaneously smooth in space if the noise is
sufficiently regular. We proved that such a positivity preserving behavior of the equa-
tion can be observed when the repulsive van der Waals forces between the molecules
are incorporated in the model. This is the first result on uniqueness of solutions to the
stochastic thin-film equation available in the literature and expresses additionally that,
if the intermolecular forces are included in the model, the equation is very well-behaved.
Moreover, since the results of Chapter 5 apply to a wide range of mobility functions, the
positive and spatially smooth solutions can serve as approximate solutions for the equa-
tion without an interface potential in future works.

We proved moreover that if the film height touches down, martingale solutions to
the stochastic thin-film equation exist. In particular, in Chapter 2 based on [116] we pio-
neered the two-dimensional setting together with the independently developed [107] in
the linear noise case and considerably advanced the nonlinear noise case n ∈ (2,3) in one
spatial dimension in Chapters 3 and 4 based on [36, 117]. While the current literature,
including the results of this thesis, do not cover all scenarios of interest—for example
nonlinear noise in higher dimensions is untreated—the presented results indicate that
some compactness argument is expected to work as long as one accepts low regularity
solutions.

As key ingredients in the proofs of these results we additionally provided insight on
the subtle interplay of higher-order degenerate parabolic operators, their non-negativity
preserving mechanisms and non-Lipschitz continuous, conservative noise. Specifically,
we demonstrated the usefulness ofα-entropy estimates for the stochastic thin-film equa-
tion and investigated in Chapters 3 and 5 their relation to the energy estimate. This will
certainly play a role in future research on the stochastic thin-film equation, but can also
be inspiring for other nonlinear stochastic partial differential equations.

215



6

216 6. CONCLUSION AND OUTLOOK

Knowing about the existence of solutions does surely not constitute a full mathematical
understanding of the stochastic thin-film equation, however, it does stand at its begin-
ning. In particular, the existence results from of this thesis together with the literature
discussed in Section 1.5 invite for a rigorous investigation of the various constructed
solutions concerning their qualitative properties. Since for the deterministic thin-film
equation many interesting phenomena like quantified spreading rates [13, 14, 18, 48, 64,
71, 72, 83], asymptotics in the complete wetting [29, 30, 101, 125] and partial wetting
regime [44, 105] as well as the occurrence of waiting times [21, 34, 38, 49, 50, 61, 74]
have been verified, it is a natural question how the noise affects these properties. A step
in this direction is taken in a series of three works starting with [76, 77], in which finite
propagation speed of a regularized stochastic thin-film equation is shown.

We remark that weak solutions to the thin-film equation are, in general, not unique
[11], but uniqueness holds in the smaller class of waiting time solutions [31]. Comple-
menting the weak solution theory, the local in time existence and uniqueness of strong
solutions was shown in [40, 62] for the case that a contact line is present. Also addressing
the case of a non-fully supported profile, global in time well-posedness of the thin-film
equation close to source type, stationary and traveling-wave solutions has been shown.
Source type and self-similiar solutions are studied in [16, 47, 65, 104, 120], while global
in time existence and uniqueness of solutions close to stationary profiles is obtained in
[27, 63, 89, 92, 93] and traveling-wave solutions are treated in [60, 66–68]. It would be
interesting to see if existence and uniqueness of solutions can be shown in the case that
a contact line is present also for the stochastic thin-film equation.

Finally, it is an intriguing problem to eventually treat the stochastic thin-film equa-
tion with a spatio-temporal white noise W . Not only is this the thermodynamically pre-
scribed noise, but also the resulting stochastic gradient flow structure makes the equa-
tion interesting. By following up on the work [80] a pathwise existence and uniqueness
result of a renormalized version seems to be in reach.
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