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We introduce a simple semiempirical anharmonic Kirkwood–Keating potential to model
AxB1−xC-type semiconductors. The potential consists of the Morse strain energy and Coulomb
interaction terms. The optical constants of pure components,AB andBC, were employed to fit the
potential parameters such as bond-stretching and -bending force constants, dimensionless
anharmonicity parameter, and charges. We applied the potential to finite temperature
molecular-dynamics simulations on AlxGa1−xAs for which there is no lattice mismatch. The results
were compared with experimental data and those of harmonic Kirkwood–Keating model and of
equation-of-motion molecular-dynamics technique. Since the Morse strain potential effectively
describes finite temperature damping, we have been able to numerically reproduce experimentally
obtained optical properties such as dielectric functions and reflectance. This potential model can be
readily generalized for strained alloys. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1883628g

I. INTRODUCTION

Understanding optical properties of group III-V pseudo-
binary random alloys is of major interest to research aimed at
employing these materials, for instance, for the quantum cas-
cade lasersQCLd. QCL is in great demand for many laser-
based application areas such as terabit optical data
communications,1 ultraprecision metrology,2 spectroscopy,3

and medical imaging.4 This monolithic, mid-infrared super-
continuum semiconductor laser is inherently compact and
provides high output power. Also, it is a unipolar laser5 that
is based on electron transitions within semiconductor quan-
tum well nanostructures.6,7 The emission structure of the
QCL can be varied from a single quantum well to a complex
chirped superlattice consisting of semiconductor layers of
general formulaAxB1−xC. Therefore, theoretical studies can
greatly benefit the development and applications of QCL by
designing a quantum well structure so that it can produce a
desired and customized radiation profile.

AxB1−xC random alloys typically adopt a zinc-blende
crystal structure, with two sublatticessAC andBCd. Due to
the random substitution of a fraction of theA-type ions byB
in one of the sublattices, the simple four-branch dispersion

relation of the zinc-blende crystal no longer appears. Instead,
we observe a complex mixture of pure system perturbed
modes. Extensive experimental work has been devoted to
describe vibrational states in this class of materials. The fre-
quencies of the longitudinal-sLOd and transverse-sTOd opti-
cal modes of AlxGa1−xAs mixed crystals have been studied
by Ilegems and Pearson8 from the Kramers–Kronig analysis
of infrared reflectance spectra followed by Raman spectros-
copy study on the long-wavelength vibrational behavior.9–12

Jusserand and Sapriel13 measured the LO and TO mode be-
haviors with varying Al concentrations and thoroughly ana-
lyzed the line-shape asymmetry of these modes in terms of
defect and anharmonicity. Optical properties of AlxGa1−xAs
for Al concentrations have also been obtained using optical
reflection techniques.14

In order to predict the optical properties of an alloy of
arbitrary composition, a theoretical or computational method
has also been used. The straightforward mean-field approxi-
mation has been shown to fail in producing correct
spectra.15,16 Alternatively, the coherent-potential approxima-
tion sCPAd model developed by Bonneville17 as well as com-
putational methods such asab initio calculations has been
more successful.15,16,18 Baroni et al. have presented anab
initio model based on which they determined the dispersion
of phonon branches in thin AlAs and GaAs films. Recently,
Branicio et al. have performed molecular-dynamicssMDd
simulations using an interaction potential and investigated
structural, mechanical properties on InxGa1−xAs alloys.19

adAuthor to whom correspondence should be addressed. Electronic mail:
esim@yonsei.ac.kr

bdCurrent address: Department of Physics, Arizona State University, Tempe,
AZ 85287-1504

THE JOURNAL OF CHEMICAL PHYSICS122, 174702s2005d

0021-9606/2005/122~17!/174702/7/$22.50 © 2005 American Institute of Physics122, 174702-1

Downloaded 10 Sep 2010 to 131.180.130.114. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.1883628
http://dx.doi.org/10.1063/1.1883628
http://dx.doi.org/10.1063/1.1883628


However, these techniques are either computationally ex-
tremely demanding or difficult to generalize and apply to
other alloys.

The main features of an experimental phonon spectrum
are reproduced within the simple Kirkwood–Keating
svalence-forced model.20,21 This is a low-order expansion of
the strain energy, with respect to atomic shifts relative to the
perfect-crystal lattice sites, fitted to the elastic constants.
However, there are considerable deviations in certain regions
of the Brillouin zone. The major deviations occur at the
zone-centersGd optical-phonon frequencyvTO, which often
tends to be overestimatedsi.e., too large phonon force con-
stantd. The Kirkwood–Keating model gives a poor descrip-
tion on the flattening of the transverse-acoustic-phonon
branch near the zone boundarysXd.

It has been shown that the inclusion of further interac-
tion terms can improve the calculated dispersion.22,23A six-
parameter model satisfactorily has described the phonon fre-
quencies of all four diamondlike crystals.24 The general
valence-force-field model has one two-body forcea and
three distinct three-body forcesb, g, and k. The last two
terms describe the correlation of angle distortion with the
length change of one leg, and the correlation between the
length changes of two neighboring bonds.

In this paper we propose a very simple semiempirical
model potential modified from the Kirkwood–Keating poten-
tial, which reproduces the optical spectra of the AlxGa1−xAs
random alloy that is taken here as an example material. The
potential contains as few parameters as possible in order to
facilitate the parameter fitting procedure and generalization
to other alloys. The potential consists of terms that are di-
rectly related to atomic interactions. Moreover, the parameter
fitting procedure is based on experimental data of pure com-
ponents, which are usually known. We aim for a general
model that can be used to predict optical properties of alloys
of arbitrary composition. The AlxGa1−xAs alloy is a special
case in the collection of possible pseudobinary alloys, be-
cause of the almost identical lattice constants of the pure
components: AlAs and GaAs. As a consequence, there is
virtually no length mismatch between the sublattices, which
leaves only mass disorder. This simplifies the analysis, and
the method will be equally valid for a wider range of mate-
rials.

This paper is organized as follows: In Secs. II and III, we
introduce the potential and discuss how the various param-
eters can be fitted to experimental data of pure components,
particularly GaAs and AlAs for a test case. We present re-
sults of dielectric and reflectance spectra of AlxGa1−xAs of
varying compositionx followed by concluding remarks in
Sec. IV. The reflectance spectra are extremely sensitive to the
position and shape of the peaks in the dielectric-response
function and are therefore a good evaluation tool for our
model.

II. MODEL

The total potential energy of the system is divided into
the strain and Coulomb energy,

Vtotal = Vstrain+ VCoulomb. s1d

We will discuss each term in details in Secs. II A and II B.

A. Anharmonic strain energy

It is known that the elastic constants of zinc-blende
structure crystals in equilibrium are well described by
Kirkwood–Keating’s two-parameter model.20,21 There have
been many modifications to this harmonic model to improve
the calculated dispersion curves by including further interac-
tion terms. We introduce the anharmonic interaction by re-
placing the harmonic bond restoring interaction term in
original Kirkwood–Keating model with the Morse potential
using dimensionless anharmonicity parameterx,

Vstrain= o
ki,jÞil

ai j

2sxi j /r ij
0d2he−2sxi j /ri j

0dsri j−ri j
0d − 2e−xi j /ri j

0sri j−ri j
0d

+ 1j + o
ki,jÞi,kÞi,jl

bi jkr ij
0r ik

0

8
S r i jr ik

r ij r ik
+

1

3
D2

. s2d

The strain energy is taken to depend on the vectorr i j which
connects nearest-neighbor lattice sitesi and j . Index i runs
over all atoms andj andk run over the four nearest neigh-
bors of atomi in tetrahedral structure.r ij is the distance
between atomsi and j , while r ij

0 is the equilibrium distance.
In this expression, cosui jk =r i jr ik / r ij r ik is the scalar product
between the two vectors connecting atomi with its neighbors
j and k. The fraction 1/3 inside the second bracket is the
contribution from equilibrium tetrahedral angle 109° that
gives coss109d=−1/3. In zinc-blende structure, the relation-
ship between the equilibrium nearest-neighbor distancer0

and the lattice constanta0 is a0=4r0/Î3. For simplicity,
atomic indices of potential parameters will be omitted from
this point forward such that we usea, b andx instead ofai j ,
bi jk, andxi j . Both parametersa andb have the dimension of
a force constantsN/md.

The first term in Eq.s2d represents the two-body central
force interaction between nearest neighbors, i.e., the covalent
bond between Ga–As or Al–As, while the second term de-
scribes the angular interaction between atomi and its two
nearest neighborsj and k. The parametersa and b essen-
tially describe the bond-stretching and bond-bending restor-
ing forces. They are fitted to reproduce the elastic constants
and phonon frequencies to those obtained experimentally.

B. Coulomb interaction

The bonds between group III-V elements can have sig-
nificant polarity. The effective force constantsa and b ac-
count only for the short-range part of the electrostatic forces,
whereas the long-range electrostatic forces that arise for po-
larized bonds are neglected in the Kirkwood–Keating model.
We add to Eq.s2d a term for the long-range electrostatic
interactions, i.e., Coulomb interaction, between electrically
charged ions,
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VCoulomb=
1

4p«0«`
o

ki,jÞil

qiqj

r ij
, s3d

where «0 is the permittivity of vacuum,«` is the high-
frequency dielectric constant, andqi is the charge of ioni.

The effect of long-range interactions on the strain energy
of group III-V compounds is expected to be small, but the
long-range forces are essential for correct description of the
phonon dispersion. They are, for instance, responsible for the
splitting of the LO- and TO-phonon frequencies at the
Brillouin-zone center. The LO displacement produces mac-
roscopic ionic polarization. A corresponding macroscopic
electric field produces an additional restoring force, giving
rise to a LO frequency shift.

The Ewald summation method25 is used to avoid anoma-
lies from a Coulomb interaction cutoff radius. We use a ve-
locity Verlet time integration scheme with a time step of 2 fs.
All simulations are performed at constant volume. The MD
runs are kept at constant temperature by a Nosé extended
system thermostat. Periodic boundary conditions are im-
posed for all simulations. Since the atoms in the group III-V
alloy are polar, we intentionally use an uneven-surface rect-
angular sample to avoid the macroscopic electrostatic field of
a bulk sample. The usual periodic boundary is applied and
the interaction cutoff distance at 8.5 Å is used for simulation
efficiency. The total number of atoms is 480 with 60 unit
cells.

III. OPTICAL PROPERTIES OF Al xGa1−xAs

The potential parameters in Eqs.s2d and s3d depend on
the type of atoms in a random alloy of interest. As an ex-
ample we take an AlxGa1−xAs system, which has the advan-
tage that there is almost no length mismatch between AlAs
and GaAs sublattices. The potential parameters of the pure
GaAs and AlAs are very similar in many empirical model
potentials.26,27 We therefore expect that the parameters for
AlAs and mixed alloys will be close to pure GaAs. The
model can be generalized for more complex systems with
lattice strain.

Experimental data of the pure systems GaAs and AlAs,
which are well available from literature,28,29 are used to fit
the potential parameters. These data include the dispersion
relation of phonon frequencies, refractive index, extinction
coefficient, dielectric spectrum, and reflectance. Both ana-
lytical expressions and empirical fitting methods are used.
The empirical methods amount to testing a trial parameter set
with the equation-of-motion molecular dynamics30 sEQM-
MDd or standard MD at room temperature and adjusting the
parameters until they produce fair agreement with experi-
mental results. The potential parametersa andb are fitted to
match the GaAs optical-phonon bands, using two analytical
and one empirical relations between these parameters and the
phonon frequencies. The anharmonicity parameter,x, is fit-
ted to the reflectance spectrum.

We will first consider parameters for the GaAs side and
later discuss AlAs side in this section. The optical-phonon
frequency at the zone center, i.e.,k=0, v0, of a non-
Coulombic zinc-blende structure, can be derived from a har-

monic approximation of the potential Eq.s2d. For a Coulom-
bic system,v0 can be calculated from the LO- and TO-
phonon frequenciessvLO andvTOd given by27

v0
h =

2

3
vTO +

1

3
vLO =Î 4

3m
Fa +

16

9
bG , s4d

wherem is the reduced mass. The superscripth indicates that
the phonon frequency was obtained using the harmonic ap-
proximation. The parameterb mainly controls the downshift
of the TO band within the Brillouin zone,

DvTO = vTOsGd − vTOsXd. s5d

We found, by empirical methods, a linear dependence of the
TO shift on parameterb. This enables independent determi-
nation ofb. Hence, we first fit the angular interaction param-
eter b to reproduce the width of the GaAs TO dispersion
curve, while using approximate values fora and q. The
phonon-dispersion spectrum can be determined in the usual
way. For GaAs, a best fit of 15-cm−1 shift was found using
b=5.7 N/m.31

When we introduce ionic charges, the LO and TO bands
in the dispersion relation split, where the LO phonon shifts to
a higher frequency and that of TO is shifted lower. This
LO-TO Coulomb splitting has been studied for many
systems.30,32The difference between the LO and TO frequen-
cies is related to the plasma frequency,vp, which, for pure
crystals, can be computed from the Lyddane–Sachs–Teller
relation33

vp
2 = vLO

2 − vTO
2 =

1

V«0«`
o

i

qi
2

mi
, s6d

whereV is the volume of the system andmi is the mass of
ion i. The parametersa and q are computed from Eqs.s4d
and s6d and previously determinedb,34,35 vLO=270 cm−1,
vTO=295 cm−1, and v0=279 cm−1. We found that a
=115 N/m andq=2.27e. Simulations with this set of param-
eters resulted in the dispersion relation shown in Fig. 1. The

FIG. 1. Phonon-dispersion curve for pure GaAss100d with experimental data
ssymbolsd reproduced from Bilz and KresssRef. 31d. The solid lines are
obtained from molecular-dynamics simulations at room temperature. X cor-
responds to the Brillouin-zone boundary, whileG to zone center. The calcu-
lated TO-phonon frequencies agree well with the experiment for the entire
zone, since we fit theb angular parameter to the relationship Eq.s3d.
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dispersion relations are in reasonable agreement with experi-
ment despite the simplicity of the model. The vibration dis-
persion spectrum of this zinc-blende crystal structure con-
tains six branches, three optical and three acoustic branches.
Both the optical and the acoustic branches consist of two
transverse and one longitudinal modes. The optical branches
are pairwise degenerate. The Coulomb splitting of the optical
modes is clearly visible. The longitudinal branches deviate
from the experimental data near the zone boundary. We ex-
pect that this deviation will have only a small effect on most
of the optical spectra that mainly couple to the TO modes.
The data taken from the dispersion curves arevTOs0d
=270 cm−1, vLOs0d=294.3 cm−1, and vTOs0d−vTOs1d
=16.1 cm−1. These are in agreement with experiment and
with our analytical calculations.

Next, the anharmonicity parameterx is fitted to the
GaAs reflectance spectrum. The reflectance is a function of
the complex dielectric function«svd, which we need to cal-
culate first. The dielectric function is obtained from the cur-
rent autocorrelation functionsCACFd, computed from a MD
run. The imaginary part of the dielectric function is com-
puted with a Gaussian screening function as follows:

«9sk,vd =
2p

Vv

2

p
E

0

T

dt cossvtdexpf− sst/Td2g

3Ko
i

qivistdo
j

qjv js0dL , s7d

wherevi is the velocity vector of anith atom. The angular
brackets denote the usual ensemble averaging. The Gaussian
damping factors was set to 3.0. The real part,«8sk ,vd, can
be obtained by using corresponding sine transform, or
through Kramers–Kronig transformation of«9sk ,vd. Then
the reflectance,Rsvd, is computed from«svd through

Rsvd = U1 −Î«svd
1 +Î«svd

U2

. s8d

The reflectance is a function of the LO and TO frequencies
and, as we found, is also highly sensitive to the peak widths.
These peak widths, or second moments of the dielectric re-
sponse, are related to the decay of the CACF. A fast decay
causes a broad peak in«svd. This CACF decay, or the damp-
ing in the TO modes, is mainly due to anharmonicity effects,
since the anharmonic terms enhance the coupling to other
modes and the dispersion of phonon energy. The reflectance
maximum is therefore a good measure of the degree of an-
harmonicity in the system and a proper quantity for fitting
the value ofx. This damping effect of anharmonicity on the
reflectance is clearly seen in Fig. 2. EQM-MD technique
gives theT=0 K limit, where the higher-order terms in the
potential are negligible and the system is essentially har-
monic. This produces a region of 100% reflectance: the Rest-
strahlen band between the LO and TO frequencies. At finite
temperature, if anharmonic effects are included, this 100%
reflection band is reduced by damping and coupling to other
modes. The Kirkwood–Keating potential is weakly anhar-
monic due to the angular terms and the MD simulation at
300 K produces a 97% reflectance maximum. This damping

is less than that observed in experiment. Although the angu-
lar terms introduce anharmonicity to a certain extent, the
Kirkwood–Keating model needs an additional damping fac-
tor to mimic a real system. This is the reason we added
anharmonicity by introducing the Morse potential in the
strain energy. The parameterx controls the degree of anhar-
monicity. Using ax of 1.36, the maximum reflectance of
GaAs is reduced to the experimental value of 90%, as shown
in Fig. 2. In principle, thev0

h can depend onx. We therefore
recalculated this frequency after adjustingx. For
Al xGa1−xAs, the effect was negligible, but for other com-
pounds one may need to rewrite the expression of phonon
frequency such thatx is included.

For AlxGa1−xAs, the ionic charges are constant over the
composition range, but the high-frequency dielectric constant
«` varies. Its value is estimated from the Clausius–Mossotti
equation36

« − «`

« + 2«`

=
4p

3V
sNAlAshAlAs + NGaAshGaAsd, s9d

whereNAlAs sNGaAsd is the number density of AlAssGaAsd.
The polarizabilitiesh are determined from experimental re-
sult of «` for the pure systems:«`sGaAsd=10.88 and
«`sAlAsd=8.16.

The parameters for the AlAs are kept identical to the
GaAs except for a somewhat larger bond-stretch parameter
a. This is done to shift the AlAs dispersion to larger wave
numbers and get a better overlap for the reflectance data. The
optimized set of parameters is listed in Table I. The ionic
charges appear rather large due to the relative dielectric con-
stant in the form ofqeff=q/Î«` that is used in the Coulomb
term in Eq.s3d. Correcting for the high-frequency dielectric
constants yields charges ofqGa

eff =−0.69 andqAl
eff=−0.79 for

the pure systems.

FIG. 2. Reflectance of GaAs using various simulation methods. The solid
line represents experimental result from Ref. 35, the dotted line is obtained
from equation-of-motion molecular-dynamics simulation, and the dashed
and long-dashed lines are from room-temperature molecular-dynamics
simulations. Harmonic Kirkwood–Keating model has been used for the
dashed line while anharmonic Kirkwood–Keating model has been used for
the long-dashed line. The equation-of-motion technique representsT=0 con-
dition. The anharmonic Morse potential gives a better fit to the experimental
data than the harmonic bond-stretch potential by including physical damping
effects.
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Finally, we discuss the optical properties of AlxGa1−xAs
with varying Al composition. It has been known that III-V
semiconductor alloys show a two-mode behavior,37 exhibit-
ing two sets of phonon mode where the phonon frequencies
are close to those of pure components. Figure 3 shows the
dielectric function of AlxGa1−xAs calculated from MD runs
at 300 K with several values of Al composition. Clearly the
dielectric function displays the two-mode behavior, which
agrees well with experimental observation.38 As the mole
fraction of Al increases, starting with pure GaAs, the dielec-
tric function develops a peak near the pure AlAs peakshere-
after, AlAs-like peakd. The peak positions and widthsssec-
ond momentd of «9svd as functions of the Al mole fraction
are plotted in Fig. 4sad. The GaAs-like peak shifts to longer
wavelengthsredshift by approximately 20 cm−1d as Al com-
position increases, while the AlAs-like one shifts to shorter
wavelength sblueshift by approximately 10 cm−1d. This

means that both the AlAs- and GaAs-like peaks shift to
longer wavelengths as its mole fraction decreases.39 The
peak width is the largest, as expected, when an alloy is an
equal mixture of GaAs and AlAs and becomes narrow as one
component dominates. Note also that the peaks are asymmet-
ric. As Al composition fraction increases, GaAs-like peaks
become asymmetric; short-wavelength side on the right be-
comes broader than long-wavelength side on the left. This
behavior is also observed in AlAs-like peaks where the
lower-frequency side is broader than the higher-frequency
side. The integral of«9svd spectrum can be related to the
plasma frequency through the sum rule,30

TABLE I. Potential parameters for AlxGa1−xAs.

r0sÅd asN/md bsN/md x qAs
efffqsedg

GaAs 2.47 115 5.7 1.36 0.69f2.27g
AlAs 2.47 119 5.7 1.36 0.79f2.27g

FIG. 3. sad Real and sbd imaginary parts of dielectric function«8 of
Al xGa1−xAs pseudobinary alloy for various Al compositionsx. Notice the
two-mode behavior of the dielectric function which agrees with experimen-
tal observation in Ref. 38.

FIG. 4. sad Peak positions and second moments of«9svd of Al xGa1−xAs
pseudobinary alloy for various Al compositionsx. Note that the error bar
represents full width at half maximumsFWHMd of each peak. The results
are from room-temperature molecular-dynamics runs using the potential pa-
rameters shown in Table I. The two-mode behavior is clearly seen through-
out all composition ranges.sbd Weights of the Ga- and Al-type peaks of
«9svd as a function of Al fractionx. The sum of the two weights increases
following vp

2 ssolid lined, calculated from Eq.s10d, thus satisfying the sum
rule. It should be noted that the almost linear behavior ofvp

2 is coincidental.
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2

«`p
E

0

`

dvv«9svd = vp
2. s10d

Since the two peaks are well separated, by distinguishing
Ga- and Al-type peaks of«9svd and defining the weights of
each peak accordingly, in Fig. 4sbd one can see that this
weight gradually shifts from GaAs- to AlAs-like peak as Al
composition increases. The sum of the two weights increases
following the plasma frequency, thus satisfying the sum rule.
It should be noted that the almost linear behavior ofvp

2 is
coincidental. Although, in general, the strength of each mode
is proportional to the mole fraction of the corresponding
component, we observed that Al-type peak has larger weight
even when the Al fraction is less than half. Overemphasis on
the Al-type peak is caused by the neglected site dependence
of Al charges.39 The weights of the two peaks are the same
when Al fraction is 0.3.

Figure 5 compares calculated and experimentally mea-
sured reflectance spectrum of AlxGa1−xAs. The reflectance
peak shifts as the composition changes displaying the two-
mode behavior. The results of simulated reflectance shown
here were calculated with Eq.s8d using dielectric functions
screened with Gaussian functions in Eq.s7d.

IV. CONCLUSION

Using a very simple semiempirical anharmonic
Kirkwood–Keating potential with parameters fitted to the
pure components, GaAs and AlAs in this paper, we have
been able to reproduce optical properties such as dielectric
functions and reflectance spectra of mixed compounds. We
found that the reflectance is highly sensitive to higher order
terms in the potential, in particular, to the degree of anhar-
monicity of the stretch term. It has been shown that this

anharmonicity is essential for a correct reflectance spectrum
at finite temperature. The dimensionless anharmonicity pa-
rameter introduced into the harmonic Kirkwood–Keating
model provided effective damping to mimic a real system at
finite temperature.

The model can easily be extended to other systems of
semiconductor alloys by taking into account the composi-
tional dependence on parameters such as the lattice con-
stants, dielectric constants, and charges. While lattice-
matched layers can be used for long wavelength quantum
well lasers, strain balancing has been shown to be a viable
technique to realize short-wavelength QCLs. Highly strain-
balanced heterostructure quantum wells, such as InxGa1−xAs,
can provide short-wavelength lasers with high conduction-
band offset and minimal leakage current. Intensive studies on
InxGa1−xAs using the anharmonic Kirkwood–Keating poten-
tial introduced in this article are currently under progress.
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