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ABSTRACT

Numerical simulations have become an essential part of design in every field of engineering, and the
boundaries of technology are pushed further out every year. In structural engineering, the desire to de-
sign structures that have complex shapes or that are simply cheaper and more efficient, has necessitated
the use of complex numerical simulations. This necessity is further substantiated when taking into con-
sideration structures such as wind turbines that are subjected to extreme environmental conditions. In
many cases, however, such simulations are prohibitively expensive due to complex material behaviour
or the many-query nature of design optimization. The lack of knowledge and understanding of the be-
haviour and failure mechanisms is compensated by adopting less complex designs and/or high safety
factors, which leads to less efficient and more expensive designs.

In recent years, methods to circumvent such high computational costs have been developed. Accel-
eration techniques such as model-order reduction (MOR) are now widely researched, and significant
developments are being made to overcome the issues of prohibitively expensive high-fidelity models.
This thesis uses Proper Orthogonal Decomposition (POD) to drastically reduce the degrees of freedom
of a simply supported beam that is loaded in the downwards direction along the span. The result of
the MOR process is a reduced-order model (ROM) that accurately approximates the behaviour of the
full-order model (FOM). The ROM is constructed by determining a set of basis vectors that contain com-
pressed information of representative full-order solutions collected in an offline training phase. The goal
in this thesis is so collect the information and construct the reduced basis as efficiently as possible while
guaranteeing a given accuracy of the ROM.

Two methods are presented to iteratively construct the reduced basis. The first one is the Surrogate Pa-
rameter Space (SPS) method, where greedy sampling is performed on incrementally finer grids of points
along the beam. Each individual grid is referred to as an SPS, and they are exhausted by selecting the
load location that in each iteration will add the most new information to the ROM. The other method
is the Gaussian Process Regression (GPR). Greedy sampling using a Bayesian machine learning algorithm
involving GPR is used to predict load locations along the beam that add the most new information to
the ROM. Amethod to efficiently combine and compress information obtained in each iteration was also
developed.

The results showed that the SPS method is efficient to construct an accurate ROM for the beam model
in this thesis, but the GPR managed to recognize that some areas in the span did not have to be sampled
as much as others. This makes GPR the more promising method for other high-fidelity models when
high accuracy is desired. The results also showed that bothmethods depend greatly on input parameters
that define how much information is kept in each iteration, and for GPR an additional parameter that
determines how much accurate the regression itself should be. In order to execute an efficient offline
phase, these parameters must be chosen carefully, and it is recommended for future work to develop
methods to adaptively choose them. It was also shown that the number of ROMs that have to be run as
part of the greedy sampling is the bottleneck of efficiency for both methods. For high-fidelity models
with higher-dimensional parameter spaces, this bottleneck necessitates the use of hyper-reduction tech-
niques such as the Empirical CubatureMethod (ECM) to reduce the computation time of the ROM itself.
It is recommended that the methods investigated and the corresponding results in this thesis are used
as a stepping stone to implement automatic and efficient samplingmethods to other high-fidelitymodels.
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1 INTRODUCTION

1.1 General Overview
In the field of structural mechanics, the goal of model-order reduction (MOR) is to substitute a pro-
hibitively expensive high-fidelity model with a significantly less complex reduced-order model (ROM)
[26]. In the context of finite element modelling, reduction occurs in terms of fewer degrees of freedom
or fewer integration points in which material response is computed. Methods have been developed to
perform the actual dimensionality reduction, but they rely on information from the full-order model
that has to be obtained in the so-called offline training phase. Assuming that a reduced model can be
represented by a set of basis vectors, the task of the offline phase is to compute these vectors. These
vectors are often determined by exhaustively sampling solutions from the full-order model, but that can
be computationally expensive. Therefore, this thesis aims to develop and optimize the automatic and
efficient sampling of full-order solutions to iteratively construct a ROM that accurately approximates the
behaviour of a full-order nonlinear finite element model.

The case that is studied is a simply supported beam that is loaded in the downwards direction at an
arbitrary point along the span. The ROM is constructed in the offline training phase by iteratively by
running the full-order model (FOM) with samples of loads at different locations, and assembling a re-
duced basis (RB) using snapshots of the displacements in the entire beam due to each load case. When
the ROM is accurate enough, the offline training phase is considered to be converged and is stopped.
Then, in the online stage, the ROM can be run with a load at any location that will result in a response
that accurately approximates the response of the FOM.

The high-level steps of the offline training phase procedure are summarized in Algorithm 1.1:

Algorithm 1.1: Offline training phase procedure
1 Select initial load location
2 Initialize reduced basis
3 while not converged do
4 Select load location
5 Run full-order model
6 Enrich reduced basis
7 Evaluate accuracy of the reduced-order model
8 if converged then
9 return Reduced basis

10 end
11 end

More specifically, this thesis will focus on lines 4 and 6 of Algorithm 1.1. A detailed procedure on iter-
atively updating the reduced basis while retaining and maximizing the amount of useful information
(while remaining efficient) is developed. Furthermore, two methods for sampling the parameter space
of the FOM are presented and compared.

1



2 Introduction

1.2 Aim of the Research
The goal of this research is to develop and combine methods to reduce the computation time of finite
element analyses that involve high-fidelity mechanical models by implementing an automatic and effi-
cient procedure to sample the parameter space for load cases. This thesis will build upon some of the
acceleration techniques implemented by Rocha [26] to minimize the computational cost of a multiscale/-
multiphysics model. The results of the implementation using the aforementioned beam model can then
be used as a stepping stone to implementing similar sampling methods to other high-fidelity models.

The following research questions have been formulated to guide and assess the research:

Research Questions

1. What is the best way to sample the parameter space so as to minimize the number of training
cases?

2. Can training be performed in an optimized way by a heuristic algorithm that takes the maxi-
mum tolerable loss of accuracy as input?

1.3 Research Methodology
The focus of the literature study is to look into various methods of sampling (infinitely dimensional)
parameter spaces, and determine which methods could be feasible to implement and investigate the
performance of. Methods that make use of machine learning techinques are desirable for automatic and
efficient load case selection formodel-order reduction (MOR), so one of the chosenmethods investigated
in this thesis makes use of the Bayesian machine learning. The other method explored in this thesis does
not make use of any machine learning techniques, but is an efficient way to explore a parameter space
such as the one used in this thesis, which is the span of a beamwhere loads are applied in the downwards
direction.

Following the literature review and choice of methods, computational tools are developed to imple-
ment two methods of greedily sampling the parameter space:

1. SPS Method: Greedy sampling of incrementally finer grids of points along the beam, where each
individual grid is referred to as a Surrogate Parameter Space (SPS). Each grid is exhausted by every
time selecting the load location that will add the most new information to the reduced model.

2. GPR Method: Greedy sampling using a Bayesian machine learning algorithm involving Gaussian
Process Regression (GPR) to predict load locations that in each iteration add the most new informa-
tion to the reduced model.

The computational implementation is programmed in C++ using the Jem-Jive toolkit, and the MOR
framework developed by Rocha [26] is expanded to facilitate the iterative sampling of the parameter
space. Following the implementation, the performance of the methods is assessed, and how the perfor-
mance varies with different input parameters is investigated in a parametric study.

1.4 Thesis Outline
The thesis is structured such that all steps of the offline training phase procedure for each method are
explained in a chronological manner. In chapter 2, the background and basics of MOR are presented,
followed by brief explanations of the steps necessary to construct a reduced model. A large portion
of the literature review is dedicated to the sampling of the parameter space. The following chapter,
chapter 3, is kicked off with a necessary adjustment to the existing ROM framework in regards to how
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the reduced basis is iteratively assembled from the displacement snapshots. This is followed by thorough
explanations of the two different methods of sampling the parameter space. The chapter is finished off
by detailing the convergence modelling. Then, chapter 4 contains all the results that are gathered to
answer the research questions, along with thorough discussions of observations that can be made from
the results. Finally, chapter 5 summarises the findings of the thesis and the conclusions that can be made
to answer the research questions, before finishing up with recommendations for further research.





2 LITERATURE REVIEW

2.1 High-Fidelity Models
In today’s technological world numerical simulations have become an essential part of the design process
in every field of engineering, and computing power has been increasing rapidly every year, enablingmore
andmore complex simulations to be carried out. However, there are still problems that are too complex to
be solved by conventional computers and algorithms, which has led to the rise of model-order reduction
(MOR). MOR was originally developed in the area of systems and control theory in order to reduce
the complexity of the problems, but is today a flourishing field of research used in all areas that involve
numerical modelling, especially in electronics and fluid and structural mechanics [30]. The goal of MOR
is to substitute an expensive high-fidelity numerical model with a reduced-order model (ROM) that
accurately approximates the full-order model (FOM) and is inexpensive to compute. Figure 2.1 shows
one of the simplest examples of model-order reduction techniques, where the mesh is made extremely
coarse compared to the FOM, but still contains enough information to show that it is a model of bunny.

Figure 2.1: Graphical illustration of simple MOR [30]

An example of an application ofMOR in structural mechanics is the numerical modelling of laminated
composites for wind turbine blades performed by Rocha [26], and is shown in Figure 2.2. This is a highly
heterogeneous material combination with large stiffness gradients, resulting in significantly complex
mechanical behaviour. Additionally, due to the small diameter of the order of a few micrometers, the
microscale behaviour of the material is important to understand in order to produce efficient designs.
Wind turbines are subjected to highly dynamic loads, undergo considerable temperature changes, and
are also exposed to moisture ingression. All of these effects combined result in a model of excessively
high fidelity that is prohibitively expensive to compute for conventional computers and algorithms.

Figure 2.2: Laminated composite observed at macro-, meso-, and microscale [26]

5
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The macroscale domain Ω of the laminated composite is formed by the repetition of a heterogeneous
microstructure, as illustrated in Figure 2.3. The repeated microstructure is referred to as a representative
volume element (RVE) that consists of unidirectional fibers surrounded by resin. In the MOR process
for a multiscale model, the RVE is used to construct the reduced model, and is then homogenized to the
macroscale.

Figure 2.3: Macro- and microscale structures and RVE ROM [33]

Another example ofmultiscalemodel is a porousmetalmaterial, as illustrated by the RVE in Figure 2.4.
This RVE is similar to that of a laminated composite, except that the fibers are replaced with pores, and
there is no interface between the fibers and the resin. This model is thus likely to be significantly cheaper,
but the presence of the pores still makes the finite element discretization complex enough to necessitate
MOR.

Figure 2.4: RVE for a porous metal material [11]
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2.2 Model-Order Reduction
Finite element analysis using the types ofmodels discussed previously can involve exceedingly high com-
putation times, so development into methods to reduce the complexity of such models was prompted
in order to accelerate such analyses. Model-order reduction techniques aim to construct reduced-order
models (ROMs) of as low complexity as possible that still manage to represent full-ordermodels (FOMs)
as accurately as possible; the ROM should deliver a good approximation of the FOM for any set of pa-
rameters (e.g. load paths, flow fields). Projection-based reduced-order modeling techniques are widely
used, and the most popular of these is Galerkin Projection used in combination with Proper Orthogonal
Decomposition (POD) [28]. This method efficiently compresses snapshots of full-order solutions ob-
tained using samples from the parameter space, and projects the full-order problem onto the so-called
reduced basis. After constructing a reduced basis, further reduction techniques can be applied to this
basis to create a hyper-reduced-order model (HROM), such as the Empirical Cubature Method (ECM)
[28]. This hyper-reduction technique heuristically determines samples of the integration points of the
reduced basis and computes the constitutive response.

2.2.1 Full-Order Finite Element Problem
This section briefly outlines the Finite Element Method (FEM) as described by Rocha [26], Rocha et al.
[28] and Nikishkov [18]. FEM is a numerical method for solving field problems that are generally de-
scribed by partial differential equations (PDEs). The first step is to subdivide the domain Ω of the FE
model into a number of discrete elements that have a number of nodes that connect the elements to
each other. The next step is to derive the interpolation functions that correspond with the geometry and
physics of the FE model, before deriving the element equations using the Galerkin method, and using
this to derive the overall system of equations. Boundary conditions are also applied to the boundary Γ

of the domainΩ usually in the form of Neumann or Dirichlet boundary conditions to form the final part
of the equilibrium problem. With the global equilibrium problem described, the final step is to solve for
the unknowns at the nodes using direct or iterative methods (e.g.Newton-Raphson solver).

The global equilibrium problem in its full, weak form is expressed as:

rrr = fffΩ(uuu) − fffΓ = 000 (2.1)

where rrr ∈ ℝ𝑁 is the residual vector, fffΓ ∈ ℝ𝑁 is the external force vector, and fffΩ ∈ ℝ𝑁 is the internal
force vector. The solution of the global equilibrium problem is obtained by iteratively correcting the
displacement vector until rrr = 0 using the following expression:

∆uuu = uuun − uuuo = −KKK−1
o rrro (2.2)

where o and n indicates that values stem from the old or new analysis increments, respectively, and
KKK ∈ ℝ𝑁 is the global tangent stiffness matrix:

KKK = 𝜕fffΩ

𝜕uuu (2.3)

where the global internal force vector fffΩ is computed as follows:

fffΩ = ∫
Ω

fff𝑑Ω ≈
𝑀
∑

𝑖
fff(xxx𝑖)𝑤𝑖 (2.4)

with fff ∈ ℝ𝑁 being a sparse internal force vector at a givenmaterial point, 𝑀 is the number of integration
points considered in the domain Ω, with 𝑤 as the corresponding integration weight.
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2.2.2 Proper Orthogonal Decomposition
POD is a statistical tool that was first introduced by Pearson [22], and it has been continuously devel-
oped since then by various authors. It is referred to in other field of applications as Principal Component
Analysis [22], Karhunen-Loève transform [29], Hotelling transform [14], Empirical Orthogonal Func-
tions [23], and more. In the field of structural engineering it is known as POD, and it is a way to explore
the internal structure of given data and compress it to a signficiantly lower order representation of the
same data. This is illustrated in Figure 2.5, whereΦΦΦ is the reduced basis, and XXX is a matrix of snapshots
of the full-order solutions.

Figure 2.5: Outline of POD [34]

The original full-order FEM problem with 𝑁 degrees of freedom (Eq. (2.1)) is projected onto the re-
duced basisΦΦΦ ∈ ℝ𝑁×𝑘𝑔 using the Galerkin projection constraint (ΦΦΦTrrr = 0), to obtain the reduced equi-
librium problem:

ΦΦΦT(fffΩ − fffΓ ) = 0 ⇒ fffΩr − fffΓr = 0 (2.5)

which reduces the problem to solving for 𝑘𝑔 ≪ 𝑁 mode contributions ααα ∈ ℝ𝑘. Then, the full-order
displacement field is recovered as [28]:

uuu𝑟 = ΦΦΦααα (2.6)

ααα contains the degrees of freedom of the reduced space and represents the contribution of 𝑘𝑒 elastic and
𝑘𝑖 inelastic displacement modes, and 𝑘𝑔 = 𝑘𝑒 + 𝑘𝑖. Eq. (2.6) shows that uuu is approximated as a linear
combination of 𝑘𝑔 basis modes, as illustrated in Figure 2.6.

Figure 2.6: Reduced basis modes contributions [26]

A slightly modified version of the method can be used when dealing with a concurrent multiscale
analysis (FE2) where it is usual to split the displacement (or strain) field into two parts: a macroscopic
part uuu and a microscopic fluctuating part ũuu [10, 11]:

uuu(xxx, 𝑡) = uuu(xxx, 𝑡) + ũuu(xxx, 𝑡) (2.7)

with uuu given by:
uuu(𝑡) = ϵϵϵ𝑀(𝑡)(xxx − xxx) (2.8)
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where 𝑡 is the time, xxx is the coordinate, xxx is the center of mass of the RVE, and ϵϵϵ𝑀 describes the load
path of the applied far field load. If utilizing this definition of the displacement field, then the reduced
displacement field would turn into:

uuu ≈ uuu𝑟 = uuu +ΦΦΦααα (2.9)

which is also illustrated in Figure 2.7 in 2D. These macroscale contributions represent the linear elastic
responses to uniaxial loads in x- and y-directions, and a shear load. This splitting ensures that the solu-
tions from the elastic regime are captured and implemented sufficiently.

Figure 2.7: Decomposition of macroscale part and microscale fluctuation [10]

The result of POD is a reduced model of size 𝑘𝑔 ≪ 𝑁 that accurately approximates the constitutive
response of the full-order model for any set of parameters. However, constructing the reduced basis
requires sampling parameters from a potentially infinite-dimensional parameter space in an efficient
way.

2.2.3 Hyper-reduction
While initial reduction steps can reduce the number of degrees of freedom by a factor of thousands, the
computation of the internal force vector fffΩr can still be prohibitively expensive for complex mechanical
models because of the high number of integration points in the finite element model that must be inte-
grated over. Therefore, hyper-reduction techniques are being developed such as the Empirical Cubature
Method (ECM) [12, 28]. This method aims to reduce the number of integration points considered in
the domain that accurately represents the full integrand. The reduced set of integration points are deter-
mined along with the corresponding weights to optimize efficiency without a significant loss of accuracy.
ECM reduces the computation of the global internal force vector to 𝑚 << 𝑀 integration points:

fffΩ = ∫
Ω

fff𝑑Ω ≈
𝑚

∑
𝑖=1

fff(xxx𝑖)𝜔𝑖 (2.10)

This equation is very similar to Eq. (2.4), except 𝑀 is replaced by 𝑚 and 𝑤𝑖 by 𝜔𝑖, which are integration
weights that are modified by the ECM.
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An alternative hyper-reduction method is the Discrete Empirical Interpolation Method (DEIM) devel-
oped by Chaturantabut and Sorensen [4]. POD reduces the number of degrees of freedom and ECM
reduces the number of integration points, but the evaluation of nonlinear responses remains a computa-
tional bottleneck [9]. To overcome this inefficiency, DEIM attempts to approximate a nonlinear function
by combining POD-Galerkin projection with interpolation, resulting in an approximation for the full-
order global internal force vector fffΩ.

2.3 Reduced Basis

2.3.1 Constructing the Reduced Basis
As mentioned in 2.2.2 Proper Orthogonal Decomposition, the reduced space is built from snapshots of
the full-order solutions. The type of snapshots used depends on the problem being solved, but which
type is used generally does not affect the performance of a reduced-model. Goury et al. [10] uses strain
snapshots, Hernández et al. [12] uses stress snapshots for structural mechanics, and Kalashnikova et al.
[16] uses pressure snapshots for fluidmechanics, but this thesis will use displacement snapshots as done
in Rocha [26].

The displacement snapshots are basically the displacement values at every degree of freedom at every
time step, and after solving the full-ordermodel for a specific parameter, they are collected in amatrixXXX of
size 𝑁×𝑁𝑡, where 𝑁 is the number of degrees of freedom of the full-ordermodel, and 𝑁𝑡 is the number of
time steps [21], and it assumed that the number of time steps remains the same for each training iteration.
For now, one training iteration is defined as the process of selecting a parameter, collecting snapshots
using the full-ordermodel, and then updating the basis. XXX is referred to as a local snapshotmatrix because
it corresponds to the solutions for the current iteration 𝑁𝑖𝑡. As more snapshots are generated using 𝑁𝑖𝑡
sets of parameters, the snapshot matrices from all the iterations of the offline training phase are collected
in a global snapshot matrix XXX𝑔:

XXX𝑔 = [XXX𝑔
0, … , XXX𝑔

𝑁𝑖𝑡
] (2.11)

Once the desired number of snapshots have been collected, they are compressed using the method of
Singular Value Decomposition (SVD). This is the most important part of the POD procedure as this
is the step where the most important data from the high-fidelity solutions are collected in the first 𝑘𝑔

columns of UUU, which is obtained by applying the SVD to the snapshot matrix XXX𝑔:

XXX𝑔 = UΣZTUΣZTUΣZT (2.12)

where UUU and ZZZ are the left-singular and right-singular matrices of orthonormal eigenvectors (or basis
vectors), respectively, and ΣΣΣ is a rectangular diagonal matrix of singular values of XXX𝑔 [28]. The singu-
lar values are arranged in descending order, and their magnitudes signify the importance of the data in
the columns of the basis matrix, and at this point the matrices are still of very high order. Therefore, to
construct an accurate and efficient reduced basis, only the 𝑘𝑔 first columns will be used, as illustrated in
Figure 2.8.

However, the SVD is a process that ignores the physical meaning of the data in the snapshots, but the
reality is that one part of the snapshots corresponds to linear elastic solutions of the full order FE problem,
and another part to inelastic solutions. In the SVD, which basis vectors are considered to be important is
a purely statistical consideration, so in case the data from e.g. the elastic regime is not represented well
in the snapshots, then the resulting basis vectors with the largest singular values (i.e. the most important
modes) would not represent any information from this range. This would cause the reducedmodel to be
either inaccurate or inefficient because a large number of basis vectors may have to considered in order
to construct a basis that represents the elastic response well enough, which could greatly increase the
computation cost of the reduced model [11].
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(a) Full SVD

(b) Truncated SVD

Figure 2.8: Full and Truncated SVD

To prevent this, Hernández et al. [11] proposes to decompose the local snapshot matrix XXX𝑁𝑖𝑡
into an

elastic part (XXXe) and an inelastic part (XXXi). In the work of Rocha et al. [28], the SVD is performed on the
two parts separately before combining them together into one basis: ΦΦΦ = [UUUe UUUi].

2.3.2 Updating the Reduced Basis
Ideally, ΦΦΦ would be computed only once from a snapshot matrix XXX obtained from exhaustively sam-
pling the parameter space. In practice, however, this would lead to a prohibitively expensive training
phase if the parameter space is too large. The alternative is to resort to a greedy training procedure in
which an initial basis is computed and is subsequently updated in a number of training iterations to
include information from newly-obtained snapshots. An important issue that has to tackled when col-
lecting more snapshots to add to the basis is exactly how to update the basis. The SVD is often one of
the largest contributions to computation cost of the POD procedure [20] because the global snapshot
matrix XXX𝑔

𝑁𝑖𝑡
∈ ℝ𝑁×(𝑁𝑡𝑁𝑖𝑡), gets excessively large when carrying out more trainings with new parameters

(Eq. (2.11)), especially when considering a large amount of time steps.

An alternative approach to updating the basis is to add an additional step in the POD-greedy process
as proposed by Paul-Dubois-Taine and Amsallem [21], where a global surrogate snapshot matrix X̃XX

𝑔
𝑁𝑖𝑡

is
assembled from local surrogate matrices X̃XX𝑁𝑖𝑡

. The following explanation will not consider the elastic-
inelastic decomposition outlined in the previous subsection.

First, the SVD is performed on the local snapshot matrix XXX𝑁𝑖𝑡
and the resulting matrices are truncated

to the first 𝑘𝑔
𝑁𝑖𝑡

singular values:

XXX𝑁𝑖𝑡
= UUU𝑁𝑖𝑡

ΣΣΣ𝑁𝑖𝑡
ZZZ𝑇

𝑁𝑖𝑡
≈ ŨUU𝑁𝑖𝑡

Σ̃ΣΣ𝑁𝑖𝑡
Z̃ZZ

𝑇
𝑁𝑖𝑡

(2.13)

Then, a local surrogate snapshot matrix X̃XX𝑁𝑖𝑡
is constructed that represents the original high-dimensional

XXX𝑁𝑖𝑡
, but has significantly smaller dimension:

XXX𝑁𝑖𝑡
≈ X̃XX𝑁𝑖𝑡

= ŨUU𝑁𝑖𝑡
Σ̃ΣΣ𝑁𝑖𝑡

∈ ℝ𝑁×𝑘𝑔
𝑁𝑖𝑡 (2.14)
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Lastly, the global surrogate snapshot matrix X̃XX
𝑔
𝑁𝑖𝑡

is then assembled as:

X̃XX
𝑔
𝑁𝑖𝑡

= [X̃XX𝑁1
, … , X̃XX𝑁𝑖𝑡

] ∈ ℝ𝑁×( ∑𝑁𝑖𝑡
𝑗=1 𝑘𝑗) (2.15)

The truncation 𝑘𝑔
𝑁𝑖𝑡

can be determined in a fewdifferentways. Rocha et al. [28] used a constant number
of elastic and inelastic modes to ensure that both types of behaviour were captured accurately. However,
in that case the author utilized knowledge-based sampling, which requires a low number of number of
training cases, so constructing the basis with a set number of modes is not that punishing in terms of
computational efficiency. Additionally, the number of modes required to accurately describe a load case
varies in each iteration based on the response. In the case that many training cases are required, the
number of modes should be kept as low as possible for each type of response (elastic or inelastic) and in
each iteration. The most common way is to determine the truncation by using an energy criterion which
ensures that a certain fraction of the snapshot energy is retained in the surrogate snapshots [10, 16, 21, 31],
where the energy of a matrix is the sum of its singular values. Using this criterion, 𝑘𝑔

𝑁𝑖𝑡
is chosen to be

the smallest integer such that:

∑
𝑘𝑔

𝑁𝑖𝑡
𝑗=1 Σ𝑗𝑗

∑𝑁
𝑗=1 Σ𝑗𝑗

≥ ε (2.16)

where 0 ≤ ε ≤ 1 and represents the fraction of the retained snapshot energy desired in the reduced basis.
ε is usually chosen to be at least 0.99, though it depends on the problem.

2.4 A Priori Sampling
Besides the issues of efficiently constructing and updating the basis as discussed previously, one of the
most important issues during the offline training phase is how to efficiently sample the parameter space,
which in many cases could be infinitely dimensional [10]. Efficient samplingmethods must therefore ad-
dress two challenges. Firstly, a systematic and smart strategy for selecting where and how many sample
parameters to generate is necessary. Secondly, a strategy that is sufficiently scalable should be utilized,
so that high-dimensional parameter spaces can be sampled efficiently [8]. One may utilize knowledge of
the full-order problem to predict important and representative regions of the parameter space, as done
in Rocha et al. [27], which addresses the first challenge and makes the second one negligible, but often
such predictions about the behaviour of the full model cannot be made because such prior knowledge
does not exist. It is therefore desirable to develop a reliable method of sampling the parameter space
that does not rely on prior knowledge of the model that is to be reduced. This section explores various
methods to sample the potentially infinite-dimensional parameter space that address one or both chal-
lenges. First, a priori sampling strategies will be explored, followed by progressive and greedy sampling
strategies.

2.4.1 Knowledge-Based Sampling
This is by far the most efficient way of constructing a reduced basis because it saves a lot of computation
time that would otherwise be spent to e.g. figure out which training cases add the most useful informa-
tion. Using e.g. a greedy algorithm (2.6 Greedy Sampling), a reduced basis is made up of snapshot
solutions that add as much new information as possible, but not all that information is actually useful
for many load cases that will be applied to the ROM in the online phase. So with knowledge of which
load cases will be applied to the online reduced model, only the training cases that add information that
describes these load cases needs to be used.

Rocha et al. [27] had knowledge of what sort of elastic, plastic and fracture response was expected, so
the load cases shown in Figure 2.9 were chosen to accurately represent the expected behaviour. A risk
of this sort of sampling is that insufficient knowledge or flawed understanding of the expectations can
result in inaccurate reduced models.
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Figure 2.9: Load cases used by Rocha et al. [27] to train a ROM

2.4.2 Uniform Sampling
Uniform sampling is a straightforward way of sampling the parameter space, depending on the problem.
It is a sure way of exhaustively sampling the parameter space, but for high-dimensional problems, the
computational expense can get excessively high. There are many ways to discretize the parameter space
uniformly, and two of them are shortly outlined in this section.

Simply Supported Beam
For a simply supported beam, the parameter space can be discretized into a grid of uniform spacing, as
shown in Figure 2.10. The spacing depends on the desired accuracy with consideration of the computa-
tion time.

Figure 2.10: Uniformly spaced grid for a simply support beam

Representative Volume Element (RVE)
Figure 2.11a shows a typical way to apply loads to an RVE. Here, the parameter space is discretized by
dividing the range of angles into a grid of uniform angle spacing, as shown in Figure 2.11b. The two an-
gles can either vary together or separately. How the angles vary in relation to each other and the spacing
depends on the desired accuracy with consideration of the computation time.

(a) Loads applied to an RVE [19] (b) Uniformly spaced grid for load angles

Figure 2.11: RVE load example
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2.4.3 Random Sampling
Random sampling is another simple way to probe the parameter space. For the beam model, this would
be a number of randomly selected load in the downwards direction along the span, and for the RVE
shown in the previous section it would be loads applied with random magnitudes in random directions.
However a random sampling algorithm could easily fail to capture important regions in the parame-
ter space [8]. Including enough samples to make sure that these regions are recognized could be too
computationally expensive.

2.5 Progressive Non-Greedy Sampling

2.5.1 Constrained Random Sampling for RVE Modeling
Goury et al. [10] proposes a method that is near-random, but employs a contraint that ensures that
additional snaphots always add more information to the reduced basis. First of all, the parameters in
Goury et al. [10] are represented by load paths (Figure 2.12a) described by:

ϵϵϵ𝑀(𝑡) = (ϵ𝑀
𝑥𝑥(𝑡) ϵ𝑀

𝑥𝑦(𝑡)
ϵ𝑀

𝑥𝑦(𝑡) ϵ𝑀
𝑦𝑦(𝑡)) (2.17)

which are applied to the RVE as far field loads. To make sure that the further incrementation of the load
paths add more information to the system, each random load increment, given by:

∆̃ϵ∆ϵ∆ϵ𝑀(𝑡𝑛) = (∆̃ϵ𝑥𝑥(𝑡𝑛) ∆̃ϵ𝑥𝑦(𝑡𝑛)
∆̃ϵ𝑥𝑦(𝑡𝑛) ∆̃ϵ𝑦𝑦(𝑡𝑛)) (2.18)

is forced to dissipate energy in the structure at every single time step 𝑡𝑛. This restriction is enforced by
making sure that at each time step, the tension in either x- or y-direction has to increase, or the shear has
to increase. Three examples of load paths generated by this procedure are shown in Figure 2.12b. With
enough paths and enough iterations in each path, the parameter space can be sampled exhaustively,
however this would be prohibitively expensive, but if efficiency is desired, the parameter space cannot
be exhaustively probed.

(a) Examples of load paths for the nonlinear RVE problem (b) Examples of load paths obtained using the constrained
random sampling procedure

Figure 2.12: Load path examples for the RVE problem in Goury et al. [10]

2.6 Greedy Sampling
To circumvent the issues in regards to computational effort that arise from sampling a high-dimensional
parameter with the methods outlined in the previous sections, greedy sampling procedures have been
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proposed by various authors. A greedy algorithm is a mathematical process that iteratively finds locally
optimal solutions that contribute to finding the globally optimal solution in the end. In the context of
sampling parameters to construct a reduced basis, an optimal training set is constructed by sequentially
choosing the parameters in the parameter space that yield the highest error at the current stage of the
process, and thus would add the most new information to the reduced basis. The more accurately the
greedy sampling chooses the parameter with the highest error, the more information is added in every
iteration, which would generally lead to a more efficient offline training phase. However, depending on
how the parameter is found, there could be cases where it is more efficient to rapidly select a suboptimal
parameter in each iteration, and execute more iterations to add the same amount of information.

2.6.1 Surrogate Parameter Space
In the greedy sampling strategy proposed by Goury et al. [10], the high-dimensional parameter space 𝑃
is subdivided into a sequence of low-dimension surrogate parameter spaces (SPS) of increasing dimen-
sion so that the parameter space can be sampled more efficiently. In that work, the parameter of interest
is the far field load path (Eq. (2.17)). The initial SPS �̂�0 is made up of a number straight load paths
as shown in Figure 2.13a. What varies are the two angles that describe the direction of the load, and
thus the dimension of this SPS is 2. The following SPS �̂�1 is made up of load paths with two successive
straight paths and the angles describing the second path are different than those for the first path, as
shown in Figure 2.13b. This SPS has five dimensions because there are two angles for each path, and one
additional dimension for the distance to where the second path is initiated.

Each additional increment of this hierarchical sequence of low-dimensional SPSs �̂�𝑁𝑝
will have 𝑁𝑝 + 1

distinct straight load paths and 2 × 𝑁𝑝 + (𝑁𝑝 − 1) dimensions. If a reduced model constructed from
snapshots from SPS �̂�𝑁𝑝

describes well every solution in SPS �̂�𝑁𝑝+1, then the reduced model is assumed
to be satisfactory, and no further increments are required.

(a) Examples of load paths in �̂�1 (b) Examples of load paths in �̂�1

Figure 2.13: Examples of load paths in two levels of the SPS in Goury et al. [10]

In the work by Goury et al. [10], the load paths are chosen using Gaussian Process Regression. For the
beam model used in this thesis, this SPS method can be used as a greedy sampling strategy by itself due
to the simplicity of the parameter space. For such a model, the parameter of interest is the location of
the load applied in the downwards direction along the top of the beam. The SPSs �̂�𝑁𝑝

can thus be built
up by simply subdividing the beam into grids with uniform spacing that become progressively finer, as
shown in Figure 2.14. The greedy sampling is performed in every iteration 𝑁𝑖𝑡 and every SPS �̂�𝑁𝑝

after
the intial ones by computing an a posteriori error indicator at each point on grid, and selecting the load
location with the maximum error indicator to enrich the basis further in 𝑁𝑖𝑡:

μ𝑁𝑖𝑡
= argmax

μ∈�̂�𝑁𝑝

ℐ(μ;ΦΦΦ) (2.19)
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Figure 2.14: SPSs for the simply support beam model

Asmentioned, an a posteriori error indicator ℐ(μ) is usedwhen selecting the next training case because
the exact error cannot be computed without the high-fidelity solution, which is only being obtained
when looking to enrich the reduced basis. Goury et al. [10] proposes an error indicator that is a time-
independent norm of the full-order residual computed by the reduced model before projection:

ℐ(μ;ΦΦΦ) =

√
√
√
⎷

∑𝑘=𝑁𝑡
𝑘=0 ∥rrr(𝑡𝑘, μ; ΦΦΦ)∥

2

2
𝑁𝑡 + 1 (2.20)

where 𝑁𝑡 is the total number of timesteps 𝑡𝑘 = 1, … , 𝑁𝑡, ‖ ⋅ ‖2 is the L2-norm, and rrr is the full-order
residual at timestep 𝑡𝑘 given by:

rrr = fffΩ − fffΓ (2.21)

2.6.2 Gaussian Process Regression
In order to more optimally choose the next parameter (or load location) to use in the next training iter-
ation, Bayesian machine learning using Gaussian Process Regression (GPR) can be utilized. A regres-
sion is simply a prediction of variables based on the measurement of other variables, and GPR relies on
Bayesian probability theory to make more accurate predictions [3] than e.g. linear, parabolic or sinu-
soidal regression, because the latter methods most often rely on predetermined model structures such
as parametric functions. GPR is a popular non-parametric regression method that is constructed based
almost solely on the given data [13], and it takes into account uncertainty in every aspect of the model,
which makes it a good regression technique for problems with significant uncertainties, such as the esti-
mation of the error of a ROM. GPR also has the added benefit that it not only provides an estimate of the
mean of the regression, but it also generates a variance (gray area in Figure 2.15, which is valuable when
determining the accuracy of a ROM. Figure 2.15 shows an example of a regression computed with data
generated with roughly sinusoidal behaviour, as well as its 70% and 95% confidence intervals, which are
roughly one and two standard deviations away from the mean, respectively. The figure shows how the
error at the edges increases because there are much fewer observations made there.

In order to determine the parameter μ to use in the next training iteration (𝑁𝑖𝑡 + 1), the error indicator
ℐ (Eq. (2.20)) will be predicted as a function of the parameters in the parameter space 𝑃. The initial step
in the computation of the regression is to gather an initial set of 𝑁𝑚 observations of the error indicator
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Figure 2.15: Example of Gaussian Process Regression

using a few random values of the input parameter. The approximation of these observations by the GPR
can be expressed as:

ℐ(μ;ΦΦΦ) = 𝑓 (μ) + ϵ(μ) (2.22)

where 𝑓 (μ) is the unknown function that is to be approximated, and ϵ(μ) is the observation noise [1].

The parameter that leads to the highest error indicator at iteration 𝑁𝑖𝑡 of the training procedure will
be selected as:

μ𝑁𝑖𝑡
= argmax

μ∈𝑃
ℐ(μ;ΦΦΦ) (2.23)

as it is the one thatwill add themost new information to the reducedmodel. In the case of a homogeneous
simply supported beam, the parameter space is simply the area along the top where the load may be
applied in the vertical direction. Initially, the error indicator is computed at a few points along the beam,
and those samples are interpreted as a sample from some multivariate infinite-dimensional data set,
but what establishes the relationship between the various observations is the covariance function [7]. A
popular choice of the covariance function (often referred to as kernel function) is the squared exponential
[24]:

cov(ℐ𝑝, ℐ𝑞) = σ2
𝑓 exp [ − 1

2
(μ𝑝 − μ𝑞)2

λ2
𝑙

] + σ2
𝑛δ𝑝𝑞 (2.24)

cov(ℐ𝑝, ℐ𝑞) = 𝑘(μ𝑝, μ𝑞) + σ2
𝑛δ𝑝𝑞 (2.25)

or collected in matrix form:

CCC(ℐℐℐ) = σ2
𝑓 𝑅𝑅𝑅(μμμ, μμμ) + σ2

𝑛𝐼𝐼𝐼 = 𝐾𝐾𝐾(μμμ, μμμ) + σ2
𝑛𝐼𝐼𝐼 (2.26)

where σ2
𝑓 is the maximum allowable input signal variance, λ2

𝑙 is a length-scale, σ2
𝑛 is the variance of the

noise of the input, δ𝑝𝑞 is the Kronecker delta function, and μ𝑝 and μ𝑞 are the parameter inputs of the
measurement outputs. As μ𝑝 ≈ μ𝑞, 𝑘 approaches its maximum σ2

𝑓 , meaning that the two points are
neighbors and both have a great effect on the regression in that area. Likewise, as |μ𝑝 − μ𝑞| increases,
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𝑘 becomes smaller and smaller, which means that the two points are far away from each other and the
regression computed at one point has a negligible effect on the regression computed at the other. How
much the points affect each other depends on the length-scale λ2

𝑙 , which is a hyperparameter that needs
to be optimized. The two other hyperparameters of the GPR are σ2

𝑓 and σ2
𝑛, which are also determined

using an optimization procedure.

The covariance function is computed with all possible combinations of the input μ and collected in
a covariance matrix CCC(ℐℐℐ), which is used to ultimately compute the predictive mean and variance as
functions of test inputs μ⋆ ⊂ 𝑃 [32]:

ℐ̃(μ⋆) = 𝑚 + ̃kkk
𝑇

(𝐾𝐾𝐾(μμμ, μμμ) + σ2
𝑛𝐼𝐼𝐼)

−1
(ℐℐℐ − 111𝑚) (2.27)

̃𝑠(μ⋆)2 = 𝜎2
𝑓 − ̃kkk

𝑇
(𝐾𝐾𝐾(μμμ, μμμ) + σ2

𝑛𝐼𝐼𝐼)
−1 ̃kkk + σ2

𝑛 (2.28)

where ̃kkk
𝑇

= [𝑘(μ1, μ⋆), 𝑘(μ2, μ⋆), … , 𝑘(μ𝑁𝑐
, μ⋆)] is the vector of correlation functions computed with

the 𝑁𝑐 observations and the test input μ⋆, and 𝑚 represents the mean of the observations and is a fourth
hyperparameter that has to be optimized.

The last step before selecting the parameter according to Eq. (2.23) is to improve the regression with
at least 𝑁𝑚𝑖𝑛

𝑐 additional observations of the a posteriori error indicator. This is done by searching the
parameter space 𝑃 for the parameter value that has the highest probability of improving the current
maximum of the prediction by some target 𝑇(ℐ̃𝑚𝑎𝑥). A high target enables a global search of the space
which helps to find other potential local maxima, one of which could be the global maximum. A low
target will cause a local search that refines the current maximum, which could already be the global
maximum. Therefore, without a global search, the regression might completely miss out on the global
maximum, and without the local search, the regression can only get so close to the global maximum,
given that it has already been roughly located. The probability of improving the regression is computed
at every test input μ⋆ using the acquisition function 𝜋(μ⋆; 𝑇):

𝜋(μ⋆; 𝑇) = φ(
ℐ̃(μ⋆) − 𝑇(ℐ̃𝑚𝑎𝑥)

̃𝑠(μ⋆) ) (2.29)

where φ is the normal cumulative distribution function (cdf) [10, 15, 21].

2.6.3 Sampling Convergence – Error Modeling
After every time the reduced basis has been enriched, it must evaluated whether or not the reduced
model is accurate enough or not. When the ROM is judged to be accurate enough, the training is said to
have converged. The error indicator ℐ is what drives the sampling process in the two previous sections,
however it is merely an indicator, so there is no knowledge of what the magnitude of the exact error 𝐸
between the FOM and the ROM actually is. The most reliable way to evaluate the accuracy of the ROM is
of course to compare the results of the high-fidelity model and the ROMwithmany different parameters,
but this is of course prohibitively expensive. However, we do have access to FOM solutions at trained
parameters, so the ROM can be run with the same sets of parameters, which is inexpensive, and then the
exact error can be computed using [10]:

𝐸 =
∑𝑁𝑡

𝑗=0 ‖𝑢𝑢𝑢𝐹𝑂𝑀(𝑡𝑗) − 𝑢𝑢𝑢𝑃𝑂𝐷(𝑡𝑗)‖2
𝐾𝐾𝐾0

(𝑁𝑡 + 1)‖𝑢𝑢𝑢𝐹𝑂𝑀(𝑡𝑁𝑡
)‖2

𝐾𝐾𝐾0

(2.30)

where 𝑁𝑡 is the total number of timesteps 𝑡𝑗 = 1, … , 𝑁𝑡, 𝑢𝑢𝑢𝐹𝑂𝑀 ∈ ℝ𝑁×𝑁𝑡 is the full time-history of the
displacement field from the FOM solution, and 𝑢𝑢𝑢𝑃𝑂𝐷 ∈ ℝ𝑁×𝑁𝑡 is the full time-history of the displace-
ment field from the POD solution. ‖𝑢𝑢𝑢‖𝐾𝐾𝐾0

= √𝑢𝑢𝑢𝑇𝐾𝐾𝐾0𝑢𝑢𝑢 is the stiffness-projected dot product, where 𝐾𝐾𝐾0 is
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the initial structure stiffness. This dot product is used along with the displacements to more accurately
measure structure specific behaviour [10].

The error indicator ℐ and the exact error 𝐸 can thus be computed with all trained parameters before
and after training, allowing us to create a mapping between the two, linking the value of ℐ to 𝐸. A log-
linear model can be used [21] for this mapping, but it has been shown for multiscale models that this
does not work well so instead Gaussian process regression (GPR) can be employed [5, 10] to capture ir-
regular and oscillatory behaviour in the exact error. Both methods are inexpensive, and the computation
of a GPR is already investigated in 2.6.2 Gaussian Process Regression so the GPRmethodwill be used in
this thesis for modelling the error of the ROM. With a mapping of how the error indicator relates to the
exact error, a convergence criterion that takes a user-defined error tolerance can be utilized to determine
when the offline training phase should be stopped.





3 PARAMETER SAMPLING METHODS

The focus of the remainder of the thesis is how the parameter samples are chosen to construct the re-
duced basis, and how that affects the efficiency and accuracy of the ROM. However, it is important to
ensure that the actual enrichment of the basis is efficient, so the first section of this chapter details how
the basis is assembled and updated. The two parameter sampling methods using the SPS method or
GPR method are then explained in detail before the sampling convergence is discussed. Note that GPR
was also discussed in 2.6.3 Sampling Convergence – Error Modeling as a way to create a mapping be-
tween the error indicator and the exact error, so to avoid any confusion, two additional abbreviations are
introduced to distinguish what the GPR is used for: Gaussian process regression for prediction (GPRP),
and Gaussian process regression for convergence (GPRC).

To implement these methods, the simply support beam model shown in Figure 3.1 will be used. It is
a rectangular beam of a homogeneous, elastoplastic material. The load is applied along the top of the
beam and the load location is defined by the parameter μ and the span of the beam is 20 mm long. How-
ever, the actual loading span is limited to 5 ≤ μ ≤ 15, and this span is referred to as the parameter space
𝑃. The beam will only be subjected to one point load at a time, and is applied in the numerical analysis
using arc-length control.

Figure 3.1: Simply supported beam model

The parameter space is in theory infinitely large as the load can be placed anywhere, however it is
more simple to exhaust this parameter space sufficiently compared to those of RVE models (as outlined
in 2.5.1 Constrained Random Sampling for RVE Modeling), because this parameter space can be dis-
cretized easily with grids. This is the reason why using the SPS method as a sampling method has the
potential to be efficient and accurate. However, we do not know how fine the grid should be in order to
construct an accurate ROM, which is why the SPS �̂�𝑁𝑝

becomes incrementally finer. Figure 3.2 illustrates
the effect of having a deficient ROM. The top beam shows the equivalent plastic strains in the FOMwhen
a load is applied at 𝜇 = 9. The bottom beam shows the same type of strains, but of a ROM in an online
analysis with the load at the same location (𝜇 = 9), for which the reduced basis was assembled with
only one load case at 𝜇 = 10 during the offline phase. Both analysis are run with the same amount of
time steps to a displacement of 3.62 mm, as seen in Figure 3.2b, and the black arrow for the ROM indi-
cate the load applied in the online analysis, and the gray arrow is the one load case used to construct
the reduced basis. It is clear that the ROM is severely deficient when the online load is only 5% away
from the offline load as the error in the final load factor 𝜆 when comparing the FOM with the ROM is
3.3%. Furthermore, when observing the distribution of the equivalent plastic strains, the ROM experi-
ences the same distribution as the FOM solution that was used in the offline phase to construct the basis.
This occurs because the ROM has no information about how strains can be distributed differently when
the loads are applied elsewhere. This highlights the importance of constructing a reduced basis that has
sampled the parameter space exhaustively enough to obtain accurate approximations in the online phase.

21
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(a) ROM with deficient basis and corresponding FOM (b) Force-displacement graph

Figure 3.2: Illustration of the effect of deficient basis

The reduced model is constructed by iteratively enriching the reduced basis through greedy sampling
of the parameter space 𝑃. The high-level steps of the offline training phase are summarized in Algo-
rithm 3.1.

Algorithm 3.1: Offline training phase procedure
1 Select initial load location
2 Set 𝑁𝑖𝑡 = 0
3 Initialize reduced basisΦΦΦ0
4 while not converged do
5 Update 𝑁𝑖𝑡 = 𝑁𝑖𝑡 + 1
6 Greedily sample the parameter space 𝑃 using SPS or GPRP
7 Run the full-order model
8 Enrich reduced basisΦΦΦ𝑁𝑖𝑡
9 Evaluate accuracy of the ROM using GPRC

10 if converged then
11 return Reduced basisΦΦΦ
12 end
13 end



3.1 Assembling the Reduced Basis 23

3.1 Assembling the Reduced Basis
To obtain the displacement snapshots XXX, a full-order model (FOM) is run with the parameter value de-
termined by one of the greedy sampling methods (SPS or GPRP). The snapshots are obtained from the
FOM solution in each time step and collected in a local snapshot matrix XXX𝑁𝑖𝑡

𝑖𝑛ℝ𝑁×𝑁𝑡 , which is subse-
quently decomposed into an elastic part (XXX𝑒

𝑁𝑖𝑡
) and an inelastic part (XXX𝑖

𝑁𝑖𝑡
) as proposed by Hernández

et al. [11]:
XXX𝑁𝑖𝑡

= [XXX𝑒
𝑁𝑖𝑡

, XXX𝑖
𝑁𝑖𝑡

] (3.1)

For the sake of brevity and readability, the subscript 𝑁𝑖𝑡 will be left out from nowon for the localmatrices,
which are generated anew in every iteration. This decomposition ensures that elastic load cases are
always exactly reproduced, providing a baseline for the accuracy of the ROM. The next step is to perform
POD-compression using SVD on both snapshot matrices separately:

XXX𝑒 = (UΣZUΣZUΣZ𝑇)𝑒 ∈ ℝ𝑁×𝑁𝑒 XXX𝑖 = (UΣZUΣZUΣZ𝑇)𝑖 ∈ ℝ𝑁×𝑁𝑖 (3.2)

where 𝑁𝑒 is the number of elastic snapshots, and 𝑁𝑖 is the number of inelastic snapshots. The resulting
matrices are then truncated to 𝑘𝑁𝑖𝑡

modes that is either a fixed number or determined by the energy
criterion (Eq. (2.16)). The elastic snapshots will be compressed into one mode (𝑘𝑒 = 1) because all of the
linear elastic behaviour can easily be captured in just one mode. For the inelastic behaviour, however, it
is not as simple. Depending on where the load is applied, the inelastic behaviour may vary considerably.
In some cases, there will be significant localized plasticity, but in other cases it will be more spread out.
Therefore, the number of inelastic modes 𝑘𝑖

𝑁𝑖𝑡
must be determined separately for each case, and this will

be done using the energy criterion such that a certain fraction 0 ≤ ε𝑖 ≤ 1 of the energy is retained in the
compressed matrix:

∑
𝑘𝑖

𝑁𝑖𝑡
𝑗=1 Σ𝑖

𝑗𝑗

∑𝑁𝑖
𝑗=1 Σ

𝑖
𝑗𝑗

≥ ε𝑖 (3.3)

When the number of modes to truncate is set, the compression is approximated as:

XXX𝑒 ≈ (ŨUUΣ̃ΣΣZ̃ZZ
𝑇

)
𝑒

∈ ℝ𝑁×𝑁𝑒 XXX𝑖 ≈ (ŨUUΣ̃ΣΣZ̃ZZ
𝑇

)
𝑖

∈ ℝ𝑁×𝑁𝑖 (3.4)

Using the output from the truncated SVD procedure, two local surrogate snapshot matrices are con-
structed [21]:

X̃XX
𝑒

= (ŨUUΣ̃ΣΣ)
𝑒

∈ ℝ𝑁×𝑘𝑒 X̃XX
𝑖

= (ŨUUΣ̃ΣΣ)
𝑖

∈ ℝ𝑁×𝑘𝑖
𝑁𝑖𝑡 (3.5)

where Ũ̃ŨU
𝑒
and Ũ̃ŨU

𝑖
have the same dimensions asXXX𝑒 andXXX𝑖, respectively. This construction is also illustrated

in Figure 3.3. Now we have obtained local surrogate snapshot matrices that are of significantly smaller
dimension than their corresponding full-order matrices. For the very first iteration (𝑁𝑖𝑡 = 0), these two
matrices are combined to make the global surrogate snapshot matrix X̃XX:

X̃XX
𝑔
0 = [X̃XX

𝑒
, X̃XX

𝑖
] ∈ ℝ𝑁×(𝑘𝑒+𝑘𝑖

𝑁𝑖𝑡
) (3.6)

For every iteration after the first one (𝑁𝑖𝑡 > 0), the elastic and inelastic surrogate snapshot matrices will
be combined with the previous global surrogate snapshot matrix X̃XX

𝑔
𝑁𝑖𝑡−1:

X̃XX
𝑔
𝑁𝑖𝑡

= [X̃XX
𝑔
𝑁𝑖𝑡−1, X̃XX

𝑒
, X̃XX

𝑖
] ∈ ℝ𝑁×( ∑𝑁𝑖𝑡

𝑗=1 (𝑘𝑖
𝑗+𝑘𝑒

𝑗 )) (3.7)
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Then, the SVD is applied to X̃XX
𝑔
𝑁𝑖𝑡

, and the resulting matrices are truncated in the same way as with the
inelastic snapshots (Eq. (3.3)), but now using a different global energy tolerance ε𝑔:

X̃XX
𝑔

≈ (ŨUUΣ̃ΣΣZ̃ZZ
𝑇

)
𝑔

𝑁𝑖𝑡
(3.8)

Finally, we obtain:
ΦΦΦ𝑁𝑖𝑡

= ŨUU
𝑔
𝑁𝑖𝑡

(3.9)

(a) Truncated SVD

(b) Surrogate matrix construction

Figure 3.3: Truncated SVD and surrogate construction

Computational Complexity
When using the global snapshot matrix 𝑋𝑔 that contains all displacement snapshots collected in all iter-
ations to compute the reduced basisΦΦΦ𝑁𝑖𝑡

, the computational complexity is [21]:

𝒪(
𝑁𝑖𝑡

∑
𝑖=1

𝑁(𝑁𝑡𝑖)
2) = 𝒪(𝑁𝑁2

𝑡 𝑁3
𝑖𝑡) (3.10)

For the global surrogate snapshot matrix, however, the complexity is significantly reduced. If we for the
sake of simplicity consider 𝑘𝑒 + 𝑘𝑖

𝑁𝑖𝑡
to constantly be 𝑘, then the computational complexity of computing

the basisΦΦΦ𝑁𝑖𝑡
with this approach is for the first 𝑁𝑖𝑡 iterations:

𝒪(
𝑁𝑖𝑡

∑
𝑖=1

(𝑁𝑁2
𝑡 + 𝑁(𝑖𝑘)

2
)) = 𝒪(𝑁𝑁𝑖𝑡(𝑁2

𝑡 + 𝑘2𝑁2
𝑖𝑡)) (3.11)

which shows that when 𝑘 ≪ 𝑁𝑡, the SVD performed on the global surrogate snapshot matrix involves
matrices of significantly lower order, and thus drastically reducing the computation time. However, this
improved efficiency comes at the cost of all the information in the basis vectors that are dropped during
the truncated SVD, which reduces the accuracy of the reduced model. Therefore, it is important to take
care when choosing the energy tolerances to ensure that enough information is kept.

The entire procedure of updating the reduced basis as described in this section is summarized in Al-
gorithm 3.2:
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Algorithm 3.2: POD-compression procedure for 𝑁𝑖𝑡 > 0
Input :Elastic snapshots XXX𝑒

𝑁𝑖𝑡

Inelastic snapshots XXX𝑖
𝑁𝑖𝑡

Global surrogate snapshots X̃XX
𝑔
𝑁𝑖𝑡−1

Number of desired elastic modes 𝑘𝑒

Inelastic energy tolerance ε𝑖

Global energy tolerance ε𝑔

Output :Global surrogate snapshots X̃XX
𝑔
𝑁𝑖𝑡

Reduced basisΦΦΦ𝑁𝑖𝑡

1 Compress XXX𝑒
𝑁𝑖𝑡

using SVD to 𝑘𝑒 modes
2 Compress XXX𝑖

𝑁𝑖𝑡
using SVD to 𝑘𝑖

𝑁𝑖𝑡
modes based on energy tolerance ε𝑖

3 Reconstruct elastic surrogate snaphots X̃XX
𝑒
𝑁𝑖𝑡

4 Reconstruct inelastic surrogate snapshots X̃XX
𝑖
𝑁𝑖𝑡

5 Update X̃XX
𝑔
𝑁𝑖𝑡

= [X̃XX
𝑔
𝑁𝑖𝑡−1, X̃XX

𝑒
, X̃XX

𝑖
]

6 Compress X̃XX
𝑔
𝑁𝑖𝑡

using SVD to 𝑘𝑔
𝑁𝑖𝑡

modes based on energy tolerance ε𝑔 to obtainΦΦΦ𝑁𝑖𝑡

7 return X̃XX
𝑔
𝑁𝑖𝑡

,ΦΦΦ𝑁𝑖𝑡

3.2 Greedy Sampling

3.2.1 Surrogate Parameter Space
The parameter space 𝑃 can in the case of the RVE (2.1 High-Fidelity Models) be infinitely dimensional,
and in the case of the beam model there is an infinite number of points where the load can be placed.
Constructing surrogate parameter spaces (SPS) �̂�𝑁𝑝

is a way to explore the full-order parameter space in
a structured and efficient way, where 𝑁𝑝 denotes the SPS iteration. For the beammodel, this can be done
very simply by discretizing 𝑃 into incrementally finer grids of uniform spacing, where each individual
grid is �̂�𝑁𝑝

, as shown in Figure 3.4. With the shown grid, the parameter space should intuitively be
searched in the most efficient way, because starting from �̂�2, the grid fills the gaps in the previous SPSs
�̂�0 and �̂�1, and it continues like that for each SPS.

Figure 3.4: SPSs for the simply support beam model
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The following explanation of the procedure to sample the SPSs is summarized in Algorithm 3.3. For
the first SPS (�̂�0), the load is simply placed at the only point, and the training procedure moves to the
next SPS, which has two points: one on each end. What is desired in a greedy algorithm in every single
iteration is to train the point which has the highest error, so when moving to a new SPS, the current
reduced model is run using all the surrogate parameters μ̂, and the error indicator ℐ is computed at
every single point in the grid using the formula:

ℐ(μ̂;ΦΦΦ) =

√
√
√
⎷

∑𝑘=𝑁𝑡
𝑘=0 ∥rrr(𝑡𝑘, μ̂; ΦΦΦ)∥

2

2
𝑁𝑡 + 1 (3.12)

where 𝑁𝑡 is the total number of timesteps 𝑡𝑘 = 1, … , 𝑁, ‖⋅‖2 is the L2-norm, and rrr is the full-order residual
at timestep 𝑡𝑘 given by:

rrr = fffΩ − fffΓ (3.13)

The location with the maximum error indicator will be chosen as the parameter for the next load case:

μ𝑁𝑖𝑡
= argmax

μ̂∈�̂�𝑁𝑝

ℐ(μ̂;ΦΦΦ) (3.14)

and this maximum error indicator is set as ℐ𝑝
𝑁𝑖𝑡

, where 𝑝 indicates that it is from before updating the basis
in 𝑁𝑖𝑡. Using the parameterμ𝑁𝑖𝑡

, the full-ordermodel (FOM) solution is computed to collect snapshots to
enrich the reduced basis (RB) matrix further. However, before the basis is updated, the exact error 𝐸𝑝

𝑁𝑖𝑡
of the ROM solution (with ΦΦΦ𝑁𝑖𝑡−1) is computed at this point using the displacement field time-history
that was just obtained from the FOM solution. This error will be used along with the error indicator ℐ𝑝

𝑁𝑖𝑡
to model the error for convergence purposes, which will be explained in detail in 3.3 Sampling Conver-
gence – Error Modeling. The next step is then to enrich the basisΦΦΦ𝑁𝑖𝑡

, and compute the ROM solution
at the same parameter μ𝑁𝑖𝑡

so that the error indicator ℐ𝑎
𝑁𝑖𝑡

and exact error 𝐸𝑎
𝑁𝑖𝑡

can be computed again,
both of which are now significantly lower than before updating the basis. However, neither of them will
be zero despite the fact that the ROM now contains a load case at the exact same load location, which is
because some information is inevitably lost in the compression stage due to the truncation.

Now that error indicators and exact errors are computed before and after enriching the basis, these
results are stored in an error pool ℰ , which will be fed into the convergence error model to determine
whether or not the reduced model is sufficiently accurate to describe any load applied on the beam. If
the training has not converged yet, the procedure starts over again with computing the error indicator
at every remaining untrained point in SPS �̂�. The SPS containing untrained points is denoted in Algo-
rithm 3.3 as �̂�∗

𝑁𝑝
, where the ∗ signifies that the SPS has been decremented and does not contain already

trained points. When the SPS is completely exhausted, we move to the next SPS �̂�𝑁𝑝+1.

The efficiency of this method depends on the inelastic (ε𝑖) and global (ε𝑔) energy tolerances. A high
tolerance means that more information is retained in the SVDs, but it also means that each ROM will be
more expensive to run, so energy tolerances have to be chosen such as to achieve the efficiency desired
with respect to an accepted loss of accuracy.
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Algorithm 3.3: Surrogate Parameter Space Method Procedure
Input :Parameter space 𝑃

Exact error tolerance 𝐸𝑚𝑎𝑥

Inelastic energy tolerance ε𝑖

Global energy tolerance ε𝑔

Output :Reduced basis (RB)ΦΦΦ ∈ ℝ𝑁×𝑛

1 Go to SPS �̂�0
2 Set 𝑁𝑖𝑡 = 0
3 Choose initial parameter μ0 ∈ �̂�0
4 Compute the FOM solution uuu(𝑡, μ0)
5 Construct the initial RBΦΦΦ0 using POD-compression with energy tolerances ε𝑖 and ε𝑔

6 Set 𝑁𝑝 = 1
7 Go to SPS �̂�𝑁𝑝

and set �̂�∗
𝑁𝑝

= �̂�𝑁𝑝

8 Initialize error pool ℰ = ∅
9 while not converged do
10 Update 𝑁𝑖𝑡 = 𝑁𝑖𝑡 + 1
11 if 𝑠𝑖𝑧𝑒(�̂�∗

𝑁𝑝
) ≥ 2 then

12 Compute ROM solutions uuu𝑟(𝑡, μ̂;ΦΦΦ𝑁𝑖𝑡−1) for all remaining untrained points μ̂ ∈ �̂�∗
𝑁𝑝

13 Compute the associated error indicators ℐ(μ̂) for all μ̂ ∈ �̂�∗
𝑁𝑝

14 Select μ𝑁𝑖𝑡
= argmaxμ̂∈�̂�∗

𝑁𝑝
ℐ(μ̂)

15 else
16 Select μ𝑁𝑖𝑡

as the last untrained point μ̂ ∈ �̂�∗
𝑁𝑝

17 Compute ROM solution uuu𝑟(𝑡, μ̂;ΦΦΦ𝑁𝑖𝑡−1)
18 end
19 Compute FOM solution uuu(𝑡, μ𝑁𝑖𝑡

)
20 Set ℐ𝑝

𝑁𝑖𝑡
= ℐ(μ𝑁𝑖𝑡

) and compute the exact error 𝐸𝑝
𝑁𝑖𝑡

21 Update the RB toΦΦΦ𝑁𝑖𝑡
using POD-compression with energy tolerances ε𝑖 and ε𝑔

22 Compute ROM solution uuu𝑟(𝑡, μ𝑁𝑖𝑡
;ΦΦΦ𝑁𝑖𝑡

)
23 Compute the associated error indicator ℐ𝑎

𝑁𝑖𝑡
and exact error 𝐸𝑎

𝑁𝑖𝑡

24 Update ℰ = ℰ ∪ (ℐ𝑝
𝑁𝑖𝑡

, 𝐸𝑝
𝑁𝑖𝑡

) ∪ (ℐ𝑎
𝑁𝑖𝑡

, 𝐸𝑎
𝑁𝑖𝑡

)
25 Compute the GPRC error model 𝐸(ℐ⋆) and associated error bound ̃𝑠𝐸(ℐ⋆) using the error

pool ℰ
26 if converged then
27 returnΦΦΦ

28 else if 𝑠𝑖𝑧𝑒(�̂�∗
𝑁𝑝

) ≥ 2 then
29 Remove μ𝑁𝑖𝑡

from �̂�∗
𝑁𝑝

30 else
31 Update 𝑁𝑝 = 𝑁𝑝 + 1
32 Go to SPS �̂�𝑁𝑝

and set �̂�∗
𝑁𝑝

= �̂�𝑁𝑝

33 end
34 end
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3.2.2 Gaussian Process Regression for Prediction
For the SPS method to be efficient, the parameter space 𝑃 must be simple enough to be split into sets that
enable exploration of the high-dimensional parameter space in an efficient manner. In the case of the
beam it is very simple, as it can be subdivided into 1-D grids, but even with such a division, there is no a
priori knowledge of how fine the grid should be, which is why this thesis looked into incrementally finer
grids. However, as outlined in 2.5.1 Constrained Random Sampling for RVE Modeling, the parameter
space can be infinite-dimensional, and thus the same method of subdividing the space cannot be uti-
lized, so more sophisticated methods of sampling the space should be implemented, which is where the
Gaussian process regression for prediction (GPRP) comes in. This form of supervised Bayesianmachine
learning infers a probability distribution of the prediction for any parameter μ in the parameter space.

The following explanation of the procedure to sample the parameter space using GPRP is summarized
in Algorithm 3.5. The offline training phase is initiated at the zeroth training iteration (Algorithm 3.1)
by running a full-order model (FOM) with the load at a random point. The displacement field history
is collected in a snapshot matrix XXX0 and compressed into ΦΦΦ0. With the initial reduced basis ready, the
first step towards building the GPRP can begin, which is running the reduced-order model (ROM) at 𝑁0

𝑐

initial random candidate parameters 𝒞𝒞𝒞 = {μ𝑐
1, … , μ𝑐

𝑁0𝑐
} ⊂ 𝑃, and then compute the corresponding error

indicators ℐℐℐ𝑐(𝒞𝒞𝒞):

ℐ𝑐
𝑖 (μ𝑐

𝑖 ;ΦΦΦ) =

√
√
√
⎷

∑𝑘=𝑁𝑡
𝑘=0 ∥rrr(𝑡𝑘, μ𝑐

𝑖 ; ΦΦΦ)∥
2

2
𝑁𝑡 + 1 (3.15)

With the initial observations of the error indicator ℐℐℐ𝑐(𝒞𝒞𝒞), the squared exponential covariance function
can be computed:

cov(ℐ𝑐
𝑝, ℐ𝑐

𝑞) = σ2
𝑓 exp [ − 1

2
(μ𝑐

𝑝 − μ𝑐
𝑞)2

λ2
𝑙

] (3.16)

cov(ℐ𝑐
𝑝, ℐ𝑐

𝑞) = 𝑘(μ𝑐
𝑝, μ𝑐

𝑞) (3.17)

or collected in matrix form:
CCC(ℐℐℐ𝑐(μμμ𝑐)) = σ2

𝑓 𝑅𝑅𝑅(μμμ𝑐, μμμ𝑐) = 𝐾𝐾𝐾(μμμ𝑐, μμμ𝑐) (3.18)

where μμμ𝑐 is a vector containing all the candidate parameters in 𝒞𝒞𝒞 . Note that the observation noise vari-
ance σ2

𝑛 that was introduced in Eq. (2.24) is left out. This is because the GPR is used to predict values of
the error indicator along the beam, and there is no uncertainty in the observations made at the candidate
parameters, so σ2

𝑛 = 0. For GPRP, the covariance function will be referred to as 𝐾𝐾𝐾(μμμ, μμμ) to more easily
distinguish it from the covariance function CCC for GPRC that does contain the noise variance. The obser-
vations of the error indicator are described by the likelihood, or probability density, given the training
input parameters [24]

ℐ(μ) ∼ 1

√(2π)𝑁 ∣𝐾𝐾𝐾∣
exp( − 1

2(ℐℐℐ𝑐 − 111𝑚)𝑇𝐾𝐾𝐾−1(ℐℐℐ𝑐 − 111𝑚)) (3.19)

which can be rewritten more simply as:

ℐ(μ) ∼ 𝒩(𝑚𝑚𝑚(μ), 𝐾𝐾𝐾(μμμ𝑐, μμμ𝑐)) (3.20)

The hyperparameters 𝑚, σ2
𝑓 , and λ2

𝑙 are optimized by maximizing the log-likelihood function:

log (ℒ) = −𝑁𝑐
2 log (2π) − 1

2 log (∣𝑅𝑅𝑅∣) − 1
2

(ℐℐℐ𝑐 − 111𝑚)𝑇𝑅𝑅𝑅−1(ℐℐℐ𝑐 − 111𝑚)
σ2

𝑓
(3.21)
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The maximum is found by setting the derivative equal to zero and solving for the different hyperparam-
eters. In the case without noise, 𝑚 and σ2

𝑓 can be solved analytically:

𝑚 = 111𝑇𝑅𝑅𝑅−1ℐℐℐ𝑐

111𝑡𝑅𝑅𝑅−1111
(3.22)

σ2
𝑓 = (ℐℐℐ𝑐 − 111𝑚)𝑇𝑅𝑅𝑅−1(ℐℐℐ𝑐 − 111𝑚)

𝑁𝑐
(3.23)

After substituting Eq. (3.22) and Eq. (3.23) into Eq. (3.21) and ignoring constant terms, we are only left
with one term of the log-likelihood to maximize in order to determine the last hyperparameter λ2

𝑙 :

λ2
𝑙 = argmax( − 1

2 log ∣𝑅𝑅𝑅∣) (3.24)

Since there is only one variable to optimize for, it is sufficient to perform a simple grid search to find the
optimal value. The next step is to include a large set of test inputs μ⋆ ⊂ 𝑃, and along with the training
inputs, joint distribution of the two can be described as:

[ℐ
ℐ̃] ∼ 𝒩 ⎛⎜

⎝
𝑚𝑚𝑚, ⎡⎢

⎣

𝐾𝐾𝐾(μμμ𝑐, μμμ𝑐) 𝐾𝐾𝐾(μμμ𝑐, μ̃μμ)
𝐾𝐾𝐾(μ̃μμ, μμμ𝑐) 𝐾𝐾𝐾(μ̃μμ, μ̃μμ)

⎤⎥
⎦
⎞⎟
⎠

(3.25)

From this distribution, the predictive mean and associated variance as functions of test inputs are:

ℐ̃(μ⋆) = 𝑚 + ̃kkk
𝑇
𝐾𝐾𝐾(μμμ𝑐, μμμ𝑐)

−1
(ℐℐℐ𝑐 − 111𝑚) (3.26)

̃𝑠2
ℐ (μ⋆) = 𝜎2

𝑓 − ̃kkk
𝑇
𝐾𝐾𝐾(μμμ𝑐, μμμ𝑐)

−1 ̃kkk (3.27)

where ̃kkk
𝑇

= [𝑘(μ𝑐
1, μ⋆), 𝑘(μ𝑐

2, μ⋆), … , 𝑘(μ𝑐
𝑁0𝑐

, μ⋆)]. It is also common to use the zero mean regression:

ℐ̃(μ⋆) = ̃kkk
𝑇
𝐾𝐾𝐾(μμμ𝑐, μμμ𝑐)

−1
ℐℐℐ𝑐 (3.28)

but is not used in this thesis in order to follow the procedures in Goury et al. [10] and Paul-Dubois-Taine
and Amsallem [21]. In general, 𝑁0

𝑐 is low and will lead to poor a poor regression, so another step is
required in order to improve it further. During the following improvement procedure, the ROM will be
run a number of times to gather more observations that will improve the GPR. These locations where
these observations are obtained is chosen by searching the parameter space 𝑃 for the location that has the
highest probability of improving the currentmaximumof theGPR ℐ̃𝑚𝑎𝑥 by a certain target value𝑇(ℐ̃𝑚𝑎𝑥).
At every test input μ⋆, the prediction ℐ̃ has a normal distribution , so the probability of improving the
prediction is computed using the acquisition function 𝜋(μ⋆; 𝑇):

𝜋(μ⋆; 𝑇) = φ(
ℐ̃(μ⋆) − 𝑇(ℐ̃𝑚𝑎𝑥)

̃𝑠ℐ (μ⋆) ) (3.29)

where φ is the normal cumulative distribution function. Several target values 𝑇𝑖 are calculated using the
expression:

𝑇𝑖 = ℐ̃𝑚𝑎𝑥 + τ𝑖(ℐ̃𝑚𝑎𝑥 − ℐ̃𝑚𝑖𝑛) (3.30)

whereτττ = {τ1, … , τ𝑁𝑇
} are target factors that determine how global or local the search should be. A low

target leads to a local search for a higher maximum, as shown in Figure 3.5a, and a high target enables
a global search (Figure 3.5b. In order to both refine the current local maximum and to find potentially
other local maxima, both a local and a global search is performed by choosing many values of the target
factor τ𝑖. As shown in Figure 3.6, a low target seeks to refine the current maximum, and when the target
gets high enough, the search skips to a point far away that could potentially be the global maximum.
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There are two clusters of points that could have the global maximum, and in each cluster the locations
associatedwith the highest targets are chosen to improve the regression. This improvement is carried out
until there are at least 𝑁𝑚𝑖𝑛

𝑐 points to compute the regression, or when there is a high certainty that the
current maximum is the global one. We can be certain of this when the following condition is satisfied:

(ℐ̃𝑚𝑎𝑥 − ℐ̃𝑚𝑖𝑛)β > max (ℐ̃(μ⋆) + αℐ ̃𝑠ℐ (μ⋆)) (3.31)

where αℐ is the z-score, or the number of standard deviations from the mean, and β is a factor that
determines how much above the current maximum the mean plus αℐ standard deviations must be to
continue the GPRP improvement. For few observations in ℐℐℐ𝑐, the computation of the GPRP itself is neg-
ligible (which will always be the case in this thesis) when not considering the time taken to run the ROM.
Therefore, 𝑁0

𝑐 should be as low as possible so that a poor but reasonable regression can be computed and
then subsequently improved. It is better to as soon as possible cheaply compute points that are likely
to improve the regression using the procedure described above and in Algorithm 3.4. The number of
additional improvements is a parameter that greatly affects the efficiency of the offline training phase.

(a) Low target, 1% (b) High target, 25%

Figure 3.5: GPRP improvement with only low target and only high target

Figure 3.6: GPRP improvement with many targets
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When the improvement is complete, the training location for the current iteration 𝑁𝑖𝑡 is the one that
yields the maximum error indicator:

μ𝑁𝑖𝑡
= argmax

μ⋆⊂𝑃
ℐ̃(μ⋆) (3.32)

and this error indicator is set as ℐ𝑝
𝑁𝑖𝑡

. Using the parameter μ𝑁𝑖𝑡
, the FOM solution is computed to collect

snapshots to enrich the reduced basis further. However, before the basis is updated, the exact error 𝐸𝑝
𝑁𝑖𝑡

of the ROM (withΦΦΦ𝑁𝑖𝑡−1) is computed at this point using the displacement field time-history that was
just obtained from the FOM solution. After the basis is updated, the ROM solution is computed again,
and the error indicator ℐ𝑎

𝑁𝑖𝑡
and the exact error 𝐸𝑎

𝑁𝑖𝑡
are also computed. All these error indicators and

exact errors that are computed in every iteration are stored in an error pool ℰ , which is used to build the
errormodel that evaluates whether or not the the ROM is sufficiently accurate. If the training has not con-
verged yet, the procedure starts over againwith computing a newGPRP to find the next training location.

Like with the SPS method, the efficiency of the GPR method also depends on the inelastic (𝜀𝑖) and
global (𝜀𝑔) energy tolerances, but there is a very important third parameter that has a great effect as
well, which is the minimum number of improvements made to the GPRP 𝑁𝑚𝑖𝑛

𝑐 . A high number ensures
that the GPRP almost always finds the global maximum, but that requires running the ROMmany times,
which can be costly. A low number poses the risk of choosing the next training location at a suboptimal
location, which can cause the offline phase to require more training iterations in order to construct a suf-
ficiently accurate ROM. So all three input parameters have to be chosen such as to achieve the efficiency
desired with respect to an accepted loss of accuracy.

Algorithm 3.4: Computing points with highest probability of improving the GPR
Input :Parameter space 𝑃

GPRP predictive mean ℐ̃(μ⋆)
GPRP error ̃𝑠ℐ (μ⋆)

Output :Candidate parameters 𝒞𝒞𝒞𝑚

1 Define 𝑁𝑇 target factors τττ = (τ1, … , τ𝑁𝑇
)

2 for 𝑖 = 1, … , 𝑁𝑇 do
3 Compute 𝑇𝑖 = ℐ̃𝑚𝑎𝑥 + τ𝑖(ℐ̃𝑚𝑎𝑥 − ℐ̃𝑚𝑖𝑛)
4 Find parameter μ𝑐

𝑖 with maximum probability of improving the regression by factor τ𝑖:

μ𝑐
𝑖 = argmax

μ⋆⊂𝑃
(φ(

ℐ̃(μ⋆) − 𝑇(ℐ̃𝑚𝑎𝑥)
̃𝑠ℐ (μ⋆) ))

5 end
6 Determine 𝑚 parameter clusters based on spatial proximity
7 for 𝑗 = 1, … , 𝑚 do
8 Set μ𝑐

𝑗 as the parameter in each cluster associated with the highest target
9 end

10 return 𝒞𝒞𝒞𝑚 = {μ𝑐
1, … , μ𝑐

𝑚} ⊂ 𝑃
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Algorithm 3.5: Gaussian Process Regression Method Procedure
Input :Parameter space 𝑃

Exact error tolerance 𝐸𝑚𝑎𝑥

Inelastic energy tolerance ε𝑖

Global energy tolerance ε𝑔

Initial number of error indicator observations 𝑁0
𝑐

Minimum number of additional error indicator observations 𝑁𝑎𝑑𝑑
𝑐

Output :Reduced basis (RB)ΦΦΦ ∈ ℝ𝑁×𝑛

1 Set 𝑁𝑖𝑡 = 0
2 Choose a random initial parameter μ0 ∈ 𝑃
3 Compute the FOM solution uuu(𝑡, μ0)
4 Construct the initial RBΦΦΦ0 using POD-compression with energy tolerances ε𝑖 and ε𝑔

5 Initialize error pool ℰ = ∅
6 while not converged do
7 Choose 𝑁0

𝑐 initial random candidate parameters 𝒞𝒞𝒞 = {μ𝑐
1, … , μ𝑐

𝑁0𝑐
} ⊂ 𝑃

8 Initialize set of candidate error indicators ℐℐℐ𝑐 = ∅
9 for 𝑖 = 1, … , 𝑁0

𝑐 do
10 Compute the ROM solutions uuu𝑟(𝑡, μ𝑐

𝑖 ;ΦΦΦ𝑁𝑖𝑡−1)
11 Compute the corresponding error indicator ℐ𝑐

𝑖 (μ𝑐
𝑖 )

12 Update ℐℐℐ𝑐 = ℐℐℐ𝑐 ∪ ℐ𝑐
𝑖 (μ𝑐

𝑖 )
13 end
14 Set 𝑁𝑐 = 0 and 𝑁𝑚𝑖𝑛

𝐶 = 𝑁𝑎𝑑𝑑
𝑐 + 𝑁0

𝑐
15 while 𝑁𝑐 ≤ 𝑁𝑚𝑖𝑛

𝑐 do
16 Set 𝑚 = 0
17 Compute the GPRP predictive mean ℐ̃(μ⋆) and associated error ̃𝑠ℐ (μ⋆) using 𝒞𝒞𝒞 and ℐℐℐ𝑐

18 if (ℐ̃𝑚𝑎𝑥 − ℐ̃𝑚𝑖𝑛)β > max (ℐ̃(μ⋆) + αℐ ̃𝑠ℐ (μ⋆)) then
19 break
20 end
21 Select 𝑚 candidate parameters 𝒞𝒞𝒞𝑚 = {μ𝑐

1, … , μ𝑐
𝑚} ⊂ 𝑃 according to Algorithm 3.4

22 Update 𝑁𝑐 = 𝑁𝑐 + 𝑚
23 Update 𝒞𝒞𝒞 = 𝒞𝒞𝒞 ∪ 𝒞𝒞𝒞𝑚

24 for 𝑖 = 1, … , 𝑚 do
25 Compute the ROM solution uuu𝑟(𝑡, μ𝑐

𝑖 ;ΦΦΦ𝑁𝑖𝑡−1)
26 Compute the corresponding error indicator ℐ𝑐

𝑖 (μ𝑐
𝑖 )

27 Update ℐℐℐ𝑐 = ℐℐℐ𝑐 ∪ ℐ𝑐
𝑖 (μ𝑐

𝑖 )
28 end
29 end
30 Select μ𝑁𝑖𝑡

= argmaxμ⋆⊂𝑃ℐ̃(μ⋆)
31 Compute FOM solution uuu(𝑡, μ𝑁𝑖𝑡

)
32 Compute ROM solution uuu𝑟(𝑡, μ𝑁𝑖𝑡

;ΦΦΦ𝑁𝑖𝑡−1)
33 Compute the associated error indicator ℐ𝑝

𝑁𝑖𝑡
and exact error 𝐸𝑝

𝑁𝑖𝑡
34 Update the RB toΦΦΦ𝑁𝑖𝑡

using POD-compression with energy tolerances ε𝑖 and ε𝑔

35 Compute ROM solution uuu𝑟(𝑡, μ𝑁𝑖𝑡
;ΦΦΦ𝑁𝑖𝑡

)
36 Compute the error indicator ℐ𝑎

𝑁𝑖𝑡
and exact error 𝐸𝑎

𝑁𝑖𝑡

37 Update ℰ = ℰ ∪ (ℐ𝑝
𝑁𝑖𝑡

, 𝐸𝑝
𝑁𝑖𝑡

) ∪ (ℐ𝑎
𝑁𝑖𝑡

, 𝐸𝑎
𝑁𝑖𝑡

)
38 Compute the GPRC exact error model 𝐸(ℐ⋆) and associated error bound ̃𝑠𝐸(ℐ⋆) using the

error pool ℰ
39 if converged then
40 returnΦΦΦ

41 end
42 end



3.3 Sampling Convergence – Error Modeling 33

3.3 Sampling Convergence – Error Modeling
In both the SPS and the GPR method, error indicators (ℐ𝑝

𝑁𝑖𝑡
, ℐ𝑎

𝑁𝑖𝑡
) and exact errors (𝐸𝑝

𝑁𝑖𝑡
, 𝐸𝑎

𝑁𝑖𝑡
) are com-

puted at the load locations μ𝑁𝑖𝑡
that are used to construct the reduced basis ΦΦΦ𝑁𝑖𝑡

. These results are
collected in an error pool ℰ that is used in the error modelling to evaluate whether or not the offline
training phase has converged. The error model is built using GPRC, but now noise in the observations is
taken into account because the error indicator is merely an indication of the exact error. The covariance
function including observation noise 𝜎2

𝑛 is then:

cov(𝐸𝑝, 𝐸𝑞) = σ2
𝑓 exp [ − 1

2
(ℐ𝑝 − ℐ𝑞)2

λ2
𝑙

] + σ2
𝑛δ𝑝𝑞 (3.33)

cov(𝐸𝑝, 𝐸𝑞) = 𝑘(ℐ𝑝, ℐ𝑞) + σ2
𝑛δ𝑝𝑞 (3.34)

or collected in matrix form:

CCC(𝐸𝐸𝐸) = σ2
𝑓 𝑅𝑅𝑅(ℐℐℐ, ℐℐℐ) + σ2

𝑛𝐼𝐼𝐼 = 𝐾𝐾𝐾(ℐℐℐ, ℐℐℐ) + σ2
𝑛𝐼𝐼𝐼 (3.35)

Using this covariance function, the predictive mean 𝐸 of the GPRC and associated variance ̃𝑠2
𝐸(ℐ⋆) as

functions of test inputs ℐ⋆ are:
𝐸(ℐ⋆) = 𝑚 + ̃kkk

𝑇
CCC−1(𝐸𝐸𝐸 − 111𝑚) (3.36)

̃𝑠2
𝐸(ℐ⋆) = 𝜎2

𝑓 − ̃kkk
𝑇
CCC−1 ̃kkk + σ2

𝑛 (3.37)

The procedure to arrive at the above functions is similar to the procedure described in 3.2.2 Gaussian
Process Regression for Prediction, except the hyperparameter optimization is considerably more compli-
cated. Due to the inclusion of the observation noise, only the hyperparameter 𝑚 can now be determined
analytically, and the others (σ2

𝑓 , σ2
𝑛, λ2

𝑙 ) have to be optimized numerically and is often done using a gra-
dient ascent algorithm [3]. In order to perform such an optimization, the derivative of the log-likelihood
is needed. The log-likelihood (when including noise) and its derivative is as follows:

log (ℒ) = −𝑠𝑖𝑧𝑒(ℰ)/2
2 log (2π) − 1

2 log (∣CCC∣) − 1
2

(𝐸𝐸𝐸 − 111𝑚)𝑇CCC−1(𝐸𝐸𝐸 − 111𝑚)
σ2

𝑓
(3.38)

𝜕 log (ℒ)
𝜕θ𝑖

= 1
2(tr(ρρρρρρ𝑇 − CCC−1) 𝜕CCC

𝜕θ𝑖
) (3.39)

where tr(⋅) is the trace of a matrix, ρρρ = CCC−1(𝐸𝐸𝐸𝑐 − 111𝑚), and θ𝑖 is simply the hyperparameters to be opti-
mized: σ2

𝑓 , σ2
𝑛, λ2

𝑙 . With this expression, all we have to do is find 𝜕CCC/𝜕θ𝑖, so in the end the hyperparam-
eters to be optimized depend on the covariance function that was chosen. The derivatives with respect
to each hyperparameter are as follows [3]:

𝜕CCC
𝜕σ2

𝑓
= 𝐼𝐼𝐼 𝜕CCC

𝜕λ2
𝑙

= 𝑅𝑅𝑅
𝜕CCC𝑝𝑞

𝜕σ2𝑛
= 1

2𝑘(ℐ𝑝, ℐ𝑞) ⎛⎜
⎝

ℐ𝑝 − ℐ𝑞

λ2
𝑙

⎞⎟
⎠

2

(3.40)

With all these derivatives, the AMSGrad algorithm proposed by Reddi et al. [25] for gradient ascent
can be used to optimize the hyperparameters. This method was chosen because the authors claim it
consistently outperforms many other methods both in terms of speed and convergence behaviour. The
optimization using more basic gradient ascent methods was very often not able to find the global maxi-
mum because there is a significant number of local minima, and in many cases the optimization did not
converge within a reasonable number of iterations. The procedure for the numerical optimization of the
hyperparameters collected in a vector θθθ is shown in Algorithm 3.6 [17, 25].
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Algorithm 3.6:AMSGrad for hyperparameter vectorθθθ (all operations on vectors are elementwise)
Input : Initial hyperparameter vector θθθ1

Step size vector 𝑎𝑎𝑎
Exponential decay rates β1, β2
Smoothing term 𝜖
Objective function CCC

Output :θθθ
1 Set 𝑚𝑚𝑚0 = 0, 𝑣𝑣𝑣0 = 0 and ̂𝑣𝑣𝑣0 = 0
2 for 𝑡 = 1, … , 𝑁𝐺𝐴 do
3 𝑔𝑔𝑔𝑡 = ∇θCCC(θθθ𝑡) (Gradients to use for optimization: Eq. (3.40))
4 𝑚𝑚𝑚𝑡 = β1𝑚𝑚𝑚𝑡−1 + (1 − β1)𝑔𝑔𝑔𝑡 (Update biased 1st moment estimate)
5 𝑣𝑣𝑣𝑡 = β2𝑣𝑣𝑣𝑡−1 + (1 − β2)𝑔𝑔𝑔2

𝑡 (Compute new biased 2nd raw moment estimate)
6 ̂𝑣𝑣𝑣𝑡 = max( ̂𝑣𝑣𝑣𝑡−1, 𝑣𝑣𝑣𝑡) (Select max biased 2nd raw moment estimate)
7 θθθ𝑡+1 = θθθ𝑡 − 𝑎𝑎𝑎𝑚𝑚𝑚𝑡

√ ̂𝑣𝑣𝑣𝑡+ϵ
(Update hyperparameters)

8 end
9 return θθθ = θθθ𝑇

The gradient ascent algorithm takes as input the covariance function CCC, a step size vector 𝑎𝑎𝑎, two expo-
nential decay rates β1, β2, a smoothing term 𝜖 and an initial hyperparameter vector θθθ1. As suggested
by the authors, the following values are set: β1 = 0.9, β2 = 0.999 and 𝜖 = 10−8. The step sizes and
initial hyperparameter values, on the other hand, are significantly more problem-dependent, so they are
calculated based on the input. In Reddi et al. [25] and Kingma and Ba [17] (which [25] is based on),
the same step size is used for all three hyperparameters, but in this thesis they are different because the
length-scale λ2

𝑙 has considerably higher magnitude. Therefore, the step sizes are calculated from the
initial hyperparameter values:

𝑎𝑎𝑎 = [σ2
𝑛,1, λ2

𝑙,1, σ2
𝑛,1] × 10−3 (3.41)

The optimization problem is strongly non-concave (non-convex when minimizing) because there a sig-
nificant number of local maxima of the covariance function CCC. In such cases a large number of different
sets of initial values have to be chosen in order to find the local maximum that is also the global maxi-
mum. Figure 3.7 shows an example of optimizing an arbitrary non-concave function 𝐶 that depends on
two hyperparameters, θ1 and θ2. It has three local maxima in the range where it is defined. The three red
lines show the progression of a gradient ascent algorithm with three different starting points. It shows
that the result of the optimization depend greatly on the starting point. This highlights how important
it is to have a large number of sets of initial hyperparameters in order to find the global maximum, espe-
cially with a strongly non-concave function such as the covariance function that has to be optimized in
this problem.

With the hyperparameters optimized, theGPRCcanfinally be computedusingEq. (3.36) andEq. (3.37),
which Figure 3.8 shows an example of. Using this mapping of the exact error, we can compute a pes-
simistic exact error �̂�+ (or upper bound for the error [21]):

�̂�+ = 𝐸(ℐ⋆) + α𝐸 ̃𝑠(ℐ⋆) (3.42)

where α𝐸 is the number of standard deviations away from the mean. For this thesis α𝐸 = 1.036, which
corresponds to the 70% confidence interval. The offline training phase is converged when the three last
error indicators computed before updating the basis (𝐸𝑝) that were added to the error pool ℰ are below
an error tolerance 𝐸𝑚𝑎𝑥 (Figure 3.8b), which is set as 𝐸𝑚𝑎𝑥 = 0.5%.
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Figure 3.7: Gradient ascent example

(a) Full error mapping (b) Zoomed portion of error mapping

Figure 3.8: Example of error mapping using GPRC at convergence

fill
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3.3.1 Hyperparameters
In order to obtain a good regression for both GPRP and GPRC, it is essential that the hyperparameters
are optimized properly. The more hyperparameters that have to be numerically optimized, the more
expensive it becomes to compute the optimization, but following is a description of how the hyperpa-
rameters affect the regression and the importance of optimizing themwell. Figure 3.9 shows a regression
computed from a number of arbitrary observations 𝑦 that are based on inputs 𝑥. It is judged that this re-
gression has well-tuned hyperparameters in terms of maximizing the log-likelihood function, and in the
remainder of this section, this regression will referred to as a ”good” regression. The following figures
show regressions made from the same observations, but with each hyperparameter adjusted to be lower
or higher in order to see the effect they have on the regression. For reference in order to understand
how the hyperparameters play a role in computing the regression, the squared exponential covariance
function 𝐶 for input 𝑥 and output 𝑦 is:

CCC = σ2
𝑓 exp [ − 1

2
(𝑥𝑝 − 𝑥𝑞)2

λ2
𝑙

] + σ2
𝑛δ𝑝𝑞 (3.43)

Figure 3.9: Example of GPR with good hyperparameter optimization

Signal variance σ2
𝑓

The signal variance σ2
𝑓 is often referred to as the amplitude of the predictive mean function because it

describes the distance from the mean of the observations, which in this case is roughly zero [32]. Fig-
ure 3.10a shows that a high variance leads to high amplitudes along the domain of the input. When
comparing this regression with the good one, roughly the same peaks are present, but the adjusted σ2

𝑓
makes the amplitude of these peaks considerably higher. In the case when σ2

𝑓 is lowered, the peaks are
much closer to the mean, and the function really only moves away from the mean when there are points
that are very far away from the mean.

Length-scale λ2
𝑙

The length-scale λ2
𝑙 (also referred to as bandwidth[2]) specifies the width of the kernel and thus describes

the smoothness of the regression. In other words, it determines how quickly the correlation between
points drops off as one moves along the domain 𝑥. Figure 3.11 shows heatmaps of a covariance matrix
𝐶 with 1000 arbitrary observations that are generated in the same way as the observations used for all
the other figures in this section. The value indicates the correlation between the points collected in the
matrix, where a value of 1 is the highest and indicates very high correlation. It is clear that a higher
length-scale increases the correlation between the points, and almost all the points affect each other to
a great extent. Such a high λ2

𝑙 results in a smooth function, as seen in Figure 3.12a. Furthermore, the
higher the length-scale, the more the regression is able to extrapolate the data reliably. In general, we
cannot extrapolate more than 𝜆𝑙 away from the outer observations [6]. Figure 3.11c shows that the high
values along the diagonal quickly, and points that are not in the immediate vicinity are not correlated at
all. Figure 3.12b shows that a low λ2

𝑙 makes the regression always tend to go back the mean if there are
no other points nearby.
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(a) High σ2
𝑓 (b) Low σ2

𝑓

Figure 3.10: Examples of GPR with high and low σ2
𝑓

(a) High λ2
𝑙 (b) Good λ2

𝑙 (c) Low λ2
𝑙

Figure 3.11: Heatmap of covariance matrix for various length-scales

(a) High λ2
𝑙 (b) Low λ2

𝑙

Figure 3.12: Examples of GPR with high and low λ2
𝑙

fill
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Observation noise σ2
𝑛

The observation noise σ2
𝑛 describes the uncertainty in the observations and thus determines howwell the

regression fits the points. If we believe that there is noise in the observed values, then this observation
noise has to be implemented. However, in some cases, such as theGPRP, the error indicatorℐ is computed
at certain locations μ, and are therefore not uncertain at all, which is why no noise is included in that
case. Figure 3.13b shows an example of this, and it can be seen that once we move away an area with
several observations, the function goes back toward the mean, just like when there is a low length-scale.
However, in this case there is a constant predictive variance when the regression is at the mean, but
Figure 3.12b shows that the variance varies over the same ranges. It only makes sense to exclude the
noise in a situation when there are few observations because the combination of low noise and many
observations yields a regression like in Figure 3.14. A high observation noise, as shown in Figure 3.13a
implies that there is a lot of uncertainty in the observations, yielding a smoother regression with a lot of
variance, and actually a mostly constant variance over the domain 𝑥.

(a) High σ2
𝑛 (b) Low σ2

𝑛

Figure 3.13: Examples of GPR with high and low λ2
𝑙

Figure 3.14: Example of GPR with low σ2
𝑛 and many observations



4 RESULTS AND DISCUSSION

In this thesis two methods of constructing a reduced-order model (ROM) were investigated. The ROM
should accurately describe the behaviour of a simply supported beam that is loaded in the downwards
direction (Figure 4.1). In this chapter, a short description and values are given for all parameters used in
the implementation of themethods that have beenmentioned throughout the thesis, then the progression
of the two methods are presented to show how each of them behave. Lastly, the results of a parametric
study is shown. This study investigates the performance of bothmethodswith varying input parameters,
where performance is assessed in terms of efficiency and accuracy. For the SPS these input parameters
are the energy tolerances ε𝑖 and ε𝑔, and for the GPR method they are the same energy tolerances as well
as the number of additional improvements to the GPRP 𝑁𝑎𝑑𝑑

𝑐 .

(a) Beam model with no load

(b) Examples of FOM responses for beam model

Figure 4.1: Simply supported beam model

Mechanical Model
The model used in this thesis is a simply supported beam that is a solid, rectangular and made of a
homogenous, elastoplastic material. The full span of the beam is 20 mm, but the actual loading span is
limited to 5 ≤ μ ≤ 15 mm. Only one point is loaded at a time, and the load is applied using arc-length
control. The magnitude of the downwards load is described by the load factor λ which in each time step
is incremented by ∆λ. The FOM is run while ∆λ𝐹𝑂𝑀 ≥ 10−4 is satisfied, meaning that the response
is well into the plastic regime (Figure 3.2b), and the load is barely increasing anymore. This ensures
that sufficient displacement snapshots are gathered to assemble the reduced basis. We desire a ROM
that is suitable for significant plastic responses, but due to erroneously high error indicators along the
edges of the parameter space, the stopping criterion for the ROM had to be fine-tuned in order to get a
reasonable distribution of the error indicator in the entire parameter space. Therefore, the ROM is run
while ∆λ𝑅𝑂𝑀 ≥ 10−4 ∧ λ𝑅𝑂𝑀 ≤ 9.5 is satisfied.

∆λ𝐹𝑂𝑀 ≥ 10−4

∆λ𝑅𝑂𝑀 ≥ 1.75 × 10−3

λ𝑅𝑂𝑀 ≤ 9.5
Length [mm] 20
Parameter space span [mm] 5 ≤ μ ≤ 15

Table 4.1: Arc-length control load settings

39
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Reduced Basis Construction
The input parameters that affect how the reduced basis is constructed are the number of elastic modes 𝑘𝑒,
and the energy tolerances ε𝑖 and ε𝑔. 𝑘𝑒 = 1 because all the information from the elastic regime is captured
well by just one mode. ε𝑖 and ε𝑔 are the two of the input parameters that are varied in the parametric
study for both sampling methods. They greatly affect the efficiency and accuracy of the offline training
phase, as they determine how much information is kept in the SVD performed on the snapshot matrices.
The values used for each energy tolerance are listed in Table 4.2 below.

ε𝑖 0.9995, 0.9999, 0.99995, 0.99999, 0.999995, 0.999999
ε𝑔 0.9999, 0.99995, 0.99999, 0.999995, 0.999999
𝑘𝑒 1

Table 4.2: Reduced Basis Construction Parameters

Gaussian Process Regression for Prediction (GPRP)
There are various parameters that affect the performance of the GPR method during the computation of
the GPRP, and they are all related to the improvement of the regression. The search parameter τττ ranges
from 0.05 to 4.00 (see Table 4.3) in order to perform both a local and a global search to improve the
regression. The number of searches is high because it is inexpensive to compute. The number of initial
observations used to construct the GPRP 𝑁0

𝑐 is set as 3 because that is the lowest number of observations
required to make a poor but reasonable regression. From this regression, 𝑁𝑎𝑑𝑑

𝑐 additional improvements
are made. 𝑁𝑎𝑑𝑑

𝑐 is the third input parameter in the GPR method that is varied in the parametric study,
and ranges from 1 to 6. β and αℐ are the factors that determine when it can be judged that the maximum
error indicator has been found by the GPRP, and they are set as 5% and 1.96, respectively. The latter value
corresponds to a 95% confidence interval of the regression.

αℐ 1.96
β 0.05
𝑁0

𝑐 3
𝑁𝑎𝑑𝑑

𝑐 1, 2, 3, 4, 5, 6
τττ [0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,

1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.25, 3.50, 3.75, 4.00]

Table 4.3: GPRP Parameters

Gaussian Process Regression for Convergence (GPRC)
The GPRC is computed in the same way for both the SPS and the GPR method, so this specific process
of the offline phase should take the same amount of time in each iteration for both methods. The GPRC
is first computed in 𝑁𝑖𝑡 = 5, which is to reduce the computational cost a little. In the early iterations it is
certain that the offline training process will not converge either way, so the computation of the GPRC can
be initiated later. Furthermore, in the initial computation of the GPRC, only the error indicators ℐ and
exact errors 𝐸 computed in the last two iterations, 𝑁𝑖𝑡 = 4 and 𝑁𝑖𝑡 = 5, are used, meaning that ℐ and 𝐸
from training iterations 1, 2 and 3 are not used. These three iterations are left out because in the beginning
of the offline training phase, the load locations are selected far away from each other, and with a poor
basis the error indicators fluctuate significantly, and also depend on whether the GPRP selects points
around the middle or at the edges first. Furthermore, the erroneously high error indicators at the edges
makes these fluctuations worse. In almost every case, two of the first load cases are at the edges, and one
is somewhere around the middle, so at this point the distribution of the error indicator has stabilized
since the basis includes information from a few points that range the parameter space. This is why the
first three iterations are left out. For the convergence criterion explained in 3.3 Sampling Convergence
– Error Modeling, the error tolerance 𝐸𝑚𝑎𝑥 is set as 0.5%, and α𝐸 = 1.036, which corresponds to a 70%
confidence interval.
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𝐸𝑚𝑎𝑥 0.5%
α𝐸 1.036
𝑁𝑖𝑡 to begin GPRC 𝑁𝑖𝑡 = 5
𝑁𝑖𝑡 used in 1st GPRC 𝑁𝑖𝑡 = 4, 5

Table 4.4: GPRC Parameters

Gradient Ascent Algorithm
For the AMSGrad gradient ascent algorithm, some parameters are set based on suggestions from the
authors, while others are highly problem-dependent and have to be set by the user. The suggestions from
the authors are: β1 = 0.9, β2 = 0.999 and 𝜖 = 10−8 [17, 25]. The step sizes are more problem-dependent
because of the varying magnitudes of the hyperparameters that are optimized, which is why they are
calculated based on the initial values used in one run of the optimization algorithm. The initial values also
depend on the provided observations, so for each hyperparameter an estimate is computed: σ2

𝑓 ,𝑒𝑠𝑡, λ2
𝑙,𝑒𝑠𝑡

and σ2
𝑛,𝑒𝑠𝑡. Then, seven different initial values (σ2

𝑓 ,1, λ2
𝑙,1, σ2

𝑛,1) are calculated for each hyperparameter
as shown in Table 4.5, and the gradient ascent algorithm is run for a maximum of 𝑁𝐺𝐴 = 100 iterations
with every combination of initial values.

𝑎𝑎𝑎 [σ2
𝑛,1, λ2

𝑙,1, σ2
𝑛,1] × 10−3

β1 0.9
β2 0.999
𝜖 10−8

𝑁𝐺𝐴 100
λ2

𝑙,𝑒𝑠𝑡 𝑚𝑎𝑥(ℐ𝑝 ∪ ℐ𝑎) − 𝑚𝑖𝑛(ℐ𝑝 ∪ ℐ𝑎)

λ2
𝑙,1 λ2

𝑙,𝑒𝑠𝑡,
λ2

𝑙,𝑒𝑠𝑡
5 , λ2

𝑙,𝑒𝑠𝑡
10 , λ2

𝑙,𝑒𝑠𝑡
25 , λ2

𝑙,𝑒𝑠𝑡
50 , λ2

𝑙,𝑒𝑠𝑡
75 , λ2

𝑙,𝑒𝑠𝑡
100

σ2
𝑓 ,𝑒𝑠𝑡 √𝑣𝑎𝑟(𝐸𝑝 ∪ 𝐸𝑎)

σ2
𝑓 ,1 10σ2

𝑓 ,𝑒𝑠𝑡, σ2
𝑓 ,𝑒𝑠𝑡,

σ2
𝑓 ,𝑒𝑠𝑡
10 ,

σ2
𝑓 ,𝑒𝑠𝑡
50 ,

σ2
𝑓 ,𝑒𝑠𝑡

100 ,
σ2

𝑓 ,𝑒𝑠𝑡
500 ,

σ2
𝑓 ,𝑒𝑠𝑡

1000

σ2
𝑛,𝑒𝑠𝑡 𝑣𝑎𝑟(𝐸𝑝 ∪ 𝐸𝑎)

σ2
𝑛,1 10σ2

𝑛,𝑒𝑠𝑡, σ2
𝑛,𝑒𝑠𝑡,

σ2
𝑛,𝑒𝑠𝑡
10 , σ2

𝑛,𝑒𝑠𝑡
50 , σ2

𝑛,𝑒𝑠𝑡
100 , σ2

𝑛,𝑒𝑠𝑡
500 , σ2

𝑛,𝑒𝑠𝑡
1000

Table 4.5: Gradient Ascent Parameters
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4.1 Greedy Sampling Progression

4.1.1 Surrogate Parameter Space Method

Figure 4.2: Iterative progression of the SPS method

Figure 4.2 shows how the load cases μ𝑁𝑖𝑡
are selected in each iteration and the SPSs �̂�𝑁𝑝

. It also com-
pares the approximation of the error indicator ℐ that can be made from those computed in �̂�𝑁𝑝

with the
distribution of the error indicators in the full-order parameter space 𝑃. The figure also shows how the
exact error curve develops as data from more load cases is added to the reduced basis.

The figure starts at 𝑁𝑖𝑡 = 3 and shows the sampling progression until convergence in 𝑁𝑖𝑡 = 11. In the
top plot in each iteration, the black dots are the error indicators ℐ̂ computed at the points that have not yet
been trained in the current SPS �̂�𝑁𝑝

, and the dashed red line shows the error indicator in the parameter
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space 𝑃. The distribution of the error indicator in the rest of the parameter space is inaccessible during
the offline training phase, but it has been obtained here for illustration purposes. In 𝑁𝑖𝑡 = 3, the training
phase has just moved on to SPS �̂�2, in which there are four points. In each iteration one point is trained
and the error indicator will not be computed in a trained point in the following iteration, so in 𝑁𝑖𝑡 = 4
there are only three untrained points as shown. In 𝑁𝑖𝑡 = 6 there is only one point left, so this point can
be selected as the next load case without the need to compute the error indicator. However, the error
indicator is actually computed in this location before enrichment of the basis either way because it will
be used for the error modelling used to evaluate whether the training phase has converged or not. In
𝑁𝑖𝑡 = 7, the training phase moves on to the next SPS �̂�3 because the previous one has been exhausted.
The dashed black line shows the location of the maximum error indicator in each iteration, which is the
point that will be trained next, and the blue dots show the points that have already been trained prior to
the respective iteration. The solid black line is the best approximation available of the distribution of the
error indicator in the SPS method.

The bottom plot in each iteration shows the development of the exact error 𝐸 in the parameter space
𝑃 as the training progresses. Just like the error indicator in 𝑃, this exact error curve is also not accessible
during the offline training phase. The dashed gray line is the 𝐸𝑚𝑎𝑥 = 0.5% error tolerance, and it is the
goal of the offline training phase to construct a ROM that ensures that every single point along the beam
has an exact error lower than this tolerance. Neither the error indicator nor the exact error in the param-
eter space 𝑃 (red and blue curves) are computed in the already trained points because that would only
serve to visually disturb the plots.

Before 𝑁𝑖𝑡 = 9, the points in the SPSs are always at or close to themaximum error indicator in the beam.
This occurs because the grids in each SPS are made such that the beam will be trained at a number of
locationswith uniformdistance fromeach otherwhen the SPS is exhausted. For a simply supported beam
of homogenousmaterial, one could intuitively think that training such a uniformly spaced grid is the best
and most efficient way to construct a reduced basis, given that we know the spacing required in order to
bring the exact error below a certain tolerance everywhere. While the reduced basis is indeed constructed
well and relatively efficiently, the selection of the load cases in each iteration is often suboptimal, which
is clearly shown in 𝑁𝑖𝑡 = 9 and the following iterations. Before discussing the suboptimality of the
load cases selected, we first have to address the high error indicators at the very edges. It can be seen
starting in 𝑁𝑖𝑡 = 6 that the error indicator spikes towards the edges and is erroneously high. Figure 4.3
shows the distribution of the ROM residual (Eq. (3.13)) after running the ROM in the online phase with
loads at μ = 10.8, μ = 12.8 and μ = 14.8. The residual is an indication of the ROM error as the MOR
aims to minimize this residual. The locations loaded are all next to points that have been trained in
the offline phase shown in Figure 4.2 (μ8 = 11.0, μ10 = 12.6 and μ3 = 15.0). The figure shows that
when loads are placed closer to the middle of the beam, the residual is significantly spread out in the
beam, and has a generally higher magnitude throughout. This is likely because the load is transferred
to both supports through larger portions of the beam, making it more difficult for the reduced model
to accurately capture the behaviour in the elements. As the load moves more towards the edges, the
stress is transferred through smaller portions of the beam, causing the residual to be less spread out
and generally smaller in magnitude. However, when getting too close to the support, there is significant
resistance from the closest support, impeding deflection and causing residual to build up significantly
around the load location. While the residual is now less spread out and generally smaller in magnitude,
the residual built up around the loaded point now dominates, causing a higher error indicator. This high
build-up of the residual around the load locations is due to the fact that we are using a point load. It can
be seen in all three cases that the residual is significantly higher around the load location than anywhere
else. When the load is placed closer to the middle, the residual in the rest of the beam dominates, but
when moving too much to the edges, the residual around the load location dominates. The exact error is
computed based on the displacement field, and Figure 4.2 shows in the last few iterations that the exact
error dips down at the edges, while the error indicator goes up, illustrating that this significant build-up
of the residual is a numerical error that we do not want to capture.
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Figure 4.3: Distribution of residual for various load locations

When looking at the error indicator curve in 𝑁𝑖𝑡 = 11, the value goes down as we move away from the
middle, and even though the small areas on both sides have yet to be trained, both the error indicators
and the exact errors there are lower than in the middle. This shows that further away from the middle,
fewer load cases are needed in those areas to describe the behaviour of the beam. So it is evident that
even for a simple model like this, the load cases can be selected in a more optimal way. Furthermore,
one would also expect the error indicator curve to be symmetric when symmetric load cases have been
used, but this is not the case as clearly shown in iterations 3, 5, 7, and 9. This occurs because of how the
SVD keeps information from the snapshots. Depending on the order of the iterations, the SVDmight not
deem information obtained from one side of the beam as important as when the other side was trained
due to all the other information that has already been stored in the global surrogate snapshot matrix.
However, this asymmetry is less present in the exact error, so in terms of the accuracy of the ROM itself,
enough good information is kept in the SVD.

The exact error plots show that one training case significantly decreases the error in the vicinity of
the training location. However, this vicinity is very small. In 𝑁𝑖𝑡 = 3 it can be seen that the exact error
is above 0.5% when moving just 0.2 mm away, and in 𝑁𝑖𝑡 = 4 the affected area of the new load case
is slightly larger. This shows that load cases around the middle add useful information to the reduced
model in only a small vicinity, indicating again that the middle should be more densely trained. The
reason for this is likely because the load is transferred through larger portions of the beam when loaded
close to the middle, as mentioned above. When more elements in the finite element model undergo
nonlinear behaviour, the ROM has troubles interpolating between the modes in the reduced basis, and
cannot accurately capture the behaviour.

Furthermore, Figure 4.4 shows an example of how ℐ ismerely an indicator, andwhy the offline training
phase requires a relatively conservative convergence criterion. The top four curves shows the distribu-
tion of the error indicator in iterations 7 − 10, and the bottom four curves are the corresponding exact
errors. The dots show the trained locations in the indicated iterations. What we can see in this figure
is that while the exact error consistently decreases in every point as more information is added in each
iteration, this is not the case for the error indicator. E.g. as we go from iteration 7 to 8, the error indicator
around μ = 9 increases considerably when the ROM is enriched by a load case at μ = 11. However, the
exact error in the same area does go down quite significantly. This likely occurs because the snapshots
are of the displacements in the FOM solutions, so the ROM more accurately approximates the displace-
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ment field than the internal forces.

Figure 4.4: Development of error indicator and exact error for a few iterations

Lastly, the exact error plots in Figure 4.2 also show that after 𝑁𝑖𝑡 = 9, the exact error is in fact below
the 0.5% tolerance in the entire parameter space, but the training goes on for two additional iterations
due to the convergence criterion.
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4.1.2 Gaussian Process Regression Method

Figure 4.5: GPRP improvement progression using one target

Figure 4.5 shows how the GPRP is built with 𝑁𝑐 improvements and illustrates how the accuracy of the
regression is affected by the number of improvements. The goal of the GPRP is, in each iteration, to find
the true maximum error indicator in the beam as efficiently as possible. The first plot shows the GPRP
after 𝑁0

𝑐 = 4 initial observations are computed in random locations. The left axis in each plot is the error
indicator ℐ , and the right axis is the acquisition function which indicates the probability of improving
the maximum of the regression by a certain target. The x axis is the span of the beam represented by the
parameter μ. The black dots are the observations from which the regression is computed, the black line
is the predictive mean, and the dark and light gray areas show the 70% and 90% confidence intervals of
the regression, respectively. The dashed red line is the actual error indicator, which is normally inacces-
sible, but has been obtained for illustration purposes. The actual error indicator is computed in many
points along the beam, but not in the already trained points because there would be significant dips in
the graph that are not of much use for the purpose of these plots. The blue dots show the locations in
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the beam that have already been trained in the previous iterations, and the dashed black line shows the
location of the current maximum of the prediction.

The blue line is the acquisition function that gives the probability of improving the regression by a
certain target. In this illustrative case, only one high target is used to enable a global search. In the actual
implementation, 29 different targets are used that compute the probability of improving the maximum
by factors ranging from τ1 = 0.05 to τ29 = 4.0. We use such a large range because the computational cost
of this step is negligible. The dashed green line simply shows where the next observation of the error
indicator will be obtained.

Coincidentally in this case, one of the first random observations actually turned out to be at or very
close to the actual maximum error indicator in this iteration. However, the regression for 𝑁𝑐 = 4 pre-
dicts the maximum to be slightly to the left and very close to a point that has already been trained. If
the improvement had stopped there, then the chosen training case would be very close to an already
trained point, which is generally a waste of time. As more improvements are made, the regression be-
comes more accurate and resembles more the actual error indicator. The fifth improvement 𝑁𝑐 = 7 gives
an observation that produces a regression that predicts the true maximum, however because there is no
access to the actual error indicator, it could very well be that the maximum is actually in the area on the
left with high uncertainties. The method recognizes this, and therefore chooses a point in this area as
the next location to improve the regression.

What can also be seen in these steps of constructing the regression is that the uncertainty is sometimes
underestimated, especially with few, scattered observations. In this case, it appears that the GPRP finds
a smooth curve with a shape that resembles a sine function that easily describes the four points, so there
is only significant uncertainty outside the area enclosed by the observations. However, when more ob-
servations are added the shape becomes more complex and contains more inflection points, causing the
uncertainty to increase in the middle section. After 𝑁𝑐 = 7, almost the entire actual error indicator curve
is captured by the 95% confidence interval.

Figure 4.6 shows the final GPRP in each training iteration 𝑁𝑖𝑡, and is the GPR method’s counterpart of
Figure 4.2. It shows the quality of the predictions also how the exact error curve develops as data from
more load cases is added to the reduced basis. The figure begins with 𝑁𝑖𝑡 = 3 and ends at 𝑁𝑖𝑡 = 11
when the offline training phase has converged. To compute these regressions, 𝑁0

𝑐 = 4 observations of
the error indicator are made at random locations, and improvements are made until there is nowhere in
the beam where the αℐ = 95% confidence interval indicates that the regression could be β = 5% higher
than the current predicted maximum. Basically, the improvement stops when there is high certainty that
the predicted maximum is the true maximum.

In every iteration except 𝑁𝑖𝑡 = 9 and 𝑁𝑖𝑡 = 11, the GPRP predicts the location of the maximum ei-
ther exactly at the true maximum or very close to it. In 𝑁𝑖𝑡 = 9 we see an example of a poor regression
that occurs sometimes when there are only a few observations included. In some poor regressions such
as this one, the predictive mean goes to the mean 𝑚 as soon as we move away from the observations.
In this case, an observation was made at the edge that was almost as high as the true maximum, and
the 95% confidence intervals along the rest of the beam did not indicate that there could be another lo-
cationwhere the value could be 5% higher than the current maximum, so the improvement was stopped.

In 𝑁𝑖𝑡 = 3 it can be seen that the exact error goes above 0.5% whenmoving just 0.3−0.4 mmaway from
the load case that is more in the middle. In 𝑁𝑖𝑡 = 4 the affected area of the new load case is even smaller,
indicating that the middle part of the beam must be trained more densely than towards the sides, which
is in fact what occurs in the later iterations.

It can also be seen in the development of the exact error that all load cases do lower the error very
slightly in the rest of the beam. This is seen in the iterations from 𝑁𝑖𝑡 = 3 to 𝑁𝑖𝑡 = 7 in the gap between
the two load cases on the right. Before 𝑁𝑖𝑡 = 8, no load case is added in that gap, but the exact error is
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Figure 4.6: Iterative progression of the GPR method

still going down. In 𝑁𝑖𝑡 = 7 the error in that gap is even brought below the tolerance. And of course,
the load cases applied closer to this area have the greatest affect, as can be seen going from iteration 3
to iteration 4 and iteration 6 to iteration 7, as opposed to the very small decreases from iteration 4 to 5
and 5 to 6. The exact error plots also show that after 𝑁𝑖𝑡 = 7, the exact error is in fact below the 0.5%
tolerance in the entire parameter space, but the training goes on for four additional iterations due to the
convergence criterion.

Just like in the SPS method, the error indicator is erroneously high toward the edges of the parameter
space, which disturbs the sampling process of theGPR. In 𝑁𝑖𝑡 = 9, the actual error indicator and the exact
error follow roughly the same trend, except at the edgeswhere the error indicator goes up quite a bit. This
leads to the GPRP predicting a maximum at the left edge right next to a previously trained point, where
the exact error is actually already very low and has been below 0.5% since 𝑁𝑖𝑡 = 3. These erroneously
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high error indicators at the edges occurs in every offline training phase, and Figure 4.7 shows how often
those edges are trained because of that. This figure shows how the training locations are distributed
throughout the beam for all the cases in the parametric study. The high density is because the edges are
trained every single time, and also because in almost every training, at least one edge is trained twice, as
is the case in Figure 4.6 on the left edge. So after all it was actually lucky in this occasion that the GPRP
predicted the wrong maximum in 𝑁𝑖𝑡 = 11 because the exact error is higher at the predicted maximum
error indicator than the truemaximum. Figure 4.7 also shows themiddle ismore densely trained because
the GPRP understands which areas needs to be more trained for the reason discussed in 4.1.1 Surrogate
Parameter Space Method.

Figure 4.7: Density of training locations
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4.2 Convergence Progression

Figure 4.8: Iterative progression of error mapping using GPRC

Figure 4.8 shows the progression of the error mapping and illustrates at which point convergence is
achieved. It shows the GPRC computed using observations of the exact errors and error indicators before
(𝐸𝑝, ℐ𝑝) and after (𝐸𝑎, ℐ𝑎) enrichment of the basis in each training iteration from 𝑁𝑖𝑡 = 5 to 𝑁𝑖𝑡 = 10.
The cluster on the left are all observations made shortly after enrichment, so those errors are low, as
expected. Like in the previous figures in this chapter, the black dots are the observations from which
the regression is computed. The black line is the mean of the prediction, and the dark and light gray
areas are the 70% and 95% confidence intervals of the regression, respectively. The dashed gray line is
the 𝐸𝑚𝑎𝑥 = 0.5% error tolerance.

The convergence criterion (3.3 Sampling Convergence – Error Modeling) is meant to ensure that the
exact error along the parameter space is actually below 𝐸𝑚𝑎𝑥 = 0.5%. There are a few reasons why we
choose this criterion instead of letting it converge the first time the pessimistic error is below the tolerance.
One important reason is the erroneously high error indicator at the edges. This could cause the GPRP to
choose the next load location to be at the edge where a training has already been performed, which will
yield a low exact error, while the error could still be too high elsewhere in the beam. Another reason
is that sometimes the regression simply turns out to be poor, like in 𝑁𝑖𝑡 = 9 in Figure 4.6, which may
again cause the regression to select a load location that is already well described by the reduced model.
This convergence criterion could be changed to converging when a certain number of observations of
the pessimistic error are below the tolerance instead of the last few observations. This could work better
because e.g. if the GPR predicted two locations that were close to some previously trained locations, the
two observations arising from these trainings would have very low errors. However, the next prediction
could be a good one, yielding an observation with a pessimistic error above the tolerance, making the
count starting over again. At this point, we need 3 more predictions of the pessimistic error, when in fact
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it could be that every single location along the beam would give pessimistic errors below the tolerance.
If using this alternative criterion, the number of observations that have to be below the tolerance has to
be higher that of the orginal criterion.

As is expected from a good offline training phase, there is a decreasing trend in both the exact error
and the error indicator. As more iterations are made, more observations below the exact error tolerance
of 0.5% are made. However, in 𝑁𝑖𝑡 = 8, the pessimistic error of the new observation is actually slightly
above the tolerance with a value of 0.5074%, and in 𝑁𝑖𝑡 = 9 the same observation has a pessimistic error
of 0.5022%. It is not until 𝑁𝑖𝑡 = 10 that the uncertainty has been lowered such that the pessimistic error
of the last three observations is below 0.5%, thus satisfying the convergence criterion.

In 𝑁𝑖𝑡 = 7, the predicted mean is actually slightly negative, and in every iteration the confidence inter-
vals go into the negative zone. Obviously, the way the error indicator and the exact error are computed,
they can never be negative, but the GPRP method implemented in this thesis does not take that into
account. The regression is unconstrained, and we judge that it would take time to try to implement con-
strained GPR, and in the case of this thesis it turned out to be unnecessary as well because the part of
the regression that is interesting for the convergence criterion would likely not be affected significantly
by the constraint.



52 Results and Discussion

4.3 Parametric Study on Performance
The parametric study mainly focuses on how the performance of the offline training phase is affected
when changing the input parameters ε𝑖, ε𝑔, and 𝑁𝑎𝑑𝑑

𝑐 . However, this section will first take a look at
how the hyperparameter optimization depends on the number of maximum iterations 𝑁𝐺𝐴 versus the
number sets of initial values, before comparing the time-wise performance of each of the two methods
spend on the main MOR processes, followed by a discussion of the parametric study.

4.3.1 Hyperparameter Optimization

(a) 2730 initial points
Max 100 iterations

(b) 990 initial points
Max 100 iterations

(c) 448 initial points
Max 300 iterations

Figure 4.9: Local and global maxima obtained by the hyperparameter optimization for various settings

Figure 4.9 shows all the local maxima of the log-likelihood function Eq. (3.38) found by the gradient
ascent algorithm. Each dot is a local maximum, and the dot with the red border is the point determined
to be global maximum. For illustration purposes, both the size and color of the dots denote the value
of the log-likelihood function, where bigger and more yellow denote a higher value. The three axes are
the hyperparameters σ𝑓 , σ𝑛 and λ𝑙. Figure 4.9a was a numerical optimization done with 2730 different
starting points and a maximum of 100 iterations. Figure 4.9b was done with 990 points and maximum
100 iterations. Figure 4.9c was done with 448 points and maximum 300 iterations.

From the first and third optimizations, the global maxima obtained were 91.82, while for the second
optimization it was 86.83. So to obtain the global maxima it works to use many initial points with not
so many maximum iterations, because one of the guesses is likely to be close to the global maximum,
and it also works to use fewer initial points but allow for many more iterations so that the guesses don’t
have to be as close to the global maximum. Either way, the figure shows that an extensive search of the
hyperparameter space is needed to find the global maximum, but it is also cheapwith such a low number
of observations as the matrices in the log-likelihood function are small.

4.3.2 Expense of MOR Processes
Figure 4.10 compares the time-wise performance of the SPS and GPR methods by showing the cumula-
tive time taken by the four main processes of the MOR as the number of iterations increase. The inelastic
energy tolerance and global energy tolerance used in both methods are 99.95% and 99.99%, respectively,
and the least number of improvements of the GPRP (𝑁𝑎𝑑𝑑

𝑐 ) is 2. Both trainings converged at the end of
𝑁𝑖𝑡 = 11.

The figure shows that all processes except the greedy sampling take approximately the same amount
of time in bothmethods. The greedy sampling consists of all the ROMs that are run to determine the next
training location. For the SPS method, the amount of ROMs that have to be run in total for the greedy
sampling up until and including 𝑁𝑖𝑡 = 11 is 31, and this number is constant for all energy tolerances
because the same SPSs �̂�𝑁𝑝

are being searched every time. For the GPR method, in this case a total of 58
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(a) SPS (b) GPR

Figure 4.10: Cumulative time of each MOR process in the offline phase for SPS and GPR

ROMs were run as part of the greedy sampling process, which is what causes this method to take longer.
However, while it does take longer, the GPR method selects better loads cases when comparing it with
an SPS training phase with the same amount of iterations, as the exact error throughout the beam is on
average lower.

Furthermore, the very first load in the GPR method is random and the first three observations in the
GPRP are random, so there is quite some uncertainty in this method, causing the time taken to vary
considerably. For this specific set of parameters of the GPR method, the minimum time it has taken is
the 589 seconds that is shown in Figure 4.10b, and the maximum time is 1167 seconds. The significant
variations in time are caused by the uncertainty in the convergence modelling explained in 4.2 Conver-
gence Progression, where it was mentioned that sometimes it could happen that the GPRP leaves out
some areas in the beam for a few iterations and instead trains locations that are already well described
by the reduced model, and thus yields pessimistic errors that are below the tolerance. But then when it
finds this neglected area, the pessimistic exact error could be significantly higher than the tolerance, and
the count starts over again, leading to a much longer offline training phase than it has to be.

Additionally, the time taken for each reducedmodel increaseswith every iteration because the reduced
basis matrix becomes bigger. This leads to the proportion of the time taken for the greedy sampling to
increase exponentially for the GPR method. For the SPS method the proportion also increases, but not
as much because as the SPS is exhausted there are fewer reduced models to run. Though if we move
to SPS �̂�4, the time would increase considerably because there are significantly more error indicators to
compute, but that is never needed for the 0.5% error tolerance in the convergence criterion. Additionally,
the increased size of the reduced basis also causes the computation of error indicators and exact errors
for the convergence modelling to take longer.

The SPS method works very well for a beam model when the parameter space is the span of the beam
where loads are placed in the downwards direction. This space can easily be subdivided into incremen-
tally finer grids that can be used to train a reducedmodel to sufficient accuracy very efficiently. However,
for other models, such as those mentioned in the literature review, this method will not peform as ef-
ficiently. The amount of reduced models that have to be run is the real bottleneck for both methods,
and especially for the GPR method. Therefore it is crucial to choose input parameters that minimize the
amount of reduced models that have to be run and also that minimizes the size of reduced basis, while
at the same time making sure that the GPRP is constructed well and that not too much information is
lost in the inelastic and global SVDs. Furthermore, the actual efficiency of the offline and online phases
are highly problem-dependent, as it also depends a lot on how much faster the reduced-order model is
compared to the full-order model, which also varies significantly from case to case.
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4.3.3 Online Accuracy

(a) Exact error distributions for various input parameters for GPR (left) and SPS (right)

(b) Average of the exact error distributions

Figure 4.11: Exact error distributions of ROMs after the offline training phase

Figure 4.11 shows how the exact errors 𝐸𝑝 are distributed throughout the beam for both methods after
the offline training phase has converged. The top plots shows the results from using many different sets
of input parameters ε𝑖, ε𝑔, and 𝑁𝑎𝑑𝑑

𝑐 , while the bottom plot shows the average of all the curves for GPR
and SPS methods respectively. The dashed gray line is the 0.5% error tolerance that each curve should
be below after convergence.

Figure 4.11a shows how the exact error curves from GPR trainings can have many different shapes,
which is of course expected due to the nature of how the the parameter space is sampled. For SPS train-
ings, on the other hand, the shapes are much more similar to each other. This is because the same points
are almost always trained, and often in the same order, depending on the energy tolerances. The shape
also changes with the number of iterations required for convergence.

Figure 4.11b shows that the GPR curve is a little more flat than the SPS curve. The reason the SPS curve
is more jagged is because the location where those dips are is where the trainings are performed every
time, as mentioned before. The GPR curve is more smooth because those load cases can be anywhere.
In the areas roughly from μ = 6 to μ = 8 and from μ = 12 to μ = 14, the GPR curve does not follow the
same trend because the GPRP sampling method recognizes that fewer trainings are needed to describe
this area, which is also seen in Figure 4.7. This results in higher errors in these areas, but still far below
the tolerance on average. In the SPS method, the sampling simply exhausts a uniformly distributed grid
that becomes incrementally finer, so this method ”overtrains” those two areas. At the edges the averages
of both go down significantly because those locations are always trained. In the middle, the GPR curve
is slightly below the peaks of the SPS curve because the GPR sampling recognizes that the middle part
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requires more trainings to describe the more significant plastic response due to loads applied there.

Figure 4.11a also shows that for the GPR trainings, some of reduced models are deficient even after
convergence, as the exact error is above 0.5% in someparts. So the current convergence criterion has failed
to ensure that the goal of the offline training phase was accomplished in every case. The figure shows
results from 129 unique sets of input parameters in total for both SPS and GPR, and in 14 of those cases
the exact error exceeds the tolerance. The sets of input parameters chosen for the parametric study are
those that are most likely to be the most efficient. The type of sets that are expected to and have shown
to be efficient are those with either one or two of the input parameters being low, or those with input
parameters that are neither low nor high. Those with one or more low input parameters risk converging
too quickly. This is because if one of the energy tolerances are too low, then not enough information
is kept from each load case, which makes it more likely for the GPRP to select a load location close to
a location that is already trained. With a low 𝑁𝑎𝑑𝑑

𝑐 , the GPRP is often unable to find the location true
maximum error indicator, as shown in Figure 4.5, making it again more likely for the GPRP to select a
load location close to an already trained point.

4.3.4 Energy Tolerances and Accuracy

(a) ε𝑖 = 99.95% (b) ε𝑖 = 99.99% (c) ε𝑖 = 99.995%

(d) ε𝑖 = 99.999% (e) ε𝑖 = 99.9995% (f) ε𝑖 = 99.9999%

Figure 4.12: Effect of energy tolerances on exact error in each iteration

Figure 4.12 shows how the exact error develops during the offline training phase of the SPS method
for the all the different combinations of energy tolerances. Each plot has a constant inelastic tolerance ε𝑖

and varying global energy tolerance ε𝑔. All results shown are from offline training phases that are run
until convergence. We only show the effect of the energy tolerance in combination with the SPS method
because there is nothing random that occurs in any of the processes of the method, and these results do
not depend on a third parameter, which in the case of GPR is the number of improvements of theGPRP. In
this way it is easier to see the relationship between the exact error development and the different energy
tolerances. The amount of local inelastic and global surrogate snapshots constructed depends not only
on the tolerances, but also on the information gathered from the FOM, so their sizes vary in each iteration.
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Depending on the load location, the fraction of snapshots that are elastic and inelastic changes. A higher
fraction of inelastic snapshots yields a greater number of inelastic surrogate snapshots. Table 4.6 shows a
list of howmany local inelastic surrogate snapshots are constructed on average depending on the inelastic
energy tolerance, and also how many global surrogate snapshots are added in each iteration depending
on the global energy tolerance. The number of global surrogate snapshots added also depend on the
number of inelastic surrogate snapshots. If the inelastic SVD yields 3 snapshots, the global one cannot
givemore than 4 (1 elastic+ 3 inelastic) addtional snapshots. Therefore, the values given beloware in fact
the average maximum number of additional snapshots, given that there are enough elastic and inelastic
surrogate snapshots. For example if the SVD performed on the local snapshot matrices yields 5 local
surrogate snapshots in total, then a global tolerance of 99.999% will most likely add 5 global surrogate
snapshots.

ε𝑖 or ε𝑔
Local Inelastic
Surr. Snapshots

Additional Global
Surr. Snapshots

99.95% 3 −
99.99% 4 3

99.995% 5 4
99.999% 8 7

99.9995% 11 10
99.9999% 20 14

Table 4.6: Average local and global surrogate snapshots for various energy tolerances

We only show the effect of the energy tolerance in combination with the SPS method because there is
nothing random that occurs in any of the processes of the method, and these results do not depend on a
third parameter, which in the case of GPR is the number of improvements of the GPRP. In this way it is
easier to see the relationship between the exact error development and the different energy tolerances.

The inelastic and global energy tolerances should not go below 99.95% and 99.99%, respectively, be-
cause such tolerances greatly affect the quality of the prediction of the GPRP. One of two scenarios tend
to occur relatively often. The first scenario is when the GPRP chooses locations that are relatively close
to points that are already trained, yielding a low error, and then subsequently choosing a good point
that gives a higher error. With low tolerances, this tends to recur, causing significant uncertainty in the
GPRC, causing the offline phase to become excessively lengthy as it needs to obtain more cases where
the pessimistic error is below the error tolerance in order to satisfy the convergence criterion. This is
illustrated in Figure 4.14a. Other times in this scenario, convergence is never achieved. The second sce-
nario that occurs that reduces the performance is that the GPRP keeps choosing points that are close to
already trained locations (yielding low errors) enough times to trick the GPRC into thinking that con-
vergence is achieved when in fact the reduced model is severely deficient. The convergence behaviour
is illustrated in Figure 4.14b, and Figure 4.6 shows an examplewhere such a load location is selected once.

Furthermore, Figure 4.14a shows that when using the GPRC to compute a mapping of the exact error,
an error tolerance lower than 𝐸𝑚𝑎𝑥 = 0.5% could require a high number of iterations to converge. This
is because when the ROM becomes more and more accurate, the relative change in ℐ𝑝 and 𝐸𝑝 becomes
smaller and they experience considerable fluctuations, especially the exact error as seen in Figure 4.13.
While the figure does show that the ROM can be constructed to achieve a lower accuracy than 0.5% in
the whole beam, the fluctuations in ℐ𝑝 and 𝐸𝑝 causes a cluster to be formed as seen in Figure 4.14a. This
causes issues when it comes to satisfying the convergence criteria for lower error tolerances than 0.5%,
resulting in extremely inefficient offline training phases. Therefore, 𝐸𝑚𝑎𝑥 = 0.5% is judged as the lowest
error tolerance that is viable for this problem, and it is also judged to be highly accurate.

As shown in Figure 4.11a several of the cases where the global tolerance is below 99.999%, the ROM
proves to be deficient. Despite this, we have chosen to also look into those tolerances because the first
scenario described in the paragraph above does not occur in these cases, and when the second scenario
does occur, the error is often not exceeded significantly. Therefore, the issue with said cases could po-
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Figure 4.13: 𝐸𝑝 and ℐ𝑝 for last 10 iterations of the case shown in Figure 4.14a

tentially be circumvented by implementing another convergence criterion, as has been mentioned in 4.2
Convergence Progression.

For lower inelastic tolerances there is not that much difference between the curves, given that they
choose the same order of the load locations, which is always the case, except in Figure 4.12a for global
energy tolerances of 99.99% and 99.9999%. In iteration 8 all the curves meet up again because that is the
point when a new SPS begins, so all the same locations are trained at that time, and from that point on
they all agree which point in the new SPS has the highest error indicator. When looking at all the curves
where the load locations are chosen in the same order, then generally the curves related to high global
energy tolerances have lower exact errors as expected, because those trainings keep more of the informa-
tion from the FOMs. The reason there is not much difference for low inelastic tolerances (especially in
Figure 4.12b) is because the number of local inelastic surrogate snapshots is smaller, and therefore there
is not much difference in how much information is kept in the global basis for varying tolerances. As
more inelastic surrogate snapshots are constructed, the curves vary more because the global SVD does
not always have access to asmany local surrogate snapshots as it can add to the global surrogate snapshot
matrix, as mentioned in the description.

While it is not clearly visible in Figure 4.12c, the training phase with a global tolerance of 99.9999%
converged at 𝑁𝑖𝑡 = 10, and as the inelastic tolerance keeps increasing, we see more cases where the
training phases converge earlier than 𝑁𝑖𝑡 = 11. This is of course because enough information is kept
from every iteration, so fewer load cases are required. However, fewer iterations does not automatically
translate to quicker training time, because more information means more basis vectors. The more basis
vectors, the more time the reducedmodel takes, and the ROM is runmany times in the greedy algorithm.
The time taken for the different processes in the training phase is discussed in 4.3.2 Expense of MOR
Processes.

(a) Lengthy convergence (b) Early convergence

Figure 4.14: Error mapping using GPRC for lengthy and early training phases
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4.3.5 SPS Method - Input Parameters and Efficiency

(a) View 1 (b) View 2

Figure 4.15: Total time and number of iterations depending on input parameters for the SPS method

While Figure 4.12 compares how the different tolerances affect the exact error in each iteration, Fig-
ure 4.15 gives a comparison of the performance in terms of time taken by the SPS method for various
values of the input parameters. The two horizontal axes are the inelastic (ε𝑖) and global (ε𝑔) energy
tolerances. The vertical axis indicate the total time taken for the offline training phase to reach conver-
gence for a given set of input parameters, and the distinct colors show the amount of training iterations
required.

It is clear from the figure that as both tolerances decrease, the time taken for the offline training phase
to converge becomes shorter. In general, if one tolerance is kept constant, and the other is increased, the
time increases. When both tolerances are very high, however, the number of iterations decreases, which
reduces the time, but since the reduced basis is significantly larger in those cases, each iteration takes
longer, so it is still more efficient to use low tolerances. The figure shows that the combination of the
lowest tolerances gives the best performance with a time of 383 seconds, so it might be possible that even
lower tolerances for either the inelastic SVD or the global SVD could yield better results. This is true
when decreasing the global tolerance as it requires the same amount of iterations, but the basis is smaller
in every iteration, which brings the time down to 308 seconds, though the maximum exact error in the
beam is 0.475% close to themiddle, sowe cannot decrease the tolerance further. On the other hand, when
decreasing the inelastic energy tolerance the time almost doubles to 743 seconds. In this case it requires
significantly more iterations as the basis is small and the uncertainty in the exact error along the beam
increases as described by the GPRC. Nonetheless, the chosen range of tolerances is due to the instability
of the GPRmethod and is explained in the description in 4.3.4 Energy Tolerances and Accuracy, and the
range is determined to be the same for both methods.
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4.3.6 GPR Method - Input Parameters and Efficiency

(a) Total time and uncertainty (b) Total time and uncertainty with cases where
error tolerance is exceeded blacked out

Figure 4.16: Total time and uncertainty depending on input parameters for the GPR method

The purpose of Figure 4.16 is to show how the three input parameters (ε𝑖, ε𝑔, 𝑁𝑎𝑑𝑑
𝑐 ) affect the per-

formance of the GPR method in terms of time taken to converge, and also the uncertainty in this time.
Unlike Figure 4.15, all axes are now the input parameters. The two horizontal axes are the inelastic (ε𝑖)
and global (ε𝑔) energy tolerances, and the vertical axis is the least number of additional improvements
of the GPRP 𝑁𝑎𝑑𝑑

𝑐 . For all sets of parameters, the offline training phase is run several times in order to
assess the uncertainty in the time-wise performance. Therefore, each dot represents the maximum time
taken for the offline training phase to converge for a given set of inputs. The color indicates the time, and
the radius indicates the uncertainty in the time for a specific input set. Both scatter plots show the same
results, but in Figure 4.16b, the colored dots are replaced with black dots where at least one reduced
model exceeded the exact error tolerance (see 4.3.3 Online Accuracy).

Compared to Figure 4.15, it is not as clear how the time depends on the input parameters, especially
not when considering the cases when the convergence criterion has failed. The reason it is less clear is
first of all because of the inclusion of a third input parameter, but it is mostly due to the randomness of
the first load location and the initial observations. This causes significant uncertainty for some sets of in-
put parameters. The relationship could become clearer if each and every case is run many times, but this
would take a significant amount of time to achieve. However, the figure does show that the uncertainty
is low for those cases that are efficient (orange dots are often smaller than the green and blue), and those
cases have also been run more times than those that take longer time to establish how well they actually
perform. To reduce the uncertainty, the intial load of the training phase and the initial observations in
each GPRP could have been chosen better. For example the initial load could always be placed in the
middle, and the initial observations could be done in a uniformly spaced grid along the parameter space
or in areas where there have been fewer trainings. However, we have not chosen to do this due to the fact
that such choices of initial load and observations cannot be made for many other high-fidelity models,
so in order to keep the implementation more general, they were kept random.

Figure 4.16a does show that the GPR method converges quickly for cases when the global energy tol-
erance is low, and especially when the least number of improvements is low. However, it is also these
most efficient cases where the convergence criterion fails most often. There are also many cases where
𝑁𝑎𝑑𝑑

𝑐 = 1 or when the inelastic tolerance is low, for which the GPR method converges quickly, but for
some of those the convergence criterion also fails. With the current results, Figure 4.16b shows that the
convergence criterion fails often when ε𝑔 < 0.99999 and/or when 𝑁𝑎𝑑𝑑

𝑐 = 1. As mentioned in 4.2 Con-
vergence Progression, this issue of the failing convergence criterion could be circumvented by changing
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the criterion or making it more conservative.

When ignoring the unstable zones mentioned in the previous paragraph, Figure 4.16b does show that
for large 𝑁𝑎𝑑𝑑

𝑐 , the convergence takes long, especially when combined with high tolerances. It also shows
that the GPR method performs well when using low inelastic tolerances. Beyond that, it is not clear
which values of the parameters yield the best performing reduced model.



5 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions
The main objective of this thesis was to investigate methods to reduce the computation time of finite ele-
ment analyses that involve high-fidelity mechanical models by implementing an automatic and efficient
procedure to sample the parameter space for load cases. This thesis built upon some of the accelera-
tion techniques implemented by [26] to minimize the computational cost of a multiscale/multiphysics
model, and the existing MOR framework from this work was expanded to facilitate the iterative greedy
sampling of the parameter space of a beam model. Following the computational implementation, the
behaviour and performance of both methods were assessed in a parametric study that varied the three
input parameters ε𝑖, ε𝑔 and 𝑁𝑎𝑑𝑑

𝑐 . The results have been used to obtain a better understanding of the
behaviour and performance of the greedy sampling process of a mechanical model, and also a better un-
derstanding of issues and pitfalls that have to be tackled when attempting to construct a useful reduced
basis with many load cases and automatize the sampling. The findings of the research are summarized
below as answers to the research questions.

1. What is the best way to sample the parameter space so as to minimize the number of training cases?
Twomethodswere developed to sample the parameter space. The firstwas the SPSmethod that per-
forms greedy sampling of incrementally finer grids of points along the beam. The second method
was the GPR method that also performs greedy sampling, but the points are selected using Gaus-
sian Process Regression to predict which location along the beamwould yield the highest error. As
the research progressed, it turned out that it was not about the number of training cases, but about
how the training cases were selected, and how much information was stored from each case. The
amount of information kept in each case also increases the time taken by the greedy sampling, and
it was clearly shown for the SPS method that it is significantly more efficient to store less informa-
tion in each training iteration, and instead run more training cases to collect smaller amounts of
information from more locations.

For the beam model used in this thesis, the SPS method is more efficient with the quickest training
taking only 383 seconds. For the GPRmethod when only considering cases where the convergence
criterion did not fail, the lowest maximum time was 920 seconds, and the lowest minimum time
was 436 seconds. Even for the input parameters of the GPR where the exact error is always below
the tolerance in the whole beam, the minimum time is still higher than the most efficient SPS. How-
ever, it was shown that the GPRP recognized areas in the beam that required fewer load cases to
approximate the behaviour, which the SPS method did not take into account. Despite this, greedy
sampling using GPRP is not efficient for this specific problem because of the significant number of
ROMs that have be run in order to compute an accurate prediction of the location with the highest
error. For the beam model, the SPS works extremely well because the parameter space can easily
be split up into grids, despite the points in the grid being suboptimal.

For other high-fidelity models such as those discussed in 2.1 High-Fidelity Models, the parameter
space cannot easily be subdivided into incrementally finer grids that we can sample. This is be-
cause those parameter spaces are often potentially infinitely dimensional, so any sort of grid in this
space would also have to be of high order. Therefore, the exhaustive sampling of such a parame-
ter space would be prohibitively expensive using a method similar to the SPS method explored in
this thesis. On the other hand, we have seen that the GPRP can accurately predict the location in
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the parameter space where the error is the highest and would thus add the most new information
to the system. Of course, the computation cost would increase significantly with the additional
dimensions because many more observations would be required to compute a reliable regression.
Additionally, the computation of the FOM solutions themselves from which the snapshots are col-
lected would also in general be considerably more expensive. Using a uniform sampling method,
we would have to compute many expensive FOM solutions, several of which will be relatively ob-
solete, but using GPR we would ideally only compute the necessary FOMs to make the ROM as
accurate as desired. Additionally, it was discussed previously that for the SPS method it was more
efficient to run more training cases and store less information in each iteration, but this does not
necessarily hold if the cost of computing the FOM solution is significantly more expensive. It was
found that the bottleneck for efficiency for the beam model was the amount of ROM solutions that
had to be computed for the greedy sampling, but for other high-fidelity models an expensive FOM
could be the bottleneck instead.

To summarize, the SPSmethod is efficientwhen the FOMsolution is cheap and the parameter space
can be subdivided into low-order grids that can be exhaustively sampled, but the GPR method
shows great potential when it comes to sampling a high-order parameter space that cannot be dis-
cretized easily.

2. Can training be performed in an optimized way by a heuristic algorithm that takes the maximum tolerable
loss of accuracy as input?
In order to investigate how the offline training phase can be performed in the most optimal way,
a parametric study was performed where three input parameters were varied. For each set of pa-
rameters, the training was run until the convergence criterion judged that the ROM was accurate
enough to yield an exact error lower than 𝐸𝑚𝑎𝑥 = 0.5% in the entire beam. This tolerance is consid-
ered to be highly accurate and the exact error has been shown to reach a plateau at around 0.2−0.3%.

If a user desires a certain accuracy defined by the exact error in the entire beam, all that has to
be done is to adjust the convergence criterion accordingly, and choose the set of input parameters
that would result in the most efficient training phase. Ideally, these input parameters would be
selected by the program, but that is not implemented in this thesis. For the SPS method there
is no randomness involved, and the most efficient parameters can easily be chosen. For the GPR
method, on the other hand, there is not a clear relationship between the input parameters and the
efficiency, but the parametric study did show that a low ε𝑖 is efficient and generally robust in terms
of convergence, but ε𝑔 and 𝑁𝑎𝑑𝑑

𝑐 must be chosen with more care. If the two latter values are too low,
then the chosen convergence criterion can fail to grant the desired accuracy. However, in general,
the input parameters should be kept as low as possible while still ensuring that the accuracy is
achieved. Therefore, the current work employs a heuristic algorithm that takes not only the desired
accuracy as input, but also the other input parameters mentioned.
When comparing the two methods’ ability to reach a certain accuracy efficiently, the SPS would
likely work best for 𝐸𝑚𝑎𝑥 ≥ 0.5%. If 𝐸𝑚𝑎𝑥 is chosen to be lower than this, the SPS method might
risk having to move to the next SPS, which would occur if 13 iterations are needed, but for a 0.5%
tolerance, only 11 are neededwith themost efficient input parameters. Moving to an even finer SPS
means that the ROM has to be computed in a significant number of points to perform the greedy
sampling. Therefore, if very high accuracy is desired, the GPR method could be more efficient as
the number of ROM computations required does not really change with more iterations.

The specific input parameters required and their viable range is highly problem-dependent. For
other high-fidelity models, the energy tolerances ε𝑖 and ε𝑔 will likely be around the same range,
but an elastic energy tolerance ε𝑒 might have to be introduced. The least number of additional
improvements to the GPRP 𝑁𝑎𝑑𝑑

𝑐 will be considerably higher for parameter spaces of higher dimen-
sions than the one-dimensional span of a simply supported beam. Additionally, other high-fidelity
models might include more or other steps in the construction of the ROM, which again highlights
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how problem-dependent MOR is. Therefore, for other high-fidelity models, a parametric study of
the performance with varying input parameters has to be performed to determine how most effi-
ciently achieve a desired accuracy.

5.2 Recommendations
This section presents recommendations for future work to be done on the topic of model-order reduction
with automatic and efficient parameter sampling, aswell as improvements that can bemade to the current
work.

Alternative High-Fidelity Models
The purpose of investigating methods to efficiently and accurately construct a reduced order model for
the beam problem in this thesis, is to use the knowledge and experience as a stepping stone to imple-
menting similar sampling methods for other high-fidelity models. For the beam problem, it is highly
inefficient to construct a reduced-order model because of how low order the full-order model actually
is, but for the RVE problem for instance, efficient and automatic sampling methods would be extremely
useful for constructing a ROM. Therefore, the GPR method should be adjusted and implemented for e.g.
the RVE problem in Rocha [26] to assess the suitability of the GPR to greedily sample a high-dimensional
parameter space.

Hyper+reduction
For the beam problem presented in this thesis, the bottleneck of both the SPS and the GPR methods was
the number of ROMs that had to be run during the greedy sampling process. For the SPS, this number
was predetermined based on the chosen grids, but for the GPR it fluctuated, which caused the efficiency
to be oscillatory and unpredictable. Hyper+reduction methods such as ECM should be implemented
in order to alleviate this issue. This would drastically reduce the time required to compute the ROM
solutions that are used for both GPRP and GPRC. However, ECM changes the way the internal force in
the beam is computed, meaning that the error indicator will likely have to be computed in a different
way that takes this into account.

Error Indicator and Exact Error
In this work, it has been repeated that the error indicator ℐ gives an indication of what the exact error 𝐸
of the ROM is. This implies that the two should be computed in a consistent manner, but that is unfortu-
nately not the case in this thesis. The goal of the training phase is to construct a ROM that approximates
the FOM in the whole domain of the mode, which is why the error indicator and exact errors are com-
puted from the residual and the displacement field in the whole beam, respectively, and both take into
account the whole time-history. However, there are some inconsistencies in how ℐ and 𝐸 are computed
as shown in Eq. (2.20) and Eq. (2.30), respectively. In the former, a square root is taken of the entire
term, which is not done in the latter. Additionally, in the computation of 𝐸, the exact error is normalized
by the stiffness-projected dot product of the FOM displacements in the denominator, but no such nor-
malization is done in the computation of ℐ . Several other versions of both formulas were tried that were
most consistent with each other, but it was decided to leave this inconsistency because the GPR method
performed better in terms of accuracy and efficiency using the formulas presented. It is recommended
to look into alternative ways of computing ℐ and/or 𝐸 that are consistent with each other.

GPRP Improvement Stopping Criterion
Currently, the GPRP improvement is stopped when the following condition is satisfied:

(ℐ̃𝑚𝑎𝑥 − ℐ̃𝑚𝑖𝑛)β > max (ℐ̃(μ⋆) + αℐ ̃𝑠ℐ (μ⋆)) (5.1)

This is not a very clean and robust method of determining when the GPRP improvement should be
stopped, and is based simply on observations made by the author of the behaviour of the GPRP. Instead,
it would be significantly cleaner and more general to stop the improvement when the probability of
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improving the current maximum of the GPRP by the target factors in τττ is below a certain value. This
value should be chosen with care because it could cause the improvement to stop too early before an
accurate maximum is predicted. Potentially, this could be an input parameter that should be included in
the parametric study.

Sampling Convergence Criterion
It has been shown in this thesis that the convergence criterion sometimes failed to guarantee the desired
accuracy. Therefore, the criterion should be adjusted accordingly to guarantee this. It could e.g. be
adjusted simply by changing the number of consecutive iterations with a pessimistic errors �̂�+ below
the tolerance, or by ignoring the consecutive part, and allowing it to convergence simply when a certain
number of pessimistic errors are below the tolerance. Another method could be to simply abandon the
GPRC, and determine convergence based on the exact errors 𝐸𝑝. In any case, this is an important issue
that must be investigated further.

Comprehensive Parametric Study
The parametric study in this thesis was not as comprehensive as it should have been in order to obtain a
better understanding of how the input parameters affect the efficiency and accuracy of the ROM. How-
ever, the results of such a parametric study is highly problem-dependent, so for a toy model like the
simply supported beam, the knowledge that can be gained from such a study is limited. In any case, for
a parametric study performed for any high-fidelity mechanical model, all combinations of parameters
should be used, even those that are likely to be inefficient because even those cases can help the under-
standing. The study must also check how the relationships between the input parameters and efficiency
are affected when adjusting the error tolerance. It could be that e.g. a lower ε𝑖 is favoured over a lower
ε𝑔 when a lower accuracy is desired, or the other way. Lastly, it is important to run training phases
many times for each set of parameters to assess the uncertainty in efficiency. It could be that one set of
parameters yields the most efficient training, but that would be relatively useless if there is significant
variability. Furthermore, a better understanding of the uncertainties could help to adjust steps in the
greedy sampling procedure to lower these uncertainties.

Automatic and Adaptive Input Parameter Selection
When a comprehensive parametric study has been performed for a high-fidelitymodel, there should be a
good understanding of how the various input parameters affect the efficiency and accuracy of the MOR.
Based on this understanding, the training algorithm could be expanded to adaptively choose the most
efficient input parameters based on the desired accuracy defined by the user. E.g. as the global surrogate
matrix becomes larger, it could be that the energy tolerance should be adapted in order to not lose too
much information in the SVD. Another example could be that 𝑁𝑎𝑑𝑑

𝑐 should be increased as more training
cases are added because the distribution of the error indicator becomes more irregular, making it more
difficult for the GPRP to accurately predict the maximum.

Alternative prediction methods
In the world of machine learning, there are many ways to perform predictions based on observations
of various types of data. It has been shown that the GPR makes accurate predictions of the maximum
error indicator for the beam model, given that enough observations are provided. However, it could
be that alternative prediction methods such as Artificial Neural Networks (ANN) or Support Vector
Machines (SVM) perform better predictions with less data. Additionally, for other high-fidelity models
with parameter spaces that yield observations in higher dimensions, the nature of the data is vastly
different, and the GPR method might not perform well anymore, so it would be worthwhile to look into
alternative prediction methods and assess their suitability to the problem.
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