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ABSTRACT

This paper describes the features of berm breakwaters including advantages and drawbacks in
comparison to traditional rubble mound structures. A review of selected practical experience with
eight berm breakwaters is described in terms of typical cross-sections and key parameters (two
examples from Norway, Iceland and USA, and one from Faroe Islands and Australia). In three
of the cases described, prototype measurements of the profile development of the berm are
available, ‘and for two of these a comparison with model tests is shown. The paper includes

discussions and examples of required quality assurance programmes for construction of berm
breakwaters.

1 INTRODUCTION

In principle two different types of rubble mound breakwaters exist, ie conventional rubble mound
breakwaters with or without a crown wall and berm breakwaters. The main armour layer of a
conventional rubble mound breakwater is designed for limited damage (statically stable), whereas
for a berm breakwater the berm reshapes into a flatter and more stable profile. The more stable
reshaped profile of a berm breakwater is the basic idea of the S-shaped breakwater, which initially
is built with a flatter statically stable slope around still water level. In Figure 1, typical cross-
sections of the three mentioned types of rubble mound breakwaters are shown. Further, a number
of hybrids of conventional and berm breakwaters exist, eg conventional rubble mound breakwaters
with a small berm or increased armour layer thickness.

Berm breakwaters have unconsciously been known since the middle of the nineteenth century, but
increasing attention has been paid to this type of breakwater during the last 10 to 15 years. To the
authors’ knowledge, the interest in newer times on this type of structure started in 1978 when the
Danish Hydraulic Institute developed a berm breakwater alternative for Skopun Harbour, Faroe
Islands (Jensen and Serensen (1987)). Many of the early breakwater structures were constructed
by simply dumping quarried stones, which were available at the site, into the sea. Material was
Placed until a stable breakwater profile was reached, and after severe damage repair was carried

out by simply adding more stone material. A few examples of these early berm breakwaters, of
which some still exist, are shown in Figure 2.
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Figure 1 Typical cross-sections of three types of rubble mound
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Figure 2 Examples of historical berm breakwaters (Figure from Hall (1987)).
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2 FEATURES OF BERM BREAKWATERS

e mound breakwater with a berm above still water on the seaward
side. During exposure (0 wave action of a certain intensity, the berm reshapes until eventually an
equilibrium profile of the stones on the seaward face is reached. For each wave height, there is
thus an equilibrium profile corresponding to this wave height. A typical berm breakwater profile

A berm breakwater is a rubbl
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3 EXPERIENCE WITH BERM BREAKWATERS

Berm breakwaters have been designed and model tests have been performed for many projects, of
which some have actually been constructed to date. This section describes eight examples of
constructed berm breakwaters. In three cases, the profile development has been measured in
prototype. In the following, H, is the significant wave height, A is the relative stone density, D,
=(Wy/p,)'" is the nominal diameter, Wy, is the median weight, and p, is the stone density.

3.1  Norwegian Experience

Two berm breakwaters have been constructed in Norway; one in Arviksand and one in Rennesay.
In order to reduce construction costs, both projects included a structural variant to the typical berm
breakwater profile. These structural variants are further discussed in the following.

Arviksand

The berm breakwater constructed in Arviksand in northern Norway is an extension of a breakwater

for a fishing port. In the design, a significant wave height of H,=6.5 m and a water level of
+3.6 m have been used.

Through model tests, it was found economical to use larger stones for the rear side of the
breakwater to protect against wave overtopping rather than increasing the crest elevation or
extending the berm width. The disadvantage of this solution is an additional stone class to be
handled in the quarry. A typical profile of the trunk section including a strengthened rear side is
shown in Figure 3. Armour stones with a median weight of 4.4 t was used for the berm, which
results in a stability parameter of H,/AD,=3.4. The breakwater head was also constructed of
stones with an average weight of 4.4 t, but the upper part was armoured with 8 to 14 t stones and
the top elevation of the berm increased from +3.6 m to +4.5 m, as shown in Figure 4.

After construction the armour profile has been monitored and new monitoring will be made after
major storms in which reshaping of the breakwater has occurred. Fifty of the armour stones have
been marked and it is the plan to track their movements after reshaping has taken place. The
monitoring of the berm breakwater in Arviksand and similar monitorings of the breakwater in
Rennesay will give valuable prototype experience on profile development.

9P (ORE Qge=0.075 tons Qs = b.b tons
5-80

T ” Lo v T Laran s

Figure 3 Extension of breakwater at Arviksand, profile of breakwater trunk section (Figure

from Terum et al (1990)). All measures are in metres.
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Figure 4 Extension of breakwater at Arviksand, profile of breakwater head, (Figure from
Torum et al (1990)). All measures are in metres.
Rennesey

A new ferry terminal has been constructed on Rennesey with a berm breakwater protecting the
harbour facilities (Espedal and Lothe (1994)). From an economical point of view it was desirable
to extend the core (0-1.5 t stones) into the berm to make better use of the quarry yield. Based on
results from model tests, the profile shown in Figure 5 was selected for the most exposed parts of
the trunk, whereas the roundhead was designed with larger stones on the top of the berm and
without extension of the core into the berm. In the design, a significant wave height of approxi-
mately H,=7.0 m was used and the stability parameter for the trunk section has accordingly been
assessed to H/AD, ,,=3.3.

16.0 18.0 5.0

+8.0

CORE MATERIAL

~20

Figure 5 Typical cross-section for berm breakwater on Rennesey. All measures are in metres.
This structural variant may in many cases be economical due to substitution of berm stones by
cheaper core material. The disadvantage of this substitution is lower energy dissipation in the
porous berm material and therefore reduced stability of the berm stones.

The berm was constructed using an excavator with a hydraulic hand. One by one, the quarry
stones were dropped or thrown to the right position in the breakwater. Special attention was paid
to quality control during construction in order to ensure the long-term stability of the berm
breakwater. Examples of the established demands are (see Espedal and Lothe (1994)):

. Not accept stones with a mass less than 1.0 t for the berm, whereas no upper restriction
was given. '

All stones for the berm were weighed, and control of the mean weight was made for
samples of 200 t.
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. The quarry stones should be clean and have no fissures, and restrictions to the shape were
made in order to avoid flat stones (the height to width ratic should not exceed 3:1).

. For each 30,000 cubic metres of stone material, it was checked that the density at least
was 2.7 t/m3,

. The core material was specified to range from O to 1.5 t, but no top solil, clay, silt or sand
was allowad.

. Continuous surveying of the breakwater was made during construction in order to ensure

the correct geometry of all parts of the breakwater (including the transition from one to
another stone class). Permission to continue construction was given when it was proven
that the given demands to acceptable geometrical deviations were fulfilied.

3.2 Icelandic Experience

Since 1983, seventeen rubble mound structures of the berm type have been constructed in Iceland.
Ten of these were new structures, whereas the others were reinforcements or repairs of existing
breakwaters in the form of additional protection on the seaside of old caisson breakwaters or
modifications of existing conventional breakwaters. Presently, four berm breakwaters are planned
or under construction in Jceland.

The main probiem facing construction of rubble mound breakwaters in Iceland is the poor quality
of the stones (basalt) dnd the often associated lack of sufficiently large armour stones. This can
be exemplified by results from an inspection of a rubble mound structure built in 1968-69 in one
of the most exposed locations in Iceland (Vopnafjordur). The armour layer of the breakwater was
originally constructed from stones of 10 to 15 t. An inspection showed that abrasion and splitting
of stones had caused deterioration of the breakwater. Weathering took place above the water level,
and the estimated loss in diameter was 0.5 to 1.0 cm per year in a 20 year period. This
corresponds to a weight loss of 1.8 to 3.4 t for a 10 t stone. This severe problem with abrasion
and splitting of stones in Iceland is normally treated by using stones with reduced size in the model
tests.

Sigurdarson and Viggosson (1994) mention that a high utilisation of quarried rocks can be achieved
by construction of berm breakwaters, and that this is of great importance in Iceland where shortage
of sufficiently large armour stones is a problem. The berm breakwaters in Icelaad often consist
of several stone classes, with the largest stones used for singular points and as a protecting layer
on the berm and crest. The sorting of quarry stones is only increased marginally as all stones are
weighed as part of the handling in the quarry. The application of the largest stones for the most
exposed parts of the berm breakwaters makes the profiles more stable and/or results in a high
utilisation of the quarry output. This means that it is of great importance to obtain knowledge of
the distribution of the quarry yield in an early stage of the design phase.

In addition to the normally stated advantages of berm breakwaters, two other factors are mentioned
by Viggosson (1990): Local contractors with no special experience in marine work can be used
as the construction can be made with available land based equipment and the tolerances for
placement of stones are eased. Shortage of funds often makes it necessary to extend the construc-
tion period over two summers with a stop in the winter season (experience in Iceland indicates that
a partially completed berm breakwater functions well through the storms of one winter, and repairs
are much easier than for a conventional breakwater).

Sigurdarson and Viggosson (1994) state that a comprehensive quality assurance programme is

necessary during the construction of berm breakwaters to ensure that the armour stones fulfil the
requirements of quality and durability. They propose that a quality assurance programme includes:
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. grading, weight requirements, specific gravity,
design criteria

visible inspection for defects, joints, aspect ratio and colour index

and water absorption compatible with the

Bakkafjordur
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gure 6 Measurements of profile reshaping of berm breakwater at Bakkafjordur (based on

figures from Viggosson (1 990)). All measures are in metres.
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stone gradations is shown in Figure 8. The small berm is constructed of stones ranging from 5.5
to 12.5 t, with an average stone weight of about 8.3 t. With a stone density of 2.65 t/m3, the
stability parameter has been calculated at H/AD =2.5. Three-dimensional model tests have been

carried out as part of the design, and the reshaped profile of the most exposed section of the
breakwater is shown in Figure 9.

+
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| 17 € w < 70t W= 32t - 420
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Figure 7 Cross-section of a berm breakwater at Keflavik. (Based on figure from Baird
(1987)). All measures are in metres.
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Figure 8 Typical profile for Skopun harbour (presently under construction). All measures are
in metres.

Figure 9 Reshaped profile after exposure to the design wave conditions (results from model
tests). All measures are in metres.
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3.4 Hay Point, Australia

For protection of a tug boat harbour, a berm breakwater has-been model tested and constructed as
described by Bremner et al (1987). Numerical wave modelling has revealed a 100 years significant
wave height of H,=5.0 m and a corresponding peak period of T,=7 s, and a design water level
of +4.5 m. The stones used for the berm has a weight of 4.0 to 7.0 t with an estimated average
weight of 5.3 t. Applying a stone density of 2.65 t/m?, the stability parameter can be assessed at
H,/AD,=2.5. A typical profile of the designed berm breakwater is shown in Figure 10.

STONE CLASSES:

1 ARMOUR STONES 47t

1 ARMOUR STONES 1-2t

L] FILTER STONES  0.25-2t
v CORE. MATERIAL

Figure 10 Typical cross-section for a berm breakwater at Hay Point. (Based on figure from
Bremner et al (1987)). All measures are in metres.

3.5' St George, Alaska, USA

A berm breakwater project on St George Island has been described by Gilman (1987). The concept
profile for this breakwater was developed through model tests performed at the Danish Hydraulic
Institute. The design wave condition is H,=10.4 m offshore (and about 6.4 m in front of the
breakwater) and T,=18.0 5. The harbour layout is shown in Figure 11, and a typical cross-section
of the roundhead in Figure 12. The berm for the breakwater roundhead had a top elevation of 16
feet (4.9 m) and a width of 61 feet (18.6 m), and the berm for the trunk section had a top elevation
of 12 feet (3.7 m) and a width of 55 feet (16.8 m). The berm of both the trunk and roundhead was
constructed of stones with a weight from 1.5 to 9.0 t. The average stone weight is about 4.8 t, and
the stability parameter is calculated at H/AD, 4=3.3.

Before completion of the breakwater, construction was shut down in late 1986 with the North
breakwater roundhead only half completed (30 ft of the horizontal berm was constructed, none of
which rose above elevation +12 ft). During the winter of 1986-87, storms occurred which
approached the design storm in intensity. Surveys of the breakwater profiles were made before and
after the winter storms, showing only minor changes in the profiles. This indicates that the

incomplete berm breakwater performed well during these severe wave conditions (see Gilman
(1987)).
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Figure 11 Harbour layout for St George. (Figure from Gilman (1987)).
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Figure 12 Typical cross-section of berm breakwater roundhead for St George. (Figure from
Gilman (1987)). All measures are in feet.

3.6 Racine, Wisconsin, USA
The impiementation and performance of a berm breakwater design at Racine, Western shore of

Lake Michigan, has been described by Montgomery et al (1987). The design conditions,
corresponding to a return period of 20 years, are a significant wave height of H,=4.4 m, a

significant wave period of T,=10.0 s and a water level of +1.4 m relative to low water datum. .

The water depth in front of the breakwater is 6-8 m and a typical cross-section is shown in
Figure 13. The width of the berm is 12.2 m at the trunk and 15.2 m at the roundhead. Stones
with a weight in the range 0.14 to 3.6 t have been used, which with an average weight of 0.82t
gives a stability parameter of H/AD x=4.1.

After construction, the berm breakwater was levelled and found to be in good agreement with the
design. The breakwater was completed in the Autumn of 1986 and was in February and March
1987 exposed to two major storms, which approximated the design conditions. A description of
the breakwater performance is summarised below (see Montgomery et al (1987)).
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Figure 13 Comparison of model tests and prototype measurements. (Figures from Montgomery
et al (1987)). All measures are in feet.

Visual, qnderwater and survey assessments of the berm breakwater were performed after the March
storm with the following main observations:

the berm was reshaped so that it was generally below water along the trunk section
whereas parts of the roundhead was less reshaped y
§mall rounded cobbles (diameter of 15 to 45 cm) were observed at the water line
indicating breakage of some of the berm stones ‘
some of the berm stones had moved towards the crest

the reshaped berm had a typical slope between 1:6 to 1:10

no evidence of substantial overtopping was observed as the rear side appeared unaffected

A subsequent survey was conducted and indicated that despite the faicly dramatic change in the
ab~ove‘water appearance, the berm breakwater appeared to have behaved similarly to the model tests
with respect to berm reshaping. Survey cross-sections and profiles from the modelling study are
pre§ented in Figure 13. A fine agreement was found between the reshaped profiles measured
during model testing and in prototype.
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4 SUMMARY OF BREAKWATER EXAMPLES

A summary of selected geometrical, wave and stone size data for the presented breakwaters is listed
in Table 1.

Table 1 Summary of the data for the described examples of constructed berm breakwaters.

Location h R | H, T, w We Do H/ RJ/H,
(m) | (m) | (s) (s) ® © (m) AD,y
Arviksand 11.6 | 6.4 | 6.5 ~14.0 - 4.4 1.18 3.4 0.98
Rennesoy - - 7.0 - - 5.5 1.28 3.3 -
Bakkafjordur 10.5 1 45 | 4.8 12.0 2.0-6.0 3.0 1.05 2.9 0.94
Keflavik 29.0 1 40| 58 9.6 1.7-7.0 | 3.24.2 | 1.07-1.17 | 3.2-3.5 0.69
Skopun 11.0] 70 | 5.8 18.0 5.5-12.5 8.3 1.46 2.5 1.20
Hay Point 135 | 39 | 5.0 7.0 4.0-7.0 5.3 1.26 2.5 0.78
St George 8.2 6.4 | 64 18.0 1.59.0 4.8 1.22 33 1.00
Racine 9.8 3.5 | 44 ~10.6 | 0.14-3.6 0.82 0.68 4.1 0.80

Note: ° h is the water depth in front of the structure in the design situation
R, is the frecboard, ic the vertical distance from the actual water level to the crest

The listed parameters should be regarded with caution as some of the data are uncertain. For Fmplc,
is it rarely indicated in the literature if the wave heights refer to offshore or nearshore conditions.

The practical experience with the berm breakwaters described in the present paper shows that Lt'le
dimensionless stability parameter, H/AD,,, is in the range from 2.5 to 4.1. The Icelandic
experience from 15 berm breakwaters shows a stability parameter in the range from 2.4 to 3.2 for
breakwater trunk sections and in the range of 1.7 to 2.4 for breakwater roundheads where
traditionally the largest quarry stones were applied. These values of the stability parameter are in
the lower end of the classification of breakwaters made by Van der Meer (1988) quoting:
H,/AD,5=3-6 for berm breakwaters and S-shaped profiles.

The ratio between the freeboard and the significant wave height, R /H,, varies between 0.7 and 1.2,
which is smaller than for conventional rubble mound breakwaters as the porous berm reduces wave
run-up and overtopping. This range of dimensionless crest free board is found to agree well with
resuits from a series of model tests carried out for studying the rear side stability of berm
breakwaters (Andersen, Juhl and Sloth, 1992).

5 CONCLUSIONS

A berm breakwater is a rubble mound breakwater with a berm above still water on the Sf:award
side, which under wave exposure reshapes into an equilibrium profile with a slope of approxugately
1:5. Depending on the stability parameter the reshaped profile will be statically or dyx?amlcal!y
stable, the latter indicating that the individual stones will move but the profile will be in
equilibrium.

In summary, the’ most important advantages and drawbacks of berm breakwaters compared to
conventional rubble mound breakwaters are:

. Smaller armour stones can be used for a berm breakwater (two to ten times smaller by
weight), resulting in more quarries capable of supplying the required armour stones.
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. Normally only two stone classes are required for construction of a berm breakwater, ie the
small stones are used as core material and bed protection and the larger stones for the
berm and armour layers on the crest and rear side. If well designed, the entire quarry
output can be used. The Icelandic experience gives preference to berm breakwater profiles
consisting of several stone classes, which allows to use the largest stones for the singular
points and as a protecting layer on the berm and crest.

. The use of smaller stones implies that lighter equipment can be used for construction of
berrn breakwaters. Wider tolerances can be allowed during construction, giving the
contractors the possibility of using end tipping trucks or excavators.

. For a berm breakwater built from two stone classes the stones used for protection of the
rear side are relatively small, which means that only limited wave overtopping is accept-
able. This leads to the need for a relative high crest elevation of berm breakwaters, or
alternatively the introduction of larger stones on the rear side.

. For dynamically stable breakwaters, there is a danger of progressive damage due to
oblique wave attack, particularly at the roundhead. Therefore, this type of structure.can
only be used in cases where continued maintenance is acceptable or for temporary struc-
wres. Further, durability of stones may particularly be a problem if frequent stone
motions occur.

. The practical experience with berm breakwaters is limited; and the design basis should be
improved, especially with respect to longshore transport and stability of singular points.
. Construction tolerances to the berm breakwaters are wider than for conventional break-

waters. However, fulfilment of specifications to stone material, construction method and
breakwater profiles is strictly required.

From the above findings, it can be concluded that berm breakwaters for permanent structures
should be designed to reshape into a statically stable profile, ie no continuous stone movements
should be allowed.

The practical experience with the eight presented berm breakwaters shows that the dimensionless
stability parameter, H/AD,y,, varies between 2.5 and 4.1. In three of the eight presented cases,
prototype measurements of the reshaped profile were made, and it was found that the berm break-
waters in question performed well during wave conditions approximating the design conditions.
Further, in two of the cases good agreement for the reshaped profiles were found with measure-
ments from model tests. The ration between the freebord and the significant wave height, R/H,,
is found to vary between 0.7 and 1.2, which is smaller than normally found for conventional rubble
mound breakwaters.

Norwegian experience with berm breakwaters has shown that structural variants as compared to the
typical profile can be economically advantageous. Two variants have been studied and applied in
practice, ie protection of the rear side by larger stones and substitution of a part of the berm stones
with core material.
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APPLICATION OF RELIABILITY ANALYSIS FOR OPTIMAL
DESIGN OF MONOLITHIC VERTICAL WALL BREAKWATERS

by

H.F. Burcharth ! J. Dalsgaard Sgrensen 2 E. Christiani 3
Aalborg University, Sohngaardsholmsvej 57
DK-9000 Aalborg, Denmark

ABSTRACT

Reliability analysis and reliability-based design of monolithic vertical wall breakwaters are
considered. Probabilistic models of some of the most important failure modes are described.
The failures are sliding and slip surface failure of a rubble mound and a clay foundation.
Relevant design variables are identified and a reliability-based design optimization procedure
is formulated. Results from an illustrative example are given.

/ .
Keywords: Vertical wall breakwaters, reliability, sliding failure, rupture failure, design opti-
mization.

1. INTRODUCTION

Coastal structures are normally designed on a deterministic basis using simple safety factors.
The uncertainty related to the involved parameters are generally not considered in a system-
atic way. Consequently, the reliability of a deterministic design cannot be quantified. Even the
dominating environmental load parameter, being the wave height, is in most cases given only
by an estimated extreme distribution. However, the various uncertainties behind such distri-
butions are seldom considered for which reason even calculation of the encounter probability,

i.e. the probability of design exceedence during structure life, gives an incomplete picture of
the reliability.

Breakwater structures are used under quite different conditions. The expected lifetime can be
from 5 years (interim structure) to 100 years (permanent structure) and the accepted level of
probability of failure in the expected lifetime can vary from a very small number, e.g. 107"
if failure of the breakwater results in significant damage to large probabilities, e.g. 0.5 if the
consequences are insignificant. Further, a number of serious failures of breakwaters have been
reported during the last 20 years. In order to obtain more rationa. and consistent estimates
of the reliability of breakwater structures and in order to be able to perform a reliability-
based design optimization the paper describes a probabilistic mode: of the overall stability

failure modes of typical monolithic breakwaters and of the uncertaintie: related to these failure
modes.

'Prof., dr.techn. Hydraulics & Coastal Eng. Lab., Dept. of Civil Eng., Aalborg University
2Assoc. Prof., Ph.D., Dept. of Building Technology and Structural Engineering, Aalborg University
3Ph.D.-student, Hydraulics & Coastal Eng. Lab., Dept. of Civil Eng., Aalborg University

1321



