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A B S T R A C T

The design of electricity markets may be facilitated by simulating actors’ behaviors. Recent studies model
human decision-makers within markets as agents which learn strategies that maximize expected profits. This
work investigates the problem of ‘non-stationarity’ in the context of market simulations, a problem with
the learning-algorithms used by such studies which results in agents behaving irrationally, thus limiting the
studies’ applicability to real-world strategic behavior. Isolating the source of the problem for a day-ahead
electricity market, this paper proposes methods which meliorate this problem in simple test-cases, and proves
requirements under which ‘centralized-training, decentralized-execution’ value-learning methods will converge
to correct behavior in general. Subsequently, this paper proposes a framework for ‘adversarial market design’
that includes the market-designer as an agent. This allows the optimization of market-designs subject to
possibly strategic behavior of participating firms — in turn enabling the automated selection of the optimal
market from any set of markets.
1. Introduction

The simulation of participants’ behavior in electricity markets is
an important tool for the effective design of electricity markets. The
increasing prevalence of renewables will require increasingly com-
plex, interlocking markets in order to ensure the effective procurement
of the concomitant auxiliary services which prevent violation of the
grid’s technical operating constraints (see, e.g., [1,2]). However, as
this complexity increases, so too does the number and complexity of
bids available to market participants, making it progressively more
difficult to ensure that such market designs align participants’ in-
centives to be conducive to grid security and consumer satisfaction.
Simulating participants’ actions provides an alternative to designing
solely from first principles, but more complex and interlocking markets
entail an exponentially increasing number of bidding-strategies. Market
designers are thus confronted with the dual task of determining actors’
strategically optimal actions and simultaneously designing to mitigate
the associated possibility for abuse of market power.

Conventional methods for analyzing strategic behavior of diverse
market players have utilized optimization-algorithms subject to game-
theoretic equilibria constraints [3]. Such algorithms have the advantage
that they can exactly determine actors’ optimal behavior using well-
developed convex optimization techniques. However, they face chal-
lenges in modeling sequential problems (e.g., those involving the sub-
mission of several consecutive bids) and non-convex constraints such as

∗ Corresponding author.
E-mail address: CharlesRW@protonmail.com (C. Renshaw-Whitman).

those found in the unit commitment problem [3]. Thus, this constrains
multi-agent analyses driven by such methods, thereby complicating the
realistic evaluation of market designs.

Notably, reinforcement learning (RL) methods, well-suited to se-
quential decision-problems, are increasingly used for electricity market
modeling in place of conventional optimization algorithms
(e.g., [4–6]) - in part spurred on by the achievements of ‘Deep RL’
such as [7–9]. RL methods have the distinct advantage of being un-
constrained by limitations such as convexity or other conventional
optimization constraints, making their applicability more versatile.

While RL can model the decision-making of a single rational actor,
multiple such actors are needed to constitute realistic market dynam-
ics. Our work centers on the exploration of multi-agent RL (MARL)
methods, to advance market model analyses.

Regarding computational tractability, MARL methods, on account
of being heuristic optimization algorithms, may also be expected to
scale to larger number of agents or higher dimensional search spaces
more readily than their analytical compeers — compare the seemingly
intractable superexponential complexity bounds given in [10] to the
remarkable performance shown in, e.g., [11]. While MARL methods
may show inferior performance on low-dimensional problems, they
can be used to find approximate solutions even when the search-space
becomes intractably large or complex for any analytical algorithm,
vailable online 2 July 2024
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as occurs in, e.g., complex sequential decision-making problems like
developing a bidding-strategy with intricate conditionals. In the present
work, we consider cases with between one and five agents, focusing
principally on the case with only two competing firms. The required
computation per update is linear in the number of agents, while the
number of samples required to reach convergence is difficult to predict
in advance.

In this study, we highlight a critical flaw in commonly-used MARL
methods, which can result in incorrect equilibria determinations. This
flaw is analogous to the concept of ‘relative overgeneralization’ dis-
cussed in the literature in cooperative RL [12], extended to general-sum
games. To analyze this problem, we show how the convergence the-
orems for traditional Q-learning become invalid in the presence of
multiple-agents. This is concretized in a case-study in which
convergence-failure is identified in a simple day-ahead market setting
using both tabular and deep RL methodologies. Our results indicate
that agents converge to strategies inconsistent with known-optimal
oligopoly behavior.

For the purposes of this paper, we focus our attention on the pop-
ular deep deterministic policy-gradient algorithm (DDPG, [13]) and its
multi-agent adaptation, multi-agent DDPG (MADDPG, [8]). We select
these two algorithms because they differ only in the form of the learned
value-function - the value-function being the function which learns
to predict the long-term value of taking a particular action, condi-
tional on having certain information. Our results show that MADDPG,
a centralized learning algorithm, converges where the decentralized
DDPG does not — and prove a theorem indicating centralization of the
value-function is necessary and sufficient to achieve convergence.

Moreover, we broaden the scope of these methodologies to in-
clude market design through our novel approach, dubbed ‘‘adversarial

arket-design’’, treating the market-designer as an agent. Framing
arket-design as an RL problem assures convergence to Nash equi-

ibria, based on the theorems above. Adversarial market-design allows
treamlining of the market-design process by incorporating it within the
L training procedure. In this framework, the market-design agent is

ncentivized to design a market for which firm-agents’ optimal behavior
s aligned with social welfare. In the present work we consider only
ower-producing agents for simplicity, though power-purchasers or
ther types of agents may be incorporated straightforwardly.

Thus, the core research contributions of this work are (i) an expli-
ation of the conditions under which MARL methods will converge in
lectricity markets (along with accompanying theorems) and (ii) the
ntroduction of the adversarial market-design framework. We use the
emporal difference error (TD-error) as a measure of convergence, and
urther define a measure of distance from equilibrium. This metric,
he optimality-deficit, is used to assess when agents have converged
o a correct Nash equilibrium. Moreover, through the application of
dversarial market design, we aim to demonstrate the potential of
ARL methods to enable the efficient design and evaluation of novel

lectricity market structures.
The structure of the work is as follows: Section 2 introduces the rel-

vant background in game theory and RL, along with a brief overview
f the DDPG and MADDPG algorithms and the adversarial market-
esign framework. Section 3 discusses the mathematical form of the
on-stationarity problem, and introduces some relevant tools for inves-
igation. Section 4 introduces the simulations to be carried out and
llustrates their results. Section 5 discusses the significance of these
esults, followed by a concluding recapitulation and suggestions for
uture work.

. Reinforcement learning for electricity markets

.1. Reinforcement learning

RL is a paradigm of machine learning in which an agent attempts
o learn a sequential decision-rule that maximizes a given reward func-
2

ion. It operates within the Markov Decision Process (MDP) framework,
where actions taken in each state drive the agent’s transition to the
next state based on the chosen action to find the optimal policy. A
popular textbook on the subject is [14], while a review in the context
of electricity markets is presented in [15] — unless otherwise noted,
the notation used here is as in the former.

We will be mostly concerned with the family of reinforcement
learning methods, called ‘value-learning’ methods, which seek to learn
a ‘‘𝑄-function’’. For our purposes, the 𝑄-function predicts the profit a
firm would obtain by taking a particular action, 𝑎 (an example of an
action might be the submission a particular bid). The firm’s choice of
bidding-strategy is known as a policy, denoted 𝜋; this strategy may be
contingent on an observed state, 𝑠, such as a firm’s marginal cost of
generation, or the current demand-curve. RL algorithms learn a policy
𝜋 which maximizes this 𝑄-value. A number of such algorithms are
detailed in [14]. While RL readily handles sequential decision-making
problems, we concern ourselves only with single-timestep markets
(i.e., those which do not require making a sequence of decisions, but
one only) for simplicity.

2.2. MARL algorithms: DDPG and MADDPG

In this work we consider first ‘tabular’ and then ‘continuous’ envi-
ronments. In a tabular environment, agents choose from a finite set of
actions (e.g., a choice from a list of possible offer-prices). In a contin-
uous environment, they submit some continuously varying quantities
(e.g., the free choice of a price, possibly restricted to some range). We
focus on environments in which there is only a single-timestep — a
single round of bid submission and subsequent market-clearing. We
will briefly examine a case with hidden state-variables, but restrict the
mathematical discussion below to the stateless case for simplicity.

The tabular case is included as it is the most straightforward. Fur-
ther, convergence theorems developed for single-agent reinforcement-
learning typically only apply to tabular environments. This work uses
a tabular-learning algorithm known as ‘independent Q-learning’, in
which agents learn precisely as in the single-agent setting (and thus,
taking no account of other agents’ actions). By failing to account for
others’ actions, independent agents may be said to consider other
agents as ‘part of the environment’. For electricity markets, this
amounts to an inability to distinguish between other firms’ bids ef-
fecting the market and a general change in market conditions (e.g., in
demand).

For independent learning algorithms, if multiple agents train simul-
taneously, each agent faces, in effect, an environment which changes as
other agents’ policies change. This violates the assumptions of a Markov
Decision Process (MDP, the mathematical structure underlying RL prob-
lems), and thus causes difficulty in arriving at equilibria. This problem
is known as ‘non-stationarity’ from the apparent non-stationarity (in the
probabilistic sense) of the environment [16].

In addition to the tabular case, this work also considers the case of
a continuous environment. In our case, the continuous environment is
distinguished from the tabular one by the use of bids in which quantity
and price are allowed to be any positive number, rather than a choice
from some pre-determined set of bid pairs. This is, of course, more
faithful to the real-world bidding process. When the number of possible
inputs are no longer finite, it is necessary to learn a parameterized
function which outputs an action — for this we use neural networks.
In our investigations here, we use ‘actor–critic’ methods, in which an
agent is assigned two neural networks, the first representing the 𝑄-
function, and the second the agent’s policy 𝜋. The 𝑄-function is trained
based on information from the environment, while the policy 𝜋 is
trained to maximize the 𝑄-function.

Simplified for the stateless, single-timestep, full-information case we
consider, the loss-functions used are:

𝑄
DDPG

[

𝜙𝑖] = E
[

(

𝑟𝑖(𝐴−𝑖, 𝐴𝑖) −𝑄𝜙𝑖 (𝐴𝑖)
)2
]

𝑄
MADDPG

[

𝜙𝑖] = E
[

(

𝑟𝑖(𝐴−𝑖, 𝐴𝑖) −𝑄𝜙𝑖 (𝐴−𝑖, 𝐴𝑖)
)2
]

𝜋 [ 𝑖] [ ]

(1)
 𝜃 = E 𝑄(𝜋𝜃𝑖 )|
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Fig. 1. Comparison of the use of simulation in traditional and in adversarial market-
design. (a) In conventional market-design a designer uses simulations to select amongst
a family of designs by simulating each and manually comparing the results. (b) In
adversarial market-design, a market-designer-agent (‘adversary’) is trained to select the
best design — agents learn to behave strategically in each new environment as the
adversary adjusts.

Parameters not relevant to the particular loss function are suppressed —
𝜃 and 𝜙 represent the policy and value-function networks, respectively.

2.3. Nash-equilibria and electricity markets

Market environments, such as the electricity markets, may be mod-
eled by assuming different firms act as economically-rational expected-
profit-maximizers (or more general expected-utility-maximizers, if,
e.g., firms are risk-averse). RL has the additional utility that, by
specifying a different reward function, one can model other incentive
structures, like risk-aversion or short-termism (each of which may be
modeled using time-discounted rewards). If each agent has a family of
actions 𝑖 (and calling the Cartesian product  =

⨉

𝑖 𝑖), a ‘‘game’’
etween 𝑁 agents is any function 𝑅 ∶  → R𝑁 — it assigns for each

possible joint action a ‘reward’ to each agent. Agent 𝑖’s reward is 𝑅𝑖.
In game-theory, a Nash-equilibrium is a joint action 𝑎∗ such that no

agent may unilaterally profitably change their action:

∀𝑖 ∀𝑎𝑖 ∈ 𝑖, 𝑅𝑖(𝑎−𝑖,∗, 𝑎𝑖) ⩽ 𝑅𝑖(𝑎−𝑖,∗, 𝑎𝑖∗) (2)

Deterministic games may have zero, one, or no Nash equilibria; when
agents play probabilistically (i.e., they select probability-distributions
over each 𝑖, called ‘mixed-strategies’), it is a famous theorem that
all games then have at least one Nash-equilibrium [16]. We will refer
briefly to cases where agents have access to hidden-information; both
the case of hidden-information and mixed-strategies have analogous
definitions for Nash-equilibria as in Eq. (2), with expectation-values
taken over appropriate probability-distributions.

2.4. Adversarial market-design

‘‘Adversarial market-design’’ aims to determine the best market-
design from a set of possible designs. It models the market-designer as
3

an RL agent whose ‘actions’ are the selection of a market design, and
whose ‘reward’ is some social-welfare function. For example, suppose
the market-designer-agent selects as its action some parameter-vector
𝜃. These parameters describe the form of the market, such as a price-
cap, or the shape of some administratively-set demand-curve — the aim
is to find the optimal value of these parameters. Then the firm-agents
learn a policy of the form 𝜋𝑖(𝑎𝑖|𝜃), and receive a reward 𝑅𝑖

𝜃(𝑎
𝑖, 𝑎−𝑖) —

he profit obtained when the market, specified by 𝜃, is cleared. The re-
ard of the designer-agent is some social-welfare function SW(𝑎𝑖, 𝑎−𝑖, 𝜃)

e.g., the sum of the consumer and producer surpluses). The market-
esign and firm-agents may act either simultaneously or in succession;
ur experiments below employ the former convention.

The significance of this paradigm is that, where a Nash equilib-
ium played by firm-agents informs us about possible strategic or
align behavior, a Nash equilibrium played by the firm-agents and

he designer-agent represents a market-design selected to maximize
ocial welfare in spite of strategic behavior. A schematic comparison
f conventional and adversarial market-design is given in Fig. 1.

. The non-stationarity problem

.1. TD-error and optimality deficit

In seeking to examine when multi-agent reinforcement-learning
lgorithms will converge to a correct Nash-equilibrium, we must in-
roduce a metric which describes training-convergence, and a metric
hich describes distance from Nash-equilibrium. We consider here
nly the full-information, single-clearing electricity market, though the
oncepts generalize readily to the full MARL problem with hidden
nformation and multiple timesteps.

The TD-error is the difference between an agent’s expected and
eceived reward; the TD-error 𝛿 is defined for the 𝑄-function’s predicted
rofit, 𝑄, and received reward, 𝑟, simply as

= 𝑄 − 𝑟 (3)

f the TD-error goes to zero, agents obtain exactly the reward they
redict, and if they are playing a simple argmax policy, their policy
eases to change as well (modulo exploration).

We define agent 𝑖’s optimality-deficit 𝜆𝑖 as the difference between
he expected reward an agent achieves with its current policy and
he expected reward it would achieve by optimal play, holding fixed
ther agents’ policies. That is, it quantifies how much profit a firm is
eaving ‘on the table’ by bidding as it does now, fixing other firms’
idding-strategies. Mathematically, this is
𝑖 = max

𝑎
E
[

𝑅𝑖(𝐴−𝑖, 𝑎)|𝐴−𝑖 ∼ 𝜋−𝑖]−

E
[

𝑅𝑖(𝐴−𝑖, 𝐴𝑖)|𝐴−𝑖 ∼ 𝜋−𝑖, 𝐴𝑖 ∼ 𝜋𝑖]
(4)

y definition, a Nash-equilibrium has all agents playing with a zero
ptimality deficit.

If a multi-agent simulation should exhibit a near zero TD-error for
ll agents, while not all agents show a similarly near zero optimality-
eficit, it is clear that the simulation will have converged to a non-Nash-
quilibrium, rendering the results not useful as models of strategic firm
ehavior.

.2. Convergence theorems

Here we present theorems showing that, under certain conditions,
ARL algorithms which use centralized training are guaranteed to

onverge. We denote the entries of a matrix with subscripts 𝑚, 𝑛, as
n 𝑄𝑖

𝑡,𝑚𝑛; 𝑒𝑚𝑛 denotes the matrix which is 1 in the 𝑚, 𝑛-th entry, and 0
n all other entries. Proofs are provided in the Appendix.
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Theorem 1. Let 𝑄𝑖
𝑡 denote agent 𝑖’s estimated 𝑄-function, after 𝑡 iterations

f learning, as a matrix whose entries correspond to possible action-pairs of
ll agents. Similarly, let 𝑅𝑖 be a matrix denoting the actual reward obtained,
nd 𝑓 (𝑄𝑖, 𝑅𝑘

𝑚𝑛𝑒𝑚𝑛) be an update rule which alters the 𝑄-estimate upon
bserving a reward 𝑅𝑖

𝑚𝑛 corresponding to the action pair (𝑚, 𝑛). Then, if
here exists a matrix-norm ‖ ⋅ ‖ such that always ‖𝑄𝑖

𝑡+1 −𝑅𝑖
‖ ⩽ ‖𝑄𝑖

𝑡 −𝑅𝑖
‖,

then the error ‖𝑄𝑖
𝑡 − 𝑅𝑖

‖ converges to a constant 𝑐 as 𝑡 → ∞.

Theorem 2. Suppose the following three conditions hold:

• Seeing the (𝑚, 𝑛)-action pair, the update rule alters only 𝑄’s 𝑚, 𝑛-th
entry

• For each 𝑚, 𝑛 there exists a 𝜌, 0 ⩽ 𝜌 < 1, |𝑄𝑖
𝑡+1,𝑚𝑛 − 𝑅𝑖

𝑚𝑛| ⩽
𝜌|𝑄𝑖

𝑡,𝑚𝑛 − 𝑅𝑖
𝑚𝑛|

• All action-pairs (𝑚, 𝑛) for which 𝑄𝑖
𝑚𝑛 ≠ 𝑅𝑖

𝑚𝑛 occur with non-zero
probability

Then 𝑄𝑖
𝑡 converges element-wise and almost-surely to 𝑅𝑖 as 𝑡 → ∞ (i.e., each

entry of 𝑄 converges to the corresponding entry in 𝑅 with probability 1).

Corollary. The convergence theorem stated above applies to stateful MDPs
with multiple timesteps and hidden information if a 𝑄-function over trajec-
tories is used.

In the independent-learning case (analogous to DDPG, as opposed to
MADDPG), the 𝑄-‘‘table’’ is actually just a vector indexed by the agent’s
own action. In this case, the contraction property cannot be satisfied in
general, so that the theorems above do not hold.

4. Case study

Here we outline the three classes of experiment we shall run: those
with a discrete environment, those with a continuous environment
(first in Bertrand competition, and then in 𝑄, 𝑃 -competition), and those
regarding adversarial market design.

4.1. Experiment setup

For what follows, unless otherwise noted, all agents’ marginal costs
are 𝑐 = 40USD∕MWh, while demand (in USD) is given by 𝑃𝐷(𝑄) =
500 − 2𝑄. Clearing occurs in as-bid merit-order until the price at the
quantity contracted equals the demand at that price. Exploration occurs
for the first half of a run only, while learning occurs throughout. Agents
are trained on one hundred thousand market-clearings.

All neural networks used in this work have two hidden layers of 300
nodes, with Layer-Norm and ReLU activations. The Adam optimizer
was used. For exploration, the policy-generated act was added to zero-
mean Gaussian noise with standard-deviation 0.3. All acts were scaled
such that 1.0 corresponded to 𝑄max or 𝑀𝐶. Rewards used for learning
were scaled down by a factor of 1000. A replay buffer large enough to
store one quarter of the total episodes for learning was used (storing in
FIFO order); batches of size 128 were drawn at random from this buffer;
learning updates occurred every 128 timesteps. These parameters were
selected after a brief trial-and-error process, and found to be adequate
to demonstrate the relevant phenomena.

The experiments were run on a personal laptop with a hybrid
graphics-card setup, utilizing an Intel P630 and an Nvidia Quadro
M2200 Mobile. The tabular- and continuous-environment experiments
ran in under an hour (for the whole experiment including all runs
and all configurations). The adversarial market-design experiment com-
pleted in under four hours (primarily because of the much larger
number of configurations compared to the tabular- and continuous-
environment experiments).
4

4.2. Tabular day-ahead market

In light of the theory presented previously, we investigate the
circumstances under which independent learners will converge to an
incorrect bidding strategy. To this end, we simulate a simple day-ahead
market, described in detail below, with agents trained implementing
simple tabular Q-learning. The optimality-deficit is computed, and ex-
amples are shown in which convergence occurs while agents maintain
a non-zero optimality deficit.

4.2.1. Description of the environment
For the sake of clarity, we model a simple day-ahead electricity

market. A single market-clearing is simulated — technical operation
constraints are not considered. In cases with hidden information/states,
each agent observes its own maximum generation capacity (either 50
or 100 MW) and marginal cost (either 20 or 50 USD/MWh), but not
its opponents’. In cases without hidden information, the capacity and
marginal cost of all agents are 50 MW and 20 USD/MWh, respectively

In each round, agents select a pair of actions (𝑎, 𝑏) corresponding to
the fraction of their total generation capacity to bid, and the fraction
of their marginal cost to bid — i.e., the action selection (𝑎, 𝑏) cor-
responds to a bid to sell 𝑎𝑄𝑖

𝑚𝑎𝑥 units of electricity at a price 𝑏𝑃 𝑖
𝑀𝐶 .

Allowed values of 𝑎 and 𝑏 are the same for all agents at all times,
and are each drawn from a distinct discrete set. 𝑄max fractions were
permitted to be 0.5, 0.75, and 1.00. 𝑃𝑀𝐶 fractions were permitted to be
0.5, 1.56, 2.61, 3.67, 4.72, 5.78, 6.83, 7.89, 8.94, and 10.00 (i.e., 10 linearly
spaced points between 0.5 and 10).

The market clears in as-bid merit-order, with a uniform clearing
price set to be the minimum price at which sufficient bids are accepted
to satisfy demand at that same price level. In case of shortage, the
clearing price is the willingness-to-pay of demand for the total offered
quantity. Ties are resolved randomly for simplicity, and bids may be
partially accepted (e.g., the market may procure, say, 15 MW of a 40
MW bid).

4.2.2. Training procedure
Agents were initialized with an empty Q-table. After every round,

an agent learns from an observation. This learning takes the form of
a ‘soft update’ with a learning rate of 0.99; the exploration technique
used was epsilon-exploration [14].

4.2.3. Tabular day-ahead market results
Fig. 2 illustrates the TD-error and optimality-deficit associated with

the tabular case, for each of the different environmental configurations.
The two cases with a single learning agent (‘‘1 Agent, 1 State’’ and
‘‘1 Agent, 4 States’’) show nearly zero TD-error and optimality-deficit,
compared to both cases with multiple learning agents (‘‘3 Agents, 1
State’’ and ‘‘3 Agents, 4 States’’), which each show a positive optimality-
deficit; only the case with hidden-information, ‘‘3 Agents, 4 States’’
shows a substantial TD-error. The ‘‘final’’ values shown are, in each
case, the average over the most recent thousand timesteps, or the
coterminous batches; within each run, the values are averaged over
all learning agents. The tabular experiments indicate that independent
learners are capable of learning to bid the correct monopoly price (the
optimality-deficit is near zero in the monopoly case). However, they
fail to behave strategically as soon as multiple firms are involved (the
optimality-deficit is non-zero when there are multiple agents). This
pathology is clearly related to non-stationarity, as the TD-error in all
cases (except that with hidden-information, as expected) approaches
zero while the optimality-deficit does not whenever there are multiple

agents.
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Fig. 2. Summary of the tabular experiment results. For each case, the final TD-error
and optimality-deficit are shown; uncertainty bars represent the standard deviation over
all three runs. Left vertical axis corresponds to the scale of the TD-error, and the right
to the deficit.

4.3. Extension to the continuous day-ahead market

4.3.1. Price-only (Bertrand), hypercompetitive
The first set of continuous experiments consists of testing these

DeepRL algorithms in a continuous environment under Bertrand com-
petition (i.e., in which agents bid a single positive real price, with
the lowest-bidding agent fulfilling all demand) [17]. This experiment
studies the connection between the tabular experiments — restricting
to Bertrand competition allows the calculation of the best-response
function, and thus the optimality-deficit; this is not readily done when
agents are allowed to submit both quantity- and price-bids.

We are interested in verifying the adequate implementation of
the DeepRL algorithms, and in illustrating the continued failure of
independent learning due to non-stationarity. As in the tabular case,
we examine a simple day-ahead market; we restrict the experiment to
price-only bidding in the hypercompetitive regime (in which each agent
can unilaterally meet all demand). This allows comparison of agent
performance to the expected analytical solution of the Bertrand market
discussed above. Negative quantities and negative prices are forbidden,
though agents are expected to learn to bid above their marginal costs
rather than being hard-coded to do so. Shortage is impossible as the
Bertrand model assumes non-bindingness of capacity constraints.

We examine four Bertrand-competition scenarios, the results of
which are summarized in Fig. 3: in the first, the DDPG agent is a
monopolist (and so is expected to converge to the monopoly price); this
provides evidence as to whether the learners have been implemented
correctly. In the second, a DDPG agent competes with a naive marginal-
cost bidder (the maximum profit is thus zero); this should illustrate that
the non-stationarity problem does not occur when the other agents are
fixed. In the third, two DDPG agents are pitted against one another
in hopes of illustrating the failure to converge to a Nash equilibrium,
analogous to the discrete case. Finally these two DDPG learners are
replaced with MADDPG learners, which it is hypothesized will suffice
to ensure that a correct equilibrium is learned.

4.3.2. Q,P bidding, competitive
The purpose of the second set of continuous-environment experi-

ments is to illustrate that the same problems of non-stationarity occur
as previously when agents participate in a more complex market. In
this case, the action-space of the agents is extended to permit an agent
to choose both the price and quantity of its bid. Further, the capacity
of each agent is lowered to 𝑄max = 200 MW so that no individual agent
can meet all demand alone. Because both quantity and price are set
independently, the analytical solution is fairly complicated compared
5

to the Bertrand case; instead we report profits as a proxy for relative
Fig. 3. Summary of the continuous environment experiment results for Case 1
(hypercompetitive, Bertrand competition). For each case, the final critic-loss and
optimality-deficit are shown; uncertainty bars represent the standard deviation over
all three runs. Left vertical axis corresponds to the scale of the TD-error, and the right
to the deficit.

performance. This increase in complexity is meant to illustrate that
DDPG learners are capable of operating in (slightly) more complex
environments, while still failing when pitted against one another. In
such a case, it is hypothesized that the centralized MADDPG will
be capable of converging where independent-learning algorithms like
DDPG fail to do so.

4.3.3. Continuous day-ahead market results
Fig. 3 summarizes the results for the continuous Bertrand environ-

ment. The two cases with a single learning agent (‘‘DDPG Monopolist’’
and ‘‘DDPG vs. Naive’’) show near-zero critic-loss (which is functionally
analogous to the TD-error) and optimality deficit, compared to the
cases with multiple learning-agents (‘‘DDPG vs. DDPG’’ and ‘‘MADDPG
vs. MADDPG’’). The MADDPG case shows much lower critic-loss and
optimality-deficit than the DDPG case.

Fig. 4 shows the results for the continuous, Q,P-bidding environ-
ment. The ‘‘DDPG vs. DDPG’’ case shows a larger TD-error compared
to the ‘‘DDPG Monopolist’’ and ‘‘MADDPG vs. MADDPG’’ cases. The
agents in the MADDPG case obtain less profit on average than in the
DDPG case. The uncertainty bars represent the standard deviation over
all three runs.

The continuous 𝑄, 𝑃 -bidding cases show that the use of different
algorithms can result in different profits being obtained — in particular,
a market-designer wishing to use RL to examine this market would,
seeing the greater profits of the DDPG case, incorrectly infer a much
greater potential for strategic behavior. This illustrates the importance
of correctly handling non-stationarity if one wishes to understand the
market-design in question.

4.4. Adversarial market-design

4.4.1. Price-cap environment formulation
We consider a market-designer aiming to optimize the social-welfare

function

SW = 2∫

𝑄∗

0
𝑑𝑞(𝛼𝑃𝐷(𝑞) − (1 − 𝛼)𝑃𝑆 (𝑞)) + (1 − 2𝛼)𝑃 ∗(𝑄∗) (5)

hat (dis-)privileges consumer welfare relative to producer welfare
ccording to a factor 𝛼 (0 ⩽ 𝛼 ⩽ 1). 𝛼 = 1 corresponds to com-
letely preferring consumer-welfare, and 𝛼 = 0 to completely preferring
roducer-welfare.

For ease of reference, we call 𝛼 the ‘‘adversariality’’, as it controls
ow strongly ‘‘adversarial’’ the designer-agent is to the firm-agents.
nce the designer-agent sets the price-cap, the market is cleared as

hough the demand-curve were 𝑃eff (𝑄) = min(𝑃cap, 𝑃D(𝑄)), with 𝑃D the
ncapped demand-curve and 𝑃 the price cap.
cap
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Fig. 4. Summary of the continuous environment experiment results for case 2
(competitive, Q,P-competition). For each case, the final critic-loss and profit are shown.

4.4.2. Description of the environment
This third set of experiments is conducted according to Cournot

competition [17] — firm’s submit quantity-bids only, with the priced
determined according to the total quantity offered. The key difference is
the introduction of an adversary-agent who sets a market price-cap. The
reason for selecting Cournot competition is that it allows for ready com-
putation of the best-response function, and requires fewer modifications
to accommodate the adversarial price-cap than would the Bertrand
solution. The goal of this experiment is to examine the performance of
an adversary tasked with optimizing the market to maximize a certain
social welfare-function, while learning agents simultaneously learn to
ehave strategically as the adversary adjusts the market-rules.

The adversary’s action-space is a single continuous scalar, the price-
ap; firms’ actions are quantity-only bids of the same form as before.
s previously, no agents observe any state-information — instead the
hannel for information to flow is the agents’ critic functions. All agents
se MADDPG to learn.

The purpose of this experiment is not, of course, to present policy-
dvice based on such a simplistic model; instead, it is hoped that the
implicity of the model will render the application and its limitations
ore legibly than a fully realistic environment. A real application of

his technique would entail careful selection of market-designs such
hat they can be usefully represented as the output of a neural network,
s well as a more thoroughgoing consideration of the appropriate state-
nd action-spaces.

.4.3. Adversarial market-design results
Rather than presenting the complicated best-response functions, we

ere offer a few remarks about the optimal behavior of the price-cap
nvironment. First, in general, to the extent that they are free to choose
heir prices, the strategically acting firms should cause a deadweight
oss. Clearly, when 𝛼 = 1, the optimal price cap is the marginal cost
plus an arbitrarily small real number) – this maximizes not only the
onsumer welfare, but the total social welfare for any 𝛼 > 1∕2 – since
owering the cap in this regime converts producer welfare into a strictly
reater amount of consumer welfare (which is also valued more). When
< 1∕2, the price cap can force the oligopolists to produce a quantity

reater than the oligopoly quantity, but not less — thus the optimal cap
n this region involves trading off (relatively more valuable) producer
elfare to consumer welfare in an attempt to recoup by decreasing the
eadweight loss.

Fig. 5 displays the results of the adversarial market-design experi-
ents — for each of five values of the adversariality 𝛼 = 0.00, 0.25, 0.50,
.75, 1.00, and each of 𝑁 = 1, 3, 5 competing firms are displayed the
inal price-cap, and the final clearing-price.
6

Fig. 5. Adversarial market-design: parameter-sweep summary. Plots illustrating the
behavior of the final clearing price and price cap. (a) final learned price-cap. (b)
clearing-price.

These adversarial market-design experiments show that the simulta-
neous optimization of the market-design (the price cap) and the agents’
strategic behavior yields outcomes showing the main patterns expected
from the analytic solution — in particular, a high clearing price when
the market-designer prefers producer welfare, decreasing to approach
the producers’ marginal-costs as this preference shifts to consumer-
welfare. On the other hand, it is clear that there was substantial
variation amongst the different scenarios, indicating that the simple
setup used here may not be optimal for practical market-design.

5. Conclusion

This work has examined the role of non-stationarity on MARL
simulations of rational agent behavior for market design. We demon-
strate that independent-learning algorithms like DDPG are incapable,
in general, of arriving at correct equilibria. We employed the TD-
error as a convergence metric and a measure of the distance from
equilibria to determine whether the agents converge to the correct
Nash-equilibrium; conditions were proved under which CTDE algo-
rithms are guaranteed to converge to Nash-equilibria. Finally, taking
advantage of these convergence guarantees, we introduced the con-
cept of adversarial market-design, and illustrated its use in a simple
example.
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Guaranteed convergence to true Nash-equilibria means that MARL
market simulations may be used as a reliable source of evidence about
a market-design’s ability to mitigate abuses of market power. The
framework of adversarial market-design provides a new, MARL-based
method for automatic market-design optimization.

As this work focused primarily on methodology, little attention was
paid to ‘realism’ of the simulations — one interesting direction of future
work would be the examination of non-stationarity in more realistic
electricity-markets. In a more practical context, provided that stability
can be enhanced (e.g., by having the market-designer’s action visible
to the learners), the application of adversarial market design holds the
potential to offer significant benefits in shaping new market rules, par-
ticularly in scenarios involving multiple interconnected markets. This
approach may prove invaluable in assisting policymakers in making
informed decisions concerning market regulations during periods of
market crisis or transition.
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Appendix. Proof of convergence theorems

In what follows, we seek to prove sufficient conditions for conver-
gence to a correct equilibrium; to make this simpler, we consider the
discrete case with only two agents; the generalization to many agents is
straightforward, while convergence theorems are impractical to prove
for the continuous case in which 𝑄-function updates rely heavily on
the complicated neural network parameterization and specifics of the
optimizer used for gradient-descent.

Proof of Theorem 1. First, we consider the centralized policy: Let 𝑄𝑖
𝑡

be a matrix whose entry 𝑚, 𝑛 represents the agent’s Q-value estimate of
the reward obtained for itself and its opponent taking actions 𝑎𝑚 and
𝑛, respectively. Upon the action-pair (𝑎𝑚, 𝑎𝑛) occurring, an update rule

dictates that agent 𝑘 updates as

𝑄𝑖
𝑡+1 = 𝑓 (𝑄𝑖

𝑡, 𝑅
𝑖
𝑚𝑛𝑒𝑚𝑛) (6)

(where 𝑒𝑚𝑛 is the matrix which is 1 in entry 𝑚, 𝑛 and 0 in all others)
or instance, the soft-update rule has the form 𝑓 (𝐴,𝐵) = 𝐴(1 − 𝑒𝑚𝑛) +
𝑚𝑛(𝜌𝐴 + (1 − 𝜌))𝐵. This is simply to say that the update rule updates
nly the entry for the action-pair which is observed, which updates to
weighted average of the estimated and observed value.

The following condition suffices to show that an update rule for 𝑄
s non-increasing: if we have for some matrix-norm ‖ ⋅ ‖ that for any
bservation (𝑎𝑖, 𝑎𝑗 )

𝑄𝑖
𝑡+1 − 𝑅𝑖

‖ ⩽ ‖𝑄𝑖
𝑡 − 𝑅𝑖

‖ (7)

hen the update-rule is non-increasing and bounded above by ‖𝑄0−𝑅‖,
and bounded below by 0 - thus the sequence converges (not necessarily
7

to 0).
Proof of Theorem 2. In addition to the above, requiring that, for
each possible observation-pair, (𝑎𝑚, 𝑎𝑛), 𝑄𝑖

𝑡+1,𝑚𝑛 = 𝑅𝑖
𝑚𝑛 or that the

observation-pair occur with non-zero probability, and upon occurring,
cause |𝑄𝑖

𝑡+1,𝑚𝑛 − 𝑅𝑖
𝑚𝑛| ⩽ 𝜌|𝑄𝑖

𝑡,𝑚𝑛 − 𝑅𝑖
𝑚𝑛| for some 0 ⩽ 𝜌 < 1. That this

criterion is sufficient for convergence follows from considering any
observation-pair (𝑎𝑚, 𝑎𝑛) where |𝑄𝑖

𝑡,𝑚𝑛 − 𝑅𝑖
𝑚𝑛| = 𝑐𝑡 > 0 for some value

𝑐𝑡. Let the stopping-time 𝜏1 = 𝑡 denote the event that 𝑡 is the first
time such that 𝑐𝑡 < 𝑐𝑡−1. By hypothesis, 𝜏1 is finite with probability
one. Then let 𝜏2 be the stopping-time associated with the second such
decrease — conditioning on 𝑡 ⩾ 𝜏1 (a set which is nonempty as 𝜏1 is
finite), 𝜏2 is likewise finite, etc. Thus, for any integer 𝑁 , there exists,
with probability one, a time 𝑡𝑁 such that (𝑎𝑚, 𝑎𝑛) has been drawn 𝑁
times; in each case, the mismatch |𝑄𝑖

𝑡,𝑚𝑛 − 𝑅𝑖
𝑚𝑛| decreases by at least

a factor of 𝜌 < 1; as this is true for each pair of indices and for
all 𝑁 , Brouwer’s fixed-point theorem [18] implies that the Q-estimate
converges element-wise and almost-surely to the true reward.
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