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1. Introduction

As a result of recent catastrophic failures of transport aircraft riveted lap-splice joints
due to fatigue crack growth and unstable fracture, many attempts have been made to
better understand this phenomena. Toward this end, a fatigue test program of thin
sheet material typically found in aircraft fuselages, 1.6 mm 2024-T3 clad aluminum
alloy, with a centrally located hole subject to remote tension and bending is
completed. The intent of this investigation is to gain insight on the effect of the
bending stress on fatigue life and crack-front shape development. Including the
bending stress is necessary in order to replicate the stress state found in lap joints.
Specifically, as an aircraft is pressurized the in-plane forces resolved from the hoop
stress apply an eccentric load in the lap joint. This eccentricity creates a bending
moment, typically called secondary bending, and therefore normal stresses due to
bending in the joint. The secondary bending has two components, a linear component
due to the eccentric loading, and a non linear component due to the relatively large out
of plane displacements as a result of the eccentric load application and joint geometric ;
configuration. Miiller found that the bending stresses can be as large or larger than g
the normal stress due to the in-plane loading.! For brevity, herein the normal stress

due to bending and tension are referred to as bending and tensile stress respectively.

The primary focus here is to calculate the influence of crack front shape on stress

intensity factors for a variety of loadings, typical of those that occur in lap-splice

joints.

Cracks usually nucleate as surface or corner cracks in close proximity to the rivet hole
on the faying surface of the joint. As crack growth continues, the cracks penetrate the
back surface, the free surface on the inside or outside of the fuselage. If the loading is
pure tension, the penetrated crack length, the crack length measured from the edge of
the rivet hole to the intersection of the crack front and back surface, experiences high
growth rates due to the large stress gradient in the small ligament of material between
the crack front and the back surface. Grandt et al. using the finite element alternating
method (FEAM) verified the higher stress intensity factors, K’s, at the back surface
leading to back surface crack “catch up.”? The FEAM solutions agreed well with
fatigue crack growth rate changes obtained during fatigue tests of polymethyl
methacrylate (PMMA). In lap joints, the large secondary bending stress prohibits the
back surface catch-up; therefore, a penetrated crack, as shown in Figure 1, maintains a
part-elliptical, oblique, shape until rapid crack growth just prior to the onset of
unstable fracture.

In service, fatigue cracks have been found which indicate a large degree of secondary
bending.>* The fracture surfaces of cracks of various lengths exhibited oblique shapes
indicative of penetrated surface or corner cracks subject to bending. Similar shapes
are found in fatigue test specimens conducted in this study.

The three'dimensional virtual crack closure technique, 3D VCCT, is used to obtain
stress intensity factors, SIFs, for crack geometries and load conditions for which no
published solutions are available. The structure of interest is a longitudinal riveted
lap-splice joint found in the skin of a transport aircraft fuselage. This structure is

+



modeled by the finite element method as a finite width plate with a centrally located
hole. The crack geometry of interest is a through crack which has nucleated as part
through crack and grown sufficiently to penetrate the surface opposite the nucleation
site. The load conditions in the structure of interest are quite complex; however, for

the verification studies completed here only biaxial tension, remote bending, and rivet
loading are applied.

“Oblique” Crack Front

Penetrated Crack
i\ \

Crack Nucleation Site ——— ™ \—SelfSimilar Crack
Propogation

Figure 1 Diagram of an Oblique Elliptical Crack Front

The substantial empbhasis is directed toward validating the 3D VCCT when used in
conjunction with a finite element model that has a non orthogonal crack plane mesh.
An non orthogonal mesh has elements that are not normal to adjacent elements. To
appreciate the flexibility and utility of the 3D VCCT, a brief discussion of the other
finite element based methods for determining K’s is found in Chapter 2. Theoretical
and application considerations of the 3D VCCT are given in Chapter 1. Chapter 4
contains the results of the ten verification studies completed. Application of the

3D VCCT to obtain K’s for two new crack geometries is presented in Chapter 5, with
the conclusion found in the final chapter, Chapter 6.

2. Background

To determine the closed form stress intensity factor solutions for a cracked three
dimensional finite body is a difficult, and most often an intractable task; therefore
alternate methods have been developed. The most prevalent for engineering
applications is the finite element method (FEM). In the FEM, the K’s are determined
either by direct or indirect methods. In the direct method, the stress intensity is
calculated directly from the finite element solution. Three classes of elements are
available in the direct approach; conventional, singularity, and hybrid. Due to the
difficulties in incorporating hybrid elements in a general purpose finite element
program, these elements have not been widely used; therefore, only the conventional
and singularity elements are discussed here.” For a thorough examination on the use
of hybrid elements in obtaining fracture parameters via FEA, see reference [5]. If
conventional elements are used, the stress intensity factor is estimated by evaluating

g
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the behavior of the stresses, forces, or displacements in the vicinity of the crack tip,
which are known from the finite element solution, and then extrapolating back to the
crack tip. The force and crack opening displacement methods are the most prevalent
implementations of this extrapolation technique. When singularity elements are used,
the stress intensity factor is calculated di'rectly. The indirect methods use nodal
information, displacements and forces, to obtain the energy release rate which is then
used to calculate K. Examples of indirect methods are the virtual crack closure
technique, equivalent domain integral (three dimerisional extension of the J-integral),
and the stiffness derivative method. In addition, de Koning and Lof extended the
stiffness derivative approach by making use of the stress intensity rates for a given
crack extension.

Note, in a finite element model the non-singular strain terms can only approximately
describe the singularity at the crack tip resulting in an underestimation of the stress
intensity factor. Further, it should be noted that K values calculated from the singular
part of the interpolation functions of such elements are also inaccurate because of the
presence of non zero nonsingular terms in their interpolation functions.® Therefore,
the use of singularity elements in the direct or indirect methods is beneficial.” The
method used in this investigation is the three dimensional virtual crack closure
technique which is discussed in detail in Chapter 3 , however, the various other
methods mentioned above are briefly discussed in the following sections.

2.1 Direct Methods

In a displacement finite element formulation, the fundamental result of solving the
system of equations are the nodal displacements from which the nodal forces, stresses,
and strains are calculated. The direct method of obtaining the stress intensity factor
via FEA is attractive by making use of the standard output from a general purpose
finite element program. However, in commercial finite element packages, evaluation
of fracture parameters, K, may not be implemented; therefore, significant post
processing of the standard output must be completed in order to extract K. The two
direct methods reviewed in the proceeding sections are the crack opening
displacement and force methods with a more comprehensive discussion of direct
methods available in reference [5].

2.1.1 Crack Opening Displacement Method

Using the crack opening displacements (COD), as seen in Figure 2, from finite
element analyses (FEA), the stress intensity factor is derived from the following plane
strain relation.?

8K, | r 2 %
COD =2v=—L |—(1-v?}+0[ r? | +-- (1)
E \2=n

i s 1 1
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where
; = Mode I Stress Intensity Factor
Modulus of Elasticity
Normal distance from crack front to displacement node
= Poisson’s ratio

y 'y

<'-1m7;:
1]

v

T
cop — r

Figure 2 Crack Opening Displacement

Upon solution of the finite element model (FEM), all integration point values are
known, e.g.; displacements, forces, strains, and stresses. Then Eqn. (1) is rearranged
in the form, :

By K +Ar+zK +Ar )

5%4(1 -v?)

where K| is as defined previously and A, is an unknown constant. By substituting the
COD at a given r location for several locations in the crack wake normal to the crack
front as shown in Figure 3, K, and A, can be determined by a least squares linear
regression.® The singular portion of the crack opening stresses, o, in the crack
plane vary with 1/vr for small values of r; therefore, care must be taken in choosing
the maximum r. To better represent this variation, quadratic not linear elements
should be used near the crack tip. In addition, since the constants are evaluated at
nodes j, K| is not explicitly calculated, but must be extrapolated back to the crack tip
from the values at nodes j. By definition of distance from the crack front, r, the COD
method is not easily implemented with non orthogonal meshes. Classification of a
mesh as being orthogonal or non orthogonal depends on the orientation of the
elements adjacent to the crack front on the crack plane. The difference between the
two mesh types is quite evident as seen in Figure 4 where the elements surrounding
the crack front in Figure 4A have sides normal and parallel to the crack front;
conversely, in Figure 4B, orientation of the element sides is arbitrary. At a given
location along the crack front for which K is desired, the displacements at several
distances, r, normal to the crack front on the crack surface are needed; therefore, if no
nodes are located at r locations, the displacements must be interpolated from those
displacements at neighboring nodes.

10




Crack Surface

Figure 3 Nodal Displacements on y = 0 Plane at the Interface Between

Layersiand i+l ‘
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Figure 4 A. Orthogonal Mesh, B. Non Orthogonal Mesh

2.1.2 Force Method

The force method offers more generality in that unlike the COD method does not
require an a priori assumption of plane stress or plane strain.” Similar to the COD
method, if singularity elements are used the 1/r stress singularity is obtained by
placing the singularity elements on the crack front and K is then calculated directly.
Even though K can be calculated directly from the singularity elements not all
singularity elements are formulated with this capability, the following outlines an
extrapolation procedure to evaluate K when using singular or non singular elements.

11
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Assuming a two dimensional stress state is valid along every infinitesimal portion of
the crack front, the normal stress perpendicular to the crack front is written as

K,

o, = fy + A,r% + Azr% +:ee 3)

where K, and A, are as defined in the COD method.” The total force normal to the
crack plane, over an area bounded by z, <z < z, and 0 < r <r, can be represented as

237p

F, = [ [o,drdz )

z

By substitution of Eqn. (3) in Eqn. (4), the total force is approximated as,

)
F =—L2r,(z,-2)+A(2,-2)

The nodal forces in the region enclosed by ABCD, shown in Figure 5, are known
from the FEA and are used with Eqn. (5) to solve for K, and A, using a least squares
linear regression. In other words, a node in the region ABCD is located a distance r
from the crack front with a force normal to the crack plane, F ;» which are substituted
into Eqn. (5) resulting in a an equation in terms of K, and A,. Just as in the COD
method, K is not explicitly calculated, but extrapolated from the values calculated at
nodes j; therefore, Eqn. (5) is applied at several nodes in close proximity to the crack
front to increase the accuracy of the linear regression and extrapolation.

Through numerical experimentation, Raju and Newman have found consistent K
values when Eqn. (5) is used for five forces and the maximum value of ry, is less
than a/10 where a is the crack depth of a semi-elliptical crack or crack length for a
straight crack.” Similar to the displacements used in the COD method, the nodal
forces used in calculating K must come from nodes normal to the crack front. This
condition restricts use of non orthogonal meshes for K calculations with this method.

2.2 Indirect Methods

In general, the indirect methods determine the stress intensity factor from the elastic
energy release rate. The elastic energy release rate can be obtained by determining the
changes in compliance, stiffness, or energy available for crack growth during a given
crack extension; in addition, the J-integral can also be used since J is equal to the

12
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Crack Surface

Figure 5 Nodal Forces on y = 0 Plane at the Interface Between Layers i and i+1

elastic energy release rate for linear elastic behavior. Due to additional post
processing of displacement data required by the compliance method, it has not
received wide spread use and is not discussed here.™'*!" The stiffness derivative
method, a variation of the stiffness derivative method developed by de Koning and
Lof, and the J-integral are briefly discussed.

2.2.1 Stiffness Derivative Method

The stiffness derivative method independently developed by Parks and Hellen obtains
K by calculating the change in the element stiffness matrices at the crack tip.'*"* Ina
finite element solution, the potential energy is expressed as

1

P= 1 {ul [K]{u} - " 15) ©

where
{u} = Nodal displacement vector
[K] = Global stiffness matrix
{f} = Prescribed nodal forces

13



The strain energy release rate is obtained by differentiating the potential energy with
respect to the crack length which yields

& g - ey Loy Ly )

where the first term on the right hand side of Eqn. (7) is exactly zero by the finite
element solution.” The strain energy release rate is now represented by

2Ly -l ®

oo 2 oc

The partial derivative of the global stiffness matrix with respect to the crack length
represents the change in the former per unit crack advance. In application, the crack
advance is provided by moving the crack tip nodes an amount specified by the
analyst. By further ignoring body forces and crack face loadings resulting in loading
only by remote surface tractions, Eqn. (8) reduces to

P _ LKl | ©)

dc 2 oc

Eqgn. (9) is the fundamental relation used by Parks and Hellen to introduce their
technique. To implement the differential stiffness method, the global stiffness matrix
is written in terms of the element stiffness matrices. In their development, Parks and
Hellen prove only the elements on the crack front contribute to the change in the
global stiffness matrix thereby greatly simplifying evaluation of Eqn. (9).
Unfortunately, wide spread use of this technique remains limited due to the
complexity of implementation into a general purpose finite element code. For further
information on the development, application, and accuracy of the derivative stiffness
method, see references [12] - [14].

2.2.2 Extension of the Stiffness Derivative Method

Stress intensity variations along three dimensional crack fronts have been calculated
by de Koning and Lof using the stiffness derivative method to obtain stress intensity
rates along the crack front." Their formulation is driven by the desire to obtain stress
intensity factors for numerous crack lengths from one finite element analysis. From
known analytical solutions, the dependency of the stress intensity distribution on the
crack size and shape parameters for a wide range of crack sizes can be approximated
by the following linear relation."

14




KA=K9+2K—i—AaA (10)
] i a ]
a;

where

K; = Stress intensity factor ata given position along the reference
crack front

oK?

1

Oa ;

Aa; = Crack size increment

= Stress intensity rates

The variation of the crack front in the finite element model is done by shifting the
corner nodes of the crack front elements to obtain the new crack front shape and size.
The direction of the shift is normal to the reference crack front."”” The key to using
this method is accurately calculating the stress intensity rates which can be derived
from the displacement field in the vicinity of the crack front given by the following
plane strain relation.

viE 2n -
K, =m " (11)

where
v, = One half the crack opening displacement
r; = Distance to the crack front

Both v, and r; are measured in an intersection perpendicular to the crack front at the
corner node location, i. Then the stress intensity rate is obtained from Eqn. (11) by

oK, = E > Z_RQI_ _ (12)
0a, 4(1—0) I, Oa,

K, _K v 13
Oa; v, 0Oa;

As the crack front nodes shift, the distance r, is not affected since all the nodes in an
intersection normal to the crack front are assumed to shift the same amount. In
Eqn. (13) at node i, the crack opening displacements, v,, are known from the finite
element solution and the stress intensity factor, K;, can be obtained using standard
procedures like those mentioned previously. The second term in Eqn. (13) is
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generated using a stiffness derivative method similar to the one described previously.
From the displacement equilibrium equation,

Mg By, (14)
aaj aaj
where

S;!= Inverse of the stiffness matrix

The first term inside the brackets is available from the Choleski decomposition of the
system matrix which is calculated during the normal finite element solution
procedure.” From this straight forward procedure, the stress intensity rates can then
be calculated without a considerable increase in computational effort.

The main benefit of this method is the ability to accurately extrapolate numerous
stress intensity factors from one finite element analysis. The procedure outlined
above is readily applicable to three dimensional cracks, for a detailed description see
reference [15]. De Koning and Lof showed that with a relatively coarse mesh
extrapolated K’s were within 2% of the closed form solution for a through crack in an
infinite plate with 31% crack growth with respect to the reference crack length. In a
three dimensional analysis a penny shaped central crack in a prismatic rectangular bar
subject to remote tension was extended to an ellipse with the K’s extrapolated using
Eqgn. (10). The accuracy was within 2% of a new three dimensional FEA for the exact
elliptical crack front. The extension of the penny crack to the ellipse represents 17%
crack growth with respect to the reference crack length.

2.2.3 The J-Integral

Traditionally, the J-integral is of interest for those crack configurations where the
plasticity effects are not negligible. In this case, the elastic strain energy release rate,
G, being based on the elastic stress field is inadequate in describing the energy release
rate. The J-integral can then be used to determine the energy release rate. In trying to
avoid solution of the complex, detailed boundary value problem associated with strain
concentration fields near cracks, Rice identified the J-integral (a line integral) which
has the same value for all paths surrounding the tip of a notch in a two dimensional
strain field.'*"” As defined along an arbitrary contour, I, around the crack tip, see
Figure 6, the J-integral is represented by,

J= I[Wdy—T%: s (15)

r
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where
W = Strain energy density per unit volume
T = Traction vector acting along outward normal to I’
u = Displacement vector in the x-direction
ds = Arc lengthon I

Figure 6 Arbitrary Contour Around the Crack Tip Used in J-Integral
For a linear elastic material, the J-integral is equal to the elastic energy release rate,
I=G ' (16)

Now the J:integral can be related to the stress intensity factor in view of Irwin’s
assertion that the energy lost in extending the crack some distance, Ac, is equal to the
work required to close the crack to its original length. This relation in polar
coordinates with the origin at the crack tip takes the following form.*

Ac

1 _
G =1lim— o (r,0)v(Ac—r,nt)dr 17
= fim e Jou (R0 ) (17
where
c, = stress distribution ahead of crack front
v =displacement distribution behind crack front
r = distance normal to crack front

For opening mode, mode I, substitution of Westergaard’s solution for the stress and
displacements in the vicinity of a crack into Eqn. (17), where E is the modulus of
elasticity, yields
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K; 2 G.E :
G, = —E'—(l —0') = K= 1_'02 plane strain
(18)
K GE
G, = E = K, =GE plane stress

The key to using the J-integral with the finite element method to obtain stress
intensity factors is choosing a contour such that Eqn. (15) can be evaluated using the
element stresses and displacements readily available from a standard finite element
solution. As one might expect, choosing an appropriate contour, surface for three
dimensional analyses, is paramount. Since the J-integral is based on the conservation
of energy, the material volume enclosed by the integration surface must be in
equilibrium, thus maintaining the energy balance. If the surface intersects an element,
equilibrium is not guaranteed; therefore, choosing a path along the element boundaries
is recommended.'” Furthermore, extrapolation errors are avoided if the integration
surface is defined by the integration points of the elements and not the nodes.

By substituting T = on in Eqn. (15), the J-integral is now in terms of the element
stresses and displacements.

J= j(Wn-c%’n)ds ' (19)

r
where © is the element stress tensor with all other quantities as defined in Eqn. (15).

Using the stress and displacements at the integration points for a given element on the
integration surface, the local J-integral is calculated using Eqn. (19). The strain
energy, W, and displacement derivatives, 0u/0x, use the FEA output; whereas, the
normal vector, n, uses the nodal point coordinates. For a numerical procedure to
determine these three quantities see reference [19]. The local J-integral must now be
calculated for those elements which are inside and adjacent to the integration surface.
The final step is to define how the J-integral varies along the integration surface.
Bakker found that a simple average of the J-integral values between adjacent elements
is adequate and that when using quadratic elements with third order gaussian
integration little improvement is seen when using a more elaborate interpolation
method.” For further discussion on evaluating the J-integral in a finite element model
see references [8], [20], [21].

3. Methodology

The principal obstacle inhibiting use of the COD, force, and derivative stiffness
methods is not related to accuracy but application. The COD and force methods
require the elements to be normal to the crack front which restricts the types of crack
geometries that can be solved. For example, creating elements normal to a curved
crack front is time consuming and may not be possible at locations where the crack
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intersects a free surface. Although the derivative stiffness method does not require a
specific element orientation with respect to the crack front, the solution algorithm to
calculated the stress intensity factors is not easily incorporated into a general purpose
finite element code. Therefore, the desire to have a general purpose finite element
code that can also calculate stress intensity factors for complex crack shapes served as
the impetus for the development of the three dimensional Virtual Crack Closure
Technique (3D VCCT). Furthermore, the 3D VCCT can be easily used with any
commercially available finite element analysis software.

3.1 Three Dimensional Virtual Crack Closure Technique

The 3D VCCT used for calculation of stress intensity factors is based on Irwin’s crack
closure integral.”? The formulation for use with FEA is original addressed by Rybicki
and Kanninen for two dimensions and extended to three dimensions by Shivakumar,
Tan and Newman.”* Extending Irwin’s relation, Eqn. (17), to three dimensional

bodies with the intent of application to the finite element method, Shivakumar et al.
proposed®.

Siv A
A o (r, s —1,s)drds 20
Gi 2w A s-.: 5[ ) 20)
where
w; = Element length along crack front
A = Element length on each side and normal to crack front

o, = Stress distribution ahead of crack front

v = Displacement distribution behind crack front
r = Distance normal to crack front
s = Distance along crack front

The limits of integration for s in Eqn. (20) are such that the force contributions of the
elements adjacent to element i are included. Figure 7 illustrates those parameters used
in the calculation of G;. Application of Eqn. (20) presumes a continuous crack front
can be approximated by discrete segments as typically found in FEMs. The right
hand side of Eqn. (20) is equivalent to the product of the nodal forces ahead of the
crack front and the nodal displacements behind the crack front for the i segment with
contributions from elements on each side of the crack front.” Eqn. (20) is in terms of
the i" segment alone and a typical FEA solution gives nodal quantities, force and
displacement contributions from all elements connected to a given node. Asa
consequence, a method of partitioning the nodal forces must be devised. Assuming
the nodal forces are proportional to the element length normal to the crack front, the
strain energy release rate for an eight node element is written as
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G,=——>CFvy, Q1)

1
2w A S
where
w.
—- i
C =
W, +W,
W.
— i
C, =
Wi +Wi,

Note, the forces come from nodes on the crack front, and the displacements from
nodes behind the crack front.

Crack Front

Figure 7 Diagram of Crack Plane Parameters Used in Calculation of the Local Strain
Energy Release Rate

For a more complete discussion and use of this method with higher order elements
see reference [24]. Eqn. (21) is exact for a uniform stress field and approximate for a
non uniform stress field.* As described above, the 3D VCCT appears to require an
orthogonal mesh neighboring the crack front; however, looking more closely at

Eqn. (20) orthogonality is not essential. The local strain energy release rate is the
virtual work required to close the crack over a surface area, w,A, and for application to
FEA is the element area in the crack plane. The normality requirements in Eqn. (20)
is only assumed to simplify the original derivation. The only information related to
element shape is used to correctly partition the nodal forces, which again, have no
normality requirement. Eqns. (17), (21), (22) are used for the full field strain energy
release rate which translates to one FEA to obtain G, G, and G,
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3.2 Finite Element Analysis Methodology

The finite element analysis codes used, ZIP3D and SURF3D, were developed by the
NASA Langley Research Center specifically for obtaining fracture parameters, strain
energy release rate, stress intensity factor, and J-integral, in three dimensional elastic
and elastic-plastic bodies.*” In addition, uncracked bodies may also be analyzed to
obtain stress, strain, and displacement fields. Although incorporation of linear elastic
fracture mechanics analysis capability in commercially available finite element
packages is increasing, they are usually restricted to analysis of two dimensional
bodies or for evaluating only the total strain energy release rates of a three
dimensional body.” The code has only one element type, eight noded isoparametric
solid, and is capable of using a special reduced shear integration scheme for bending
dominant problems. The isoparametric element formulation is used to define the
shape functions which are then used to create the stiffness matrix.?**"**% Linear finite
elements are arbitrarily stiff in the transverse direction if all stresses are included in
the integration, full integration, therefore, by reducing the number points for shear
integration the flexibility of the model is increased. Several researchers have given
more detailed explanations of the applicability and benefits of reduced
integration.26’27’28’29’30’3'

The models can be loaded at the nodes by applying displacements, concentrated loads
or surface tractions which offers great flexibility in combined loading analyses. By
superposition, the contribution of each load case to the three fracture modes, modes I,
I1, and III, is determined. The total mode I stress intensity factor is simply the .
addition of the individual stress intensity factors which can be expressed in equation
form as

b4

Krotar = Z K, (22)
. =1

For example, the stress intensity for a plate subject to remote tension and bending is

obtained by loading the model in tension then bending and extracting the K’s for each

analysis individually. Expanding to the basic definition of stress intensity yields
KioraL = (ZBici]\/E (23)

where B; = Boundary correction factor for each load condition
o, = Remote stress for each load condition
a = Crack length

Although not employed here, crack extension analyses are also possible for cracks
with straight profiles. For additional discussion of the solution methods used in each
code, see references [8] and [25].
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3.3 Finite Element Models

Many commercially available finite element preprocessors have the capability to write
node and element information to simple text files which is the format requirement for
both ZIP3D and SURF3D. All models in this study were generated using
McNeal-Schwendler Corporation MSC/PATRAN version 1.4.2. As can be expected,
much care must be exercised in generating the mesh pattern on and near the crack
plane. As mentioned previously, the COD and force methods require orthogonal
meshes around the crack front to obtain accurate K solutions. No such stipulation is
known for the 3D VCCT; therefore both orthogonal and non orthogonal meshes are
generated. If a particular K solution is desired for one geometry, then maintaining an
orthogonal mesh is quite simple. However, if multiple solutions are obtained from
modifying one mesh, especially in the case of oblique crack fronts, orthogonality
cannot be sustained due to the changing geometric requirements. The orthogonality
requirement is discussed in further detail in the proceeding sections.

Finite element models were generated to develop K solutions for a circular internal
crack embedded in an infinite solid subject to uniform tension, center crack tension
(CCT), single edge crack tension (SECT), semi-elliptical surface crack subject to
tension and bending, diametrically opposed through cracks at a hole subject to tension
and bending, and semi-elliptical crack in post penetration subject to tension and
bending. All models are constructed employing symmetry arguments where
available. Except for the circular internal crack embedded in an infinite solid which is
modeled with one eighth of the plate; in general, only one quarter of a plate, shown in
Figure 8, is required to model the entire plate. Symmetry planes are located at x = 0
and y = 0; in addition, for plane strain analyses, z = 0 and z = t are also fully
constrained. Furthermore, sufficient global dimensions are used to avoid
perturbations of the stress field due to mesh transitions, load application, and
boundary conditions. Therefore, the following ratios are maintained for all models.

>15 —<02 % <05 (24)

The computer requirements for generating the models and K solutions are quite
modest. All preprocessing and model generation/manipulation is done on Sun
Microsystems SPARC 5 and SPARC 20. The finite element solutions are completed
on both a Digital Equipment Corporation DEC 3000/900 single processor workstation
and Cray Research Corporation CRAY YMP eight processor super computer. All of
the software and computers, except the SPARC 5, were provided by

Dr. James C. Newman, Jr. of the NASA Langley Research Center. To give an idea of
the time for an elastic solution of a representative 55,000 degrees of freedom model,
the DEC 3000/900 requires approximately 1900 CPU seconds; whereas the

CRAY YMP only 300. This is simply a qualitative measure since CPU time is
heavily dependent on system configuration, hardware resources, and assigned
processing priorities. With respect to the precision of each machine, both use 64 bit
double precision resulting in 15 significant digits.
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Figure 8 Baseline Finite Element Model

4. Validation Results

In order to evaluate the accuracy of a finite element model with regard to the degree of
discretization error, convergence studies are usually employed. In view of the various
crack geometries of interest, the preprocessing requirements for a convergence study
are prohibitive; therefore, the model results are compared to known stress and stress
intensity solutions. Since mode I stress intensity solutions are of prime interest, the
normal stress in the y-direction, ¢, , are examined thoroughly. For example, for a

model to be used to generate K, solutions for a CCT specimen , a stress analysis
without a crack is performed. By constraining all of the nodes on the crack plane,

y = 0, no perturbations of the stress field in the y-direction are acceptable when away
from the point of load application. For models with a centrally located hole in a plate,
the stress concentration factor at the edge of the hole is an additional parameter used
for model verification. Furthermore, closed form stress intensity solutions when
available are also used for confirmation of model adequacy.
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4.1 Verification of Stress State

For all of the models used to generate K, solutions for through the thickness cracks
whether straight or oblique, the stress analysis with no crack present yielded no
deviation in the stress field from the theoretical solution within the limits of computer
precision.”? For the models with centrally located holes, the stress distribution in the
net section was also used. Figure 9 and Figure 10 illustrate the accuracy of the
present solution. In a displacement formulation finite element analysis, solution of
the system of equations yields the displacements of the unconstrained degrees of
freedom from which the stresses are calculated. Integration of the stiffness matrix
occurs by numerical integration at the Gauss points of the elements . By using the
interpolation (shape) functions, the nodal quantities are then extrapolated. The small
deviation from the theoretical value at the root of the notch, x/r = 1, plotted in
Figure 9 and Figure 10 is due to the extrapolation of the stress from the Gauss points
to the nodes. Recall, the 8 noded isoparametric brick elements being used here are
linear elements; thus extrapolation is also linear.
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Figure 9 Comparison of Theoretical and FEA Normalized Stress in a Finite Width
Plate with a Centrally Located Hole Subject to Uniform Remote Tension

4.2 Circular Internal Crack Embedded in an Infinite Solid Subject to Uniform
Tension

This crack configuration was analyzed first since there is a closed form solution
available for comparison. In addition, the crack does not intersect a free surface
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Figure 10 Comparison of Theoretical and FEA Normalized Stress in a Finite Width
Plate with a Centrally Located Hole Subject to Uniform Biaxial Tension

where the calculation of the strain energy release rate is questionable. The finite
element model created to generate K solutions for this crack geometry has 6032
elements, 7182 nodes and 21,546 degrees of freedom. The crack plane mesh, y =0, is
circular at the crack location to better represent the circular front as shown in

Figure 11. Due to the symmetry of the problem only one eighth of the plate is
modeled and a unit stress is applied at the top of the plate. The mode I stress intensity
factors have been normalized using the following relation.

b= oim 23)

Herein, all stress intensity solutions obtained are assumed to be mode I and plane
strain is assumed when converting strain energy release rates to stress intensity
factors. In addition, for all models having a crack intersect a free surface, plane stress
1s assumed at the free surface to accommodate for the changes in constraint and crack
closure at the free surface. Obviously, a circular internal crack embedded in an
infinite body doesn’t intersect a free surface; therefore, plane strain K’s are calculated
along the entire crack front. Note, commonly K’s for semi-elliptical cracks are
depicted as a function of the parametric angle, ¢, of an ellipse as defined in Figure 12.
Since a circle has the same functional form as an ellipse, the same convention is used.
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Figure 11 FE Mesh Pattern for Internal Circular Crack Embedded in an Infinite Solid

Figure 12 Parametric Angle Definition

Sneddon derived the solution of a circular crack in an infinite solid.*
2
K=>=c+na (26)
T

A comparison of the FEA results and theoretical solution is made in Figure 13. At
first glance, the variation between the FEA results and theoretical solution in the range
0 < 2¢/m £ 0.7 appears extreme. However, the crack plane finite element mesh
explains much of the variation seen in this range of ¢. The somewhat regular
variation indicates large mesh transitions where elements on one side of the crack
front are of different size relative to the adjacent element. Recall, G is calculated from
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nodal forces on the crack front and displacements one element behind the crack front.
At the mesh transitions, the assumption is made that the nodal quantities are
proportional to the element size; therefore in calculating G an average area is used in
addition to scaling the forces as a function of the element size. As will be seen in
results presented later, this variation disappears with a more uniform mesh where the
element size transitions at the crack front are minimized.
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Figure 13 Comparison of Theoretical and FEA Solutions for Circular Internal Crack
Embedded in an Infinite Solid Subject to Uniform Tension

Furthermore, at ¢ = 0, the mesh is not skewed which indicates the element sides on
the crack front are smaller than those at larger ¢ resulting in a better representation of
the circular crack. Also at this location, the crack is furthest away from the
boundaries of the plate mitigating any disruption of the stress field due to the
boundary better representing an infinite solid. The deviation in the two solutions as ¢
approaches maximum is due to extremely skewed elements where the crack front is no
longer circular since enforcing a circular boundary at this location would require
collapsing the brick elements. Figure 11 illustrates the “flattening” of the circular
crack at maximum ¢. In addition, a slight difference in the analyses using full and
reduced integration is also evident which is further indication the mesh is coarse.
Reduced integration eliminates the displacements ultimately used to obtain the
transverse shear stress in the global stiffness matrix of a finite element model. In
doing so, the arbitrary stiffness associated with these shear stress is eliminated making
the model more flexible. For fine mesh finite element models subject to tension only,
full and reduced integration solutions should be coincident. A coarse mesh is
arbitrarily stiff due to a lack of degrees of freedom. By using reduced integration on a
coarse mesh, the stiffness associated with the available degrees of freedom decreases
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making the model more flexible. As mentioned previously, reduced integration is
only beneficial for bending dominant problems.

4.3 Cracks in Three Dimensional Finite Bodies

In attempts to better represent the physics of cracks occurring in operational
structures, developing three dimensional stress intensity solutions has received much
attention. In addition, the advances in computer technology have made possible
solution of problems once too time consuming and cumbersome to generate. Recall
the main goal of this effort is to generate three dimensional solutions for a
semi-elliptical crack which has penetrated the back surface. Since there are limited
solutions in which to compare the present results, verification of the methodology is
done by generating K’s for known solutions. The following five sections present
comparisons to center crack tension (CCT), single edge crack tension (SECT),
semi-elliptical surface crack subject to tension and bending, diametrically opposed
quarter elliptical corner crack at a hole subject to tension and bending, and center
crack tension with a skewed mesh at the crack front.

4.3.1 Center Crack Tension

Three dimensional solutions for this and the following crack geometry, in addition to
several other commonly used fracture specimens, were first generated by Raju and
Newman in 1977 using the finite element method with singularity elements and the
finite element method employing the force method.” The model generated in our
study contained 16112 elements, 18972 nodes, and 56,916 degrees of freedom; nearly
75 times more degrees of freedom than [9]. The increased refinement of the mesh is
done to allow use of one mesh to generate multiple solutions, where in [9] each model
was used for only one solution. Furthermore in [9], the mesh pattern surrounding the
crack front is orthogonal to the crack front. Figure 14 presents the results from [9] and
the present study. Excluding the boundary layer, correlation is good throughout the
thickness of the model. The slight variation at the mid-plane is due to differences in
the model height to width ratio, h/b, which is known to effect the stress distribution in
the model.” This St. Venant’s behavior is accentuated as h/b decreases because the
crack plane becomes closer to the point of load application. This height effect
typically causes variations of one percent or less for h/b ratios in this range.** The
height effect is small in the CCT models and can be ignored for h/b > 2.0. Near the
peak K value in the boundary layer, the 0.67% difference is attributed to the current
model having more degrees of freedom; thereby being more flexible resulting in a
slightly higher K.

4.3.2 Single Edge Crack Tension

In reference [9] and the current study, the same model used for the CCT analysis is
used for the Single Edge Crack Tension by simply removing the u =0 atx =0
boundary conditions which in the CCT analysis are used for creating the symmetry
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Figure 14 Comparison of CCT FEM Mode I Stress Intensity Factor Solutions

plane. A unit stress was applied at y = h and no bending restrictions were enforced.
Figure 15 shows the comparison between [9] and the present results. The 1.1% error
evident through most of the cross section can only be attributed to the increased
degrees of freedom in the present model. The height effect is extremely small in the
SECT models and can be ignored for h/b > 1.5. The results of the two h/b values used
in [9] are coincident.

4.3.3 Semi-Elliptical Surface Crack Subject to Tension and Bending

The model used to generate the circular internal crack embedded in an infinite solid
(penny crack) is also used for the semi-elliptical surface crack subject to tension and
bending by changing the boundary conditions. Recall symmetry boundary conditions
are applied to reduce the size of the model.”**"**** For the penny crack, symmetry
planes lie at x =0, y = 0, and z = 0 with sufficient explicit modeling in each of the
positive axis directions to represent an infinite body. By removing the w =0
constraint at z = 0, the penny crack model now represents a surface crack. The
Newman/Raju solutions have become a standard of comparison for new K solutions
of semi-elliptical cracks.”®> The Newman/Raju results shown in Figure 16 are derived
from the equations presented in [35] not directly from the FEA results. As expected,
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Figure 15 Comparison of SECT FEM Mode I Stress Intensity Factor Solutions

the general trend of the present analysis correlates well to the referenced solution,
since this model is a derivative of the penny crack model, see the penny crack
discussion for the explanation of the variation in solutions. Also recall, the back
surface of the penny crack, and thus for the surface crack also, had to be flattened in
order to prevent the elements from being extremely skewed which can lead to a

singular stiffness matrix in the FEA.

The mode I stress intensity factor for cracks of a semi-elliptical form is normalized in

the following manner.

K
B =
na
6. l—
Q
a 1.65 a
where Q=1+ 1.464(—) for —<10
c c

1.65
Q=1+ 1.464(3) for 2>10
a Cc

30

27)

(28)

L

R




S =
M Tension
rm T O " o -
10le TOw.n .- st ¥ T, -
—~ - -
l\l , g D‘—Cku*~§ -

o |72 Symbols: Present Study o ‘;ﬂ_&c"t"u“~a~.&____ Bending
YaQ Lines: Newman/Raju Ref. {35] e 8o 0 Ut me——
K, . . 8 oop o
"V Q

05 +
/b =02
alc=1.0
a/t =0.2
0.0 4 ; ; ; . ; ; : ;
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9

2¢/w

Figure 16 Comparison of Semi-Elliptical Surface Crack Subject to Tension and
Bending FEM Mode I Stress Intensity Factor Solutions

The flaw shape parameter, Q as given by Eqn. (28), was derived by Rawe as an
approximation to the square of the complete elliptical integral of the second kind
which is required to represent the stress distribution around an elliptical crack in an
infinite body.* Newman and Raju found the maximum error in the stress intensity
factor by using these approximations is about 0.13% for all a/c values.”

Subsequently, Schijve derived a more accurate solution to the complete elliptical
integral, @’

: 2 4
o=-—" [1+2 .2 29)
2(1+m) 4 64
-2
where m = &
a
1+—
C

With Eqn. (29), the normalized mode I stress intensity factor can accurately be
represented by the following equation.

c+na
o
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4.3.4 Diametrically Opposed Through Cracks at a Hole Subject to Remote Biaxial
Tension, Remote Bending, and Uniform Internal Pressure

In searching the literature, few stress intensity solutions exist for this crack geometry
and load conditions. The solutions that are available are two dimensional only, and
the Tweed/Rooke and NASGRO TCO09 solutions are for an infinite plate; thus, finite
width corrections are applied. The Newman and NASGRO TCO09 solutions are nearly
coincident varying by less than 1% for all crack lengths shown in Figure 17. The
Tweed/Rooke solution differs by less than 0.5% for the smallest crack length;
however, the difference increases with crack length to more than 9% for the largest
crack length in Figure 17 when compared to Newman and NASGRO TC09.%*** The
correlation is satisfactory with the Newman and NASGRO TC09 solutions varying by
less than 3.0% on average with the current 3D FEA results except for the smallest
crack length where the mesh refinement in the crack wake of the current study is
insufficient.
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Figure 17 Comparison of Diametrically Opposed Through Cracks at a Hole Subject to
Tension

The biaxial tension, uniform tension applied along all four plate edges, also correlates
well with references [38] and [39] as shown in Figure 18. References [38] and [39]
differ by 3.1% or less for all cracks lengths shown below. The maximum difference
with the current 3D FEA results occurs at the smallest crack length which is again due
to insufficient mesh refinement in the crack wake.
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Figure 18 Comparison of Diametrically Opposed Through Cracks at a Hole Subject
to Uniform Biaxial Tension

Only two solutions for comparison were available for this geometry subject to remote
bending as shown in Figure 19. The linear distribution of K through the thickness for
the 2D solutions is assumed for comparison with the present 3D solution. Good
correlation is seen with the NASGRO TCO09 solution which was derived using
conformal mapping by several authors.**“**"“**} Other than the solution being two
dimensional, it is difficult to discern why the Tweed and Rooke solution is 23% lower
than the present results.*

A uniform internal pressure on bore of the hole only, not on the crack faces, is used
extensively for the rivet loading analyses that are done later; therefore, a validation
analysis is completed. Again, no three dimensional solutions exist, thus the
comparison is with a two dimensional boundary collocation solution shown in

Figure 20. The difference between the present plane strain analysis and reference [38]
varies with the maximum being 3.2%.

By modifying the distribution of the internal pressure, point, cosine and cosine

squared rivet load distributions are obtained when superposed with the remote tension
as will be derived later.
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4.3.5 Through Cracks with an Oblique Elliptical Crack Front Subject to Remote
Tension and Bending

The final verification models were designed to investigate the K variation along a
through crack front since this will be of prime interest in future studies. Miyoshi et al.
are the only researchers who have developed a solution for this geometry and load
condition.”****” They used the boundary element method to generate their solutions
for varying a/t and a/c ratios. The accuracy of these solutions is “undefined.” The
model used for the straight through crack analyses was also used for this configuration
by transforming the mesh to a part elliptical pattern as seen in Figure 21. The newly
skewed mesh does not affect the K solutions as shown in the previous section.

Figure 22 shows the good correlation found for the tension case. The solutions of
references [46] and [47] do not account for the boundary layer effect; whereas, the
present results do show the K drop off at the free surface where ¢ = 0. Little variation
in magnitude of either solution is evident through most of the plate thickness. As the
point of back surface penetration is reached, the ligament between the crack front and
back free surface is at a minimum elevating the stress field resulting in a sharp
increase in K. Two other comparisons of the Miyoshi et al. solution were made
yielding similar results, but are not shown here for brevity.
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Figure 21 Diagram of Through Crack with Oblique Elliptical Crack Front
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The bending solution comparison is shown in Figure 23 for the same crack
configuration as Figure 22.
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Excellent correlation is seen at the free surface which is to be expected since the front
free surface value should be invariant to the solution method. The Miyoshi et al.
results show the transition from positive to negative K’s at 2¢/n = 0.41 (z/t = 0.69),
whereas, the straight through crack subject to bending presented earlier transitioned at
z/t = 0.5. Also note, the linear relationship is maintained until close to back surface
penetration. The current results transition from positive to negative K’s at

2¢/n = 0.375 (z/t = 0.64) and show a stronger dependence on crack shape. A steeper
linear varation is visible through 2¢/n = 0.5, and a more pronounced non linear
gradient is apparent approaching back surface penetration.

b
b1l

Combining the tension and bending results shows the variation in K’s toward the back
surface of the plate is additive, see Figure 24. However, the front surface K’s still
exhibit excellent agreement. Since representing the crack boundary at the back
surface is quite difficult researchers may be forced to use approximations in this area.
The Miyoshi et al. results for the pre-penetrated cracks are simply semi-elliptical
surface cracks for which various solutions are available. By comparing the surface
crack K’s under remote tension and bending obtained by Miyoshi et al. to the
Raju/Newman equations, shown in Figure 25, the dependence of K on the solution
method is evaluated.”® Recall, Miyoshi et al. used the boundary element method and
Raju/Newman used the finite element method. The good agreement in the two
surface crack solutions in Figure 25 indicate, as expected, the solution method has no
effect on the stress intensity factor. Therefore, the differences between the current
work and Miyoshi et al. is possibly due to modeling the crack boundary.

The post penetration bending results of Miyoshi et al. remain in question. Examining
the tabular data in reference [45] for the bending case several trends are evident with
respect to the normalized K; for constant a/c, K increases with increasing a/t for all
values of 2¢/m which is expected since increases in a/t indicate an increase in the crack
area. Furthermore, in the limit as a/t becomes infinite, the crack is no longer oblique
but straight; therefore, the penetrated surface K’s should be of equal magnitude but
opposite sign to the front surface K’s.

4.4 Influence of a Non Orthogonal Finite Element Mesh on Stress Intensity Factors
Calculated Using the 3D VCCT.

Two final investigations are completed to further verify using the 3D VCCT and a non
orthogonal, skewed, finite element mesh. Recall, the force and COD methods require
an orthogonal mesh with respect to the crack front in order to obtain accurate SIF
solutions. The 3D VCCT makes no restrictions. The following two analyses aim to
illustrate the effect of a skewed mesh on K. The first is a straight through crack that
has been arbitrarily skewed, the second, a mesh that may occur in calculating K’s for
part-elliptical through cracks.
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4.4.1 Center Cracked Tension with Skewed Mesh at the Crack Front Subject to
Remote Tension

Using the straight through crack model described above, several orthogonal and
skewed meshes were analyzed to see the effect of the non orthogonal mesh. The mesh
around the crack front was skewed two different ways by translating in the thickness 5
direction (z-direction) only. First, the nodes in the crack wake, one element behind
the crack front, were linearly scaled by increasing the z coordinate by one half the
original z dimension of the particular element. Then the nodes one element ahead of
the crack front were linearly scaled by decreasing the z coordinate by one half the
original z dimension of the particular element. The nodes one element behind, on,
and one element ahead of the crack front now form a chevron as shown in Figure 26

ooy

z Force Nodes

T Displacement Nodes

| Crack Wake __|—

Crack Front

Figure 26 Diagram of Crack Plane of Chevron Skew Mesh with the Force and

Displacement Nodes Used to Calculate K

z Force Nodes

1 Displacement Nodes

¢ —Crack Wake —p—_|

Crack Front
Figure 27 Diagram of Crack Plane of Linear Skew Mesh with the Force and
Displacement Nodes Used to Calculate K
The second method of skewing the mesh uses the same process in the crack wake, but

for the nodes one element ahead of the crack, the nodes are translated by increasing
the z coordinate by one half the original z dimension of the particular element. The
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nodes one element behind, on, and one element ahead of the crack front now form
collinear parallelograms as shown in Figure 27. The analysis results for these two
models are shown in Figure 28.
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Figure 28 Effect of Mesh Pattern on the Mode I Stress Intensity Factor Solution for a
Straight Through Crack Subject to Remote Tension

The small variation present is nearly uniform through the thickness; therefore, the mid
plane K’s, z = t/2, are used for comparison. The difference is 0.14% for the Linear
Skew Mesh and 0.008% for the Chevron Skew Mesh. From a geometric standpoint
having a non orthogonal mesh for a straight through crack with equal element area
behind and in front of the crack front is a difficult task without changing the global
dimensions of the plate being modeled. As a result, for both skewed meshes, the
elements at the boundary, z= 0 and z = t, have different areas than the interior
elements. At the boundary, the unequal area elements are symmetric for the Chevron
Skew Mesh and asymmetric for the Linear Skew Mesh. The 0.14% error for the
Linear Skew Mesh is attributable to the asymmetry of the elements with respect to the
crack front which is a requirement for the 3D VCCT. The 0.008% error for the
Chevron Skew Mesh is due to the proximity of mesh transitions to the crack front
which perturbates the local stress field thereby affecting the strain energy release rate
calculations.

4.4.2 Internal Elliptical Crack Embedded in an Infinite Solid Subject to Remote
Tension

For an elliptical crack front, a non orthogonal (skewed) mesh as shown in Figure 11 is
quite easy to generate and modify. In addition, solution of this problem has been
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addressed by other researchers which is useful for comparisons.*** The purpose of
this analysis was to determine to what extent the elements could be skewed and still
have negligible effect on the K’s. The normalized skew ratio is defined as

90 -

NSR = 31
90 G1)

where a is defined in Figure 29.

Figure 29 Definition of a

The normalized skew ratio for the elements approaching the minor axis of the ellipse
was greater than 0.95 as seen in Figure 30. Skewing the elements any further results in
a numerically unsolvable mesh. In other words, the integration points of the skewed
elements are so close together, zero or negative volumes are calculated for them.
Comparisons with known solutions are made in Figure 31. Even though the mesh is
extremely skewed, the maximum error with respect to the Newman/Raju and Irwin
solutions is 6%. Note, the Newman/Raju and Irwin solutions are coincident. The
skew ratio of 0.95 is viewed as a limiting value.

In view of these present results, orthogonality of the mesh with respect to the crack
front is not required for the 3D VCCT.
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5. Application Results

In the previous chapter the 3D VCCT was shown to provide accurate stress intensity
factors for crack geometries and load conditions commonly found in riveted lap-splice
joints in fuselages of transport aircraft. Now this technique is used to obtain a
qualitative understanding of the influence of varying load conditions and crack
geometries on the stress intensity factor; specifically, the degree of biaxiality,
assumed rivet load distribution, and oblique crack fronts. These qualitative results are
assumed to apply for the through cracks with oblique elliptical crack fronts which are
the main focus of this research effort; however, the results for the latter will be
reported in a future publication.

5.1 Diametrically Opposed Through Cracks at a Hole

Three dimensional finite element models for diametrically opposed through cracks at
a hole in a finite width plate are developed and analyzed. Again, only one quarter of
the plate is modeled due to the available symmetry planes. The only published
solutions for this crack geometry are two dimensional and obtained via conformal
mapping’**** or boundary collocation.*® In addition, referenced solutions are for .
infinite plates with only one crack; therefore, finite width’'*? and Shah®® corrections
are superposed in the literature.

5.1.1 Biaxial Tension

The published solutions, references [38], [39], and[51] for this load case vary less than
1% with respect to one another; therefore, only one solution is presented for
comparison. Figure 32shows the results for six crack lengths loaded by biaxial
tension, biaxiality ratio, B, ranging from 0.0 - 1.0. The largest difference between
reference [39] and the present results occurs for the smallest crack length where [39]
overestimates K by 4.7%. The difference decreases with crack length, for the largest
crack length [39] underestimates K by 2.4%. ‘

Both published and present results show the influence of the biaxiality wanes with
increasing crack length. For small cracks, c/r < 1.0, the K reduction due to biaxiality,
B = 0 compared to B = 1, is approximately 32% which is near the theoretical value of
33% for a crack length approaching zero. Another interesting trend is evident in
Figure 32 when comparing the effect of the biaxiality for small and large cracks. For
the small cracks, K decreases with increasing B; whereas for the larger cracks K
slightly increases for increasing B. The behavior is due to the changing stress field
with increasing c/r as can be seen in Figure 33.
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The crack opening mode stress, ,,, due to the biaxial loading is compressive from the
hole edge to approximately three quarters of a hole radius away from the hole where it
transitions to a tensile stress. The tensile stress beyond one hole radius from the hole
edge result in the higher K values with increasing B seen in Figure 32. One final note
on the effect of the biaxiality, the magnitude of the stresses in Figure 33 illustrates
why the influence of the biaxial stress decreases with crack length.

5.1.2 Pin Loaded Hole

The same finite element model used in the previous section is also used to generate
stress intensity factors due to the rivet loading. One of the fundamental issues to
resolve in this part of the investigation is which load distribution to assume on the
bore of the hole. Several researchers have addressed this question in developing stress
concentration factors, K,’s.”*****°" Three different pin load distributions have been
used in the literature; point, cosine and cosine squared loading. A parametric study
has been accomplished to illustrate the effect of the pin load distribution on K. A
priori, the point load results will be questionable since using point loads in a finite
element model yields poor load introduction. This effect should be magnified for the
smaller crack lengths were the point of load application is in close proximity to the
crack front.

In order to make use of symmetry in a finite element model, the model must be
symmetric with respect to geometry, load conditions, and material properties.
Assuming the material is homogeneous and isotropic, a simple representation of a
lap-splice joint, F in Figure 34, is geometrically symmetric but is not loaded
symmetrically. '

By decomposing F into components P and B, B is now symmetric but P must be
further decomposed to obtain load symmetry. Case P is simply a pin loaded hole
whereby the applied remote tensile stress is reacted entirely by the pin. Figure 35
illustrates the decomposition of P, which leads to:

K, =K, +K, -K, (32)

In Figure 35, K; is equal to K;; therefore Eqn. (32) implies

_ Kg +Kp (33)

45




P=(c, -0,)2bt

ry
[\
(o

P=(c,—0,)2bt

(o, -0,)2bt

Figure 35 Decomposition of Pin Loaded Hole

46

LT L1
P=(o,-0,)2bt P=(0,-0,)2bt
O |- O] D[
P=(c, -0,)2bt P=
2b
, P B D
TTT1[TTT1




Now for general applicability of this solution, it is more convenient to normalize K.
The normalized K for each symmetric part is written as,

Ky =07 nap; (34)

where
o, =0, —0, Remote tensile stress
f; = Boundary correction factor for finite width plate with central
hole loaded by remote tension
and

Kp =G, V1B, (35)

where
© 5, = Bearing stress

B. = Boundary correction factor for finite width plate with central
hole loaded by internal pressure (wedge loading)

Eqgns. (34) and (35) are rewritten in terms of the load.
Ky = — J/rah (36)
B 2bt T .

where
P = o,2bt = (01 - 0'2)2bt

and

P
Kp = E;t"\/;;ﬁmg | 37
where

P = c,,2rt

Now combining Eqns. (33), (36) and (37),

P — P —
. 7taBT +— naBBrg
2

Recall the normalization of K, in general can be written as
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B=

thus, the boundary correction factor for the pin load, B, is expressed as

(587t

Bp = "

(39)

The /b in Eqn. (39) is due to the correction factor for case B being normalized by the
tensile stress and case D by the average bearing stress. Eqn. (39) is the most
convenient form for derivation of K by the finite element method. In practice, for a
1/4 plate model of case P shown in Figure 35, two analyses must be run; one for
remote tension and the other for the pin load.

5.1.2.1 Rivet Loading

Three different rivet load distributions were chosen to evaluate the effect of the rivet
load distribution on K. Traditionally, the rivet load is modeled as a concentrated load
located at the top of the hole, 8 = 0°, but due to recent investigations on the stress
concentration factor of a loaded hole a cosine or cosine squared distribution may be
more appropriate.’**® The effect of the assumed rivet load distribution is quite evident
as seen in Figure 36 in addition to a comparison with reference [39]. The influence of
the rivet load distribution is large for the small cracks and diminishes with increasing
crack length. The cosine distribution gives the highest K for the smallest crack length
due to the proximity of the applied load to the crack tip. This behavior can be easily
explained by the K solution for a through crack in a finite width plate subject to
eccentric concentrated loads on the crack face as shown in Figure 37 and in functional
form by the following equation.

P Jc+x
K, =— 40
"o JreVe—x (40)

As the point of application of load approaches the crack tip, the stress intensity
increases sharply. Even though the magnitude of the applied load for both the cosine
and cosine squared distributions approaches zero at the hole edge, the cosine
distribution has a higher magnitude relative to the cosine squared; thus resulting in an
higher K for the cosine distribution at the smallest crack length. The concentrated
load being applied at the top of the hole, yields the smallest K for the smaller crack
length.
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Figure 37 Effect of Load Location on Normalized K

A similar trend as in previous comparisons to reference [39] is apparent, over

estimation of K for small cracks and very small underestimation of K for large cracks.

Since the majority of the fatigue life occurs during crack nucleation and growth to a

visible crack, using the reference [39] solution is conservative.
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5.1.2.2 Rivet Tilting

In close cooperation with A. U. de’Koning and C. Lof of the National Aerospace
Laboratory of The Netherlands, cursory investigations are completed in an attempt to
understand the effect of rivet tilting on K. The type of load distribution to assume due
to rivet tilting is unknown and could not be found in the open literature. As can be
expected, subtle changes in the assumed load distribution greatly effects the stress
intensity factor. Therefore, this investigation is to be addressed in the future.

5.2 Effect of Oblique Crack Shape on Stress Intensity Factor

From an engineering point of view, accounting for the oblique shape through cracks
with an oblique elliptical crack front is traditionally accomplished by assuming the
oblique crack has a crack front perpendicular to the sheet surface and a crack length
c,, recall definition of ¢, in Figure 21. This approach is undoubtedly conservative for
those applications where the c, crack is visible. For riveted lap joints however, the
visible crack is the penetrated crack, c,, and the c, crack, faying surface crack, length
is unknown without disassembling the joint; an impractical solution for transport
aircraft fuselage skin. Using the same model as in the previous section, a sensitive
study is accomplished to determine the effect of the oblique shape. In Figure 39, a
comparison is made between an oblique crack with an elliptical crack front

(a/c, = 0.56) and two through cracks with straight crack fronts (c = ¢, and ¢ = c,,
respectively). As seen in Figure 38, an oblique crack subject to remote tension can
almost be regarded as a straight through crack when comparing the results of the 3D
FEMs. Failure is dictated by the ¢, crack length; therefore, the higher K’s at the
penetrated surface are of no consequence. If 3D solutions are not available, using the
secant approximation, Eqn. (41), with c, yields an overestimation of K by 5% just
inside the free surface, ignoring the boundary layer.

K, = c/nc ’sec(%} @40

In the context of lap joints, the free surface is considered to be the surface where c, is
measured. Using Eqn. (41) with c, results in an underestimation of K by 3.5%.

For remote tension, the higher K’s at the penetrated surface supports the catch-up
behavior reported by Grandt et al. However, for the same configuration as Figure 38
when remote bending is applied catch-up of the penetrated crack is not likely as seen
by Figure 39. The most striking result here is at the free surface where the 2D
solution using ¢, = ¢ = 3.125 underestimates K by 17.5% when subject to both tension
and bending. Recall, the tension only analysis showed a 5% overestimation of K for
this case. The 2D bending solution appears to be inadequate. The 3D FEM solution
for the straight cracks both overestimate K at the free surface and could therefore be
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used to approximate the oblique crack without the extra resources required to model
the latter.

4.0

o z ]

ob=05tb =019 i—C rni

o B

30 cb=036,tb =0.19 . c i
K, e
= r S i
) ol N
/e, =056,c/b=05 — & — '
20. b =0.19,c/b=0.36 * b

—a— Present Study 3D: ¢l =3.125, 2 =2.268
—o— Present Study 3D ¢=3.125
—o— Present Study 3D. ¢ =2.268
= «==NASGRO TO09 Ref. [39): c =cl =3.125
« « = NASGRO TQU9 Ref. [39]): ¢ =¢2=2.268

0.0 + : T + : + +
0.0 0.1 0.2 03 04 05 06 0.7 08 09 10
Thickness Station, 2/t

Figure 38 Sensitivity of K to Crack Shape Subject to Remote Tension

6. Conclusions

It has been shown that the 3D virtual crack closure technique (3D VCCT) can be used
with a non orthogonal finite element mesh for the calculation of stress intensity
factors. By generating one sufficiently fine finite element mesh, the 3D VCCT can be
used to generate multiple stress intensity solutions of cracks with complex shapes by
simply manipulating the crack plane geometry.

K solution results were calculated with 3D VCCT for crack configurations and
loading cases for which results were available in the literature. The configurations
covered were circular internal crack embedded in an infinite solid subject to uniform
tension, center crack tension, single edge crack tension, diametrically opposed
through cracks at a hole subject to tension, bending, biaxial tension, and pin loading,
semi-elliptical surface crack subject to tension and bending, and through cracks with
an oblique elliptical crack front subject to tension and bending. In general the
agreement was within 5% when comparing to 2D analytical solutions and 1% when
comparing to published 3D finite element solutions.
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Figure 39 Sensitivity of K to Crack Shape Subject to Remote Tension and Bending

The effect of biaxial tensile loading on K for a finite width plate with diametrically
opposed through cracks at a hole varies with crack length. For small cracks

s.v.

(c/t < 1.0), increasing the biaxiality ratio decreases K; whereas for largér cracks RREE

(c/r21.0),1it locally increases K to a very small extent.

The assumed rivet load distribution on the bore of the rivet hole greatly influences K
for small cracks, but has no measurable effect for large cracks. To remain
conservative, a cosine squared distribution should be assumed unless the rivet load
distribution is known.

K solutions were calculated for through cracks with an oblique elliptical crack front
subject to tension and bending. For the tension case, the oblique crack can be
approximated as a straight crack having a crack front perpendicular to the sheet
surface and crack length equal to the largest crack length of the oblique crack which
has penetrated a free surface. Also, the high K’s on the penetrated surface would
promote catch-up where the penetrated crack grows rapidly to the same length as the
free surface crack. For the bending case, however, the oblique crack cannot be
approximated with a straight crack. No catch-up behavior seems possible since the
K’s for the penetrated surface crack are lower than those of the faying surface.

A collaborative effort with the National Aerospace Laboratory of The Netherlands is

underway to investigate the effect of rivet interference as a function of the rivet
squeeze force and rivet tilting on the stress intensity factor.
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