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Carbon dioxide injected in an aquifer rises quickly to the top of the reservoir and
forms a gas cap from where it diffuses into the underlying water layer. Transfer
of the CO2 to the aqueous phase below is enhanced due to the high density of the
carbon dioxide containing aqueous phase. This paper investigates the behavior of
the diffusive interface in an enclosed space in which initially the upper part is filled
with pure carbon dioxide and the lower part with liquid. Our analysis differs from
a conventional analysis as we take the movement of the diffusive interface due to
mass transfer and the composition dependent viscosity in the aqueous phase into
account. The same formalism can also be used to describe the situation when an
oil layer is underlying the gas cap. Therefore we prefer to call the lower phase the
liquid phase. In this paper we include these two effects into the stability analysis
of a diffusive interface between CO2 and a liquid in the gravity field. We iden-
tify the relevant bifurcation parameter as q = εRa, where ε is the width of the
interface. This implies the (well known) scaling of the critical time ∼Ra−2 and wave-
length ∼Ra−1(The critical time tc and critical wavelength kc are defined as follows:
σ (k) ≤ 0 ∀t ≤ tc; equality only holds for t = tc and k = kc). Inclusion of the interface
upward movement leads to earlier destabilization of the system. Increasing viscosity
for increasing CO2 concentration stabilizes the system. The theoretical results are
compared to bulk flow visual experiments using the Schlieren technique to follow
finger development in aquifer sequestration of CO2. In the appendix, we include a
detailed derivation of the dispersion relation σ (k) in the Hele-Shaw case [C. T. Tan
and G. M. Homsy, Phys. Fluids 29, 3549–3556 (1986)] which is nowhere explicitly
given. C© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4813072]

I. INTRODUCTION

A. Carbon dioxide sequestration

Efficient storage of carbon dioxide (CO2) in aquifers requires dissolution in the aqueous phase.
Indeed the volume available for gaseous CO2 is less than for dissolved CO2 and the virtual density of
dissolved CO2 is around 1330 kg/m3 (Ref. 1) leading to more storage space than in the supercritical
state (<600 kg/m3).

When CO2 is injected into an aquifer the competition between viscous, capillary, and buoyancy
forces determines the flow pattern. Due to buoyancy forces, CO2 migrates upwards and is trapped
under the cap rock due to the capillary forces.2 An interface between a CO2-rich phase and brine
exists. Then CO2 dissolves into brine by molecular diffusion. The transition zone between the water at
the gas-water interface and water without dissolved CO2 is called the diffusive interface. Dissolution
of CO2 in brine increases the density of the brine phase.1 When a brine column is overlain by CO2 in
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FIG. 1. Transfer and the role of interface movement.

a homogeneous aquifer3, 4 the development of gravitationally unstable fingers greatly accelerates the
dissolution rate thus making solubility trapping an important mechanism for long-term sequestration
of CO2 in aquifers,5, 6 see Fig. 1. The purpose of the paper is to understand mixing of CO2 with
underlying brine for sequestration in aquifers or underlying oil for solvent based enhanced oil
recovery. The underlying mechanism in each of these applications is that gaseous CO2 rises quickly
to the top of the reservoir but due to capillary effects it gets trapped below low permeable layers.
Initially the interface moves downward until the gas pressure builds up sufficiently to overcome the
capillary forces and the CO2 bank moves upward and reaches the top layer. At the interface, mixing
in the liquid region is influenced by natural convection effects that arise due to the fact that the liquid
with CO2 dissolved in it has a higher density than the liquid without CO2. Consequently a mixing
transfer occurs at the interface, which is moving initially downward and subsequently upward. The
mixing rate is also influenced by the movement of the interface and the effect of CO2 on the viscosity.
In convection dominated systems, the instability is determined by the relation M > G + 1, where M
is the mobility ratio, G is the gravity number. A system is stabilized in vertically upward movement
by a higher viscosity and higher density displacing fluid. However in diffusion dominated systems,
the stability, with and without interface movement, must be analyzed.

Several papers7–9 have described the conditions of instability of the CO2-water interface and
onset of convective currents in porous media. Traditionally all models neglect viscosity variations and
also the interface movement, while some theories (supported by experiments) suggest that interface
cannot be assumed fixed.10, 11 This paper extends the current numerical-linear-stability analyses by
considering the interface movement. We also consider viscosity effects, because the dissolution of
CO2 changes the viscosity of the liquid phase. There is an adverse relationship between the viscosity
of an oleic phase and its CO2 content, while the viscosity of the aqueous phase increases when its
CO2 content increases.

B. Previous work on the stability of diffusive boundary layers

The idea of a (conventional) stability analysis is as follows. A zeroth order state u0(z), e.g., the
concentration is found; this state is perturbed by u1(x, y, z, t), where u1 represents, e.g., the noise.
The idea is to decompose the perturbation in Fourier components u1 = f(z)ei(kx x+ky y)+σ t and to look
for the fastest growing mode with growth rate σ (k), since this mode will determine the stability of
the system. In the case of a diffusive boundary layer however this method is not applicable, because
the basic state depends on t. Depending on the specific boundary conditions, we have either

c0
f ∼ sin(nπ z)e−n2π2t or c0

i ∼ e−z2/(4t),

where c0
f is the solution of the diffusion equation in a finite domain, whereas c0

i is the solution in an
infinite domain. This means that standard linear stability analysis is not applicable to this problem.
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A few methods have been used to address this problem, from which two of them will be discussed in
more detail. The first method is the so called quasi steady state approximation (QSSA).12, 13 The base
state is considered “frozen in” at a certain time t0 and the usual linear stability analysis is performed,
where t0 enters the calculation as a parameter. Such an approach is only valid if the perturbations
grow on a faster timescale than the steady state.

Another approach is called amplification theory (AT).9, 14, 15 The idea is to expand the perturbed
quantities in the streamwise direction in the eigenfunctions c0

f , i.e.,

u1 ∼ an(t) sin(nπ z).

Subsequently we multiply the resulting equations by sin (mπz) and integrate with respect to z to
obtain a coupled set of ordinary differential equations (ODE’s) for an. Those ODE’s are solved
numerically. One has to be careful because this problem is not self-adjoint.14 It is not clear how to
discriminate between stability and instability in this case. Usually the quantity

�(t) =
∫

c2(t, z)dz/
∫

c2(0, z)dz (1)

is defined to measure (in)stability. Some authors define � = 1000, others �̇ = 0 as the criterium
for stability. This method will tend to overestimate critical times compared to the “normal” stability
analysis, which already signals instability if only one mode is unstable. A more extensive overview
of the different methods can be found in Emerging Topics in Heat and Mass Transfer in Porous
Media by Rees et al.16

The diffusive instability is driven by a density gradient, which can be due to either temperature
difference or a concentration gradient. We will not discriminate between those two here, since the
resulting equations are basically the same. We will discuss two classes of problems. In Sec. I B 1,
a few Hele-Shaw problems are discussed: a fluid with high density/viscosity invades a fluid with
lower density/viscosity.

In Sec. I B 2 we will discuss our system. A boundary layer of finite width is destabilized due
to gravitational (and viscous) effects. The width of the diffusive layer Wdi f is much smaller than
the height H of the reservoir: destabilization takes place long before the bottom of the reservoir is
reached: Wdi f � H (or in dimensionless form ε = Wdi f

H � 1). Physically this means that the width
of the boundary layer is finite instead of infinite; mathematically this results in boundary conditions at
z = 0 instead of z = −∞, which is the case for the Hele-Shaw problem. Although the systems may
seem similar, analysis will reveal some crucial differences.

1. Hele-Shaw problem

In this problem a liquid with high concentration invades a liquid with low concentration with
a certain velocity U. The stability of the diffusive boundary layer between the two states is studied
using the QSSA.12, 13, 17 It is possible to find an analytical expression for the dispersion relation
σ (k) in the case of a sharp interface. This dispersion relation is given by several authors.12, 13, 17

Numerically the dispersion relation was studied in the latter papers for t0 > 0. To the best of
our knowledge a detailed derivation of this dispersion relation does not exist in the literature. We
rederived the analytical expression for the dispersion relation, which can be found in Appendix B.
It is not possible to find similar analytical expressions in our case. This is due to the fact that the
boundary conditions are moved to zero instead of minus infinity.

Darcy’s law has to be replaced by Stokes’ equation whenever the assumption λ � d, where d
denotes the distance between the two parallel plates. In this case, Darcy’s law is often replaced by
the Brinkman equation:18

∇ p = −μ

k
v + μ′�v, (2)

which interpolates between Dacry’s law and the Navier-Stokes equations without inertial terms,
where the last term on the RHS of Eq. (2) is called the Brinkman correction. In general the Brinkman
correction is a nonlocal operator of the gap-averaged velocity.19 In the long-wave limit, this correction
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can be simplified and effectively a factor of 6
5 has to be added to the last term of Eq. (2). This model

was analyzed in Ref. 20 and 21, where λ ∼ 1
Ra was found whenever λ � d and λ ∼ d as λ � d. A

good comparison to both numerical and experimental results was found.
In Ref. 22, the influence of the velocity U on the diffusion coefficient was studied. An analytic

expression for the dispersion relation was found in terms of a parameter η which depends (among
others) on R (see Eq. (19)). Whenever η passes a certain value, the dispersion relation exhibits
a strong change (large wavenumber are no longer stable), which was verified experimentally in
Ref. 23.

In Ref. 24, the linear stability predictions of the Navier-Stokes-Darcy (NSD)equation are com-
pared to three dimensional lattice Bhatnagar-Gross-Krook (BGK) simulations. A characteristic
length L M RT = ( 2k0 H

ϕRa )1/3 is introduced (the miscible Rayleigh Taylor length); the Darcy model for
the Hele-Shaw cell is valid whenever the thickness of the cell h � L, the unbounded geometry case
is obtained in the opposite limit h � L. The NSD-approach recovers both limits and also gives a
good approximation in the intermediate range of cell thicknesses.

We have to be careful when we compare our results to the Hele-Shaw problem. The width of the
boundary layer turns out to be the important parameter, which means that the aforementioned authors
analyze a system, which is intrinsically physically different. One of the problems encountered is the
absence of the separation of timescales, which is necessary for the justification of the approach. This
means that one has to be careful when applying the QSSA to this particular problem.

Another interesting difference between the Hele-Shaw problem and the (semi)-infinite system
is the behavior of the dispersion relation for small wavenumbers. In the Hele-Shaw case, the low
wavenumbers are always unstable and the instability sets in for small k (i.e., long wavelength). In
the (semi-)infinite system however (see Sec. I B 2) and references therein) the instability sets in at
some finite (nonzero) wavenumber kc, which means that the destabilization takes place at a finite
wavelength.

2. Finite or semi-infinite systems

In the case of a finite or semi-infinite system, a density gradient is created by either heating the
system from below or by creating a larger concentration on top of the liquid. In both cases a small
fluid layer with higher density is formed on top; the stability of this layer is studied. Elder25 observed
that the scale of the flow is dominated by ε, the width of the diffusive boundary layer. Looking at the
scales of the equations tc ∼ ε2 and λc ∼ ε were conjectured and q = εRa as a critical parameter was
observed. Rigorous analysis, however, “was left to the analysts.” This analysis was performed by
Foster26 using the AT and varying the criterion described by Eq. (1). A band of critical wavelengths
and the critical time were found as function of the Rayleigh number. This analysis was compared
by Gresho and Sani27 to the QSSA. However both use the eigenfunctions sin (nπz), which are not
suitable to describe c0

f if ε � 1. Moreover Gresho and Sani27 use those eigenfunctions on top of
the QSSA to compare both methods and find different results. It is incorrect to discard the QSSA on
the basis of these findings. It is indeed true that the base state is changing fast, however, as we will
show, the perturbations are changing even faster. The same AT method was used by Caltagirone15

with a different criterion for instability: the temperature instead of the velocity in Eq. (1). Scalings
for critical time and wavenumber were found and stability was studied using the energy method.
The same analysis is part of Xu et al.9 in the context of CO2 sequestration. They find the correct
scaling relationships tc = C1Ra−2 and λc = C2Ra−1. Solving the equations numerically, varying Ra
and fitting their results they find C1 = 75 and C2 = 96.

The eigenfunctions for a finite system were replaced by the eigenfunctions of the diffusion
operator in a semi-infinite domain in Riaz et al.,7 which is preferable, since the domain is, after a
proper rescaling, quasi semi-infinite. However only the first eigenmode is taken into account. Solving
the resulting problem numerically for different Rayleigh numbers they observe tc = 146 Ra−2 (notice
the different rescaling of time in their paper) and λc = 90Ra−1.

A similar approach was taken by Ennis-King et al.8 who (apart from varying the permeability)
also established tc = 75Ra−2 and λc = 95Ra−1, which agrees with the results of Xu et al.9
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A different approach was taken by Kim et al.28, 29 who use propagation theory. Rescalings at
the boundary layer are conjectured and the correct scalings of the critical wavelengths and times are
found. This approach is close to the method used in this paper.

In this paper we are interested in the stability of the interface for ε � 1, which means that
our base state behaves like c0

i . The base state c0
i ∼ e−η2

, η = z√
t

and is truncated at η = b, where
b = 10 is chosen in the numerical examples. This means that the CO2 has advanced until η = b (and
not further), i.e., contributions ∼e−100 are neglected. Since η = z√

t
this yields a relation between the

width of the interface ε and the time needed to reach this width ε,

b = ε√
t0

⇒ t0 = ε2

b2
. (3)

This means that we can either fix the width of the interface ε or the time of interest t0.
We will use the QSSA to study the stability of perturbations of the base state. Such an approach is

only valid whenever there is a clear separation in timescales between the base state and the perturbed
state. It is noted by many authors that the base state changes fast for small ε: Differentiating
Eq. (3) yields dε

dt = b2

2ε
∼ 1

ε
. We will show however that the convective instability sets in even faster:

σ ∼ 1
ε2 . This means that a clear separation of scales is achieved in this case, which justifies the

QSSA. In principle this problem could be solved using a shooting method in the whole domain. This
is problematic, since the base state c0

i changes fast in (0, ε) and vanishes if z > ε. We prefer to split
the domain into two regions: Region I (where c0 �= 0) and Region II (where c0 is effectively zero).
We can solve the problem analytically in Region II, which leads to an effective boundary condition
in Region I. We use a shooting method to solve the problem in Region I. The analysis identifies the
bifurcation parameter as

q = εRa.

This is in fact the Rayleigh number with the width of the interface as a typical lengthscale, as
observed by Elder.25 Then the previously observed scalings follow:

tc ∼ Ra−2, kc ∼ Ra.

Notice that the (microscopic) parameter q is a more logical bifurcation parameter than Ra, because
Ra is a macroscopic parameter. It uses the entire height of the system as the characteristic length
whereas q uses the width of the interface as the characteristic length. A similar technique is used in
Refs. 30 and 31.

Remark: We use (partially) the same method as Kim,29 but they use a few conjectures, which
follow naturally in our case.

The paper is organized as follows. In Sec. II the physical model is formulated and the dimen-
sionless form of the governing equations is presented. The equations for the base state in the presence
of a moving interface is solved, the linear problem in the QSSA is presented. The analysis in Region
II is performed in Sec. III, which yields an effective boundary condition for Region I. This leads
to a set of linear differential equations, which have to be solved numerically. The numerical results
are given in Sec. IV and compared to the experimental results in Sec. V. We end the paper with
concluding remarks.

II. PHYSICAL MODEL

A. Formulation

We consider a homogeneous and isotropic porous medium saturated with a fluid with a height
H and length L. The porosity of the porous medium is ϕ and its permeability is k0. Initially the fluid
is at rest and there is no CO2 dissolved in the fluid. We assume no flow boundary at the sides of the
porous medium. CO2 is continuously supplied from the top, i.e., the CO2 concentration at the top
is kept constant. We disregard the presence of a capillary transition zone between the gas and the
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FIG. 2. Geometry of the system.

liquid phase. Hence we only model the liquid phase and the presence of the gas phase at the top is
represented by a boundary condition for the liquid phase. We assume that CO2-liquid interface is
sharp and the volume of the fluid changes due to mixing with CO2. The position of the top boundary
is proportional to the width of the boundary layer, i.e., proportional to

√
t : ztop = −A

√
t (the volume

change is proportional to the change in the width of the boundary layer). The proportionality constant
A is estimated from the experiments32 and from typical field parameters. The fluid density, ρ̂, and
viscosity, μ̂, vary linearly with the CO2 concentration. The motion of the fluid is described by
Darcy’s law driven by a density gradient. Darcy’s law is combined with the mass conservation laws
for the components (CO2 and either water or oil) to describe the diffusion and natural convection
processes in the porous medium. We only expect a laminar regime since the Rayleigh number is
small.

B. Governing equations

For the 2D porous medium depicted in Fig. 2 the governing equations can be written as

� Continuity equation

∂ρ̂

∂ t̂
+ ∇ · (ρ̂v̂) = 0, (4)

where v̂ = (û, v̂); û and v̂ are the velocities in the x- and z-direction.
� Darcy’s law

û = −k0

μ̂

∂ p̂

∂ x̂
, (5)

v̂ = −k0

μ̂

(
∂ p̂

∂ ẑ
− ρ̂g

)
, (6)

where p̂ is pressure.
� Concentration

ϕ
∂ ĉ

∂ t̂
+ ∇ · (ĉv̂) = ϕD(

∂2ĉ

∂ x̂2
+ ∂ ĉ

∂ ẑ2
), (7)

where D is the molecular diffusion coefficient.
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C. Dimensionless form of the equations

We take H as a characteristic length and define the dimensionless space and time as follows:

x̂ = H x, ẑ = H z, t̂ = H 2

D
t, (8)

which leads to a dimensionless velocity:

û = D

H
u, v̂ = D

H
v. (9)

It is however convenient to define a scaled velocity as follows

ū = u

ϕ
, v̄ = v

ϕ
, v̄ = (ū, v̄). (10)

Furthermore we set ρ0 and μ0 as the density and viscosity of water, hence

ρ̂ = ρ0ρ, μ̂ = μ0μ, p̂ = pρ0gH. (11)

We rescale the concentration

c = ĉ − ci

c0 − ci
(12)

(where ci is the initial concentration and c0 is the concentration at the interface).
Therefore Eqs. (4)–(7) become

ct + ∇ · (cv̄) = cxx + czz, (13)

ū = − 1

μ
px Ra, (14)

v̄ = − 1

μ
(pz − ρ)Ra, (15)

∂ρ

∂t
+ ∇ · (ρv̄) = 0, (16)

where

Ra = k0ρ0gH

μ0 Dϕ
. (17)

Cross differentiate Eqs. (14) and (15) to eliminate pressure,

(μv̄)x − (μū)z = ρx Ra. (18)

Both viscosity and density are assumed to depend linearly on c hence

μ = 1 + Rc, ρ = 1 + Sc. (19)

The magnitude and sign of R and S depend on the type of the fluids. Generally positive S implies
that a light fluid with a low concentration is overlain by a heavier fluid, with a high concentration,
which tends to destabilize the flow. However, positive R means that a more viscous fluid overlays
a less viscous fluid, which leads to more stability. Note that for CO2-water system both viscosity
and density increase with increasing concentration and hence R, S > 0. However for most CO2-oil
systems the viscosity decreases with increasing concentration of CO2 and hence R < 0 and S > 0.
The values for CO2-water system are estimated from Gmelin1 and Bando et al.33 as

R = 0.13, S = 0.02,

which means that R is below the value for which velocity effects on the diffusion coefficient have to
be taken into account.22

Notice that �ρ̂ = ρ̂c=1 − ρ̂c=0 = ρ0S, which implies

RaS = k0ρ0gH

μ0 Dϕ
S = k0�ρ̂gH

μ0 Dϕ
= Ra. (20)
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D. Boundary and initial conditions

Initially we set

ū = v̄ = c = 0. (21)

The boundary conditions are

ūx = cx = 0 at x = 0, L/H (22)

and

v̄ = 0, c = 1 at z = −A
√

t and ū = v̄ = 0, cz = 0 at z = 1. (23)

E. Base state solutions

We are looking for zeroth order solutions of the form

c(x, z, t) = c0(z, t), ū = 0, v̄ = v0(z, t) (24)

with boundary conditions

c0(z, t) = 1, at z = −A
√

t and c0
z (z, t) = 0, v0(z, t) = 0 at z = 1. (25)

Notice that the dimensional form v̂0 can be retrieved from v̂0 = v0 Dϕ

H .
Observe that Eq. (18) is automatically satisfied. Substitute ansatz (24) in Eq. (16) and use

Eq. (19) to obtain

Sc0
t + ∂z((1 + Sc0)v0) = 0 ⇒ ∂zv

0 = −S(c0
t + ∂z(c

0v0)). (26)

Substitute ansatz (24) in Eq. (13) and use Eq. (19) to obtain

c0
t + ∂z(c

0v0) = c0
zz . (27)

Combining Eqs. (26) and (27), we find

v0
z = −Sc0

zz ⇒ v0 = −Sc0
z , (28)

since v0 = c0
z = 0 at z = 1. Use Eq. (28) to eliminate v0 from Eq. (27) to obtain an equation for c0

c0
t + ∂z(−Sc0c0

z ) = c0
zz (29)

with boundary conditions c0(−A
√

t) = 1, c0
z (1) = 0. Use the self similar coordinate η = z√

t
to

derive an ODE for c0(η),

−1

2
ηc0

η + d

dη
(−Sc0c0

η) = c0
ηη ⇒ c0

ηη = −ηc0
η − S(c0

η)2

1 + Sc0

with boundary conditions c0 = 1, η = −A, and c0
η = 0, η = 1√

t
≈ ∞ since we are interested in

times of order 10−10. Physically this means that the interface is (infinitely) far away from the lower
boundary. The ODE is solved numerically, see Figure 3.

F. QSSA for the first order

Perturb the base state

ū = u1(x, z̃, t), v̄ = v0(z, t) + v1(x, z, t), c = c0(z, t) + c1(x, z, t),

where u1, v1, and c1 are small quantities. Inserting this in Eqs. (13), (16), and (18) yields up to first
order

Sc1
t + u1

x + v1
z + Sc0u1

x + Sc0
z v

1 + Sc1
z v

0 + Sc0v1
z + Sc1v0

z = 0, (30)
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FIG. 3. The base state c0(η) for A = 4, where η = z√
t
.

Rc1
xv

0 + (1 + Rc0)v1
x − Rc0

z u1 − (1 + Rc0)u1
z = RaSc1

x = Rac1
x , (31)

and

c1
t + u1

x c0 + v0
z c1 + v1

z c0 + v0c1
z + v1c0

z = c1
xx + c1

zz . (32)

We decompose the perturbed quantities in Fourier modes, i.e., ∼eikx. Furthermore we use the QSSA:
the background state c0(z, t) is considered “frozen” on the timescale of the perturbations: c0(z, t0).
Perturbations ∼eσ (t0)t are imposed and lead for every value of t0 to a dispersion curve σ (k; t0). We
are interested in the onset of the instability, which means that we are looking for tc and kc such that
σ (k, tc) ≤ 0 for all values of k. The critical wavenumber kc occurs at σ (kc, tc) = 0. The QSSA only
works as σ > 0 (due to the time dependence of the underlying base state) which means that kc and tc
are found using extrapolation of the data, see Sec. IV. The dependence of σ on t0 will be suppressed
in the notation and we set

u1 = �(z, t)eikx+σ t , v1 = φ(z, t)eikx+σ t , c1 = ψ(z, t)eikx+σ t .

Substitution in Eq. (30) yields an expression for �(z, t),

�(z, t) = i

k(1 + Sc0)

(
φz + S(σψ + c0

z φ + c0φz + v0
z ψ + v0ψz)

)
,

which can be used to derive ODE’s for φzz and ψ zz

ψzz = (σ + k2(1 + Sc0) + v0
z )ψ + v0ψz + c0

z φ

1 + Sc0
, (33)

φzz = F(φ, φz, ψ,ψz). (34)

An explicit expression for F can be found in Appendix A.

III. SPLITTING THE DOMAIN IN TWO PARTS

In Eq. (3) we defined b

t0 = ε2

b2
.
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The constant b is chosen such that the interface is located between z̃ = 0 and z̃ = ε. With this choice,
the parameter ε is a measure of the width of the boundary layer as can be seen from Fig. 3, where
c0 is plotted as a function of η = z

t0
at t0 = bε2, b = 0.01, η = 10 z

ε
. Notice that the point z = ε

corresponds to the point η = 10 to the right in Fig. 3; the lower boundary, located at z = 1 is much
further away.

Since ε is small, c0 is negligible in most of the domain (see Fig. 3), we see that we
can be split the domain into two parts: R1 = {−0.1Aε ≤ z ≤ ε} and R2 = {z|ε ≤ z ≤ 1}.
Equations (33) and (34) can be simplified and solved analytically in R2. Those analytical solutions
yield two boundary conditions at z = ε. The eigenvalue problem (33) and (34) is solved numerically
in R1. We have to solve two second order equations, which means that four initial conditions are
required. Two initial conditions are given by Eq. (23) at z = −0.1Aε. A third initial condition can
be chosen due to normalization (and is set to 1), the last one is the first shooting parameter. The
eigenvalue σ is the second shooting parameter. Equations (33) and (34) are integrated numerically
up to z = ε where two conditions have to be met. Those two conditions determine both shooting
parameters.

In Sec. III A, the analytical solutions in R2 are derived, in Sec. III B, we solve the equations in
R1 numerically.

A. Analytical solutions in R2

In R2 we have c0 ≈ 0 and Eqs. (33)–(34) reduce to(
d2

dz2
− k2

)
φ = −σ Sψz − k2 Raψ (35)

(
d2

dz2
− l2

)
ψ = 0, (36)

where l = √
σ + k2.

Solving Eq. (36) yields

ψ = C1e−lz + C2elz .

The integration constant C2 is determined using

ψz = 0 at z = 1 ⇒ C2 = C1e−2l .

In Sec. III B, we will show that l ∼ 1
ε
, which means that C2 ∼ e−2/ε . This can be neglected for small

ε. Therefore, we find

ψ = C1e−lz for z > ε. (37)

Similarly we find for φ

φ = D1e−kz + C1
lσ S − k2 Ra

l2 − k2
e−lz for z > ε, (38)

where D1 and C1 are arbitrary constants. We have four matching conditions (φ, φ′, ψ , ψ ′) at z = ε:
two are used to eliminate C1 and D1 and we are left with two conditions at z = ε,

ψ ′ = −lψ, φ′ = −kφ − lσ S − k2 Ra

l + k
ψ at z = ε. (39)

B. Analysis in R1: A cascade of rescalings

We have to solve Eqs. (33) and (34) with boundary conditions (39) and initial conditions (40)
from Eq. (23)

φ = ψ = 0 at z = −0.1Aε. (40)
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Since |z| < ε (|A| ≤ 4 in the numerics) it is convenient to introduce a rescaling of the variables (see
Sec. V). The mere rescaling of z, however, leads to a cascade of rescalings, which need to be done
in order to have nontrivial solutions. This is due to the fact that the correct choice of the lengthscale
in the diffuse regime is not H but εH. This implies that we need to rescale space, time, and velocity.
First of all, we rescale z,

ξ = z

ε
, −0.1A ≤ ξ ≤ 1.

Since t0 = ε2

b2 , b = 10, we have

η = z√
t0

= z

0.1ε
= 10ξ,

which means that the base state c0(ξ ) = c0( η

10 ) can be retrieved from the expression for c0(η), which
was found in Sec. II E. When applying this scaling to boundary conditions (39), we observe that

dψ

dξ
= −εlψ at ξ = 1.

Since we also have ψ(=−0.1A) = 0, l of order one, would lead to ψ ′(−0.1A) = 0 in lowest order,
which implies that we would only find the trivial solution ψ = 0. This means that we need to rescale
l in order to have a nontrivial solution. And this implies, since l = σ + k2 that we need to rescale σ

and k too.

l̄ = lε ⇒ k̄ = εk, σ̄ = ε2σ. (41)

Remark 1: Notice the difference with the infinite domain described in the appendix. The approaches
deviate from here on.

Remark 2: The growth rate σ follows in principle from the analysis. This scaling implies that
we need σ̄ to be of order one for consistency. This turns out to be indeed the case.

Notice that we have to be careful when rescaling the base state,

v0(z, t) = −Sc0
z (z, t) ⇒ v0(ξ, t) = −S

ε
c0
ξ (ξ, t).

Set V 0 = εv0 = −Sc0
ξ ; a similar scaling is necessary for the perturbation of the velocity φ in order

to preserve the coupling between φ and ψ :

� = εφ, V 0 = εv0.

This yields the rescaled equations

ψξξ = σ̄ψ + V 0
ξ ψ + V 0ψξ + c0

ξ� + k̄2ψ + Sc0ψ

1 + Sc0
, (42)

�ξξ = F̄(�,�ξ ,ψ,ψξ ), (43)

where an explicit expression for F̄ is given in Appendix A.
The rescaled boundary conditions (40) yield

� = ψ = 0 at ξ = −0.1A (44)

Furthermore we have

ψξ = −l̄ψ, �ξ = −k̄� − l̄σ̄ − k̄2εRa

l̄ + k̄
ψ at ξ = 1. (45)

Observe, however, that not two independent parameters ε, Ra are present, but only the product εRa
occurs in the equations. Therefore, we define the parameter q,

q = εRa. (46)
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FIG. 4. The eigenfunctions �, �′ (left) for k̄ = 2.0, q = 20.7, A = 4.

This parameter is basically the Rayleigh number where the height of the channel is replaced by the
width of the interface. In our case Ra is large and ε is small. Thus the product turns out to be of
order one at the critical point, which means that qc = 74.2 in the A = R = 0 case. This means that
all terms in Eqs. (43) and (45) are of order one. In Sec. IV A, we will use different values for A and
R and solve problem (42)–(45) numerically for different values of q.

IV. NUMERICAL RESULTS

Problem (42)–(45) is solved using a shooting method. We have �(−0.1A) = ψ(−0.1A) = 0
according to Eq. (44). We can set ψ ′(−0.1A) = 1 due to normalization. Choose �′(−0.1A) = s1

as our first shooting parameter, which has to be determined as a part of the problem. Furthermore
we set σ̄ = s2 as our second shooting parameter; we integrate Eqs. (42) and (43) up to ξ = 1 using
a Runge-Kutta method. We use a Newton-Raphson method to find s1 and s2 such that Eq. (45)
is satisfied. An example of the resulting eigenfunctions for k̄ = 2.0, q = 20.7, A = 4 is given in
Figs. 4 and 5. The solution for −0.1A < ξ < 1 is the numerical solution, the solution for 1 < ξ < 2
is the analytical solution (see Eqs. (37) and (38)). The matching at ξ = 1 yields �′(0) and σ̄ .
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FIG. 5. The eigenfunctions ψ , ψ ′ (right) for k̄ = 2.0, q = 20.7, A = 4.
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FIG. 6. Dispersion relations σ̄ (k̄) for A = 4.

A. Results for different values of A and R

We only need to vary one parameter, q, while we keep A and R constant. The dispersion relations
σ̄ (k̄) for 20.7 < q < 28 is given in Fig. 6. The critical value of q, qc and the critical wavenumber
follow from Fig. 7 for fixed A; the results are summarized in Table I.
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FIG. 7. Maximal values of σ̄ as a function of q for various choices of A and R.
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TABLE I. Dependence of qc = εcRa and of the critical wavenumber kc on the parameters A, where A is a measure of the
interface movement, i.e., ztop = −A

√
t and R, where the dimensionless viscosity is μ = 1 + Rc. The error estimates are

inferred from Fig. 6 as the maximum and minimal wavenumber at zero growth rate and from Fig. 7 as the critical q also
at zero maximum growth rate using visual inspection of the actual data. The values in the first two columns are based on
typical field parameters, i.e., a reservoir at 2200 m depth with a temperature of 76 ◦C, a project time of 10 years, a interface
movement of 4.7 m, and a correlation for in situ viscosity for a 2 M salt solution at reservoir temperature. The other columns
are representative for our laboratory experiments (see Sec. V).

R = 0.25 R = 0.13 R = 0 R = −013
A qc kc qc kc qc kc qc kc

−2 141.5 ± 0.5 6.7 ± 0.2 135.6 ± 0.1 6.65 ± 0.05 129.6 ± 0.1 6.65 ± 0.1
0 77.7 ± 0.2 4.4 ± 0.2 74.2 ± 0.1 4.3 ± 0.05 70.7 ± 0.1 4.2 ± 0.2
2 37.0 ± 0.1 2.8 ± 0.05 35.4 ± 0.1 2.8 ± 0.2 33.4 ± 0.1 2.8 ±0.2
4 20.7 ± 0.1 1.9 ± 0.2

B. Retrieving critical time and critical wavelength

In Sec. IV A, the parameters qc and k̄c are determined for a fixed value of Ra; in this section
we will summarize how various other quantities are derived from those three parameters. From
Eqs. (3) and (46), we have

t = ε2

b2
, b = 10,

q = εRa,

which means that we find a dimensionless critical time

tc = 0.01
q2

c

Ra2
= ac

Ra2
, (47)

where we defined ac = 0.01q2
c . This yields in dimensional form (seconds)

t̂c = ac

Ra2

H 2

D
= ac

(μ0ϕ)2 D

(k0�ρ̂g)2
. (48)

According to Eq. (41) we have

k̄ = εk,

which means that we find for the dimensionless critical wavelength λc

λc = 2π

kc
= 2π

εck̄c
= 2πqc

k̄c Ra
= bc

Ra
, (49)

where we defined bc = 2πqc

k̄c
. This yields in dimensional form (meters)

λ̂c = bc

Ra
H = bc

μ0ϕD

k0�ρ̂g
. (50)

We observe that the upward movement of the interface leads to earlier destabilization of the
interface (smaller values of qc hence smaller critical times). We also see that although the critical
wavenumber becomes smaller, also the critical wavelength becomes smaller (since λc scales with
qc/kc).

For A = 0 and R = 0, i.e., with zero interface velocity and without viscosity effects, we find

qc = 74.2, k̄c = 4.3.
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TABLE II. Summary of physical input parameters and variables.

Physical quantity Symbol Value Unit
Dimensionless interface position / −√

t A −2 to 4 (. . . )
Concentration at interface c0 0.034 (M/atm)
Initial concentration ci 0 (M/atm)
CO2 concentration c 0–0.034 (M/atm)
Diffusion coefficient D 1.5 × 109 (m2/s)
Acceleration due to gravity g 9.81 (m/s2)
Height of the reservoir H 100 (m)
Permeability k0 In experiment: square of fracture

width / 12, in field: 10−15–10−11 (m2)
Wave number k Arbitrary (. . . )
Length of reservoir L Arbitrary (m)
Pressure P 8 (bar)
Modified Rayleigh number q Eq. (46) (. . . )
Rayleigh factor Ra Eq. (17) (. . . )
Rayleigh number Ra Eq. (20) (. . . )
Dimensionless time t (. . . )
Dimensionless velocities in x- and z-direction ū, v̄ Result of calculations (. . . )
Dimensionless coordinates x, z (. . . )
Width of interface ε Small (. . . )
Self similar dimensionless coordinate η z/

√
t (. . . )

Viscosity μ Eq. (19) (Pa s)
Fluid density ρ Eq. (19) (kg/m3)
Growth rate σ Arbitrary (. . . )
Porosity ϕ 1 (. . . )

And this yields according to Eq. (47) to a critical time

tc = 55

Ra2
. (51)

Furthermore we obtain the critical wavelength λc according to Eq. (49):

λc = 108

Ra
. (52)

C. The effect of the viscosity variation and the interface movement

Figure 7 presents the critical growth rate, σ̄c, as a function of parameter q for different values
of R. The positive R means that dissolution of CO2 in the liquid leads to increase in its viscosity,
e.g., water-CO2 system. Conversely negative R is indication of the decrease of the liquid viscosity
with increasing CO2 concentration, which is typical for most CO2-oil systems. It is obvious from
this figure that increase in the viscosity of the liquid results in more stability, i.e., the time for onset
of the natural convection increases (Table II).

Furthermore, we observe from Table I that downward interface movement (A < 0) stabilizes
the interface, whereas upward movement of the interface (A > 0) tends to destabilize the interface.

V. EXPERIMENTAL RESULTS

To validate the model, we compare our results with the experimental results of
Mojaddamzadeh.34 The transparent cell consists of two parallel plates with the distance of about 8 mm
from each other. The system remains closed during the experiment. CO2 is introduced from top to
the cell containing water at a pressure of 8 bars. The Schlieren method35, 36 is used to visualize the
initiation and growth of the fingers. Considering the geometry of the setup, the Rayleigh number of
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this system becomes

Ra = �ρ̂gk0 H

ϕDμ0
= 2 × 9.81 × (0.008 × 0.008/12) × 0.07

(1 × 2 × 10−9 × 0.001)
= 3.5 × 106. (53)

Use Eq. (49),

λc = 83

Rac
= 1.6 μm.

This value is much smaller than the measured value of 0.1 mm. Several factors can contribute to this
discrepancy. First we should note that the initial stages of the fingering behavior are not detectable
within the accuracy of the experimental measurement. Another reason is the questionable validity
of Darcy’s law for this system since the distance between two plates is large. We find a miscible
Rayleigh Taylor length L M RT = 58 μm using the parameters from Eq. (53), which is larger than
the separation of the plates (8 mm). In fact to improve the match one would need to solve Stokes
equation.37 In the Hele-Shaw case including a Brinkman correction (see the discussion in Sec. I B 1)
and the references therein) leads to an estimate of λ = 2.3d = 18 mm. Solving the Brinkman
problem in our case would be a useful direction of future research. Finally it appears from the figures
in Ref. 34 that the length of the mixing zone is larger than LMRT. The extension of the mixing zone
might play a stabilizing role24 (which leads to larger λc). In this case a dispersion coefficient should
replace the molecular diffusion coefficient D in the calculations of the Rayleigh number.

We also compare our results to the experimental results of Foster38 who conducted experiments
for salt water and found an unstable wavelength of λ = 1.8 mm, which is an upper bound due to
difficulties in the measurement. They reported Ra = 2.63 × 103 for their experiment, from which we
obtain λc = 0.6 mm. We also recalculate the Rayleigh number based on the data reported in Foster38

�ρ = 190 kg/m3, H = 1.4 × 10−2 m, L = 0.13 × 10−3 m, μ = 2 × 10−3 Pa s,

D = 1.5 × 10−9 m2/s,

which yields Ra = 1.2 × 104 and λc = 0.13 mm. Clearly, for validation of the model further
experiments are required.

Furthermore we estimate the value of A for experiments.32, 39 After 1800 s, a volume increase of
about 2% is observed for the CO2–C10 system, which means that we have (in dimensionless units):

t0 = 1800
D

H 2
= 1800 × 2 × 10−9

0.2 × 0.2
= 9 × 10−5.

This means that we find (in dimensionless units)

A = 0.02√
9 × 10−5

≈ 2.

We also estimated A for reservoir parameters, which yields A = 4 (see the Introduction).

A. General discussion

The critical time for the onset of natural convection, tc, scales with Ra−2. The critical wavelength
of the fastest growing finger scales with Ra−1. The dimensional critical time and wavelength become
(see Eqs. (48) and (50))

t̂c = ac
(μϕ)2 D

(k�ρg)2
(54)

λc = bc
μϕD

k�ρg
(55)

where, for the case that the interface is fixed, the injected CO2 does not affect the brine viscosity
and the capillary transition zone is neglected, the values of ac and bc were found to be 55 and
108, respectively. The values are of the same order of magnitude as the values reported in Xu
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et al.,9 who obtain (ac=75.19, bc = 96.23) and in Ennis-King et al.,8 who obtain (80 < ac < 100,
100 < bc < 120). The discrepancy between the values are mainly due to different approaches of
linear stability analysis. Furthermore, we take (small) density variations entering the zeroth order
state into account, which are neglected in Xu et al.9 and Ennis-King et al.8 Our analysis already
signals a single unstable mode, which means that we obtain lower a lower value for the critical time
and hence for ac.

We extended the stability analysis by assuming a moving interface between the CO2-brine
mixture and the brine. To obtain analytical solutions we assumed that the interface moves proportional
to square-root of time. Our results indicate that neglecting interface movement can lead to errors
in estimation of the amount of stored CO2 due to solubility. To clarify this, we assume an aquifer
with a permeability of 100 mD and porosity of 20% that is saturated with brine with a viscosity of
0.5 mPa s. With the assumption that the dissolution of CO2 increases the brine density by 10 kg/m3,
and taking D = 5 × 10−9 m2/s without considering interface movement the critical time is calculated
to be about 331 days. If an upward velocity of the interface is considered this time decreases to
about 26 days. If the permeability of the aquifer (or in general the Rayleigh number) decreases the
difference becomes even more significant. For example choosing an aquifer permeability of 20 mD
and keeping the other parameters constant, with and without considering the interface movement,
the critical time becomes 8280 and 644 days, respectively. Therefore, in this example, neglecting
the interface movement can lead to more than 21 years of difference and therefore the amount of
dissolved CO2 can be over-estimated. If the interface moves downwards the convection initiates later
than the case for which interface movement is not considered.

VI. CONCLUSIONS

The influence of viscosity and interface velocity on the stability of a diffusive boundary layer
is investigated using a QSSA. Our analysis is of relevance for CO2 sequestration and solvent based
enhanced oil recovery projects. In the case of CO2-brine system dissolution of CO2 leads to an
increase of the viscosity of brine, while in most CO2-oil systems dissolution of CO2 results in lower
liquid viscosity. Moreover the dissolution of CO2 can lead to volume increase (swelling) or volume
decrease (shrinkage) of CO2 liquid systems, i.e., the location of the interface cannot be assumed
fixed.

The initial stage of the instability is investigated, where the width of the layer scales ∼ε and
the time ∼ε2. Rescaling the corresponding equations leads to a cascade of rescalings. The relevant
bifurcation parameter is found to be q = εRa, which is basically the Rayleigh number with the width
of the interface as the characteristic length. This implies that a convective instability sets in once the
width of the diffusive boundary layer exceeds a certain value.

Furthermore it is clear that the bifurcation parameter q implies the well knowing scalings of
the critical time ∼ 1

Ra2 and the critical wavelength ∼ 1
Ra . The simulations are used to estimate both

proportionality constants.
The analysis also shows the existence of two timescales: the base state evolves on a slower

timescale than the perturbations, which formally justifies the QSSA. Notice that this separation of
scales is not present when the boundary conditions are imposed at ±∞13 which means that the
QSSA in that case is questionable.

We observe that the presence of the upstream interface movement enhances the instability. In
our analysis we have assumed that the interface position is proportional to

√
t . Furthermore we see

that the enhanced viscosity of the liquid due to CO2 dissolution stabilizes the interface.

APPENDIX A: EXPRESSION FOR F AND F̄

F = Aφ + Bφz + Cψ + Dψz

(1 + Rc0)(1 + Sc0)2
,

where

A = −Sc0
zz + S2(c0

z )2 − S2c0
zzc0 − Rc0Sv0c0

z − Sv0c0
z + k2 + 2k2Sc0 + k2S2(c0)2
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+k2 Rc0 − RS(c0
z )2

+2k2 RS(c0)2 + k2 RS2(c0)3 − RSc0c0
zz − RS2(c0)2c0

zz

B = −c0
z (R + S + S2c0 + 3RSc0 + 2RS2(c0)2)

C = −Sv0
zz − 2Rak2Sc0 − S2v0

zzc0 + S2σc0
z + S2c0

z v
0
z − RSσc0v0 − RSc0v0v0

z − Sσv0

−S2k2v0c0 − Sv0v0
z

−Sk2v0−Rak2+Rk2v0+RSk2v0c0−RSσc0
z −RSc0

z v
0
z −RSc0v0

zz−RS2(c0)2v0
zz − Rak2S2(c0)2

D = −S(σ + (v0)2 + 2v0
z + Sσc0 + 2Sc0v0

z − Sv0c0c0
z + Rc0(v0)2 + Rc0

z v
0 + Rσc0 + RSσ (c0)2

+2Rc0v0
z + 2RSv0

z (c0)2)

F̄ = Ā� + B̄φξ + C̄ψ + D̄ψξ

(1 + Rc0)(1 + Sc0)2
,

where

Ā = −Sc0
ξξ+S2(c0

ξ )2−S2c0
ξξ c0−Rc0SV 0c0

ξ−SV 0c0
ξ+k̄2+2k̄2Sc0+k̄2S2(c0)2+k̄2 Rc0 − RS(c0

ξ )2

B̄ = −c0
ξ (R + S + S2c0 + 3RSc0 + 2RS2(c0)2)

C̄=−SV 0
ξξ−2Raεk̄2Sc0−S2V 0

ξξ c0+S2σ̄c0
ξ+S2c0

ξ V 0
ξ −RSσ̄c0V 0−RSc0V 0V 0

ξ −Sσ̄ V 0−S2k̄2V 0c0

−SV 0V 0
ξ − Sk̄2V 0−Raεk̄2+Rk̄2V 0+RSk̄2V 0c0−RSσ̄c0

ξ−RSc0
ξ V 0

ξ −RSc0V 0
ξξ−RS2(c0)2V 0

ξξ

−Raεk̄2S2(c0)2

D̄= − S(σ̄+(V 0)2 + 2V 0
ξ +Sσ̄c0+2Sc0V 0

ξ −SV 0c0c0
ξ+Rc0(V 0)2+Rc0

ξ V 0+Rσ̄c0+RSσ̄ (c0)2

+2Rc0V 0
ξ + 2RSV 0

ξ (c0)2)

APPENDIX B: DERIVATION OF THE ANALYTICAL EXPRESSION FOR THE DISPERSION
RELATION IN AN INFINITE DOMAIN

In this appendix we derive the equation for the dispersion relation σ (k) given in, e.g., Tan and
Homsy,12 Eq. (42), and Rogerson and Meiburg,13 Eqs. (87)– (89) with θ = π

2 . We are not aware of
the existence of a detailed derivation of those equations. Since the derivation is nontrivial, it seems
worthwhile to add the derivation here.

Downloaded 07 Aug 2013 to 131.180.130.178. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pof.aip.org/about/rights_and_permissions



074103-19 Meulenbroek, Farajzadeh, and Bruining Phys. Fluids 25, 074103 (2013)

An infinite domain is considered in this case and an initial concentration jumping from zero to
one at z̃ = 0. The base state is given as

c0(z̃) = 1√
4π t

∫ z̃

−∞
e−s2/4t ds,

∂c0

∂ z̃
= 1√

4π t
e−z̃2/4t , v̄ = v̄0. (B1)

The equations for first order perturbation are(
d2

dz̃2
+ Rc0

z̃

d

d z̃
− k2

)
φ = k2

(
v̄0 R − RaSe(S−R)c0

)
ψ, (B2)

(
d2

dz̃2
− k2 − σ

)
ψ = c0

z̃ φ, (B3)

which are the same as Eqs. (52) and (53) from Rogerson and Meiburg,13 with θ = π
2 and a different

choice of non-dimensionalization, which is in terms of the velocity of the waves (G = Ra and
v̄0 = 1) in that paper.

1. Analysis in two regions

An analytical expression for the dispersion relation can only be found in the limit t0 → 0. We
set

t0 = ε2

4a
,

we fix ε > 0 and small and we take a to infinity. This choice for t0 yields

∂c0

∂ z̃
= 1

ε

√
a

π
e−a z̃2

ε2 ,

which is negligible for large values of |z̃|. This means that we can study the problem in two regimes:
large |z̃| in Appendix B 1 a and small |z̃| Appendix B 1 b.

a. Analytic solutions for large |z̃|
In this case, Eqs. (33)–(34) reduce to(

d2

dz̃2
− k2

)
φ = k2

(
v̄0 R − RaS

)
ψ,

(
d2

dz̃2
− l2

)
ψ = 0

for z̃ > 0 and (
d2

dz̃2
− k2

)
φ = k2

(
v̄0 R − RaSeS−R

)
ψ,

(
d2

dz̃2
− l2

)
ψ = 0

for z̃ < 0. The solutions are

ψ = c5elz̃, φ = c6ekz̃ + c5
k2G0

l2 − k2
elz̃ for z̃ < 0,

where G0 = v̄0 R − RaS and

ψ = c7e−l z̃, φ = c8e−kz̃ + c7
k2G1

l2 − k2
e−l z̃ for z̃ > 0,

where G1 = v̄0 R − RaSeS−R . We have at both z̃ = −ε and z̃ = ε four matching conditions: four
are used to eliminate c5–c8 and we are left with two conditions at z̃ = −ε and z̃ = ε:

ψ ′ = lψ, φ′ = kφ + k2G0

l + k
ψ at z̃ = −ε
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and

ψ ′ = −lψ, φ′ = −kφ − k2G1

l + k
ψ at z̃ = ε.

b. Small values of |z̃|: A power series solution reveals the structure

We have to solve Eqs. (B1) and (B2) for small values of |z̃|. This means that we can try to find
a power series solution of the form

φ(z̃) = c1 + c2 z̃ + d2 z̃2 + . . . , ψ(z̃) = c3 + c4 z̃ + e2 z̃2 + . . .

where the coefficients d2, d3, . . . and e2, e3, . . . are determined by the ODE’s in terms of c1 − c4,
which may be chosen freely. Solving the equations for d2.d3. . . explicitly, we observe however that
d2 ∼ ε−1, d3 ∼ ε−2, etc., the same for e2, e3, which means that we have

φ(x) = c1 + ε

(
c2

z̃

ε
+ d2

z̃2

ε2
+ . . .

)
= c1 + εh(ξ ).

We can exploit this structure setting

ξ = z̃

ε
,

dc0

dz̃
= 1

ε
g(ξ ), g(ξ ) =

√
a

π
e−aξ 2

.

φ(ξ ) = c1 + εh(ξ ), ψ(ξ ) = c3 + ε j(ξ )

Substitute these expressions in Eqs. (B2) and (B3) and evaluate up to first order in ε:

h′′ + Rg(ξ )h′ = 0, (B4)

j ′′ = c1g(ξ ), (B5)

where the prime denotes differentiation with respect to ξ . The matching conditions have to be
evaluated at ξ = ±1 and yield (up to lowest order in ε)

j ′(−1) = lc3, j ′(1) = −lc3 (B6)

and

h′(−1) = kc1 + k2G0

l + k
c3, h′(1) = −kc1 − k2G1

l + k
c3. (B7)

(because dφ

dz̃ = 1
ε

dφ

dξ
= 1

ε
εh′ = h′)

Integration of Eq. (B5) yields

j ′(ξ ) = j ′(0) + c1

∫ ξ

0
g(ξ )dξ ⇒ j ′(1) = j ′(0) + 1

2
c1, j ′(−1) = j ′(0) − 1

2
c1,

because

lim
a→∞

√
a

π

∫ 1

0
e−aξ 2

dξ = lim
a→∞

√
1

π

∫ √
a

0
e−u2

du = 1

2
.

Combining this with Eq. (B6) yields

c1 = −2lc3, and j ′(0) = 0.

Separate and integrate Eq. (B4) to obtain

h′′

h′ = −Rg(ξ ) ⇒ ln(h′(ξ )) = −R
∫ ξ

0
g(ξ )dξ + ln(h′(0)),
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which yields

h′(−1) = h′(0)eR/2, h′(1) = h′(0)e−R/2.

Use the boundary conditions (B7) to find(
−2lk + k2G0

l + k

)
e−R/2 =

(
2lk − k2G1

l + k

)
eR/2.

Solving for l we find

2lk(l + k) − k2 R̃ = 0,

where

R̃ = G1eR + G0

1 + eR
= v̄0 R − RaS

1 + eS

1 + eR
,

which leads to

l = 1

2

(
−k +

√
k2 + 2k R̃

)
.

Finally using σ = l2 − k2 we obtain

σ = k

2

(
R̃ − k −

√
k2 + 2k R̃

)
,

which is Eq. (89) in Rogerson and Meiburg.13
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