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Abstract

Elastodynamic and electromagnetic processes are coupled together in saturated, porous me-
dia, by a phenomenon known as the electrokinetic effect. In horizontally layered media, the
seismoelectric system, which contains the coupled elastodynamic and electromagnetic sys-
tems, can be separated into two independent modes of propagation: SH-TE and P-SV-TM.
The SH-TE mode contains horizontally polarized shear waves coupled with transverse electric
polarized electromagnetic waves. In the P-SV-TM mode, both fast and slow compressional
waves are coupled with vertically polarized shear waves and transverse magnetic polarized
electromagnetic waves. In this thesis, the P-SV-TM mode of the two-dimensional seismo-
electric system was expressed in the form of both the two-way and one-way wave equations.
The principle of normalizing energy flux across boundaries was applied, improving the matrix
amplitude balance of the system and allowing for the implementation of one-way reciprocity
theorems.

We carried out full-waveform modelling of the flux-normalized P-SV-TM seismoelectric sys-
tem in a 2-D fluid-saturated, horizontally-stratified, porous media. Both one-way and two-way
wavefields were modelled, allowing the composition of one-way wavefields into two-way wave-
fields to be clearly observed. We investigated both the generation of electromagnetic fields
due to the propagation of a seismic pertubation and the generation of seismic waves due to
the propagation of a diffusive electromagnetic wave. Reciprocity of the wavefields was verified
by applying reciprocity theorems to both one-way and two-way wave vectors.

The electromagnetic field that is created when a seismic wave traverses a contrast in medium
parameters is rapidly attenuated during propagation. To mitigate the decay in the amplitude
of the signal with distance, we modelled a Vertical ElectroSeismic Profiling (VESP) survey, in
which receivers could be placed in near proximity to the target layer. In another model, the
sensitivity of the seismoelectric method to pore fluid contrasts was tested by simulating the
influx of contaminants into an aquifer. It was observed that a small change in the conduc-
tivity of the aquifer led to a significant change in the strength of the electromagnetic signal
that was generated at the top of the aquifer.
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“In every branch of knowledge the progress is proportional to the amount of facts
on which to build, and therefore to the facility of obtaining data.”
— James Clerk Maxwell





Chapter 1

Introduction

1-1 Motivation

Geophysics is a multifaceted discipline that combines a range of scientific fields to obtain
detailed information on the Earth’s structure. The specific geophysical method that is ap-
plied is determined by the physical properties of the target area. Naturally, a given medium
parameter can only be resolved when it has an influential effect on the acquired data. There
is consequently a continual search for new tools to probe previously unstimulated media pa-
rameters of the subsurface. The seismoelectric method is one such tool that takes advantage
of subsurface coupling between seismic and electromagnetic waves.
It has been known since the 1930s (Thompson, 1936) that seismic and electromagnetic waves
can be coupled in a fluid-saturated porous subsurface, a phenomenon called electrokinetic
coupling. More recently, it was shown that the coupling occurs via a coefficient that is con-
trolled by a range of subsurface parameters (Pride, 1994). Numerous potential applications of
seismoelectrics have been suggested to take advantage of the additional information provided
by both the sensitivity of the coupling coefficient to various subsurface parameters and the
creation of an independent electromagnetic wave from a seismic wave, and vice versa. The
sensitivity of seismoelectrics to permeability and fluid chemistry properties would make it
possible to distinguish interfaces that would otherwise be overlooked (Haines et al., 2007).
For example, its strong sensitivity to viscosity contrasts could be applied to the detection of
gas-water contacts. Other uses would be in the detection, characterization and monitoring
of aquifers (Garambois and Dietrich, 2002). Work by Haines and Pride (2006) has numeri-
cally shown that the seismoelectric method is capable of resolving layers that are significantly
smaller than the seismic wavelength.
The potential applications and limitations of the seismoelectric method can best be exam-
ined by numerical modelling. This thesis builds upon work done by De Ridder (2007) on
the SH-TE propagation mode of seismoelectric fields in a horizontally layered earth. The
aim of this thesis is to numerically simulate the propagation of the other mode present in
the seismoelectric system of a layered earth, the P-SV-TM mode, and address some of the
potential applications of the seismoelectric method.

Master of Science Thesis Gavin Menzel-Jones



2 Introduction

1-2 Seismoelectric coupling

Frenkel (1944) was the first to postulate equations relating the generation of an electrical
signal from a seismic source. However, it was not until Pride (1994) that a complete set of
macroscopic governing equations describing the coupling between electromagnetic and elas-
todynamic waves in porous media was derived. These governing equations represent the
interrelation between electromagnetics, mechanical energy and fluid flow.
The mechanism for this coupling can be attributed to the electrical double layer created in
two-phase (solid and fluid) porous media, in which the phases are considered to be contin-
uously distributed. The electrical double layer refers to the microscopic interface between
the grain surface and the fluid electrolyte and consists of two layers, the Stern layer and the
diffuse layer. The Stern layer (composed of the inner and outer Helmholtz layers) is a layer
of ions adsorbed on to the grain matrix, creating a region of excess charge. To balance this
charge, a parallel layer of mobile counter-ions is created in the pore fluid (Lyklema, 1995)
(see Figure 1-1). This diffuse layer is free to move, such that a flow of the fluid relative to
the fixed solid grains can cause charge separation (Russell et al., 1997).
Electrokinetic phenomena can be separated into EM-to-seismic conversions and seismic-to-

Figure 1-1: Schematic of electrical double layer showing positive ions adsorbed onto grain surface,
balanced by negative ions in the diffuse layer of the bulk electrolyte. Figure adapted from Hiemenz
and Rajagopalan (1997).

EM conversions; both conversions can be attributed to the nanometer-scale charge separation
discussed above (Haines and Pride, 2006). EM-to-seismic conversions have an electromagnetic
disturbance as a source function. The disturbance, generally caused by an electrical current
source, propagates an EM wave through the subsurface, polarizing the electrical field present
at the electrical double layer. This polarization causes relative motion between the fluid elec-
trolyte and the grain matrix and produces pressure gradients, which act as a macroscopic-
mechanical pressure disturbance to create an observable coelectric seismic response (Pride,
1994; Hornbostel and Thompson, 2007). This seismic disturbance travels within the confines

Gavin Menzel-Jones Master of Science Thesis



1-2 Seismoelectric coupling 3

of the electromagnetic wave. (Note that throughout the thesis we will refer to the behaviour
as the electromagnetic field in conductive media as wave propagation; however, the reader
should keep in mind that at the frequencies being considered, the waves are highly dispersive
and strongly attenuated (Loseth et al., 2006)). At an interface, where there is a discontinuity
in either the elastic properties (e.g. porosity), fluid chemistry (e.g. electrolyte concentration)
or transport properties (e.g. permeability) (Haartsen and Pride, 1997), the aforementioned
pressure gradient will transfer stress to the grain matrix. The time-dependent stress field that
is created then, in-turn, generates an independently propagating seismic wave (Thompson and
Gist, 1993). Due to the high velocity of the electromagnetic wave, the electromagnetic wave
is essentially incident at all points on the interface simultaneously, such that the interface
can be considered an exploding reflector. A summation of the infinite point sources creates a
plane wave travelling at the seismic wave velocity, as shown in Figure 1-2.
Seismic-to-EM conversions occur for both compressional and shear waves. A seismic per-

Figure 1-2: Creation of a seismic plane wave at an interface due to an electromagnetic source.
The EM wave is incident at all points on the interface simultaneously, each of which acts as a
seismic point source. Figure adapted from Shaw (2005).

tubation causes movement between the fluid and solid phases; this relative motion of the
counter ions of the diffuse layer induces streaming electrical currents. The streaming current
sheets produce, albeit small, magnetic fields that induce secondary electrical fields. A further
electrical field is created during the propagation of a compressional wave. The peaks and
troughs of the P-wave set up regions of excess positive and negative charge in the diffuse layer
through the compression and expansion of the electrically charged fluid (Haartsen and Pride,
1997). The electric field produced from this half-wavelength scale charge separation drives
a conduction current, which, in homogeneous material, counterbalances the aforementioned
streaming current (Pride and Garambois, 2002). Thus, the total current goes to zero and
no magnetic field or independent electromagnetic wave is generated. The local electric field
that travels within the support of the seismic wave is known as the coseismic field. In the
case of an equivolumunal shear wave, no charge separation occurs and the magnetic field is
carried within the support of the seismic signal (Pride and Haartsen, 1996; Garambois and
Dietrich, 2002). It was found by Garambois and Dietrich (2002) that the coseismic field of
the compressional wave is sensitive to the electrical properties of the pore fluid (particularly
the electrolyte concentration and the fluid’s dielectric permittivity), whereas the shear wave’s
magnetic field is sensitive to the shear modulus of the framework of grains as well as the
viscosity and dielectric permittivity of the pore fluid.
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The second seismoelectric phenomenon occurs at an interface. When the spherical wavefront
of a compressional wave traverses an interface, the symmetry of the charge density distribu-
tion is broken and a charge separation is created across the interface. In a similar manner,
a shear wave that propagates across an interface will create a dynamic current imbalance,
thereby forming a charge separation. In both cases, the charge separation acts as an oscil-
lating electric dipole, thereby creating an independently propagating electromagnetic wave
that can be recorded almost simultaneously at all receivers, due to the negligible electromag-
netic traveltime. This electromagnetic disturbance is called the interface response (Pride and
Garambois, 2002; Haines et al., 2007) and is illustrated in Figure 1-3.
In the case of a laterally homogeneous medium, the seismoelectric system can be separated
into two independent modes of propagation: SH-TE and P-SV-TM. SH-TE coupling describes
the coupling of horizontally polarized shear waves (SH-) and transverse electric polarized elec-
tromagnetic waves (TE-). An SH- or TE-wave incident on an interface will generate a total
of four wavefields (two reflected and two transmitted). In regards to the P-SV-TM mode,
it is known from seismic theory that in horizontally layered media compressional waves (P-)
are coupled with vertically polarized shear waves (SV-) and, with the introduction of seis-
moelectric coupling, these waves are in turn coupled to the transverse magnetic polarized
electromagnetic wave (TM-) (Haartsen and Pride, 1997). The fast (dilational wave of the
first kind) P-wave is the traditionally recorded compressional motion, travelling through the
framework of grains, whereas the slow (dilational wave of the second kind) P-wave travels
through the pore fluid as a diffusive pressure wave, thereby propagating slower and attenu-
ating faster (Biot, 1956). In the P-SV-TM system, an incident wavefield will generate up to
four reflected and four transmitted wavefields at an interface, for a total of eight wavefields.

Figure 1-3: Creation of an electromagnetic wave at an interface due to a seismic source. When
a seismic wavefront is incident on an interface, a charge separation is created, which acts as a
source for an independently propagating EM wave. Figure adapted from Shaw (2005).

1-3 Flux Normalization

The total two-way wavefields that are normally physically registered at receivers can be trans-
formed into a coupled set of oppositely propagating one-way wavefields using so-called one-way
wave theory. This theory lends itself well to applications in geophysical surveying for two main
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reasons: the vertical direction, depth, can be defined as the “preferred direction of propaga-
tion” and the medium variations in the vertical direction are generally more defined, due to
stratigraphy, than the variations in the orthogonal directions (i.e. horizontally) (Wapenaar
and Grimbergen, 1996). Thus, with one-way wave theory, the total wavefield can be decom-
posed into its separate upgoing and downgoing consituents, from which one-way wavefield
propagators and one-way reflection and transmissions matrices can be derived. A decompo-
sition operator is used to carry out this decomposition and the nature in which the decom-
position and composition operators are normalized characterizes the one-way wavefields. An
approach for normalizing the reflection and transmission coefficients based on conserving the
energy flux across interfaces was introduced for horizontally layered media by Frasier (1970).
Under this approach the transmission coefficient at an interface is seen to be independent of
the direction of propagation and is equal to

√
1−R2, where R is the reflection coefficient of

the interface. Ursin (1983) applied this flux-normalized decomposition to one-way wavefields
in lossless media, stipulating that energy flux in the vertical direction is constant. He pointed
out that the inverse of the composition matrix can be determined through the use of a trans-
pose operator, a numerically faster and more stable operator. Wapenaar and Grimbergen
(1996) applied flux-normalization to one-way wavefields in the process of deriving reciprocity
theorems for one-way wave vectors and they noted that flux-normalization is a prerequisite
for using reciprocal one-way propagators. For a more complete explanation of one-way wave
theory and flux-normalization, the reader is referred to Ursin (1983); Wapenaar and Berkhout
(1989); Wapenaar and Grimbergen (1996).
In this thesis, flux-normalization is applied to the composition and decomposition operators to
take advantage of the benefits mentioned above; the inverse of the composition operator can
be replaced by the numerically less expensive and more stable transpose operator and since
flux-normalized one-way propagators in horizontally layered media obey reciprocity, one-way
reciprocity theorems can be applied to the P-SV-TM system.

1-4 Mathematical conventions

1-4-1 Summation convention

In Chapter 2 of this thesis, Einstein’s summation convention for repeated indices will be used.
Repeated Latin indices (subscripts) indicate a summation from 1 to 3,

∂vi
∂xi

stands for
3∑
i=1

∂vi
∂xi

, (1-1)

whereas repeated Greek indices indicate a summation from 1 to 2,

∂vα
∂xα

stands for
2∑

α=1

∂vα
∂xα

. (1-2)

The Levi-Civita symbol, εijk, is also applied. It takes on the values of −1, 0 or 1 depending
on the values of the indices, i.e.

εijk =


+1 if (i, j, k) is an even permutation of (1, 2, 3),
−1 if (i, j, k) is an odd permutation of (1, 2, 3),
0 if any index is repeated.

(1-3)
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6 Introduction

For example, the Levi-Civita symbol can be used in combination with Einstein notation to
express the curl of the magnetic field vector,

εijk
∂Hk

∂xj
= ∇×H. (1-4)

1-4-2 Notations

The Cartesian coordinate system is used to uniquely specify positions in space. Throughout
the first chapters of this thesis, the three-dimensional coordinates are referred to with the use
of subscripts, where x1, x2 and x3 coordinates are used, allowing the concise use of Einstein
notation. In Chapters 4 and 5, we no longer make use of index notation and need to refer
to a range of different depths levels. For these reasons, we switch the naming convention to
refer to the x, y and z axes. In both cases the coordinate system is right-handed, with the x3
(or z) axis being oriented positive downwards. Consequently, in the context of the one-way
wave equation, a + or − superscript denotes a wave travelling in the downward or upward
direction, respectively.
Accents are used to specify the domain in which the term is being considered. Terms in
the spatial-time domain, (xi, t), do not have an accent. After transformation to the spatial-
frequency domain (xi, ω) through the use of a temporal Fourier transformation, the terms
adopt a hat, .̂ Finally, a one-dimensional horizontal spatial Fourier transformation will be
used to transform the spatial x1 coordinate to the wavenumber domain. The resulting terms
are in the (k1, x2, x3, ω) domain and adopt a tilde, .̃

1-4-3 Fourier Transform

The temporal and spatial Fourier transformations are mathematical functionals that are used
to linearly transform terms from one domain to another. Note that although the transforma-
tions have a similar form, they differ in the choice of sign of the exponential. The temporal
Fourier transformation transforms a time domain function into a frequency domain function
according to the following formula:

f̂(xi, ω) =
∫ ∞
−∞

f(xi, t)e−jωtdt, (1-5)

where ω denotes the angular frequency, t is the time, xi = (x1, x2, x3) represents the spatial
coordinates and j is the imaginary unit. To convert a frequency domain function back to a
time domain function, an inverse temporal Fourier transformation is performed,

f(xi, t) = 1
2π

∫ ∞
−∞

f̂(xi, ω)ejωtdω. (1-6)

Since the frequency spectrum is complex conjugate symmetric (Hermitian symmetric) around
the frequency axis, we can rewrite the inverse temporal Fourier transform as (Bracewell, 1999)

f(xi, t) = Re
( 1
π

∫ ∞
0

f̂(xi, ω)ejωtdω
)
. (1-7)
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In carrying out a Fourier transformation one must also take into account the action of the
transformation on any operators. After a temporal Fourier expansion, the temporal differen-
tial operator, ∂

∂t , is effectively replaced by jω.
The spatial Fourier transform is used to express a spatial coordinate in terms of its wavenum-
ber and it can be applied to any combination of the spatial coordinates. The one-dimensional
spatial Fourier transformation of the x1 coordinate is given by

f̃(k1, x2, x3, ω) =
∫ ∞
−∞

f̂(xi, ω)ejk1x1dx1, (1-8)

where k1 is the wavenumber in the x1 direction. The one-dimensional inverse spatial Fourier
transformation is

f̂(xi, ω) = 1
2π

∫ ∞
−∞

f̃(k1, x2, x3, ω)e−jk1x1dk1. (1-9)

After applying a spatial Fourier transformation, the spatial differential operator, ∂
∂xi

, over
which the transform was done is effectively replaced by −jki, where the subscript i denotes
the spatial coordinate of the transform.

1-5 Thesis Outline

This thesis is divided into six chapters. In the first Chapter we have provided a general
introduction into the topic. Chapter 2 starts from the macroscopic governing equations of
the seismoelectric system, as derived by Pride (1994). These equations are rewritten in the
form of the one-way wave equation; in which vertical derivatives of the continuous field vector
quantities are expressed in terms of the horizontal variations of the same field vector quantities
plus contributions from source terms. We then consider a reduced two-dimensional case and
take advantage of symmetry properties of the derived system matrix to decouple the system
into its SH-TE and P-SV-TM modes. The P-SV-TM mode is explored in further detail in
Chapter 3. The eigenvectors of the P-SV-TM system are introduced and combined into a
flux-normalized composition matrix. With the use of the composition matrix and its inverse,
the decomposition matrix, we decompose the P-SV-TM mode into its one-way downgoing
and upgoing wavefield constituents. Chapter 4 presents the reflection formalism that is used
to compute the total upgoing and downgoing wavefields at a receiver location due to an
arbitrarily located source. This reflection formalism is applied to the system of Chapter 3 to
carry out seismoelectric simulations of the P-SV-TM propagation mode, which are presented
in Chapter 5. The final chapter presents conclusions.
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Chapter 2

Seismoelectric equations

In this chapter Pride’s macroscoping governing equations are introduced and expressed in the
form of the two-way wave equation, in which the field vector of the two-way wave equation
contains the field quantities that are continuous across interfaces. We simplify the system
by considering horizontally layered homogeneous media, for which the system decouples into
two independent modes of propagation: SH-TE and P-SV-TM. Chapter 3 continues on with
the P-SV-TM mode of the two-dimensional seismoelectric system.

2-1 Governing equations

The complete set of macroscopic governing equations of the coupled electromagnetic elasto-
dynamic system in an arbitrary inhomogeneous porous medium were derived by Pride (1994)
through the use of volume averaging techniques. His electrokinetic formulation has been ex-
tensively modelled (e.g. Haartsen and Pride (1997); Garambois and Dietrich (2002); Haines
and Pride (2006), among others) and experimentally validated (Schoemaker et al., 2011). The
governing equations can be grouped into pairs of transport equations, stress-strain relations
and electromagnetic constitutive laws, all interrelated through a coupling coefficient. The
coupling is a consequence of two postulates: first, that an electrical double layer is present,
and secondly, that at initial conditions there is no net charge in a volume of the porous
material. The term “macroscopic” refers to the assumption that the wavelengths of the ap-
plied disturbances are significantly greater than the grain dimension, such that there is no
scattering from individual grains. This restricts the maximum frequency to the order of 106

Hz. Further assumptions of the derived theory are the following: only linear disturbances
are considered, the fluid is assumed to be an ideal electrolyte, and wave-induced diffusion
effects, the Lorentz force and piezoelectric effects are neglected. A further discussion on these
assumptions can be found in Pride (1994) and Pride and Haartsen (1996).
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10 Seismoelectric equations

2-1-1 Coupling coefficient

The electrokinetic coupling coefficient, L̂, accounts for the coupling between the elastodynamic
and electromagnetic wavefields and is described by,

L̂ = L0

[
1 + j ωωc

m
4

(
1− 2dlΛ

)2
(

1 + dl
√

jωρf

η

)2]− 1
2
, (2-1)

where L0 represents the static coupling coefficient,

L0 = − φ

α∞

ε0ε
f
r ζ

η

(
1− 2d

l

Λ

)
; (2-2)

ωc, the critical frequency; m, the similarity parameter; dl, the Debye screening length; Λ,
the volume-to-surface ratio of the porous material; ρf , the density of the fluid phase; η,
the viscosity of the pore fluid; φ, the porosity as a volume fraction; ε0, the permittivity of
free space; εfr , the fluid’s relative dielectric permittivity; ζ, the zeta potential of the double
layer; and α∞, the tortuosity. The frequency dependency of the coupling coefficient relates
to relaxation associated with the development of viscous boundary layers in the pores (Pride,
1994). The amplitude and frequency behaviour of the coupling coefficient has been validated
by recent laboratory measurements (Schoemaker, 2011).
The critical frequency is a transition frequency separating low-frequency viscous flow from
high-frequency inertial flow and is defined as

ωc = φη

α∞k0ρf
. (2-3)

For realistic rock and fluid parameters, the transition frequency lies above the frequency band
of interest, where we consider the bandwidth of interest to lie between 101 and 103 Hz. Thus
although L̂ is complex and frequency-dependent, viscous boundary layers do not develop
when ω � ωc, hence we can assume that L̂ = L0. Considering the small dlΛ limit, the static
coupling coefficient reduces to (Garambois and Dietrich, 2001; Pride and Garambois, 2005),

L0 = − φ

α∞

ε0ε
f
r ζ

η
. (2-4)

The Debye screening length is a characteristic thickness of the electrical double layer, typically
on the order of nanometres. It is essentially the distance over which mobile charge carriers
in the electrolyte screen out the surface charge present on the grains of the saturated porous
medium,

dl =
L∑
l=1

√√√√ε0ε
f
rkBT

e2z2
l Nl

, (2-5)

where kBT is the thermal energy of the system, e is the elementary charge, zl is the valence
of the lth ion, Nl is the bulk-ionic concentration of species l out of a total L species in the
system. Nl is calculated from

Nl = 103CNA

∣∣z′l∣∣ (2-6)

where C is the electrolyte concentration of the pore fluid in moles per litre, NA is Avogadro’s
constant, with a value of 6.022× 1023 mol−1, and z′l is the valency of the conjugate ion. The
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2-1 Governing equations 11

zeta potential is also known as the electrokinetic potential and defines the electrical potential
at the electrical double layer’s slipping plane, a plane within the diffuse layer that separates
the surface-bound ions from the mobile ions. A literature review by Pride and Morgan (1991)
on experimental studies of the zeta potential of quartz found

ζ = 8 + 26log10C (2-7)

to be a reasonable approximation, with ζ in millivolts.
The similarity parameter is a dimensionless number that consists only of terms that charac-
terize the pore geometry. It is mathematically expressed as

m = φΛ2

α∞k0
, (2-8)

and will be fixed to a value of 8 (Johnson, 1989) throughout our modelling.

2-1-2 Mechanical equations

Pride’s transport equations are derived from the principle of conservation of linear momentum
and are expressed for an arbitrary inhomogeneous anisotropic medium by

jωρ̂bv̂si + jωρ̂f ŵi −
∂τ̂ bij
∂xj

= f̂ bi , (2-9)

jωρ̂f v̂si + η

k̂
(ŵi − L̂Êi) + ∂p̂

∂xi
= f̂fi , (2-10)

with

ŵi = φ(v̂fi − v̂
s
i ), (2-11)

ρ̂b = (1− φ)ρ̂s + φρ̂f , (2-12)

where ρ̂b, ρ̂s and ρ̂f are the anisotropic frequency-dependent density functions for the bulk,
solid and fluid, respectively, v̂si and v̂

f
i are the averaged solid and fluid particle velocities, ŵi is

the Darcy filtration velocity, τ̂ bij is the averaged bulk stress, f̂ bi and f̂
f
i are the volume densities

of the external (source) force applied to the bulk and fluid phases, respectively, and p̂ is the
averaged fluid pressure. The normal components of the bulk stress tensor, corresponding to
i = j, can be considered to be tensile stresses, while the tangential components, corresponding
to i 6= j, are the shear stresses. In an ideal fluid, where shearing stresses are not sustained,
the pressure is given by the negative tensile stress (Wapenaar and Berkhout, 1989). Note that
setting the coupling coefficient to zero reduces Equations (2-9) and (2-10) to Biot’s equations
of motion (Biot, 1956) and decouples the elastodynamic and electromagnetic waves.
The second set of mechanical equations, the stress-strain relations, are given by

−jωτ̂ bij + d̂ijkl
∂v̂sk
∂xl

+ Ĉij
∂ŵk
∂xk

= d̂ijklĥ
b
kl + Ĉij q̂

i, (2-13)

jωp̂+ Ĉkl
∂v̂sk
∂xk

+ M̂
∂ŵk
∂xk

= Ĉklĥ
b
kl + M̂ q̂i (2-14)
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12 Seismoelectric equations

where d̂ijkl, Ĉ and M̂ are stiffness parameters of the porous solid, ĥbkl is the bulk external
deformation rate density and q̂i is the fluid phase volume injection rate density. Note that
τ̂ bij = τ̂ bji, ĥbij = ĥbji, Ĉij = Ĉji and dijkl = djikl = dijlk = dklij .

Throughout the rest of this thesis, we consider all elastic media parameters to be isotropic
and specified media parameters to be frequency-independent. The frequency-independent
stiffness tensor for isotropic media is

dijkl = (KG −
2
3G

fr)δijδkl +Gfr(δikδjl + δilδjk), (2-15)

where Gfr is the frequency-indepedent shear modulus of the solid framework and KG is
Gassmann’s bulk modulus,

KG = Kfr + φKf + (1 + φ)Ks∆
1 + ∆ , (2-16)

where Kfr, Kf and Ks are the frequency-independent compression moduli of the grain frame-
work, the fluid phase and the solid phase, respectively. ∆ is defined as

∆ = Kf

φ(Ks)2 [(1− φ)Ks −Kfr]. (2-17)

The elastic parameters C and M can be defined in terms of the fluid and solid moduli,

C = Kf + Ks∆
1 + ∆ , (2-18)

M = Kf

φ(1 + ∆) . (2-19)

The dynamic permeability is taken to be frequency-dependent with k̂ij = δij k̂ and k̂ defined
by,

k̂ = k0
[
(1 + j ωωc

4
m)

1
2 + j ωωc

]−1
. (2-20)

If we again consider frequencies significantly below the transition frequency, the frequency-
dependent dynamic permeability reduces to the value of the static permeability, k̂ = k0.

2-1-3 Electromagnetic equations

The Maxwell-Faraday equation and Ampere’s circuital law are given in the frequency domain
by (Griffiths, 1999)

εijk
∂Êk
∂xj

= −jωB̂i, (2-21)

εijk
∂Ĥk

∂xj
= jωD̂i + Ĵfi , (2-22)

where D̂i and B̂i are the averaged electric and magnetic flux densities, Ĥi and Êi are the
averaged electric and magnetic fields and Ĵfi is the ionic-current density. With the inclusion
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of electric and magnetic current densities, they lead to the following equations (Pride, 1994;
De Ridder, 2007)

jωD̂i + Ĵ i,e
i − εijk

∂Ĥk

∂xj
= −Ĵs,e

i , (2-23)

jωB̂i + Ĵ i,m
i + εijk

∂Êk
∂xj

= −Ĵs,m
i , (2-24)

where Ĵ i,e
i and Ĵ i,m

i are the induced electric and magnetic current densities and Ĵs,e
i and

Ĵs,m
i are the external electric and magnetic current source densities. The above equations are

closed by

Ĵ i,e
i = (σ̂e − η

k̂
L̂2)Êi + η

k̂
L̂ŵi, (2-25)

Ĵ i,m
i = σ̂mĤi, (2-26)

and the constitutive relations

D̂i = ε0εrÊi = εÊi, (2-27)
B̂i = µ0µrĤi = µĤi, (2-28)

where σ̂e and σ̂m are the frequency-dependent electric and magnetic conductivities, while ε
and µ are the frequency-independent dielectric permittivity and magnetic permeability, re-
spectively. With the substitution of Equations (2-25), (2-26), (2-27) and (2-28) into Maxwell’s
equations (2-23) and (2-24), the coupled electromagnetic field equations are obtained

jωεÊi + (σ̂e − η

k̂
L̂2)Êi + η

k̂
L̂ŵi − εijk

∂Ĥk

∂xj
= −Ĵs,e

i , (2-29)

jωµĤi + σ̂mĤi + εijk
∂Êk
∂xj

= −Ĵs,m
i . (2-30)

For notational clarity, Ĵs,e
i and Ĵs,m

i will be replaced by Ĵei and Ĵmi , where Ĵei and Ĵmi now take
on the definitions of external electric and magnetic current source densities. All relaxation
mechanisms are captured within the electric and magnetic conductivity functions.
The electrical conductivity is a function of the frequency-independent bulk-fluid conductivity,
σf , the frequency-independent double layer ion electromigration conductance, Cem, and the
frequency-dependent conductance due to electrically induced streaming of the excess double
layer, Ĉos. It is defined as (Pride, 1994)

σ̂e = φσf

α∞

(
1 + 2(Cem + Ĉos)

σfΛ

)
, (2-31)
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14 Seismoelectric equations

with

σf =
L∑
l=1

(ezl)2blNl, (2-32)

Cem ' 2−Dl
L∑
l=1

(ezl)2blNl

[
exp

(
− ezlζ

2kBT

)
− 1

]
, (2-33)

Ĉos = (ε0εfr )2ζ2

2dlη P

(
1−

2dlexp[ jπ4 ]
Pδ

)−1

(1), (2-34)

(2-35)

where bl represents the ion-mobilities, δ the viscous skin depth,

δ =
√

η

ρfω
, (2-36)

and P is a dimensionless parameter. P is always greater than one and is defined as

P = 8kBT (dl)2

ε0ε
f
r ζ2

L∑
l=1

Nl

[
exp

(
− ezlζ

2kBT

)
− 1

]
. (2-37)

The weak dependency on frequency within the electro-osmotic conductance term does not
cause relaxation in the electrical conductivity in the frequency band of interest, thus the
frequency-dependent electrical conductivity reduces to

σ̂e = φσf

α∞
, (2-38)

to leading order in d
Λ (Pride and Garambois, 2005). We simplify the conductivity of the pure

electrolyte to
σf = (ez)2N(b+ + b−), (2-39)

where b+ and b− are the ionic mobilities of the cations and anions, respectively, with typical
values of approximately 3.0× 1011 m s−1 N−1 for inorganic ions (Haartsen and Pride, 1997).
In this thesis magnetic relaxation losses will be neglected, i.e. σ̂m = 0. The relative mag-
netic permeability will be set to one, such that µ = µ0µr = µ0, while the relative dielectric
permittivity will be calculated using (Pride, 1994)

εr = φ

α∞
(εfr − εsr) + εsr, (2-40)

where εfr and εsr are the relative dielectric constants of the fluid and solid, respectively.

2-2 Boundary Conditions

The wavefields on either side of an interface between two dissimilar materials must satisfy
specific continuity requirements. At a lossless open-pore interface (i.e. where the pores of
the two media are completely connected), Deresiewicz and Skalak (1963) found that the only
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permissible set of boundary conditions requires the continuity of the following quantities:
the normal and tangential components of the bulk stress, τ bn; the normal and tangential
components of the skeletal velocity, vs; the pore pressure, p; and the normal component
of the Darcy filtration velocity, wn. The interface conditions governing the electric and
magnetic fields can be derived from the integral form of Maxwell’s equations. It is found that
the tangential components of these fields are continuous.
Based on the normal being oriented in the x3 direction, the above quantities can all be
combined into a wave vector q:

q =
(
−τ b3, p,vs, w3,E0,H0

)t
, (2-41)

where

τ b3 =

τ b13
τ b23
τ b33

 ,vs =

vs1vs2
vs3

 ,E0 =
(
E1
E2

)
,H0 =

(
H2
−H1

)
. (2-42)

The continuity of this wave vector at a source-free interface can be explicitly written as

lim
x3↓x3,n

qn+1(x3)− lim
x3↑x3,n

qn(x3) = 0, (2-43)

where x3 is positive downwards, and layers n and n + 1 are the upper and lower mediums,
respectively, as depicted in Figure 2-1.
If there is a source located inside a homogeneous medium, the wave vectors on either side

Figure 2-1: Interface between two media with different medium parameters.

of the source level will not be continuous: they will be subject to a jump discontinuity due
to the source injection. The jump is represented by the source vector, d, which has the same
number of components as the wave vector and is specified at the source level, x3,s ,

lim
x3↓x3,s

qb(x3)− lim
x3↑x3,s

qa(x3) = d(x3,s), (2-44)

where qb is evaluated immediately below the source level and qa immediately above.

2-3 Rewriting governing equations

In explorational geophysics one can define the vertical axis as a “preferred direction of prop-
agation”. The wavefields in the preferred direction of propagation, in this case depth, can
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16 Seismoelectric equations

be split into oppositely propagating waves. To take this preferential direction into account
and assuming that the medium is laterally homogeneous, the wavefield quantities that are
not differentiable with depth are eliminated from the system. The wavefield quantities that
are differentiable with depth are subject to boundary conditions at interfaces in the laterally
homogeneous medium. These remaining wavefield quantities can be expressed in terms of
their horizontal derivatives (Wapenaar, 1996).
In this section the governing equations will be organized into a form that can be compactly
expressed through a matrix-vector representation of the two-way wave equation,

∂q̂
∂x3

= Âq̂ + d̂, (2-45)

where q̂ contains the chosen field quantities, Â contains the medium parameters of the system
and the horizontal derivatives of the field quantities and d̂ represents the source vector. It is
thus necessary to reorganize the governing equations such that the vertical derivatives of the
continuous wavefields are expressed as a function of the horizontal derivatives, plus a source
term, as previously performed by Shaw (2005) and De Ridder (2007).
First we rewrite the transport equations (Equations (2-9) and (2-10)) as

jωρbv̂si + jωρfδijŵj −
∂τ̂ bij
∂xj

= f̂ bi , (2-46)

jωρfδtij v̂
s
i + η

k̂

[
ŵi − L̂(γtiαÊα + δi3Ê3)

]
+ ∂p̂

∂xi
= f̂fi , (2-47)

where the subscript α denotes the horizontal components. To express the stress-strain re-
lations in a similar form, the ∂kŵk term is eliminated from Eq. (2-13) by isolating it from
Eq. (2-14),

∂ŵk
∂xk

= 1
M

(
Cĥbkl +Mq̂i − jωp̂− C ∂v̂

s
k

∂xk

)
. (2-48)

This is substituted into Eq. (2-13) to yield

− jωτ̂ bij + eijkl
∂v̂sk
∂xl
− jω C

M
δij p̂ = eijklĥ

b
kl, (2-49)

where
eijkl = dijkl −

C2

M
δijδkl. (2-50)

The stress-strain relations can now be reformulated as

−jωτ̂ bij + eijkl
∂v̂si
∂xl
− jω C

M
δij p̂ = eijklĥbkl, (2-51)

jωp̂+ Cδtkl
∂v̂sk
∂xk

+M
∂ŵk
∂xk

= Ĉtklĥ
b
kl + M̂ q̂i, (2-52)

where eijkl is a symmetric matrix that is defined as

eijkl = ejl =

e1j1l e1j2l e1j3l
e2j1l e2j2l e2j3l
e3j1l e3j2l e3j3l

 , (2-53)
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2-3 Rewriting governing equations 17

and can also be expressed through

(ejl)ik = eijkl = Sδijδkl +Gfr(δikδjl + δilδjk). (2-54)

The elastic media parameter S is defined as

S = KG −
2
3Gfr −

C2

M
. (2-55)

The electromagnetic field equations are similarily written in a manner that facilitates sep-
aration of the vertical and horizontal derivatives. Rewriting Equation (2-29) leads to the
following three equations:

jωε̂LÊ1 + η

k̂
L̂ŵ1 + ∂Ĥ2

∂x3
− ∂Ĥ3
∂x2

= −Ĵe1 , (2-56)

jωε̂LÊ2 + η

k̂
L̂ŵ2 −

∂Ĥ1
∂x3

+ ∂Ĥ3
∂x1

= −Ĵe2 , (2-57)

jωε̂LÊ3 + η

k̂
L̂ŵ3 −

∂Ĥ2
∂x1

+ ∂Ĥ1
∂x2

= −Ĵe3 . (2-58)

with the definitions

ρ̂E = η

jωk̂
, ε̂ = ε0εr + σ̂e

jω
, ε̂L = ε̂− ρ̂EL̂2. (2-59)

The term ρ̂E denotes the effective density of the fluid in relative motion; ε̂, the effective di-
electric permittivity of the porous medium; and ε̂L, a modified effective dielectric permittivity
that includes the coupling coefficient. Equation (2-30) can be analogously rewritten to yield

jωµ0Ĥ2 + ∂Ê1
∂x3

− ∂Ê3
∂x1

= −Ĵm2 , (2-60)

jωµ0Ĥ1 −
∂Ê2
∂x3

+ ∂Ê3
∂x2

= −Ĵm1 , (2-61)

jωµ0Ĥ3 −
(

∂
∂x2

− ∂
∂x1

)
Êα = −Ĵm3 . (2-62)
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18 Seismoelectric equations

Now the vertical derivatives can be compiled from the rewritten governing equations,

−∂τ̂
b
i3

∂x3
= −jωρbv̂si − jωρf (δiαŵα + δi3ŵ3) + ∂τ̂ biα

∂xα
+ f̂ bi , (2-63)

∂p̂

∂x3
= −jωρfδti3v̂si −

η

k̂

(
ŵ3 − L̂Ê3

)
+ f̂f3 , (2-64)

∂v̂si
∂x3

= e−1
i3k3

(
jωτ̂ bi3 + jω

C

M
δi3p̂− ei3kβ

∂v̂si
∂xβ

)
+ e−1

i3k3ei3klĥ
b
kl, (2-65)

∂ŵ3
∂x3

= −jω
M
p̂− C

M

(
δtiβ

∂v̂si
∂xβ

+ δti3
∂v̂si
∂x3

)
− ∂ŵβ
∂xβ

+ Ĉtklĥ
b
kl

M
+ q̂i, (2-66)

∂Ê1
∂x3

= −jωµ0Ĥ2 + ∂Ê3
∂x1

− Ĵm2 , (2-67)

∂Ê2
∂x3

= jωµ0Ĥ1 + ∂Ê3
∂x2

+ Ĵm1 , (2-68)

∂Ĥ2
∂x3

= −jωε̂L −
η

k̂
L̂ŵ1 + ∂Ĥ3

∂x2
− Ĵe1 , (2-69)

∂Ĥ1
∂x3

= jωε̂L + η

k̂
L̂ŵ2 + ∂Ĥ3

∂x1
+ Ĵe2 . (2-70)

(2-71)

The next step is to express these vertical derivatives as functions of the elements of the
wave vector and the horizontal derivatives of that vector. Starting with the equation for the
vertical derivative of the bulk-averaged stress tensor, Equation (2-63), the ŵα and τ̂ biα terms
are eliminated, after being isolated from Equations (2-47) and (2-51),

−∂τ̂
b
i3

∂x3
= −jωρbv̂si − jωρfδi3ŵ3 − jωρfδiα

[
k̂

η

(
f̂fα − jωρfδtiαv̂si −

∂p̂

∂xα

)
+ L̂γtiαÊα

]

+ 1
jω

∂

∂xα

(
eiαkβ

∂v̂si
∂xβ

+ eiαk3
∂v̂si
∂x3
− jω C

M
δiαp̂− eiαklĥbkl

)
+ f̂ bi .

(2-72)

We then eliminate the ∂3v̂
s
i term through substitution of Equation (2-65),

−∂τ̂
b
i3

∂x3
= ∂

∂xα
(eiαk3e−1

i3k3τ̂
b
i3) + jωρf

k̂

η
δiα

∂p̂

∂xα
− 1
jω

∂

∂xα

(
jω

C

M
uiαp̂−Uiαkβ

∂v̂si
∂xβ

)

− jω
(
ρbδij − jω(ρf )2 k̂

η
δiαδ

t
iα

)
v̂si − jωρfδi3ŵ3 − jωρf L̂γtiαδiαÊα

− jωρf k̂
η
δiαf̂

f
α + f̂ bi −

1
jω

∂

∂xα
Uiαkβhbkβ,

(2-73)

where

Uiαkβ = eiαkβ − eiαk3e−1
i3k3ei3kβ, (2-74)

uiα = δiα − eiαk3e−1
i3k3δi3. (2-75)
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2-3 Rewriting governing equations 19

The vertical derivative of p̂ can be expressed by isolating Ê3 from Equation (2-58) and sub-
stituting it into Equation (2-64),

∂p̂

∂x3
= −jωρfδti3v̂si −

η

k̂

(
1 + ρ̂EL̂2

ε̂L

)
ŵ3 + ρ̂EL̂

ε̂L

(
∂Ĥ2
∂x1

− ∂Ĥ1
∂x2

)

− ρ̂EL̂
ε̂L

Ĵe3 + f̂f3 .

(2-76)

To rewrite ∂3ŵ3 we eliminate the ∂3v̂
s
i and ∂βŵβ terms from Equation (2-66) using Equa-

tions (2-65) and (2-47),

∂ŵ3
∂x3

= − C
M
δti3e

−1
i3k3

(
jωτ̂ bi3 + jω

C

M
δi3p̂

)
− jω

M
p̂+ ∂

∂xβ

(
k̂

η

∂p̂

∂xβ
+ jωρf

k̂

η
δtiβ v̂

s
i − L̂γtiβÊβ

)

− C

M
utiβ

∂v̂si
∂xβ

+ C

M
utiβĥtβ −

∂

∂xβ

k̂

η
f̂fβ + q̂i.

(2-77)

Ê3 is eliminated from Equation (2-67) and Equation (2-68) using Equation (2-58) to yield
the following differential equations:

∂Ê1
∂x3

= −jωµ0Ĥ2 + ∂

∂x1

1
jωε̂L

(
∂Ĥ2
∂x1

− ∂Ĥ1
∂x2

)
− ∂

∂x1

ρ̂EL̂
ε̂L

ŵ3 − Ĵm2 −
∂

∂x1

1
jωε̂L

Ĵe3 (2-78)

and

∂Ê2
∂x3

= jωµ0Ĥ1 + ∂

∂x2

1
jωε̂L

(
∂Ĥ2
∂x1

− ∂Ĥ1
∂x2

)
− ∂

∂x2

ρ̂EL̂
ε̂L

ŵ3 + Ĵm1 −
∂

∂x2

1
jωε̂L

Ĵe3 . (2-79)

Finally, Ĥ3 and ŵα are removed from Equations (2-69) and (2-70) using Equations (2-62)
and (2-47). This results in

∂Ĥ2
∂x3

= −jωε̂LÊ1 + η

k̂
L̂
[
jωρf

k̂

η
v̂s1 + k̂

η

(
∂p̂

∂x1
− f̂f1

)
− L̂Ê1

]

− Ĵe1 + 1
jωµ0

∂

∂x2

(
∂Ê1
∂x2

− ∂Ê2
∂x1

)
− 1
jωµ0

∂Ĵm3
∂x2

(2-80)

and

∂Ĥ1
∂x3

= jωε̂LÊ2 −
η

k̂
L̂
[
jωρf

k̂

η
v̂s2 + k̂

η

(
∂p̂

∂x2
− f̂f2

)
− L̂Ê2

]

− Ĵe2 −
1

jωµ0

∂

∂x1

(
∂Ê1
∂x2

− ∂Ê2
∂x1

)
+ 1
jωµ0

∂Ĵm3
∂x1

.

(2-81)

Equations (2-65), (2-73), (2-76), (2-77), (2-78), (2-79), (2-80) and (2-81) are combined in the
form of the seismoelectric two-way wave equation,

∂q̂
∂x3

= Âq̂ + d̂. (2-82)
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20 Seismoelectric equations

The equations listed above express the vertical derivatives of the continous field quantities
as a function of these quantities multiplied by a system matrix, Â, and supplemented by a
source vector. The order of the wave vector q̂ is specifically chosen such that the system
matrix in 2-D will have a block diagonal matrix structure,

Â2-D =
(

Â11 0
0 Â22

)
, (2-83)

and such that the main diagonal block square matrices have the following off-diagonal block
matrix structures,

Â11 =
(

0 Â11
12

Â11
21 0

)
, Â22 =

(
0 Â22

12
Â22

21 0

)
. (2-84)

The motivation behind this choice of structure for the system matrix is to take advantage
of the resulting symmetry properties and thereby simplify the linear algebra involved when
decomposing the system into its upgoing and downgoing components, as elaborated on in
Chapter 3 (Ursin, 1983). To create the desired structure, the wave vector q̂ is defined as

q̂ =
(
−τ̂ b23,−Ĥ1, v̂

s
2,−Ê2, v̂

s
3, ŵ3, τ̂

b
13, Ĥ2,−τ̂ b33, p̂, v̂

s
1, Ê1

)t
, (2-85)

leading to a source vector of

d̂ =



f̂ b2 −
ρf

ρ̂E
f̂f2 − 1

jω

(
∂
∂x1

Gfr(ĥ12 + ĥ21)− ∂
∂x2

(
2Gfrĥ22 + (S − S2

KC )(ĥ11 + ĥ22)
))

−Ĵe2 − L̂f̂
f
2 + ∂

∂x1
1

jωµ0
Ĵm3

ĥ23 + ĥ32
−Ĵm1 + ∂

∂x2
1

jωε̂L
Ĵe3

ĥ33 + ( S
KC )(ĥ11 + ĥ22)

− ∂
∂xβ

k̂
η f̂

f
β + C

M utiβĥkβ + q̂i

−f̂ b1 + ρf

ρ̂E
f̂f1 + 1

jω

(
∂
∂x2

Gfr(ĥ12 + ĥ21)− ∂
∂x1

(
2Gfrĥ11 + (S − S2

KC )(ĥ11 + ĥ22)
))

−Ĵe1 − L̂f̂
f
1 − ∂

∂x2
1

jωµ0
Ĵm3

f̂ b3 −
ρf

ρ̂E
f̂f3

f̂f3 − 1
jωε̂L
L̂η
k̂
Ĵe3

ĥ31 + ĥ13
−Ĵm2 − ∂

∂x1
1

jωε̂L
Ĵe3



.

(2-86)
The system matrix in 3D, Â, can be subdivided into a number of submatrices,

Â =

Â11 Â12 Â13
Â21 Â22 Â23
Â31 Â32 Â33

 . (2-87)

The above ordering of the wave vector will facililate the decoupling of the system into the
SH-TE and P-SV-TM modes, as presented in Section 2-4. The submatrices of Â are given by

Â11 =
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2-3 Rewriting governing equations 21


0 0 −jωρ̂c + 1

jw ( ∂
∂x1

(Gfr
∂
∂x1
·) + ∂

∂x2
(ν1

∂
∂x2
·)) jωρf L̂

0 0 jωρf L̂ jωε̂− 1
jω

∂
∂x1

( 1
µ0

∂
∂x1
·)

− jω
Gfr

0 0 0
0 jωµ0 − 1

jω
∂
∂x2

( 1
ε̂L

∂
∂x2
·) 0 0

 ,
(2-88)

Â12 =


0 0 0 0
0 0 0 0
− ∂
∂x2

0 0 0
0 ∂

∂x2
( ρ̂
E

ε̂L
L̂·) 0 − 1

jω
∂
∂x2

( 1
ε̂L

∂
∂x1
·)

 ,

Â13 =


− ∂
∂x2

( S
Kc
·) ρf

ρ̂E
∂
∂x2
− ∂

∂x2
(2CGfr
MKc

·) 1
jw ( ∂

∂x2
(ν2

∂
∂x1
·) + ∂

∂x1
(Gfr

∂
∂x2
·)) 0

0 L̂ ∂
∂x2

0 − 1
jω

∂
∂x1

( 1
µ0

∂
∂x2
·)

0 0 0 0
0 0 0 0

 ,
(2-89)

Â21 =


0 0 −( S

Kc
) ∂
∂x2

0
0 0 ∂

∂x2
( ρ

f

ρ̂E
·)− 2CGfr

MKc
∂
∂x2

∂
∂x2

(L̂·)
0 0 − 1

jw ( ∂
∂x2

(Gfr
∂
∂x1
·)− ∂

∂x1
(ν2

∂
∂x2
·) 0

0 0 0 1
jω

∂
∂x2

( 1
µ0

∂
∂x1
·)

 , (2-90)

Â23 =


− jω
Kc

jωC
MKc

jωC
MKc

−jω( C2

M2Kc
+ 1

M ) + ∂
∂xβ

( 1
jωρ̂E

∂
∂xβ
·)

( S
Kc

) ∂
∂x1

− ∂
∂x1

( ρ
f

ρ̂E
·) + 2CGfr

MKc
∂
∂x1

0 ∂
∂x1

(L̂·)

−( S
Kc

) ∂
∂x1

0
∂
∂x1

( ρ
f

ρ̂E
·)− 2CGfr

MKc
∂
∂x1

− ∂
∂x1

(L̂·)
jωρ̂c − 1

jw ( ∂
∂x1

(ν1
∂
∂x1
·)− ∂

∂x2
(Gfr ∂

∂x2
·)) jωρf L̂

jωρf L̂ −jωε̂+ 1
jω

∂
∂x2

( 1
µ0

∂
∂x2
·)

 , (2-91)

Â31 =


− ∂
∂x2

0 0 0
0 ρ̂E

ε̂L
L̂ ∂
∂x2

0 0
0 0 0 0
0 1

jω
∂
∂x1

( 1
ε̂L

∂
∂x2
·) 0 0

 , (2-92)
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Â32 =


−jωρb −jωρf ∂

∂x1
0

−jωρf −jωρ̂E(1 + ρ̂E

ε̂L
L̂2) 0 ρ̂E

ε̂L
L̂ ∂
∂x1

− ∂
∂x1

0 jω
Gfr 0

0 − ∂
∂x1

( ρ̂
E

ε̂L
L̂·) 0 −jωµ0 + 1

jω
∂
∂x1

( 1
ε̂L

∂
∂x1
·)

 , (2-93)

where ρ̂c is a complex density,

ρ̂c = ρb − (ρf )2

ρ̂E
, (2-94)

and where the following representations are also introduced,

ν1 = 4Gfr
(
S +Gfr

Kc

)
, (2-95)

ν2 = 2Gfr
(
S

Kc

)
, (2-96)

Kc = S + 2Gfr. (2-97)

Note that Â22 and Â33 are 4× 4 null matrices. It can be seen that the entries of Â12, Â13,
Â21 and Â31 are all zero when the derivatives in the x2 direction are set to zero.
The wave vector contains the field quantities that are continuous over a source-free interface:
the −τ bi1,−τ bi2, E3, H3, w1 and w2 fields were eliminated. From the governing equations, it
is clear that these eliminated quantities can be expressed in terms of the considered field
quantities according to the following relations,

−τ̂ bi1 = 1
jω

(
ei1klhbkl − ei1kl

∂v̂si
∂xl

+ jω
C

M
δi1p̂

)
, (2-98)

−τ̂ bi2 = 1
jω

(
ei2klhbkl − ei2kl

∂v̂si
∂xl

+ jω
C

M
δi2p̂

)
, (2-99)

Ê3 = 1
jωε̂L

(
∂Ĥ1
∂x2

− ∂Ĥ2
∂x1

− η

k̂
L̂ŵ3 − Ĵe3

)
, (2-100)

Ĥ3 = 1
jωµ0

(
∂Ê1
∂x2

− ∂Ê2
∂x1

− Ĵm3

)
, (2-101)

ŵ1 = k̂

η

(
f̂f1 − jωρ

f v̂s1 −
∂p̂

∂x1

)
+ L̂Ê1, (2-102)

ŵ2 = k̂

η

(
f̂f2 − jωρ

f v̂s2 −
∂p̂

∂x2

)
+ L̂Ê2. (2-103)

2-4 Decoupled SH-TE and P-SV-TM systems

Up to this point we have considered a three-dimensional wave propagation problem in a hor-
izontally layered, isotropic medium with homogeneous subdomains. Setting the vertical axis
as the “preferred direction of progation”, allowed us to express changes in the vertical com-
ponents of the wave vector quantities in terms of lateral changes in those field quanitites and
contributions from source terms. The mechanical waves, both longitudinal and transverse,
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2-4 Decoupled SH-TE and P-SV-TM systems 23

and the electromagnetic waves are fully coupled. The electromagnetic field can be expressed
as the sum of transverse electric and transverse magnetic modes. TE-modes do not have an
electric field in the direction of propagation, whereas-TM modes do not have a magnetic field
in the direction of propagation.
In horizontally layered media the seismoelectric system can be separated into two indepen-
dent systems: SH-TE and P-SV-TM. Horizontally polarized shear waves generate electrical
currents that are coupled to transverse electric polarized electromagnetic waves while both
compressional waves and vertically polarized shear waves generate currents that are coupled
to transverse magnetic polarized electromagnetic waves (Haartsen and Pride, 1997).
We now consider waves propagating in the x1x3 plane, where x3 is defined positive down-
wards, with line sources in the x2 direction (De Ridder, 2007): all x2 derivatives are set to
zero. The TE-mode is represented by its Ĥ1, Ê2 and Ĥ3 components, while the TM-mode is
represented by the complementary Ê1, Ĥ2 and Ê3 components.
The previous organization of the wave vector now facilitates decoupling the SH-TE system
from the P-SV-TM system. We can express the decoupled components of the seismoelectric
wave equation as follows:

q̂ =
(

q̂H
q̂V

)
, (2-104)

where

q̂H = (−τ̂ b23,−Ĥ1, v̂
s
2,−Ê2)t, (2-105)

q̂V = (v̂s3, ŵ3, τ̂
b
13, Ĥ2,−τ̂ b33, p̂, v̂

s
1, Ê1)t; (2-106)

and

Â =
(

ÂH 0
0 ÂV

)
=


02×2 Â12,H 04×8
Â21,H 02×2

04×8 04×4 Â12,V
Â21,V 04×4

 , (2-107)

where ÂH is determined from Â11 of Equation (2-88), while Â12,V and Â21,V follow from
Â23 and Â32 of Equations (2-91) and (2-93), respectively. Setting the x2 derivatives to zero
results in the following submatrices,

Â12,H =
(
−jωρ̂c + 1

jω ( ∂
∂x1

(Gfr( ∂
∂x1
·))) jωρf L̂

jωρf L̂ jωε̂− 1
jω ( ∂

∂x1
( 1
µ0

( ∂
∂x1
·)))

)
, (2-108)

Â21,H =
(
− jω
Gfr 0
0 jωµ0

)
, (2-109)

Â12,V =


− jω

KC
jωC
MKC −( S

Kc
) ∂
∂x1

0
jωC
MKC −jω( C2

M2KC
+ 1

M ) + ∂
∂x1

( 1
jωρ̂E

∂
∂x1
·) ∂

∂x1
( ρ

f

ρ̂E
·)− 2CGfr

MKC
∂
∂x1

− ∂
∂x1

(L̂·)
( S
Kc

) ∂
∂x1

− ∂
∂x1

( ρ
f

ρ̂E
·) + 2CGfr

MKC
∂
∂x1

jωρ̂c + 1
jw ( ∂

∂x1
(ν1

∂
∂x1
·) jωρf L̂

0 ∂
∂x1

(L̂·) jωρf L̂ −jωε̂

 ,
(2-110)
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Â21,V =


−jωρb −jωρf ∂

∂x1
0

−jωρf −jωρ̂E
(
1 + ρ̂EL̂2

ε̂L

)
0 ρ̂E

ε̂L
L̂ ∂
∂x1

− ∂
∂x1

0 jω
Gfr 0

0 − ρ̂E

ε̂L
L̂ ∂
∂x1

0 −jωµ0 + 1
jω

∂
∂x1

( 1
ε̂L

∂
∂x1
·)

 . (2-111)

The source vector is similarly rearranged,

d̂ =
(

d̂H
d̂V

)
, (2-112)

where

d̂H =


f̂ b2 −

ρf

ρ̂E
f̂f2 − 1

jω
∂
∂x1

Gfr(ĥ12 + ĥ21)
−Ĵe2 − L̂f̂

f
2 + ∂

∂x1
1

jωµ0
Ĵm3

ĥ23 + ĥ32
−Ĵm1

 , (2-113)

d̂V =



ĥ33 + ( S
KC )(ĥ11 + ĥ22)

q̂i − ∂
∂x1

1
jωρ̂E

f̂f1

−f̂ b1 + ρf

ρ̂E
f̂f1 + 1

jω
∂
∂x1

(
2Gfrĥ11 + (S − S2

KC )(ĥ11 + ĥ22)
)

−Ĵe1 − L̂f̂
f
1

−f̂ b3 + ρf

ρ̂E
f̂f3

−f̂f3 + ρ̂E

ε̂L
L̂Ĵe3

ĥ31 + ĥ13
−Ĵm2 − ∂

∂x1
1

jωε̂L
Ĵe3


. (2-114)

2-5 Symmetry Properties

It can be seen that the two-way system matrix Â and the decoupled SH-TE and P-SV-TM
submatrices obey the following symmetry relation,

ÂtN = −NÂ, (2-115)

where
N =

(
0 I
−I 0

)
. (2-116)

The identity and null matrices are appropriately scaled for the system being considered. Note
that we use the following mathematical property relating a spatial derivative to its transpose:(

∂

∂x1

)t
= −

(
∂

∂x1

)
. (2-117)
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Chapter 3

Seismoelectric decomposition for the
P-SV-TM system

In this chapter we continue from our derivation of the decoupled 2-D P-SV-TM system. The
wave velocities of the four wavetypes (Pf, Ps, SV, TM) can be derived from the system
matrix and are presented. We then perform an eigendecomposition on the system matrix,
further decomposing the system into a product of matrices consisting of its eigenvectors and
eigenvalues. The eight eigenvectors of the P-SV-TM system, corresponding to downgoing and
upgoing waves of each of the four wavetypes, are composed into a composition matrix. To
take advantage of one-way reciprocity theorems, the composition matrix is flux-normalized.
After presenting the flux-normalized composition matrix, we show the relation between the
composition matrix and its inverse, the decomposition matrix.
An introduction to one-way wave theory is presented. It is shown that the one-way wave and
source vectors can be obtained through the action of the flux-normalized decomposition matrix
on the two-way wave vector. In an analogous fashion, the composition matrix composes the
two-way field quantities from their downgoing and upgoing one-way wave vector constituents.
We then determine the eigenvalues and eigenvectors for the special situation of the P-SV-TM
system in a vacuum, again deriving the corresponding flux-normalized composition matrices.
The composition and decomposition matrices for both the porous medium and the vacuum
domain are used in Chapter 4 to determine the reflection coefficients for incident wavefields
at both porous-porous and porous-vacuum interfaces.

3-1 Decoupled system matrix

The 2-D P-SV-TM system from the previous chapter is transformed from the (x1, x3, w)
domain to the (k1, x3, w) domain through the application of a 1-D horizontal spatial Fourier
transformation. In the wavenumber-frequency domain, the wave vector and system matrix
are written as follows,

q̃V = (ṽs3, w̃3, τ̃
b
13, H̃2,−τ̃ b33, p̃, ṽ

s
1, Ẽ1)t, (3-1)
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26 Seismoelectric decomposition for the P-SV-TM system

and
ÃV =

(
0 Ã12,V

Ã21,V 0

)
, (3-2)

where

Ã12,V =


− jω

KC
jωC
MKC

jk1S
KC 0

jωC
MKC

jk2
1

ωρ̂E
− jω

(
C2

M2KC + 1
M

)
2jk1CGfr

MKC − jk1ρf

ρ̂E
jk1L̂

− jk1S
KC

jk1ρf

ρ̂E
− 2jk1CGfr

MKC jωρ̂c − jk2
1ν1
ω jωρf L̂

0 −jk1L̂ jωρf L̂ −jωε̂

 , (3-3)

Ã21,V =


−jωρb −jωρf −jk1 0
−jωρf −jωρ̂E

(
1 + ρ̂EL̂2

ε̂L

)
0 − jk1ρ̂EL̂

ε̂L

jk1 0 jω
Gfr 0

0 jk1ρ̂EL̂
ε̂L

0 −jωµ0 + jk2
1

ωε̂L

 . (3-4)

The system matrix is further rewritten such that it only contains elastic parameters that
were used by Haartsen and Pride (1997) in their derivation of the eigenvectors of the P-SV-
TM system. We adopt Biot’s stiffness parameters, where H = KG + 4Gfr

3 and HM − C2 =
M(S + 2Gfr) = MKC . Using these relations and recalling that ν1 = 4Gfr

(
S+Gfr

KC

)
allows us

to recast Ã12,V as

Ã12,V =


− jωM
HM−C2

jωC
HM−C2 jk1

(
1− 2GfrM

HM−C2

)
0

jωC
HM−C2

jk2
1

ωρ̂E
− jωH

HM−C2
2jk1CGfr

HM−C2 − jk1ρf

ρ̂E
jk1L̂

−jk1
(
1− 2GfrM

HM−C2

)
jk1ρf

ρ̂E
− 2jk1CGfr

HM−C2 jωρ̂c − 4jk2
1G

fr

ω

(
1− GfrM

HM−C2

)
jωρf L̂

0 −jk1L̂ jωρf L̂ −jωε̂L
(
1 + ρ̂EL̂2

ε̂L

)

 .
(3-5)

The application of the horizontal spatial Fourier transform allows us to rewrite the previous
symmetry relation for the system matrix, Equation (2-115), as (Wapenaar, 1996; Slob, 2009)

Ãt(−k1, x3, ω)N = −NÃ(k1, x3, ω). (3-6)

The decoupled P-SV-TM source vector, Equation (2-114), is similarly reformulated to give

d̃V =



h̃33 +
(
1− 2GfrM

HM−C2

)
(h̃11 + h̃22)

q̃i + k1
ωρ̂E

f̃f1

−f̃ b1 + ρf

ρ̂E
f̃f1 − 2k1Gfr

ω

(
h̃11 +

(
1− 2GfrM

HM−C2

)
(h̃11 + h̃22)

)
−J̃e1 − L̂f̃

f
1

f̃ b3 −
ρf

ρ̂E
f̃f3

f̃f3 −
ρ̂E

ε̂L
L̂J̃e3

h̃31 + h̃13
−J̃m2 + k1

ωε̂L
J̃e3


. (3-7)

Gavin Menzel-Jones Master of Science Thesis



3-2 Wave velocities 27

3-2 Wave velocities

Pride and Haartsen (1996) determined the complex velocities of the compressional waves, the
vertically polarized shear wave and the electromagnetic wave for the P-SV-TM propagation
mode to be:

2
ĉ2
pf

= ξ̂ −

√√√√ξ̂2 − 4ρbρ̂E
HM − C2

(
ρ̂c

ρb
+ ρ̂EL̂2

ε̂L

)
, (3-8)

2
ĉ2
ps

= ξ̂ +

√√√√ξ̂2 − 4ρbρ̂E
HM − C2

(
ρ̂c

ρb
+ ρ̂EL̂2

ε̂L

)
, (3-9)

2
ĉ2
sv

= ρ̂c

Gfr + µε̂L

(
1 + ρ̂EL̂2

ε̂L

)
+

√√√√[ ρ̂c
Gfr − µε̂L

(
1 + ρ̂EL̂2

ε̂L

)]2

− 4µ(ρf )2L̂2

Gfr , (3-10)

2
ĉ2
tm

= ρ̂c

Gfr + µε̂L

(
1 + ρ̂EL̂2

ε̂L

)
−

√√√√[ ρ̂c
Gfr − µε̂L

(
1 + ρ̂EL̂2

ε̂L

)]2

− 4µ(ρf )2L̂2

Gfr , (3-11)

where the parameter ξ̂ is

ξ̂ = ρbM + ρ̂EH(1 + ρ̂EL̂2/ε̂L)− 2ρfC
HM − C2 . (3-12)

Note that a negative sign is associated with the fast P-wave and a positive sign with the slow
P-wave. If the coupling coefficient in the above equations is set to zero, the P-wave velocities
would lead to those as defined by Biot (1956) and the transverse wave velocities would reduce
to their usual definitions.
The real phase velocity of the waves is represented by the real part of their complex velocities,

Vw = Re(ĉw), (3-13)

where the subscript w refer to either the fast P-wave (w = pf), the slow P-wave (w = ps),
the vertically polarized shear wave (w = sv), or the transverse magnetic wave (w = tm).
The imaginary part of the complex velocities describes the attenuation. The real attenuation
coefficient, in units of inverse length, is given by (Haartsen and Pride, 1997)

αw = ω

Im(ĉw) , (3-14)

3-3 Eigendecomposition

The system matrix Ã of the two-way wave equation, Equation (2-45), can be decomposed
into matrices consisting of its eigenvectors and eigenvalues,

Ã = L̃H̃L̃−1, (3-15)

where H̃ is a diagonal matrix containing the eigenvalues of the system and where the columns
of L̃ contain the corresponding eigenvectors. The diagonal eigenvalue matrix can be written
in block-matrix form as

H̃ =
(

H̃+ 0
0 H̃−

)
=
(
−H̃ 0

0 H̃

)
, (3-16)

Master of Science Thesis Gavin Menzel-Jones



28 Seismoelectric decomposition for the P-SV-TM system

where we considered H̃± = ∓H̃. The diagonal elements of H̃ represent the eigenvalues of the
system, as given by the square root operator H̃,

H̃± = ∓jH̃w = ∓j
√
ω2

c2
w

− k2
1. (3-17)

From the above expression, it can be seen that the square root operator represents the vertical
wavenumber k3. Since H̃w represents a square root, it has two valid solutions and we must
define the desired sign of the root. For reasons that will be discussed in Section 3-6, we desire
that the real part of H̃ be positive, corresponding to the imaginary part of H̃w being negative.
Therefore, we choose the negative-valued root of

√
ω2

c2
w
− k2

1. Specifying a one-way wavefield
ordering of (pf+, ps+, sv+, tm+, pf−, ps−, sv−, tm−) allows the diagonal operator matrix
to be explicitly given by

H̃ = diag(jH̃+
pf , jH̃

+
ps, jH̃+

sv, jH̃+
tm, jH̃−pf , jH̃

−
ps, jH̃−sv, jH̃−tm). (3-18)

3-4 Eigenvectors

The eigenvectors of the P-SV-TM system were derived by Pride (1994) and, for our ordering
of the wave vector, are given by

ã±m =



±q̃mcm
±q̃mγLmcm
∓2Gfrpq̃mcm

0
(H − 2Gfrp2c2

m + γLmC)/cm
(C + γLmM)/cm

pcm
−ρ̂EL̂γ̂Lmpcm/ε̂L


and ã±n =



−pcn
−p(Gfr − c2

nρ
b)/(ρfcn)

−Gfr(q̃2
n − p2)cn

−ρ̂EL̂γTnGfr/(ρfcn)
∓2Gfrpq̃ncn

0
±q̃ncn

∓µρ̂EL̂Gfrγ̂Tnq̃ncn/ρ
f


(3-19)

where m = (pf, ps) and n = (sv, tm).

3-5 Composition matrix

We seek to arrange the eigenvectors of the P-SV-TM system into a composition matrix K̃
that has the following structure,

K̃ =
(

K̃1 K̃1
K̃2 −K̃2

)
, (3-20)

where K̃1 and K̃2 are equally-sized submatrices of K̃. To obtain this structure we redefine the
upgoing fast and slow compressional wave eigenvectors with a sign switch from the original
definitions. This results in the first four elements of the upgoing fast and slow compressional
wave eigenvectors having the same sign as their downgoing counterparts, whereas the second
half of the elements have a sign switch from their downgoing counterparts. Having created the
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3-5 Composition matrix 29

desired structure of the composition matrix, we notationally drop the negative sign that was
introduced into the columns corresponding to the upgoing compressional wave eigenvectors
and present the ordering of K̃ as

K̃ = (ã+
pf , ã

+
ps, ã+

sv, ã+
tm, ã−pf , ã

−
ps, ã−sv, ã−tm). (3-21)

The submatrices of K̃ are defined by

K̃1 =


q̃pfcpf q̃pscps

q̃pfcpf γ̂Lpf q̃pscpsγ̂Lps
−2Gfrp1qpfcpf −2Gfrp1qpscps

0 0

−p1csv −p1ctm
−p1(Gfr − c2

svρ
b)/(ρfcsv) −p1(Gfr − c2

tmρ
b)/(ρfctm)

−Gfr(q2
sv − p2

1)csv −Gfr(q2
tm − p2

1)ctm
−ρ̂EL̂γ̂TsvGfr/(ρfcsv) −ρ̂EL̂γ̂TtmGfr/(ρfctm)

 (3-22)

and

K̃2 =


(H − 2Gfrp2

1c
2
pf + γ̂LpfC)/cpf (H − 2Gfrp2

1c
2
ps + γ̂LpsC)/cps

(C + γ̂LpfM)/cpf (C + γ̂LpsM)/cps
p1cpf p1cps

−ρ̂EL̂γ̂Lpfp1cpf/ε̂L −ρ̂EL̂γ̂Lpsp1cps/ε̂L

−2Gfrp1q̃svcsv −2Gfrp1q̃tmctm
0 0

q̃svcsv q̃tmctm
−µρ̂EL̂Gfrγ̂Tsv q̃svcsv/ρ

f −µρ̂EL̂Gfrγ̂Ttmq̃tmctm/ρ
f

 , (3-23)

where

γ̂Lm = −
( H
c2
m
− ρb)

( C
c2
m
− ρf )

and γ̂Tn = −
( 1
c2
n
− ρb

Gfr )
( 1
c2
n
− µ0ε̂L)

. (3-24)

We add an additional subscript of L and T to distinguish between longitudinal and transverse
waves.
The following relation holds between the horizontal and vertical slownesses and the complex
wavespeed:

p2 + q̃2
w = 1

ĉ2
w

, (3-25)

where the horizontal slowness, p, can be seen as the horizontal counterpart to the vertical
slowness represented by q̃w. The vertical slowness can be related to the previously defined
square-root operator by q̃w = H̃w

ω . In the 2-D case, as discussed in this thesis, the par-
tial derivatives with respect to the x2 direction have been set to zero, such that the radial
ray parameter, p, can be replaced by the signed ray parameter, p1, as used in Eq. (3-22)
and Eq. (3-23).
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30 Seismoelectric decomposition for the P-SV-TM system

3-5-1 Flux-normalized composition matrix

The above eigenvectors of Haartsen and Pride (1997) were normalized with respect to their
solid displacements; however, alternative normalizations are possible. We choose a normal-
ization based on conserving energy flux across interfaces (Frasier, 1970).
The flux-normalized composition matrix L̃ can be found by multiplying the composition op-
erator by a diagonal matrix, D̃, according to L̃ = K̃D̃, where

D̃ =
(

D̃1 0
0 D̃2

)
. (3-26)

The elements of the diagonal matrix can be found by substituting the above relation for L̃
into the following symmetry condition relating the inverse of the composition matrix to its
transpose (Ursin, 1983):

L̃−1(p1, x3, w) = −N−1L̃t(−p1, x3, w)N. (3-27)

Carrying out the substitution results in

(K̃(p1, x3, w)D̃)−1 = −N−1(K̃(−p1, x3, w)D̃)tN, (3-28)

and bringing the elements of L̃−1 to the right-hand side yields

I =−N−1D̃tK̃t(−p1, x3, w)NK̃(p1, x3, w)D̃,
=− K̃(p1, x3, w)D̃N−1D̃tK̃t(−p1, x3, w)N.

(3-29)

We find from the second equation that

2K̃1(p1, x3, w)D̃1D̃2K̃t
2(−p1, x3, w) = I, (3-30)

where D̃1 = diag(d̃1, d̃2, d̃3, d̃4) and D̃2 = diag(d̃5, d̃6, d̃7, d̃8). It can be seen that only products
of the diagonal matrices occur (i.e. d̃1d̃5), indicating that the relatives values of the elements
can be chosen. We choose to set D̃1 = D̃2, thereby improving the amplitude balance of
the flux-normalized composition matrix. The second constraint on the diagonal elements is
creating a final flux-normalized composition matrix that has the following symmetry:

L̃ =
(

L̃1 L̃1
L̃2 −L̃2

)
. (3-31)

With these contraints in mind, the diagonal elements are chosen to be

d̃1 = d̃5 =
[
2q̃pf

(
H + 2γ̂LpfC + γ̂2

LpfM
)]− 1

2 , (3-32)

d̃2 = d̃6 =
[
2q̃ps

(
H + 2γ̂LpsC + γ̂2

LpsM
)]− 1

2 , (3-33)

d̃3 = d̃7 =
[
2q̃sv

(
−Gfr + µ(ρ̂EL̂γ̂TsvGfr/ρf )2

)]− 1
2 , (3-34)

d̃4 = d̃8 =
[
2q̃tm

(
−Gfr + µ(ρ̂EL̂γ̂TtmGfr/ρf )2

)]− 1
2 . (3-35)
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3-6 One-way wave equation 31

The submatrices of the flux-normalized composition matrix are

L̃1 =


d̃1q̃pfcpf d̃2q̃pscps

d̃1q̃pfcpf γ̂Lpf d̃2q̃pscpsγ̂Lps
−2d̃1G

frp1qpfcpf −2d̃2G
frp1qpscps

0 0

−d̃3p1csv −d̃4p1ctm
−d̃3p1(Gfr − c2

svρ
b)/(ρfcsv) −d̃4p1(Gfr − c2

tmρ
b)/(ρfctm)

−d̃3G
fr(q2

sv − p2
1)csv −d̃4G

fr(q2
tm − p2

1)ctm
−d̃3ρ̂

EL̂γ̂TsvGfr/(ρfcsv) −d̃4ρ̂
EL̂γ̂TtmGfr/(ρfctm)

 , (3-36)

L̃2 =


d̃1(H − 2Gfrp2

1c
2
pf + γ̂LpfC)/cpf d̃2(H − 2Gfrp2

1c
2
ps + γ̂LpsC)/cps

d̃1(C + γ̂LpfM)/cpf d̃2(C + γ̂LpsM)/cps
d̃1p1cpf d̃2p1cps

−d̃1ρ̂
EL̂γ̂Lpfp1cpf/ε̂L −d̃2ρ̂

EL̂γ̂Lpsp1cps/ε̂L

−2d̃3G
frp1q̃svcsv −2d̃4G

frp1 ˜qtmctm
0 0

d̃3q̃svcsv d̃4q̃tmctm
−d̃3µρ̂

EL̂Gfrγ̂Tsv q̃svcsv/ρ
f −d̃4µρ̂

EL̂Gfrγ̂Ttmq̃tmctm/ρ
f

 . (3-37)

The flux-normalized decomposition operator, L̃−1, is found by inverting Equation (3-31) to
obtain

L̃−1(p1) = 1
2

(
L̃−1

1 (p1) L̃−1
2 (p1)

L̃−1
1 (p1) −L̃−1

2 (p1)

)
. (3-38)

However, to avoid explicitly numerically calculating the inverses of the submatrices, one can
see from Eq. (3-27) that if the composition matrix is a general function of the horizontal
wavenumber, the flux-normalized decomposition matrix can be expressed as

L̃−1(p1) =
(

L̃t2(−p1) L̃t1(−p1)
L̃t2(−p1) −L̃t1(−p1)

)
. (3-39)

By comparing the above equations for the decomposition matrix, we note that the desired
inverse of one submatrix can be expressed in terms of the transpose of the other submatrix,

L̃−1
1 (p1) = 2L̃t2(−p1) and L̃−1

2 (p1) = 2L̃t1(−p1). (3-40)

3-6 One-way wave equation

Wapenaar and Berkhout (1989) extensively treated wavefield extrapolation and the relation
between two-way and one-way wave equations. As seen in Section 3-3, the system matrix Ã
of the two-way wave equation, Eq. (2-45), can be decomposed into matrices composed of its
eigenvectors and eigenvalues,

Ã = L̃H̃L̃−1. (3-41)

Master of Science Thesis Gavin Menzel-Jones



32 Seismoelectric decomposition for the P-SV-TM system

Substituting Eq. (3-41) into the two-way wave equation and multiplying from the left by L̃−1

gives (Wapenaar et al., 2001)

L̃−1 ∂q̃
∂x3

= H̃L̃−1q̃ + L̃−1d̃. (3-42)

From this, it can be inferred that the one-way wave and source vectors can be obtained
through the action of the decomposition operator on the respective two-way quantities,

p̃ = L̃−1q̃, (3-43)
b̃ = L̃−1d̃. (3-44)

Further defining the one-way operator matrix B̃ as

B̃ = H̃− L̃−1 ∂

∂x3
L̃, (3-45)

allows the one-way wave equation to be cast as

∂p̃
∂x3

= B̃p̃ + b̃. (3-46)

The solution of Eq. (3-46) was found by Wapenaar and Berkhout (1989), using the method
of variation of parameters (Boyce and Di Prima, 1969), to be

p̃(x3) = W̃(x3, x3,0)p̃(x3,0) +
∫ x3

x3,0
W̃(x3, x

′
3)b̃(x′3)dx′3, (3-47)

where W̃ is the one-way extrapolation operator. This general solution of the one-way wave
equation presents the one-way wavefield at a given depth, x3, as a function of the wavefield
extrapolated from a reference depth, x3,0, and of the contribution from all sources located
between x3,0 and x3. The wavefield extrapolator is defined as follows:

W̃(x3, x3,0) =
∞∑

m=0

(x3 − x3,0)m

m! B̃m(x3,0), (3-48)

where B̃m(x3,0) is defined recursively as

B̃m+1(x3,0) = ∂B̃m(x3)
∂x3

∣∣∣∣∣
(x3,0)

+ B̃m(x3,0)B̃1(x3,0) (3-49)

and
B̃0(x3,0) = I. (3-50)

Referring back to Equations (3-43) and (3-44) and multiplying both equations from the left
by L̃, it can be seen that the two-way wave and source vectors are created from the one-way
wave and source vectors through the action of a composition operator,

q̃ = L̃p̃ and d̃ = L̃b̃. (3-51)
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The flux-normalized one-way wave and source vectors can be expressed as

p̃ =
(

p̃+

p̃−

)
and b̃ =

(
b̃+

b̃−

)
, (3-52)

where a positive superscript indicates a downgoing wavefield and a negative superscript an
upgoing wavefield. Based on the arrangement of the flux-normalized composition order for
the P-SV-TM system,

L̃ = (ã+
pf , ã

+
ps, ã+

sv, ã+
tm, ã−pf , ã

−
ps, ã−sv, ã−tm), (3-53)

the one-way vector quantities are organized as

p̃ =



p̃+
pf

p̃+
ps

p̃+
sv

p̃+
tm

p̃−pf
p̃−ps
p̃−sv
p̃−tm


and b̃ =



b̃+pf
b̃+ps
b̃+sv
b̃+tm
b̃−pf
b̃−ps
b̃−sv
b̃−tm


. (3-54)

Since the composition matrix specifies how the two-way field quantities are constructed from
the above one-way wavefields, we can examine the structure of the composition matrix to
ascertain which one-way wavefields contribute to a given two-way wavefield. To make this
analysis more clear, the composition matrix is expressed symbolically as follows:

L̃ =



· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
0 0 · · 0 0 · ·
· · · · · · · ·
· · 0 0 · · 0 0
· · · · · · · ·
· · · · · · · ·


, (3-55)

with a · representing a non-zero entry. In composing two-way wavefields from a system
containing all eight one-way wavefields, we see that measurements of any of ṽs3, w̃3, τ̃ b13, −
τ̃ b33, ṽs1 and Ẽ1 contain information on all eight one-way wavefields. However, a measurement
of the x2 component of the magnetic field is not sensitive to either of the compressional
wavefields, as a magnetic field is not carried along as part of the material response. In addition,
a measurement of a change in the phase-averaged fluid pressure is clearly independent of the
upgoing or downgoing SV- and TM-waves. This can be intuitively explained since these waves
are polarized in the transverse direction, yet an ideal fluid cannot sustain shear stresses and
thus will not undergo a change in pressure (Shaw, 2005).

3-6-1 Homogeneous source-free domain

In the case of a homogeneous source-free domain, Eq. (3-46) can be reduced to (Wapenaar
and Berkhout, 1989)

∂p̃
∂x3

= H̃p̃, (3-56)
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34 Seismoelectric decomposition for the P-SV-TM system

of which the general solution reads

p̃(x3) = W̃(x3, x3,0)p̃(x3,0). (3-57)

The general expression for the extrapolation operator can be simplified by noting that in a
homogeneous domain the derivative seen in Eq. (3-49) drops out, such that

B̃m+1 = B̃mB̃1 (3-58)

and where
B̃m = B̃m

1 = H̃m. (3-59)
This allows W̃ to be symbolically written as

W̃(x3, x3,0) = exp[H̃(∆x3)], (3-60)

where
∆x3 = x3 − x3,0. (3-61)

To ensure that the wavefields physically decay during propagation with the extrapolation op-
erator, we must appropriately choose H̃ such that the real part of the exponential is negative.
This is done by choosing the negative-valued root of ω2

ĉ2
w
− k2

1, as previously discussed.
The extrapolation operator W̃ satisfies the property that

W̃(x3,2, x3,0) = W̃(x3,2, x3,1)W̃(x3,1, x3,0). (3-62)

If we set x3,2 = x3,0, the following relation is obtained,

[W̃(x3,1, x3,0)]−1 = W̃(x3,0, x3,1). (3-63)

Substituting the expression for the eigenvalue matrix H̃ from Equation (3-16) into Equa-
tion (3-60) leads to

W̃(x3, x3,0) =
(

W̃+(x3, x3,0) 0
0 W̃−(x3, x3,0)

)
, (3-64)

where both W̃+(x3, x3,0) and W̃−(x3, x3,0) are diagonal matrices. The downgoing and upgoing
wavefield extrapolators can be explicitly written as

W̃+(∆x3) =


exp[jH̃+

pf (∆x3)] 0 0 0
0 exp[jH̃+

ps(∆x3)] 0 0
0 0 exp[jH̃+

sv(∆x3)] 0
0 0 0 exp[jH̃+

tm(∆x3)]


(3-65)

and

W̃−(∆x3) =


exp[jH̃−pf (∆x3)] 0 0 0

0 exp[jH̃−ps(∆x3)] 0 0
0 0 exp[jH̃−sv(∆x3)] 0
0 0 0 exp[jH̃−tm(∆x3)]

 ,
(3-66)

from which it can be seen that the flux-normalized one-way propagators obey the following
reciprocity relation (Wapenaar, 1998),

W̃+(x3,1, x3,0) = W̃−(x3,0, x3,1) (3-67)
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3-7 The P-SV-TM system in a vacuum 35

3-7 The P-SV-TM system in a vacuum

To simulate the effect of the Earth’s surface on the propagating wavefields, the upper half-
space of the modelled system is approximated by a vacuum. In a vacuum there are no pressure
or shear waves, solely electromagnetic waves. Due to the resulting absence of seismoelectric
coupling, the TM system can be decoupled from the P-SV system. We perform an eigende-
composition on the reduced TM system to determine its eigenvalues and eigenvectors. We
first write out the reduced two-way wave equation,

∂q̃TM
∂x3

= ÃTMq̃TM + d̃TM, (3-68)

where the two-way wave and source vectors are (note that the TM subscript will be left out
in the remainder of this section for convenience),

q̃ =
(
H̃2
Ẽ1

)
and d̃ =

(
−J̃e1
−J̃m2

)
. (3-69)

The system matrix is now 2× 2:

Ã =
(

0 −jωε0
−jωµ0 + jk2

1
ωε0

0

)
, (3-70)

where we have taken the dielectric permittivity in vacuum to be ε0.
The expected velocity of the electromagnetic wave in a vacuum can be confirmed by finding
the trivial solution of the zero eigenvalue problem, i.e. by solving

∣∣∣Ã∣∣∣ = 0. We find

ω2ε0µ0 − k2
1 = 0, (3-71)

ε0µ0 = k2
1
ω2 = 1

ĉ2
0
, (3-72)

which leads to the expected result of

ĉ2
0 = 1

ε0µ0
. (3-73)

The non-zero eigenvalues of the TM system are found by solving the eigenvalue problem ÃL̃ =
L̃H̃. An equation for the eigenvalues is given by the characteristic equation,

∣∣∣Ã− H̃I
∣∣∣ = 0,

and we seek the two distinct solutions:

H̃2 + ω2ε0µ0 − k2
1 = 0 (3-74)

−H̃2 = ω2

c2
0
− k2

1 (3-75)

It can be seen that there are two eigenvalues, jH̃ and −jH̃. We again make use of the relation
jH̃± = ∓jH̃, where

jH̃± = ∓j
√
ω2

ĉ2
0
− k2

1. (3-76)
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36 Seismoelectric decomposition for the P-SV-TM system

To determine the eigenvectors we substitute the general eigenvalues (jH̃±) into the general
eigenvector (ã±n ) problem, (Ã− jH̃±)ã±n = 0, leading to

−jH̃±ã±1 − jωε0ã±2 = 0, (3-77)

ã±1

(
−jωµ0 + jk2

1
ωε0

)
− jH̃±ã±2 = 0. (3-78)

We normalize to the magnetic field component by setting ã±1 to one and solving for ã±2 ,

−jH̃± − jωε0ã±2 = 0, (3-79)

ã±2 = −H̃
±

ωε0
= ± H̃

ωε0
. (3-80)

(3-81)

Therefore the general eigenvector can be expressed as

ã± =
(

1
± H̃ωε0

)
. (3-82)

Arranging these eigenvectors into the columns of the composition matrix with an order of(
ã+ ã−

)
gives

K̃ =
(

1 1
H̃
ωε0

− H̃ωε0

)
. (3-83)

This composition matrix can be flux-normalized, following the same scheme as previously
outined. We find the value of the diagonal element to be

d̃1 = d̃2 =
[
2 H̃
ωε0

]− 1
2

=
[
2 q̃
ε0

]− 1
2
. (3-84)

Placing d̃1 on the diagonal of D̃ and multiplying it from the left with K̃ allows us to construct
the flux-normalized composition operator for the vacuum:

L̃ = K̃D̃ =
(
d̃1 d̃1
d̃1

q̃
ε0
−d̃1

q̃
ε0

)
. (3-85)

The flux-normalized composition operator for the reduced system again has the specific struc-
ture defined by Equation (3-31), with L̃1 and L̃2 representing the appropriate elements.
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Chapter 4

Reflection Formalism

This chapter provides the framework for carrying out seismoelectric simulations in a layered
earth model. It follows the approach outlined by De Ridder (2007), which is based on a global
reflection matrix formalism, originally derived for a three layer medium by Airy (1833). The
scheme determines the total recorded wavefield at any depth from an arbitrarily located
source, taking into account reflections from the bounding free surface and layers, including
internal multiples. The waves that are not accounted for in applying this scheme are discussed
in Section 4-2.
The model, seen in Figure 4-1, is oriented with the z axis positive downwards, bounded on
the top by the pressure-free surface and on the bottom by a lower half-space. The domain
of the vacuum above the pressure-free surface is denoted by D0, where the subscript denotes
the layer number, which increases as one progresses downward through the layered model.
Layer Dn+1 is bounded above at depth zn and below at depth zn+1. The lower half-space is
denoted DN and has an upper boundary of zN-1.

4-1 Local Reflection Operators

A local reflection operator describes the generation of an outgoing plane wave from an in-
coming plane wave due to the reflection at an interface between contrasting media. The local
downgoing reflection operator of a plane wave impinging on interface n, located at depth zn,
is defined according to

p̃−n (zn) = r̃+
n (zn)p̃+

n (zn), (4-1)

where the interface is below Dn and above Dn+1, as depicted in Figure 4-2.
Similarily, the local upgoing reflection operator of a plane wave impinging on interface n− 1
located at depth zn−1 is

p̃+
n (zn−1) = r̃−n (zn−1)p̃−n (zn−1), (4-2)

where the interface is below Dn−1 and above Dn, as depicted in Figure 4-3.
The local reflection operators simply define the reflections from a single layer. With multiple
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38 Reflection Formalism

Figure 4-1: Illustration of layered model used. Subdomain n is denoted by n and has a lower
boundary at depth zn, where the z axis is positive downwards. Figure adapted from De Ridder
(2007).

layers present we seek to define a reflection operator that accounts for both the immediate
reflection from a single layer plus all reflections and multiples due to layers on the other side
of it. To account for all reflections returning from either above or below a given interface, it
is necessary to respectively define either an upgoing or downgoing global reflection operator.

4-2 Global Reflection Operators

The downgoing and upgoing global reflection operators are respectively defined as

p̃−n (zn) = R̃+
n (zn)p̃+

n (zn), (4-3)
p̃+
n (zn−1) = R̃−n (zn−1)p̃−n (zn−1). (4-4)

The downgoing and upgoing global reflection operators account for all internal multiples of
the waves occurring in regions below or above, respectively, the reference depth level where
they are defined. They do not account for the presence of a source in either the regions below
or above the reference depth level. Secondary incoming waves are also excluded. This refers
to waves that have been reflected back up or down through the reference depth level, where
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4-2 Global Reflection Operators 39

Figure 4-2: Illustration of upgoing wavefield generated by a local downgoing reflection operator.

Figure 4-3: Illustration of downgoing wavefield generated by a local upgoing reflection operator.

the downgoing or upgoing global reflection operators, respectively, were defined, and that
undergo another reflection on the other side of the reference depth level, such that they pass
through the reference depth level for a third time.
The previously defined wavefield extrapolator operator propagates downgoing or upgoing
wavefields, respectively, from depth zn to z:

p̃+
n (z) = W̃+(z, zn)p̃+

n (zn), (4-5)
p̃−n (z) = W̃−(z, zn)p̃−n (zn). (4-6)

Substituting Equations (4-5) and (4-6) into Equation (4-3) leads to

W̃−(zn, z)p̃−n (z) = R̃+
n (zn)W̃+(zn, z)p̃+

n (z). (4-7)

Rearranging and using the symmetry property of the flux-normalized one-way wavefield ex-
trapolators, W̃−(z, zn) = W̃+(zn, z) (Wapenaar, 1998), gives

p̃−n (z) = W̃+(zn, z)R̃+
n (zn)W̃+(zn, z)p̃+

n (z). (4-8)

Upon rewriting the above equation and making use of Equation (4-3), a method of extrapo-
lating the downgoing global reflection operator is found:

R̃+
n (z) = W̃+(zn, z)R̃+

n (zn)W̃+(zn, z). (4-9)

The same approach can be followed for the upgoing global reflection operator to obtain

R̃−n (z) = W̃−(zn−1, z)R̃−n (zn−1)W̃−(zn−1, z). (4-10)
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4-2-1 Explicit Representation

To have an expression for the global reflection operators in any layer, it is necessary to derive a
recursive formula to propagate these operators from a known interface to the desired location.
Domains outside the source layer will be considered first. The starting point for this derivation
is treating the boundary conditions on the two-way wave vector q̃ for a lossless source-free
interface (Section 2-2),

lim
z↓zn

q̃n+1(z)− lim
z↑zn

q̃n(z) = 0, (4-11)

by evaluating the limits as the interface is approached from below (layer n + 1) and above
(layer n):

q̃n(zn) = q̃n+1(zn). (4-12)

Substituting in the relation q̃n(zn) = L̃np̃n(zn) leads to

L̃np̃n(zn) = L̃n+1p̃n+1(zn). (4-13)

It has previously been seen that the one-way wave vector, p̃, and composition operator, L̃,
can be written as

p̃ =
(

p̃+

p̃−

)
(4-14)

and
L̃ =

(
L̃1 L̃1
L̃2 −L̃2

)
. (4-15)

With this matrix representation, Equation (4-13) can be decomposed into

L̃n,1p̃+
n (zn) + L̃n,1p̃−n (zn) = L̃n+1,1p̃+

n+1(zn) + L̃n+1,1p̃−n+1(zn), (4-16)
L̃n,2p̃+

n (zn)− L̃n,2p̃−n (zn) = L̃n+1,2p̃+
n+1(zn)− L̃n+1,2p̃−n+1(zn). (4-17)

Substituting Equation (4-3) and

p̃−n+1(zn) = R̃+
n+1(zn)p̃+

n+1(zn) (4-18)

into Equations (4-16) and (4-17) yields

L̃n,1[I + R̃+
n (zn)]p̃+

n (zn) = L̃n+1,1[I + R̃+
n+1(zn)]p̃+

n+1(zn), (4-19)
L̃n,2[I− R̃+

n (zn)]p̃+
n (zn) = L̃n+1,2[I− R̃+

n+1(zn)]p̃+
n+1(zn). (4-20)

It is now possible to derive an expression for R̃+
n (zn) in terms of R̃+

n+1(zn),

R̃+
n (zn) = [(L̃n,1 − L̃n,2) + (L̃n,1 + L̃n,2)R̃+

n+1(zn)][(L̃n,1 + L̃n,2) + (L̃n,1 − L̃n,2)R̃+
n+1(zn)]−1.

(4-21)
where L̃n,1 and L̃n,2 are defined by

L̃n,1 = [L̃n,1]−1L̃n+1,1 and L̃n,2 = [L̃n,2]−1L̃n+1,2 . (4-22)

Based on the properties of the flux-normalized system, we can rewrite the inverse of the
composition operator L̃n,1 as a function of the transpose of the composition operator L̃n,2.
This also applies to L̃n,2 and L̃n,1. By avoiding the use of an inverse, the numerical speed

Gavin Menzel-Jones Master of Science Thesis



4-3 Source subdomain 41

and accuracy of calculating L̃n,1 and L̃n,2 will be increased. These terms are thus rewritten
as

L̃n,1 = [2L̃tn,2]L̃n+1,1 and L̃n,2 = [2L̃tn,1]L̃n+1,2. (4-23)

The constant scaling factor in these expressions is present to equate them to their inverse
equivalents. However, since the reflection matrices are based on fractions of these expressions
(as seen in Eq. (4-21) and Eq. (4-24)), the scaling factors drop out.
Equation (4-21) makes it possible to determine the downgoing global reflection operator in any
layer, by recursively propagating the operator up from the bottom interface. No reflections
will be created from below the bottom interface, located at zN−1, i.e. R̃+

N (z > zN−1) = 0.
Thus, at the bottom interface, Equation (4-21) can be expressed as a local reflection matrix

R̃+
N−1(zn) = r̃+

n = (L̃n,1 − L̃n,2)(L̃n,1 + L̃n,2)−1. (4-24)

Substituting Equation (4-24) into Equation (4-21) allows the formula to be written with the
local reflection matrix present,

R̃+
n (zn) = [̃r+

n (zn) + (L̃n,1 + L̃n,2)R̃+
n+1(zn)(L̃n,1 + L̃n,2)−1]

[I + (L̃n,1 − L̃n,2)R̃+
n+1(zn)(L̃n,1 + L̃n,2)−1]−1.

(4-25)

This can be expressed in the same form as the scalar formula for the global reflection coeffi-
cient, as derived by Fokkema and Ziolkowski (1987),

R̃+
n (zn) = (L̃n,1 + L̃n,2)[̃r+

n (zn) + R̃+
n+1(zn)][I + r̃+

n (zn)R̃+
n+1(zn)]−1(L̃n,1 + L̃n,2)−1. (4-26)

By switching the geometry and first calculating the local upgoing reflection matrix at the
porous-vacuum interface, the upgoing global reflection matrix at any depth can be calculated
in an analogous manner.

4-3 Source subdomain

The source is taken to be within a homogeneous layer n, which has an upper boundary at zn−1
and a lower boundary at zn. The level of the source, zs, does not coincide with an interface.
Wavefields above the source level are denoted with the superscript a; those below the source
level, with superscript b. Figure 4-4 depicts the partitioning of the source-level domain into
its subdomains, a and b, as well as the wavefields present in each domain. The boundary
conditions at the source level are again the starting point for the analysis. In this situation,
the presence of the source creates a discontinuity in the field vector. The discontinuity is
defined by the source vector d̃, leading to the following boundary condition,

lim
z↓zs

q̃bn(z)− lim
z↑zs

q̃an(z) = d̃(zs). (4-27)

Evaluating the limits gives
q̃bn(zs)− q̃an(zs) = d̃(zs). (4-28)

Substituting in q̃n(zs) = L̃np̃n(zs) and d̃(zs) = L̃nb̃(zs) leads to

L̃np̃bn(zs)− L̃np̃an(zs) = L̃nb̃(zs). (4-29)
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Figure 4-4: Source subdomain. zs denotes the source level, a and b refer to the partitioning of
domain n into the subdomains above the source level and below the source level, respectively.

Multiplying from the left by [L̃n]−1 and decomposing p̃ and b̃ into their downgoing and
upgoing components creates expressions for the one-way wavefield quantities in relation to
the source terms,

p̃b,+n (zs) = p̃a,+n (zs) + b̃+(zs), (4-30)
p̃b,−n (zs) = p̃a,−n (zs) + b̃−(zs). (4-31)

Combining these equations with the definitions for the upgoing and downgoing global reflec-
tion operators at the level of the source,

p̃b,−n (zs) = R̃+
n (zs)p̃b,+n (zs), (4-32)

p̃a,+n (zs) = R̃−n (zs)p̃a,−n (zs), (4-33)

makes it possible to obtain explicit symbolic representations for p̃a,−n , p̃a,+n , p̃b,−n and p̃b,+n as
a function of the source-level global reflection operators,

p̃a,−n (zs) = [I− R̃+
n (zs)R̃−n (zs)]−1[R̃+

n (zs)b̃+
n (zs)− b̃−n (zs)], (4-34)

p̃a,+n (zs) = [I− R̃−n (zs)R̃+
n (zs)]−1[R̃−n (zs)R̃+

n (zs)b̃+
n (zs)− R̃−n (zs)b̃−n (zs)], (4-35)

p̃b,−n (zs) = [I− R̃+
n (zs)R̃−n (zs)]−1[R̃+

n (zs)b̃+
n (zs)− R̃+

n (zs)R̃−n (zs)b̃−n (zs)], (4-36)
p̃b,+n (zs) = [I− R̃−n (zs)R̃+

n (zs)]−1[b̃+
n (zs)− R̃−n (zs)b̃−n (zs)]. (4-37)

4-4 The wavefield in source-free layers

In Section 4-2-1, the reflection of wavefields from an interface was addressed; it is also nec-
essary to consider the transmission of wavefields across interfaces. Here the propagation of a
known wavefield from layer n through interface zn to layer n+ 1 will be considered. p̃+

n+1(zn)
is isolated from Equation (4-16) to find

p̃+
n+1(zn) = [I + R̃+

n+1(zn)]−1[L̃n,1]−1[I + R̃+
n (zn)]p̃+

n (zn). (4-38)
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The upgoing wavefield in the next layer can subsequently be determined by reflecting the
propagated downgoing wavefield through the use of Eq. (4-18).

4-5 Local reflection matrix at Earth’s surface

We simulate the surface of the Earth as a vacuum-porous interface. The only wave types
present in vacuum are the electromagnetic waves, p̃+

0,tm and p̃−0,tm; seismic waves are not
present. The underlying porous medium can contain all eight one-way wavefields: p̃+

1,pf , p̃
+
1,ps,

p̃+
1,sv, p̃

+
1,tm, p̃

−
1,pf , p̃

−
1,ps, p̃

−
1,sv and p̃−1,tm.

A scattering matrix can be used to relate the outgoing wavefield to the ingoing wavefield in
terms of the reflection and transmission coefficients of the interface,

p̃out = S̃p̃in. (4-39)

For the P-SV-TM system, the scattering matrix S̃ is(
p̃−0
p̃+

1

)
=
(

r̃+ t̃−
t̃+ r̃−

)(
p̃+

0
p̃−1

)
, (4-40)

which can be written more explicitly as a 5× 5 matrix:
p̃−0,tm(z0)
p̃+

1,pf (z0)
p̃+

1,ps(z0)
p̃+

1,sv(z0)
p̃+

1,tm(z0)

 =


r̃+

0,tm−tm(z0) t̃−tm−pf (z0) t̃−tm−ps(z0) t̃−tm−sv(z0) t̃−tm−tm(z0)
t̃+pf−tm(z0) r̃−1,pf−pf (z0) r̃−1,pf−ps(z0) r̃−1,pf−sv(z0) r̃−1,pf−tm(z0)
t̃+ps−tm(z0) r̃−1,ps−pf (z0) r̃−1,ps−ps(z0) r̃−1,ps−sv(z0) r̃−1,ps−tm(z0)
t̃+sv−tm(z0) r̃−1,sv−pf (z0) r̃−1,sv−ps(z0) r̃−1,sv−sv(z0) r̃−1,sv−tm(z0)
t̃+tm−tm(z0) r̃−1,tm−pf (z0) r̃−1,tm−ps(z0) r̃−1,tm−sv(z0) r̃−1,tm−tm(z0)




p̃+

0,tm(z0)
p̃−1,pf (z0)
p̃−1,ps(z0)
p̃−1,sv(z0)
p̃−1,tm(z0)

 ,
(4-41)

where the first subscript of the scattering matrix denotes the outgoing wavetype and the
second subscript denotes the ingoing wavetype, e.g. r̃−1,pf−tm(z0) is the free surface reflection
coefficient for an upgoing TM-wave converting to a downgoing fast P-wave.
The boundary conditions on the field vector, q̃V = (ṽs3, ω̃3, τ̃

b
13, H̃2,−τ̃ b33, p̃, ṽ

s
1, Ẽ1), are used

to determine the local reflection coefficients. At a vacuum-porous interface the continuity of
the two-way wave vector components (Section 2-2) are

0
H̃2
0
0
Ẽ1


0

=


τ̃ b13
H̃2
−τ̃ b33
p̃

Ẽ1


1

, (4-42)
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which can be expressed in terms of the action of their respective eigenvectors on the one-way
wave quantities,

L̃0p̃0(z0) = L̃1p̃1(z0). (4-43)

The eigenvectors of the seismoelectric P-SV-TM system in both vacuum and porous media
have previously been determined and the above equation can be explicitly expressed in terms
of these eigenvectors and the one-way wave fields that can be present on each side of the
interface,

0 0
ã+

0,tm,1 ã−0,tm,1
0 0
0 0

ã+
0,tm,2 ã−0,tm,2


(
p̃+

0,tm(z0)
p̃−0,tm(z0)

)
=


ã+

1,pf,3 ã+
1,ps,3 ã+

1,sv,3 ã+
1,tm,3 ã−1,pf,3 ã−1,ps,3 ã−1,sv,3 ã−1,tm,3

ã+
1,pf,4 ã+

1,ps,4 ã+
1,sv,4 ã+

1,tm,4 ã−1,pf,4 ã−1,ps,4 ã−1,sv,4 ã−1,tm,4
ã+

1,pf,5 ã+
1,ps,5 ã+

1,sv,5 ã+
1,tm,5 ã−1,pf,5 ã−1,ps,5 ã−1,sv,5 ã−1,tm,5

ã+
1,pf,6 ã+

1,ps,6 ã+
1,sv,6 ã+

1,tm,6 ã−1,pf,6 ã−1,ps,6 ã−1,sv,6 ã−1,tm,6
ã+

1,pf,8 ã+
1,ps,8 ã+

1,sv,8 ã+
1,tm,8 ã−1,pf,8 ã−1,ps,8 ã−1,sv,8 ã−1,tm,8





p̃+
1,pf (z0)
p̃+

1,ps(z0)
p̃+

1,sv(z0)
p̃+

1,tm(z0)
p̃−1,pf (z0)
p̃−1,ps(z0)
p̃−1,sv(z0)
p̃−1,tm(z0)


, (4-44)

where ã±0,tm,i refers to the eigenvectors of the seismoelectric system in vacuum and ã±0,w,i to
the eigenvectors of the system in a homogeneous source-free subdomain, i.e. ã+

0,tm,2 = d̃1
q̃
ε0
.

We can also express Equation (4-44) in the following form (Shaw, 2005),

ã+
0 p̃+

0 + ã−0 p̃−0 = ã+
1 p̃+

1 + ã−1 p̃−1 . (4-45)

To write the eigenvectors in terms of the reflection and transmission coefficients we seek to
state Equation (4-44) in the form of Equation (4-41) by first reorganizing Equation (4-45) as

− ã−0 p̃−0 + ã+
1 p̃+

1 = ã+
0 p̃+

0 − ã−1 p̃−1 . (4-46)

It is then clear that Equation (4-44) takes on the following structure:
0 ã+

1,pf,3 ã+
1,ps,3 ã+
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1,tm,3
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p̃−0,tm(z0)
p̃+

1,pf (z0)
p̃+

1,ps(z0)
p̃+

1,sv(z0)
p̃+

1,tm(z0)

 =


0 −ã−1,pf,3 −ã−1,ps,3 −ã−1,sv,3 −ã−1,tm,3

ã+
0,tm,1 −ã−1,pf,4 −ã−1,ps,4 −ã−1,sv,4 −ã−1,tm,4

0 −ã−1,pf,5 −ã−1,ps,5 −ã−1,sv,5 −ã−1,tm,5
0 −ã−1,pf,6 −ã−1,ps,6 −ã−1,sv,6 −ã−1,tm,6

ã+
0,tm,2 −ã−1,pf,8 −ã−1,ps,8 −ã−1,sv,8 −ã−1,tm,8




p̃+

0,tm(z0)
p̃−1,pf (z0)
p̃−1,ps(z0)
p̃−1,sv(z0)
p̃−1,tm(z0)

 . (4-47)

Gavin Menzel-Jones Master of Science Thesis



4-6 Applying the scheme 45

Left-multiplying this equation by the inverse of the left-most matrix and comparing to Equa-
tion (4-41), leads to the desired relation between the eigenvectors and the reflection coeffi-
cients,
r̃+

0,tm−tm(z0) t̃−tm−pf (z0) t̃−tm−ps(z0) t̃−tm−sv(z0) t̃−tm−tm(z0)
t̃+pf−tm(z0) r̃−1,pf−pf (z0) r̃−1,pf−ps(z0) r̃−1,pf−sv(z0) r̃−1,pf−tm(z0)
t̃+ps−tm(z0) r̃−1,ps−pf (z0) r̃−1,ps−ps(z0) r̃−1,ps−sv(z0) r̃−1,ps−tm(z0)
t̃+sv−tm(z0) r̃−1,sv−pf (z0) r̃−1,sv−ps(z0) r̃−1,sv−sv(z0) r̃−1,sv−tm(z0)
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1,tm,5

0 ã+
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1,ps,6 ã+
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−1


0 −ã−1,pf,3 −ã−1,ps,3 −ã−1,sv,3 −ã−1,tm,3

ã+
0,tm,1 −ã−1,pf,4 −ã−1,ps,4 −ã−1,sv,4 −ã−1,tm,4

0 −ã−1,pf,5 −ã−1,ps,5 −ã−1,sv,5 −ã−1,tm,5
0 −ã−1,pf,6 −ã−1,ps,6 −ã−1,sv,6 −ã−1,tm,6

ã+
0,tm,2 −ã−1,pf,8 −ã−1,ps,8 −ã−1,sv,8 −ã−1,tm,8

 . (4-48)

4-5-1 Reflection coefficients at normal incidence

We can now examine the general upgoing 2-D reflection matrix at the free surface, given
above by the r̃− components of Equation (4-48), for the situation of normal incidence. At
normal incidence, the horizontal slowness p1 is equal to zero, reducing the problem to a
1-D case. Substituting the eigenvectors for p1 = 0 into Equation (4-48) and solving for
the upgoing reflection coefficients shows that, at normal incidence, the compressional waves
decouple from the SV-TM waves. The free surface is perfectly reflecting for both the fast and
slow P-waves, whereas the reflection coefficients for the vertically polarized shear wave, the
transverse magnetic wave, and their conversions are dependent on the medium parameters
of the underlying layer. At normal incidence, seismoelectric coupling is solely present within
the SV-TM system. However, as the horizontal slowness increases from zero (corresponding
to an increase in the angle of incidence) the P- and SV-TM systems recouple and conversions
from longitudinal waves to transverse waves, and vice versa, take place. In other words,
seismoelectric coupling is no longer limited to the SV-TM system.

4-6 Applying the scheme

The use of global reflection matrices, as outlined by De Ridder (2007), accounts for all internal
multiple reflections of the source wave. A benefit of using this scheme when modelling is that
it avoids the need to recursively propagate the wavefield through the layered medium based on
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local reflection coefficients. The method is applied as follows: first, the upgoing and downgoing
local reflection matrices at the top and bottom boundaries, respectively, of the model are
determined from the free surface reflection matrix, Eq. (4-48), and the general equation for
a local reflection matrix, Eq. (4-24). The global reflection matrices of the neighbouring
layers are then found by downward or upward extrapolating the local reflection matrices
from the boundary to the adjacent layer and then calculating the global reflection matrices
at that depth through the use of Eq. (4-25), or its equivalent for the upgoing global reflection
matrix. This sequence of extrapolation and recursively updating the global reflection matrix,
using Eq. (4-21), is repeated until the upgoing and downgoing global reflection matrices are
resolved both at the source and the receiver level. The next step is to determine the wavefield
in the source layer, both downgoing immediately below the source and upgoing immediately
above the source, using Equations (4-35) and (4-36). The source-level wavefield that is in
the direction of the receiver is propagated through the separating layers, based on Eq. (4-38),
until it reaches the receiver level. The incoming wavefield at the receiver level is then reflected
once by the receiver-level global reflection matrix, leading to receiver-level expressions for the
full upgoing and downgoing wavefields.
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Chapter 5

Modelling

In this chapter, the reflection formalism of Chapter 4 will be combined with the matrix-vector
components of the one-way wave equation, as presented in Chapter 3, to carry out numerical
modelling of the P-SV-TM propagation mode. We start with a transmission experiment
in a homogeneous model to depict one-way wavefields and their composition into two-way
wavefields. In the succeeding section a second homogeneous layer is introduced into the
background model, allowing a reflection experiment to be conducted. Due to the difference
in the medium parameters of the two half-spaces, seismoelectric conversions occur at the
interface, effectively acting as a secondary source for one-way wavefields. We then introduce a
free surface at the top of the model, which simulates a more realistic two-layered Earth setting
with the presence of multiple reflections and multiple seismoelectric conversions. Finally, we
proceed to a series of models to simulate potential applications of the seismoelectric method:
depth estimation of a subsurface layer from the amplitude of the interface response, Vertical
ElectroSeismic Profiling (VESP) and aquifer monitoring.

5-1 Numerical implementation

The simulations were conducted on a grid size of 4096× 256 (x1× t). The source function for
both the one- and two-way wavefields is a zero-phase Ricker wavelet, the second derivative
of a Gaussian function, with a centre frequency of 600 radians per second (approximately 95
Hertz). The source is implemented in the frequency domain and is described by (Shaw, 2005),

Ŝ(ω) = 2√
π

ω2

ω3
0
exp

[
−ω

2

ω2
0

]
, (5-1)

where ω0 is the centre frequency. The Nyquist sampling theorem requires that the spatial
sampling is set to sample the wavefields a minimum of two times per wavelength, based on
the velocity of the slowest wave,

∆x = λ

2 = cmin
2fN

, (5-2)
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where fN is the Nyquist frequency. Since the slowest wave is the slow P-wave, which is essen-
tially a pure fluid-pressure diffusion, we should rewrite the above constraint as the requirement
to sample two times within the wave’s diffusive skin depth (Haines and Pride, 2006). However,
the temporal and spatial scales required for proper modelling of the Biot slow wave would
render the modelling computationally expensive (Wenzlau and Mueller, 2009). We choose to
adopt larger scales, which signifies that the Biot slow wave would not be properly modelled
around material-property contrasts (Pride and Garambois, 2002). For our modelling pur-
poses we will take the vertically polarized shear wave as the slowest wavefield, with a medium
parameter dependent velocity that will not be significantly less than 2000 m/s. With this
wavespeed in mind, we choose a spatial sampling of 2 metres. This spatial sampling also
corresponds to the receiver spacing defined at the receiver depth level.
Since the calculations are carried out in the horizontal wavenumber-frequency domain, we
must choose a grid size and discretization that limits spatial and temporal aliasing. The spa-
tial sampling defined above is proportional to the shortest wavelength and thus defines the
high wavenumber limit of the modelling. The length of the spatial axis, in combination with
the step size, determines the low wavenumber limit, which is proportional to the large elec-
tromagnetic wavelength. The chosen time sampling step of 1 ms corresponds to a maximum
frequency retrieval of 500 Hz. Although a finer spatial and temporal discretization would
have been preferable, it was not possible due to computational limitations. Combining the
grid size with the chosen discretization creates a grid extending in time to 0.25 seconds, with
a maximum offset of ±4000 metres. However, for convenience, only the near-offsets (±1000
m) will be displayed.
It can be seen in Chapter 3 that some components of the P-SV-TM system’s eigenvectors have
a singularity at ω = 0. To account for these singularities, a small positive imaginary frequency
is added to the real frequency vector, such that ω = ωR− jωI , where ωI > 0. This additional
term shifts the calculations just off the real frequency axis. It also damps the magnitude of
the late arrivals, occuring due to the periodicity of the discrete Fourier transformation. The
effective attenuation can be removed from the final result by including a growing exponential
with time, exp(ωIt), in the kernel of the inverse-Fourier transform. We follow the approach
of Haartsen and Pride (1997) and choose the value of the small added imaginary part to be

ωI = π

tmax
. (5-3)

5-2 Numerical analysis

A symbolic implementation of the seismoelectric system and reflection formalism of the pre-
vious chapters would yield the “true” symbolic representation of a wavefield, subject to the
assumptions and constraints of Chapters 2 and 4. In order to carry out numerical modelling,
the symbolic expressions must be replaced with numbers, resulting in numerical approxima-
tions being made to the true values. These approximations can introduce round-off errors,
due to the inability to represent all real numbers on computers with finite memory. For a
given computation, round-off errors are dependent on the numerical program and numerical
representation being used, as well as the computational hardware on which the computation
is run. Each numerical program (e.g. MATLAB, Maple, Fortran) carries out computations
in a different way. This applies to, among other factors, the order of operations in which
the computation is done, the internal representation of the elements of the computation and
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the individual algorithms for the different operations. The accuracy of the final result that is
stored by the program is restricted by both the software’s numerical representation and the
computer’s hardware. The most common representation, the floating-point representation,
can be considered a numerical implementation of scientific notation. The number of significant
digits that are retained is restricted by the length of the binary format being used. For ex-
ample, a computer that supports 64-bit units of data can store integers up to a binary format
length of 64-bits, creating a precision of 16 decimal digits (referred to as double precision.)
Floating-point arithmetic provides the floating-point approximation to operations carried out
on floating-point numbers. Depending on the software, the numbers calculated using floating-
point arithmetic are either rounded-off repeatedly during the operations or only once at the
end. Naturally, larger errors are introduced when the first approach is implemented, as is
the case with MATLAB. Two alternative approaches to numerically carrying-out calculations
are rational arithmetic and arbitrary-precision arithmetic. Rational arithmetic represents all
numbers as a combination of numerators and denominators, producing a rational number as
the exact result. With arbitrary-precision arithmetic, values are stored in a variable-length
array of digits, such that the number of significant digits is independent of the width of the
binary format. Both these approaches lead to increased accuracy at the expense of time and
storage (Press et al., 2007).
A final factor that dictates the severity of the round-off errors that are introduced is the
relative magnitude of the variables in the computation. Two operations that can amplify
round-off errors are additive dominance and subtractive cancellation. Additive dominance
refers to the loss of precision due to the addition of a large number to a small number. In
the worst case, this entails the magnitude of the large number remaining the same, such
that the added value of the small number is lost. Subtractive cancellation occurs when two
similiarly-valued numbers are subtracted. This results in a shift of the less-precise (due to
previous round-off errors) decimal bits to locations of greater numerical significance. Since
the errors propagate, a large volume of calculations could lead to a substantial error in the
final result (Gentle, 2009).
Modelling the seismoelectric system necessitates implementing the medium parameters of two
fundamentally different systems: elastodynamic and electromagnetic. The eigenvectors of the
seismoelectric system are composed of a combination of small (e.g. slow P-wave velocity) and
large (e.g. TM-wave velocity) numbers. Therefore, operations on the composition matrices,
such as determining a local reflection matrix, are subject to both additive dominance and
subtractive cancelation. Since the reflection matrices are the building-blocks of the reflection
formalism, any error that is introduced in their computation will be propagated and amplified
through the modelling procedure. To test the errors introduced at this stage, we checked if
the local reflection matrix,

r̃+
n = [L̃n,1 − L̃n,2][L̃n,1 + L̃n,2]−1, (5-4)

at an arbitrary location inside a homogeneous medium returned the expected null result. This
was done by computing L̃1 using both the inverse and transpose operators, i.e.

L̃1 = [L̃1]−1L̃1 = [2L̃t2]L̃1 = I. (5-5)

Figures 5-1a and 5-1b display the maximum errors of the matrices
(
[L̃1]−1L̃1 − I

)
and(

[2L̃t2]L̃1 − I
)
, respectively, for all frequencies and wavenumbers, calculated using double
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precision floating-point arithmetic. We observe that both figures show an error that is sig-
nificantly greater than machine precision, due to error propagation through the successive
steps of the calculation. Contrary to our expectation, the expression with the inverse op-
erator returns a more accurate result than the expression with the transpose operator. If
this were true, it would imply that thereis an error in either the eigenvectors or the flux-
normalization of the system. However, by comparing this result with one obtained using a
combination of rational and arbitrary precision arithmetic, we can confirm that the use of the
transpose operator is more accurate. For example, at the centre frequency of 600 rad s−1 and
a horizontal wavenumber of 1.5 m−1, floating-point arithmetic calculations of

(
[L̃1]−1L̃1 − I

)
and

(
[2L̃t2]L̃1 − I

)
returned errors of 4 × 10−15 and 1 × 10−8, respectively, while requiring

respective computational times of 10 and 3 ms. By carrying out the above calculations with
rational arithmetic and converting the final exact rational number to a 128-bit quadrupule
precision result, the errors are reduced to 1 × 10−23 and 1 × 10−27, respectively, while the
computational times increase to 1.74 s and 1.34 s, respectively. Based on these results, we
can conclude that the use of the transpose operator results in lower error at reduced compu-
tational expense, subject to a sufficiently precise numerical algorithm. However, due to the
considerable increase in computational time with the implementation of rational and arbi-
trary precision arithmetic, it was necessary to carry out the modelling using double precision
floating-point arithmetic. With this representation, [2L̃t2]L̃1 was subject to more round-off
error than [L̃1]−1L̃1, therefore the transpose operator equivalent of the inverse was not used.
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Figure 5-1: Comparison of the deviations of (a)
(
[L̃1]−1L̃1 − I

)
and (b)

(
[2L̃t

2]L̃1 − I
)
from the

expected null matrix using double precision floating-point arithmetic. Both figures are logarith-
mically scaled.

5-3 Source and receiver composition

The one-way wavefield source vector, as seen in Eq. (3-54), is comprised of upgoing and down-
going fast P-waves, slow P-waves, vertically polarized shear waves and transverse magnetic
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polarized electromagnetic waves. Although all wavefields are accounted for in the one-way
wave equation and reflection formalism, we will not consider slow P-wave sources or receivers
due to their highly dispersive behaviour.
The two-way wavefield source vector of the P-SV-TM system was defined in Eq. (3-7). In
carrying out numerical simulations using two-way wavefield sources, we will choose a subset
of the listed source types. The types of sources that will be considered are two seismic and
two electromagnetic sources. The seismic sources will be forces in the x1 and x3 directions
and it will be assumed that the forces applied to the fluid and to the bulk are equal, such that
f̃fi = f̃ bi . The electromagnetic sources will be either an electrical source in the x1 direction
or a magnetic source in the x2 direction. We can extract the desired sources from Eq. (3-7)
and specify the following four two-way source vectors:

d̃f1
V =

(
0, p1f̃

f
1 ,

ρf

ρ̂E
f̃f1 − f̃ b1 ,−L̂f̃

f
1 , 0, 0, 0, 0

)
, (5-6)

d̃f3
V =

(
0, 0, 0, 0, f̃ b3 −

ρf

ρ̂E
f̃f3 , f̃

f
3 , 0, 0

)
, (5-7)

d̃Je
1

V =
(
0, 0, 0,−J̃e1 , 0, 0, 0, 0

)
, (5-8)

d̃Jm
2

V =
(
0, 0, 0, 0, 0, 0, 0,−J̃m2

)
. (5-9)

These two-way wavefield sources are converted to one-way wavefields through the action of the
decomposition operator. Whether or not the resulting one-way wavefields are angle dependent
(i.e. have a polarity that switches at zero offset), is dependent on whether the decomposed
sources are odd or even functions of offset. This can be seen in the corresponding entries
of the decomposition operator. By analytically determining the one-way source vector b̃ for
each of the above sources, we find that the longitudinal waves created by the f1, Je1 and Jm2
sources are ray parameter dependent (i.e. odd), while the transverse waves are ray parameter
independent (i.e. even). An f3 source has the opposite behaviour, it creates ray parameter
dependent transverse waves and ray parameter independent longitudinal waves. Note that
the above listed sources are only a subset of the sources seen in Eq. (3-7): it would also be
possible to define source vectors corresponding to, for example, the bulk deformation rate h̃ij
or a vertical electric current source J̃e3 . All two-way wavefield sources excite all eight one-way
wavefields, but to varying degrees.
We will also limit the two-way wavefields that will be recorded: we choose receivers corre-
sponding to measurements of the horizontal (vs1) and vertical (vs3) solid particle velocities, as
well as the x2 component of the magnetic field (H2) and the x1 component of the electric
field (E1). This corresponds to an array of horizontal geophones, vertical geophones, electric
antennas, and magnetometers.

5-4 Transmission experiment

This section will detail the results of one-way and two-way transmission experiments. Here
we will introduce the medium parameters of both the medium that is used in this section
(Medium A) and the medium that will be introduced in the succeeding sections (Medium
B). The parameters of the media correspond to those used by Shaw (2005) and De Ridder
(2007) and are presented in Table 5-1. All other characteristic parameters, such as the elastic
parameters, bulk conductivity and static coupling coefficient, are calculated from the values
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given in Table 5-1, using the equations of Chapter 2. De Ridder et al. (2009) relates Medium
A to a porous, clean, water-saturated sandstone of low salinity; Medium B is also a clean
sandstone, but of lower porosity and containing a conductive pore fluid.

Table 5-1: Medium characteristics of Media A and B.

Medium Parameter Symbol Medium A Medium B
Porosity φ 40 % 20 %
Permittivity of the fluid εf 80ε0 80ε0
Permittivity of the solid εs 4ε0 4ε0
Fluid density ρf 1.0× 103 kg m−3 1.0× 103 kg m−3

Solid density ρs 2.7× 103 kg m−3 2.7× 103 kg m−3

Shear modulus Gfr 9.0× 109 N m−2 9.0× 109 N m−2

Viscosity η 1.0× 10−3 N s m−2 1.0× 10−3 N s m−2

Rock permeability k 1.3× 10−12 m2 1.6× 10−12 m2

Tortuosity α∞ 3.0 3.0
Bulk modulus of framework of grains K fr 4.0× 109 N m2 4.0× 109 N m2

Bulk modulus of solid Ks 4.0× 1010 N m2 4.0× 1010 N m2

Bulk modulus of fluid Kf 2.2× 109 N m2 2.2× 109 N m2

Electrolyte concentration C 1.0× 10−4 Mol L−1 1.0× 10−2 Mol L−1

The velocities of the four one-way wavefields of the P-SV-TM system are determined from
the Equations of Section 3-2, where it was seen that the real parts of the complex velocities
represent the real phase velocities while the imaginary parts are related to the wavefield at-
tenuation. The real and imaginary parts of the complex velocities are plotted in Figure 5-2 for
the longitudinal seismic waves and Figure 5-3 for the transverse seismic and electromagnetic
waves. The highly dispersive nature of the slow P-wave and the EM wave can be recognized
from the strong frequency-dependency of their wave velocities.

5-4-1 One-way transmission model

The geometry of the transmission model is shown in Figure 5-4. The model consists of
a homogeneous layer with medium parameters corresponding to those of Medium A. As
depicted, the source is located 197 m below the receiver line. In this simple example we will
record the one-way wavefields generated by one-way sources. Since there are no interfaces
in this homogeneous model, no conversions between any of the wave types will occur and
only the same type of wavefield as was used for the source is recorded. For example, when
using an upgoing fast P-wave as a source we will record the upgoing fast P-wave at the
receiver. Figure 5-5 shows the response of the three measured one-way wavefields due to
their respective sources. In each figure the arrival time corresponds to the one-way travel
time; it can be clearly recognized that the electromagnetic wave has the highest velocity,
followed by the fast P-wave and then the vertically polarized shear wave. The velocity of the
wavefields can also be observed in the moveout of the sections. The electromagnetic wave
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(d) ĉps (B)

Figure 5-2: Real (solid blue line) and imaginary (dashed red line) parts of the complex wave
velocities of the longitudinal waves in Medium A (left column) and Medium B (right column).
The upper panels correspond to the fast P-wave, while the lower panels correspond to the slow
P-wave.

arrives essentially at all horizontally aligned receivers instantaneously, whereas the slower
vertically polarized shear wave has increased hyperbolicity compared to both the EM wave
and the fast P-wave.

5-4-2 Two-way transmission model

For modelling two-way sources and receivers, we implement the composition and decompo-
sition operators of Chapter 3. The two-way sources are decomposed at the source level into
one-way wavefields. These one-way wavefields are propagated to the receiver level, where they
are composed back into the recorded two-way wavefields. Due to seismoelectric source cou-
pling, each of the four two-way sources, presented in Section 5-3, will excite all of the one-way
wavefields. Since the geometry of the transmission model is held the same as in the previous
one-way wavefield case, we can examine which components of the two-way wavefields are due
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Figure 5-3: Real (solid blue line) and imaginary (dashed red line) parts of the complex wave
velocities of the transverse waves in Medium A (left column) and Medium B (right column). The
upper panels correspond to the vertically polarized shear wave, while the lower panels correspond
to the transverse magnetic polarized electromagnetic wave.

to the different one-way wavefields. As explained in Chapter 3, all of the receivers, except for
the H2 receiver, are composed from a combination of all one-way wavefields. The magnitude
and angle dependency of the contributions are calculated from the values of the corresponding
eigenvectors. We can determine that the composition of transverse waves into the vs1, E1 and
H2 receivers is ray parameter independent (i.e. even), whereas it is ray parameter dependent
(i.e. odd) for the vs3 receiver. These relations are exchanged for the longitudinal waves: the
polarity of the longitudinal waves recorded by the vs3 receiver are ray parameter independent,
while they are ray parameter dependent for the vs1 and E1 receivers.
In Figure 5-6 we show recordings of vs1, vs3, E1 and H2 due to an external force on the bulk
and fluid phases in the x1 direction, f1. The seismic sensors clearly display both the fast
P-wave and the SV-wave; the magnitude of the source-coupled TM-wave is too weak to be
seen. We can observe that the vs1 receiver is relatively more sensitive to the SV-wave than
the vs3 receiver. As discussed in Chapter 1, the P-wave carries an electric field, known as
the coseismic field, along with it as part of the material response. This coseismic electric
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Figure 5-4: Source located 197 m below the receivers. Both source and receivers are located in
Medium A.
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Figure 5-5: Transmission model one-way wavefield measurements of (a) fast P-wave, (b) SV-
wave and (c) TM-wave, due to their respective sources.
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field can be seen in the E1 section, Figure 5-6c. Due to the relatively large amplitude of
the electric field associated with the P-wave, neither the small induced electric field of the
shear wave nor the electric field of the direct TM-wave are visible. Since coseismic magnetic
fields are only weakly associated with a propagating shear wave (Haines and Pride, 2006),
we are able to view both the magnetic field of the shear wave and the magnetic field of the
TM-wave in Figure 5-6d. By factoring in the ray parameter dependency of the source with
the ray parameter dependency of the receiver type, the polarities of the displayed sections
can be explained. For example, when an f1 source is decomposed into one-way wavefields,
the resulting longitudinal waves are ray parameter dependent, while the transverse waves are
not. These one-way wavefields are then propagated to the receiver location where they are
composed into the desired two-way wavefield. If the receiver type also has a ray parameter
factor in its composition of the longitudinal waves (as is the case for the vs1 receiver), the
signs of the two ray parameter terms cancel and the polarity of the recording wavefield is
independent of the incidence angle. In other words, the product of two odd functions is an
even function. Continuing on with this example, if the receiver type does not have a ray
parameter dependency in its composition of longitudinal waves (i.e. the vs3 receiver), then the
sign of the ray parameter remains and the polarity will switch at zero offset. Simply put, the
product of an odd function and an even function is an odd function. These remarks explain
why the vs3 receiver displays a polairty change, whereas the vs1, E1 and H2 receivers do not.
Similar reasoning can be applied to the recordings resulting from an f3 source, Figure 5-7,
to understand why the vs3 receiver shows a single polarity, whereas the x1 and x2 aligned
receivers (vs1, E1 and H2) record the polarity of the propagating one-way wavefields. The
relative magnitude of the P-wave is again greater for the vs3 receiver than for the vs1 receiver.
Recall that an electric current source will cause the movement of diffuse-layer counter ions,
leading to the build up of pressure-gradients and the generation of a P-wave disturbance
(Pride, 1994). The P-wave generated by an Je1 source can be seen in the seismic receivers of
Figure 5-8. As known from electromagnetic theory, a current source will produce magnetic
fields, creating the response of the recorded magnetic field seen in Figure 5-8d. The second
electromagnetic source that we consider is a Jm2 source. The recordings associated with the
magnetic source are presented in Figure 5-9. It can be clearly recognized that the source
generates a vertically polarized shear wave and an electric field.
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Figure 5-6: Transmission model two-way wavefield measurements of (a) vs
1, (b) vs

3, (c) E1 and
(d) H2 due to an f1 source.
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Figure 5-7: Transmission model two-way wavefield measurements of (a) vs
1, (b) vs

3, (c) E1 and
(d) H2 due to an f3 source.
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Figure 5-8: Transmission model two-way wavefield measurements of (a) vs
1, (b) vs

3, (c) E1 and
(d) H2 due to an Je

1 source.
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Figure 5-9: Transmission model two-way wavefield measurements of (a) vs
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3, (c) E1 and
(d) H2 due to a Jm

2 source.
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5-5 Reflection experiments

We proceed here to a reflection experiment. The geometry of the experiment is shown in
Figure 5-10, with the source located 1 m below the receivers which are 99 m above the
interface between the two half-spaces. The distance from the receivers to the interface was
chosen such that they would be 1 m below the free surface that will be introduced in the second
half of this section. In this reflection experiment, the wavefield propagates downwards, reflects
from the interface and returns to the receivers, covering a distance of 197 m at zero-offset.
In Figure 5-11, we plot the reflection coefficients of the interface between Medium A and

Figure 5-10: Geometry of the reflection experiment. The source is located 1 m below the receiver
line and the receiver line is 99 m above the interface. The upper half-space has a thickness of 100
m and possesses medium parameters corresponding to Medium A, whereas the lower half-space
consists of Medium B.

Medium B. We only present the reflection coefficients corresponding to conversions between
seismic and electromagnetic waves, and vice versa. The horizontal axis represents the ray
parameter (s/m) times the modulus of the velocity of the outgoing wave (m/s), while the
vertical axis denotes the modulus of the reflection coefficient. Considering the fact that we
use a plane wave approximation, we can express the ray parameter as a function of the ray’s
propagation angle (θ) and complex velocity:

p1 = sin(θ)
ĉ

. (5-10)

Horizontal axis, p1|ĉ|, values between zero and one correspond to reflection angles from zero
to ninety degrees, respectively, and incidence angles less than the critical angle. At the
critical angle, when p1|ĉ| = 1, the outgoing waves are critically refracted, propagating along
the interface. Horizontal axis values greater than one, p1|ĉ| ≥ 1, represent the creation of
evanescent waves, i.e. waves that are bound to the surface and exponentially decrease in
amplitude with distance, created when the incidence angle is greater than the critical angle.
The angle of incidence is related to the reflection angle through Snell’s law,

sin θi
sin θr

= ci
cr
, (5-11)

Master of Science Thesis Gavin Menzel-Jones



62 Modelling

where i and r represent the incident and reflected waves. Since the electromagnetic wave
velocity is much greater than the seismic wave velocity, we can approximate this equation for
seismoelectric conversions as

sin θem = sin θscem, (5-12)

where the subscripts ‘s’ and ‘em’ stand for seismic and electromagnetic, respectively. From
this equation, we can see that for a seismic-to-electromagnetic conversion, only a small
range of incidence angles will generate a homogeneous EM-wave. However, if we consider
electromagnetic-to-seismic conversions, we can deduce that a large range of incidence angles
will generate a vertically propagating seismic wave.
Since the reflection coefficients show only a weak dependency on frequency (van der Burg,
2002), the results are solely presented at the centre frequency of the source wavelet. As can
be seen in the figure, the magnitude of the reflection coefficients remains the same when the
ingoing and outgoing waves are interchanged. This is a consequence of having flux-normalized
the one-way system. At normal incidence, as discussed in Section 4-5-1, the reflection coef-
ficient for Pf ↔ TM is zero, whereas the SV-TM system remains coupled. Except for at
normal incidence, the reflection coefficients of the Pf ↔ TM conversions are greater than for
the SV ↔ TM conversions.

5-5-1 One-way reflection model

Once again we will start by looking at the one-way wavefields generated by one-way sources.
The downgoing one-way wavefields will undergo seismoelectric conversions at the interface,
producing four transmitted and four reflected waves. The relative amplitudes of the waves
depend on the reflection and transmission coefficients of the interface, which are related to
the angle of incidence and wave types of the ingoing and outgoing waves, as shown before.
Since our interest is in seismoelectric coupling, we will solely display the source and receiver
pairs that provide information on this coupling. For the one-way fast P-wave and SV-wave
sources, we will display recordings of the TM-wave. Vice-versa, with a TM-wave source, we
will record mechanical motion as captured by the fast P-wave and SV-wave receivers.
In Figure 5-12, two sections are displayed, corresponding to fast P-wave and SV-wave sources
with a TM-wave receiver. At normal incidence, the P- and SV-TM systems are decoupled
and there is no conversion between longitudinal waves and transverse waves. However, the
SV and TM systems do remain coupled, such that seismoelectric conversion still occurs.
The arrival times of the TM-waves in Figure 5-12 correspond to the one-way seismic travel
times from the source to the interface; it is clear that the fast P-wave has a higher velocity
than the SV-wave. The weak hyperbolic events that have the same arrival time as the Pf-
TM and SV-TM reflections are associated with the impingment of the seismic waves on the
interface. When a seismic wavefront impinges on a horizontal interface, the resulting charge
asymmetry generates a homogeneous electromagnetic wave that propagates perpendicularly
away from the interface, i.e. in the upgoing and downgoing directions. As the wavefront
continues to propagate, the angle of incidence between the wavefront and the horizontal
interface increases. Based on Snell’s Law, we can determine that the critical angle occurs
at very small deviations from normal incidence. At angles greater than the critical angle,
the electromagnetic wavefields will be evanescent (Shaw, 2005). Thus, the hyperbolic events
seen in Figure 5-12, correspond to the radiation of energy from evanescent electromagnetic
wavefields.
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Figure 5-11: Reflection coefficients corresponding to conversions between seismic and electro-
magnetic waves, for a wave in Medium A incident on the interface between Medium A and
Medium B. The velocity on the horizontal axis represents the velocity of the outgoing wave. (a)
and (b) show the reflection coefficients for conversions from incident fast P- and SV-waves, re-
spectively, to an outgoing TM-wave. (c) and (d) show the reflection coefficients for conversions
from incident TM-waves to outgoing fast P- and SV-waves, respectively.

With a TM-wave source, we record the fast P-waves and SV-waves seen in Figure 5-13.
The TM-wave arrives at all points on the interface simultaneously, each of which act as
a point source for seismic waves, thereby generating an upgoing seismic plane wave. The
one-way travel times now represent the travel time from the interface to the receivers. We
can again note the arrival of a hyperbolic event with the linear interface response, having a
similar cause as discussed before. In the case of electromagnetic-to-seismic conversions, Snell’s
Law indicates that vertically propagating seismic waves are generated at almost all angles of
incidence. However, at far offsets the seismic waves that are generated are evanescent in nature
(Shaw, 2005). We will use the term interface response to refer to both the electromagnetic
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Figure 5-12: Reflection model one-way wavefield measurements of TM-waves due to (a) fast
P-wave and (b) SV-wave sources.

wave generated at an interface due to a seismic source and to the seismic plane wave generated
simultaneously at all points on an interface due to an electromagnetic source; the context will
distinguish between the two types.
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Figure 5-13: Reflection model one-way wavefield measurements of (a) fast P-waves and (b)
SV-waves due to a TM-wave source.

One-way reciprocity theorem

Reciprocity theorems interrelate the quantities of two admissable physical states that occur
in a given domain. Simply stated, they predict the invariance of the material response,
which manifests as the propagation of the wavefield, to interchanging the source and receiver
types and locations (Wapenaar et al., 2001). Reciprocity theorems can be applied under
certain conditions to both one- and two-way wavefields (Wapenaar, 1996). To ensure that the
reciprocity principle could be applied to the one-way propagators of our laterally invariant

Gavin Menzel-Jones Master of Science Thesis



5-5 Reflection experiments 65

model, we flux-normalized the eigenvectors and the resulting one-way wavefields (Wapenaar,
1998). For a more in-depth explanation of reciprocity theorems for electromagnetic and
elastodynamic one-way wavefields, the reader is referred to Wapenaar et al. (2001).
If we compare Figures 5-12 and 5-13, we observe that the same wavefields are recorded
when the source and receiver types are switched. The opposite polarities that are observed
when comparing the Pf ↔ TM pair (Figures 5-12a and 5-13a) are a consequence of not
laterally switching the source and receiver locations. This could be easily implemented by
switching the directions of positive and negative offset in one of the figures, however, the
presence of reciprocity is clear. The slight radiation pattern discrepancy seen in the SV ↔
TM pair, Figures 5-12b and 5-13b, is a consequence of not vertically switching the source
and receiver locations, such that there was a 3 m propagation distance difference between
the two simulations. When both the source-receiver type and locations are interchanged,
exact reciprocity is observed. Although not depicted, the reciprocity theorem also holds for
elastodynamic one-way wavefields, in which SV-wave motion due to the reflection of a fast
P-wave source is recorded, and vice versa.

5-5-2 Two-way reflection model

The two-way wavefield sources are physically multidirectional, producing both upgoing and
downgoing waves. Since the source is positioned directly underneath the receiver line, any
upgoing waves generated by the source would saturate the receiver response and mask the
desired signal of the reflected waves. To ensure retrieval of the reflected waves, we applied a
mute to the upgoing waves generated by the two-way wavefield sources. In Figure 5-14, we
see measurements of E1 and H2 due to an external force in the x1 direction. Both sections
show five independent arrivals, the first of which represents the almost instantaneous TM-TM
reflection. This is followed by two interface responses, corresponding to the one-way travel
times of the Pf- and SV-waves, which are 0.031 seconds and 0.047 seconds, respectively,
where cpf = 3160 m/s and csv = 2111 m/s. The first hyperbolic arrival in the left panel is
the coseismic field of the Pf-Pf reflection, arriving at the two-way fast P-wave travel time;
the second represents the coseismic field of the SV-Pf reflection. In the right panel, the
hyperbolic arrivals are both the coseismic fields of SV-wave arrivals. The first corresponds
to the coseismic field of the Pf-SV reflection; the second, to the coseismic field of the SV-SV
reflection. A close look at the hyperbola representing the SV-SV reflection shows a faint event
diverging at an offset of approximately ± 250 m and continuing with a faster velocity. The
offset at which it diverges corresponds to the critical angle of the SV-wave to fast P-wave
conversion for both transmission and reflection. Therefore, this event can be attributed to a
downgoing SV-wave that critically refracts along the interface at the fast P-wave velocities
of the upper and lower media, before emerging from the interface at the critical angle as an
SV-wave. With the vertically oriented seismic force source we record the sections shown in
Figure 5-15. We observe the same events as using the f1 source. However, with a vertically
oriented force, the incident P-wave component is now of greater magnitude leading to a more
defined Pf-TM reflection.
In Figures 5-16 and 5-17, we see the horizontal and vertical motions resulting from the

reflections from an electric current source and a magnetic source, respectively. At zero time,
all receivers record the solid motions associated with the TM-TM reflection. The next arrival
in all four sections of these figures is the TM-Pf (and Pf-TM) reflection, arriving at the one-
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Figure 5-14: Reflection model two-way wavefield measurements of (a) E1 and (b) H1 due to an
f1 source.
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Figure 5-15: Reflection model two-way wavefield measurements of (a) E1 and (b) H1 due to an
f3 source.

way P-wave travel time. As previously mentioned, the vertically oriented seismic receiver
is more sensitive to P-wave motion and thus records a larger TM-Pf amplitude. In the Jm2
source and vs1 and vs3 receiver sections (Figure 5-17), we can detect the TM-SV (SV-TM)
reflections, lagging the analogous P-wave reflections by approximately 0.01 s.

Two-way reciprocity theorem

Pride and Haartsen (1996) and Wapenaar (2003) derived reciprocity theorems for the two-way
wavefields of the seismoelectric system in 3-D. The convolution-type reciprocity theorem for
seismoelectric waves, under the assumption that the medium parameters of the two admissable
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Figure 5-16: Reflection model two-way wavefield measurements of (a) vs
1 and (b) vs

3 due to an
Je

1 source.
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Figure 5-17: Reflection model two-way wavefield measurements (a) vs
1 and (b) vs

3 due to a Jm
2

source.

physical states are identical, is given by∮
∂D

[
εijkÊi,AĤk,B − εijkĤk,AÊi,B − v̂si,Aτ̂ bij,B + τ̂ bij,Av̂

s
i,B + ŵj,Ap̂B − p̂Aŵj,B

]
njd2x

=
∫
D

[
Ĵmk,AĤk,B − Ĥk,AĴ
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e
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−f̂ bi,Av̂si,B + v̂si,Af̂
b
i,B − f̂

f
j,Aŵj,B + ŵj,Af̂

f
j,B

]
d3x,

(5-13)

where the subscripts A and B distinguish between the two states. By considering the medium
at and outside the surface ∂D to be an unbounded homogeneous isotropic lossless solid and
the wavefields of both state A and B to be causally related to the sources in D, the left-hand
side of the above equation can be set to zero (Wapenaar, 2003). Furthermore, in 2-D, the
volume domain D and its surface ∂D reduce to a surface domain S and its boundary ∂S,
respectively. Source-receiver reciprocity relations can be determined from the terms on the
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right-hand side by considering the desired source functions in the two states and equating
the remaining terms. For example, we will consider the source in state A to be an impulsive
electric current source in the x1 direction, occuring at zero time and located at x = xA,

Ĵe1,A(x, ω) = ŝA(ω)δ(x− xA), (5-14)

where ŝ is the source spectrum. The source in state B is an impulsive force source in the x3
direction, with the forces on the bulk and fluid phases being equal, such that f̂ b3,B = f̂f3,B =
ŝB(ω)δ(x−xB). If all other sources are set to zero, we obtain the following reciprocity relation

Ê1,B(xA, ω)/ŝB(ω) = [v̂s3,A(xB, ω) + ŵ3,A(xB, ω)]/ŝA(ω). (5-15)

In Figure 5-18, we compare measurements of the above wavefields due to the sources specified
for states A and B. The exact amplitude match between the ± offsets of the recorded electric
field due to a vertical force source and the ∓ offsets of the recorded vertical motion due to
an electric current source numerically confirms the validity of the above reciprocity relation.
Although not presented, reciprocity was verified for other source-receiver pairs.
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Figure 5-18: Seismoelectric two-way wavefield reciprocity. (a) dispays a recording of the x1
electric field due to a force in the x3 direction; (b) displays the recorded velocity in the x3
direction due to an electric current oriented in the x1 direction.
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5-5-3 One-way reflection model with free surface

In Chapter 4 we determined the downgoing reflection matrix at the pressure-free surface. In
this section, we implement this free surface into the previous reflection model, such that the
free surface is located 1 m above the receivers (see Figure 5-19). With the presence of a free
surface we expect to see multiple arrivals as a result of waves being reflected between the
lower layer and the free surface.
To better understand the nature of the seismoelectric conversions at the additional interface,

Figure 5-19: Geometry of the reflection experiment with a free surface. The receiver line is
located 1 m below the free surface and 1 m above the source location. The distance from the
free surface to the interface is 100 m. The upper half-space consists of Medium A and the lower
half-space of Medium B.

we plot the reflection coefficients for an upgoing wave in Medium A incident on the free surface
(see Figure 5-20). Although the reflection coefficient of the SV ↔ TM conversion at normal
incidence is small, it remains non-zero, as expected. It is also clear that there are stronger
conversions between SV- and TM-waves than fast P- and TM-waves at subcritical incidence
angles.
In Figure 5-21a, we see a recording of the TM-wave due to a downgoing fast P-wave source.
The first event is a strong interface response generated at the lower interface by the downgoing
P-wave, as seen previously in the absence of a free surface. The strong hyperbolic events
are again interface responses, despite their non-linear nature. The first of the two strong
hyperbolic events corresponds to a free surface interface response due to an upgoing Pf-Pf
reflection, whereas the slower arrival corresponds to a free surface interface response due to
an upgoing Pf-SV reflection. As previously explained, an electromagnetic interface response
is not only created when a seismic wave first impinges on an interface, it continues to be
generated at increasing offsets while the seismic wavefront at zero-offset propagates past the
interface. Since the receivers are placed in near proximity to the free surface, they directly
record the electromagnetic energy radiated from each point on the length of the free surface.
Therefore, the interface response of the seismic-to-electromagnetic conversions at the free
surface are recorded by the receivers with the same hyperbolicity as the incident seismic
waves themselves. When the distance between the interface and the receivers is increased,
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Figure 5-20: Reflection coefficients corresponding to conversions between seismic and electro-
magnetic waves, for an upgoing wave in Medium A incident on the free surface. The velocity
on the horizontal axis represents the velocity of the outgoing wave. (a) and (b) show the reflec-
tion coefficients for conversions from incident fast P- and SV-waves, respectively, to an outgoing
TM-wave. (c) and (d) show the reflection coefficients for conversions from incident TM-waves
to outgoing fast P- and SV-waves, respectively.

the evanescent nature of the electromagnetic waves generated at non-normal incidence angles
would result in the hyperbolicity of the interface response quickly decaying, leaving only a
strong linear interface response. This can be seen in Figure 5-12a, where the receivers are
located 100 m from the interface.
The TM-wave section, Figure 5-21a, shows multiple linear interface responses being generated
at one-way P-wave travel time intervals and further hyperbolic interface responses radiating
from the free surface. Figure 5-21b displays the TM-waves recorded due to an SV-wave
source. At 0.05 s we observe the interface response created at the lower interface by the
source seismic wave. Since the reflection coefficient for the SV- to TM-wave conversion at the
interface between Medium A and Medium B (see Figure 5-11) is an order of magnitude lower
than for the Pf- to TM-wave conversion, the recorded interface response is significantly weaker.
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At this interface, upgoing P- and SV-waves are also generated. The interface response of the
free surface from these waves are seen at the SV-Pf and SV-SV travel times, respectively.
In Figure 5-22, we display recordings of the fast P-wave and SV-wave due to a TM-wave
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Figure 5-21: Reflection model with free surface one-way wavefield measurements of TM-waves
due to (a) fast P-wave and (b) SV-wave sources.

source. In both sections there is a weak arrival at zero time that represents the seismic waves
generated at the free surface from the almost instantaneous TM-TM reflection. The strong
event at 0.03 s in Figure 5-21a is the TM-Pf reflection from the lower interface. Multiples of
this event are seen with decreasing amplitudes at two-way P-wave travel time intervals. In
the SV-wave section, Figure 5-21b, we also observe an event at 0.03 s. We can attribute this
observation to the conversion of the upgoing TM-Pf reflection to a downgoing SV-wave at
the free surface. At 0.047 s, the one-way travel time of the SV-wave, we record the upgoing
SV-wave converted at the lower interface from the source TM-wave. The first multiple of this
wave is recorded at approximately 1.5 s, a two-way travel time increment.

5-5-4 Two-way reflection model with free surface

Now we will look at the effect of the free surface on the two-way wavefields. Once again,
upgoing waves created at the source will be muted, such that the receivers will not record a
direct wave or a source ghost. Figure 5-23 shows the inline component of the electric field
and the crossline component of the magnetic field due to an inline force source. Due to the
proximity of the receivers to the free surface, the hyperbolic arrivals are a superposition of
four events: the coseismic field of the primary reflected upgoing seismic wave, the coseismic
fields of the downgoing P- and SV-waves reflected or converted from the free surface and the
electromagnetic interface response created at the free surface. The amplitude of the recorded
hyperbolic arrival is dependent on the strength of the primary upgoing wave, as well as the
magnitudes and signs of the relevant reflection coefficients. In both panels of Figure 5-23, the
weak event at zero time is a recording of the TM-TM reflection. The three hyperbolic events
correspond to the coseismic fields of the Pf-Pf, Pf-SV (and SV-Pf) and SV-SV reflections,
respectively. As previously mentioned, these events have additional free surface contributions,
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Figure 5-22: Reflection model with free surface one-way wavefield measurements of (a) fast
P-waves and (b) SV-waves due to a TM-wave source.

i.e. the event that we refer to as the coseismic field of the Pf-Pf reflection also has Pf-Pf-Pf,
Pf-Pf-SV and Pf-Pf-TM components. The same clear hyperbolic events are seen in Figure 5-
24, when a vertically oriented force is applied. However, in the recordings corresponding to
this source, we are able to observe the interface response of the lower layer resulting from the
downgoing fast P-wave. The reason that this event (and further interface responses from the
lower layer) are visible is a consequence of both the amplitude of the downgoing fast P-wave
of the f3 source and the reflection coefficient for Pf-TM being larger than for the f1 source
and SV-TM, respectively. With both sources, we also observe internal multiples at increased
travel times.
In Figure 5-25, we see recordings of the vs1 and vs3 wavefields due to an electric current source.
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Figure 5-23: Reflection model with free surface two-way wavefield measurements of (a) E1 and
(b) H2 due to an f1 source.

If we compare the left panel to the previously discussed reflection model without a free surface
(Figure 5-16), we see that the presence of the free surface has strengthened the first arrival
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Figure 5-24: Reflection model with free surface two-way wavefield measurements of (a) E1 and
(b) H2 due to an f3 source.

due to the superposition of the upgoing TM-Pf (and Pf-TM) reflection with the free surface
converted reflections (e.g. TM-Pf-SV). The right panel displays the vs3 wavefield and shows the
numerous seismoelectric conversions occurring due to reflected waves repeatedly encountering
the two interfaces.
In the case of a magnetic source, Figure 5-26, longitudinal waves are primarily activated.
Five distinct events are recorded by the vs1 receiver. The first event is the TM-TM reflection
and its associated free surface conversions. This is followed by two interface responses: the
TM-Pf reflection and the TM-SV (and SV-TM) reflection, and their free surface conversions.
The two hyperbolic events that are recorded are the SV-Pf and the SV-SV reflections. The
measurements of the vs3 receiver are shown in Figure 5-26b; multiple seismoelectric conversions
are clearly visible. The dominant linear event is the interface response of the lower interface,
arriving at the one-way fast P-wave travel time.
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Figure 5-25: Reflection model with free surface two-way wavefield measurements of (a) vs
1 and

(b) vs
3 due to an Je

1 source.
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Figure 5-26: Reflection model with free surface two-way wavefield measurements of (a) vs
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5-6 Radiation pattern of interface response

In the above simulations of two-way seismic sources in a layered medium, we have clearly
observed the presence of three electromagnetic signals: first, the EM wave that is generated
at the source and is reflected at the interface as an EM wave; second, the independently
propagating EM wave generated at an interface due to an incident seismic wave; and third,
the coseismic EM field associated with propagating seismic waves. The third observation is
generally of the greatest magnitude (Garambois and Dietrich, 2001) but only provides infor-
mation on the fluid properties of the subsurface in the immediate vicinity of the receivers. The
second observation, the interface response, is generally considered to be of greatest interest
due to its creation at subsurface interfaces, however, it is both weak and rapidly attenuated.
The rapid attenuation is due to spherical spreading of the radiated electromagnetic energy.
To examine the relation between the recorded amplitude and the depth of the interface, we
vary the depth of the interface and look at resulting changes in the recorded amplitude. In
Figure 5-27, we plot the Amplitude Versus Offset (AVO) behaviour at a range of depths, as
measured by an E1 receiver with a P-wave source function. The interface response is created
at the interface between Medium A and Medium B and, for this case of a horizontal pla-
nar interface separating two porous media, can be approximated by a vertical electric dipole
(Thompson and Gist, 1993). The interface between the two media is successively moved
through depths from 30 m to 130 m at 20 m intervals, while the source and receiver locations
are kept constant. The rapid decay in the amplitudes of the measured electromagnetic signals
with depth are clearly visible in Figure 5-27 and can be attributed to recording within the
“near-field” of the generated EM field. The offset of the maximum amplitude increases as the
depth of the seismoelectric conversion increases. We also notice a widening of the lobes due
to the increased geometrical spreading of the wavefront with depth. We see that an analysis
of the AVO behaviour of the interface response could provide information on the depth of the
target interface. The normal moveout of the interface response could also lead to an estimate
on the subsurface EM wave velocity (Gharibi et al., 2003).
Thompson and Gist (1993) found that the electric field of the interface response can be

represented by an electric multiple. However, they also noted that since the first Fresnel
zone has the greatest contribution to the radiation, following Fresnel zones can be neglected.
The radiation of the first Fresnel zone, for a seismoelectric interface response, shows a simple
dipole symmetry (Thompson and Gist, 1993; Garambois and Dietrich, 2001). We can thus
compare the modelled interface response to the electric field radiated from a vertical dipole
through the following formula (Griffiths, 1999),

Ex = d

4πε̂L
3x1z

r5 , (5-16)

where r =
√
x2

1 + z2 describes the radius, d denotes the bipolar moment of the dipole, and ε̂L
is the modified effective electric permittivity of the medium. In Figure 5-28, we compare the
radiation pattern measured by the inline component of the electric field, due to an interface at
100 m depth, with the radiation pattern of a true vertical dipole. Since we cannot theoretically
ascertain the value of the bipolar moment that should be used, we adjust the value such that
the maximum of the two curves is identical. The radiation patterns are in good agreement,
although the dipole approximation has a more pronounced decrease in amplitude with source-
receiver offset. One possible explanation for this observation is that the approximation with
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Figure 5-27: Radiation pattern of the inline component of the electric field generated by a
downgoing fast P-wave incident on the interface separating Medium A from Medium B. The
amplitude of the field decreases as the depth of the interface increases. The five responses in
decreasing amplitude correspond to depths of 30 m (blue), 50 m (green), 70 m (red), 90 m
(turquoise), 110 m (magenta) and 130 m (yellow), respectively.

a vertical electric dipole neglects contributions from additional seismoelectric conversions
occuring along the interface.
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Figure 5-28: Comparison of the radiation pattern of the inline component of the electric field
generated by a downgoing fast P-wave with the theoretical electric field radiated by a vertical
dipole. The strength of the vertical dipole has been scaled to the maximum of the interface
response. Both the interface and dipole are located at 100 m depth.
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5-7 VESP

To maximize the strength of the recorded signal, it is desireable to have the receivers located
as close as possible to the layer of interest. This mitigates the strong attenuation of the
interface response. To this end, Vertical ElectroSeismic Profiling (VESP) has been suggested
as one potential use of electroseismics. By carrying out VESP, the receivers can be placed in
near proximity to the target layers and thus one can recover a stronger signal than would be
recorded at the surface.
The survey geometry of the VESP model used in the numerical modelling is shown in Figure 5-
29. A 60 m thick layer with lower porosity and higher conductivity (Medium B) is placed

Figure 5-29: Three-layer model with first layer at 40 m and second layer at 100 m. The vertical
receiver line is offset 40 m from the source position and begins at 9 m depth. Receivers are spaced
every 5 m down to a total depth of 159 m.

between two layers with the same medium parameters (Medium A). The source is located
40 m above the upper interface. The vertical receiver line has a 40 m lateral offset from the
source location and extends from 9 to 159 m depth with a spacing of 5 m. We record both
one-way and two-way wavefields; in both cases the source emits a downgoing fast P-wave,
corresponding to a spherically symmetric explosion.

5-7-1 One-way wavefields

We record the upgoing and downgoing constituents of the fast P-wave, the SV-wave and the
TM-wave. When the downgoing source P-wave hits the first interface, it will generate all
eight one-way wavefields. The downgoing wavefields will then undergo a further conversion
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at the second interface, each generating a further eight one-way wavefields. In Figure 5-
30, the recorded one-way wavefields are displayed. Note that all amplitudes are scaled to the
maximum amplitudes of each respective section. The fast P-wave section, Figure 5-30a, shows
the source wavelet at 0.01 s before it propagates through the layered model. When it reaches
the first interface at 40 m, there is a reflection with a polarity switch due to the negative sign
of the reflection coefficient at that interface. The majority of the energy remains within the
transmitted wave, which undergoes another reflection once it reaches the second interface.
At 44 m and 0.06 s, we can see a multiple as the wave that was upward reflected from the
lower interface is downward reflected from the upper interface. At each point that the wave
is incident on an interface, energy is split between the four upgoing and the four downgoing
one-way wavefields that are created. In Figure 5-30b, we see the SV-waves resulting from
converted energy of the P-wave source. The first conversion occurs at 40 m and 0.015 s, when
a fraction of the initial P-wave energy is converted into upgoing and downgoing SV-waves.
The P-wave continues propagating through the layer (not seen in this figure) and generates
another converted SV-wave at 100 m depth and 0.035 s. The SV-wave created at the first
interface undergoes the expected reflection and transmission at the second interface. In the
electromagnetic section, Figure 5-30c, we see the creation of two interface responses. The
first interface response is created when the source P-wave traverses the upper interface at
0.015 s; this response is immediately propagated through the upper and middle media. As
expected, the strength of the electromagnetic signal is rapidly attenuated. The amplitude of
the response is clearly greater in the second medium due to its decreased effective electric
permittivity ε̂L which, as seen in the above equation for the strength of a vertical electric
dipole, is a governing parameter in the strength of the observed electromagnetic signal. The
second interface response, seen at 0.055 s, is generated when an upgoing fast P-wave is incident
on the upper interface after being reflected from the lower boundary. Since the P-wave has lost
energy during its propagation, the amplitude of the second interface response is considerably
lower.

5-7-2 Two-way wavefields

The two-way wavefields that we record are composed from the one-way wavefields that were
discussed in the previous section. We again consider four receivers: two that measure motion
in the inline and vertical direction and two that record the electric and magnetic fields in the
inline and crossline directions, respectively. In the vs1 and vs3 receivers of Figure 5-31, we see a
combination of the direct, reflected and transmitted P-wave and the reflected and transmitted
converted SV-waves and converted TM-waves. The shear waves can be more clearly recognized
on the vs1 section; e.g. the Pf-SV conversion at the first interface propagating downwards with
the velocity of the shear wave and arriving at the final receiver at a travel time of 0.75 s. As
discussed before, the vs3 receiver is more sensitive to P-wave arrivals, as evidenced by the clear
Pf-Pf reflection from the second interface. The interface responses are not visible in these
figures due to the overwhelming amplitudes of the seismic waves.
Figure 5-32 displays the recordings of the E1 and H2 receivers. The first events seen

in the E1 recordings are the coseismic fields of the downgoing fast P-wave source. When
this P-wave reaches the interface it creates an independently propagating electromagnetic
signal, which travels through the second layer instantaneously, arriving at all the receivers in
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Figure 5-30: VESP one-way wavefield measurements of (a) fast P-waves, (b) SV-waves and (c)
TM-waves due to a fast P-wave source.

Medium B simultaneously. As observed from the TM-wave recordings, the amplitude of the
interface response rapidly decreases with depth. In both sections, we can also observe the
electromagnetic signal of the second interface response, created by the upgoing fast P-wave
impinging on the upper interface at a time of 0.055 s.
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Figure 5-31: VESP two-way wavefield measurements of (a) vs
1 and (b) vs

3 due to a fast P-wave
source.
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Figure 5-32: VESP two-way wavefield measurements of (a)E1 and (b)H2 due to a fast P-wave
source.
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5-8 Aquifer monitoring

The sensitivity of the seismoelectric method to pore fluid properties, such as ion concentra-
tion and viscosity, makes it well suited to the monitoring of aquifers (Garambois and Dietrich,
2002; Dupuis et al., 2007). In this section we will simulate changes to the fluid properties of
a saturated sandstone reservoir. Garambois and Dietrich (2002) performed a global sensitiv-
ity study and found porosity, permeability, fluid salinity and fluid viscosity to be the most
influential parameters in seismoelectric conversions. The changes we will consider will be a
change in ion concentration, corresponding to a salt intrusion into the aquifer, and changes
in the fluid’s dielectric permittivity, viscosity and density, all corresponding to the influx of
a contaminant. The geometry of the experiment, shown in Figure 5-10, will be the same as
for the reflection experiments of Section 5-5, however with changes to the medium parame-
ters. The upper layer will represent the vadose (unsaturated) zone and the lower layer, the
saturated zone. We will take both layers to be members of the same geological unit, thus
having the same medium parameters, with the exception of the conductivity. We model a
porosity of 30%, a rock permeability of 1 × 10−12 m2, and an electrolyte concentration of
1.0× 10−4 Mol L−1. The conductivity of the upper layer will be fixed to 10% less than that
of the initial saturated layer. All other medium parameters correspond to those of Medium
A (see Table 5-1).
The scenarios that we are considering are shown in Table 5-2; the values chosen for the
medium parameters of the contaminated lower layer are approximated to 20% and 40% satu-
ration by an unspecific nonaqueous phase liquid (NAPL) (Carcione et al., 2003), the largest
class of groundwater contaminants (Sneddon et al., 2000). Figure 5-33 shows changes in

Table 5-2: Aquifer contamination parameters

Scenario C ( Mol L−1) εfr η ( N s m−2) ρf ( kg m−3)
Initial state, t0 1.0× 10−4 80 1.0× 10−3 1.00× 103

Salt intrusion, ts1 2.0× 10−4 80 1.0× 10−3 1.00× 103

Salt intrusion, ts2 1.0× 10−2 80 1.0× 10−3 1.00× 103

Salt intrusion, ts3 1.0 80 1.0× 10−3 1.00× 103

Contaminant, tc1 1.0× 10−4 44 0.9× 10−3 1.04× 103

Contaminant, tc2 1.0× 10−4 14 0.8× 10−3 1.08× 103

the amplitude of the interface response due to alterations in the fluid composition of the
saturated layer. It is clear that an increase in ion concentration has a larger effect on the
interface response than changes in a combination of the dielectric permittivity, viscosity and
fluid density. Even an increase in the salt concentration by 1.0 × 10−4 Mol L−1 shows a
marked change in the radiation pattern. Due to the complex medium parameter dependency
of seismoelectric conversions, it is possible that the combination of fluid chemistry alterations
induced by the presence of a contaminant will, to some degree, cancel each other out, thereby
reducing the overall amplitude change of the interface response. Furthermore, the ability to
successfully detect these changes in the fluid properties of the aquifer would be dependent on
the sensitivity of the recording instrumentation.
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Figure 5-33: Variation of interface response due to the contamination of an aquifer. The five
responses in increasing amplitude correspond to t0 (blue), tc1 (yellow), tc2 (magenta), ts1 (green),
ts2 (red), and ts3 (turquoise) of Table 5-2, respectively.
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Chapter 6

Conclusions

We have applied the principle of flux-normalization to the seismoelectric system. The flux-
normalized composition and decomposition matrices were implemented into a reflection for-
malism that characterized the wavefield at the receiver level of a horizontally layered medium
as a function of an arbitrarily located source. By virtue of having flux-normalized the system,
we were able to symbolically replace inverse operators with transpose operators. A second
benefit of having derived a flux-normalized system was the ability to apply reciprocity theo-
rems to one-way propagators.
Modelling of the seismoelectric system was found to be subject to problems of numerical
instability. The numerical instability was a consequence of the inherently different scales of
elastodynamic and electromagnetic wave propagation. Matrix operations on matrices con-
taining the combined systems were subject to round-off errors due to the limited accuracy
of double precision floating-point arithmetic. The errors accreted over the large volume of
calculations that was required to numerically model the system, such that it was necessary
to forego the implementation of the aforementioned transpose operators to improve stability.
In the modelling, we built up from a basic transmission model to a more complex three-layer
geometry, with the presence of a free surface. We observed seismoelectric conversions occur-
ing at the interfaces of our reflection model, such that each incident wavefield generated up
to eight independently propagating wavefields. By virtue of having flux-normalized the sys-
tem, we were able to apply reciprocity theorems to both the one-way and two-way wavefields,
confirming that the recorded wavefields were invariant to a switch of the source and receiver
types and locations. As expected, the amplitude of the interface response was highly depen-
dent on the depth of the interface and could be approximated by a vertical electric dipole.
The rapid decay in the amplitude of the interface response can be attributed to geometrical
spreading of the electromagnetic field, a consequence of the receivers being positioned within
the electromagnetic near field.
A P-wave source force simulates a spherically symmetric explosion and was used as an ideal-
istic source function for further test geometries. A model of Vertical ElectroSeismic Profiling
was implemented, allowing the receivers to be placed in near proximity to subsurface lay-
ers, thereby recovering a stronger seismoelectric conversion. As one suggested application
of seismoelectrics has been for the monitoring of aquifers, we carried out simulations on the
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contamination of an aquifer. There was a clearly observable change in the interface response
when the fluid properties of the underlying medium were changed. A small change in the ion
concentration (e.g. salinity) of the aquifer caused a marked increase in the amplitude of the
generated interface response.
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