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1
INTRODUCTION

Mechanics is probably the most well-known branch of physics as everyone encounters
it in every-day life. It describes a wide range of effects: from the motion of galaxies

and planets on a large scale, the vibrations of a bridge induced by traffic or wind, the stabil-
ity of a riding bicycle to the trajectories of electrons in an old-fashioned television on a mi-
croscopic scale. In the early days of physics, mainly objects that could be seen or touched
were studied, i.e. those on the human scale. The development of better and better tele-
scopes and microscopes enabled the study of mechanical systems on both much larger
and smaller length scales. Until the beginning of the twentieth century it was thought
that the three laws of motion obtained by Newton described the dynamics of mechanical
systems completely. The rapid developments in the early 1900s that led to the theory of
special and general relativity and quantum mechanics showed that the laws of classical
mechanics were not the whole truth.

Relativistic correction turns out to be important for objects with large masses or with
velocities approaching the speed of light. It is therefore an important factor in astro-
physics, where one studies the dynamics of heavy objects like galaxies and black holes
or the bending of light by the curvature of space-time. Relativity is therefore most applica-
ble to objects well beyond the human scale. When the masses and velocities of the objects
involved are made smaller and smaller, the relativistic corrections eventually vanish and
one obtains the classical laws of motion [1].

Quantum mechanics, on the other hand, is particularly well suited to describe the me-
chanics of objects at the other end of the length-scale range, i.e (sub)atomic objects. In
the beginning of the twentieth century, quantum theory successfully explained the photo-
electric effect, black-body radiation and the atomic emission spectra. Quantum mechan-
ics is different from classical and relativistic mechanics in the sense that objects are no
longer described by a definite position, but by a wavefunction. This wavefunction evolves
deterministically according to the Schrödinger equation and its absolute value squared
should be interpreted as the position probability-density function, the so-called Born rule
[2]. To find the object at a particular location one has to measure its position. This process,
however, inevitably disturbs the evolution of the wavefunction [3, 4].
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2 1. INTRODUCTION

Quantum mechanics does not only describe processes at the (sub)atomic scale suc-
cessfully, but it also explains the microscopic origin of many macroscopic effects such as
the electronic properties of solids, superfluidity and so on. Unlike in relativity where one
can simply take the limit m, v → 0, in quantum mechanics it is still not entirely clear how
the transition from quantum mechanics to classical mechanics exactly happens [5, 6]. Al-
though Ehrenfest’s theorem implies that the expectation values of quantities obey New-
ton’s second law [2], the classical laws of motion are not obtained by simply taking ħ→ 0
[7].

Another issue that is still debated is how quantum mechanics should be interpreted
[8]: as the truth, as a tool to calculate outcomes of an experiment or as an incomplete
theory? These two issues are related and can be reformulated into the question “Can
a macroscopic object be put in a quantum superposition?” This was first illustrated by
Schrödinger in 1935 with the famous dead-or-alive cat gedanken experiment. Superposi-
tions of small objects are readily observed, a good example are the singlet and triplet spin
states in a molecule, but this becomes increasingly difficult for larger and larger systems
mainly due to decoherence [9]. So far, superpositions have been created using the circu-
lating current in superconducting quantum interference devices (SQUIDs) [10] and with
fullerenes [11, 12].

Nanomechanical devices [13, 14] are interesting candidates to further increase the size
of systems that can be put in a superposition [15]. These systems are the logical con-
tinuation of micromechanical devices that are made using integrated-circuit technology,
but then on a much smaller, nanometer scale. Micro-electomechanical systems (MEMS)
are currently widely used as, for example, accelerometers in airbags, pressure sensors or
projectors. When scaling these devices down to the nanometer scale, their resonance fre-
quencies increase and at the same time their mass decreases. From an application point of
view this is interesting as this might enable single-atom mass-sensing, mechanical com-
puting and efficient signal processing in the radio-frequency and microwave bands. From
a scientific point of view these devices are interesting as they can be cooled to tempera-
tures so low that the resonator is nearly always in its quantum-mechanical ground state.
Moreover, the rapid progress in the development of position detectors have led to detec-
tors that have sensitivities that are approaching the quantum limit on position detection
[3].

In this Thesis, different types of micro- and nanomechanical devices are studied with
the focus on their possible use for exploring the quantum regime for mechanical sys-
tems. In Chapter 2 the current state of the field is discussed and the relevant concepts
are explained. Chapter 3 discusses how these nanomechanical systems are modelled us-
ing techniques from continuum mechanics. Chapters 4, 5 and 6 describe experiments on
bottom-up fabricated carbon-based nanoelectromechanical systems (NEMS). These in-
clude few-layer graphene nanodrums (Ch. 4) and suspended carbon nanotubes (Ch. 5
and 6). Chapters 7 and 8 are devoted to the motion detection of, and backaction on, a
top-down fabricated micromechanical resonator embedded in a dc SQUID.
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2
QUANTUM mechanics

This chapter introduces the concepts related to mechanical systems in the quantum
regime. These concepts will be useful when reading the forthcoming Chapters of this

Thesis. The starting point is a brief review of the classical and quantum mechanical de-
scription of the harmonic oscillator. Then, Brownian motion and the effective resonator
temperature are explained, and different cooling techniques are discussed. The quantum
limit on position detection using continuous linear detectors is derived and it is shown
that the physics of the position detector plays an important role.

Many of the abovementioned concepts and their implications became relevant in the
1970s when more and more sensitive gravitational wave detectors [1] were designed (see
for example Refs. [2] and [3]), raising questions on the violations of the Heisenberg uncer-
tainty principle [4–6]. Nowadays, these issues are important when measuring on micro-
and nanomechanical devices with very sensitive detectors or at very low temperatures.
Table 2.1 provides an overview of recent experiments with mechanical resonators that ap-
proach the quantum limit in position-detection sensitivity or that have a low resonator
temperature. Different groups use different types of resonators: doubly clamped beams,
singly clamped cantilevers, radial breathing modes of silica microtoroids, membranes, mi-
cromirrors and macroscopic bars. In general, two distinct methods for position detection
are used: optical and electrical. Optical detectors typically use an interferometer in which
light reflects back and forth between a mirror and the resonator. This will be explained in
more detail in Sec. 2.3. Electrical readout often uses mesoscopic devices for a sensitive
position detection. This includes single electron transistors (SETs), atomic and quantum
point contacts (APCs and QPCs resp.), and superconducting quantum interference devices
(SQUIDs). Also, the microwave equivalent of the optical interferometer, a superconduct-
ing stripline, is used.

This Chapter starts with a brief overview of the physics of the harmonic oscillator.
Thermal and quantum noise are introduced in Sec. 2.2. To prepare a mechanical sys-
tem in a quantum state, its thermal occupation should be low. Section 2.3 discusses the
different cooling mechanisms that are used to cool the resonator below its environmental
temperature. The position sensitivity of a linear detector is discussed in Section 2.4.

5



6 2. QUANTUM mechanics

TABLE 2.1: Overview of recent experiments with micro- and nanomechanical resonators. Several types of res-
onators and detection methods are used by different groups in the field. The table shows the resonance frequency
fR , quality factor Q and the mass m of the resonator. From this, the zero-point motion u0 is estimated. With the
sensitivity S1/2

un un , the resolution ∆un is calculated. The experiments are done at a temperature T and in some
of the experiments the resonator is cooled to a temperature TR well below the environmental temperature. Also
the final number of quanta n and the cooling factor T /TR are indicated.

Group Authors Year Resonator Detector

1 UCSB Knobel & Cleland 2003 GaAs beam SET
2 CalTech Huang & Roukes 2003 Si beam Magn. mot.
3 Schwab LaHaye & Schwab 2004 SiN/Au beam SET
4 LMU Metzger & Karrai 2004 Si/Au cantilever Optical
5 LKB Paris Arcizet & Rousseau 2006 Si micromirror Optical
6 Schwab Naik & Schwab 2006 SiN/Al beam SET
7 MPI-QO Schliesser & Kippenberg 2006 Silica toroid Optical
8 Vienna Gigan & Zeilinger 2006 SiO2/TiO2 beam Optical
9 LKB Paris Arcizet & Heidmann 2006 Si micromirror Optical
10 UCSB Kleckner & Bouwmeester 2006 AFM cantilever Optical
11 IBM Poggio & Rugar 2007 Si cantilever Optical
12 LMU Favero & Karrai 2007 Si micromirror Optical
13 NIST Brown & Wineland 2007 Si cantilever Capacitive
14 JILA Flowers-Jacobs & Lehnert 2007 Gold beam APC
15 CalTech Li & Roukes 2007 SiC/Au cantilever Piezoresist.
16 LKB Paris Caniard & Heidmann 2007 micromirrors Optical
17 LIGO Corbitt & Mavalvala 2007 micromirror Optical
18 Harris Thompson & Harris 2008 SiN membrane Optical
19 JILA Regal & Lehnert 2008 Al beam Stripline
20 Delft Etaki, Poot & van der Zant 2008 AlGaSb beam SQUID
21 MPI-QO Schliesser & Kippenberg 2008 Silica toroid Optical
22 Vienna Groeblacher & Aspelmeyer 2008 Si cantilever Optical
23 CalTech Feng & Roukes 2008 SiC/Au beam Optical
24 IBM Poggio & Rugar 2008 Si cantilever QPC
25 AURIGA Vivante & Zendri 2008 Al bar Capacitive
26 AURIGA Vivante & Zendri 2008 Al bar Capacitive
27 JILA Teufel & Lehnert 2008 Al beam Stripline
28 JILA Teufel & Lehnert 2008 Al beam Stripline
29 Alberta Liu & Freeman 2008 Si cantilever Optical
30 Vienna Groeblacher & Aspelmeyer 2009 Si cantilever Optical
31 MPI-QO Schliesser & Kippenberg 2009 Silica toroid Optical
32 MPI-QO Anetsberger & Kippenberg 2009 SiN beam Optical
33 JILA Teufel & Lehnert 2009 Al beam Stripline
34 Schwab Rocheleau & Schwab 2009 SiN/Al beam Stripline
35 Oregon Park & Wang 2009 Silica sphere Optical
36 LMU Unterreithmeier & Kotthaus 2009 SiN beam Optical
37 LMU Unterreithmeier & Kotthaus 2009 SiN beam Capacitive
38 Tang Li & Tang 2009 Si cantilever Optical
39 Painter Eichenfeld & Painter 2009 Si ph. crystal Optical
40 LIGO LIGO Scientific 2009 Susp. mirror Optical

Table continues on the next page.



7

TABLE 2.1: continued from the previous page.

fR (MHz) Q m (kg) u0 (fm)
S̄1/2

unun

(fm/
p

Hz)
∆un (fm)

∆un
u0

1 117.0 1700 2.8 ·10−15 5.05 2.0 658 130.21
2 1.0 ·103 500 3.4 ·10−17 15.65
3 19.7 35000 9.7 ·10−16 20.91 3.8 113 5.40
4 7.3 ·10−3 2000 8.6 ·10−12 11.54 2.0 ·103 4.8 ·103

5 0.814 10000 1.9 ·10−7 7.4 ·10−3 4.0 ·10−4 4.5 ·10−3 0.62
6 21.9 120000 6.8 ·10−16 23.69 0.3 5.1 0.21
7 57.8 2890 1.5 ·10−11 0.10 3.0 ·10−3 0.53 5.42
8 0.278 9000 9.0 ·10−12 1.83
9 0.8145 10000 7.0 ·10−11 0.38 4.0 ·10−4 4.5 ·10−3 0.011

10 1.3 ·10−3 137000 2.4 ·10−11 16.69 100.0 12 0.72
11 3.8 ·10−3 30000 1.5 ·10−13 121.07 1.0 0.45 0.0037
12 0.5466 1059 1.1 ·10−14 36.62 1.0 ·103 2.8 ·104

13 7.0 ·10−3 20000 1.0 ·10−10 3.45
14 43.1 5000 2.3 ·10−15 9.18 2.3 267 29.15
15 127.0 900 5.0 ·10−17 36.27 39.0 1.8 ·104

16 0.7105 16000 6.4 ·10−4 1.4 ·10−4 2.7 ·10−5 2.3 ·10−4 1.66
17 1.7 ·10−4 3200 1.0 ·10−3 7.0 ·10−3 0.2 0.058 8.34
18 0.134 1100000 4.0 ·10−11 1.25 0.54 0.24 0.19
19 0.237 2300 2.0 ·10−15 132.77 200.0 2.5 ·103 19.16
20 2.0016 18000 6.1 ·10−13 2.62 10.0 132 50.52
21 74.0 57000 1.0 ·10−11 0.11 1.0 ·10−3 0.045 0.42
22 0.557 2000 1.9 ·10−10 0.28
23 428.2 2500 5.1 ·10−17 19.56 1.64 851 43.49
24 5.0 ·10−3 2500 2.0 ·10−12 29.05 1.0 ·103 1.8 ·103 60.70
25 8.7 ·10−4 1200000 1.1 ·103 3.0 ·10−6 3.0 ·10−5 1.0 ·10−6 0.34
26 9.1 ·10−4 880000 1.1 ·103 2.9 ·10−6 3.0 ·10−5 1.2 ·10−6 0.42
27 1.525 300000 6.2 ·10−15 29.73 600.0 1.7 ·103 57.03
28 1.525 10000 6.2 ·10−15 29.73 45.0 696 23.43
29 1.0 ·103 18 2.0 ·10−17 20.04 1.0 ·103 9.5 ·106

30 0.945 30000 4.3 ·10−11 0.45 9.5 ·10−3 0.067 0.15
31 65.0 2000 7.0 ·10−11 0.04 1.5 ·10−3 0.34 7.91
32 8.07 10000 4.9 ·10−15 14.54 0.64 23 1.57
33 1.04 160000 1.1 ·10−14 27.03 4.8 15 0.57
34 6.3 1000000 2.1 ·10−15 25.19 1.15 3.6 0.14
35 118.6 3400 2.8 ·10−11 0.05 0.26 61
36 8.9 150000 1.8 ·10−15 22.84 700.0 6.8 ·103

37 8.9 150000 1.8 ·10−15 22.84 2.0 ·104 1.9 ·105

38 13.86 4500 4.5 ·10−16 36.60 40.0 2.8 ·103 76.01
39 8.2 150 4.3 ·10−14 4.87 0.04 12 2.41
40 1.2 ·10−4 2.7 ·100 1.6 ·10−4 1.0 ·10−3

Table continues on the next page.



8 2. QUANTUM mechanics

TABLE 2.1: continued from the previous page.

fR (MHz) T (K) Tmin
R (K) n̄ Cooling method Factor Ref.

1 117.0 0.03 0.03 5.8 [7]
2 1.0 ·103 4.2 4.2 95.2 [8]
3 19.7 0.035 0.056 64.6 [9]
4 7.3 ·10−3 295 18 5.6 ·107 Photothermal 16.4 [10]
5 0.814 295 5 1.4 ·105 Feedback 59.0 [11]
6 21.9 0.03 0.035 36.3 Backaction [12]
7 57.8 300 11 4326.7 Sideband 27.3 [13]
8 0.278 295 10 8.2 ·105 Sideband 29.5 [14]
9 0.8145 295 10 2.8 ·105 Sideband 29.5 [15]

10 1.3 ·10−3 295 0.135 2.5 ·106 Feedback 2185.2 [16]
11 3.8 ·10−3 2.2 0.0029 1.7 ·104 Feedback 758.6 [17]
12 0.5466 300 175 7.3 ·106 Photothermal 1.7 [18]
13 7.0 ·10−3 295 45 1.5 ·108 Sideband 6.6 [19]
14 43.1 0.25 1 527.5 [20]
15 127.0 295 295 5.3 ·104 [21]
16 0.7105 295 295 9.4 ·106 [22]
17 1.7 ·10−4 295 0.8 1.1 ·108 Sideband 368.8 [23]
18 0.134 294 0.0068 1153.7 Sideband 4.32 ·104 [24]
19 0.237 0.04 0.017 1630.8 Sideband 2.4 [25]
20 2.0016 0.02 0.084 954.1 [26]
21 74.0 295 19.2 5900 Sideband 15.4 [27]
22 0.557 35 0.29 1.2 ·104 Sideband 120.7 [28]
23 428.2 22 22 1168.1 [29]
24 5.0 ·10−3 4.2 4.2 1.9 ·107 [30]
25 8.7 ·10−4 4.2 0.002 5.3 ·104 Feedback 2100.0 [31]
26 9.1 ·10−4 4.2 1.7 ·10−4 4228.6 Feedback 2.47 ·104 [31]
27 1.525 0.05 0.05 745.4 [32]
28 1.525 0.05 0.01 149.1 Sideband 5.0 [32]
29 1.0 ·103 295 295 6448.8 [33]
30 0.945 5.3 0.0013 31.3 Sideband 4076.9 [34]
31 65.0 1.65 0.2 70 Sideband 8.3 [35]
32 8.07 300 300 8.5 ·105 [36]
33 1.04 0.015 0.13 2841.8 Sideband [37]
34 6.3 0.02 0.0011 3.8 Sideband 19.0 [38]
35 118.6 1.4 0.21 40.3 Sideband 6.7 [39]
36 8.9 295 295 7.5 ·105 [40]
37 8.9 295 295 7.5 ·105 [40]
38 13.86 295 295 4.8 ·105 [41]
39 8.2 360 7.3 2.0 ·104 Sideband 49.0 [42]
40 1.2 ·10−4 300 1.4 ·10−6 258.8 Feedback 2.14 ·108 [43]
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2.1 THE HARMONIC OSCILLATOR
The harmonic oscillator is probably the most extensively studied system in physics. Nearly
everything that returns to its equilibrium position after being displaced, can be described
by a harmonic oscillator. Examples range from the suspension of a car, traffic-induced
vibrations of a bridge, and the voltage in an electrical LC network, to light in an optical
cavity.

At first sight, the description of static and dynamic nanomechanical systems appears
to be more complicated than that of a harmonic oscillator. However, when the displace-
ment is small, the system has well-defined normal modes. Every deflection of the NEMS
can be expanded in terms of these normal modes and the dynamics of the system is de-
scribed by a set of uncoupled harmonic oscillators, as Chapter 3 will show. In most of the
forthcoming Chapters, only one particular mode of the resonator is studied and its dis-
placement is described by the position of a single harmonic oscillator. In this case, we
make no distinction between the resonator (i.e. the entire nanomechanical system) and
the mode that is studied.

THE CLASSICAL HARMONIC OSCILLATOR
In a harmonic oscillator, the potential energy depends quadratically on the displacement
u from the equilibrium position:

V (u) = 1

2
kR u2, (2.1)

where kR is the spring constant. The parabolic shape of the potential results in a force that
is proportional to the displacement. When damping and a driving force F (t ) are included,
the equation of motion reads:

mü =−kR u −mγR u̇ +F (t ), (2.2)

for a resonator with mass m and bandwidth γR . When the oscillator is displaced and
released, it will oscillate at frequency ωR with a slowly decreasing amplitude due to the
damping. The quality factor Q = ωR /γR indicates how many times the resonator moves
back and forth before its energy has decreased by a factor e.

The harmonic oscillator responds linearly to an applied force; in other words, it is a
linear system. Any linear system is characterized by its impulse response or Green’s func-
tion [44]. For the harmonic oscillator, the impulse response hHO(t ), is the solution to Eq.
2.2 with F (t ) = kRδ(t ):

hHO(t ) = sin(ωR t )e−
ωR t
2Q Θ(t ), (2.3)

where δ(t ) is the Dirac delta function and Θ(t ) is the Heaviside stepfunction. The im-
pulse response function1 describes how the resonator reacts to a kick at time t = 0 and

1This is the Green’s function for a high-Q resonator. For lower Q-values, the resonator oscillates at a slightly
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FIGURE 2.1: (a) The Green’s function hHO (t ) and (b) frequency response HHO (ω) of a harmonic oscillator with
Q = 10. (c) Eigenenergies En (dashed) and the corresponding wave functions ψn (u) (solid) of the harmonic
oscillator for n = 0..7.

is plotted in Fig. 2.1a. The time-evolution of the displacement for a force with arbitrary
time-dependence F (t ) can be calculated directly from the impulse-response function:

u(t ) = hHO(t )⊗F (t )/kR . (2.4)

In many experiments the oscillator is driven with a periodic force F (t ) = F0 cos(ωt ).
After a short transient, the displacement oscillates in time with the same frequency as the
driving force, but it can have a different phase. This is quantified by the transfer function
HHO(ω) that is obtained by taking the Fourier transformation2 of the equation of motion,
Eq. 2.2:

HHO(ω) = kR
u(ω)

F (ω)
=

ω2
R

ω2
R −ω2 + iωωR /Q

. (2.5)

The magnitude |HHO(ω)| and phase ∠HHO(ω) are plotted in Fig. 2.1b. When the driving
frequency is far from the resonance frequency, the oscillator hardly moves and both |HHO |
and ∠HHO are small. The amplitude grows when sweeping the frequency towards the
natural frequency. Exactly on resonance, the amplitude has its maximum |HHO | =Q. The
phase response shows that at the resonance frequency, the displacement lags the driving

lower frequency ω′
R = ωR

√
1− (1/2Q)2 and the impulse response of an underdamped oscillator (i.e. one that

has Q > 1/2) is: hHO (t ) = sin(ω′
R t )exp(−ωR t/2Q) · [1− (2Q)−2]−1/2Θ(t ). An overdamped resonator returns to

u = 0 without any oscillations and has a different impulse response. Throughout this Thesis it is assumed that
Q À 1 so that ω′

R ≈ωR and hHO is given by Eq. 2.3. Note, that Eq. 2.5 is valid for all (positive) values of Q.
2By convention [44], the Fourier transformation is defined as: X (ω) = F [x(t )] = ∫ +∞

−∞ x(t )exp(−iωt )dt so that

the inverse transformation is given by: x(t ) =F−1[X (ω)] = 1
2π

∫ +∞
−∞ X (ω)exp(+iωt )dω.
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force by −π/2. When further increasing the driving frequency, the oscillator can no longer
follow the driving force: the amplitude drops and the lag approaches −π. The motion is
then 180o out-of-phase with the applied force.

THE HARMONIC OSCILLATOR IN QUANTUM MECHANICS

In quantum mechanics the harmonic oscillator is described by the Hamiltonian Ĥ = p̂2/2m+
1
2 mω2

R û2 [4], as the classical displacement coordinate u and momentum p = mu̇ have to
be replaced by the operators û and p̂ = −iħ · ∂/∂u. The displacement is described by a
wavefunction ψ(u) that satisfies the time-independent Schrödinger equation:

Ĥψ=− ħ2

2m

∂2ψ

∂u2 + 1

2
mω2

R û2ψ= Eψ. (2.6)

This equation is solved by introducing the creation and annihilation operators:

â† =
√

m
2ħωR

(
ωR û − i p̂

)
and â =

√
m

2ħωR

(
ωR û + i p̂

)
respectively. The Hamiltonian then be-

comes Ĥ = ħωR (n̂ + 1
2 ), where n̂ = â†â is the number operator that counts the number

of phonons in the oscillator. The eigenenergies are En = ħωR (n + 1
2 ), with eigenstates |n〉.

The corresponding wave functionsψn(u) are plotted in Fig. 2.1c. The lowest (n = 0) eigen-
state has a non-zero energy E0 = 1

2ħωR , the so-called zero-point energy. Even when the
oscillator relaxes completely, it still moves around the potential minimum at u = 0. The
probability density of finding the resonator at position u, is given by |ψ0(u)|2 when the
resonator is in the ground state. The zero-point motion u0 is the standard deviation of this
probability density:

u0 ≡
(∫ ∞

∞
u2|ψ0(u)|2 du

)1/2

= 〈0| û2 |0〉1/2 =
√

ħ
2mωR

. (2.7)

The zero-point motion is an important length scale that determines the effective resonator
temperature and the quantum limit on continuous linear position measurement as the
following Sections will show.

2.2 THERMAL AND QUANTUM NOISE
In the previous Section it was shown that a resonator always moves because it contains at
least the zero-point energy. In practise, except at the lowest temperatures, the zero-point
motion is overwhelmed by thermal noise. Thermal noise is generated by the environment
of the resonator. As an example, consider a resonator in air. At room temperature, the
air molecules have an average velocity of about 500m/s. The molecules randomly hit the
resonator and every collision gives the resonator a kick. These kicks occur independently
of each other, so the resonator experiences a stochastic force Fn(t ) that is white and that
has a Gaussian distribution. Other thermal noise sources are phonons in the substrate
that couple to the resonator via the clamping points, fluctuating amounts of charge on
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FIGURE 2.2: (a) Simulated time-trace of the displacement (blue), amplitude (black) and phase (red) of a res-
onator that is driven by Gaussian white noise for Q = 50. The phase ϕ is in radians and both the displace-
ment u and amplitude A are normalized by the root-mean-square displacement urms. The corresponding auto-
correlation functions are shown in (b).

nearby impurities and so on. The force noise can be described by an autocorrelation func-
tion RFn Fn (t ) = E[Fn(t ′)Fn(t ′+ t )] or by its power spectral density3 (PSD) SFn Fn (ω) [45]. For
white noise, the latter is independent of frequency and Fn(t ) has an infinite variance. For
a given Fn(t ) the realized displacement is easily found using the Green’s function, i.e. with
Eq. 2.4. Figure 2.2a shows a simulated time-trace of this so-called Brownian motion. The
resonator oscillates back and forth with frequencyωR and its phase and amplitude vary on
a much longer timescale. The displacement can be written as u(t ) = A(t )cos[ωR t +ϕ(t )]
(see Supplement) and the time-traces of the amplitude A and phase ϕ are plotted in Fig.
2.2a as well. Figure 2.2b shows the calculated autocorrelation functions of the displace-
ment, amplitude and phase. The displacement autocorrelation Ruu(t ) displays oscilla-
tions with period 2π/ωR , whereas RA A and Rϕϕ do not contain these rapid oscillations.
All three functions fall off at timescales ∼Q/ωR . Note, that RA A(t ) does not go to zero for
long times as A(t ) is always positive and is therefore always correlated with the current
amplitude.

The displacement PSD is proportional to the force noise PSD, which is given by [45]:

Suu(ω) = k−2
R |HHO(ω)|2SFn Fn . (2.8)

This can be used to find the variance of the displacement. When SFn Fn is white in the

3In this Thesis, the engineering convention for the single-sided power spectral density, SX X (ω) = SX X (ω) +
SX X (−ω), is used. Here, SX X (ω) = F [RX X ] is the double-sided PSD and RX X is its autocorrelation function.
The variance of X is given by 〈X 2〉 = RX X (0) = (2π)−1 ·∫ ∞

−∞ SX X (ω)dω= (2π)−1 ·∫ ∞
0 SX X (ω)dω.
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bandwidth of the resonator, which is typically assumed, this gives:

〈u2〉 = 1

2π

∫ ∞

0
Suu(ω)dω= π

2

QωR

k2
R

SFn Fn . (2.9)

The force noise PSD is related to the temperature and in equilibrium, the resonator tem-
perature equals the environmental temperature. The equipartition theorem [46] relates
the variance of the displacement to the equilibrium temperature:

1

2
kR〈u2〉 = 1

2
m〈u̇2〉 = 1

2
kBT. (2.10)

The thermal energy kBT is shared equally between the potential energy and the kinetic
energy. By combining Eqs. 2.9 and 2.10, a relation between the force noise PSD and the
properties of the resonator is found:

SFn Fn (ω) = 4kBTmωR /Q. (2.11)

This so-called fluctuation-dissipation theorem shows that on one hand the force noise
PSD can directly be obtained from the resonator properties and temperature, without
knowing its microscopic origin. And, on the other hand, that the force noise determines
the dissipation (i.e. quality factor) of the resonator.

In equilibrium, the temperature of the resonator is proportional to the variance of its
Brownian motion as indicated by Eq. 2.10. However, out of equilibrium the force noise is
no longer given by Eq. 2.11, and the resonator temperature can be different from T . The
effective resonator temperature TR is defined as:

TR ≡ kR〈u2〉
kB

= kR

2πkB

∫ ∞

0
Suu(ω)dω= kR

2πkB

∫ ∞

0
|HR |2SF F (ω)dω, (2.12)

which yields TR = T in equilibrium. When the force noise is larger than that of Eq. 2.11,
the effective resonator temperature is higher than the environmental temperature. When
〈u2〉 is smaller than its equilibrium value, TR < T .

When the resonator is cooled to very low temperatures where kBT ∼ ħωR , the classi-
cal description breaks down as the quantized energy-level structure (Fig. 2.1c) becomes
important. Semi-classically, the thermal and quantum effects are combined when the the
force noise of Eq. 2.11 is replaced by the Callen and Welton equation [47]:

SFn Fn (ω) = 4mω

Q
· 1

2
ħωcoth

( ħω
2kBT

)
, (2.13)

so that for Q À 1:

〈u2〉 = u2
0 ·coth

( ħωR

2kBT

)
⇔ T = ħωR /2

kB
ln−1

(
〈u2〉+u2

0

〈u2〉−u2
0

)1/2

. (2.14)
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FIGURE 2.3: The resonator temperature TR plotted against the environmental temperature T . At low tem-
peratures the resonator temperature saturates at the zero-point energy: TR = 1

2ħωR /kB and at high tempera-
tures TR = T (dashed line). The insets show the occupation probability Pn of the energy levels at kBT /ħωR =
0.3, 1/ln2 ≈ 1.44 and 2.0.

This yields TR = T for high temperatures (kBT ÀħωR ) and TR = 1
2ħωR /kB at zero temper-

ature. Note, that sometimes Eq. 2.14 is used as the definition of TR instead of Eq. 2.12.
In thermal equilibrium, the energy levels of a harmonic oscillator have occupation

probabilities that are given by:

Pn =
(
e
− ħωR

kBT

)n (
1−e

− ħωR
kBT

)
. (2.15)

The average thermal occupation is n =∑∞
n=0 nPn = [exp(ħωR /kBT )−1]−1 [46], which equals

kBTR /ħωR − 1
2 . Figure 2.3 shows the resonator temperature and the occupation probabil-

ities for different temperatures T . For kBT = ln(2)ħωR the resonator is in the ground state
exactly half of the time. At any non-zero temperature, there is always a finite probability
to find the resonator in an excited state. With the statement that “the resonator is cooled
to its ground state” one actually means n . 1.

2.3 COOLING
To prepare a nanomechanical system in the ground state, the thermal occupation of its
normal modes should be minimal. The most direct approach is to mount an ultra-high
frequency ( fR > 1GHz) resonator in a dilution refrigerator (T < 50mK) so that
n = [exp(h fR /kBT )−1]−1 ≤ 1. Such a resonator will, however, have a very small zero-point
motion and the readout of tiny high-frequency signals at millikelvin temperatures is dif-
ficult. An alternative approach is to do the experiments with lower-frequency resonators
and/or at higher temperatures. The thermal occupation is then higher than one and cool-
ing techniques such as active feedback cooling or sideband cooling have to be used to
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FIGURE 2.4: Overview of mechanical resonators with low temperature or occupation, compiled from Table 2.1.
The top panel shows the experiments with the lowest occupation numbers. These are reached using conven-
tional cooling (gray) and active feedback and sideband cooling (black). The bottom axis is located at n̄ = 1.
When the thermal occupation is below this value, the resonator is cooled to the ground state. The bottom panel
shows the starting temperature T (gray) and the final temperature T min

R (black) achieved by groups that have
actively cooled their resonator below 100mK.

reduce the temperature of the resonator TR well below the environmental temperature T .
Figure 2.4 shows how recent experiments (Table 2.1) are approaching the limit n ≤ 1 over
a range of frequencies that spans seven orders of magnitude.

ACTIVE FEEDBACK COOLING
When the position of the resonator is measured and fed back to the resonator, the Brow-
nian motion of the resonator can be amplified or suppressed. In the latter case, the res-
onator is cooled. Actually, the lowest resonator temperature, TR = 1.4µK, has been ob-
tained using this method (see Table 2.1) [43]. Figure 2.5a shows a schematic of the process.
The resonator, with frequency ω0/2π and Q-factor Q0, is driven by the thermal force noise
Fn(t ) and its displacement u(t ) is measured. The detector adds noise to the signal, the
so-called imprecision noise un(t ). The apparent position is thus the sum of the physical
displacement and the detector noise: v = u +un . The information contained in v is used
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FIGURE 2.5: (a) In the active feedback cooling scheme the resonator displacement u is measured. The detector
adds imprecision noise un and sum of this noise and the physical displacement is measured using a spectrum
analyzer. This signal is also fed back to the resonator to attenuate the Brownian motion. In the feedback loop
a filter with response HF B and a variable gain g · k0 are included. The resulting feedback force FF B adds up
with the thermal force noise Fn . The resonator’s response to the applied forces is determined by its transfer
function HR = HHO /k0. (b) Our implementation of the feedback uses mixing with a frequency ωLO and a fast,
programmable digital signal processer (DSP).

to apply a force FF B that damps the resonator motion4. The relation between the feed-
back force and the apparent position is described by the linear system5 or filter HF B . The
output of the filter is multiplied by a selectable gain6 g and converted to a force using the
spring constant k0. This forms a closed-loop system [44, 50] with the following equations
of motion:

mü(t )+mω0u̇(t )/Q0 +mω2
0u(t ) = Fn(t )+FF B (t ), (2.16)

FF B (t ) = mω2
0g ·hF B (t )⊗ [u(t )+un(t )]. (2.17)

The feedback changes the resonator response from HR to the closed-loop transfer func-
tion H ′

R , given by:

H ′−1
R = H−1

R − g k0HF B , or H ′
R = k−1

0

1−
(
ω
ω0

)2
+ i

Q0

ω
ω0

− g HF B

. (2.18)

4In principle, also the backaction force noise of the detector (see the next Section) has to be included [31, 48].
This term was, however, so far never important in the active feedback cooling experiments [16, 17, 31, 43, 49].

5For a phase-insensitive feedback, the feedback system must be linear and time-invariant. On the other hand,
to obtain a phase-sensitive state (for example a squeezed state), the system cannot be time-invariant.

6The gain g and filter HF B are defined such that |HF B (ω0)| = 1.
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Using this result, the PSDs of the physical and observed displacement are obtained:

Suu(ω) = SFn Fn /(mω2
0)2 + g 2|HF B |2Sun un∣∣∣∣1−

(
ω
ω0

)2
+ i

Q0

ω
ω0

− g HF B (ω)

∣∣∣∣
2 , (2.19)

Sv v (ω) =
SFn Fn /(mω2

0)2 +
∣∣∣∣1−

(
ω
ω0

)2
+ i

Q0

ω
ω0

∣∣∣∣
2

Sun un

∣∣∣∣1−
(
ω
ω0

)2
+ i

Q0

ω
ω0

− g HF B (ω)

∣∣∣∣
2 . (2.20)

The resonator displacement PSD Suu shows that the resonator indeed responds to the
force noise with H ′

R instead of HR . The force noise still contains the original contribution
SFn Fn , but now it also has a contribution due to the imprecision noise that is fed back to
the resonator. The apparent position PSD is not simply the sum of Suu and Sun un because
the feedback creates correlations between the imprecision noise un(t ) and the actual res-
onator position u(t ).

Different implementations of the feedback filter HF B are possible, each with their ad-
vantages and drawbacks. In any case, the real part of HF B changes the resonance fre-
quency, whereas the imaginary part changes the damping. The PSDs of the true and ap-
parent resonator displacement are plotted in Fig. 2.6 for two feedback schemes that are
widely used:

• Velocity-proportional feedback with hF B (t ) =−ω−1
0 ·∂/∂t , HF B =−iω/ω0. The trans-

fer function is imaginary and the damping rate has been changed from ω0/Q0 to
ω0/Q0 · (1+ gQ0). At low gains Suu is lowered and the resonator is cooled. This is
sketched in Fig. 2.6a. When the gain is increased further, the tails of Suu start to
rise as the detector noise is fed back into the resonator, but the total area under Suu ,
i.e. 〈u2〉, still decreases. Above a certain value g = gmin, too much detector noise
is fed back to the resonator and the resonator temperature starts to increase. The
minimum resonator temperature in the limit g ÀQ−1

0 is [17]:

TR,min =
√

mω3
0T

kBQ0
Sun un = 2Tp

SNR
, where SNR = Suu(ω0)g=0

Sun un

. (2.21)

The lowest resonator temperature is thus limited by the signal-to-noise ratio (SNR)
of the original thermal noise peak and the detector noise floor. The lowest TR is
obtained at gmin =

p
SNR/Q0.

• Displacement-proportional feedback with hF B (t ) = −δ(t ), HF B = −1. In this case,
the transfer function is real, which changes the resonance frequency toω0 ·(1+g )1/2.
From Fig. 2.6b it is clear that for the parameters used (Q0 = 100,k2

0Sun un /SFn Fn =
102) only heating instead of cooling is achieved with proportional feedback. The
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FIGURE 2.6: Feedback cooling of a resonator with Q0 = 100 using velocity-proportional (a) and displacement-
proportional (b) feedback. The top panels show the PSD of the observed displacement Sv v and the bottom
panels show the physical displacement PSD, Suu . The gain is stepped from g = 0 (red) to g = 0.2 (blue). These
plots are calculated with Sun un = 102 and all PSDs are scaled by SFn Fn /(mω2

0)2.

difference with velocity-proportional feedback is that the gain should be Q0 times
larger to cool the resonator by the same factor. This also feeds back much more
detector noise to the resonator. In the language of the last part of this Section, the
resonator is coupled to a hotter bath instead of to a colder one.

The resonator temperature as a function of gain is plotted in Fig. 2.7 for both cases. This
shows that with a lower detector noise floor, proportional feedback can indeed cool the
resonator, but that it is still less efficient than velocity-proportional feedback. Finally, note
that the peak due to the Brownian motion in Sv v becomes distorted by the feedback as is
clearly visible in the top panels of Fig. 2.6. Sv v can even become smaller than Sun un due to
the abovementioned correlations between un and u.

So far, active feedback cooling experiments were done on resonators in the kHz range,
where one can simply measure the position, differentiate and feed the resulting signal
back to the resonator. However, when the frequencies are higher, delays in the feed-
back circuit start to play a role. The force is then applied when the resonator has al-
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FIGURE 2.7: Resonator temperature for velocity-proportional (gray) or displacement-proportional (black) feed-
back vs feedback gain g for a resonator with Q0 = 100. The solid lines are for k2

0 Sun un /SFn Fn = 102 and the

dash-dotted lines for k2
0 Sun un /SFn Fn = 1. The original signal-to-noise ratios were 102 and 104 respectively.

ready advanced and a purely velocity-proportional feedback will have a displacement-
proportional component, degrading the cooling performance. The effect of a delay is even
more dramatic when it equals half the resonator period, so that the Brownian motion is
actually amplified instead of attenuated. Furthermore, the bandwidth (or sampling speed
in the case of a digital filter) of HF B should be at least a few times ωR , which makes its
design challenging for ωR & 1MHz. Our approach, shown in Fig. 2.5b, is different: first
we multiply (mix) the signal v(t ) with a local oscillator cos(ωLO t ) to down-mix the high-
frequency signal at ω = ωR to ω = ωR −ωLO . Then the signal at the difference frequency
is read in with a digital signal processor (DSP), which estimates the complex amplitude
Ac of the displacement (see Supplement). This is done using the discrete-time version of
Âc (t ) ≡ γF

∫ t
−∞ v(t ′)exp(−iωF t ′)exp(−γF [t−t ′]/2)dt ′, whereωF is the filter frequency and

γF is the filter width. The estimated complex displacement Âc is multiplied by exp(iωF t )
to generate the signal at ωF and subsequently by exp(−iθ) to phase-shift the response.
Then the real part is negated, multiplied by the gain g and put out using a digital-to-analog
converter7. Finally, the second mixer mixes the signal with the same local oscillator and
up-converts the feedback signal from ω=ωR −ωLO back to8 ω=ωR .

We call this feedback filter the “Fourier filter” as it measures the components in the

7Note that the estimation Âc (t ) is not time invariant, whereas the final output is. This is because the complex
amplitude is again multiplied by exp(−iωF t ). See also footnote 5.

8This also generates a signal at ω= 2ωLO −ωR =ωR −2ωF when ωLO <ωR , or at ω=ωR +2ωF when ωLO >ωR .
In other words, a copy of the Fourier transform of the signal is mirrored in ωLO . When the resonator response
vanishes at this mirrored frequency (i.e. when |ωR −ωLO | ¿ γR ), the presence of the mixers does not change
the system’s response. This is assumed throughout the rest of this Section.
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FIGURE 2.8: The calculated resonator temperature when using the Fourier filter. (a) and (b) show the depen-
dence of TR on the feedback gain for different values of the filter width γF for θ = 0 (a) and θ =−π/2 respectively.
The dotted lines show the displacement- and velocity-proportional curves of Fig. 2.7 for comparison. (c) Polar
plot of the resonator temperature (on the radial axis) when the phase θ is varied for γF = 0.1 ·ωR . (d) The effect
of a delay τ on TR for the velocity-proportional (black) and Fourier filter with (light gray) and without (dark gray)
delay compensation for θ =−π/2. For all simulations shown in this Figure, Q0 = 100, k2

0 Sun un /SFn Fn = 102 and
ωF =ωR have been used.

Fourier spectrum in a band γF around ω=ωF . Its response function is given by:

hF B (t ) = −γF cos((ωF +ωLO)t −θ)e−γF t/2Θ(t ), (2.22)

HF B (ω) = −γF · (γF /2+ iω)cosθ+ (ωF +ωLO)sinθ(
(ωF +ωLO)2 + (γF /2)2

)−ω2 + iωγF

≈ γF
−iωcosθ− (ωF +ωLO)sinθ

(ωF +ωLO)2 −ω2 + iωγF
for γF ¿ωF +ωLO . (2.23)

A closer look at the filter’s frequency response shows that the denominator of HF B is equal
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to that of a harmonic oscillator response. The numerator represents a displacement-
proportional feedback for θ = 0 and a velocity-proportional feedback for θ = −π/2. The
resonator temperature that is obtained using this filter is shown in Fig. 2.8a to c. For θ = 0,
the resonator temperature closely follows the curve for displacement-proportional feed-
back up to a point where the closed-loop system becomes unstable. The same is true for
θ = −π/2, which follows the velocity-proportional curve. The lowest resonator tempera-
ture in Fig. 2.8b is reached when the filter width γF ≈ 0.98ωF . The phase dependence of
TR is shown in the polar plot of Fig. 2.8c. For g = 0, there no feedback and the datapoints
lie on the unit circle TR = T (black). When the gain is increased (dark gray), the circle de-
forms and cooling is achieved for θ around −π/2 because the curve lies inside the unit
circle where TR < T . At the opposite side (θ ∼ +π/2), the resonator temperature diverges
when g ≥ 1/Q0 and the θ-range where this happens increases with increasing gain (lighter
shades of gray).

So far, the Fourier filter appears to be slightly less effective than velocity-proportio-
nal feedback, but this changes when delays are taken into account. A delay τ multiplies
HF B by a factor exp(−iωτ), resulting in a frequency-dependent phase shift. Its overall
effect can be cancelled by adding −ωRτ to θ, giving the filter the same real and imaginary
components at ω = ωR as in the case of zero delay. Note, however, that the phase still
changes with frequency. If it changes too much over the width of the resonance peak, then
the cooling is affected. One thus needs ωR /Qτ¿ π, which is equivalent to the statement
that the delay should be much smaller than the phase-correlation time. The effect of a
small delay on the resonator temperature is shown in Fig. 2.8d. All filters become unstable
at at high gains where the resonator temperature diverges. The difference between the
velocity-proportional and the Fourier filter without delay compensation is small. For both
filters the minimum of the curves in Fig. 2.8d has shifted upwards, so the lowest achievable
resonator temperature has degraded by the presence of the delay. However, when using
the Fourier filter with delay compensation (θ→ θ−ωRτ), the filter is stable for larger gains
as shown in Fig. 2.8d and reaches approximately the same minimal temperature as the
velocity-proportional filter did for τ= 0. Further analysis and an experimental realization
have to show how good this implementation of the feedback filter is.

SIDEBAND COOLING
Another commonly used cooling technique is sideband cooling [51–53]. In this technique
the resonator is embedded in an optical [13–15, 23, 24, 27, 28, 34, 35, 39, 42] or microwave
cavity [19, 25, 32, 38]. Figure 2.9a shows a schematic drawing of an optical cavity where
the right mirror is the mechanical resonator. Both mirrors have a low transmission so that
a photon is reflected many times before it can go out through the left mirror, and then
to the detector. Such a cavity has many different eigenmodes, but here we focus on a
single one with its resonance frequency denoted by ωc . In analogy with the Q-factor and
linewidth γR of a mechanical resonator, the cavity has a finesse F and linewidth κ. A laser
sends light with frequency ωd into the cavity. Because the resonance frequency of the
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FIGURE 2.9: (a) schematic overview of an optical cavity. The cavity is driven via an input laser with frequencyωd .
The left mirror is fixed, but the right mirror is a mechanical resonator that can move. The resonator displacement
u determines the length of the cavity and thus the cavity resonance frequencyωc . A part of the circulating power
is transmitted by the left mirror to a detector. The linewidth of the cavity is κ. Adapted from Ref. [51] (b) When
the cavity is driven on its resonance, the intensity inside the cavity is largest, a detuning reduces the intensity.
A displacement of the resonator shifts the cavity resonance (light orange) and changes the intensity of the light
inside the cavity (orange and light orange dots). (c) The displacement dependence of the radiation pressure Frad.
When the resonator oscillates, the force reacts with a delay due to a finite value of κ as indicated by the ellipsoidal
trajectories.

cavity, is determined by the cavity length, a displacement of the resonator changes ωc . As
illustrated in Fig. 2.9b this leads to a change in the intensity (and phase) of the light in the
cavity, which results in a change in the detector output. Optical cavities used this way are
very sensitive position detectors for two reasons: first, it enhances the intensity of the light
by a factor F and secondly it makes the intensity depend strongly on the position [52].

Each photon in the cavity carries a momentum ħωd /c whose direction is reversed
when it reflects off the mirror. The resonator thus experiences a kick every time a pho-
ton reflects. The average force exerted on the resonator is proportional to the number of
photons present in the cavity, nc . This so-called photon pressure Frad depends on the driv-
ing and resonance frequency of the cavity. Therefore, it also depends on the displacement
of the resonator. This is illustrated in Fig. 2.9c. A small change in change in u leads to pro-
portional change in radiation pressure. This thus changes the effective spring constant of
the resonator to kR = k0 −∂Frad/∂u; the so-called “optical spring” [23, 54, 55]. Similar to
displacement-proportional feedback this can cool the resonator [23, 43]. A much stronger
cooling effect is, however, the fact that the number of photons does not respond imme-
diately to a change in displacement, but that they can only slowly leak out of the cavity
at a rate ∼ κ. This causes a delay in the response of the radiation pressure as indicated
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by the ellipsoids in Fig. 2.9c. In the case of red-detuned driving (ωd < ωc ) work is done
by the resonator so that it looses energy, whereas for blue-detuned driving (ωd > ωc ) the
resonator gains energy. This increased damping for red detuning cools the resonator effec-
tively, as the backaction temperature associated with the detector is very low [53, 56, 57].
This process is called “dynamical backaction” and the cooling mechanism is called “side-
band cooling” because the cavity is driven off-resonance, i.e. on a sideband9.

The ultimate limit on resonator temperature that can be reached with sideband-cooling
has been studied using the radiation-pressure Hamiltonian in the rotating-wave approxi-
mation [56, 57]:

Ĥ =ħ∆ĉ†ĉ +ħω0â†â +ħω0Gĉ†ĉ(â† + â). (2.24)

Here, G = u0ω
−1
0 ∂ωc /∂u is the coupling constant and ĉ† (ĉ) is the creation (annihilation)

operator for a cavity photon (from (to) a photon with frequency ωd ). ∆ = ωd −ωc is the
detuning of the laser light with respect to the cavity resonance frequency. The idea is that
a phonon, together with a red-detuned driving photon can excite a photon in the cavity
because this up-converts the driving photon to a frequency closer to the cavity resonance.
This removal of phonons cools the resonator. The opposite process is also possible: a
cavity photon can emit a phonon and a lower-frequency photon, thereby heating the res-
onator. The rate of these two processes depends on the density-of-states of the cavity at
ωd +ω0 and ωd −ω0. If the detuning is at exactly at the mechanical frequency ∆ = −ω0

and the cavity linewidth is small, the lowest temperatures are obtained. In the good-cavity
limit (ωm & κ) the lowest resonator occupation is n̄min = (κ/4ω0)2 ¿ 1 [52, 56, 57], en-
abling cooling to the ground state. Although the good-cavity limit (also called the resolved-
sideband regime) has been reached in recent experiments, ground-state cooling has not
yet been demonstrated, due to the fact that the driving cannot be increased to sufficiently
high powers. The final temperature is in principle independent of the power in the cavity,
but the cooling power increases with it [53]. The cooling power should be large enough to
remove the heat coming from the environment to reach the ground state. Table 2.1 and
Fig. 2.4 show the final thermal occupation numbers that have been reached up to now.
The lowest occupation factor n̄ = 3.8 has been achieved by sideband cooling using a su-
perconducting stripline [38].

GENERAL CONSIDERATION
Finally, also other cooling mechanisms like bolometric (photothermal) [10, 18, 59] and
backaction cooling [12] (see the next Section) are used, as shown in Table 2.1. In general,
cooling is the reduction of the Brownian motion of the resonator and, as implied by Eq.
2.12, this is done by modifying the resonator’s response function, one way or the other.
Cooling can be done by increasing the effective spring constant and/or by increasing the
damping. This is, however, not the picture that comes to mind when one talks about cool-
ing. Cooling is done by placing the object in contact with something that is colder. The

9A recent proposal uses a displacement-dependent cavity damping instead of the usual displacement-
dependent cavity frequency [58].
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final temperature of the resonator is then the weighted sum of the original temperature
and the temperature of the cold object Tc , with the heat conductance to the environment,
κ0, and to the the cold object, κc , as weights. The resonator temperature is thus:

TR = κ0T +κc Tc

κ0 +κc
. (2.25)

The fluctuation-dissipation theorem (cf. Eq. 2.11) shows that force noise in the environ-
ment causes damping of the resonator. When the resonator is coupled to something else
as well, it experiences more force noise and hence also more damping. Its effective tem-
perature thus depends on the exact balance between these contributions.

To measure the displacement, the resonator is coupled to a detector. The damping
rate of the resonator γR = ωR /Q is increased from its original value γ0 = ω0/Q0 to γR =
γ0 +γB A . The origin of γ0 is the coupling to the environment, whereas γB A is induced by
the detector. With these couplings to the two baths, the resonator temperature becomes
[12, 32, 60]:

TR = γ0T +γB ATB A

γ0 +γB A
. (2.26)

When he resonator is strongly coupled to the detector, its effective temperature is TR =
TB A , the so-called backaction temperature of the detector. Eq. 2.12 shows that it is deter-
mined by the force noise exerted on the resonator:
TB A = SFB A,n FB A,n /4kBmγB A .

The additional damping is associated with a velocity-proportional force on the res-
onator. Such a force can be applied using active feedback or exerted by the detector when
it does not respond instantaneously to the resonator displacement. Whether this delay is
due to photons in an interferometer that slowly leak away, due to heat capacity [10, 18, 59],
or due to a true velocity-dependent detector response is irrelevant. In any of these cases,
the resonator is cooled (for TB A < T ) or heated (for TB A > T ) when it is coupled to the de-
tector. In the case of active feedback cooling the backaction temperature is determined by
the position noise un that is fed back to the resonator.

2.4 QUANTUM LIMITS ON POSITION DETECTION
Since the discovery of the Heisenberg uncertainty principle in 1927 it is known that quan-
tum mechanics imposes limitations on the uncertainty with which quantities can be mea-
sured. This was first discovered for single measurements of conjugate variables, such
as the position u and momentum p of a particle, or the components σx ,σy and σz of
a spin-1/2 particle. When the system is initially in a superposition of the eigenstates of
the operator corresponding to the quantity that is measured, a strong measurement then
gives one of the eigenvalues as the outcome. The probability for measuring a value mi

is given by |ci |2 when
∣∣ψ〉 = ∑

i ci |mi 〉 was the expansion of the original state in the ba-
sis of eigenstates of the operator m̂, with m̂ |mi 〉 = mi |mi 〉. At the same time, the wave-
function collapses into the state corresponding to the measured value mi :

∣∣ψ〉 → |mi 〉.
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FIGURE 2.10: The detector is coupled (via A) to the resonator. Its output v(t ) depends linearly on u(t ) with a
response function λv but also contains detector noise vn . The detector exerts a backaction force FB A = AFdet
on the resonator that contains a stochastic part FB A,n and a linear response to u(t ). Both contributions add up
with the thermal or quantum force noise Fn . The resonator displacement u is obtained via the transfer function
HR = HHO /k0.

To find the probability of a certain outcome of a measurement of a different quantity n,
the state |mi 〉 has to be expanded in the basis |ni 〉. The uncertainties in m and n satisfy:
∆m ·∆n ≥

∣∣[m̂, n̂]/2i
∣∣, where [m̂, n̂] = m̂n̂ − n̂m̂ is the commutator of m̂ and n̂. For m̂ = û

and n̂ = p̂, this yield the Heisenberg uncertainty principle for position and momentum:
∆u ·∆p ≥ ħ/2. Note that quantum mechanics does not forbid to determine the position
with arbitrary accuracy in a single measurement.

The measurements described in this Thesis are, however, not single, strong measure-
ments, but weak continuous measurements instead. First continuous (linear) detectors
are introduced and then the quantum limits on position detection are explored. The ana-
lysis presented in this Section is based on the work by Clerk and co-workers [61, 62].

CONTINUOUS LINEAR DETECTORS
A continuous linear position detector gives an output that depends linearly on the current
and past position of the resonator. The output signal of the detector10 is related to the
displacement by:

v(t ) = Aλv (t )⊗u(t )+ vn(t ). (2.27)

Here, λv is the responsivity of the detector, vn is the detector noise and A is a dimension-
less coupling strength. In the case of an optical interferometer, v represents the number
of photons arriving at the photon counter whereas in our dc SQUID detector (Ch. 7 and
Ch. 8) it is the (change in the average) SQUID voltage.

The detector does not only add noise to the measured signal, it also exerts a force
FB A(t ) on the resonator. This is the so-called backaction force. Backaction, in its most

10Continuous linear detectors are usually (implicitly) assumed to be time-invariant [63]. Unless stated otherwise,
this is also assumed in this Thesis. Examples where the linear detector is not time-invariant are frequency-
converting, stroboscopic and quadrature measurements [5, 6, 63, 64].
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general definition, is the influence of a measurement or detector on an object. The back-
action force has three different contributions:

• A deterministic force that is independent of the displacement. This changes the
equilibrium position of the resonator. Without loss of generality it can thus be set to
zero.

• A force that responds linearly to the displacement: FB A,u = AλF (t )⊗ Au(t ). This
changes the effective resonator response from HR to H ′

R , where H ′−1
R = H−1

R +A2λF (ω).
Note the similarity with the active feedback scheme that was discussed in the previ-
ous Section. Backaction can thus also lead to cooling [12].

• A stochastic force FB A,n ≡ AFdet ,n that is caused by the fluctuations in the detec-
tor, Fdet ,n . This force noise and the imprecision noise vn can be correlated, i.e.
SFdet ,n vn 6= 0.

This process of action and backaction is shown schematically in Fig. 2.10: The resonator
position is coupled to the input of the detector, which adds imprecision noise vn and ex-
erts force noise on the resonator. For small coupling A, the statistical properties of Fdet ,n

and vn are independent of the resonator displacement [61, 62].
To find the sensitivity of the detector, vn is referred back to the input using the known

response function λv and gain A. This yields the equivalent input noise PSD: Sun un =
Svn vn /|Aλv |2. This power spectral density is an important parameter that characterizes
the detector. Using optimal-control and estimation theory, the best estimate û for the res-
onator displacement in the absence of the detector, ui , is found. The resolution of the

detector is ∆u = (
E[u2

i − û2]
)1/2

, as explained in detail in the Supplement to this Chapter.
The resolution is plotted in Fig. 2.11a as a function of the coupling strength A. With a low
coupling (top panel of Fig. 2.11b) ∆u is large (i.e. the detector has a low resolution) be-
cause of the large equivalent input noise (dashed line) of the detector. An increase of the
coupling reduces ∆u because Sun un is proportional to A−2. The resolution becomes bet-
ter with increasing A up to the point where the optimal value A = Aopt is reached (middle
panel). A further increase of A makes the backaction noise dominant, driving the res-
onator significantly (dotted line in the bottom panel) above the original displacement ui .

THE HAUS-CAVES DERIVATION OF THE QUANTUM LIMIT
The system analysis of the linear detector discussed above is valid for any – quantum lim-
ited or not – linear detector. An elegant way of deriving the quantum limit of a continuous
linear position detector was given by Haus & Mullen [65] and was extended by Caves [63].
They consider the situation where the input and output signal of the detector are carried
by single bosonic modes, âu and âv respectively. When the “photon number gain” of the
detector is G , one might think that the modes are related to each other by âv =

p
Gâu . This

is, however, not valid as [âv , â†
v ] =G 6= 1 [62, 63] and the actual relation is âv =

p
Gâu + v̂n .
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FIGURE 2.11: (a) The position resolution of the detector in units of the amplitude of the Brownian motion for
different coupling strengths A. The solid line is the total resolution; the dotted line is the contribution of the
backaction force noise (Eq. 2.35) and the dashed line the contribution of the imprecision noise (Eq. 2.36). The
total resolution is optimized at A = Aopt ≈ 0.0355. The panels in (b) show the power spectral densities of the

original displacement (Sui ui , filled gray), the realized displacement (Suu , dotted), the equivalent input noise

(Sun un , dashed) and the estimated signal (Sûû , solid line) at a small coupling (top), the optimal coupling (mid-
dle) and at high coupling (bottom). The resolution and PSDs have been calculated for Q0 = 104, λv = 1, λF = 0,
Svn vn ·k2

0 = SFdet ,n Fdet ,n
= SFn Fn and SFdet ,n vn = 0.

Here, v̂n represents the noise added by the amplifier. This operator has a vanishing ex-
pectation value (〈v̂n〉 = 0) and is uncorrelated with the input signal ([âv , v̂n] = [â†

v , v̂n] = 0).
This yields [v̂n , v̂†

n] = 1−G for the commutator and, more importantly,∆v2 =Gu2
0+ 1

2 |G−1|
for the resolution. The first term is the amplified zero-point motion of the signal (i.e. the
resonator motion) and the second one is the noise added by the amplifier. In the limit of
large gain (G À 1), the equivalent input noise of the detector is ∆u2

eq ≡ ∆v2/G −u0 = 1
2 .

This means that a quantum-limited detector adds half a vibrational quantum of noise to
the signal.

As pointed out in Ref. [62] most practical detectors cannot easily be coupled to a single
bosonic mode that caries the information of the resonator to the detector, because there
is also a mode that travels from the detector towards the resonator. Therefore, the linear-
system analysis at the beginning of this Section used to further explore the quantum limits
on continuous linear position detection.

A QUANTUM-LIMITED DETECTOR
In the previous discussion, no constraints were enforced on the detector noises Fdet ,n and
vn . When both noise contributions could be made small enough, the resolution would
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be arbitrarily good. This is unfortunately not possible. It can be shown that the power
spectral densities must satisfy11:

Svn vn (ω) ·SFdet ,n Fdet ,n (ω)−
∣∣∣SFdet ,n vn (ω)

∣∣∣
2
≥ |ħλv (ω)|2 , (2.28)

or, equivalently, this can be referred to the input:

Sun un (ω) ·SFB A,n FB A,n (ω)−
∣∣∣SFB A,n un (ω)

∣∣∣
2
≥ħ2. (2.29)

These constraints enforce the quantum limit of the linear detector and should be con-
sidered as the continuous-detector equivalent of the Heisenberg uncertainty principle:
Accurately measuring the position results in a lot of force noise and vice versa.

The analysis of Clerk et al. continues by finding the gain where the total added noise
at the input, i.e. Sun un (ω)+ |H ′

R |2SFB A,n FB A,n (ω), is minimized. As they already point out,
this is not entirely correct because at every frequency a different optimal gain is required.
Usually, only the optimal gain at ω = ω0 is used and then the magnitude of the signal
and detector noise are equal at that frequency. In that case, the imprecision noise and
the backaction-induced displacement provide exactly half of the total added noise [9, 37,
62]. However, by minimizing the total resolution, the true optimal gain is found. Figure
2.12 shows this process. The resolution is optimized at A = 0.87 and reaches a value of
0.81 times the zero-point motion. All three methods (the Haus-Caves derivation, the total
added noise at the input, and the optimal estimator) indicate that the detector adds about
the same amount of noise as the zero-point fluctuations of the resonator itself.

Now that the quantum limit is explored theoretically, it is time to see how far the
currently-used detectors are away from this limit. Figure 2.13a shows the resolution ∆un

due to the imprecision noise Sun un of the experiments listed in Table 2.1. (For the exact
definition of ∆un , see Eq. 2.37 in the Supplement.) In some experiments, the impreci-
sion noise is so low that the resolution ∆un drops well below the zero-point motion. This
most clearly demonstrated with the relatively low-frequency resonators that are read-out
optically [11, 15, 17, 31, 34]. At room temperature, the thermal occupation is so high in
these experiments that the heating due to the backaction noise is not visible. Other exper-
iments with ∆un < u0 are done at low temperature, where the thermal occupation of the
resonator is lower [12, 37, 38] and an increase in resonator temperature due to backaction
is seen [12]. The experiments done by Teufel and coworkers (lines 27, 28 and 33 in Table
2.1) also illustrate an important point. When cooling the resonator, in this case using side-
band cooling [32], the quality factor decreases. The resolution then becomes worse when
the sensitivity stays the same because the resonator bandwidth increases. The opposite
occurs when the damping of the resonator is reduced: the resolution is improved, but the
resonator temperature increases significantly [37]. So far, no experiment has achieved a
low occupation number n̄ and a near quantum-limited position detector at the same time.

11Here, it is assumed that the measurement of v(t ) does not result in an additional force noise on the resonator
and that the detector has a large power gain. For more details, see Ref. [62].
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FIGURE 2.12: The quantum limit for a continuous linear position detector. The resolution of the detector in
units of the zero-point motion is plotted for different coupling strengths A. The solid line is the total resolution;
the dotted and dashed line are the contribution of backaction and imprecision noise. The inset shows that the
total resolution depends on the cross-correlation coefficient SFB A,n uB A,n /(SFB A,n FB A,n · Sun un )1/2. The main
panel is calculated with an optimal cross-correlation of 0.36. For all values of A the total added noise is slightly
less than u0

2.5 BOTTOM-UP VS TOP-DOWN NEMS
The micro- and nanomechanical devices listed in Table 2.1 are made using so-called top-
down fabrication techniques. Nanoscale structures are made by etching parts of a larger
structure, for example a thin film on a substrate, or by depositing material (evaporating,
sputtering) on a resist mask that is subsequently removed in a lift-off process. In both
cases, patterning of resist is needed, which is done using optical or electron-beam lithog-
raphy. State-of-the-art top-down fabricated devices have thicknesses and widths of less
than 100 nanometer.

A different approach is to use the small structures that nature gives us, to build or as-
semble devices. Good examples are inorganic nanowires12, carbon nanotubes and few-
layer graphene. The last two are examples of carbon-based materials. Their structure and
mechanical properties will be discussed in depth in Ch. 3. Using bottom-up materials,
mechanical devices with true nanometer dimensions are made.

Table 2.2 shows the properties of the mechanical resonators that have been made so
far using bottom-up fabricated devices. Their frequencies are high: by choosing the right
device geometry resonances in the UHF band (300 MHz - 3 GHz) are readily made, as Table
2.2 shows. When comparing the quality factors and zero-point motion of these devices, it

12Sometimes “nanowire” is also used for top-down fabricated devices. Here, this term is used exclusively for
grown wires.
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TABLE 2.2: Overview of recent experiments with bottom-up resonators. Several types of resonators are used: car-
bon nanotubes (CNT), nanowires (NW), single-layer graphene (SLG), and few-layer graphene (FLG) or graphene
oxide (FLGO) sheets. The table shows the resonance frequency fR and quality factors at room and cryogenic
temperature (QRT and Qcryo resp.). Tmin is the lowest temperature at which the resonator is measured. m is the
mass of the resonator and ` is its length. From these data, the zero-point motion u0 is calculated.

Type
fR

(MHz)
QRT Qcryo

Tmin
(K)

`

(µm)

m
(kg)

u0
(pm) Ref.

CNT 55 80 300 1.75 7.4 ·10−21 4.52 [66]
CNT 60 100 300 1.25 1.0 ·10−20 3.66 Ch. 5
CNT 350 440 300 0.5 5.3 ·10−20 0.67 [67]
CNT 3120 8 300 0.77 5.8 ·10−20 0.22 [68]
CNT 154 20 300 0.265 1.1 ·10−19 0.69 [68]
CNT 573 20 300 0.193 4.0 ·10−22 6.03 [68]
CNT 167 200 2000 5 0.9 1.4 ·10−21 6.03 [69]
CNT 328.5 1000 300 0.205 1.6 ·10−21 4.01 [70]
CNT 230 200 6 0.45 4.8 ·10−22 8.73 [71]
CNT 0.9 3 300 12.6 4.1 ·10−16 0.15 [72]
CNT 62 50 300 2.05 2.2 ·10−17 0.08 [73]
CNT 360 120000 0.02 0.8 5.3 ·10−21 2.09 Ch. 6
CNT 50 40 600 4 1 1.3 ·10−21 11.41 [74]

Pt NW 105.3 8500 4 1.3 4.0 ·10−17 0.045 [75]
GaN NW 2.235 2800 300 5.5 1.9 ·10−16 0.141 [76]

Si NW 1.842 4200 300 5.2 2.4 ·10−17 0.437 [77]
Si NW 1.842 2000 10000 77 11.2 4.6 ·10−16 0.099 [77]

SnO2 NW 59 2200 300 2.5 2.2 ·10−16 0.025 [78]

SLG 70.5 78 300 1.1 1.4 ·10−18 0.287 [79]
FLG 32 64 300 2.8 2.7 ·10−17 0.098 [80]
FLG 160 25 300 4.75 4.5 ·10−16 0.011 [81]

FLGO 57.6 3000 300 2.75 7.8 ·10−17 0.043 [82]
FLG 8.36 97 300 8 3.5 ·10−17 0.169 [83]
SLG 130 125 14000 5 3 2.2 ·10−18 0.169 [84]
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FIGURE 2.13: (a) Sensitivity and resolution of the experiments that are listed in Table 2.1. Experiments with
optical (electrical) detection are shown in gray (black). The dc SQUID position detector used in Chs. 7 and 8 is
indicated with a star. The dotted line shows that an increase of the resonance frequency is often accompanied
by an increase in the sensitivity. (b) Comparison of the resonance frequency and zero-point motion of top-down
(Table 2.1) and the bottom-up devices that are studied in the forthcoming Chapters. The resonance frequencies
and zero-point motion are much larger for the bottom-up devices.

is clear that the performance of nanowires is more or less comparable to top-down fabri-
cated devices. This is because their thickness is of the order of 10-100 nm, about the size of
the smallest top-down fabricated devices. Therefore, we will focus on carbon nanotubes
and graphene resonators in the rest of this Section.

Due to their low mass m and high strength (Sec. 3.4) the frequencies of carbon-based
resonators are high, enabling ground state cooling using standard cryogenic techniques.
Furthermore their zero-point motion u0 is large. Note that in Table 2.1 u0 was given in fm,
whereas in Table 2.2 it is in pm. Figure 2.13 illustrates this point more clearly.

A major drawback of making smaller resonators to increase their frequency, is that the
quality factor decreases [85]. Top-down devices have surfaces with many defects due to
the fabrication process. This provides an easy channel for dissipation, resulting in a low
Q-factor. The decrease in Q-factor with device dimension is therefore often attributed to
the increase in surface-to-volume ratio. Bottom-up devices are expected not to suffer from
this, as their surface can be defect-free. Until recently, this was, however, never observed.
The quality factors shown in Table 2.2 are in general disappointingly low. Only recently, we
obtained ultra-high quality factor carbon nanotube resonators as shown in Ch. 6. The last
hurdle for observing quantum effects in carbon-based NEMS is the fact that the position
detectors for these devices are not yet so sophisticated as those for the larger top-down
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structures. The sensitivity is therefore not as high as one wishes.

SUPPLEMENT

COMPLEX GREEN’S FUNCTION AND DISPLACEMENT
The complex displacement is defined as uc (t ) ≡ Ac exp(iωR t ) with the requirement that Re[uc (t )] =
u(t ). A convenient way of implementing this, is using the complex extension of the resonator Green’s
function, Eq. 2.3:

uc (t ) = hc (t )⊗F (t )/kR , hc (t ) =−i eiωR t ·e
−ωR t

2Q Θ(t ), (2.30)

so that Re[hc ] = hHO . The amplitude and phase of the resonator displacement are in this case given
by the modulus and argument of the complex amplitude: A(t ) = |Ac | and ϕ(t ) = ∠Ac respectively.
Note that A and ϕ are not uniquely defined, but that this particular choice corresponds to the usual
notion of the amplitude and phase.

OPTIMAL FILTERING OF v(t )
In the presence of both position and force noise, one wants to reconstruct the resonator motion in
the absence of the detector, ui (t ) = hR (t )⊗Fn (t ), as good as possible from the measured time trace
v(t ). This is done by finding the estimator û = g (t )⊗ v(t ) that minimizes the resolution squared:
∆u2 = E[(ui − û)2]. Using the autocorrelation functions and converting these into noise PSDs using
the Wiener-Khinchin theorem [45, 62] the resolution is written as:

∆u2 = Rui ui (0)−2Rui û (0)+Rûû (0) = 1

2π

∫ ∞

−∞

[
Sui ui (ω)−2G(ω)Sui v (ω)+|G(ω)|2Sv v

]
dω. (2.31)

Minimizing this, yields the optimal filter Gopt = Svui /Sv v [45], where:

Svui = S∗
ui v = AHR (H ′

R )∗λ∗v SFn Fn , (2.32)

Sv v = S∗
v v = A2|H ′

R |2|λv |2
(
SFn Fn + A2SFdet ,n Fdet ,n

)

+ Svn vn +2A2Re
[
λv (H ′

R )∗SFdet ,n vn

]
, (2.33)

so that the squared resolution is:

∆u2 = 1

2π

∫ ∞

0

[
Sui ui (ω)−|Gopt(ω)|2Sv v

]
dω. (2.34)

Depending on the properties of the detector and the coupling A, two important cases can be distin-
guished:

• The detector exerts backaction force noise, but the displacement noise is negligible: Svn vn =
0. In this case the integral in Eq. 2.34 is easily solved and one finds:

∆u2
B A = 〈u2

i 〉 ·
(

1+ SFn Fn

A2SFdet ,n Fdet ,n

)−1

= 〈u2
i 〉 ·

(
1+ SFn Fn

SFB A,n FB A,n

)−1

. (2.35)

The resolution thus improves with coupling A as this determines the backaction force noise.
This increase goes approximately as A2.
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• The detector adds displacement imprecision noise and the backaction noise is very small, i.e.
SFdet ,n Fdet ,n

= 0. In this case Eq. 2.34 reduces to:

∆u2
i mp = 〈u2

i 〉 · J (x,Q0) , with x4 = k2
0

Svn vn /A2|λv |2
SFn Fn

= k2
0

Sun un

SFn Fn

=
Q2

0

SNR
, (2.36)

under the assumption that the detector noise PSD referred to the detector input Sun un =
Svn vn /A2|λ|2 is white. J(x,Q0) is a complicated function that tends to 1 for x ÀQ1/2 À 1, i.e.
when the signal to noise ratio is well below unity. When x → 0 the function J (x,Q0) goes to
zero as x3/Q0

p
2. The resolution improves with increasing coupling as the resonator signal is

amplified more and more with respect to the noise floor Svn vn .

For practical purposes it is convenient to use a slightly different definition of the resolution
[9] that is independent of the signal-to-noise ratio:

∆u2
n = Sun un

π

2

fR

Q
. (2.37)

This definition is based on the fact that one can measure the position during a time ∼ Q/ fR
before the resonator has forgotten its initial amplitude and phase (see also Fig. 2.2). Note,
that this definition does not take the effect of backaction noise into account.
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3
NANOMECHANICS

In this Chapter, the framework of continuum mechanics is used to study mechanical
devices at the nanoscale. From the general theories of elasticity, the governing equa-

tions for the flexural vibrations of beams and suspended plates are obtained. The relation
between stress and strain for an isotropic material and for the highly anisotropic carbon-
based materials are given. The results obtained in this Chapter, are illustrated by analyz-
ing the mechanics of the nanomechanical devices that are discussed in the forthcoming
Chapters.

3.1 CONTINUUM MECHANICS

The dynamics of mechanical objects is usually much more complicated than the simple
one-dimensional harmonic oscillator described in Ch. 2. In principle, the dynamics of
all particles (i.e. atoms and electrons) which make up the oscillator should be taken into
account. However, Chapters 4 and 5 will demonstrate that even for nanometer-sized ob-
jects continuum mechanics is, with some modifications, still applicable. This means the
dynamics of the individual particles is irrelevant when one talks about deflections and
deformations; the microscopic details only determine the properties and values of macro-
scopic quantities like the Young’s modulus or the Poisson ratio.

The basis of continuum mechanics lies in the relations between strain and stress in a
material. The strain tells how the material is deformed with respect to its relaxed state.
After the deformation of the material, the part that was originally at position x is displaced
by u to its new location x+u. The strain describes how much an infinitesimal line segment

Parts of this Chapter have been published in Phys. Stat. Sol. (b) 244, 4252–4256 (2007) and in Nat. Phys. 4,
785–788 (2008)
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is elongated by the deformation u(x, y, z) and is given by1 [1]:

γi j =
1

2

(
∂ui

∂x j
+ ∂u j

∂xi
+ ∂um

∂xi

∂um

∂x j

)
. (3.1)

The diagonal elements (i.e. i = j ) of the first two terms are the normal strains, whereas
the off-diagonal elements (i 6= j ) are the shear strains. The last, non-linear term is only
relevant when the deformations are large and can usually safely be neglected [2]. Note
that the strain is symmetric under a reversal of the indices γi j = γ j i .

To deform a material external forces have to be applied. This gives rise to forces inside
the material. When the material is thought of a as composed of small elements, each ele-
ment feels the force exerted on its faces by the neighboring elements. Its magnitude and
direction depend not only on the location in the material but also on the orientation of the
element (see Fig. 3.1a). The force δF on a small area δA of the element is given by:

δFi =σi j n jδA, (3.2)

where n is the vector perpendicular to the surface and σ is the stress tensor. Now consider
an element of the material with mass m and volume V . When it is moving with a speed
v = u̇ its momentum p is:

p =
∫

m
vdm =

∫

V
ρvdV , (3.3)

where ρ is the mass density. The rate of change of momentum equals the sum of the forces
working on the element. These forces include stress σ at the surface and body forces Fb:

dp

dt
=

∫

V
Fb dV +

∫

δV
σdA. (3.4)

Using the Green-Gauss theorem, the integral over the boundary δV of the element can be
converted into an integral over the volume:

∫
δV σdA = ∫

V ∂σi j /∂xi x̂i dV . Eq. 3.4 should
hold for any element because so far nothing has been specified about the shape or size of
the element. This then yields Cauchy’s first law of motion [1]:

ρü j =
∂σi j

∂xi
+F j . (3.5)

A similar analysis for the angular momentum yields Cauchy’s second law of motion: σi j =
σ j i . With these equations (and boundary conditions) the stress distribution can be calcu-
lated for a given applied force profile Fb(x, y, z).

1In this Thesis, the so-called Einstein notation [1] for the elements of vectors and tensors is employed. When
indices appear on one side of an equal sign only, one sums over them, without explicitly writing the summation
sign. For example, xi = Ri j x j reads as xi =

∑3
j=1 Ri j x j . The index runs over the three rectangular coordinates

(x, y, z), where x1 = x, x2 = y and x3 = z. Finally, the symbols x̂i (x̂, ŷ and ẑ) denote the unit vectors in the fixed
rectangular coordinate system (which form a basis) so that a vector r can be expressed as: r = ri x̂i
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FIGURE 3.1: (a) Visualization of the stress tensor on a cubic element. The force per unit area is the inner product
of the stress tensor and the normal vector of the surface n (b) Deformation of a plate under plane stress. The
original plate (dotted) is deformed by the stress σxx . (c) Bending of a plate with thickness h. The top part of the
plate is extended, whereas the bottom is compressed. The black dashed line indicates the neutral plane.

The strain tensor describes the deformation of the material, whereas the stress ten-
sor gives the forces acting inside the material. These two quantities are of course related
to each other. When the deformations are not too large, the stress and strain tensor are
related linearly by the elasticity tensor E:

σi j = Ei j klγkl (3.6)

The properties of the stress and strain tensor imply that Ei j kl = E j i kl = Ei j lk = Ekl i j , so
E has at most 21 independent elements out of a total of 3×3×3×3 = 81 elements. This
makes it possible to express Eq. 3.6, containing the fourth rank tensor E, in a convenient
matrix representation:




σxx

σy y

σzz

σxz

σy z

σx y



=




Exxxx Exx y y Exxzz Exxxz Exx y z Exxx y

Exx y y Ey y y y Ey y zz Ey y xz Ey y y z Ey y y x

Exxzz Ey y zz Ezzzz Ezzzx Ezzz y Ezzx y

Exxxz Ey y xz Ezzzx Exzzx Exzz y Ey xxz

Exx y z Ey y y z Ezzz y Exzz y Ey xxz Ex y y z

Exxx y Ey y y x Ezzx y Ey xxz Ex y y z Ex y y x







γxx

γy y

γzz

2γxz

2γy z

2γx y




, (3.7)

or in short hand notation: [σ] = [E ][γ]. The inverse of the elasticity tensor is called the
compliance tensor C, which expresses the strain in terms of the stress:

γi j =Ci j klσkl , or [γ] = [C ][σ]. (3.8)

The number of independent elements of E is further reduced when the (crystal structure
of the) material has symmetries [2–4]. The most drastic example is an isotropic material,
which looks the same in all directions. In this case, only two independent parameters
remain: the Young’s modulus E and Poisson’s ratio ν. The compliance matrix is in this
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case given by:

[C ] =




1/E −ν/E −ν/E 0 0 0
−ν/E 1/E −ν/E 0 0 0
−ν/E −ν/E 1/E 0 0 0

0 0 0 1/G 0 0
0 0 0 0 1/G 0
0 0 0 0 0 1/G




, (3.9)

where G = E/(2+ 2ν) is the shear modulus. By inverting [C ], the elasticity matrix is ob-
tained:

[E ] = 1

(1+ν)(1−2ν2)




E(1−ν) Eν Eν 0 0 0
Eν E(1−ν) Eν 0 0 0
Eν Eν E(1−ν) 0 0 0
0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G




. (3.10)

When a plane stress σxx is applied, a material will be stretched in the x-direction, as
illustrated in Fig. 3.1b. The resulting strain γxx = σxx /E induces a stress in the y- and
z-directions, which are nulled by a negative strain (i.e. contraction) in these directions
which is ν times smaller than the strain in the x-direction. This follows directly from the
structure of the compliance matrix. Using the elasticity matrix (Eq. 3.10), the stresses due
to a plane strain can be calculated [1].

For non-isotropic materials, the Young’s modulus and Poisson’s ratio depend on the
direction of the applied stress and are defined as: Ei = 1/Ci i i i and νi j = −Ci i j j /Ci i i i (i 6=
j ) [5]. The Young’s modulus and Poisson’s ratio of materials that are frequently used for
nanomechanical devices are indicated in Table 3.1.

3.2 ENERGY, BENDING RIGIDITY AND TENSION
In the previous Section the relation between the stress and strain in a material was given.
Here, we focus on the energy needed to deform the material. From this, the equations of
motion are derived. The potential energy stored in the nanomechanical device depends
on the strain field. For small deformations, the potential energy U depends quadratically
on the strain and it should also be invariant under coordinate transformations [1], leading
to

U =
∫

V
U ′ dV ; U ′ = 1

2
Ei j klγi jγkl , (3.11)

so that σi j = ∂U ′/∂γi j . For an isotropic material this reduces to [4]:

U ′ = 1

2

E

1+ν
(
γ2

i j +
ν

1−2ν
γ2

kk

)
, (3.12)
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TABLE 3.1: Mechanical properties of materials that are used in nanomechanical devices. Most materials have
a density ρ around 3 · 103 kg/m3 and a Young’s modulus of the order of 102 GPa. The carbon-based materials
graphite and diamond are slightly lighter, but much stiffer. Compiled from Refs. [2] and [6].

Material ρ(103 kg/m3) E(Gpa) ν

Silicon 2.33 130.2 0.28
Si3N4 3.10 357 0.25
SiC 3.17 166.4 0.40
SiO2 (crystaline) 2.65 85.0 0.09
SiO2 (amorphous) 2.20 ∼ 80 0.17
Diamond 3.51 992.2 0.14
Graphite (in-plane) 2.20 920 0.052
Graphite (out-of-plane) 2.20 33 0.076
Aluminum 2.70 63.1 0.36
Gold 19.30 43.0 0.46
Platinum 21.50 136.3 0.42
Niobium 8.57 151.5 0.35
GaAs 5.32 85.3 0.31
InAs 5.68 51.4 0.35

When a torque is applied to a beam or plate it bends, as illustrated in Fig. 3.1c. The top
part which was at z = h/2 is extended whereas the bottom part of the beam, originally at
z =−h/2, is compressed. There is a plane through the beam where the longitudinal strain
is zero, the so-called neutral plane. The vertical displacement of this plane is indicated by
u(x, y). For small deflections, the neutral plane lies midway through the plate [4], i.e. at
z = 0. First the entire displacement profile ui (x j ) is expressed in terms of u(x, y) to find
the equations of motion for u(x, y), following the analysis by Landau and Lifshitz [4]. The
radius of curvature Rc of the neutral plane in the bent plate is Rc = ∂2u/∂x2. The bending
energy is proportional to R−2

c .
Although Eq. 3.11 is valid for any mechanical system that is in the linear regime, but it is

not straightforward to analyze a system this way. Therefore, we focus on plates and beams,
simple geometries where the equation of motion can be obtained without too much effort.

PLATES
A plate is a thin object that has a large length and width. The perpendicular stress com-
ponents at the faces of the plate vanish (except at the clamping points): σi j n j . For a thin
plate, the normal vector n j at the top and bottom face point in the z-direction to first order
in u or R−1

c . The condition for vanishing stress thus becomes: σxz = σy z = σzz = 0 at the
faces. Because the plate is assumed to be thin, this does not only hold at the faces, but also
inside the material. For an isotropic material, characterized by its Young’s modulus E and
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Poisson ratio ν, the displacement and strain fields are:

ux =−z ·∂u/∂x, γxx =−z ·∂2u/∂x2

uy =−z ·∂u/∂y, γy y =−z ·∂2u/∂y2

uz = u, γzz = zν/(1−ν) ·∇2u

γxz = γy z = 0, γx y =−z ·∂2u/∂x∂y. (3.13)

Inserting this into Eq. 3.12 and carrying out the integration over z in Eq. 3.11, yields the
energy needed to bend the plate:

UB = Eh3

24(1−ν2)

∫ ∫ [(
∂2u

∂x2 + ∂2u

∂y2

)2

+2(1−ν)

({
∂2u

∂x∂y

}2

− ∂2u

∂x2

∂2u

∂y2

)]
dx dy. (3.14)

Moreover, the displacement and strain averaged over the thickness h, ui (x, y) and γi j (x, y)
respectively, are all zero to first order in u, except uz = u(x, y), as the contributions above
and below the neutral plane cancel each other.

It is also possible that the plate is not only bent, but that it is also under a longitudinal
tension T, which is positive for tensile stress and negative for compressive stress. It is
clear that when the plate is bent, i.e. when ∂2u/∂x2 6= 0, that the longitudinal tension will
result in a restoring force in the z-direction. The tension results in a strain field γαβ =
1
2 (∂uα/∂xβ + ∂uα/∂xβ + ∂u/∂xα · ∂u/∂xβ), where the Greek indices run over the x and y
coordinate only. The stretching energy is in this case:

UT = 1

2

∫ ∫
γαβTαβdx dy, where Tαβ = hσαβ. (3.15)

The equation of motion for the vertical deflection of the plate is obtained when the varia-
tion of the total potential energy U =UB +UT +UF is considered for an arbitrary variation
in the displacement u → u+δu. Here, UF =−∫∫

Fu dx dy includes the effect of an external
force F (per unit area) in the z-direction. Combining this yields the equation of motion:

ρh
∂2u

∂t 2 +
(
D∇4 − ∂

∂xα
Tαβ

∂

∂xβ

)
u(x, y) = F (x, y), (3.16)

where ρ is the mass density of the material2. D = Eh3/12(1−ν2) is the so-called bending
rigidity of the plate that quantifies how much energy it costs to bend a unit area of the
plate. The tension satisfies ∂Tαβ/∂xβ = 0, making the system of equations non-linear. For
small deformations, however, the tension is not caused by the bending of the plate, but
instead by clamping. The tension is then independent of u and Eq. 3.16 becomes linear.

2Note that in principle the first term should read ρh∂2u/∂t 2+ρh3∂/∂t 2(∂2u/∂x2+∂2u/∂x2)/12) as the material
is also moving in the x and y direction. These corrections are, however, negligible when h/`¿ 1.
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FIGURE 3.2: The distance between the clamping points ` differs from the length of the free beam `0 and tension
is induced. If the tension is large enough, it is energetically favorable for the beam to displace, releasing strain
energy at the cost of bending energy. This is called buckling. Due to the displacement u(x) the length of the
beam is extended to L(t ).

BEAMS
Many nanomechanical devices have a width that is much smaller then their length. This
means that these devices are not plates, but doubly clamped beams or cantilevers as Table
2.1 indicated. For a beam, the normal components of the stress on the side faces should
also vanish, i.e. σy y =σx y = 0 at y =±w/2. The derivation of the equation of motion then
proceeds as in the case of a plate, but now the integration over y can also be done directly.
This yields the Euler-Bernoulli beam equation with tension:

ρA
∂2u

∂t 2 +D
∂4u

∂x4 −T
∂2u

∂x2 = F, (3.17)

where the cross-sectional area A equals wh for a rectangular beam. The bending rigidity
D = Eh3w/12(1−ν2) can be written as the product of the Young’s modulus and the second
moment of inertia D = E I /(1−ν2), where the small correction (1−ν2) is often omitted [2].
Thus for a rectangular beam the second moment of inertia is I = h3w/12, whereas for a
(solid) cylinder with radius r it is I = πr 4/4 [2]. Note that the units of the bending rigidity,
tension and external force are different from the case of a plate due to the integration over
the y-coordinate. D is given in Nm2 instead of Nm(= J) and T is in N instead of N/m.
Finally, the external force is given per unit length instead of per unit area. From the context
it should be clear what the meaning of the different symbols is.

3.3 BUCKLED BEAMS
For the SQUID experiments described in Chapter 7, a rectangular beam is used that is
buckled. To calibrate the dc SQUID position detector using the temperature dependence
of the resonator’s Brownian motion, the relation between the displacement u and the
change in magnetic flux has to be calculated. This requires a full description of the flexu-
ral bending modes of the buckled beam. The analysis presented in this Section also allows
the calculation of the resonance frequency, which is in excellent agreement with the ex-
perimental results in Ch. 7.

The starting point is the Euler-Bernoulli beam equation (Eq. 3.17) without an external
force, i.e. F = 0. The boundary conditions of a doubly-clamped beam are u(x = 0) = u(x =
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`) = 0 and ∂u/∂x(x = 0) = ∂u/∂x(x = `) = 0 [2]. The beam is under a tension T that is
compressive (negative) for a buckled beam. The tension has two contributions: first the
beam can be compressed or elongated by the fact that it is clamped. Figure 3.2a shows
that the length of the free beam (`0) and that of the clamped beam (`) can be different.
This is the so-called residual tension, T0 = E Aγ0, with γ0 = (`− `0)/`0. In the case of
the SQUID experiments this effect is due to the lattice mismatch between the beam and
the substrate. The second contribution comes from the stretching of the beam when it is
displaced vertically. The resulting length of the beam is denoted by L. Combining both
effects gives:

T ≈ T0 +
E A

2`

∫ `

0

(
∂u

∂x

)2

dx. (3.18)

The total deflection u is the sum of a static (udc) and oscillating part (uac). To find the
eigenmodes of the beam, uac is taken infinitesimal, so that the beam equation is separated
into:

D ∂4udc
∂x4 −Tdc

∂2udc
∂x2 = 0, (3.19)

ρA
∂u2

ac

∂t 2 + D ∂4uac
∂x4 −Tdc

∂2uac
∂x2 = Tac

∂2udc

∂x2 , (3.20)

with:

Tdc = T0 +
E A

2`

∫ `

0

(
∂udc

∂x

)2

dx, (3.21)

Tac = E A

`

∫ `

0

∂udc

∂x

∂uac

∂x
dx. (3.22)

Eq. 3.19 only has a non-trivial solution udc = umax[1− cos(2πnx/`)]/2 when Tdc = n2Tc ,
where Tc =−4π2D/L2 is the critical tension at which the beam buckles and n is an integer.
When an initially unstrained beam is compressed slightly, work is done and the energy
stored in UT increases. When the compressive residual tension T0 is made more negative
than Tc , it becomes energetically favorable for the beam to convert a part of UT into the
bending energy UB . The beam buckles to a displacement that keeps the tension exactly at
Tc (for n=1). The value of the displacement depends on the residual tension that caused
it: umax = 2`/π([Tc −T0]/E A)1/2.

The eigenfrequencies of buckled beams were calculated by Nayfeh et al. [7]. Following
this analysis, the homogeneous solution to Eq. 3.20 is written as:

u(h)
ac = c1 sin(k+x/`)+ c2 cos(k+x/`)+ c3 sinh(k−x/`)+ c4 cosh(k−x/`), (3.23)

with:

k± =

±2π2 +

√
(2π2)2 + mω2`3

D




1/2

. (3.24)
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A particular solution is:

u(p)
ac = c5 cos(2πx/`). (3.25)

The boundary conditions provide four equations for the five coefficients ci . A fifth equa-

tion is obtained when the entire solution uac = u(h)
ac +u(p)

ac is inserted into Eqs. 3.20 and 3.22
as the right hand side of Eq. 3.20 depends on uac itself. These conditions can be written
as:




0 1 0 1 1
k+ 0 k− 0 0

sink+ cosk+ sinhk− coshk− 1
k+ cosk+ −k+ sink+ k− coshk− k− sinhk− 0

k+ cosk+−k+
k2
+−4π2 − k+ sink+

k2
+−4π2 − k− coshk−−k−

k2−−4π2 − k− sinhk−
k2−−4π2

ω2m`4

4π4E Au2
max

− 1
2



×




c1

c2

c3

c4

c5



=




0
0
0
0
0




. (3.26)

This equation has the trivial solution ci = 0 for every value ofω, but at the eigenfrequencies
a solution exists with some of the coefficients ci non-zero. This only occurs when the
matrix in Eq. 3.26 is not invertible, i.e. at the frequencies ω = ωn where its determinant
is zero. The eigenfrequencies and modes are calculated for the beam used in Ch. 7 which
has a length ` = 50µm, a bending rigidity D = 3.20 ·10−15 J and a buckling displacement
umax = 1.5µm. Figure 3.3 shows that the frequency of the fundamental mode increases
with increasing buckling. The second mode has an eigenfrequency ω2/2π= 1.44MHz and
is independent of umax, as the mode is anti-symmetric around the node, giving Tac = 0.
When umax is increased to 0.92µm, the two lowest modes cross and the fundamental mode
is higher in frequency than the second mode.3 Thus, when the length of the beam, bending
rigidity and the buckling displacement are known, the eigenfrequencies and modeshapes
of a buckled beam can be calculated.

3.4 CARBON-BASED NEMS
Carbon exists in many different forms, ranging from amorphous coal to crystalline graph-
ite and diamond. Diamond has a face-centered cubic structure as shown in Fig. 3.4a and
is one of the hardest materials known. Its Young’s modulus (Table 3.1) is extremely high:
about 1TPa. Graphite has a very different crystal structure: it consists of stacked planes
of carbon atoms in a hexagonal arrangement (Fig. 3.4b). Its Young’s modulus for in-plane

3We classify the modes by their shape and not by the ordering of eigenfrequencies. The fundamental mode is the
mode without a node.
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FIGURE 3.3: The calculated eigenfrequencies of the beam used in Ch. 7. The mode shapes at the position of
the dots are shown. At a buckling of umax = 1.5µm (dashed line), the fundamental flexural mode (inset) has an
eigenfrequency of 1.93 MHz.

stress is nearly as high as that of diamond, but it is much lower for out-of-plane stress as
Table 3.1 indicates. This difference is caused by the nature of the bonds holding the carbon
atoms together. Atoms in one of the planes are covalently bonded to each other, whereas
different planes are held together by the much weaker van der Waals force.

Graphite and diamond were already known for millennia, but in the last decades novel
allotropes of carbon were discovered. First, in 1985 C60 molecules, called buckyballs, were
discovered [8]. Then in the early 1990s carbon nanotubes were discovered [9]. These con-
sist of cylinders of hexagonally ordered carbon atoms; similar to what one would get if
one would take a single layer of graphite and role it up into a cylinder. Figure 3.4 shows
the structure of these four different carbon allotropes. In 2004 another allotrope called
“graphene” was discovered [10, 11]. This is a single layer of graphite, which is, unlike a
nanotube, flat. This material is usually deposited onto a substrate using mechanical exfo-
liation and sheets of mm-size have been reported [12]. Although truly two-dimensional
structures are not energetically stable [13], graphene can exist due to fact that it contains
ripples that stabilize its atomically thin structure [14–17].

Although nanomechanical devices have been made out of diamond using top-down
fabrication techniques [18, 19], the focus in this Thesis is on bottom-up fabricated carbon-
based NEMS made from few-layer graphene or suspended carbon nanotubes. First, the
basic structure of graphene and graphite are studied and then it is discussed how these



3.4. CARBON-BASED NEMS 51

FIGURE 3.4: The structure of the different allotropes of carbon. (a) Diamond has two intertwined face-centered
cubic lattices. (b) Graphite consists of stacked planes of hexagonally ordered carbon atoms. A single plane is
called a “graphene sheet”. (c) A C60 buckyball molecule. (d) A single-walled carbon nanotube, which can be
viewed as a graphene sheet that has been rolled up and sewn together.
Image (a) adapted from H. Tsuya: JPSJ Online-News and Comments [Apr. 10, 2006]. Images (b) and (c) were taken from

wikipedia.org. Image (d) courtesy of Maria Foldvari: http://www.pharmacy.uwaterloo.ca/research/foldvari/about/
index.html

results can be used to understand the mechanical properties of nanotubes and of very
thin graphite structures.

The unit cell of graphene consists of a hexagon with a carbon atom on each corner
and has its sides have a length dcc = 0.14nm, as illustrated in Fig. 3.5a. Each of these six
carbon atoms lies in three different unit cells; a single unit cell thus contains two carbon
atoms. The unit cell has an area of 5.22 · 10−20 m2 so the two-dimensional mass density
is ρ2d = 6.8 ·10−7 kg/m2. From this number the mass of a single-walled carbon nanotube
(SWNT) can be calculated. A SWNT with radius r has a mass per unit length of 2πrρ2d .
In most nanotube growth procedures, not just SWNTs are produced, but also multi-walled
nanotubes (MWNTs) and ropes. MWNTs consist of SWNTs wrapped around each other
and ropes are bundles of nanotubes that lie against each other. These structures have a
larger mass per unit length then a SWNT with the same radius. In principle, their mass
can be found by counting the number of carbon atoms that it contains, but often only
their outer dimensions can be measured and the inner structure remains unknown. For-
tunately, to a good approximation, the linear mass density is given by ρA, with A = πr 2

and ρ = 1.35 ·103 kg/m3 for the different types of carbon nanotube structures.

In graphite the graphene layers are stacked on top of each other (see Fig. 3.4b and
3.5b) with an inter-layer spacing c = 0.335nm. The planes are not located exactly above
each other but every other layer is shifted by half the unit cell, or equivalently, it is rotated
by 60o around an axis through one of the carbon atoms. Three of the six atoms are on top
of the atoms in the other layer and the other three are located at the center of the hexagon

http://www.ipap.jp/jpsj/news/jpsj-nc_17.htm�
http://www.pharmacy.uwaterloo.ca/research/foldvari/about/index.html�
http://www.pharmacy.uwaterloo.ca/research/foldvari/about/index.html�
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FIGURE 3.5: (a) The unit cell of graphene with the dimensions indicated. a is the length of the two translation
vectors a1,2 = 1

2 a[±1,
p

3,0], and dcc is the distance between two carbon atoms. The area of the unit cell is
1
2

p
3a2 = 5.22 ·10−20 m2. (b) Bending of a few-layer graphene sheet. The distance between the graphene layers

is c = 0.335nm.

below them. The elasticity tensor of graphite is represented by4 [3]:

[E ] =




1.16 0.29 0.11 0 0 0
0.29 1.16 0.11 0 0 0
0.11 0.11 0.05 0 0 0

0 0 0 0.002 0
0 0 0 0 0.002 0
0 0 0 0 0 0.44




TPa. (3.27)

The hexagonal lattices formed by the carbon atoms have a six-fold rotational symmetry,
which ensures that the elastic properties are the same when looking in any direction along
the planes, i.e. they are isotropic in those directions [3, 4]. On the other hand, the me-
chanical properties for deformations perpendicular to the planes are quite different. It is
therefore convenient to introduce the in- and out-of-plane Young’s modulus, E� and E⊥
respectively, and the corresponding Poisson’s ratios ν� and ν⊥. They are defined such that

4The values of the elastic constants depend on the quality of the graphite samples. Therefore, slightly different
values can be found in the literature. Compare, for example, the data in Refs. [20] and [21] with the values in
Ref. [3]
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the compliance matrix is given by5:

[C ] =




1/E� −ν�/E� −ν⊥/E⊥ 0 0 0
−ν�/E� 1/E� −ν⊥/E⊥ 0 0 0
−ν⊥/E⊥ −ν⊥/E⊥ 1/E⊥ 0 0 0

0 0 0 1/G� 0 0
0 0 0 0 1/G� 0
0 0 0 0 0 1/G⊥




, (3.28)

where E� = 0.92TPa, E⊥ = 33GPa, G� = 1.8GPa, G⊥ = 0.44TPa, ν� = 0.052 andν⊥ = 0.076.
The bending rigidity for an anisotropic material depends on the direction of bending.

Therefore, for graphite the analysis in Sec. 3.2 has to be generalized. The rigidity for bend-
ing along the sheets (see Fig. 3.5b) is calculated using the compliance tensor in Eq. 3.28:

D = E�h3/12(1−ν2
�), (3.29)

which only contains the in-plane elastic constants. When the number of graphene layers
becomes small, corrections to Eq. 3.29 have to be made. Consider the situation in Fig. 3.5b
where a few-layer graphene sheet is bent with a radius of curvature Rc . In the continuum

case, the bending energy is given by UB /`W ≡ 1
2 D/R2

c = 1
2

∫ h/2
−h/2 E�(z/Rc )2 dz, when taking

ν= 0 for simplicity. In the case of a small number of layers N , the continuum approxima-
tion in the z-direction is no longer valid and the stress is located only at the position of
the sheets zi = c(i − [N +1]/2). The integral over z is replaced by a sum and the bending
rigidity becomes:

DN = E�h3

12(1−ν2
�)

N −1

N
, (3.30)

where the thickness is set by the number of layers h = N c . For a single layer the bending
rigidity vanishes according to Eq. 3.30. However, molecular dynamics simulations have
shown that a single layer of graphene still has a finite bending rigidity: of the order of one
eV [16, 22, 23] (compare this to the value for a double layer calculated with Eq. 3.30: D2 =
54eV). The rigidity of a single layer comes from the fact that electrons in the delocalized
π-orbitals, located below and above the sheet, repel each other when the sheet is bent
[23]. Moreover, molecular dynamics simulations also show that nanotube devices [24] and
graphene membranes [25–27] are accurately described by continuum mechanics, taking
the modifications of the bending rigidity into account.

3.5 SUSPENDED CARBON NANOTUBES
In Chapters 5 and 6 the flexural bending mode vibrations of suspended nanotubes are
studied. An AFM image of a typical device is shown in Fig. 3.6a. A nanotube is connected

5Note that this definition is slightly different from the conventional definition of the Poisson’s ratio in an
anisotropic material where νxz =−Cxxzz /Cxxxx and νzx =−Cxxzz /Czzzz [5].
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FIGURE 3.6: (a) an AFM image of a suspended nanotube device connected to the source and drain electrode.
The tube is suspended above the trench only. This device has a length `= 1.25µm and the radius of the tube is:
r = 1.4nm. (b) Field lines of the electrostatic potential induced by the gate electrode. When the distance between
the tube and the gate h changes, the gate capacitance Cg changes.

to source and drain electrodes, enabling transport measurements. The tube is suspended
above a gate electrode at a distance hg, which can be used to drive the resonator [28]. One
of the key features of these thin resonators is that their frequency is electrically tunable
over a large range with a static gate voltage.

In the experiments described in Chapters 5 and 6, suspended nanotubes that bridge a
length of the order of one micrometer are used. This is long enough for the continuum ap-
proximation to be valid as shown in Ref. [24]. The bending mode vibrations are therefore
accurately described by the Euler-Bernoulli beam equation [29, 30] with tension included,
i.e. Eq. 3.17. The electrostatic force per unit length F (x, t ) depends on the capacitance
between the nanotube and the gate electrode Cg and the voltage Vg between them. The
capacitance depends on the distance between the gate and the tube hg −u(x). This im-
plies that the potential energy6 UF = −CgV 2

g /2 is displacement dependent, which results
in a force F on the tube. Under the assumption that the effect of the source and drain elec-
trodes is negligible, the tube is basically an infinitely long grounded cylinder, suspended
above a conducting plate at an electrostatic potential φ(z = 0) =Vg. The potential profile
for u = 0 is given by [32]:

φ(y, z) =Vg −Vg
1

arccosh(hg/r )
ln




[
z +

√
h2

g − r 2
]2

+ y2

[
z −

√
h2

g − r 2
]2

+ y2


 . (3.31)

The field lines associated with this potential are shown in Fig. 3.6b. The deflection of
the nanotube is included account by replacing hg with hg −u. After dividing the locally

6This is the potential energy for the tube, in contrast to the energy stored in the capacitor: +CgV 2
g /2. The differ-

ence in the sign is because the voltage source performs work when the capacitance changes [31], which should
also be taken into account.
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induced charge by the gate voltage, the capacitance per unit length cg (x) is obtained7:

cg (x) = 2πε0

arccosh
(
[hg −u(x)]/r

) ≈ 2πε0

arccosh
(
hg/r

) + 2πε0√
h2

g − r 2 arccosh2(hg/r
)u(x). (3.32)

The last approximation is allowed because the displacement u is much smaller than hg.
This in contrast to top-down fabricated devices, where higher order terms can be im-
portant and electrostatic softening of the spring constant might occur [34]. The electro-

static potential energy is written as: UF = −∫ `
0 cg (x)V 2

g /2dx which equals by definition

UF =−∫ `
0 Fu dx, so that the force per unit length F equals:

F (t ) = 1

2

∂cg

∂u
V 2

g (t ) =
πε0V 2

g (t )
√

h2
g − r 2 arccosh2(hg/r

) . (3.33)

The gate voltage consists of two parts: a static part V dc
g and a time-dependent part V ac

g cos(ωt )

to drive the nanotube at frequency f =ω/2π. The experimental condition V ac
g ¿ V dc

g en-

sures that terms proportional to (V ac
g )2 are negligible. The force is then the sum of a static

and driving contribution: F = Fdc+Fac cos(ωt ), with Fdc =πε0/(h2
g −r 2)1/2arccosh2(hg/r

) ·
(V dc

g )2 and Fac(t ) =πε0/(h2
g − r 2)1/2arccosh2(hg/r

) ·2V dc
g V ac

g (t ).
When the amplitude of the oscillation uac is small compared to the larger of the tube’s

radius and the static displacement, terms proportional to u2
ac are negligible and the tube is

in the linear regime8. Similar to the analysis presented in the previous section the equation
of motion (Cf. Eq. 3.17) can be separated in this case:

D
∂4udc

∂x4 −Tdc
∂2udc

∂x2 = Fdc, (3.34)

−ω2ρAuac + iωηuac +D
∂4uac

∂x4 −Tdc
∂2uac

∂x2 −Tac
∂2udc
∂x2 = Fac. (3.35)

The driving force excites oscillations of the tube that can be tuned with the dc tension,
which is calculated using the equation for the static displacement.

TENSION
Similar to the case of the buckled beam, the tension has two contributions. The first one
is due to the clamping: The length of the suspended part of the tube is not necessarily
equal to the length when it would not be clamped. The tube could be strained during the

7This expression might appear different from those in Refs [29] and [33], but note that arccosh(x) = ln(x +√
x2 −1) ≈ ln(2x) for x À 1.

8This refers to the dynamical behavior. The static displacement is actually nonlinear when the tube is in the
strong bending limit [29].
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growth process or lay slightly curved on the substrate before suspending it. This is the
residual tension, T0. The second contribution is the displacement-induced tension: The
gate electrode pulls the nanotube towards it, thereby elongating the tube. Moreover, an
oscillating nanotube experiences a time-dependent variation in its length. Both effects
are included in Eq. 3.18. As it contains the static displacement, it has to be solved self-
consistently [29, 33] with Eq. 3.34 to find the static displacement. The resulting tension
is then inserted into Eq. 3.35 to find the eigenfrequencies ωn and the response function
uac(x,ω).

SCALING AND STATIC DISPLACEMENT
To analyze the system of equations 3.34, 3.35 and 3.18, it is useful to take a closer look at
their scaling behavior [33]. In this section, we use the convention that primed variables
indicate scaled (dimensionless) variables. An obvious way to normalize the coordinate x
is to divide it by the tube length: x ′ = x/`, so that the equation for the static displacement
Eq. 3.34 becomes:

∂4udc

∂x ′4 − `2Tdc

D

∂2udc

∂x ′2 = `4Fdc

D
≡ ldc. (3.36)

On the right hand side, a natural length scale for the static displacement, ldc, appears.
However, scaling the displacement with ldc is not handy because ldc equals zero at zero
gate voltage. Therefore udc (and uac) are scaled by the radius of the tube: u′

dc = udc/r .
Moreover, the tension has become dimensionless, resulting in an equation for the static
displacement where the number of parameters has been reduced from 5 to 2:

∂4u′
dc

∂x ′4 −T ′
dc

∂2u′
dc

∂x ′2 = l ′dc, (3.37)

where

T ′
dc =

`2Tdc

D
= T ′

0 +
Ar 2

2I

∫ 1

0

(
∂u′

dc

∂x ′

)2

dx ′ and l ′dc = ldc/r. (3.38)

The definition of T ′
dc with the `2 dependence shows that tension becomes more and more

important when the length of the device increases. Note, that for a cylindrical resonator
Ar 2/2I = 2 so that the strain in the nanotube is γ= (r /2`)2T ′

dc. The solution9 to Eq. 3.37 is
[35, 36]:

u′
dc(x ′) =

l ′dc

2k2

(
sinh(k)(cosh(kx ′)−1)

k cosh(k)−k
− sinh(kx ′)

k
−x ′(x ′−1)

)
, (3.39)

with k = T ′1/2
dc . Figure 3.7a shows the dc displacement profiles for different values of the

static tension. In the case where the bending rigidity dominates (top panel) the profile is
rounded at the edge, whereas for high tension (lower panel) the profile is much sharper.

9In this section a finite static force is assumed. For the case `dc = 0 with T0 < Tc see the previous Section.
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FIGURE 3.7: (a) static displacement profiles for T ′
dc = 0 (top), T ′

dc = 50 (middle) and T ′
dc = 103 (bottom). (b) the

calculated static displacement at the center of the nanotube and the corresponding tension (c) for various value
of the residual tension T ′

0. The limits for the tension for small and large static forces are indicated.

The tension and center deflection are calculated by solving Eq. 3.39 self-consistently with
3.38 and are plotted in Fig. 3.7b and c. Two different slopes can be distinguished in the
double-logarithmic plot of Fig. 3.7b. These correspond to the weak and strong bending
regime of the nanotube [29]. The two regimes cross at T ′∗

dc = 6
p

70 ≈ 50.2, l∗
dc′ = 36 ·703/4 ≈

871. The gate voltage at which l ′dc = l∗
dc′ is called the cross-over voltage, V ∗

g . Finally, the
static spring constant can be defined as the force required to deflect the center of the na-
notube by a given amount:

kdc ≡
(
∂udc(`/2)

∂`Fdc

)−1

= D

`3

(
du′

dc

dl ′dc

)−1

= D

`3

(
∂u′

dc

∂l ′dc

+
∂u′

dc

∂T ′
dc

∂T ′
dc

∂l ′dc

)−1

. (3.40)

The first term gives the linear response on the applied force; the second term is important
in the strong bending regime.

EIGENFREQUENCIES
A similar scaling analysis can be applied to Eq. 3.35. One immediately finds the length
scale lac = `4Fac/D for the ac force and T ′

ac = Tac`
2/E I . Furthermore, Ω = (D/ρA)1/2/`2

is the characteristic frequency scale for the bending mode vibrations. With t ′ = tΩ and
ω′ =ω/Ω, the dynamic equation becomes10:

−ω′2u′
ac + iω′η′u′

ac +
∂4u′

ac

∂x ′4 −T ′
dc

∂2u′
ac

∂x ′2 −T ′
ac

∂2u′
dc

∂x ′2 = l ′ac, (3.41)

where similar to the static tension

T ′
ac =

`2Tac

D
= 4

∫ 1

0

∂u′
ac

∂x ′
∂u′

dc

∂x ′ dx ′. (3.42)

10η′ = η`4Ω/D , so that when η≡ mωR /Q` the dimensionless damping parameter becomes: η′ =ω′
R /Q.
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Now consider the eigenfunctions ξn(x ′) of the operator L that contains the spatial part of
Eq. 3.41:

L ξn(x ′) =
(
∂4

∂x ′4 −T ′
dc

∂2

∂x ′2

)
ξn −T ′

ac

[
ξn

]∂2u′
dc

∂x ′2 =ω′2
n (Tdc,udc) ·ξn(x ′). (3.43)

The eigenfunctions ξn(x ′) are orthonormalized:

∫ 1

0
ξm(x ′)ξn(x ′)dx ′ = δm,n . (3.44)

The displacement is expanded 11 in the basis formed by the eigenfunctions ξn [38, 39]:

uac(x) =
∑
n

u(n)
ac ·ξn(x). (3.45)

Inserting this into 3.41 and taking the inner product with ξn yields the displacement of
mode n, u(n)

ac :

(
ω′2

n −ω′2 + iω′η′
)

u(n)
ac = lacan ; an =

∫ 1

0
ξn(x ′)dx ′. (3.46)

So, as anticipated in Ch. 2, the frequency response of each mode is equal to the response
function of a damped driven harmonic oscillator. Note that with these definitions, the
mass and spring constant appearing in the zero-point motion (Eq. 2.7) and the equipar-
tition theorem (Eq. 2.10) are equal to the total mass m and kR = mω2

n respectively. There
is no need at all to introduce an effective mass. Anti-symmetric modes have a vanishing
value of an and are usually not visible in nanomechanical experiments as in most cases
both the driving and detection mechanisms couple to the average displacement of the
resonator. Different detectors or driving forces might couple differently to the displace-
ment profile and could detect these modes. An example of this is a nanotube resonator
coupled to a local gate instead of a back gate.

The eigenfunctions of L are found using an analysis similar to the one presented the
previous Section. The homogeneous solution (i.e. the solution with the ac tension term
equal to zero) to Eq. 3.43 is:

ξ(h)
n = c1 sin(k+x ′)+ c2 cos(k+x ′)+ c3 sinh(k−x ′)+ c4 cosh(k−x ′), (3.47)

where the definition of k±, Eq. 3.24, is generalized to:

k± =
(
∓T ′

dc/2+
√

(T ′
dc/2)2 +ω′2

)1/2
, (3.48)

11The operator L is Hermitian when working on functions that satisfy the boundary conditions. This vector
space is thus spanned by the orthogonal eigenfunctions of L for any (fixed) value of T ′

dc [37]. Note, that the

operator itself depends on the the static tension and displacement: L =L (T ′
dc,u′

dc).
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as the static tension is no longer exactly at the critical value Tdc = Tc . A particular solution
to Eq. 3.43 is:

ξ
(p)
n = c5

(
1

2k

sinh(k)cosh(kx ′)
cosh(k)−1

− sinh(kx ′)
2k

− 1

k2

)
= c5

l ′dc

∂2u′
dc

∂x ′2 . (3.49)

Again, the boundary conditions provide four equations for the five coefficients ci and the
fifth equation is obtained when the entire solution ξn(x ′) = ξ(h)

n (x ′)+ ξ(p)(x ′) is inserted
into Eqs. 3.42 and 3.43 yielding:




0 1 0 1 µ

k+ 0 k− 0 −1/2
sink+ cosk+ sinhk− coshk− µ

k+ cosk+ −k+ sink+ k− coshk− k− sinhk− 1/2
D[sink+x′] D[cosk+x′)] D[sinhk−x′] D[coshk−x′)] D[ξ(p)/c5]−ω′2/ldc.2


×




c1

c2

c3

c4

c5



=




0
0
0
0
0




, (3.50)

where µ= sinh(k)/(2k cosh(k)−2k)−1/k2 is the displacement of the particular solution at
the boundaries: µ = ξ(p)(0)/c5 = ξ(p)(1)/c5 and D[ f (x ′)] = 4

∫ 1
0 f (x ′) ·∂2(u′

dc/l ′dc)/∂x ′2 dx ′.
The analytical solutions of the D[ f ] are given in Ref. [36].

In the absence of tension, the resonance frequency of the first bending mode is [2]:
f0 ≈ 22.4 ·Ω/2π, and the other eigenfrequencies are given in Table 3.2. Note that these fre-
quencies do not have a harmonic spectrum. If, on the other hand, a large residual tension
is present and the static deflection is small (T ′

dc ≈ T ′
0 À 1) the resonance frequency is that

of a string under tension:

fT0,n = n +1

2`

√
Tdc

ρA
, (3.51)

where the higher modes are harmonics of the fundamental one. This well-known “guitar
string” behavior changes when the tension is induced by the gate. In this case (T ′

dc À T ′
0,1)

the nanotube behaves more like a rubber band that is under tension due to its own weight.
The ac tension has to be included and the resonance frequencies are:

fTdc,n = n +1

2`

√
Tdc

ρA
·
(
1+ 6a2

n

π2(n +1)2

)1/2

. (3.52)

For odd modes an = 0 and the resonance frequencies equal that of a string under tension
(Eq. 3.51), but for even modes the frequencies are different. Table 3.2 indicates that the ac
tension only changes the first few modes significantly.
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TABLE 3.2: Eigenfrequencies and other parameters for the first 10 flexural eigenmodes in limit of pure bend-
ing and pure tension. an indicates the average displacement of the mode per unit deflection and

〈
ξ′n

∣∣ ξ′n
〉 =∫ 1

0 (∂ξn /∂x′)2 dx′.

Mode Bending Tension

n fn/(Ω/2π) fn/ f0 an
〈
ξ′n

∣∣ ξ′n
〉

fTdc,n/ fT0,0 an
〈
ξ′n

∣∣ ξ′n
〉

0 22.4 1.00 0.83 12.3 1.22 0.90 9.9
1 61.7 2.76 0 46.1 2.00 0 39.5
2 120.9 5.40 0.36 98.9 3.01 0.30 88.8
3 199.9 8.93 0 171.6 4.00 0 157.9
4 298.6 13.34 0.23 264.0 5.00 0.18 246.7
5 417.0 18.64 0 376.2 6.00 0 355.3
6 555.2 24.81 0.17 508.0 7.00 0.13 483.6
7 713.1 31.87 0 659.7 8.00 0 631.7
8 890.7 39.81 0.13 831.0 9.00 0.10 799.4
9 1 088.1 48.63 0 1022.2 10.00 0 987.0

Nanotubes can be in any of the three limits discussed above (i.e. bending only, strong
residual tension and strong deflection-induced tension), depending on the residual ten-
sion and gate voltage. To find the entire tuning-curve fR (V dc

g ), one first has to solve Eqs.
3.37 and 3.38 to obtain the static tension and dc displacement. This is then inserted into
Eq. 3.50 to find the resonance frequencies. Figure 3.8a shows the calculated eigenfre-
quencies, plotted against the static pulling force for different residual tensions. The higher
the residual tension is, the higher the resonance frequencies are at low values of l ′dc. The
value T ′

0 =−39.4 ≈ Tc indicates that the nanotube is close to buckling; this is visible by the
nearly vanishing resonance frequency of the first mode at low l ′dc. When the static force
is increased, all resonance frequencies increase and the differences due to the different
residual tensions become smaller.

To relate the dimensionless quantities in this Section to the physical ones, the dimen-
sions of the suspended nanotubes are needed. Table 3.3 shows the estimated sizes and
the calculated values of several parameters for different nanotube devices. Tubes A and B
are used in the mixing experiments discussed in Ch. 5 and Tube C is the device studied
in Ch. 6. Finally, the parameters for a nanotube with a resonance frequency of 1GHz are
given. Such a nanotube resonator can be cooled to the ground state, by using a dilution
refrigerator, making the use of other cooling techniques (Sec. 2.3) unnecessary. However,
the current associated with the motion in the mixing experiments of Ch. 5 is propor-
tional to the average displacement amplitude; it is thus proportional to the length scale
lac that determines the amplitude. As a consequence, the mechanical signal drops rapidly
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FIGURE 3.8: (a) Calculated eigenfrequencies ω′
n of the first three flexural modes (n = 0,1,2) of a suspended

carbon nanotube as a function of the static pulling force l ′dc. The different shades of gray correspond to different

residual tensions T ′
0 = −39.4 (black), T ′

0 = 0 (gray) and T ′
0 = +100 (light gray). (b) The data plotted in (a) is

converted to real frequencies and static gate voltage using the parameters for Tube A (See Table 3.3). The residual
tensions are T0 =−91, 0, +230pN for the black, gray and light gray curves respectively.

with decreasing length, making the measurement of single-walled carbon nanotubes with
f0 > 1GHz (corresponding to a device length ` <∼ 0.2µm, see Table 3.3) challenging as
the signal is about 100× smaller compared to a f0 = 100MHz device with `≈ 0.6µm. The
latter tube can also operate a 1GHz frequency by tuning it with a gate-induced tension of
T ′

dc = 5 ·103. In this case the signal decreases too, but our model shows that it is only by a
factor of 10. A tension of T ′

dc = 5 ·103 corresponds to a strain of about 0.2%, which is larger
than the values that we reach in our experiment, but are still smaller than the strains at
which single-walled carbon nanotubes break [40–42].

3.6 NANODRUMS
In Chapter 4 nanomechanical measurements on suspended few-layer graphene sheets are
discussed. This Section focusses on the modelling of these so-called nanodrums. In the
experiments, an atomic force microscope tip is used to apply a force Ftip to the flake as
illustrated in Fig. 3.9a. The point (x0, y0) where the force is applied can be varied and the
resulting deflection of the nanodrum is measured. The restoring force that opposes the
applied force has several contributions12: First of all there is the bending rigidity of the
flake D . Secondly, tension may be present in the flake. Finally, there can be a pressure
difference ∆P between the environment and the inside of the nanodrum that can be ap-
plied externally [43] or induced by the deflection of the flake, i.e. ∆P = ∆P [u]. Including

12The indentation of the flake is not included in this analysis as it requires the shape of the tip to be (accurately)
known. This contribution adds up linearly to the total compliance of the flake and is determined experimen-
tally from the compliance at the supported part of the flake.
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TABLE 3.3: Data for four different tubes. The values of the parameters are calculated from the nanotube radius r ,
length ` and distance to the gate electrode hg. The resonance frequency fR , tension Tdc and static displacement

udc(`/2) are evaluated for a gate voltage V dc
g = 4V and zero residual tension. m, f0 and D are the mass, resonance

frequency of the nanotube without tension and the bending rigidity respectively. Furthermore, the static and
dynamic spring constants are kdc and kR , Cg is the capacitance to the gate and u0 the zero-point motion.

Tube A Tube B Tube C 1 GHz

` 1.25 1.15 0.80 0.23 µm
r 1.4 1.6 1.5 1.0 nm

hg 500 500 230 500 nm
m 7.5 7.9 5.15 0.99 10−21 kg
D 3.6 6.18 4.77 0.94 10−24 Nm2

f0 56.0 81 152 1000 MHz
fR 210.9 218 392 1007 MHz
kR 13.2 14.8 31.2 39.4 10−3 N/m
u0 2.3 2.21 2.04 2.91 pm
Cg 10.58 9.94 7.77 1.85 aF

∂Cg/∂u 3.22 3.09 5.90 0.54 zF/nm
Fdc` 26 25 47.22 4.29 pN
ldc 1.4 ·104 6.1 ·103 5.1 ·103 55 µm

udc(`/2) 6.2 4.9 4.35 0.14 nm
kdc 10.5 11.9 25.2 30.2 10−3 N/m
Tdc 0.46 0.43 0.62 0.0036 nN
T ′

dc 199 92 83 0.20
V ∗

g 1.2 1.9 2.0 16 V
l ′dc 9.9 ·103 3.8 ·103 3.4 ·103 55

all these terms in Eq. 3.16 of Sec. 3.2 yields [4, 25, 44]:
(
D∇4 − ∂

∂xα
Tαβ

∂

∂xβ

)
u(x, y ; x0, y0) = Ftipδ(x −x0, y − y0)+∆P, (3.53)

where the ∇-operator and the partial derivatives ∂/∂xi are working in the xy-plane only,
as the z-dependence is absorbed in the bending rigidity (see Sec. 3.2) and the tension

Tαβ = ∫ h
0 σαβdz. This equation is difficult to solve in its most general form, but fortu-

nately some simplifications can be made. The tension tensor can have both normal and
shear components. It is, however, always possible to find two orthogonal directions where
the shear components are zero [1]. For uniform tension these directions are independent
of position, so without loss of generality the x and y-axis are taken along the principle di-
rections of the tension. As shown in Chapter 4, no difference in tension in the x and y
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direction is observed, i.e. ∆T = (Txx −Ty y )/2 must be small so that Tαβ ≈ Tδi j . Then,
when omitting the pressure term for the moment, Eq. 3.53 is greatly simplified. In polar
coordinates13 it reads:

(
D∇4 −T∇2)u(r,θ;r0,θ0) = Ftip

r
δ(r − r0,θ−θ0). (3.54)

The flake with radius R is clamped at the edge of the circular hole so the boundary con-
ditions are u(R) = 0 and du/dr |r=R = 0. Furthermore, the deflection at the center is finite
(u(0) <∞) and smooth (du/dr |r=0 = 0). The solution is written as:

u(r,θ;r0,θ0) =
∞∑

m=0
Rm(r ;r0)cos(mθ−mθ0). (3.55)

Inserting this into Eq. 3.54 yields for the radial coefficients:

R0(r ;r0) = A0I0(λr /R)+B0K0(λr /R)+
C0 ln(r /R)+D0 +R(p)

0 (r ;r0), (3.56)

Rm(r ;r0) = Am Im(λr /R)+BmKm(λr /R)+
Cm(r /R)−m +Dm(r /R)m +R(p)

m (r ;r0) (m > 0), (3.57)

where Im and Km are the Bessel functions of the first and second kind respectively, and
λ=

p
T R2/D is a dimensionless parameter that indicates the importance of the tension in

comparison with the bending rigidity of the flake. The set of coefficients {Am ,Bm ,Cm ,Dm}

are calculated analytically; for the particular solutions R(p)
m only an integral solution was

found. Figure 3.9b shows the deflection profiles calculated where the force is applied at
different distances r0 from the center. The deflection of the flake is clearly reduced when
the AFM tip is moved away from center of the nanodrum. This indicates that its local
compliance k−1

f (r0,θ0) = ∂u(r0,θ0;r0,θ0/∂Ftip decreases. As the tension is assumed to be

isotropic, k−1
f is independent of θ0 and its radial profile contains all the information. This

profile is shown in Fig. 3.9c for different values of the tension. For small tension (λ =
0), the profile is rounded at the edge of the hole, whereas for large tension (λ→ ∞) the
compliance profile becomes much shaper14 at the edge and diverges at the center for a
point force. In practice the tip has a finite radius of curvature which prevents that the
spring constant of the flake k f (r0 = 0) vanishes.

When a finite pressure difference ∆P is applied, the total displacement is the sum of
the contribution due to applied force Ftip and the one due to∆P because Eq. 3.54 is linear.

13∇2 = ∂2

∂x2 + ∂2

∂y2 = ∂2

∂r 2 + 1
r
∂
∂r + 1

r 2
∂2

∂θ2 and

∇4 = ∂4

∂x4 + ∂4

∂y4 = ∂4

∂r 4 + 2
r
∂3

∂r 3 − 1
r 2

∂2

∂r 2 + 1
r 3

∂
∂r + 4

r 4
∂2

∂θ2 + 1
r 4

∂4

∂θ4 + 2
r 2

∂4

∂r 2∂θ2 − 2
r 3

∂3

∂r∂θ2 .
14In the limit λ→∞, the ∇4 term in Eq. 3.54 vanishes and only a second order differential equation remains.

Therefore, the boundary conditions du/dr |r=0,R = 0 are discarded.
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FIGURE 3.9: (a) Schematic overview of the nanodrum. A few-layer graphene flake is suspended over a circular
hole with radius R. A force is applied at the point (r0,θ0) using an AFM tip. This results in a deflection of the nan-
odrum (b) Colormaps of the calculated deflection profile (Eq. 3.54) of a nanodrum with vanishing tension. The
force is applied at the location of the cross and the color scale is identical in all four panels: white corresponds to
a large deflection and dark gray to no deflection. (c) The calculated radial compliance profile for different values
of the tension, with λ2 = T R2/D . (d) A difference in hydrostatic pressure between the top and bottom side of the
drum results in the plotted deflection profiles.

The displacement profile due to the pressure difference is:

up (r ) = ∆PR4

D

λ(r /R)2I1(λ)+2I0(λ)−2I0(λr /R)

4λ3I1(λ)
. (3.58)

These profiles are plotted in Fig. 3.9d. Similar to the compliance profiles, one can see that
when tension is dominant the profile reaches the edge at an angle, whereas for a stiffer
plate the profile is much more rounded.

When the tension in the x and y-direction is not equal, an additional term15 −∆T (∂2/∂x2−
∂2/∂y2) appears on the left hand side of Eq. 3.54. The first order correction ∆u(r,θ;r0,θ0)
to the original displacement profile u(r,θ;r0,θ0) satisfies

(
D∇4 −T∇2)∆u(r,θ;r0,θ0) =∆T

(
∂2

∂x2 − ∂2

∂y2

)
u(r,θ;r0,θ0) ≡∆TΦ(r,θ;r0,θ0). (3.59)

15In polar coordinates ∂2

∂x2 − ∂2

∂y2 = cos(2θ)
(
∂2

∂r 2 − 1
r
∂
∂r − 1

r 2
∂2

∂θ2

)
+ sin(2θ)

(
1

r 2 − 1
r
∂
∂r

)
∂
∂θ

.
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FIGURE 3.10: (a) Colormaps of the calculated change in the deflection profile ∆u due to a non-isotropic tension
(Eq. 3.59) for λ = 1. The force is applied at the location of the cross (b) The change in compliance ∆(k−1

f ) =
∆u(r0,θ0;r0,θ0) for λ = 1. The color scale is identical in all panels: white corresponds to a larger deflection
(∆u > 0) and black to a smaller deflection ∆u < 0.

This shows that∆u is determined by the same differential equation as the original solution
u, but instead of the applied force Ftip, now u appears viaΦ[u] on the right hand side. The
solution to Eq. 3.59 is found by noting that g (r,θ;r0,θ0) ≡ u/Ftip is the Green’s function of
the left hand side of Eqs. 3.54 and 3.59, so that the correction is given by:

∆u(r,θ;r0,θ0) =∆T
∫ ∫

A
g (r,θ;r ′,θ′)Φ(r ′,θ′;r0,θ0)r ′ dθ′ dr ′. (3.60)

The angular part of the convolution is solved analytically; the radial part is solved numer-
ically. Figure 3.10a shows some of the resulting deflection profiles, whereas Fig. 3.10b
shows the calculated correction to the compliance. Along the x-axis the drum the nan-
odrum is more stiff, as the tension is stronger there (Txx > T > Ty y for ∆T > 0) and in the
y-direction the spring constant is reduced.

This concludes the analysis of the different nanomechanical systems that are studied
in the following five Chapters of this Thesis. From continuum mechanics, the equations of
motion of the devices are obtained. Their behavior is accurately described by sets of har-
monic oscillators, systems that ware extensively discussed in Ch. 2. We have also shown
that for nano-scale devices, tension is an important factor and that the carbon-based ma-
terials have extraordinary useful properties to build NEMS with.
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4
NANOMECHANICAL PROPERTIES OF

FEW-LAYER GRAPHENE MEMBRANES

M. Poot and H. S. J. van der Zant

We have measured the mechanical properties of few-layer graphene and graphite flakes that
are suspended over circular holes. The spatial profile of the flake’s spring constant is mea-
sured with an atomic force microscope. The bending rigidity of and the tension in the mem-
branes are extracted by fitting a continuum model to the data. For flakes down to eight
graphene layers, both parameters show a strong thickness-dependence. We predict funda-
mental resonance frequencies of these nanodrums in the GHz range and zero-point motions
of the order of a pm, based on the measured bending rigidity and tension.

Parts of this Chapter have been published in Appl. Phys. Lett., 92, 063111 (2008)
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(a) (b)

(c)

ztip

u

3 μm

FIGURE 4.1: (a) An AFM height image of a suspended flake (∼69 layers). (b) Schematic overview of the method
used to determine the local compliance of the flake. (c) Two linear force-distance curves (offset for clarity) taken
on the flake shown in (a). The approaching (gray) and retracting (black) parts of the curves lie on top of each
other. The bottom curve is taken on an unsuspended part of the flake, while the top curve is taken on a suspended
part.

Graphene, a single layer of graphite, has recently been contacted with electrodes [1]
and its unique electronic properties are being measured [2–5]. By suspending gra-

phene, membranes of only one atom thick are obtained [6, 7], which may have interesting
applications, such as pressure sensors [8] or gas detectors [9]. They are also used to build
mechanical resonators [10]. For recent reviews on the research on graphene see Refs. [11]
and [12].

In this Chapter, we present a method to obtain the bending rigidity of and the ten-
sion in ultra-thin membranes by fitting the spatial profile of the compliance. We applied
this method to suspended multi-layer graphene. Over almost four decades, the bending
rigidity closely follows the thickness-dependence for graphite, calculated using contin-
uum mechanics.

4.1 NANOMECHANICAL MEASUREMENTS
Samples are made from doped silicon wafers with 285 nm silicon oxide on top, in which
circular holes are etched with buffered hydrofluoric acid using resist masks [13]. Graphite
grains are put on adhesive tape, cleaved and the tape is pressed against the substrate [1].
This way, graphitic flakes with varying dimensions are left on the surface. Some of the
holes are covered completely as Fig. 4.1a shows, thus forming nanodrums.

The elastic properties of more than 50 flakes with thicknesses varying from 2.4 nm to
33 nm (8 to 100 layers) are extracted from ensembles of force-distance curves, measured
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with an atomic force microscope (AFM) under ambient conditions: The deflection of the
AFM tip, ztip, is measured while lowering the tip onto the sample over a distance zpiezo,
as illustrated in Fig. 4.1b and c. The deflection of the flake u is due to the applied force
Ftip = ktipztip, where ktip is the spring constant of the AFM tip1. The (negative) slope of
the force-distance curve s = −dztip/dzpiezo, is used to extract the local compliance of the
flake k−1

f = du/dFtip = k−1
tip (s−1 −1). Knowing the compliance at a single point is, however,

not enough to extract all mechanical properties of a membrane [15]. Therefore, multiple
force-distance curves are recorded while scanning in a rectangular grid over the sample to
construct a map of the local compliance. This is the so-called force-volume method [16].

Fig. 4.1c shows two individual force-distance curves out of a set of 64×64 curves. The
lower curve was taken on an unsuspended part of the flake, while the other was taken on
a suspended part. The deflection of the flake results in a lower slope in the latter case. The
curves are linear (apart from the small region where the tip is almost touching the flake) for
deflections up to a quarter of the thickness, i.e. the deflection of the flake is proportional to
the applied force. Whenever a non-linear force-distance curve was observed, the applied
force was reduced significantly to ensure that the measurements were done in the linear
regime. Note that with the force modulation technique [17], this check is not possible,
as only the slope s is measured. Another advantage of the force-volume method is the
absence of lateral forces on the flake while scanning, which might strain or even damage
the flakes.

Fig. 4.2a shows a map of the local compliances extracted from a force-volume mea-
surement. In this plot, different regions can be distinguished: In the upper left corner,
the tip presses against the hard silicon oxide and the compliance vanishes. The edge of
the flake appears as a line of high compliance, because the tip slides along the edge when
pressing. The dark gray color indicates that a supported part of the flake has a small, but
non-zero compliance, i.e., it is indentable. This is not surprising when the low Young’s
modulus E⊥ = 33GPa of graphite (Sec. 3.4) for stress perpendicular to the graphene planes
is considered. We found no clear correlation between the indentability and the thickness
of the flake, probably due to the differences in tip geometry in the different measurements.
Although not visible in the height image, the hole appears as a circular region with high
compliance. At the center of the hole, the flake is more easily deflected than at the edge,
as expected.

4.2 EXTRACTING THE BENDING RIGIDITY AND TENSION
To find the bending rigidity of and tension in the membranes, compliance profiles, calcu-
lated with the continuum model2 for the induced deflection described in detail in Sec. 3.6,

1Commercially available AFM tips with nominal spring constants ktip = 2 or 42 N/m are used. The spring con-
stant is calibrated using the thermal noise method and the deflection sensitivity is obtained by taking an en-
semble of force-distance curves on the silicon oxide substrate [14].

2Even when the continuum approximation fails along the z-direction, it can still be valid in the horizontal di-
rection, as long as the z-dependence of the induced deformations is not considered. Therefore, the bending
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FIGURE 4.2: (a) Colormap of the compliance of a flake with h = 23 nm, extracted from a force-volume measure-
ment (64×64 force-distance curves) . The compliance ranges from 0 (black) to 9.7 ·10−3 m/N (white). (b) The
measured radial profile of the compliance (symbols) of a 15 nm thick flake and the fit by the model (solid line).
(c) The radial profile of the data shown in (a).

are fitted to the experimental data. The AFM tip is modelled as a point force, as its radius of
curvature (of the order of 10 nm) is much smaller than the radius of the hole R. This differs
from studies on lipid bilayer membranes, where the hole diameter is of the same order as
the radius of the tip [18]. The force applied at (r0,θ0) is opposed by the bending rigidity D
and by the tension T which we assume to be isotropic3, i.e. the flake is equally stretched in
both horizontal directions. The deflection profile for deflections that are small compared
to the thickness h is given by [15, 19] (Cf. Eq. 3.54):

(
D∇4 −T∇2)u(r,θ;r0,θ0) = Ftip

r
δ(r − r0,θ−θ0), (4.1)

which was solved in Sec. 3.6 for a flake that is suspended over a circular hole, resulting
in deflection profiles as the one in Fig. 3.9b. In the linear regime terms proportional to
u3 [19] are not present in Eq. 4.1 and the compliance is the ratio between the deflection
at the point where the force is applied, u(r0,θ0;r0,θ0), and the force Ftip. The compliance
is independent of θ0 for a circular hole and isotropic tension. By varying the location of
the applied force, a compliance profile k−1

f (r0) is calculated. It depends on three fitting

parameters: the bending rigidity D , the tension T and the radius of the hole R.
As shown in Fig. 4.2, good fits (solid lines) are obtained with this model. When the

measurement is repeated on the same hole, the fit parameters differ less than a few per-
cent. The hole radius from the fit is in agreement with height profiles of uncovered holes

rigidity is not expressed in the elastic constants, but it is treated as a fit parameter.
3In Sec. 3.6, the first order correction to the compliance for non-isotropic tension was calculated and is shown

in Fig. 3.10b. The flake is stiffer than average along the principal direction with the largest tension and weaker
along the other. The lines of constant compliance are ellipsoidal instead of circular. As this has not been ob-
served in the measurements, the assumption of isotropic tension is allowed.
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and scanning electron microscopy. Fig. 4.2b shows a profile that is rounded at the edge of
the hole. This is reproduced by a fit, where the compliance is primarily due to the bending
rigidity. The profile in Fig. 4.2c is sharper at the edge, which can be fitted well with a large
tension. The question whether a flake is tension or rigidity dominated can only be an-
swered with mechanical measurements, as the height maps do not show any difference.
The extracted bending rigidity of every flake is plotted in Fig. 4.3a against its thickness
h. The bending rigidity increases strongly with the thickness, while at the same time the
spread increases. Measurements on a flake suspended over holes with different diame-
ters confirm that the bending rigidity does not depend on the hole size, but that it is an
intrinsic property of the flake.

4.3 THICKNESS-DEPENDENCE
The bending rigidity of bulk graphite can be calculated using continuum mechanics. Graph-
ite is highly anisotropic, but the in-plane mechanical properties are isotropic and are de-
scribed by the in-plane Young’s modulus E� = 0.92TPa and the in-plane Poisson’s ratio
ν� = 0.16 as explained in Sec. 3.4. The bending rigidity for deflections perpendicular to
the graphene planes is given by Eq. 3.29. The black line in Fig. 4.3a shows this relation;
Over the entire range, most values for the bending rigidity are close to this curve. Only
flakes thicker than about 10 nm may have a smaller bending rigidity. A possible explana-
tion for this deviation is the presence of stacking defects in the flakes: the bending rigidity
is no longer proportional to h3, but in a first approximation to the sum of the cubes of the
thickness of each part separated by the defects, resulting in a smaller bending rigidity. This
is also consistent with the fact that the spread in the obtained values grows with increas-
ing thickness. For flakes with h < 10 nm, the data points are close to the drawn line in Fig.
4.3a, which would imply the absence of stacking faults in thin flakes.

The tension varies from flake to flake and its thickness-dependence is shown in Fig.
4.3b. The tension is larger for thicker flakes, possibly saturating at 20 N/m, but more mea-
surements are needed to confirm this. Measurements on different holes underneath the
same flake give similar values for the tension, so the tension is uniform throughout the
flake. Most likely, the tension is induced during the deposition process [10].

4.4 FEW-LAYER GRAPHENE NANODRUMS AS RESONATORS
With the experimentally determined values of the bending rigidity and tension, other me-
chanical properties of the nanodrum can be calculated. As an example, Fig. 4.3c shows the
expected eigenfrequencies [20] of the fundamental mode of the nanodrums, calculated
with the measured values of the bending rigidity and tension. The frequency increases
with increasing thickness. For holes with R = 0.55µm, the frequencies are slightly below
1 GHz, while for smaller holes (R = 84nm), the frequency can be over 10 GHz. Moreover,
the zero-point motion u0 of these drums is calculated as shown in Fig. 4.3d. These quan-
tum fluctuations can be as large as a picometer, which is a great improvement over the
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FIGURE 4.3: Thickness-dependence of the mechanical properties extracted from the fits. (a) The bending rigidity
D (symbols) and the continuum relation (gray line). (b) The tension in the flake T . The frequency fR (c) and the
zero-point motion u0 (d) of the fundamental mode calculated with the measured values for D and T for two
different hole sizes. The inset in (d) shows the displacement profile of this mode.

femtometer-scale u0 in the top-down fabricated micro- or nanomechanical devices that
are shown in Table 2.1. So both the high resonance frequencies and large zero-point fluc-
tuations make our nanodrums ideal components to study quantum effects in nanome-
chanical devices.

4.5 SINGLE-LAYER GRAPHENE
Finally, we address the question whether the bending rigidity of single-layer graphene can
be measured with this technique. As graphene consists of only a single sheet of atoms,
one might expect that its bending rigidity vanishes. However, molecular dynamics cal-
culations indicate that the bending rigidity of graphene is finite. The predicted value
D ∼ 1.4 ·10−19 Nm [21, 22] is four orders of magnitude smaller than the lowest value that
we have measured up to now, making the measurement challenging: A single layer will
have a high compliance and only small forces can be applied before the force-distance
curves become nonlinear. By using a soft tip (AFM tips with spring constants as low as a
few mN/m are commercially available), it should still be possible to obtain a sufficiently
large tip deflection. Another problem that might arise when the bending rigidity is very
small, is that the tension or even the deflection-induced pressure completely determine
the compliance and fits can only give a lower bound for the bending rigidity. Fortunately,
our data (Fig. 4.3b) shows that the tension decreases with decreasing thickness. The role



4.6. CONCLUSIONS 75

of tension and pressure can be reduced further by making smaller holes, as can be seen
from the scaling behaviour of Eq. 3.53. Taking all these consideration into account, we
expect that the when the hole diameter is smaller than 80 nm, it is possible to measure the
bending rigidity of single-layer graphene.

4.6 CONCLUSIONS
We have shown that an AFM measurement of the compliance profile of a suspended mem-
brane yields important information on its mechanical properties. This technique is not
limited to multi-layer graphene flakes, but can be applied to membranes of any kind.

The bending rigidity of flakes as thin as 8 graphene layers still follows from the bulk
properties of graphite. Their small mass and high stiffness make these few-layer graphene
nanodrums ideal devices for studying quantum effect in mechanical systems.
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5
THE BENDING-MODE VIBRATION OF

A SUSPENDED NANOTUBE

RESONATOR

B. Witkamp, M. Poot and H. S. J. van der Zant

We have used a suspended carbon nanotube as a frequency mixer to detect its own mechani-
cal motion. A single gate-dependent resonance is observed, which we attribute to the funda-
mental bending mode vibration of the suspended carbon nanotubes. A continuum model
is used to fit the gate dependence of the resonance frequency, from which we obtain val-
ues for the fundamental frequency, the residual and gate-induced tension in the nanotube.
This analysis shows that the nanotubes in our devices have no slack and that, by applying a
gate voltage, the nanotube can be tuned from a regime without strain to a regime where it
behaves as a vibrating string under tension. Finally, the possibility of improving the sensi-
tivity by using the mixing technique in the Coulomb-blockade regime is explored.

Parts of this Chapter have been published in Nano Lett. 6, 2904–2908 (2006) and New J. Phys. 10, 095003 (2008)
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In nano-electromechanical systems (NEMS), mechanical motion of a nanoscale object
induces changes in the object’s electrical properties and vice versa [1]. Compared to

micro-electromechanical systems, NEMS promise improvements in terms of speed and
power consumption. NEMS are also interesting from a fundamental point of view; they
can be used to study the fundamental limit of mechanical motion [2]. This regime should
be reached with high-frequency resonators (> 1 GHz) at low temperatures (< 50 mK).
Single-walled carbon nanotubes (SWNTs) are ideal building blocks for NEMS, because
they have a low mass, their resonance frequencies are easily scalable through their length
and they have a high Young’s modulus of ∼ 1TPa [3], which is almost an order of magni-
tude higher than that of silicon. At low temperatures, suspended SWNTs have been used to
study acoustic vibrations [4], radial breathing modes [5] and phonon assisted tunnelling,
mediated by longitudinal vibration modes [6]. At room temperature, thermally excited
bending modes of both singly-and doubly clamped suspended nanotubes have been ob-
served [3, 7] and SWNTs have been used in paddle resonators, where the nanotube under-
goes torsional vibrations [8]. Previous work also shows that suspended semiconducting
nanotubes can be used as frequency mixers to detect mechanical motion of the suspended
devices [9].

In this Chapter, we report on the identification and the characterization of bending
mode (flexural) vibrations of suspended semiconducting SWNT resonators at room tem-
perature, by using them as frequency mixers. We observe a single gate-dependent reso-
nance in multiple devices with Q-factors between 6 and 300, and frequencies ranging from
20 to 100 MHz. The resonances have frequencies that are close to the estimated bending-
mode frequencies of the nanotubes. The resonances fit well to a continuum model from
which we can extract quantitative information about the fundamental frequency (the res-
onance frequency without tension) and the gate-induced and residual tension in the na-
notube. From the current noise and transduction factor the sensitivity of the detection
technique is calculated. The sensitivity can be improved by using the mixing technique at
low temperatures where the nanotube is in the Coulomb-blockade regime.

5.1 DEVICE FABRICATION
Our suspended nanotube devices are fabricated on highly p++-doped silicon substrates
with a 500 nm SiO2 layer. The doped silicon is used as a gate electrode to tune and drive
the nanotube resonator into motion. On the substrate, carbon nanotubes are grown in a
chemical vapor deposition (CVD) setup [10] which is optimized to produce single-walled
carbon nanotubes [11]. After the growth, nanotubes are located using atomic force mi-
croscopy (AFM), and subsequently Au/Cr electrodes (typically 50 and 5 nm thick, respec-
tively) are deposited by e-beam lithography. These electrodes are used as source and drain
contacts. The SWNT is then suspended, by etching away the SiO2 under the nanotube with
a buffered hydrofluoric acid (B-HF) wet-etch. Two routes have been followed as illustrated
in Fig. 5.1: the first method uses the source and drain electrodes as etch masks [12, 13],
while in the second method, a trench is defined in a layer of poly(methyl methacrylate)
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FIGURE 5.1: Scanning electron micrographs of suspended nanotube devices made without (a) and with (b)
PMMA etch-masks. (c) and (d) show a schematic side-view. When no etch-mask is employed, the tube hangs
underneath the Au/Cr electrodes (c), whereas with etch-masks the tube remains supported by the silicon oxide
of the substrate (d).

(PMMA) which serves as an etch mask. The latter method results in a suspended nano-
tube with clamping points that are defined between the nanotube and the underlying SiO2

layer. In the scanning electron micrographs (Fig. 5.1a and b) of devices made with these
two methods, no slack is visible.

5.2 ELECTROSTATIC ACTUATION AND SELF-DETECTION
The suspended nanotube is actuated by applying an ac voltage V ac

g with frequency f to the
gate, which induces a driving force on the tube due to the displacement-dependent gate-
capacitance Cg. When the driving frequency approaches a mechanical eigenfrequency,
the oscillations of the suspended nanotube increase dramatically. In this case, the dis-
placement amplitude averaged along the tube, ū, can be non-zero and the gate capaci-
tance changes in time. This in turn modulates the gate-induced charge, Qg = CgVg, as
Qmech

g (t ) = C ac
g (t )V dc

g . Here, V dc
g is the dc voltage on the back gate electrode. In a semi-
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conducting nanotube, this leads to a modulation of the conductance. In addition to this
mechanical contribution, there is also a direct contribution to the conductance change,
which is induced by the ac gate voltage: Qdirect

g (t ) =CgV ac
g (t ). This term is always present,

even off-resonance. Combining these two contributions1, the conductance change Gac(t )
can be written as [9]:

Gac(t ) = ∂G

∂Vg

(
V ac

g (t )+V dc
g

C ac
g (t )

Cg

)
. (5.1)

Here ∂G/∂Vg is the transconductance of the semiconducting nanotube (which is gate volt-
age dependent and it is typically 0.1−10µS/V in our devices). By measuring the conduc-
tance of the nanotube, its motion can be detected. Note that the conductance oscillates at
the driving frequency f .

Conductance changes at high frequencies (typically beyond a few MHz) cannot easily
be measured, because of parasitic capacitances and small signal levels. However, if an ac
bias voltage with a frequency offset ∆ f is applied to the source electrode (in our case a
bias-voltage with two spectral components: at f +∆ f and f −∆ f ), then a current flows
through the nanotube, which is the product of the conductance times the ac bias volt-
age. The corresponding current is effectively a mixed signal, containing frequencies ∆ f ,
2 f +∆ f and 2 f −∆ f . The first spectral component of the current is located at the offset
frequency, which can be chosen conveniently (10 kHz in our experiments). This term is
measured with a lock-in amplifier, while the latter two are attenuated by the high output
impedance of the nanotube in combination with the parasitic capacitance.

5.3 MEASUREMENT SETUP AND DETECTION SCHEME

Our suspended nanotube devices are measured at a pressure of typically 10−5 mbar. Ac
and dc voltages are applied to the back gate electrode via a custom-made sample carrier
with an on-chip bias-T (a schematic of the measurement setup is shown in Figure 5.2).
Since the input impedances of both the nanotube and the back gate are much larger than
50Ω and frequency dependent, 50Ω feed-through terminators are used to minimize circuit
resonances. To generate the ac bias voltage, we use a commercially available frequency
mixer to mix the ac gate voltage at frequency f with the reference output of a lock-in am-
plifier. The output of the mixer has spectral components at frequencies f +∆ f and f −∆ f .
A high pass filter is used in the bias voltage path to filter out any leakage of the lock-in
reference output through the mixer. The current (at the offset frequency) flowing through
the nanotube is converted into a voltage with a gain of 106 V/A and is measured with the
lock-in amplifier (Stanford Research SR830, time constant 100 ms).

1In this equation piezo-resistive and gate-coupling effects are neglected. For a discussion, see the analysis pre-
sented in Chapter 7 of Ref. [14].
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FIGURE 5.2: Schematic overview of the measurement setup. A radio frequency (RF) generator applies an ac
voltage to the back-gate electrode to drive the suspended nanotube. A dc gate voltage is added via a bias-T
(indicated by the “+”). The same generator is used to generate the ac bias voltage by mixing its output with the
reference output of the lock-in amplifier. At the source electrode the voltage has spectral components at f +∆ f
and f −∆ f , whereas the gate voltage is oscillating at frequency f . The nanotube mixes both signals, which results
in an output current at the drain electrode with spectral components at∆ f , f +∆ f , f −∆ f , 2 f +∆ f and 2 f −∆ f .
The ∆ f part of the current flowing through the nanotube is converted into a voltage and is measured with the
lock-in amplifier. The printed circuit board (PCB) with the sample, bias-T and 50Ω terminator is located inside
the vacuum chamber of a probe station.

5.4 GATE-TUNABLE RESONANCES
In five devices (two with and three without an etch-mask) we have observed gate-dependent
resonances in the current flowing through the semiconducting nanotubes, when we sweep
the driving frequency f . The suspended length of the devices ranges between 1.1µm and
1.5µm, and they have nanotube diameters from 1 to 3nm as determined from AFM mea-
surements. Four of these devices show only a single gate-dependent resonance. In the fifth
sample no resonances were observed at low driving amplitudes. However, we observed
multiple equidistant resonances at high driving voltages (500mV), where the system is ex-
pected to be strongly non-linear, which could give rise to resonances at harmonics of the
eigenfrequency. The experimental and theoretical work presented in this Chapter focuses
on the linear vibration of the resonators.

The gate-tunable resonance measured in a typical device (labelled device A) with a
length of ` = 1.25µm and radius r = 1.4nm is highlighted in this Chapter. PMMA etch
masks have been used to suspend this device. The normalized lock-in current plotted
against the dc gate voltage and the driving frequency is shown in Fig. 5.3. Apart from two
(gate-independent) electrical resonances around 30 and 60 MHz, a single gate-dependent
resonance can be clearly seen. No other tunable resonances are observed, when measur-
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FIGURE 5.3: Color plot of the normalized lock-in current of device A as a function of dc gate voltage and driving
frequency with V ac

g = 20mV. A single gate-dependent resonance can clearly be seen.

ing up to 250 MHz. The right branch (with respect to V dc
g = 0V) appears to be shifted to

a higher frequency compared to the left side. This shift is reproduced when the measure-
ment is repeated. The gate voltage tunes the frequency from 30 to 63 MHz, initially with a
parabolic form, but for gate voltages larger than about 4 V the increase is less steep. This
behavior is in agreement with the calculations in Ch. 3 and Ref. [15] which show that the
nanotube can be tuned from the weak to strong bending regime with the gate voltage (see
the discussion below).

5.5 PEAK SHAPES AND Q-FACTORS
We also find that the shape of the resonance depends on the dc gate voltage. Two examples
are shown in Figures 5.4a and b. The difference in peak shape is caused by changes in the
phase difference ϕ between the RF signals on the gate and the source electrode2, which
are accounted for when calculating the current:

I = Idirect cos(ϕ)+ Imech
(

cos(ϕ)Re[H ]− sin(ϕ)Im[H ]
)
. (5.2)

2The ac bias voltage can be written as: V ac
sd (t ) =V ac

sd cos(2π f t +ϕ)cos(2π∆ f t ). The phase difference ϕ between
the gate and source electrode depends on the frequency of the RF signals, on the (gate dependent) conductance
of the nanotube and its derivative with respect to V dc

g . Note also that the lock-in detected phase does not
contain information about ϕ.
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FIGURE 5.4: Linetraces of the down-mixed current of Fig. 5.3 at V dc
g = −7.5V (a) and V dc

g = 2.9V (b) with the
background subtracted. The solid lines are fits of Eq. 5.2 to the data. The resonance of (a) has a quality factor Q =
100 and phase difference ϕ = 0.54 π; resonance (b) has Q = 58 and a phase difference ϕ = 0.89 π. For a complete
list of the fit parameters, see Table 5.1.

Here, H = f 2
R /Q ·1/( f 2

R − f 2 + i f fR /Q) is the (normalized) response function of a har-
monic oscillator with resonance frequency fR and quality factor Q, driven at frequency
f . The solid lines in Fig. 5.4a and b are fits to Eq. 5.2, which reproduce the data well.
The resonance on the left has a quality factor Q = 100 and phase difference ϕ= 0.54π; for
the resonance on the right we find Q = 58 and ϕ = 0.89π. For other gate voltages we find
Q-factors in the range from 40 to 160. It is interesting to note that for the three devices
without PMMA etch masks, fits yield smaller Q-values of the order of 10. Their lower Q-
factor may be due to a difference in the clamping points but a more systematic study has
to be done to confirm this. From the fits, the amplitude of oscillation can be estimated
using Eqs. 3.32, 5.1 and 5.2:

Imech

Idirect
= u( fR )√

h2
g − r 2 ·arccosh(hg/r )

V dc
g

V ac
g

. (5.3)

where hg and r are the distance of the nanotube to the back-gate electrode (500 nm) and
the radius of the nanotube respectively. For the peaks in Fig. 5.4a and b, the amplitudes
are: u = 5.0nm and 5.5nm respectively.

5.6 ANALYSIS OF THE GATE-TUNABILITY
To explain the dc gate voltage dependence of the resonance, we use the continuum model
for the bending mode of a cylindrical beam of Ch. 3 to describe our nanotube resonator:

ρA
∂2u

∂t 2 +η∂u

∂t
+D

∂4u

∂x4 −T
∂2u

∂x2 = F (x, t ). (5.4)
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The first term contains the linear mass density ρA and represents the acceleration of the
displacement u(x, t ). The next term includes the damping, which is proportional to the
velocity of the tube (η is a constant). D is the bending rigidity of the tube, and T is the
tension in the tube [15–18]. With a dc and a small ac gate voltage, the external force is
given by [15]:

F ≈ 1

2

∂cg

∂u

(
(V dc

g )2 +2V dc
g V ac

g cos(ωt )
)

, (5.5)

where ω= 2π f and cg = 2πε0/arccosh
(
hg/r −u/r

)
is the capacitance per unit length.

The displacement amplitude increases considerably when the tube is driven at an
eigenfrequency of the system. However, antisymmetric modes cannot be detected by our
detection technique, as the displacement averaged along the tube, u, is zero: see the dis-
cussion of Eq. 3.46. Moreover, higher even modes (n = 2,4, . . . ) have a much smaller aver-
age displacement compared to the fundamental mode; the fundamental mode will there-
fore be the most dominant one in the experiments described in the Chapter.

As explained in Sec. 3.5, two different regimes [15] can be distinguished: when the
bending rigidity term is much larger than the tension term, the tube behaves as a beam
and the resonance frequency of the fundamental mode is given by [1]: f0 = 22.4/2π`2 ·√

E I /ρA. In the opposite case, the tube is under large tension and behaves as a rubber
band with a resonance frequencies fTDC ,n = (n +1)/2` ·√Tdc/ρA · [1+6a2

n/π2(n +1)2]1/2

(Cf. Eq. 3.52). The static displacement udc and tension Tdc are found by solving Eqs. 3.38
and 3.39 self-consistently [15, 17] with the cross-over voltage V ∗

g and residual tension T0 as

free parameters. With these results and the value of the frequency scaleΩ= (D/ρA)1/2/`2,
the tuning curve of the resonance frequency fR (V dc

g ) can be fitted. The three fit parameters
are thus:

• the resonance frequency in the absence of tension f0,

• the gate voltage V ∗
g at which the cross-over between the bending and the tension

dominated regime occurs,

• the (dimensionless) residual tension at zero gate voltage, T ′
0 = T0`

2/D .

The result of the fit procedure3 for two different devices (A and B) is shown in Fig. 5.5a.
The frequency dependence of the resonance of device A is fitted well with f0 = 40MHz,
V ∗

g = 2.5V and T0`
2/D = -18. The fit parameters can be compared to the values calculated

from the dimensions of the device (see Table 3.3). The fundamental frequency of a nano-
tube with measured dimensions ` = 1.25µm and r = 1.4nm is f0 = 56MHz, which is in
reasonable agreement with the fit, considering the uncertainty in the tube radius. Fitting4

3In this fit, the ac tension has not been taken into account. For a discussion on the differences between the
so-called extended and standard model see Ref. [14].

4The minimum of the resonance frequency of device B was located at V dc
g =−1.7V. The curves of device B in Fig.

5.5a and b are shifted accordingly. This shift may be explained by a nonzero dc potential on the nanotube due
to work function differences between the tube and the metallic electrodes. More research is required to confirm
this.
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FIGURE 5.5: (a) Resonance frequency fR extracted from Fig. 5.3 (device A) and from a second device (device
B). At some gate voltages, the resonance could not be resolved, due to a low signal-to-noise ratio. The contin-
uum model described in the text (solid lines) fits the gate dependence of the resonance frequency well. (b) The
calculated tension in the nanotubes.

the frequency-dependent resonance of device B (upper curve in Fig. 5.5a), yields for the
fit parameters: f0 = 62MHz, V ∗

g = 4.8V and T0`
2/D = −26. Device B consists of a shorter

(`= 1.15µm) and thicker nanotube (r = 1.6nm), so the predicted fundamental frequency
is higher than that of device A: f0 = 81MHz, which is again in reasonable agreement with
the frequency obtained from the fit.

We can also estimate the cross-over voltage V ∗
g with the model, which yields 1.2V and

1.9V for device A and B respectively as indicated in Table 3.3. In both cases, the calculated
value is lower than the values obtained from the fits but of the same order. The higher
values from the fit may be explained by a screening of the gate by the source and drain
electrode, resulting in effectively lower pulling forces. As the cross-over voltage V ∗

g in our

devices is experimentally accessible, we can tune the nanotube from the beam-like (V dc
g <

V ∗
g ) to the string-like (V dc

g >V ∗
g ) regime.

The extracted values for the residual tension T0 are negative, but still above the critical
tension value (Tc =−4π2 ·D/`2) where Euler-buckling occurs (see Sec. 3.3), indicating that
the tubes in our devices do not exhibit slack, as confirmed by SEM images (see Fig. 5.1).
This has to be contrasted to the work by Sazonova et al. [9], where slack is present, which
makes the tubes act as hanging chains. When slack is present, the nanotube can oscillate
with several modes [9, 18], making the identification of the observed modes difficult.

5.7 MOTION AMPLITUDE AND SENSITIVITY
The consistency of the model can further be checked by estimating the oscillation ampli-
tude. From the fitted gate-dependence we obtain the tension needed to calculate the mo-
tion amplitude from the electrostatic driving force. With the Q-factors from the fits shown
in Fig. 5.4a and b, the (length-averaged) amplitudes for device A are ū = 7.9nm and 4.0nm
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TABLE 5.1: Fit parameters extracted from frequency traces of the data displayed in Fig. 5.3 at different gate
voltages V dc

g . With the current noise PSD S1/2
I I and transduction factor ∂I /∂ū the displacement sensitivity is

calculated.

Vdc
g -7.5 1.0 2.9 3.7 8.0 V

fR 57.53±0.04 31.42±0.06 37.09±0.04 40.85±0.08 64.29±0.04 MHz
Q 100±11 43±5 58±8 51±12 134±17
ϕ 1.69±0.10 2.03±0.20 −3.46±0.11 2.89±0.21 1.49±0.11 rad

Ibkgnd 31±2 252±9 850±4 1004±12 593±3 pA
Idirect 263±30 569±104 895±31 1037±56 7347±806 pA
Imech 148±19 233±37 228±44 167±60 98±14 pA
∂I /∂ū 30 8.6 39 58 - pA/nm

S1/2
II 3.18 3.97 4.50 4.17 4.67 pA/Hz1/2

S1/2
unun 0.11 0.46 0.11 0.07 - nm/Hz1/2

at V dc
g =−7.5V and V dc

g = 2.9V respectively. These values are close to the values obtained
from the peak height. Thus, the model, together with the fit parameters obtained from the
data can be used to estimate ū and T at any gate voltage. For example, at the highest gate
voltage (V dc

g = 8V), the nanotube is under a tension of T = 0.40nN due to a static displace-

ment of udc(`/2) = 6nm. This corresponds to a strain of 6 · 10−5. Figure 5.5b shows the
reconstructed tension T (V dc

g ) for the two devices discussed in the previous Section.

The model also explains why higher modes were not detected: The mechanical con-
tribution to the current (Eq. 5.3)of the n = 2 mode is almost 30 times smaller than for the
fundamental mode: ū is of the order of 0.2nm. For the data shown in Fig. 5.4a this would
result in a resonance of 5pA, which is of the same order as the background fluctuations.
For higher mode numbers this contribution is increasingly smaller; only the fundamental
mode can therefore be resolved in our measurements.

We now focus on the sensitivity of the mixing-technique, which is the product of the
transduction factor and the current sensitivity. By combining Eq. 5.2 with Eq. 5.3 the
transduction factor is obtained:

∂I

∂ū
= ∂Imech

∂ū( fR )

cos(ϕ)Re[H ]+ sin(ϕ)Im[H ]

|H | ≈ Idirect√
h2

g − r 2 ·arccosh(hg/r )

V dc
g

V ac
g

. (5.6)

Together with the parameters extracted from some of the traces of Fig. 5.3 the sensitivity
of the mixing technique is found (see Table 5.1). The sensitivity depends gate voltage and
is of the order of 0.1nm/Hz1/2. This number can be improved by either increasing the
transduction factor or by decreasing the current noise level.
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5.8 THE MIXING TECHNIQUE IN COULOMB BLOCKADE

It is often advantageous to do experiments at low temperatures, because this tends to re-
duce the noise present. When the nanotube is used as a frequency-mixer to detect is own
motion, the noise that determines the position resolution is current noise. When this noise
is reduced, the displacement sensitivity Sun un improves. In this Section we explore the
features of the mixing technique at low temperatures by extend our model of the mixing
scheme (Sections 5.3 and 5.5) to the Coulomb blockade regime.

When nanotube devices are cooled down to cryogenic temperatures, tunnel barriers
between the metallic leads and the nanotube form. This may lead to the formation of a
quantum dot within the nanotube [19, 20]. The gate dependence of the conductance can
display different behaviors, depending on the coupling between the nanotube and the
leads [21]. For large couplings Γ, Fabry-Perot behavior with a slowly varying conductance
is expected [22], while for small Γ, Coulomb blockade is observed [19, 20, 23, 24]. In the
latter case the conductance consists of a series of sharp peaks with a width depending
on Γ and the electron temperature. Coulomb blockade therefore greatly enhances the
transconductance ∂G/∂V dc

g of the device [25] and thereby improves the sensitivity.

MIXING

Due to the sharpness of the Coulomb peaks (¿ V ac
g ), the usual derivation of the mix-

ing current breaks down, and one may ask whether it is possible to measure the driven
vibrations of the nanotube at all with the frequency mixing technique. To answer this
question, a simple model is used, where tunnelling between the nanotube and the leads
takes place through a single quantum level [26]. The current in the blocked regions is
zero, while in the conducting regions it assumes a constant value ±I0. This can be written
as I = I0 ·

[
Θ(Vg +Vsd/2)−Θ(Vg −Vsd/2)

]
, where Θ is the Heaviside step function; such a

dependence of the current on Vg and Vsd is depicted in Fig. 5.6a, sketching the stability
diagram of the quantum dot.

When using the mixing technique, the bias and gate voltage V and Vg are the sum of ac
and dc components. In other words, while time elapses, the bias and gate voltages trace
trajectories through the stability diagram, as illustrated in Fig. 5.6a. The trajectories are
ellipsoidal since V ac

g and V ac
sd vary as cos(ωt +ϕ) and cos(ωt ) respectively, and their shape

depends on the phase ϕ between V ac
g and V ac

sd . Well inside the Coulomb blockade region
the current remains zero at all times. However, when a trajectory crosses the edge of the
Coulomb blockade region, fast current oscillations will occur, since the quantum dot is
switching rapidly into and out of blockade. In the experiment, only the low-frequency
components of the current are measured. Thus, we calculate the corresponding time-
averaged signal:

〈I 〉 = I0 · A(V dc
− /V ac

− )− I0 · A(V dc
+ /V ac

+ ), (5.7)
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FIGURE 5.6: (a) Schematic of the effect of ac gate and bias voltages in the stability diagram of a quantum dot,
where in the SET regime a single transport channel carries a current ±I0. Ellipsoidal trajectories through the di-
agram are traced, with a shape depending on the phase difference ϕ between the two ac voltages. (b) Calculated
time dependence (top) of the average current 〈I 〉 for V dc

sd = 0 and ϕ= 0, when modulating the source-drain volt-

age with V ac
sd /V ac

g = 0.1 ·cos(2π∆ f t ). The bottom panel shows the component of 〈I 〉 at the lock-in frequency ∆ f ,
ILIA. (c) Simulated down-mixed nanotube current ILIA (top panel) when sweeping the driving frequency around
the mechanical eigenfrequency (dashed line) for the same conditions as (b). The sharpness of the edge of the
signal determines how easily the resonance can be observed; this is thus limited by the width of the Coulomb
peak on which the signal is mixed (bottom panel), i.e. by temperature kBT or coupling Γ.

where the function A is defined as:

A(x) =




0 x ≥ 1
arccos(x)/π −1 ≤ x ≤ 1
1 x ≤−1

(5.8)

and

V ac
± =

(
(V ac

g )2 + (V ac
g /2)2 ±V ac

g V ac
sd cos(ϕ)

)1/2
, (5.9)

V dc
± = V dc

g ±V dc
sd /2. (5.10)

The signal depends on the position in the stability diagram through V dc
g and V dc

sd , on the
magnitudes of the ac gate and source–drain voltages V ac

g and V ac
sd , and on the phase dif-

ference ϕ between them.
In all experimental realizations, the frequencies of the two ac signals differ by ∆ f =

∆ω/2π. The details depend, however, on the type of mixing setup employed: With the two-
generator technique [9] the phase difference is effectively time dependent, i.e. ϕ = ϕ0 +
∆ωt , while in our one-generator setup (Fig. 5.2) the ac source–drain voltage is amplitude-
modulated, i.e. V ac

sd →V ac
sd cos(∆ωt ) and a third technique amplitude-modulates both V ac

g
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and V ac
sd [27]. In all cases, the time-averaged current contains low-frequency oscillations

at the offset frequency ∆ f that can be measured using a lock-in amplifier. In the following
analysis we focus on the single generator setup. The results are qualitatively identical for
the other cases.

The time-averaged current 〈I 〉 is calculated numerically while modulating V ac
sd at a fre-

quency ∆ f . Then the component of 〈I 〉 at ∆ f is extracted, as would be measured using a
lock-in amplifier. This results in the signal plotted in the lower panel of Fig. 5.6b. The orig-
inal Coulomb peak is widened due to the ac voltages, but there is still a sharp transition
between the regions with and without current.

MOTION DETECTION
The signal that was calculated above is always present, even without any displacement
of the nanotube as it only uses the mixing properties of the nanotube [28], similar to the
direct contribution that is present in room-temperature mixing. The effect of nanotube
vibrations is an apparent change in the magnitude and phase of the ac gate voltage when
C ac

g 6= 0, as can be seen from Eq. 5.1. The effects of this becomes clear when the down-
mixed current is calculated for different driving frequencies (Fig. 5.6c, top panel). Off-
resonance, the original background signal from the bottom panel of Fig. 5.6b is obtained.
When approaching the mechanical eigenfrequency, a clear resonance can be seen, which
is best visible in the shape of the signal. This stands in contrast to the usual mixing sig-
nal (i.e. Eq. 5.2) where the resonance appears in the magnitude of the current. The sharp
edges of the widened Coulomb peak (see the lower panel of Fig. 5.6b) will enable sensi-
tive detection of vibrational motion of the nanotube. Its finite outer slope (i.e. towards
higher absolute values of V dc

g /V ac
g ) is due to the non-zero value of V ac

sd . A reduction of this
voltage gives an even sharper peak and therefore a higher sensitivity. However, at some
point, the broadening of the original Coulomb peak (lower panel of Fig. 5.6c) due to the
finite electron temperature or to coupling to the leads starts to dominate this slope and
the sensitivity can no longer be increased by reducing V ac

sd .

5.9 CONCLUSIONS
In conclusion, we have measured a single gate-dependent resonance due to mechanical
motion of suspended nanotubes. By fitting the gate-dependence to a continuum model,
we have identified the resonance as the fundamental flexural bending mode of the na-
notube. With the model, we extracted the fundamental frequency, the gate-induced and
residual tension in the nanotube, which are in agreement with their predicted values. The
good agreement between experiment and model is a starting point for a further study of
the flexural bending mode in suspended carbon nanotubes that includes the non-linear
and quantum regime of operation and of damping mechanisms such as the one associ-
ated with the coupling to the clamping points. The sensitivity of the mixing technique can
be improved when using nanotubes that are in the Coulomb blockaded regime.
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6
CARBON NANOTUBES AS

STRONGLY-COUPLED,
ULTRA-HIGH QUALITY FACTOR

MECHANICAL RESONATORS

A. K. Hüttel, G. A. Steele, B. Witkamp, M. Poot, H. B.
Meerwaldt, L. P. Kouwenhoven, and H. S. J. van der Zant

We have observed the transversal vibration mode of suspended carbon nanotubes at mil-
likelvin temperatures by measuring the single-electron tunnelling current. The suspended
nanotubes are actuated contact-free by the radio-frequency electric field of a nearby an-
tenna; the mechanical resonance is detected in the time-averaged current through the na-
notube. Sharp, gate-tuneable resonances due to the bending mode of the nanotube are ob-
served, combining resonance frequencies of up to fR = 350MHz with quality factors above
Q = 105, much higher than previously reported results on suspended carbon nanotube res-
onators. The measured magnitude and temperature dependence of the Q-factor shows a
remarkable agreement with the intrinsic damping predicted for a suspended carbon nano-
tube. By adjusting the RF power on the antenna, we find that the nanotube resonator can
easily be driven into the non-linear regime. The resonance frequency is tuned by a single
electron and backaction due to single electron tunnelling is observed. The mechanical mo-
tion and the dynamics of the electrons are strongly correlated.

Parts of this Chapter have been published in Nano Lett. 9, 2547–2552 (2009) and Science 325, 1103–1107 (2009)
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High-quality resonating systems, providing high frequency resolution and long energy
storage time, play an important role in many fields of physics. In particular, in the

field of nanoelectromechanical systems [1, 2] recent research has led to the development
of high-frequency top-down fabricated mechanical resonators with high quality factors
[3–6]. However, when miniaturizing mechanical resonators to make them lighter and to
increase their resonance frequency [1], the quality factor tends to decreases significantly
due to surface effects [2]. High Q-values combined with high resonance frequencies are
an important prerequisite for applications such as single-atom mass sensing [7–9] and
fundamental studies of the quantum limit of mechanical motion [10]. Single-wall carbon
nanotubes present a potentially defect-free nanomechanical system with extraordinary
mechanical properties: in particular the high Young’s modulus (E = 1.2TPa) in combi-
nation with a very low mass density (ρ = 1350kg/m3, see Ch. 3) [8, 11, 12]. While these
favorable properties should result in quality factors of the order of 2 × 105 [13], the ob-
served Q-factors of nanotube resonators both at room temperature (Chapter 5 and Refs.
[11, 14, 15]) and in low temperature experiments [7, 8] have not exceeded Q ∼ 2000.

In this Chapter, we report on the observation of mechanical resonances of a driven
suspended carbon nanotube at low temperatures with quality factors above 105 and reso-
nance frequencies ranging from 120MHz to 360MHz. The resonances are detected with a
novel detection scheme which uses the nonlinear gate-dependence of the current through
the suspended nanotube quantum dot. In addition, we show that the nanotube resonator
can easily be tuned to the non-linear regime, and that the operating temperature affects
the non-linearity and the quality factor of the resonator. Finally, we explore the backaction
due to the strong coupling of the resonator to the dynamics of the electrons tunnelling on
and off the nanotubes.

6.1 DEVICE FABRICATION AND MEASUREMENT SETUP
Suspended carbon nanotube devices are made by growing nanotubes between platinum
electrodes over an 800nm wide pre-defined trench. The device geometry is shown in Fig.
6.1a. The fabrication method is discussed in detail by Steele et al. [16]. There, the de-
vice includes three local gates for tuning the confinement: here, however, we apply the
same voltage to all three gates, so that they act together as one single gate. Since no device
processing takes place after nanotube growth and the entire device is suspended, the nan-
otubes are highly defect-free and do not suffer from potential irregularities induced by the
surface of the substrate [16, 17]. The fabrication method also offers the advantage that the
resonator is not contaminated with resist residues.

After fabrication, the suspended nanotube devices are mounted in a dilution refrig-
erator with filtered twisted pair cabling attached to source, drain, and gate contacts (see
Fig. 6.1a). This configuration allows us to apply dc gate and bias voltages to the suspended
nanotube, and measure the current flowing through it. To minimize heating, we drive the
nanotube resonator with the electric field radiated from a radio frequency (RF) antenna
positioned near the sample (∼ 1cm) instead of connecting high-frequency cables directly
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FIGURE 6.1: (a) Schematic drawing of the chip geometry, antenna, and measurement electronics. The nanotube
acts as a doubly clamped beam resonator, driven by an electric field E(t ). The displacement of the nanotube is
u(t ). (b) Example trace of the dc current at Vsd = 50µV as a function of gate voltage, demonstrating the regularity
of the Coulomb peaks. It shows the four-fold degeneracy typical for clean single-wall carbon nanotubes. (c)
When the frequency f of an RF signal on the antenna is swept with fixed Vg and Vsd, a resonant peak emerges in
I ( f ). An example of such a resonance is shown for a driving power of −17.8dBm at a temperature of 20 mK. (d)
Zoom of the resonance of (c) at low power (−64.5dBm). The red line is a fit of a squared damped driven harmonic
oscillator response to the resonance peak. For both (c) and (d) Vg =−5.16V and Vsd = 0.35mV.

to the sample. Measurements are performed at temperatures down to the base tempera-
ture of the mixing chamber of the dilution refrigerator, T ' 20mK.

6.2 DETECTING FLEXURAL VIBRATIONS
Figure 6.1b shows the Coulomb oscillations of a semiconducting carbon nanotube with
a suspended length of 800nm (device C). A highly regular addition spectrum with clear
four-fold degeneracy is visible, characteristic for a defect-free single-wall carbon nanotube
[18, 19]. From the magnetic field dependence of the position of the Coulomb oscillations
close to the semiconducting gap [20], we find the radius of the nanotube, r , to be between
1 and 1.5nm. The value of the semiconducting gap ≈ 0.3eV is estimated from the gate
range between electron and hole conduction in the device at low temperatures, which is
in agreement with the estimate of r .

When an ac voltage VRF with frequency f is applied to the antenna, we observe a res-
onant feature at a well-defined frequency in the dc current flowing through the nanotube.
Figure 6.1c shows an example of such a measurement at a large radio frequency (RF) volt-
age, or equivalently a high generator power. A sharp resonant feature is clearly visible at
f = 293MHz. Zooming in on this feature at a lower power (Fig. 6.1d) reveals a resonance
peak with a narrow lineshape. A numerical fit of this data yields a quality factor Q = 140670
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FIGURE 6.2:
∣∣dI /d f

∣∣ as a function of frequency f of the ac voltage on the antenna and the dc gate voltage Vg
on the back-gate electrode. Horizontal lines are caused by electrical (cable) resonances (see [11] and Ch. 5);
the narrow vertical stripe pattern is related to the Coulomb blockade oscillations. In addition, a gate-dependent
resonant feature is clearly visible. Inset: Comparison of the extracted resonance frequency to the continuum
model for the bending mode with f0 = 132.0MHz, V ∗

g = 2.26V, T0 = 0, and a shift of 0.775V in gate voltage to
account for an offset in the charge neutrality point of the nanotube from Vg = 0V and the band gap region. The
parameters are discussed in the text. An apparent shift of the mechanical resonance frequency at fR ' 230MHz
is caused by an electrical (cable) transmission resonance, leading to a strong increase in transmitted RF power
and distorted peak shapes.

(see below for a discussion of the expected lineshape). We have also performed measure-
ments on a second device (device D) displaying similar resonant peaks with Q-factors up
to 20000; the results on that device are shown in the Supplement.

The resonance observed in Fig. 6.1c and d can be attributed to the flexural vibra-
tion mode of the suspended nanotube [7, 8, 11] and Ch. 5. To verify this, we electro-
statically induce tension in the nanotube by applying a dc gate voltage Vg to the back-
gate electrode. The dc gate voltage dependence is shown in Fig. 6.2. When decreasing
the gate voltage from zero to more and more negative values, the resonance is tuned to
higher frequencies by almost a factor of three: from less than fR = 140MHz at Vg =−1V to
fR = 355.5MHz at Vg =−6.5V. For the latter resonance frequency, the thermal occupation
[10] n̄ = [exp(h fR /kBT )−1]−1 would be 0.7 at 20mK, suggesting that the resonator would
be close to its quantum ground state in the absence of the driving fields required for our
detection scheme.

We have extracted the resonance peak positions from the data in Fig. 6.2 and plotted
them in the inset. The red line shows the gate dependence of the resonance frequency cal-
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culated with our continuum model for the fundamental flexural bending mode that is de-
scribed in Chapters 3 and 5. The parameters are f0 = 132.0MHz, V ∗

g =−2.26V, and T0 = 0,
where f0 is the resonance frequency in absence of residual tension T0 and V ∗

g marks the
cross over between the weak and strong bending regime. At high gate-voltage the model
calculation deviates slightly from the experimental values. This is so far not fully under-
stood and may be related to large static displacements of the nanotube in a complex elec-
trostatic environment [21]. The value f0 = 22.4/2π`2 · r

√
E/ρ = 132.0MHz, assuming a

tube length ` = 800nm, yields a nanotube radius of 1.6nm, in good agreement with the
band-gap and magnetic field estimates.

6.3 DETECTION MECHANISM
Depending on the gate voltage, the resonance either appears as a dip (Fig. 6.3a) or as a
peak (Fig. 6.3b). Dips are found around the maxima of the Coulomb oscillations; away
from these maxima, peaks are observed. This indicates that the detection of the mechan-
ical modes is due to electrostatic interactions as we will now show. We model the effect
of a small change in gate voltage δVg on the current flowing through the nanotube by a
Taylor expansion of I (Vg +δVg) around δVg = 0. A crucial point in this expansion is that
the second (and third) order term cannot be neglected, since the current flowing through
the nanotube is strongly non-linear in the vicinity of the Coulomb oscillations. This is in
contrast to the mixing technique at room temperature (Ch. 5 and Ref. [11]), where only
the linear term in the expansion is needed.

The motion of the nanotube enters the measured current as follows: On resonance,
the nanotube position ū(t ) = ū cos

(
2π fR t

)
oscillates with a finite amplitude ū, which pe-

riodically modulates the gate capacitance Cg by an amount C ac
g = ∂Cg/∂u · ū. The current

flowing through the nanotube does not just depend on the gate voltage itself; more specif-
ically, it depends on the product of the gate voltage and the gate capacitance; the so-called
gate-induced charge [11, 22] defined in Chapter 5. A modulation of the capacitance due to
the motion of the nanotube therefore has the same effect on the current as if an effective
ac gate voltage V ac

g, eff =VgC ac
g /Cg were applied to the gate-electrode. The time-dependent

current can then be calculated by inserting δVg = V ac
g, eff cos(2π f t ) into the Taylor expan-

sion of I (Vg +δVg).
Since the mechanical resonance frequency is much larger than the measurement band-

width, time-averaged currents are detected in our setup. We find that the time-averaged
mechanically-induced current equals:

〈I 〉(ū,Vg) = I (Vg)+ u2

4

(
Vg

Cg

∂Cg

∂u

)2
∂2I

∂V 2
g
+O

(
ū4) , (6.1)

where only even powers of ū enter the low-frequency current due to averaging. The change
in dc current on mechanical resonance ∆I = 〈I 〉− I is thus proportional to the local curva-
ture ∂2I /∂V 2

g of the Coulomb blockade oscillations I (Vg).
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FIGURE 6.3: Averaging model for the current at resonance. (a), (b) Measured frequency sweeps demonstrating
the sign change of the resonance amplitude depending on the gate voltage (RF power −13dBm, Vsd = 0.1mV,
Vg =−5.17V (a) and Vg =−5.16V (b)). (c) The black line shows the measured dc current as function of gate volt-
age I (Vg) for Vsd = 0.1mV (no RF). The red line, shows the effect of an (effective) ac gate voltage on the dc current.
This average current (Eq. 6.1) is calculated using the measured data and V ac

g, eff = 2mV. (d) Predicted resonance

signal amplitude ∆I calculated by subtracting the dc current from the current averaged over an effective gate
voltage V ac

g, eff = 1mV. For a small V ac
g, eff, the signal is proportional to the second derivative ∂2I /∂V 2

g of the black

trace shown in (c), as expressed by Eq. 6.1. At the top of the Coulomb peak, ∆I is negative, whereas on the flanks
of the Coulomb peak, it is positive. Note that in (c) a larger value of V ac

g, eff was used to exaggerate the differ-

ence between the black and red curves for illustrative purposes. (e) The measured resonance peak amplitudes
obtained from I ( f ) traces similar to Fig. 6.1d, for Vsd = 0.1mV and a RF power of −48dBm.

Using measured Coulomb oscillation traces where no driving signal was applied (black
line in Fig. 6.3c), we have numerically calculated the behavior of a current time-averaged
over V ac

g, eff. The result is shown as a red line in Fig. 6.3c. Figure 6.3d shows the difference

∆I between the time-averaged and the static current of Fig. 6.3c. On top of a Coulomb os-
cillation, the curvature is negative and the averaged current (red) is smaller than the static
current (black), resulting in a dip in the current on resonance, when the nanotube moves.
On the other hand,∆I is positive on the flanks of the Coulomb oscillations as the curvature
is positive there. This can be compared with the traces I ( f ) shown in Fig. 6.3a and b, and
with the measurements of ∆I shown in Fig. 6.3e. Here we plot the amplitude ∆I ( fR ) of the
mechanical response in the dc current I ( f ) for different gate voltages. The gate voltage de-
pendence of the extracted amplitude values in dc current is in good qualitative agreement
with the predictions of the model as shown in Fig. 6.3d.
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6.4 MASS- AND DISPLACEMENT SENSITIVITY
The model also allows for a quantitative analysis of the peak shape and for an estimate of
the displacement amplitude ū in the case of resonant driving, by evaluating the change in
dc current ∆I . We first use the result of Chapter 3 that ū can be described by the response
of a damped driven harmonic oscillator. From Eq. 6.1, we see that ∆I ∝ ū2 so that the
measured mechanical response (dip or peak) in the current is given by the square of the
harmonic oscillator response function. For the resonance presented in Fig. 6.1d, we find
fR = 293.428MHz and Q = 140670. This Q-value is nearly two orders of magnitude higher
than previous reported values of the flexural vibration modes in nanotubes [7, 8, 11]. Such
high Q-values make this type of device very suitable for mass detection. From the mea-
sured response in Fig. 6.4e we estimate (see Supplement) a mass sensitivity of 7yg/

p
Hz,

i.e., in one second it should be possible to determine if, for example, a He atom has ad-
sorbed onto the nanotube.

The displacement amplitude ū in the case of resonant driving is estimated by mod-
elling the capacitance between the nanotube and the back gate as an infinite wire and
an infinite conducting plane, see Eq. 3.32. Using a device length of ` = 800nm, a tube
radius r = 1.5nm and a gate distance hg = 230nm, we obtain Cg = 7.8aF and ∂Cg/∂u =
5.9zF/nm, see Table 3.3. The calculated capacitance value is consistent with the exper-
imentally determined value of Cg = 8.9aF as determined from the Coulomb peak spac-
ing. For the resonance in Fig. 6.4b, with ∂2I /∂V 2

g = 4.43µA/V2 and ∆I ( fR ) = 1.05pA, we
estimate the oscillation amplitude of the nanotube to be ū( fR ) = 0.25nm on resonance.
This amplitude is two orders of magnitude larger than that of the thermal fluctuations
( 1

2 kBT = 1
2 m(2π fR )2u2

th) of the nanotube [1], which is ∼ 6.5pm at T = 80mK, and its esti-
mated zero-point motion [10, 23] of u0 = 1.9pm at this gate voltage.

6.5 NON-LINEAR BEHAVIOR AND TEMPERATURE DEPENDENCE
When driving the nanotube resonator with large antenna voltages, we consistently ob-
serve hysteretic peak shapes and a strong frequency pulling of the resonance peaks (i.e.
the frequency decreases for a larger motion amplitude [24, 25]). Figure 6.4a-d shows ex-
amples of the shape of the resonance peak at Vg = −5.16V and Vsd = 0.35mV for four dif-
ferent driving powers. Black lines indicate the sweep direction with increasing frequency;
gray lines the one with decreasing frequency. At the lowest power, the mechanical reso-
nance peak is not visible in the noise. With increasing driving power the resonance peak
first shows a linear response with its characteristic squared-harmonic-oscillator-response
shape (Fig. 6.4b). At higher powers hysteresis sets in, which becomes more pronounced
with increasing RF power. This bistability is consistent with what is expected for a non-
linear mechanical (Duffing) resonator [1, 24].

We have studied the dynamic range1 [2, 21, 26] in more detail and found that the driv-

1The lower boundary of the dynamic range is the power at which the resonance is no longer visible in the noise.
The current noise in our experiments is caused by fluctuations in the electrostatic environment of the nanotube
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FIGURE 6.4: Evolution of the resonance peak with increasing driving power (a)-(d) and temperature (e)-(h).
Black (gray) traces are upward (downward) frequency sweeps. (a) At low powers, the peak is not visible. (b) Upon
increasing power, a resonance peak with Q = 1.3 ·105 appears. (c) and (d) As the power is increased further, the
lineshape of the resonance takes on a non-linear oscillator form, with a long high frequency tail and a sharp edge
at lower frequencies. It also exhibits hysteresis between the upward and downward sweep that increases with
driving power, characteristic of a non-linear oscillator. The traces (a)-(d) are taken at 80mK. (e)-(h) Forward
(black) and reverse (gray) frequency sweeps at a fixed driving power as a function of temperature. At low tem-
peratures, the peak shape is non-linear and strongly hysteretic. At the same power, but higher temperature, the
amount of hysteresis decreases significantly. At a temperature of 160mK, hysteresis and asymmetry are no longer
apparent; at the same time, the signal amplitude (and with it, also the signal to noise ratio) is decreased, suggest-
ing a decrease in the Q-factor with increasing temperature. The working point of traces (a)-(h) is at Vg =−5.16V
and Vsd = 0.35mV.

ing powers where the (linear) peak disappears in the noise and where nonlinearity sets
in depend on the temperature. An example of this effect is shown in Fig. 6.4e-h. These
panels show that for a fixed gate voltage and driving power, the nanotube resonator re-
sponse changes from non-linear to linear when the operating temperature is increased
from 20 mK to 160 mK. This temperature-dependent behavior hints at a decrease in Q-
factor as the temperature is increased.

To study the temperature dependence of the quality factor in more detail, we have

and not by to the thermal motion of the nanotube.
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FIGURE 6.5: Temperature dependence of the Q-factor. (a)-(c) Fits of a squared harmonic oscillator response to
the resonance in the linear regime at low powers for different temperatures at Vg = −5.16V and Vsd = 0.35mV.
(d) A plot of the Q-factor vs. temperature obtained from linear response traces. Q decreases with increasing
temperature. The gray line shows a T−0.36 power law dependence (see text).

determined Q at different temperatures. For a gate voltage of −5.16V, three examples of
resonance traces are depicted in Fig. 6.5a-c. Note that because the dynamic range is tem-
perature dependent, the RF power is adjusted at every temperature to ensure a linear re-
sponse. In Fig. 6.5d, we plot the Q-factor extracted in the linear regime for eight different
temperatures in the range 20mK < T < 1K. The error margins are estimated from ensem-
bles of responses at the same temperature. The Q-factor changes by a factor four in this
temperature range. At the lowest temperatures, the Q-factor reproducibly reaches values
above 105. These lowest temperature values are close to the intrinsic Q-values calculated
with molecular dynamics simulations on single-walled carbon nanotube oscillators [13].
Interestingly, these calculations predict a T −0.36 power law dependence of the Q-factor
with temperature. The gray line in Fig. 6.5d shows this dependence; the data is consis-
tent with this prediction. This T −0.36 dependence has also been observed in top-down
fabricated devices at low temperatures [6, 27]. Note that the Q-values of our nanotube res-
onator are much higher than the ones following the trend of the volume surface ratio in
top-down fabricated devices [2].
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FIGURE 6.6: Nanotube current vs. gate voltage showing single electron tunnelling at the peaks and Coulomb
blockade in the valleys (top). Normalized resonance signal (bottom) |∆I /∆I ( fR )| vs. RF frequency and gate
voltage at Vsd = 1.5mV. The tuned mechanical resonance shows up as the darker curve with dips at the Coulomb
peaks. The offsets between dashed lines indicate the frequency shift due to the addition of a single electron to the
nanotube. The resonance frequency also shows dips caused by a softening of the spring constant due to single
electron charge fluctuations.

6.6 SINGLE-ELECTRON TUNING AND BACKACTION

The narrow linewidth of the resonance peak due to the high Q-factor provides an unprece-
dented sensitive probe for studying nanomechanical motion. We first show the influence
of a single electron on the resonance frequency, fR . The Coulomb oscillations in Fig. 6.6
are due to single electron tunnelling, giving rise to current peaks and valleys, where Cou-
lomb blockade fixes the electron number N . From valley to valley, the electron number
changes by one. The bottom panel of Fig. 6.6 shows the mechanical resonance signal
recorded at the same time. Overall, a more negative gate voltage (right to left) increases
the total charge on the nanotube, increasing the tension. This is the tuning that is shown
in Fig. 6.2. The tension stiffens the mechanical spring constant and increases the reso-
nance frequency. Linear stiffening occurs in the Coulomb valleys (indicated with dashed
lines), whereas at Coulomb peaks, a peculiar softening occurs, visible as dips in fR .

We first focus on the change in resonance frequency due to the addition of one elec-
tron, which is measured as offsets of about 0.1 MHz between the dashed lines. This shift
due to single electron tuning, predicted in Ref. [28], is about 20 times our linewidth and
thus resolvable for the first time in a nanomechanical system. Since we compare val-
leys with a fixed electron number, this single electron tuning comes from a change in a
static force on the nanotube. The (electro-) static force is proportional to the square of the
charge on the nanotube and thus adding one electron charge results, here, in a detectable
shift in the mechanical resonance [28]. The shifts from single electron tuning can be as
large as 0.5 MHz, more than 100 times the line width.

Next we focus on the dips in resonance frequency that occur at the Coulomb peaks.
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The current at the Coulomb peaks is carried by single electron tunnelling, meaning that
one electron tunnels off the nanotube before the next electron can enter the tube. The
charge on the nanotube thus fluctuates by exactly one electron charge, e, with a time dy-
namics understood in detail by the theory of Coulomb blockade [29]. The average rate, Γ,
at which an electron moves across the tube can be read off from the current I = eΓ (i.e. 1.6
pA corresponds to a 10 MHz rate). Moving the gate voltage off or on a Coulomb peak, we
can tune the rate from the regime Γ∼ fR to ΓÀ fR and explore the different effects on the
mechanical resonance.

In Fig. 6.6 the Coulomb peak values of ∼ 8 nA yield Γ ∼ 300 fR , the regime of many
single electron tunnelling events per mechanical oscillation. In addition to the static force
and the oscillating RF driving force, single electron tunnelling now exerts a time-fluctuating,
dynamic force on the mechanical resonator. We observe that this dynamic force causes
softening, giving dips in the resonance frequency. The single electron charge fluctuations
do not simply smooth the stepwise transition from the static single electron tuning shifts.
Strikingly, we find that fluctuations instead cause dips in the resonant frequency up to an
order of magnitude larger than the single electron tuning shifts. As shown in [30] and dis-
cussed in detail in [31], the dynamic force modifies the nanotube’s spring constant, kR ,
resulting in a softening of the mechanical resonance. The shape of the frequency dip can
be altered by applying a finite bias, Vsd, across the nanotube as shown in Fig. 6.7. Start-
ing from deep and narrow at small Vsd = 0.5 mV, the dip becomes shallower and broader
on increasing Vsd. This dip-shape largely resembles the broadening of Coulomb blockade
peaks when increasing Vsd. We thus conclude from Figs. 6.6 and 6.7 that the single electron
tuning oscillations are a mechanical effect that is a direct consequence of single electron
tunnelling oscillations.

Besides softening, the charge fluctuations also provide a channel for dissipation of
mechanical energy. Fig. 6.8 shows the resonance dip for small RF power with line cuts
in Fig. 6.8b. In the Coulomb valleys, tunnelling is suppressed (Γ ∼ f0), damping of the
mechanical motion is minimized, and we observe the highest quality-factors. On a Cou-
lomb peak, charge fluctuations are maximal (ΓÀ f0), and the quality-factor decreases to a
few thousand. These results explicitly show that detector backaction can cause significant
mechanical damping. The underlying mechanism for the damping is an energy transfer
occasionally occurring when a current-carrying electron is pushed up to a higher (electro-
chemical) energy by the nanotube motion before tunnelling out of the dot. This gain in
potential energy of the electron is provided by the resonator and is later dissipated in the
drain contact.

6.7 STRONG COUPLING
If we drive the system at higher RF powers (Fig. 6.8c and d) we observe an asymmetric
resonance peak, along with distinct hysteresis between upward and downward frequency
sweeps. Theoretically this marks the onset of non-linear terms in the equation of motion,
such as in the well-studied Duffing oscillator [1, 32]. The spring constant, kR , is modified,
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FIGURE 6.7: Zoom on one frequency dip for various source-drain voltages, Vsd, showing dip broadening for
increasing Vsd. The two insets illustrate the energy diagrams for small and large Vsd.

due to a large oscillation amplitude, u, which is accounted for by replacing kR with (kR +
αu2). The constant increases if α > 0, which is accompanied by a sharp edge at the high
frequency side of the peak; vice versa for α < 0. In addition to the overall softening of kR

yielding the frequency dips of Fig. 6.6, the fluctuating charge on the dot also changes α,
giving a softening spring (α < 0) outside of the frequency dip (Coulomb valleys), and a
hardening spring (α> 0) inside the frequency dip (Coulomb peaks), shown in Fig. 6.8. The
sign of α follows the curvature of fR (Vg ) induced by the fluctuating electron force, giving
a change in sign at the inflection point of the frequency dip. Interestingly, non-linearity
from the single electron force in our device dominates, and is much stronger than that
from the mechanical deformation [31].

Figs. 6.8e and f show the regime of further enhanced RF driving. The non-linearity is
now no longer a perturbation of the spring constant, but instead gives sharp peaks in the
lineshape and switching between several different metastable modes (see further data in
Ref. [31]). At this strong driving, we observe very rich nonlinear mechanical behavior due
to the coupling of the resonator motion to the quantum dot.

The question whether the mechanical resonator can be excited by the fluctuating driv-
ing force from electron tunnelling alone, is addressed in Fig. 6.9 with a standard Coulomb
blockade measurement shown in a. Mechanical effects in Coulomb diamonds of carbon
nanotubes have been studied before via phonon sidebands of electronic transitions [33–
35]. New in the data of Fig. 6.9 are reproducible ridges of positive and negative spikes
in the differential conductance. This instability has been seen in all 12 measured devices
with clean suspended nanotubes and never in non-suspended devices. Fig. 6.9b shows
such ridges in a second device (device E), visible as discrete jumps in the current. The bar-
riers in device E were highly tunable: we find that the switch-ridge can be suppressed by
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FIGURE 6.8: Lineshapes of the mechanical resonance from linear to non-linear driving regimes. (a) Detector
current,∆I , vs. frequency and gate-voltage at RF excitation power of -60 dBm as the gate voltage is swept through
one Coulomb peak. (b) Fits of the resonance to a squared harmonic oscillator lineshape at different gate voltages.
The RF power for each trace is adjusted to stay in the linear driving regime (−75, −64, −52, and −77dBm top to
bottom). Traces are taken at the positions indicated by colored circles (aside from the top trace which is taken at
Vg = -4.350 V). (c) At -45 dBm, the resonance has an asymmetric lineshape with one sharp edge, see the linecuts in
(d), typical for a non-linear oscillator [1, 32]. (e) and (f) At even higher driving powers (-20 dBm), the mechanical
resonator displays sharp sub-peaks and several jumps in amplitude when switching between different stable
modes. The dashed lines in (f) indicate the resonance frequency fR at low powers. (c) and (e) are taken in the
upwards sweep direction.

reducing the tunnel rate to the source-drain contacts, thereby decreasing the current. The
instability disappears roughly when the tunnel rate is decreased below the mechanical
resonance frequency [31].

In a model predicting such instabilities [36], positive feedback from single electron
tunnelling excites the mechanical resonator into a large amplitude oscillation. The the-
ory predicts a characteristic shape of the switch-ridges and the suppression of the ridges
for Γ ∼ fR , in striking agreement with our observations. If the required positive feedback
is present, however, it should also have a mechanical signature: such a signature is in-
deed observed in Fig. 6.9e. The RF-driven mechanical resonance experiences a dramatic
perturbation triggered by the switch-ridge discontinuities in the Coulomb peak current
shown in Fig. 6.9d. At the position of the switch, the resonance peak shows a sudden de-
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FIGURE 6.9: Spontaneous driving of the mechanical resonance by single-electron tunnelling. (a) Differential
conductance, ∂I /∂Vsd, showing ridges of sharp negative spikes (deep blue) measured on device E (trench width
= 430 nm) in the few-hole regime (4-hole to 3-hole transition). (b) shows the data from the upper half of (a),
but now as a 3D current plot. Note that the ridges, that appear as steps in the current, are entirely reproducible.
(c) Ridges in device C. Inset: Coulomb peak at Vsd = 0.5 mV showing large switching-steps. Main plot: zoom-
in on data from inset. (d) RF-driven mechanical resonance measured for the same Coulomb peak in (c) at a
driving power of -50 dBm. Outside the “switch-region”, the resonance has a narrow lineshape and follows the
softening-dip from Figs. 6.6 and 6.7. At the first switch, the resonance position departs from the expected posi-
tion (indicated by dashed line). The mechanical signal is strongly enhanced in amplitude and displays a broad
asymmetric lineshape. At the second switch, the resonance returns to the frequency and narrow lineshape ex-
pected at these powers.

parture from the expected frequency dip (dashed line), and becomes strongly asymmetric
and broad, as if driven by a much higher RF power. This is indeed the case, but the driving
power is now provided by an internal source: due to strong feedback, the fluctuating force
from single electron tunnelling becomes a driving force synchronized with the mechani-
cal oscillation. Remarkably, the dc current through the quantum dot can be used both to
detect the high-frequency resonance and, in the case of strong feedback, to directly excite
resonant mechanical mechanical motion.

6.8 CONCLUSIONS
Using a novel detection mechanism, we have measured the bending mode resonance
of suspended carbon nanotubes in the single-electron tunnelling regime. Sharp gate-
tunable resonances are found with high Q-values (Q > 105), which can easily be driven
into the nonlinear regime by increasing the driving power on the RF antenna. The motion
of the nanotube is strongly coupled to the tunnelling of electrons. By inducing tension
with a gate voltage the frequency can be tuned above 350MHz, so that the thermal occu-
pation of the resonator approaches 1. Shorter devices should have even higher resonance
frequencies corresponding to temperatures above the mixing chamber temperature of the
dilution refrigerator. These resonators are therefore in their quantum mechanical ground
state, which opens up the way to new exciting experiments on the quantum aspects of me-
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chanical motion. The motion of the nanotube is strongly coupled to the dynamics of elec-
trons tunnelling on and off the nanotube. This gives rise to novel effects, such as single-
electron tuning, gate-tunable nonlinearity and the recently predicted strong-feedback ef-
fects where tunnelling of electrons and mechanical motion synchronize.
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SUPPLEMENT

MASS SENSITIVITY
The mass sensitivity is estimated from the data plotted in Fig. 6.4e. In the experiments, the mass
sensitivity is limited by the current noise, which has a spectral density S1/2

I = 0.12pA/
p

Hz at the

particular working point. The mass sensitivity S1/2
m can be calculated as follows: an added mass δm

on the nanotube changes the resonance frequency by:

δ fR = ∂ fR

∂m
δm = fR

2m
δm, (6.2)

where m = 5.1×10−21 kg is the mass of an 800 nm long single-walled nanotube with a 1.5 nm radius.
When the resonance frequency shifts, the current through the nanotube is modified by:

δI = ∂I

∂ fR
δ fR '− ∂I

∂ f
δ fR . (6.3)

The latter approximation, which is valid for a high Q resonator, allows us to relate the change in

current to the measured slope of the response function. For the data in Fig. 6.4e the slope of the

red line, just right of the jump is ∂I /∂ f = 6.0×10−16 A/Hz. The mass sensitivity is calculated using

S1/2
m =

∣∣∣ ∂ fR
∂m

∂I
∂ f

∣∣∣
−1

S1/2
I , which yields S1/2

m = 7.0yg/
p

Hz = 4.2u/
p

Hz. Here, u is the (unified) atomic

mass unit, so it is possible to detect a mass change as small as a single helium atom within one

second.

DEVICE D
Figure 6.10 shows measurements on a second device. This device also has a suspended length of

800nm. From room temperature measurements it is inferred that device D is a large (Eg /kB > 300K)

bandgap nanotube as well.
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FIGURE 6.10: (a)-(b) Examples of measured resonances in device D in the linear (a) and non-linear regime (b) at
20mK. Settings: Vg =−4.241V, Vsd = 2.0mV, RF power −47dBm in (a) and Vg =−4.241V, Vsd = 1.5mV, RF power
−44.5dBm in (b). (c)

∣∣dI /d f
∣∣ in color scale as a function of frequency f of the ac voltage on the antenna and

the dc gate voltage Vg on the back-gate electrode for device D. Left of the dashed line a source-drain voltage of
4mV was used; on the right side Vsd = 10mV. The RF power was −13dBm everywhere. Inset: Comparison of the
extracted resonance frequency to the continuum model for the bending mode with f0 = 193.7MHz, V ∗

g = 4.14V,
T0 = 0 and a horizontal offset of 1.65V to account for a shift in the charge neutrality point and the band gap
region.
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MOTION DETECTION OF A

MICROMECHANICAL RESONATOR

EMBEDDED IN A DC SQUID

S. Etaki, M. Poot, I. Mahboob∗, K. Onomitsu∗,
H. Yamaguchi∗, H. S. J. van der Zant

Superconducting Quantum Interference Devices (SQUIDs) are the most sensitive detectors of
magnetic flux [1] and are also used as quantum two-level systems (qubits) [2]. Recent pro-
posals have explored a novel class of devices which incorporate micromechanical resonators
into SQUIDs in order to achieve controlled entanglement of the resonator ground state and
a qubit [3] as well as permitting cooling and squeezing of the resonator modes and enabling
quantum limited position detection [4–10]. In spite of these intriguing possibilities, no ex-
perimental realization of an on-chip, coupled mechanical resonator-SQUID system has yet
been achieved. Here, we demonstrate sensitive detection of the position of a 2 MHz flexu-
ral resonator which is embedded into the loop of a dc SQUID. We measure the resonator’s
thermal motion at millikelvin temperatures, achieving an amplifier-limited displacement
sensitivity of 10 fm/

p
Hz and a position resolution that is 36 times the quantum limit.

Parts of this Chapter have been published in Nat. Phys., 4, 785–788 (2008)
* NTT Basic Research Laboratories, NTT Corporation, Japan
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EMBEDDED IN A DC SQUID

Dc SQUIDs consist of a superconducting loop with two Josephson junctions [1]. The
voltage across the dc SQUID does not only depend on the current through it, but also

on the magnetic flux piercing through the loop, allowing tiny changes in the magnetic field
to be detected. Besides this more common application, the dc SQUID should also be able
to detect small variations in the area of its loop due to the motion of an integrated flexural
resonator in the presence of a static magnetic field. Our Nb-based dc SQUID displacement
detector is based on this principle and is shown in Fig. 7.1a and b and is described in more
detail in “Methods”. Its potential displacement sensitivity can be estimated as follows: The
resonator has a length of `= 50 µm and the loop is placed in a magnetic field of B = 0.1 T
oriented as described in Fig. 7.1d. A deflection u = 1 fm of the resonator will then result
in a change in flux through the loop on the order of B`u = 2.5 µΦ0, where Φ0 = h/2e =
2.07fTm2 is the flux quantum. Low-temperature dc SQUIDs have a typical flux sensitivity
of 10−6Φ0/

p
Hz [11], which is sufficient to reach a displacement sensitivity of 0.4 fm/

p
Hz.

This places the dc SQUID detector in the same league as other highly sensitive on-chip
position detectors [12–15].

7.1 DC SQUID CHARACTERIZATION
Before using the dc SQUID as a displacement detector, its characteristics are determined
in order to find a proper bias point. Fig. 7.1d shows a schematic of the measurement
setup, which is described in detail in Methods. A bias current IB is applied to the dc SQUID
and its output voltage V is measured. The dc SQUID produces a non-zero output voltage
once IB exceeds the dc SQUID’s critical current IC , which depends on the magnetic flux
bias Φ through the dc SQUID loop and on the critical current of the individual junctions,
I0. Figure 7.2a shows that at B = 0T the dc SQUID’s V -IB relationship exhibits hysteresis,
indicating that the dc SQUID is underdamped [1]. This hysteresis must be suppressed
in order to operate the dc SQUID as a sensitive linear flux detector. This is achieved by
increasing B , which decreases the critical current of the junctions [16]. We find that for
B ≥ 0.1T the dc SQUID is sufficiently damped such that no hysteresis is observed (Fig.
7.2a). Note that in our detection scheme the dc SQUID is biased above the critical current.
It can in principle also be used as a position detector when it is biased below the critical
current, where the dc SQUID acts as a tunable inductor [4].

The dc SQUID is most sensitive to changes in the magnetic flux when it is tuned to a
working point with a steep slope of V (Φ). Figure 7.2b shows the relation between V and
the applied stripline current IF which changes Φ. For a dc SQUID, both IC and V depend
periodically on Φ with a period of Φ0. The steepest slope occurs approximately half-way
between the minimum and maximum of the voltage swing. The difference between these
two voltages is the peak-to-peak voltage swing VPP . Figure 7.2c shows VPP as a function of
IB , where V max

PP is the maximum voltage swing. Numerical simulations (see Appendix A)
show that this maximum occurs at IB = 2I0.

In our experiment there is a slow flux drift, which makes it difficult to maintain a con-
stant flux bias by just applying a constant stripline current. Therefore a feedback loop is
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FIGURE 7.1: (a) Colorized scanning electron micrograph of a device at 80◦ inclination. The beam resonator (’R’)
is buckled away from the substrate due to compressive strain (see Methods). The stripline (’S’) is used to change
the flux bias through the dc SQUID. The Nb-InAs weak links (’J’) are located adjacent to unused Nb side gates. (b)
Colorized scanning electron micrograph of one of the 200 nm long Nb-InAs-Nb junctions. (c) A 3-dimensional
image of the vibration amplitude of the driven beam resonance at 2 MHz, acquired at room temperature using
dynamic force microscopy. The inset shows the static buckling profile of the beam with a maximum deflection
of 1.5µm measured using atomic force microscopy. (d) Schematic overview of the measurement circuit. A cou-
pling field B is applied parallel to the dc SQUID-plane and perpendicular to the length direction of the resonator
(marked by the red box). The sample is glued onto a piezo actuator, which is connected to a filtered voltage
source for the driven measurements.
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FIGURE 7.2: (a) dc SQUID voltage as a function of the bias current IB at 20 mK. At zero magnetic field the dc
SQUID exhibits hysteretic behavior (red curves). The blue curve shows the voltage-current response at 100 mT,
which is the lowest of two fields used for position detection. The increased magnetic field has suppressed the
hysteresis due to a reduction of the critical current. (b) Average dc SQUID voltage as a function of the applied
stripline current at 100 mT and IB = 2.5 µA. The peak-to-peak voltage swing is VPP . (c) Measurements of VPP
as a function of IB at B = 100 mT. The parameters I0 and V max

PP obtained from this measurement are used to
tune the dc SQUID to a sensitive bias point. (d) V max

PP as a function of refrigerator temperature at two different
magnetic fields.

used that maintains a constant average setpoint voltage 〈V 〉 = VSP by adjusting IF for a
given value of IB . An added advantage of using the feedback loop is that it compensates
external low-frequency (< 1 kHz) flux noise.

Numerical analysis (see Appendix A) reveals that the ratios IB /I0 and VSP /V max
PP , needed

to achieve the maximum value of the flux responsivity ∂V /∂Φ, are approximately constant.
This allows us to apply a bias that gives maximum ∂V /∂Φ even if I0 and V max

PP are chang-
ing due to temperature variations as shown in Fig. 7.2d. In practice, values for VSP and IB

must be chosen that allow stable operation of the feedback loop in addition to maximiz-
ing ∂V /∂Φ. The values IB = 2I0 and VSP = V max

PP /2 are found to provide a good balance
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between these requirements.

7.2 DETECTION OF THE DRIVEN MOTION
As the resonator is integrated into the dc SQUID, the flux through the loop depends on the
position u of the fundamental out-of-plane mode of the beam according toΦ=Φa+aB`u,
where Φa is the applied flux when the resonator is in its equilibrium position and a is the
geometrical factor that depends on the mode shape1, as defined by Eq. 3.46. The displace-
ment u is defined such that the effective spring constant of the mode is kR = m(2π fR )2,
where m is the total mass of the beam and fR is the resonance frequency of the mode as
shown in Sec. 3.5. Atomic force microscopy shows that the resonator is buckled upwards
with a shape belonging to n = 1 with a maximal displacement umax = 1.5µm and we use
the continuum model from Sections 3.3 and 3.5 to estimate a = 0.91. Furthermore, we find
that that the beam was under a compressive residual strain ε0 = T0/E A =−2.5 ·10−3.

In our configuration, the dc SQUID functions in the small signal limit aB`u ¿ Φ0 as
a linear displacement detector with a displacement responsivity ∂V /∂u = ∂V /∂Φ ·∂Φ/∂u.
The resonance frequency fR is located by driving the resonator with a piezo actuator (Fig.
7.1d) and monitoring the resulting output voltage of the dc SQUID. The resonance is lo-
cated at fR = 2.0018MHz and shows a harmonic oscillator amplitude response (Fig. 7.3a).
Room-temperature dynamic force microscopy [17] confirms that this is indeed the fun-
damental mode (Fig. 7.1c) and the resonance frequency is also in good agreement with
our continuum model. From a least-squares harmonic oscillator response fit we extract a
quality factor Q = 1.8 ·104 at B = 100mT and refrigerator temperature T = 20mK. For all
measurements, the peak voltage amplitude is much smaller than V max

PP (Fig. 7.2d), which
means that the flux oscillations due to the resonator are indeed within the small signal
limit.

7.3 THERMAL NOISE AND SENSITIVITY
Thermomechanical noise thermometry is used to calibrate the deflection responsivity
[13–15]. Without actively driving the resonator, the noise power spectral density of the
output voltage is acquired around the mechanical resonance frequency. The spectra in
Fig. 7.3b show a constant background upon which a harmonic oscillator response peak
is superimposed. This peak is caused by the Brownian motion of the beam. The quality
factor and resonance frequency are identical to those of the driven response (Fig. 7.3a).
The voltage noise power due to the resonator 〈V 2

R 〉, i.e. the area underneath the peak, is
extracted from the fitted response function.

The noise spectrum is measured in the temperature range 20mK ≤ T ≤ 500mK. To
compare the noise power at different temperatures, 〈V 2

R 〉 must be corrected for differences
in ∂V /∂Φ. The flux responsivity is proportional to V max

PP and thus has the same tempera-
ture dependence (Fig. 7.2d). This enables the introduction of the corrected voltage noise

1In this Chapter we use the short-hand notation u and a for the symbols u(0)
ac and a0 respectively
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FIGURE 7.3: (a) The driven resonator response at T = 20mK and B = 100mT. The amplitude and phase are
shown in blue and black, respectively. The amplitude and phase data are well fitted by a harmonic oscillator
response (red). The peak amplitude corresponds to approximately 40 pm deflection. (b) Noise power spectral
density around the beam’s resonance frequency at 100 mT for two different temperatures (black, blue). The peak

in the noise spectra is due to the Brownian motion of the resonator. (c) The corrected voltage noise power 〈V ′
R

2〉
extracted from the thermal spectra at 100 mT (red) and 111 mT (blue). The solid lines indicate a linear least
mean squares fit to the noise powers for temperatures above 100 mK. The linear relationship is predicted by the
equipartition theorem and its slope is used to calibrate the deflection responsivity of the flux-based transducer.
The steeper line for the 100 mT data indicates a higher responsivity than at 111 mT. The lowest achieved resonator
temperature is 84 mK at a refrigerator temperature of 20 mK. This difference implies that the resonator does not
thermalize at the lowest temperatures (see Methods).

power 〈V ′
R

2〉 = 〈V 2
R 〉 · [V max

PP (20mK)/V max
PP (T )]2. The corrected noise powers in Fig. 7.3c

show a linear decrease with temperature down to 100 mK. The slope S(B) from a linear
fit to this data, combined with the equipartition theorem (Eq. 2.10) gives the deflection
responsivity ∂V /∂u = V max

PP (T )/V max
PP (20mK) · [S(B)kR /kB]1/2, where kB is the Boltzmann

constant and using m = 6.1 ·10−13 kg we find kR = 97N/m. The resulting displacement re-
sponsivities at 20 mK are 3.0 ·10−2 nV/fm and 2.3 ·10−2 nV/fm for B = 100 mT and 111 mT
respectively. The fact that the displacement responsivity at 111 mT is lower than at 100
mT might appear counterintuitive, but the larger flux change for the same displacement is
compensated by a stronger reduction of V max

PP , as shown Fig. 7.2d. The best displacement
sensitivity coincides with the highest responsivity because the flux-based position detec-

tor is limited by the noise floor of the room temperature voltage amplifier S
1/2
V V . The best
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observed sensitivity is S
1/2
un un

= (∂V /∂u)−1S
1/2
V V = 10fm/

p
Hz and occurs at 20 mK and 100

mT.

7.4 TOWARDS THE QUANTUM LIMIT
It is interesting to calculate the position resolution of the detector and compare it to the
fundamental limit imposed by quantum mechanics [18]. The position resolution due

to the detector noise floor (cf. Eq. 2.37) is ∆un =
(
Sun un∆ f

)1/2
, where ∆ f = π fR /2Q is

the effective noise bandwidth of the resonator. This yields ∆un = 133fm for the high-
est observed sensitivity of the detector. The quantum limit for the position resolution
of a continuous linear detector is ∆uQL =

√
ħ/m(2π fR ) = 4 fm for our resonator [19], so

that the detector resolution is a factor ∆un/∆uQL = 36 from the quantum limit. The res-
onator enters the quantum regime once it has a thermal occupation factor n̄ < 1, as ex-
plained in Sec. 2.2. The resonator temperature is found from the voltage noise power
using TR = 〈V 2

R 〉kR /kB〈∂V /∂u〉2. From the data in Fig. 7.3c, the lowest observed resonator
temperature is TR = 84mK, which yields n̄ = 878.

There are two major challenges for observing quantum behavior in a macroscopic me-
chanical resonator [20]: a quantum limited position detector [18, 19, 21] with resolution
∆u = ∆uQL and a resonator with n̄ < 1 (See Ch. 2). These requirements can be simulta-
neously met by our device configuration: The quantum mechanical ground state for a 1
GHz resonator is reached at temperatures below 70mK, which can be achieved in a di-
lution refrigerator. The dc SQUID is known to be a near quantum-limited flux detector

and flux sensitivities of S
1/2
ΦΦ = 0.01 µΦ0/

p
Hz should be possible [22]. For the current de-

vice S
1/2
ΦΦ ∼ 10µΦ0/

p
Hz is limited by the room temperature amplifier. Thus, by reducing

the amplifier noise floor, for example by using a second dc SQUID as an amplifier, and by
increasing the flux responsivity of the first dc SQUID, the sensitivity may ultimately be im-
proved by three orders of magnitude. Under these conditions, an 1 GHz resonator made of
a 300 nm long InAs beam with Q = 1000 will require a magnetic field of 1 T for the detector
to reach quantum limited sensitivity. Note that InAs is very suitable for such a resonator,
as beams that are only tens of nanometers wide can still carry a substantial supercurrent
[23]. Dc SQUID operation in the required high magnetic field may be possible by utilizing
narrow and thin Nb lines [24]. With these improvements, our flux-based measurement
method can potentially be extended to detect the resonator’s ground state.

METHODS

DEVICE DETAILS
The Nb of the dc SQUID loop and the stripline is evaporated (thickness 100 nm) onto a thin het-

erostructure that has been grown epitaxially on a GaAs(111)A substrate [25] as illustrated in Fig. 7.4.

First an insulating layer of Al0.5Ga0.5Sb is grown on the substrate using molecular beam epitaxy, fol-

lowed by a layer of InAs. The GaAs substrate is used to grow a high-crystalline-quality InAs/Al0.5Ga0.5Sb
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350 nm Al Ga Sb0.5 0.5

GaAs

42.5 nm InAs

100 nm Nb supercurrent

beam SNS junction

FIGURE 7.4: Schematic overview of the different layers of the beam (left) and the Josephson junctions (right). A
part of the GaAs substrate is etched to suspend the beam. An SNS-type Josephson junction is made by omitting
a part of the superconductor (Nb), forcing the supercurrent through the InAs surface layer.

film despite the large lattice mismatch of 7% between the substrate and InAs [26]. Finally, a layer of

evaporated niobium serves as the superconductor for the dc SQUID. At two positions in the loop, the

Nb is interrupted and the supercurrent has to flow through the InAs surface layer, thereby forming

two SNS-type Josephson junctions [27] (see Figs. 7.1b and 7.4). The InAs surface layer has a mobility

of 8 ·103 cm2/Vs and an electron density of 1.3 ·1012 cm−2 at 77 K. The inner area of the dc SQUID

loop is 40µm×80µm and the line width is 4 µm. The stripline is placed 1.5 µm from the dc SQUID

and runs 70 µm parallel to the dc SQUID loop. A dry-etch is used to remove the conducting InAs

layer everywhere except underneath the metallized parts and at the junctions. Electrical contact to

the Nb is made by evaporating 20 nm Ti and 200 nm Au.

The flexural resonator is made by removing the GaAs substrate underneath part of the loop with

a wet-etch. The resulting beam is buckled away from the substrate due to compressive strain (Fig.

7.1c). To analyze the flexural modes of the multi-layer beam it is convenient to replace it by an

effective beam which has the same mechanical properties and which has a rectangular cross-section

A = wh. These requirements give four equations from which the values for the thickness h, width

w , mass density ρ and Young’s modulus E of the effective beam are calculated. Table 7.1 shows

the dimensions and mechanical properties of the different layers in the heterostructure and that

of the effective single-layer beam. The bending rigidity of the beam is D = 3.20 · 10−15 Nm2. The

calculated eigenfrequency of 1.93MHz of the fundamental mode for the measured static buckling of

umax = 1.5µm (See the analysis in Sec. 3.3 and the result in Fig. 3.3) matches the frequency of 2.0018

MHz observed in the experiments well, considering the uncertainty in the tabulated values for the

mechanical properties of Al0.5Ga0.5Sb.

DC SQUID PARAMETERS
This paragraph gives the dc SQUID parameters at B = 111 mT that are needed for the simulations
described in appendix A. The relevant parameters are the critical current I0, the normal state resis-
tance R and capacitance C of a single Josephson junction and the inductance L of the dc SQUID.

In the simulations, identical parameters for the two junctions in the dc SQUID are used. We find
good agreement between the measurements and the simulations, which indicates that this assump-
tion is reasonable as asymmetries in the parameters would have caused deviations in the measured
V (IB ,Φ) characteristics [32].
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TABLE 7.1: Dimensions and physical properties of the different layers of the SQUID loop (at room temperature,
compiled from Refs. [28–31]). The values for Al0.5Ga0.5Sb are estimates based on the properties of GaSb and
the similarity between AlAs and GaAs. The properties of the effective beam are obtained by requiring that its
mechanical properties beam are identical to those of the original beam.

material h (nm) w (µm) ρ (kg/m3) E (GPa)

Nb 100 4.0 8.57 ·103 104.9
InAs 42.5 4.5 5.68 ·103 51.4

Al0.5Ga0.5Sb 350 4.5 5.0 ·103 ∼ 60

effective 512 4.2 5.72 ·103 67.5

The critical currents of I0 = 1.2 µA and 0.7 µA at 100 mT and 111 mT respectively are obtained
from the location of V max

PP as indicated in Fig. 7.2c. In Appendix A it is shown that V max
PP ≈ I0R,

which allows the determination of the normal state resistance R of the individual Josephson junc-
tions from the data in Fig. 7.2c and d. At 111 mT a temperature-independent value R(111 mT) = 30Ω
is obtained.

The capacitance of the Josephson junctions is calculated from the hysteresis of the V -IB curves
at zero magnetic field (Fig. 7.2a) by using the Stewart-McCumber parameter βC . This number in-
dicates whether the dc SQUID is over- or underdamped, i.e. whether it is hysteretic or not. The
restively and capacitively shunted junction (RCSJ) model relates the ratio ir of the return current and
critical current to the Stewart-McCumber parameter βC = (2− (π−2)ir )/i 2

r [1]. For a critical current
of 10.1 µA and a return current of 5.7 µA this gives βC = 4.3 at B = 0 T. The Stewart-McCumber pa-
rameter is related to the physical parameters of the dc SQUID according to βC = 2πIC R2

SQCSQ /Φ0,

where CSQ and RSQ are the capacitance and the resistance of the two junctions in parallel, respec-
tively. The slope of the V -IB curve (Fig. 7.2a) at high currents yields RSQ (0 T) = 8.7 Ω. With the
values for βC and IC that are mentioned above, CSQ = 1.8 pF and thus C =CSQ /2 = 0.9 pF is found.
It is assumed that this value is valid at all temperatures and magnetic fields in the experiments. Note
that this value is higher than expected from the geometry of the junction, which is most likely caused
by the presence of an additional conductive layer in the heterostructure.

The inductance of the dc SQUID is estimated by finite element simulations of the electrodynam-

ics of the superconducting loop using FastHenry [33], giving a value of L = 175 pH.

MEASUREMENT SETUP
The device is mounted in a dilution refrigerator and the coarse magnetic field B is applied using a

superconducting solenoid magnet. The low frequency (LF) circuit is used to set the dc SQUID to

a working point by applying a bias current IB through the dc SQUID and a current IF through the

stripline. The battery-powered current sources and LF voltage amplifier are optically isolated from

mains operated equipment. The high frequency (HF) dc SQUID output voltage at the resonator fre-

quency is measured using a two-stage room temperature amplifier with 80 dB gain, 10 kΩ input

impedance and equivalent input voltage noise S
1/2
V V = 0.3 nV/

p
Hz. The HF and LF circuits are sep-
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arated by 1 kΩ resistors and 10 nF capacitors at the cryogenic stage (Fig. 7.1d).

NOISE POWER SATURATION
At temperatures below 100 mK the noise power of the resonator is no longer proportional to the
refrigerator temperature and saturates, as shown in Fig 7.3c. This implies that below 100 mK, the
temperature of the resonator TR is higher than the refrigerator temperature T . Similar behavior has
been observed in other studies where it was attributed to local heating of the substrate [13, 15] or
excessive force noise coming from the position detector [14, 34]. A way to experimentally discrimi-
nate between these two effects is to change the coupling between the resonator and the detector, but
in our case the coupling field cannot be varied sufficiently to distinguish between the two sources.
Instead we shows that the backaction noise is not sufficiently large to cause the rise in resonator
temperature. The backaction of the dc SQUID on the resonator is analyzed in detail in Ch. 8 and
the backaction temperature is calculated in Appendix A. For typical parameters (see Appendix A)
we find that at the setpoint IB = 2.0 · I0 and Φ = 0.25 ·Φ0 the backaction of the dc SQUID raises the
resonator temperature by ∼ 0.6mK. This temperature increase is much smaller than the difference
between the lowest observed resonator temperature, TR = 84mK, and the base temperature of the
dilution refrigerator, T = 20mK, which means that the difference between TR and T is not caused by
backaction.

A more likely possibility is that the substrate temperature is higher than that of the refrigerator.

Note that resistive heating of the junctions is not the main cause of this effect; Compared to the

measurements at 100 mT, the current through the junctions was 1.7 times less at 111 mT, because of

the lower critical current. The data in Fig. 7.3c does not show a lower saturation temperature in the

latter case, even though the dissipation in the junction has decreased by a factor 3. The most likely

cause of the increased substrate temperature is local heating due to heat transfer through the wires.

This effect can be reduced by improving the thermal anchoring of the wires to the refrigerator.
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8
TUNABLE BACKACTION OF A DC

SQUID ON AN INTEGRATED

MICROMECHANICAL RESONATOR

M. Poot, S. Etaki, I. Mahboob∗, K. Onomitsu∗,
H. Yamaguchi∗, Ya. M. Blanter, H. S. J. van der Zant

We have measured the backaction of a dc superconducting quantum interference device
(SQUID) position detector on an integrated 2 MHz flexural resonator. The frequency and
quality factor of the micromechanical resonator can be tuned independently with bias cur-
rent and applied magnetic flux. The backaction is caused by the Lorentz force due to the
change in circulating current when the resonator displaces, and the measurements are in
qualitative agreement with numerical simulations. Backaction can enable cooling, squeez-
ing of the mechanical resonator and synchronization of multiple embedded resonators.
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Recent experiments with mechanical resonators are rapidly approaching the quantum
limit on position detection, as shown in Ch. 2. This limit implies that the position of

the resonator cannot be measured with arbitrary accuracy, as the detector itself affects the
resonator position [1]. This is an example of backaction, i.e. the influence of a measure-
ment device on an object. Moreover, backaction does not just impose limits, it can also
be used to one’s advantage: Backaction can be used to cool the resonator, to squeeze its
motion, and to couple and synchronize multiple resonators. In experiments with micro-
or nanomechanical resonators, different backaction mechanisms have been identified: In
optical interferometers [2–5] and in electronic resonant circuits [6, 7] the backaction is due
to photon pressure. When using single electron transistors [8] or atomic point contacts [9]
as position detectors, it results from the tunneling of electrons. These examples stress the
need for a good understanding of backaction to achieve quantum limited position detec-
tion.

We have shown in Ch. 7 that a dc SQUID can be used as a sensitive detector of the
position of an integrated mechanical resonator. This embedded resonator-SQUID geom-
etry enables the experimental realization of a growing number of theoretical proposals
[10–16]. In this Chapter, we present measurements that show that the dc SQUID detector
exerts backaction on the resonator with a different origin than in the experiments men-
tioned above. By varying the bias conditions of the dc SQUID, the damping and frequency
of the resonator can be tuned independently. The backaction is due to the Lorentz force
generated by the circulating current in the dc SQUID. We find qualitative agreement be-
tween the observed effects and calculations with the resistively and capacitively shunted
junction (RCSJ) model for the dc SQUID [17].

8.1 DEVICE DESCRIPTION AND FABRICATION
Our device (Fig. 8.1a) consists of a dc SQUID in which a part of one arm is underetched,
forming a flexural resonator with length ` = 50µm [18]. Before studying the backaction
of the dc SQUID position detector on the resonator, first the dc SQUID is characterized
by measuring its current-voltage characteristics. The measured VI-curves in Fig. 8.1b are
fitted using the widely-used RCSJ model [17]. The details and results of this procedure are
discussed in the Supplement: At a magnetic field of B = 115mT, the critical current of a
single junction is I0 = 1.22µA. After increasing the magnetic field to 130mT to reduce the
critical current, the fit gives I0 = 0.51µA. This reduction of the critical current decreases
the backaction strength as we will show in the next Sections.

Our flux-based position detector works as follows: The output voltage of the dc SQUID
does not only depend on the bias current, but also on the amount of magnetic flux through
the loop. An in-plane magnetic field B transduces a displacement of the beam u into a flux
change ∼ `Bu, which in turn leads to a change in the SQUID voltage. This way, the flux
dependence of the SQUID voltage is used to detect the position of the resonator. During
all position-detection measurements, the dc SQUID is operated at a given setpoint voltage
VSP by a feedback loop (see Fig. 8.1a) that adjusts the flux via the stripline current [17–
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FIGURE 8.1: (a) Schematic overview of the dc SQUID and measurement setup. The scanning electron micro-
graph shows the dc SQUID with the suspended resonator. The magnetic field B transduces a displacement of the
beam u into a change in flux. A bias current IB is sent through the SQUID and its output voltage is measured.
The flux Φ is fine-tuned with a stripline current IF that is controlled by a feedback circuit (dashed) that keeps
the output voltage V at VSP . (b) The bias-current dependence of the measured Vmin and Vmax at two different
magnetic fields (see Supplement). The lines show the calculated VI-curves at integer (dashed) and half-integer
(solid) number of flux quanta. The plots for B = 130mT are vertically offset for clarity. (c) The amplitude (bottom)
and phase (top) response of the resonator (mean value and standard deviation of five frequency sweeps), with a
fitted harmonic oscillator response (lines). The fit gives the resonance frequency fR = 2015755.0Hz and quality
factor Q = 12.5×103.

19]. The feedback loop is used to reduce low-frequency flux noise and flux drift and has a
bandwidth of ∼ 2kHz. The fundamental mode of the beam is excited with a piezo element
underneath the sample and the output voltage is recorded. Figure 8.1c shows that both
the amplitude and phase response are reproduced well by a harmonic oscillator response.

8.2 BACKACTION MEASUREMENTS
To observe backaction of the dc SQUID detector on the resonator, the frequency response
is measured for different bias conditions of the dc SQUID. Figure 8.2 shows that the reso-
nance frequency fR and quality factor Q depend on the bias current. (For clarity, the differ-
ence between the resonator frequency and a fixed reference frequency fref = 2015800 Hz is
plotted). When decreasing the bias current, the resonance frequency shifts by almost 300
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FIGURE 8.2: (a) Frequency shift and (b) quality factor plotted versus the normalized bias current at B = 115mT
(circles) and B = 130mT (triangles). The inset depicts the voltage setpoint for these measurements w.r.t. Vmin
and Vmax. Bias current and setpoint dependence of the frequency shift (c) and damping (d) at B = 115 mT. The
solid lines indicate the measured Vmin and Vmax.

Hz for B = 115mT, which is about twice the linewidth γR = fR /Q of the resonance shown
in Fig. 8.1c. After increasing the magnetic field to B = 130mT the frequency shift shows a
similar bias-current dependence, but its magnitude is reduced. Figure 8.2b shows that the
quality factor changes more than a factor two. The changes are nearly identical at the two
different magnetic fields1. At low bias currents (|IB | . 0.5 · I0), the response is no longer
resolved because the voltage-to-flux transduction becomes too small. Figures 8.2c and d
show that the frequency and damping can also be changed by adjusting VSP . The shifts are
largest for low setpoints and low bias currents (dark regions). Measurements at setpoints
below 0.1 RI0 are challenging as stable operation of the feedback loop is difficult.

Figures 8.3a and b show the temperature dependence of the frequency shift and damp-
ing. Apart from some scatter in the data, the frequency shift is independent of temper-
ature, whereas the quality factor decreases with increasing temperature. An increased
damping at higher temperatures is seen more often when using micro- or nanomechan-
ical resonators (See Ch. 6 and Refs. [20–22]). This rules out that the observed frequency
shift and Q-factor change are caused by heating of the resonator due to Joule heating in

1The small asymmetry between the data at positive and negative bias current in Fig. 8.2a and b is caused by
differences in the regions where the feedback loop locks and drift in the amplifier offset.
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FIGURE 8.3: Temperature dependence of the frequency shift (a) and quality factor (b) at IB = 1.5 I0 for B =
115mT (blue circles, VSP = 0.3 RI0) and B = 130mT (gray triangles, VSP = 0.65 RI0). (c) Colorscale plot of the
oscillator response at IB = 2.0µA and B = 115mT for VSP = 0.05 to 0.66 RI0 at different driving powers. The
resonance frequency (black) and the full-with-at-half-maximum γR = fR /Q of the peak (gray) obtained from fits
are indicated. At the highest power (−120dBm), the motion amplitude of the piezo element is of the order of
1fm.

the junctions: We observe an increase in quality factor with increasing bias current and
voltage setpoint (i.e. dissipated power), but a decrease in quality factor with increasing
temperature.

The driving-power dependence of the frequency shift and damping is shown in Fig.
8.3c. The signal-to-noise ratio becomes better when increasing the driving power, but
the shifts remain the same even although the power is varied over two orders of magni-
tude. This indicates that the changes in frequency and damping are not caused by non-
linearities in the resonator.

Finally, after reversing the direction of the magnetic field or when operating the dc
SQUID at a setpoint with a different sign of ∂V /∂Φ, the sign of the change in fR and Q
remains the same.
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8.3 MODELLING THE BACKACTION

The backaction of a generic linear detector was discussed in detail in Sec. 2.4. In our dc
SQUID position detector, the backward coupling between the dc SQUID and beam is the
Lorentz force FL due to the current through the resonator [11, 14]. As shown in Sec. 2.4 the
backaction force has a random and a deterministic component. The former is important
when determining the backaction temperature as shown in Appendix A. In this Chapter
we focus on the deterministic term that responds linearly to the displacement. The reason
for such a response is as follows: A displacement of the beam u changes the flux, which in
turn changes the circulating current in the loop J . In the presence of the magnetic field,
this results in a change in the force on the beam. In addition, a time-varying flux through
the loop induces an electro-motive force which also generates currents that change the
Lorentz force [23]. The backaction-force transfer function λF (see Fig. 2.10) of the dc
SQUID position detector thus contains a constant term and a term that is proportional
to ∂/∂t .

The displacement of the fundamental out-of-plane flexural mode of the beam u is
given by the equation of motion of a damped harmonic oscillator [24]:

mü +mω0u̇/Q0 +mω2
0u = Fd (t )+FL(t ). (8.1)

The resonator has a mass m, (intrinsic) frequency f0 = ω0/2π and quality factor Q0. Fd

is the driving force and FL = aB`(IB /2+ J ) is the Lorentz force. Here, a is the geometrical
factor, defined by Eq. 3.46, that relates the average of the spatial profile of the mode u(x) to

the coordinate u: a = (u`)−1
∫ `

0 u(x) dx ≈ 0.91, so that also ∂Φ/∂u = aB` [18, 24]. For small
amplitudes and low resonator frequencies (much smaller than the characteristic SQUID
frequency ωc = 2πRI0/Φ0 ∼ 102 GHz), the average circulating current can be expanded in
the displacement and velocity u̇:

J (u, u̇) = J0 +
∂J

∂u
u + ∂J

∂u̇
u̇ = J0 +aB`(JΦu + JΦ̇u̇). (8.2)

The transfer functions [17] JΦ = ∂J/∂Φ and JΦ̇ = ∂J/∂Φ̇ are intrinsic properties of the dc
SQUID (i.e., they do not depend on the properties of the resonator). The first function
indicates how much the circulating current changes when the flux through the ring is al-
tered, whereas the second quantifies the effect of a time-dependent flux on the circulating
current. The transfer functions are calculated numerically, as analytical results are only
available in certain limits [25]. Our method is based on the commonly-used RCSJ model
as discussed in more detail in Appendix A.

Inserting Eq. 8.2 into Eq. 8.1 shows that the ∂J/∂u term affects the spring constant
mω2

R of the resonator, whereas the ∂J/∂u̇ term renormalizes the damping. The shifted
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resonance frequency and quality factor become:

fR = f0
(
1−∆ f φ

)1/2 , with ∆ f =
a2B 2`2

mω2
0

I0

Φ0
, (8.3)

Q = Q0
fR

f0

1

1−∆Q φ̇
, with ∆Q = a2B 2`2

mω0R

Q0

2π
. (8.4)

Here φ = JΦΦ0/I0 and φ̇ =ωc JΦ̇Φ0/I0 are the scaled transfer functions. The dimension-
less parameters ∆ f [13] and ∆Q characterize the strength of the backaction. Both parame-
ters scale as A2, where A is the coupling strength between the detector and the resonator
that was used in Ch. 2. At 115mT their values are: ∆ f = 1.7× 10−4 and ∆Q = 3.2× 10−4,
while at 130mT they are: ∆ f = 0.9× 10−4 and ∆Q = 3.5× 10−4 for Q0 = 14000, which is
its high-bias-current value. By reducing the critical current, ∆ f is reduced by a factor 2,
whereas∆Q hardly changes. This in agreement with the reduced frequency shift but equal
change in damping that were shown in Fig. 8.2a and b. By a careful design of resonators
and dc SQUIDs, the backaction strengths can be tuned over a large range. Eqs. 8.3 and 8.4
show that the largest backaction occurs for large flux changes aB`, low spring constants
mω2

0 and large circulating currents, i.e. large I0 and low R.
The dependence of the numerically-calculated circulating current transfer functions

on the bias conditions is shown in Fig. 8.4. The transfer functions do not depend on the
direction of the bias current, nor on the sign of the slope of V (Φ), in agreement with the
experimental results. In the region where V = 0, the circulating current distributes the bias
current over the two junctions in such a way that no voltage develops. Here, the circulating
current is of the order of I0, which gives φ ∼ −1 (blue). In the dissipative region (V 6= 0),
the circulating current is suppressed, leading to a small φ (light yellow and light blue) that
scales to a good approximation as βL for the experimental conditions. At the onset of the
dissipative region,  increases rapidly ( φÀ 1).

We now switch to the velocity transfer function which affects the damping. For high
bias currents, φ̇ ≈ −π (light blue). This is the current induced by a time-varying flux:

Φ̇/2R [25]. When approaching the edge from the dissipative region, φ̇ goes through zero
and rises to more than 1000. This reduces the damping and might even lead to instability
(Q < 0) when ∆Q is large enough. Further towards to the edge, φ̇ jumps to large negative
values, leading to an enhanced dissipation. This is a manifestation of Lenz’ law which
states that nature tries to undo changes in flux, in this case by reducing the velocity of the
beam. Well inside the non-dissipative region φ̇ ≈−π is found again. Note, that although
∆Q is small, the SQUID response φ̇ can be so large that their product is of the order 1.

With these transfer functions, the frequency shift and damping are calculated. Figure
8.5a shows the results for the experimental conditions at 115 mT. A comparison of this with
Fig. 8.3 shows a good qualitative agreement with the experiments: The largest changes in
fR and Q are found in the region of low bias current and low voltage setpoint, whereas the
backaction becomes smaller at higher setpoints. The order of magnitude of the calculated



136
8. TUNABLE BACKACTION OF A DC SQUID ON AN INTEGRATED

MICROMECHANICAL RESONATOR

FIGURE 8.4: Bias dependence of the calculated circulating-current transfer functions for B = 115mT. The (log-
arithmic) color-scale of the surface plots represents the transfer functions φ (a) and φ̇ (b); the height of the

surface is the dc SQUID voltage.

frequency shift is similar to that of the observed frequency shift for VSP /RI0 > 0.1. The
exact values of the calculated shift in frequency are, however, larger than observed exper-
imentally. In contrast, the calculated Q changes less than observed, but for low setpoints
(lower than measured), large changes are visible, which are of the same order as observed
experimentally. The difference between the calculated and measured values may be due
the flux noise which is present in the experiments, but which is not included in the cal-
culations. A full quantitative analysis of the backaction in the presence of flux noise is,
however, beyond the scope of this Chapter.

8.4 OUTLOOK
Backaction opens the way to the observation of various interesting effects when the cou-
plings ∆Q and ∆ f are large. In the current experiments, these couplings are relatively
small. Couplings of the order of unity can be obtained with realistic device parameters:
For example, B = 1T, R = 1Ω, I0 = 10µA and a four times smaller width of the resonator
result in ∆Q = 3 and ∆ f = 0.5. When the resonator and dc SQUID are so strongly coupled,
the resonator temperature is determined by the effective bath temperature [8, 9] of the dc
SQUID, which might lead to cooling of the resonator. Furthermore, the dependence of the
resonator frequency and quality factor on the bias conditions, allows parametric excita-
tion of the mechanical resonator by either modulating the flux or the bias current. This
enables squeezing of the thermomechanical noise of the resonator [13, 26]. Finally, if the
dc SQUID contains multiple, nearly identical mechanical resonators, these are coupled
to each other by the backaction. This, in turn, can synchronize their motion and might
lead to frequency entrainment if higher order terms in Eq. 8.2 become significant [27].
These examples are only a few intriguing possibilities of the rich physics connected to the
backaction that we have described in this Chapter.
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FIGURE 8.5: Color plots of the calculated frequency shift (a) and quality factor (b) with the experimental param-
eters ∆ f = 1.7× 10−4, ∆Q = 3.2× 10−4, f0 = 2.0158MHz and Q0 = 14000 (orange). The largest frequency shift
occurs in the black region and is fR − f0 = 34kHz. The quality factor varies between 1500 and 24000.

SUPPLEMENT

DC SQUID CHARACTERIZATION
To characterize the dc SQUID, we measure the minimum and maximum voltage (Vmin and Vmax) by

sweeping the magnetic flux Φ over a few flux quanta, Φ0 = h/2e, using the stripline. The feedback

loop is switched off during these experiments. The minimum and maximum voltages are deter-

mined for different bias currents, yielding the current-voltage curves at an integer and half-integer

number of flux-quanta2. VI-curves that are calculated with the restively and capacitively shunted

junction (RCSJ) model [17], are fitted to the Vmin and Vmax data. This procedure3 yields values

for the critical current I0 and the normal state resistance R of the individual junctions. Moreover,

this gives the inductive screening parameter βL = 2I0L/Φ0 and the Stewart-McCumber number

βC = 2πI0R2C /Φ0 [17]. The former indicates how much a change in flux is screened by the cir-

culating current J flowing through the self-inductance of the loop L, whereas the latter indicates

the importance of the junction capacitance C . The results from the fits are summarized in Table

8.1. For more details about the parameters, the RCSJ model and the fitting procedure, we refer to

Appendix A.

By combining the values of the fit parameters, the self-inductance of the dc SQUID and the

junction capacitance are obtained, as shown in Table 8.1. The self-inductance of the dc SQUID loop

is in agreement with the value L = 175pH, that is calculated with finite element simulations of the

electrodynamics of the superconducting loop using FastHenry [29]. Also the junction capacitance

can be estimated via an independent method, using the hysteretic VI-curves of the dc SQUID at

2The current-voltage curve at a (half) integer flux cannot be measured directly due to the presence of intrinsic
flux noise and drift.

3In the simulations, identical parameters for the two junctions in the dc SQUID are assumed. We find good
agreement between the measurements and the simulations, which indicates that this assumption is reasonable
as asymmetries in the parameters would have caused deviations in the V (IB ,Φ) characteristics [28].
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zero magnetic field (similar to the one in Fig. 7.2a). The RCSJ model relates the ratio ir of the return

current Ir and the critical current Ic of a dc SQUID to the Stewart-McCumber parameter: βc = (2−
(π−2)ir )/i 2

r [17]. Using this method, a value C = 0.34pF is obtained, which is in agreement with the

values obtained from the fits.
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TABLE 8.1: Parameters of the dc SQUID at two different magnetic fields. The critical current I0 and normal-state
resistance R of a single junction, the Stewart-McCumber number βC , and the screening parameter βL are used
to fit the calculated VI-curves to the measured Vmin and Vmax characteristics. The other quantities are derived
from these four fit parameters.

B = 115mT B = 130mT

R (Ω) 25.32 29.84
I0 (µA) 1.22 0.51

RI0 (µV) 30.94 15.13
ωc /2π (GHz) 15.1 7.4

Tc (K) 0.36 0.18
βC 0.76 0.31
βL 0.16 0.10

C (pF) 0.32 0.23
L (nH) 0.14 0.20
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A
A MODEL FOR THE DC SQUID

A.1 RCSJ MODEL
The dc SQUID is modelled using the RCSJ model (for a review, see Ref. [1]). The two junc-
tions of the dc SQUID are modelled as a resistor (R), capacitor (C ) and an “ideal” Joseph-
son junction in parallel, as illustrated in Fig. A.1a. Current conservation yields two second
order differential equations, governing the time dependence of the phase differences δ1,2

of the junctions (each with a critical current I0) in the dc SQUID. The voltage V is related to
the time derivative of the phase differences: V =Φ0(∂δ1/∂t+∂δ1/∂t )/4π. For a symmetric,
noiseless dc SQUID the differential equations are:

Φ0

2π
C δ̈1 +

Φ0

2π

1

R
δ̇1 + I0 sinδ1 = 1

2
IB + J , (A.1)

Φ0

2π
C δ̈2 +

Φ0

2π

1

R
δ̇2 + I0 sinδ1 = 1

2
IB − J . (A.2)

These equations are coupled to each other by the amount of flux piercing the loop:

δ2 −δ1 = 2π ·Φtot/Φ0. (A.3)

The total flux Φtot has two contributions: the externally applied flux Φ and the flux LJ due
to the circulating current J flowing through the inductance of the loop L, so Φtot =Φ+LJ .

First, the equations are scaled to simplify their numerical integration. This yields:

βC δ̈1 + δ̇1 + sinδ1 = ı/2+  , (A.4)

βC δ̈2 + δ̇2 + sinδ2 = ı/2−  , (A.5)

2π(φ+βL /2) = δ2 −δ1, (A.6)

when the bias current and circulating current are normalized as ı = Ib/I0 and  = J/I0.
Furthermore, time is scaled using the characteristic frequency ωc = 2πI0R/Φ0, flux us-
ing the flux quantum: φ = Φ/Φ0, and voltage by RI0 so that v = V /RI0 = (δ̇1 + δ̇2)/2.

Parts of this Appendix have been published in Nat. Phys. 4, 785–788 (2008)
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FIGURE A.1: (a) Schematic view of the dc SQUID. Each arm of the loop contains a Josephson junction (JJ) that is
shunted by the normal state resistance of the junction (R) and the junction capacitance (C). A bias current IB is
sent into the dc SQUID. When the current through the two junction is unequal, a circulating current J flows. The
output voltage V depends on the amount of flux throught the loop. (b) Calculated timetrace of the circulating
current (t ) and voltage v(t ) in the absence of noise with ı = 2, φ= 0.25, βC = 0.78 and βL = 0.16.

The scaled model contains two parameters that completely describe the behavior of dc
SQUIDs with different physical parameters, geometries and dimensions. The first is the
Stewart-McCumber number, βC = 2πI0R2C /Φ0, which indicates the importance of dis-
sipation in the resistances. A dc SQUID with βC . 1 is overdamped, whereas an under-
damped dc SQUID has βC & 1. In the first case, the current-voltage characteristics are
hysteretic. The other parameter is the screening parameter, βL = 2LI0/Φ0, which indi-
cates how much a change in flux is screened by the circulating current flowing through
the self-inductance of the loop L.

Figure A.1b shows a typical example of calculated time-traces of the circulating cur-
rent  and voltage v . Both are rapidly oscillating at a frequency ω= 0.71 ·ωc , which is the
Josephson frequency that determines the average value of the voltage v [1].

A.2 FLUX RESPONSIVITY
In this Section, the flux responsivity of the dc SQUID is calculated using numerical sim-
ulations for the experimental conditions of Ch. 8 at a field B = 115mT. The Stewart-
McCumber number and the screening parameter were βC = 0.78 and βL = 0.16 respec-
tively in this case. With these values, the scaled differential equations are integrated for
different values of the bias current and the flux through the dc SQUID. The output voltage
of the dc SQUID is calculated from the resulting time traces δ1,2(t ) using V = RI0(δ̇1+δ̇2)/2
. This voltage has high frequency components (at the Josephson frequency) and an aver-
age value, as shown in Fig. A.1b. The latter of the two is the voltage that is measured.
Figure A.2a shows a colorplot of the SQUID voltage as a function of the bias current and
flux. From the average voltage at different amounts of flux penetrating the dc SQUID,
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FIGURE A.2: Colormaps of the average voltage (a), circulating current (b) and flux responsivity (c) for different
bias currents and fluxes of a dc SQUID with βC = 0.78 and βL = 0.16.

the peak-to-peak voltage swing VPP is obtained. VPP is bias-current dependent and the
maximum voltage swing V max

PP equals RI0 and occurs at IB = 2I0. The dimensionless flux
responsivity vφ is obtained by numerically differentiating the scaled voltage with respect
to the applied flux. To obtain the real flux responsivity, the dimensionless version is mul-
tiplied with RI0 (or equivalently with V max

PP ) and divided by Φ0, i.e. ∂V /∂Φ = RI0/Φ0 · vφ.
Fig. A.2c shows that the highest responsivity is obtained when the dc SQUID is biased just
inside the dissipative region, where V 6= 0.

A.3 CALCULATION OF THE TRANSFER FUNCTIONS
In this Section, our method for calculating the transfer functions φ and φ̇ of the dc
SQUID is discussed. As Eqs. 8.3 and 8.4 show, these transfer functions are the key quan-
tities that determine the backaction of the dc SQUID detector on the resonator. A dis-
placement u changes the flux through the dc SQUID, which alters the voltage V and the
circulating current J . The former effect is the basis of position detection scheme (Ch. 7)
and the latter changes the Lorentz force on the resonator causing backaction (Ch. 8). How
the circulating current reacts to a change in displacement or flux is quantified by the trans-
fer functions JΦ and JΦ̇ (cf. Eq. 8.2). These transfer functions are intrinsic properties of
the dc SQUID (i.e. they do not depend on the properties of the resonator), so that a model
of the dc SQUID with a time-varying flux suffices to find them.

To obtain the transfer functions, a small modulation is added to the flux: φ → φ+
φmod cos(ωmodt ). Figure A.3a shows that this amplitude-modulates the circulating cur-
rent. Thereby it broadens the peaks at the harmonics of the Josephson frequency in the
Fourier spectrum shown in Fig. A.3b. More importantly, in the spectrum of  a peak ap-
pears at the modulation frequency. The real part of the peak corresponds to the derivative
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FIGURE A.3: (a) Circulating current for a small (φmod = 0.01) modulation of the flux with ωmod/ωc = 0.02. The
time-averaged value of the circulating current (t ) has a phase shift with respect to the modulation φ(t ) as in-
dicated by the dashed lines. (b) Magnitude of the Fourier transform of the time trace of the circulating current
that was shown in (a). (c) The modulation-frequency dependence of the real (squares) and imaginary (circles)
parts of the circulating-current modulation. These simulations were done with ı = 2.0, φ = 0.25, βC = 0.78 and
βL = 0.16.

φ = Re[ mod/φmod], while Im[ mod/φmod] =−ωmod φ̇. The frequency dependence of the
modulation of the circulating current is shown in Fig A.3c. The real part Re[ mod] is con-
stant and the imaginary part Im[ mod] increases linearly with the modulation frequency.
Note that higher order time derivatives in Eq. 8.2 show up as deviations from the straight
lines in Fig. A.3c. For low frequencies (in the experiments ωR /ωc ∼ 10−4) the higher order
terms can thus safely be neglected.

A.4 BACKACTION TEMPERATURE
Coupling a resonator strongly to a detector can greatly modify the resonator temperature.
This has been used to cool micromechanical resonators well below their environmental
temperature as discussed in Ch. 2. The resonator temperature TR is the weighted aver-
age of the environmental temperature T and the backaction temperature TB A of the de-
tector as indicated by Eq. 2.26. For the dc SQUID, the detector-induced damping rate
is γB A =−γ0∆Q φ̇. The backaction temperature is found using the fluctuation-dissipation
theorem (Eq. 2.10) that relates temperatures to force noise. The force noise has two contri-
butions1: the first is the intrinsic contribution with PSD SFn Fn = mω0kBT /Q0 and is due to
the environment at temperature T . The second contribution comes from the backaction
of the dc SQUID and is the Lorentz force due to the noise in the current IR = IB /2+ J , flow-
ing through the resonator, which gives SFB A,n FB A,n = (aB`)2S IR IR . The resonator current-

noise PSD, S IR IR , is caused by Johnson noise in the junction resistances (I1,n and I2,n), and
by fluctuations in the bias current IB ,n [3]. Both contribution are included in the RCSJ
model (see the previous Sections) by adding 1

2 IB ,n + I1,n and 1
2 IB ,n + I2,n to the right hand

side of Eqs. A.1 and A.2 respectively. These equations can be integrated numerically to

1In the present analysis, quantum fluctuation [2] are not taken into account.
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calculate the current noise flowing through the resonator. From this, the backaction tem-
perature is obtained.

If the noise is not too large, the backaction temperature can also be expressed via the
changes in the circulating current due to changes in the bias current ∂J/∂IB , and due to
currents generated in the resistances ∂J/∂I1,2:

S IR IR ≈ 4kBT

R

{(
∂J

∂I1

)2

+
(
∂J

∂I2

)2}
+S IB IB

(
1

2
+ ∂J

∂IB

)2

. (A.7)

By combining Eqs. 2.26 and A.7 with the results for the backaction (Eq. 8.3 and 8.4), the
backaction temperature is found:

TB A = S IR IR

2R

4kB

π

(− φ̇)
= 2

{(
∂J

∂I1

)2

+
(
∂J

∂I2

)2} π

(− φ̇)
T +

(
1

2
+ ∂J

∂IB

)2 π

(− φ̇)
F ıTc , (A.8)

where we have introduced the Fano-factor F = S IB IB /2eIB and the characteristic temper-
ature of the dc SQUID Tc = eRI0/kB = 0.3K at 115mT (see Table 8.1). Note, that the force
noise contribution due to the bias current can be made vanishingly small by operating
the dc SQUID at a setpoint where ∂J/∂IB = −1/2, i.e. where the noise in the bias current
does not flow through the arm with the resonator, but through the other arm instead. Fur-
thermore, note that both terms in A.8 have the same structure: they are the product of
an enhancement of the noise due to the dc SQUID dynamics, the cooling power of the dc
SQUID π/(− φ̇) and a temperature.

The difference in resonator temperature due to the backaction, ∆TR = TR −T , is given
by:

∆TR = γB A

γ0 +γB A
(TB A −T ) =

∆Q φ̇

1−∆Q φ̇
(T −TB A) . (A.9)

By using the parameters for the measurements at 115mT (Ch. 8), we find that at ı = 2 and
φ = 0.25, the transfer functions that are needed to calculate the backaction temperature
using Eq. A.8 are: ∂J/∂I1 = 0.49, ∂J/∂I2 =−0.51, ∂J/∂IB = 0.00 and ∂/∂φ̇= 1.24. For these
values, the noise generated in the junction resistances is negligible as T ¿ Tc . Shot noise
contributes 0.9pA/

p
Hz to the noise in the bias current and the 10kΩ input resistance of

the room-temperature high-frequency amplifier contributes 1.3pA/
p

Hz. This gives F =
3.1. The backaction temperature of the dc SQUID at this particular bias point is TB A =
−1.47K and this raises the resonator temperature by 0.6mK. Note, that the resonator is not
cooled by the backaction because ∂/∂φ̇ is positive, reducing the damping. The negative
backaction temperature means that when the resonator would be strongly coupled to the
detector, the resonator response becomes unstable (the damping becomes negative), an
effect that can be used to make a narrow-linewidth oscillator with good frequency stability
[4].
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SUMMARY

MECHANICAL SYSTEMS AT THE NANOSCALE
Mechanics has been studied for millennia. First only at the human scale, but the rapidly
developing microfabrication techniques of the last decades, made it possible to build smaller
and smaller systems. Nowadays, mechanical systems can be made at the nanoscale. These
devices are interesting from both an application and a scientific point of view. Compared
to micromechanical devices, nano(electro)mechanical systems (NEMS) are faster as they
have higher resonance frequencies, are lighter, making them sensitive to the addition of
only a single atom, and consume less energy. Currently, NEMS are being used as sensors
and high-frequency filters. NEMS can also be used to study the foundations of quantum
mechanics: Preparing a man-made object in a quantum state might answer the question
whether a clear separation exists between quantum and classical mechanics. To do this,
the nanomechanical resonator has to be cooled to its ground state and its position has to
be observed with a high resolution.

Many different techniques can be used to cool a resonator, but two different routes
can be distinguished. The first is to use an ultra-high-frequency mechanical resonator (> 1
GHz), so that its thermal occupation is less than one when the device is cooled in a dilution
refrigerator. The second approach is to use the detector to damp the resonator’s Brownian
motion, thus cooling it. This requires very good detectors. Quantum mechanics, however,
puts constraints on the detector: One can either measure the position very accurately at
the expense of severely disturbing the resonator, or measure an undisturbed resonator
with a very bad signal-to-noise ratio. The optimal trade-off between these two limits is
discussed.

In Chapter 2 an overview of the key experiments done so far in the field of quantum-
(electro)mechanical systems is given. A wide range of different resonators, detectors and
cooling mechanisms that are currently being employed to reach the ultimate goal: A res-
onator in the ground state combined with quantum-limited position detection.

In this Thesis measurements on a variety of different micro- and nanomechanical
systems are presented; these can all be modelled using continuum mechanics, although
some modifications have to be made when the device dimensions are of the order of a
nanometer. The elasticity relations of isotropic materials and of highly anisotropic graph-
ite are discussed. The latter is ideal for building devices to study mechanics in the quan-
tum regime as they have a large zero-point motion and yet high resonance frequencies.

The first system that is studied in this Thesis is the graphene nanodrum. These de-
vices consist of few-layer graphene flakes that are suspended over circular holes. Their
mechanical properties are studied by measuring their compliance profile using an atomic
force microscope. By fitting a continuum model to the data, the bending rigidity of and the
tension in the graphitic flakes can be determined simultaneously. From this, the funda-
mental resonance frequencies and zero-point motion are estimated. This novel method of
measuring the bending rigidity and tension is applicable to thin membranes of any kind.
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Suspended carbon nanotubes form another important class of nanomechanical sys-
tems. Their bending-mode vibrations are detected at room temperature using a frequency
mixing technique that converts fast conductance oscillations to more easily measurable
low-frequency current changes. The resonance frequency of these atomically thin devices
can be varied over a large range using the gate electrode: When a static gate voltage is
applied, a force is exerted on the nanotube, thereby straining it. This tension tunes the
nanotube resonator in a similar way as the tuning of a guitar string. The tuning curves
are accurately reproduced by the continuum model discussed in this Thesis. An analy-
sis of the resonance peak shape gives information about the quality factor and the phase
differences between the radio-frequency signals on the gate and source electrode. High-
quality carbon nanotubes are defect-free, covalently-bound structures, which should in
principle have low dissipation. However, the Q-factors that are found are low. This holds
for all bottom-up carbon-based resonators made so far. Using a novel detection scheme
that uses current rectification at sharp Coulomb peaks, combined with a driving force ex-
erted by a nearby antenna, nanotubes resonators are studied at millikelvin temperatures.
Here, ultra-high quality factors were observed, redeeming the promise of low dissipation
in high-quality nanotubes. These devices are expected to be close to their ground state
when they are not being driven. They might also be able to detect changes in mass as
small as a that of a single He atom. The motion of the nanotube is strongly coupled to
the tunnelling of electrons through the nanotube quantum dot, giving rise to a range of
interesting effects. This includes single electron tuning, strong backaction and feedback-
induced instabilities.

Finally, a 2 MHz flexural resonator that is embedded in the loop of a dc SQUID, is stud-
ied. The dc SQUID is frequently used as a near quantum-limited detector of magnetic
fields, but here it is used in a different way: As a position detector for the mechanical res-
onator. Using the Brownian motion of the resonator, the detector can be calibrated and
its sensitivity is found to be in the fm/

p
Hz range. This sensitive detection scheme makes

it possible to study the backaction of the dc SQUID on the resonator. By measuring the
driven response of the resonator while varying the bias conditions of the dc SQUID, shifts
in resonance frequency and changes in quality factor are observed. These effects, caused
by the Lorentz’ force on the resonator due to the circulating current in the dc SQUID,
are in semi-quantitative agreement with numerical simulations of the RCSJ model for the
SQUID.

Menno Poot
Delft, October 2009



SAMENVATTING

MECHANISCHE SYSTEMEN OP DE NANOSCHAAL
Mechanica wordt al millennia lang bestudeerd. Eerst alleen op de menselijke schaal, maar
de snelle ontwikkelingen in microfabricage-technieken tijdens de laatste decennia heb-
ben het mogelijk gemaakt om systemen met steeds kleinere afmetingen te maken. Van-
daag de dag kunnen mechanische systemen met nanometer afmetingen worden gemaakt.
Deze systemen zijn zowel voor toepassingen als voor wetenschappelijk onderzoek inte-
ressant. In vergelijking met micromechanische systemen, zijn nano(elektro)mechanische
systemen (NEMS) sneller vanwege hun hoge resonantiefrequenties, zijn zij lichter wat hen
gevoelig maakt voor de toevoeging van een enkel atoom en verbruiken zij minder energie.
Momenteel worden NEMS gebruikt als sensoren en hoogfrequente filters. NEMS kunnen
ook worden gebruikt om de grondslagen van de quantummechanica te bestuderen: Het
creëren van een door mensen gemaakt object dat zich in een quantumtoestand bevindt,
zou de vraag of er een duidelijke scheidslijn bestaat tussen klassieke- en quantummecha-
nica kunnen beantwoorden. Om dit voor elkaar te krijgen dient de nanomechanische re-
sonator tot de grondtoestand gekoeld te worden en dient zijn positie met hoge gevoe-
ligheid te kunnen worden bepaald.

Er bestaan verschillende koeltechnieken, maar er kunnen twee verschillende richting-
en worden onderscheiden. In de eerste wordt een ultrahoogfrequente mechanische re-
sonator gebruikt, die, wanneer hij afgekoeld wordt in een mengkoeler, een thermische
bezetting van minder dan één zal hebben. Bij de tweede manier wordt de detector ge-
bruikt om de Brownse beweging van de resonator te dempen en hem hiermee dus te
koelen. Hiervoor zijn zeer goede detectoren nodig. De quantummechanica legt echter
beperkingen op aan de detector: De positie van de resonator kan slechts met hoge precisie
worden bepaald als de resonatorbeweging sterk verstoord wordt en een meting waarbij de
resonator nauwelijks verstoord wordt, zal resulteren in een onnauwkeurige positiebepa-
ling. In dit proefschrift wordt de balans tussen deze twee limieten besproken.

In hoofdstuk 2 wordt een overzicht van de belangrijkste experimenten die tot nu toe
gedaan zijn in het veld van quantum(elektro)mechanische systemen gegeven. Een va rië-
teit aan resonatoren, detectoren en koeltechnieken wordt op dit moment gebruikt om het
ultieme doel te realiseren: Een mechanische resonator in zijn grondtoestand, gecombi-
neerd met een detector die op de door quantummechanica bepaalde limiet werkt.

Dit proefschrift beschrijft verschillende micro- en nanomechanische systemen; zij kun-
nen allemaal worden gemodelleerd binnen het raamwerk van de continuümmechanica,
hoewel er verfijningen nodig zijn wanneer de afmetingen van het systeem de nanometer
benaderen. De relatie tussen de spanning en rek in een isotroop materiaal en die van het
sterk anisotrope grafiet worden besproken. Dit laatste materiaal is ideaal voor het maken
van beweegbare apparaatjes om mechanische systemen in het quantumregime te kun-
nen bestuderen, omdat zij een grote nulpuntsbeweging hebben, gecombineerd met hoge
resonantiefrequenties.

Het eerste systeem dat wordt bestudeerd is een grafeen nanotrommel. Deze trommels
bestaan uit grafeenflinters die vrijhangen boven cirkelvormige gaten. Hun mechanische
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eigenschappen worden bestudeerd door het profiel van de veerconstante te meten met
een atomaire-krachtmicroscoop. Door deze gemeten data met een continuümmodel te
vergelijken, worden rekspanning in en de buigstijfheid van de flinters bepaald. Hiermee
worden de resonantiefrequentie en de nulpuntbeweging geschat. Deze methode kan ge-
bruikt worden om de rekspanning en buigstijfheid van ieder dun membraan te bepalen.

Vrijhangende koolstof nanobuisjes vormen een andere belangrijke klasse van nanoelek-
tromechanische systemen. Hun transversale trillingen worden bij kamertemperatuur door
middel van een frequentie-mix techniek waargenomen. Hierbij worden hoogfrequente
geleidingsoscillaties omgezet in stroomveranderingen met een lagere frequentie. De reso-
nantiefrequentie van deze buisjes kan over een groot bereik gestemd worden met een gate-
elektrode. Door hierop een gelijkspanning aan brengen, wordt een kracht op de nanobuis
uitgeoefend en wordt deze uitgerekt. Net zoals bij het stemmen van een gitaarsnaar gaat
de frequentie hierdoor omhoog. Een analyse van de vorm van de resonantiepiek geeft in-
formatie over de kwaliteitsfactor en het faseverschil tussen de radiofrequente signalen op
de source- en de gate-elektrode. Koolstof nanobuisjes van hoge kwaliteit zijn in principe
vrij van defecten, wat in een lage dissipatie zou moeten resulteren. De gemeten Q-factoren
zijn echter teleurstellend laag. Dit gold tot nu toe voor alle NEMS die gemaakt zijn van
kleine, op koolstof gebaseerde structuren. Met een nieuwe detectietechniek die gelijk-
richting op een Coulombpiek gebruik, in combinatie met aandrijving via een nabije an-
tenne hebben wij nanobuisresonatoren bij millikelvin temperaturen kunnen bestuderen.
Hierbij werden ultra hoge Q-factoren gevonden en kon de belofte van lage dissipatie in
dit soort systemen eindelijk worden ingelost. De nanobuis zou dicht bij zijn grondtoe-
stand moeten zijn als hij niet wordt aangedreven. Hij zou ook in staat moeten zijn om
een massaverandering ter grootte van een enkel heliumatoom te detecteren. De beweging
van de nanobuis is sterk gekoppeld aan die van de elektronen die door de nanobuis heen
stromen. Dit leidt o.a. tot afstemming door een enkel elektron, sterke terugwerking en
terugkoppelinggeïnduceerde instabiliteit.

Tot slot wordt een 2 MHz resonator die in de lus van een dc SQUID geïntegreerd is,
behandeld. De dc SQUID wordt vaak gebruikt als een magneetvelddetector die de quan-
tumlimiet benadert. Hier wordt hij echter op een andere manier gebruikt, namelijk als
detector van de verplaatsing van een balkresonator. Middels de Brownse beweging van de
resonator is de detector gekalibreerd en zijn gevoeligheid ligt in het fm/

p
Hz gebied. Dit

gevoelige detectieschema maakt het mogelijk om de terugwerking van de dc SQUID op
de resonator te bestuderen. Door de respons van de resonator op een aangelegde kracht
te meten bij verschillende instellingen van de dc SQUID, worden verandering in de fre-
quentie en demping van de resonator waargenomen. Deze effecten, veroorzaakt door de
Lorentzkracht vanwege de circulerende stroom in de dc SQUID, zijn in semikwantitative
overeenkomst met de uitkomst van numerieke simulaties van het RCSJ model voor de dc
SQUID.

Menno Poot
Delft, oktober 2009
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