
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Robust Attitude Control
in Active Debris Removal
Missions using
Reinforcement Learning
Master Thesis

M. R. Meijkamp

Robust Attitude Control
in Active Debris

Removal Missions
using Reinforcement

Learning
Master Thesis

by

M. R. Meijkamp

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Friday August 30, 2024 at 9:30.

Student number: 4676718
Thesis committee: Dr. ir. E. Mooij, TU Delft, chair

Dr. J. Guo, TU Delft, supervisor
Dr. ir. E. van Kampen, TU Delft, supervisor
J. Liu, TU Delft, supervisor
Dr. S. Speretta, TU Delft, independent assessor

Cover: ClearSpace-1 captures Vespa - Courtesy of ESA/ClearSpace SA.
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/

Preface

That’s it, an end to a 7 year long journey of learning. Looking back on my time at TU Delft, I can honestly
say that I could not have made a better decision in coming here to study. I have been challenged, but
also inspired. I’ve learned it’s okay to think big, to be excited about something, while also recognizing
your own opportunities for improvement and the strength of working together.

During these years I’ve met many wonderful people, many who I can now call friends. I want to thank
you for all the laughs, the motivation during the difficult moments, and especially the support during the
thesis research. Whether it was a pep talk on the phone or the ”we’re all in this together”-mindset of
our master workspace in 2.56, you made me determined to finish and made me a better person.

Thanks also to my parents, who gave me the freedom to choose any path I wanted, despite the crazy
looks I sometimes got for trying to combine one thing too many. Thanks for keeping me sane and
supporting me all the way.

Finally, thank you to my supervisors: Jian Guo, Erik-Jan van Kampen, and Jingyi Liu. Initially, I did
not really know what I wanted. You gave me the opportunity to learn a completely new field, while
still working on a space topic, with relevance to sustainability. I know I could sometimes be a bit
overenthusiastic or a bit too optimistic, but you provided the right levels of criticism combined with
confidence for me to take a step back, iterate, refine, and learn the most from the entire process.
Thanks for steering me into the right directions and for asking the right questions.

To the reader, I learned so much while writing this thesis, and I hope you will too. It was fun to make,
so I’m confident you will find the same excitement about this topic that I have found.

M. R. Meijkamp
Delft, July 2024

ii

List of Figures

1.1 Monthly number of debris objects >10 cm in low Earth orbit by object type [9]. 2
1.2 Concept diagram of capturing methods, from Shan et al [16]. 2
1.3 Attitude control modes for the ITASAT cubesat, from Carrara et al [31]. 4
1.4 Angular rates for the flexible multibody INDI controller as designed by Singh and Mooij

[38]. Note the remaining lower frequency vibration in the filtered (F) case, indicating a
need for further filtering. 6

1.5 Vector components of the attitude error quaternion over time of a spacecraft attitude
model by Gao et al [46] using three different attitude controllers. 7

1.6 Schematic illustration of information flow in a model-based reinforcement learning agent,
from Sutton and Barto [57]. In a model-free agent, no model is learned, and hence no
planning is done. In that case, only the loop between the value/policy and the experience
remains, and the value/policy is learned directly. 10

1.7 Generic actor-critic agent block diagram. Continuous lines indicate the flow of a signal,
while the dotted line indicates the update rules for the actor and critic neural nets. The
blue box indicates the scope of what is called the reinforcement learning agent. 12

1.8 Euler axis rotation angle and attitude rates for TD3 (black) and PPO (red) agents, from
Elkins et al [93]. 14

2.1 Schematic representation of the full model. 19
2.2 Full block diagram for the learning process for a spacecraft attitude reinforcement learn-

ing controller, color-coded: The blue box is the spacecraft model discussed in section 2.2,
the red box is the (reinforcement learning) controller discussed in section 2.3.4, and the
green box is the reward function discussed in section 2.3.2. The gray dashed box repre-
sents the sensors. 20

2.3 The Envisat body frame, from Virgili et al [112]. 22
2.4 Spacecraft with a flexible boom, reproduced from Gennaro [117]. 26
2.5 Exponential part of the reward function, original (asymmetric, blue) and alternative (sym-

metrical around ϕ = π, orange) variants. 30
2.6 Demonstration of the diminishing returns for longer training times for the four algorithms.

The algorithms no longer show continued improvements in performance after a relatively
early timestep. Results are shown for a single training process of a baseline agent in the
rigid environment, without smoothing applied. 34

2.7 Example sensitivity analysis figure for the rigid environment, with inertia scaling as the
variation to the agent. Each sub-figure shows a different performance metric, in this case
(clockwise from top left) mean reward, mean settling time, mean final angle, and mean
total control effort. The x-axis shows which perturbation is applied during evaluation,
while the different bars represent the different algorithms that are used. The error bars
indicate one standard deviation. 39

3.1 Rigid environment episode, JIT (subscript jit) and non-JIT (subscript n) version, for the
same initial condition and random actions. 42

3.2 Verification of the numerical integration settings: nominal (subscript nom) environment
with a timestep of 1/60 s and a 100x finer timestep environment (subscript 100) dt =
1/6000 s. 43

3.3 Simulation of a spring-damper system step response to verify the custom spring-damper
system implementation. 43

3.4 Simulation of a spring-damper system controlled by a PID controller to verify the custom
PID controller implementation. 44

iii

List of Figures iv

3.5 Learning curves of TD3 and TD7 for the Pendulum-v1 gymnasium environment for 15000
steps. Note that the plotted value is the average reward per episode over the entire
training process. 45

3.6 Comparison of the rigid spacecraft dynamics and kinematics with an analytical solution
(subscript a) from Markley in the book of Wertz [142]. 46

3.7 Verification of the reward function by comparing it with Elkins’ implementation. The en-
vironment state is reset manually at step 234 to a state just within 0.25◦ from the target,
resulting in a +9 bonus. After 500 steps, the episode truncates automatically, as the
maximum episode steps was configured for 500 steps for this test. The reset sets the
state with a rotational rate that is almost at the termination limit. Under the influence of
the (same) random action, both environments reach the terminal rotational velocity at
timestep 998, resulting in a penalty instantaneous reward of -25 at this final timestep. . 47

3.8 Verification of the flexible model (subscript f) with the flexible modifications to the model
disabled, for the same initial conditions, model settings, and numerical settings as the
rigid model (subscript r). 48

3.9 Verification of the flexible model against the reference model by Gennaro [116]. The
settings and parameters used are the same as those used to generate figure 3 of his
paper. The behavior shown by these results are very similar to the behavior shown in
his figures (bottom). 49

3.10 Validation process of the full model: comparison of the learning behavior between the
custom implementation used in this research and the implementation by Elkins, for two
distinct random seeds. 50

4.1 A single episode for the rigid model, controlled using the best PPO agent. Initial quater-
nion is q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial
values all zero. 53

4.2 A single episode for the rigid model, controlled using the best SAC agent. Initial quater-
nion is q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial
values all zero. 53

4.3 A single episode for the rigid model, controlled using the best TD3 agent. Initial quater-
nion is q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial
values all zero. 54

4.4 A single episode for the rigid model, controlled using the best TD7 agent. Initial quater-
nion is q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial
values all zero. 54

4.5 Average, minimum, and maximum results for multiple learning processes with the four
different algorithms in the rigid case, with 10-step window smoothing applied. 55

4.6 Individual runs of the different algorithms for the rigid baseline case without smoothing
applied. Different colours represent different runs, while the gray horizontal striped line
represents the total episode reward achieved on average when using the rigid PD con-
troller. 55

4.7 Results of the learning process of the four different algorithms in the rigid spacecraft
environment. Average results are shown including a 95% confidence interval, with 10-
step window smoothing applied. 56

4.8 Performance of PPO agents trained with variations in cr in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 60

4.9 Performance of SAC agents trained with variations in cr in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 61

4.10 Performance of TD3 agents trained with variations in cr in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 61

List of Figures v

4.11 Performance of TD7 agents trained with variations in cr in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 61

4.12 Results of the learning process of the four different algorithms in the rigid spacecraft
environment, with an inertia rotation domain randomization applied. Average results are
shown including a 95% confidence interval, with 10-step window smoothing applied. . . 63

4.13 Performance of agents with domain randomization applied in the form of inertia rotation,
with respect to the baseline performance. Bars indicate one standard deviation. 63

4.14 Results of the learning process of the four different algorithms in the rigid spacecraft
environment, with a noisy gyroscope domain randomization applied. Average results
are shown including the minimum and maximum results, without any smoothing. 65

4.15 Performance of agents with domain randomization applied in the form different attitude
representations, with respect to the baseline performance, between all agents at the end
of training. The crosses indicate that no results are available due to the filtering, meaning
that none of the final agents had a convergence ratio of 1.0. 65

4.16 Results of the learning process of the four different algorithms in the rigid spacecraft
environment, with torque misalignment domain randomization applied. Average results
are shown including a 95% confidence interval, with 10-step window smoothing applied. 66

4.17 Performance of agents with domain randomization applied in the form of torque misalign-
ment, with respect to the baseline performance. 67

4.18 Performance of the best agents during their training process plotted against the explo-
ration noise hyperparameter value for all four algorithms in the rigid unperturbed environ-
ment. Of all the trendlines shown (all linear trends), the best fit is R2 = 0.55, which is a
bad fit (indicating that the relation is not linear). The trendlines have still been included,
to provide a sense of the first-order trend. 68

4.19 Performance of the best agents during their training process plotted against the γ hyper-
parameter value for all four algorithms in the rigid unperturbed environment. Of all the
trendlines shown (all linear trends), the best fit is R2 = 0.76, which is a bad fit (indicating
that the relation is not linear). The trendlines have still been included, to provide a sense
of the first-order trend. 69

4.20 Performance of the best agents during their training process plotted against the learning
rate hyperparameter value for all four algorithms in the rigid unperturbed environment.
Of all the trendlines shown in the mean episode reward figure (all linear trends), the best
fit is R2 = 0.28, which is a bad fit (indicating that the relation is not linear). The trendlines
have still been included, to provide a sense of the first-order trend. 69

4.21 Agent performance metrics for different combinations of node count hyperparameter val-
ues for PPO, for the rigid environment. 70

4.22 Agent performance metrics for different combinations of node count hyperparameter val-
ues for SAC, for the rigid environment. 71

4.23 Agent performance metrics for different combinations of node count hyperparameter val-
ues for TD3, for the rigid environment. 71

4.24 Agent performance metrics for different combinations of node count hyperparameter val-
ues for TD7 (excluding encoder layers), for the rigid environment. 71

4.25 Performance of the best agents during their training process plotted against the τ hy-
perparameter value for SAC and TD3 in the rigid unperturbed environment. Of all the
trendlines shown (all linear trends), the best fit is R2 = 0.34, which is a bad fit (indicating
that the relation is not linear). The trendlines have still been included, to provide a sense
of the first-order trend. 72

4.26 Performance of the best agents during their training process plotted against the policy
delay hyperparameter value for TD3 and TD7 in the rigid unperturbed environment. Of
all the trendlines shown (all linear trends), the best two fits are R2 = 0.91 and R2 = 0.36,
which is a bad fit (indicating that the relation is not linear). The trendlines have still been
included, to provide a sense of the first-order trend. 72

List of Figures vi

4.27 Performance of the best agents during their training process plotted against the target
smoothing noise standard deviation hyperparameter value for TD3 and TD7 in the rigid
unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is
R2 = 0.28, which is a bad fit (indicating that the relation is not linear). The trendlines
have still been included, to provide a sense of the first-order trend. 73

4.28 Diagram of State-Action Learned Embeddings (SALE), from Fujimoto’s original paper [99]. 74
4.29 Agent performance metrics for different combinations of embedding node count hyper-

parameter (hdim) values for TD7, for the rigid environment. 74
4.30 Agent performance metrics for different combinations of node count hyperparameter val-

ues for TD7 (including encoder layers), for the rigid environment. 74
4.31 Performance of the best agents during their training process plotted against the α hy-

perparameter value for TD7 in the rigid unperturbed environment. Of all the trendlines
shown (all linear trends), the best fit is R2 = 0.80, which is a reasonable fit. 75

4.32 Performance of the best agents during their training process plotted against the update
frequency hyperparameter value for TD7 in the rigid unperturbed environment. Of all the
trendlines shown (all linear trends), the best fit is R2 = 0.88, which is a strong fit. 76

4.33 A single episode for the flexible model, controlled using the PD controller. Initial quater-
nion is q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial
values all zero. 78

4.34 A single episode for the flexible model, controlled using a final PPO agent.Initial quater-
nion is q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial
values all zero. 79

4.35 A single episode for the flexible model, controlled using the best SAC agent. Initial
quaternion is q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other
initial values all zero. 79

4.36 A single episode for the flexible model, controlled using the best TD3 agent. Initial quater-
nion is q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial
values all zero. 80

4.37 A single episode for the flexible model, controlled using the best TD7 agent. Initial quater-
nion is q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial
values all zero. 80

4.38 Average, minimum, and maximum results for multiple learning processes with the four
different algorithms in the flexible case, with 10-step window smoothing applied. 81

4.39 Performance of SAC agents trained with variations in cp in the reward function. Shown
are the changes with respect to the baseline under all the investigated perturbations,
only for the flexible environment. Bars indicate one standard deviation. 83

4.40 Performance of agents with domain randomization applied in the form of torque misalign-
ment, with respect to the baseline performance, in the flexible case. 84

4.41 Average, minimum, and maximum unfiltered results for multiple learning processes with
the four different algorithms in the flexible case with the full observation vector available,
with 10-step window smoothing applied. 84

4.42 Performance of agents with full observability enabled, with respect to the baseline per-
formance, in the flexible case, for the (filtered) final agents. 85

4.43 Performance of the best agents during their training process plotted against the explo-
ration noise hyperparameter value for all four algorithms in the flexible unperturbed envi-
ronment. Of all the trendlines shown (all linear trends), the best fit is R2 = 0.67, which is
a bad fit (indicating that the relation is not linear). The trendlines have still been included,
to provide a sense of the first-order trend. 86

4.44 Performance of the best agents during their training process plotted against the γ hy-
perparameter value for all four algorithms in the flexible unperturbed environment. The
trendline for TD3 in the mean episode reward figure has an R2 = 0.87, indicating that
the relation is (roughly) linear. However, the trendline of SAC has R2 = 0.18, which is a
very bad fit. The trendlines have still been included, to provide a sense of the first-order
trend. 86

List of Figures vii

4.45 Performance of the final agents during their training process plotted against the learning
rate hyperparameter value for all four algorithms in the rigid unperturbed environment.
Of all the trendlines shown in the mean episode reward figure (all linear trends), the best
fit is R2 = 0.30, which is a bad fit (indicating that the relation is not linear). The trendlines
have still been included, to provide a sense of the first-order trend. 87

A.1 Performance of PPO agents trained with variations in ca in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 102

A.2 Performance of SAC agents trained with variations in ca in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 102

A.3 Performance of TD3 agents trained with variations in ca in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 103

A.4 Performance of TD7 agents trained with variations in ca in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 103

A.5 Performance of PPO agents trained with variations in cp in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 103

A.6 Performance of SAC agents trained with variations in cp in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 104

A.7 Performance of TD3 agents trained with variations in cp in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 104

A.8 Performance of TD7 agents trained with variations in cp in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the rigid environment. Bars indicate one
standard deviation. 104

A.9 Performance of SAC agents trained with variations in cr in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the flexible environment. Bars indicate
one standard deviation. 105

A.10 Performance of TD3 agents trained with variations in cr in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the flexible environment. Bars indicate
one standard deviation. 105

A.11 Performance of TD7 agents trained with variations in cr in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the flexible environment. Bars indicate
one standard deviation. 106

A.12 Performance of SAC agents trained with variations in ca in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the flexible environment. Bars indicate
one standard deviation. 106

List of Figures viii

A.13 Performance of TD3 agents trained with variations in ca in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the flexible environment. Bars indicate
one standard deviation. 106

A.14 Performance of TD7 agents trained with variations in ca in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the flexible environment. Bars indicate
one standard deviation. 107

A.15 Performance of SAC agents trained with variations in cp in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the flexible environment. Bars indicate
one standard deviation. 107

A.16 Performance of TD3 agents trained with variations in cp in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the flexible environment. Bars indicate
one standard deviation. 107

A.17 Performance of TD7 agents trained with variations in cp in the reward function. Shown
are the changes in mean performance with respect to the baseline, also under torque,
inertial, and gyroscope perturbations, only for the flexible environment. Bars indicate
one standard deviation. 108

A.18 Performance of agents with domain randomization applied in the form of inertia scaling,
with respect to the baseline performance. Bars indicate one standard deviation. 108

A.19 Results of the learning process of the four different algorithms in the rigid spacecraft
environment, with a drifting gyroscope bias domain randomization applied. Average
results are shown including the minimum and maximum results, without any smoothing. 109

A.20 Performance of agents with domain randomization applied in the form of torque scaling,
with respect to the baseline performance in the rigid case. Bars indicate one standard
deviation. 109

A.21 Performance of agents with domain randomization applied in the form of torque noise,
with respect to the baseline performance in the rigid case. Bars indicate one standard
deviation. 110

A.22 Performance of agents with domain randomization applied in the form of a disturbance
torque, with respect to the baseline performance in the rigid case. Bars indicate one
standard deviation. 110

A.23 Performance of agents with domain randomization applied in the form of inertia rotation,
with respect to the baseline performance in the flexible case. Bars indicate one standard
deviation. 111

A.24 Performance of agents with domain randomization applied in the form of inertia scaling,
with respect to the baseline performance in the flexible case. Bars indicate one standard
deviation. 111

A.25 Performance of agents with the Euler state representation with respect to the baseline
performance in the flexible unperturbed case. Bars indicate one standard deviation. . . 112

A.26 Performance of agents with the MRP state representation with respect to the baseline
performance in the flexible unperturbed case. Bars indicate one standard deviation. . . 112

A.27 Performance of agents with domain randomization applied in the form of torque scaling,
with respect to the baseline performance in the flexible case. Bars indicate one standard
deviation. 113

A.28 Performance of agents with domain randomization applied in the form of torque noise,
with respect to the baseline performance in the flexible case. Bars indicate one standard
deviation. 113

A.29 Performance of agents with domain randomization applied in the form of a disturbance
torque, with respect to the baseline performance in the flexible case. Bars indicate one
standard deviation. 114

List of Figures ix

A.30 Performance of the best agents during their training process plotted against the activa-
tion function value for all four algorithms in the rigid unperturbed environment. The N/A
marker means that no data was available for this case (the sampler did not select this
activation function). 114

A.31 Performance of the best agents during their training process plotted against the clip range
hyperparameter value for PPO in the rigid unperturbed environment. Of all the trendlines
shown (all linear trends), the best fit is R2 = 0.18, which is a bad fit (indicating that the
relation is not linear). The trendlines have still been included, to provide a sense of the
first-order trend. 115

A.32 Performance of the best agents during their training process plotted against the number
of epochs hyperparameter value for PPO in the rigid unperturbed environment. Of all the
trendlines shown (all linear trends), the best fit is R2 = 0.47, which is a bad fit (indicating
that the relation is not linear). The trendlines have still been included, to provide a sense
of the first-order trend. 115

A.33 Performance of the best agents during their training process plotted against the number
of steps value for PPO in the rigid unperturbed environment. 116

A.34 Performance of the best agents during their training process plotted against the GAE-λ
value for PPO in the rigid unperturbed environment. 116

A.35 Performance of the best agents during their training process plotted against the vf-coefficient
value for PPO in the rigid unperturbed environment. 117

A.36 Performance of the best agents during their training process plotted against the maxi-
mum gradient norm value for PPO in the rigid unperturbed environment. 117

A.37 Performance of the best agents during their training process plotted against the target
KL value for PPO in the rigid unperturbed environment. 118

A.38 Performance of the best agents during their training process plotted against the target
update interval hyperparameter value for SAC in the rigid unperturbed environment. Of
all the trendlines shown (all linear trends), the best fit is R2 = 0.33, which is a bad fit
(indicating that the relation is not linear). The trendlines have still been included, to
provide a sense of the first-order trend. 118

A.39 Performance of the best agents during their training process plotted against the target
noise clip value for TD3 and TD7 in the rigid unperturbed environment. Note that no TD3
agent converged. 119

A.40 Performance of the best agents during their training process plotted against the criteria
reset value for TD7 in the rigid unperturbed environment. 119

A.41 Performance of the best agents during their training process plotted against the late
assessment episodes hyperparameter value for TD7 in the rigid unperturbed environment.120

A.42 Performance of the final agents during their training process plotted against the activation
function value for all four algorithms in the flexible unperturbed environment. The N/A
marker means that no data was available for this case (the sampler did not select this
activation function). 120

A.43 Average best agent performance metrics for different combinations of node count hy-
perparameter values for PPO, for the flexible environment. Note that only one agent
converged. 121

A.44 Average best agent performance metrics for different combinations of node count hyper-
parameter values for SAC, for the flexible environment. 121

A.45 Average best agent performance metrics for different combinations of node count hyper-
parameter values for TD3, for the flexible environment. 122

A.46 Average best agent performance metrics for different combinations of node count hyper-
parameter values for TD7, for the flexible environment. 122

A.47 Performance of the final agents during their training process plotted against the number
of steps value for PPO in the flexible unperturbed environment. 123

A.48 Performance of the final agents during their training process plotted against the number
of epochs value for PPO in the flexible unperturbed environment. 123

A.49 Performance of the final agents during their training process plotted against the GAE-λ
value for PPO in the flexible unperturbed environment. 124

List of Figures x

A.50 Performance of the final agents during their training process plotted against the clip range
value for PPO in the flexible unperturbed environment. 124

A.51 Performance of the final agents during their training process plotted against the vf-coefficient
value for PPO in the flexible unperturbed environment. 125

A.52 Performance of the final agents during their training process plotted against the max
gradient norm value for PPO in the flexible unperturbed environment. 125

A.53 Performance of the final agents during their training process plotted against the target
KL value for PPO in the flexible unperturbed environment. 126

A.54 Performance of the best agents during their training process plotted against the τ value
for TD3 and SAC in the flexible unperturbed environment. 126

A.55 Performance of the best agents during their training process plotted against the target
update hyperparameter value for SAC in the flexible unperturbed environment. 127

A.56 Performance of the best agents during their training process plotted against the policy
delay value for TD3 and TD7 in the flexible unperturbed environment. 127

A.57 Performance of the best agents during their training process plotted against the target
noise standard deviation value for TD3 and TD7 in the flexible unperturbed environment. 128

A.58 Performance of the best agents during their training process plotted against the target
noise clip value for TD3 and TD7 in the flexible unperturbed environment. 128

A.59 Performance of the best agents during their training process plotted against the α value
for TD7 in the flexible unperturbed environment. 129

A.60 Performance of the best agents during their training process plotted against the criteria
reset value for TD7 in the flexible unperturbed environment. 129

A.61 Performance of the best agents during their training process plotted against the hidden
layer dimension size for TD7 in the flexible unperturbed environment. 130

A.62 Performance of the best agents during their training process plotted against the late as-
sessment episodes hyperparameter value for TD7 in the flexible unperturbed environment.130

A.63 Performance of the best agents during their training process plotted against the hidden
layer node count values (including embedding layers) for TD7 in the flexible unperturbed
environment. 131

A.64 Performance of the best agents during their training process plotted against the update
frequency hyperparameter value for TD7 in the flexible unperturbed environment. 131

List of Tables

1.1 Summary of the most stringent requirements from the e.Deorbit mission [32] and the
COMRADE mission [33]. The post-capture phase requirements are relevant to this re-
search. 5

2.1 Comparison of Attitude Representations . 24
2.2 Baseline hyperparameters for the reinforcement learning agents 33
2.3 PD gains tuned for the rigid and flexible environments. 35
2.4 PD controller performance in the different environments. The values after ± represent

the standard deviation of the value over 200 randomly initialized episodes. 36

3.1 Test quaternions and their corresponding expected reward, together with the actual re-
ward given by the spacecraft model. 47

4.1 Computational time metrics for the rigid baseline case. 57
4.2 Comparative computational time metrics for the rigid baseline case. 57
4.3 Keys for the perturbations listed in table 4.4. 58
4.4 Rigid robustness performance of the baseline agents. Shown are mean performance

values of the best performing agents during training (best) or the agents at the end of
training (final), before filtering for convergence. Highlighted in blue are performance
values that are equal to or better than the PD controller (right-most column). Note, for
the convergence rate and mean episode reward, this means that the values are higher
than the PD, but for mean settling time, control effort, and final angle, the values are
lower than the PD. 59

4.5 Summary of performance for the PD controller and the baseline (BL) and inertia rotation
domain randomized (DR) TD3 and TD7 agents. The performance shown is the perfor-
mance of the controllers for the rigid case when the inertia rotation perturbation is applied. 64

4.6 Average convergence rates for the final agents for each of the four algorithms in the three
different attitude representation cases. 65

4.7 Flexible robustness performance of the baseline agents. Shown are mean performance
values of the best performing agents during training (best) or the agents at the end of
training (final), before filtering for convergence. Note that PPO converged zero agents
that converged during any point during the training, so no performant ’best’ agent(s)
exist for that algorithm, which is why it is omitted. Highlighted in blue are performance
values that are equal to or better than the PD controller (right-most column). Note, for
the convergence rate and mean episode reward, this means that the values are higher
than the PD, but for mean settling time, control effort, and final angle, the values are
lower than the PD. 77

4.8 Computational time metrics for the flexible baseline case. 82
4.9 Comparative computational time metrics for the flexible baseline case. 82
4.10 Summary of performance for the PD controller and the baseline (BL) and torquemisalign-

ment domain randomized (DR) SAC, TD3, and TD7 agents. The performance shown
is the performance of the controllers for the flexible case when the torque misalignment
perturbation is applied. 84

xi

Nomenclature

α Probability smoothing parameter

δ Rigid-flexible coupling matrix

η Modal coordinate

γ Discount factor

A Action space

S State space

ω Attitude rate

Φ Shape function

ϕ Error angle around the euler axis

π Policy

σ Standard deviation

τ Polyak update coefficient

ε Gyroscope noise

a Action

b Gyroscope bias

C Damping matrix

ca Reward function action coefficient

cp Reward function non-improvement penalty
coefficient

cr Reward function requirement coefficient

fη Natural frequency of the modal coordi-
nates

J Inertia tensor

K Stiffness matrix

Ki PID gain matrix i

M External torques

o Observation vector

p Probability distribution of the next state in
an MDP

Q Action-value function

q Attitude quaternion

r Reward function

s State

t Time

u Control torque

V Value function

W Wiener process

ADR Active Debris Removal

DDPG Deep Deterministic Policy Gradient

INDI Incremental non-linear dynamic inversion

JIT Just-In-Time

LEO Low Earth Orbit

MDP Markov Decision Process

PID Proportional-integral-derivative

POMDP Partially Observable Markov Decision
Process

PPO Proximal Policy Optimization

RL Reinforcement learning

SAC Soft actor-critic

SQ Sub-question

TD3 Twin-delayed DDPG

TD7 TD3 with four improvements

TRPO Trust region policy optimization

xii

Contents

Preface ii

Nomenclature xii

1 Introduction, background, and Research Plan 1
1.1 Space debris and debris characterization . 1
1.2 Active Debris Removal . 1
1.3 Post-capture attitude control introduction . 3

1.3.1 General ADR attitude control background . 3
1.3.2 Requirements for post-capture attitude pointing control 4
1.3.3 Non-reinforcement learning post-capture attitude control 5

1.4 Reinforcement Learning . 7
1.4.1 Formal definition . 8
1.4.2 Reinforcement learning-based post-capture attitude control 10
1.4.3 Policy gradient algorithms . 12

1.5 Research objective . 14
1.6 Research questions . 16
1.7 Report structure . 17

2 Methodology 18
2.1 Attitude control simulation architecture . 19
2.2 Spacecraft dynamics and kinematics model . 20

2.2.1 Target selection . 21
2.2.2 Reference frame . 21
2.2.3 Control torque actuator selection and numerical settings 22
2.2.4 Rigid spacecraft dynamics and kinematics . 23
2.2.5 Flexible spacecraft dynamics and kinematics . 25

2.3 Reinforcement learning setup . 27
2.3.1 Problem formulation . 27
2.3.2 Reward function specification . 28
2.3.3 Learning setup . 31
2.3.4 Agent types and hyperparameters . 32

2.4 Learning process assessment . 34
2.5 Robustness assessment . 36

2.5.1 Uncertainty modelling using perturbations . 36
2.5.2 Domain randomization . 38
2.5.3 Robustness sensitivity analysis . 39

3 Verification and Validation 41
3.1 Unit testing and assumptions . 41

3.1.1 Assumptions . 41
3.1.2 Coordinate transformations . 42
3.1.3 Implementation specifics . 42

3.2 PD controller verification . 42
3.3 TD7 verification . 44
3.4 Rigid model verification . 45

3.4.1 Equations of motion . 45
3.4.2 Reward wrapper verification . 46

3.5 Flexible model verification . 48
3.5.1 Rigidified flexible model verification . 48

xiii

Contents xiv

3.5.2 Flexible model verification . 48
3.6 Full learning process validation . 49

4 Results and Discussion 51
4.1 Baseline agent comparisons . 51

4.1.1 Agent control behavior . 51
4.1.2 Agent learning comparison . 52
4.1.3 PD comparison . 56
4.1.4 Compute time results . 56
4.1.5 Baseline robustness analysis . 57

4.2 Effects of reward function variations . 58
4.3 Effects of domain randomization . 62
4.4 Effects of hyperparameter tuning . 67

4.4.1 Common hyperparameters . 67
4.4.2 Algorithm specific hyperparameters . 70

4.5 Flexibility effects . 76

5 Conclusion and recommendation 88
5.1 Conclusions . 88
5.2 Recommendations . 92

References 94

A Sensitivity analysis figures 102
A.1 Reward function coefficients - rigid . 102
A.2 Reward function coefficients - flexible . 105
A.3 Extra domain randomization results - rigid . 108
A.4 Extra domain randomization results - flexible . 111
A.5 Hyperparameter sensitivity - rigid . 114
A.6 Hyperparameter sensitivity - flexible . 120

1
Introduction, background, and

Research Plan

1.1. Space debris and debris characterization
In-situ space activities require man-made objects in space. These activities have created a large num-
ber of space debris objects, defined as artificial non-functional space objects by Bernhard et al [1].
When the amount of objects becomes large enough and the objects are in similar enough orbits, the
risk of collision between these objects becomes substantial. In 1978, Kessler first predicted that a chain
reaction of collision events was possible and could result in a debris belt around the Earth, restricting
access to space [2].

To understand and manage this threat, further knowledge is required of the characteristics and distribu-
tion of the debris environment. The assessment of this is an active field of research. Major contributions
have been made by the ESA Space Debris Office [3] and NASA’s Johnson Orbital Debris Program Of-
fice [4]. Schaub et al summarized three key points from those contributions [5]. Firstly, while the num-
ber of debris is increasing overall, the most rapid growth is concentrated in certain altitudes. Secondly,
orbits with high inclination, particularly between 600-800 km and 1000-1500 km are populated most
densely. Thirdly, the largest hazard to space missions is posed by smaller objects. This is because
there are many of these smaller objects, they cannot be tracked, and are still very energetic. However,
larger objects drive the growth of the number of debris objects.

A critical distinction in the characterization of space debris lies in the categorization between cooperative
and non-cooperative debris. In this research, the definition by Shan et al [6] is used, where cooperative
debris is classified using two distinct characteristics. Firstly, a debris object can be non-cooperative due
to a lack of knowledge of the object in terms of physical parameters such as inertia, or orbital and attitude
parameters. Secondly, the object can be non-cooperative due to a lack of capturability, which refers
to a lack of docking locations or other physical complications in the capture process, such as a high
(known) tumble rate. Consequently, non-cooperative debris objects present a more difficult challenge
to understand and deal with appropriately.

1.2. Active Debris Removal
Historically, collision and break-up events are luckily still relatively rare. The collisions that did occur
have been categorized and documented by NASA [7]. The number of debris objects in space is growing
rapidly, as shown by figure 1.1. Of course, collisions are only part of the growth driver. However, Rossi
and Valsecchi predicted in 2006 that in case no action is undertaken to mitigate the risk of collision,
about 60 catastrophic collisions would happen over then next 100 years. This would roughly double
the number of objects larger than 1 cm and represent a beyond-linear growth [8].

For this reason, various mitigation measures for space missions are being implemented, like those
described by the IADC guidelines [10]. The guidelines focus on the ”limitation of debris released dur-

1

1.2. Active Debris Removal 2

Figure 1.1: Monthly number of debris objects >10 cm in low Earth orbit by object type [9].

ing normal operations, minimisation of the potential for on-orbit break-ups, post-mission disposal, and
prevention of on-orbit collisions”. However, the guidelines only focus on new missions, which leaves
the significant risk of the current debris environment unmitigated. For instance, Liou and Johnson have
shown that the number of debris in low Earth orbit (LEO) will likely continue to grow even if no new
missions are launched [11], which was verified by researchers at ESA [12]. In 2010, Liou wrote that
active debris removal might be only option to reduce the number of debris to acceptable levels in the
future [13]. Even though Liou’s analysis only applies to the LEO environment, the paper establishes
a clear need for further research into active debris removal missions. The research discussed in this
report is intended to be a contribution to this body of research.

A wide variety of active debris removal methods have been conceived. A rough overview is outlined in
figure 1.2. Other contactless methods have also been investigated, including laser systems [14] and
ion beam shepherd systems [15]. Different studies and conceptual mission design processes have
been executed in order to investigate the merits of different capturing methods.

Figure 1.2: Concept diagram of capturing methods, from Shan et al [16].

One of the most influential of these studies was a pre-assessment study called e.Deorbit which was
started in 2012 by ESA to lay out a technology roadmap and conduct preliminary systems design for
an active debris removal mission [17]. In the context of this study, all industry proposals selected the
robotic arm with a clamping mechanism as a baseline. The missions would rely based on expected her-
itage from DLR’s proposed DEOSmission [18] [19]. However, the DEOSmission got cancelled in 2018.
Nonetheless, the concept of robotic space manipulators is a space-proven technology [20]. Alterna-

1.3. Post-capture attitude control introduction 3

tively, the RemoveDEBRIS mission led by Surrey Space Centre, was the first mission to successfully
demonstrate net-capture and harpoon capture in-orbit [21]. While the demonstration of the capture
technologies was successful, the planned demonstration for deorbiting the mission failed, and they
did not attempt to control or actively de-orbit the net-captured target post-capture [22]. Other in-orbit
demonstrator missions include Astroscale’s ELSA-d mission, demonstrating capture, diagnosis, and
client search technologies based on a magnetic docking mechanism [23], or their conceptual missions
ADRAS-J (approach and inspect a large debris target) and COSMIC (remove two UK registered space
debris targets) [24]. Recently, after finalization of the e.Deorbit study, ESA entered into a collaboration
with ClearSpace for the ClearSpace-1 mission. This mission is aiming to use a servicer equipped with
four tentacle robotic arms to capture a Vespa (Vega secondary payload adapter) and deorbit it [25].
Notably, as far as the author is aware, no dedicated ADR mission has removed a single piece of space
debris.

Studies into active debris removal consider different targets. The selection of targets can be done in
various ways as reviewed by Bonnal et al [26]. As suggested by the 2011 paper by Liou [27], many
consider the LEO region between 600-800 km, especially at high inclinations, to be the most critical,
and look for targets in those areas. In the same paper, Liou discusses different types of objects and
objects of note that have the highest probability of collision in the LEO region. Wiedemann et al looked
at the catastrophic debris flux and combined it with object mass to derive a criticality score for a debris
object [28]. Most methods like these achieve similar results, and many identify Envisat as one of the
most critical objects. Furthermore, Bonnal emphasized the opportunity to use the Kosmos 3M upper
stage as a benchmark case, as many such objects exist in the crowded regions, and appear high in
many priority lists. ClearSpace-1 selected the Vespa target because many such targets also remain in
similar orbits, and are relatively cooperative.

Once a target has been captured, it needs to be taken out of orbit or have its orbit raised, to reduce
the probability of collision. In a capture-based architecture, which the current proposed missions aim
to use, the chaser includes an attitude controller and working actuators. The chaser then provides
the attitude control after capture. This is a nontrivial task. Depending on the capture architecture, the
connection with the target might be rigid or flexible, and initial attitude rates might be far from zero,
requiring detumbling. In case of an uncooperative target, model parameters such as inertia or centre
of mass might be unknown, complicating the control further.

1.3. Post-capture attitude control introduction
To help solve the problems described above, this research investigates the problem of post-capture
control of an active debris removal mission. To provide the relevant background for this research, in
this section the general ADR attitude control preliminaries are discussed, followed by the requirements
used. Next, related and prior works are discussed.

1.3.1. General ADR attitude control background
Controlling the attitude of the post-capture combined spacecraft is made difficult due to the non-linearity
of the dynamics and kinematics. Furthermore, the requirements for the attitude control can vary greatly
for different missions or even mission phases. While many methods exist to deal with these complex-
ities, the focus in this research lies on the case where reinforcement learning is used to control the
attitude. However, to grasp the broader context and to be able to compare with baseline methods,
relevant background of non-reinforcement learning control theory is discussed in this section.

For spacecraft attitude control, a controller is used in a closed-loop set-up, where the spacecraft state is
fed back into the controller. However, an active debris mission requires several key capabilities. These
include, among others, launch, rendezvous with the target, approaching the target, stabilization (of
tumbling targets), capture, and post-capture control [27]. Often, to realize these capabilities different
controllers or control modes are used. For example, some spacecraft have a safe mode that can take
effect in case of failures or other off-nominal conditions. Often in such a scenario the attitude controller
brings the spacecraft to a power-positive attitude or tries to dampen the body rates [29].

Other types of attitude control modes can include for example sun acquisition/pointing, (precision) point-
ing, slew mode, or spinning control [30]. To further illustrate the way these modes relate, a relatively

1.3. Post-capture attitude control introduction 4

simple example of these different modes is shown for the ITASAT cubesat in figure 1.3. The phases
that lead up to pointing control often require increasingly stringent conditions to be met before they
can be successfully used. This allows many spacecraft to revert back to a courser (and often simpler
and more reliable) control mode if required. This is useful in case of an emergency or for example for
reaction wheel desaturation. Meeting accurate and precise pointing requirements becomes difficult in
particular by uncertainty in the model.

Figure 1.3: Attitude control modes for the ITASAT cubesat, from Carrara et al [31].

In the context of an ADR mission, immediately after capture, the spacecraft could be in a tumbling
state, as is clear from the mission profile and corresponding requirements set by e.Deorbit and COM-
RADE[32][33]. Hence, a detumbling controller is required. While this is not a solved problem in ac-
tive debris removal, relatively straightforward detumbling methods already exist. A good example of
a method to achieve near-zero angular rates is the B-dot algorithm. This algorithm uses magnetic
control, with a control law in which the magnetic moment produced by the magnetic actuators (often
magnetic coils or torque rods) is proportional to the change in Earth’s magnetic field. This method is
not perfect, as it can result in observability singularities [34], or have trouble in fully arresting spacecraft
rotation. Nevertheless, it is often used due to its relative simplicity. Furthermore, magnetic control also
has applications beyond detumbling, for example in desaturation of reaction wheels.

After the detumbling phase of the ADR mission, the spacecraft needs to orient itself. It hence goes into
a pointing mode. At the same time, in the case of ADR, the uncertainties are highest in the capture
and post-capture phases. This is because the inertia or center of mass might be unknown or at least
relatively uncertain. Moreover, if the system is flexible, uncertainties in the natural frequencies and
damping of the flexible modes and the coupling strength could also increase the difficulty of meeting
the requirements on attitude control. Hence, this pointing mode is the mode that is considered in this
research. To do so, first, the requirements will be discussed. Then, existing solutions to this problem
are introduced.

1.3.2. Requirements for post-capture attitude pointing control
The requirements on the attitude control of an ADR mission is highly dependent on the mission phase.
For example, the capture phase requires higher pointing accuracy and lower angular rates, while for
a spacecraft in safe mode a coarser pointing accuracy is often sufficient. The attitude control require-
ments of an ADR mission are very similar for spacecraft maintenance and servicing missions, which
face similar problems [35]. For this reason, the pointing requirements of both the e.Deorbit mission
and the COMRADE mission (designed to perform both ADR and servicing missions) will be used in
establishing appropriate requirements for an ADR mission.

The e.Deorbit GNC performance requirements are taken from Telaar et al [32]. During the capture
phase, the spacecraft’s attitude shall be accurate to within 5◦ and the rate to within 0.5◦/s. Post-capture,
first, a stabilization (detumbling) phase is considered, which stabilizes the rotation to within 0.5◦/s.
Finally, the de-orbiting phase has requirements on the attitude and rates of 1◦ and 0.1◦/s respectively
during a boost maneuver (such as a thruster firing for de-orbit) or 5◦ and 0.5◦/s respectively during a
drift phase.

COMRADE considers only the phases up to stabilization. The requirements were taken from Col-
menarejo et al [33]. They set the requirements of the attitude and attitude rate during the capture
phase to be within 2◦ and 0.5◦/s respectively, with a 95% probability. During the grappling phase, the

1.3. Post-capture attitude control introduction 5

capture mechanism is restricted to within 2.74◦ in all three directions independently, and the rates to
within 0.1◦/s in all three directions. In the post-capture stabilization phase, Colmenarejo requires the
rate to be stabilized to within 0.5◦/s.

Table 1.1: Summary of the most stringent requirements from the e.Deorbit mission [32] and the COMRADE mission [33]. The
post-capture phase requirements are relevant to this research.

Phase Pointing accuracy requirement Rate requirement
Capture phase 2◦ 0.5◦/s

Post-capture phase 1◦ 0.1◦/s

Attitude control systems are capable of achieving much finer attitude control. For example, many tele-
scopes require a pointing to within less than an arcsec. Furthermore, in cases like these, vibrations
and mean deviations should also be considered. In this case, the requirements can be formulated
more specifically. For example, the Hubble Space Telescope can return to a target attitude to within
0.01 arcsec, but can hold an attitude to within 0.007 arcsec (root mean-square) for up to 24 hours [36].
These types of requirements will not be considered for this research, as they are driven by system-level
capabilities (in case of Hubble, to allow near-diffraction limited imaging), which are not present on the
considered ADR mission concepts such as those proposed by e.Deorbit and COMRADE. However,
these might still be relevant to consider in future research. In general, for the post-capture phase, the
requirements of the e.Deorbit mission are more difficult than those for COMRADE. Hence, those will
be considered in this proposed research. The requirements are summarized in table 1.1. For the post-
capture phase considered in this research, the relevant values are a pointing accuracy requirement of
1◦ and a rate requirement of 0.1◦/s.

1.3.3. Non-reinforcement learning post-capture attitude control
As previously introduced, meeting these requirements is a non-trivial task given the non-linear dynamics
and the uncertainties in the system. To simplify the analysis, some studies assume a rigid chaser
spacecraft, a rigid target, and a rigid capture mechanism. The resulting combined spacecraft after
capture is hence also often modeled as a single rigid body, for example in the work of Huang et al [37].
Other researchers, aiming for a higher fidelity model, have modeled the combined body as a flexible
multi-body system [38]. While most studies are successful in implementing solutions that meet their
requirements, this comes at a cost of more complex dynamics and kinematics, and a corresponding
higher computational load. Models for the attitude control of combined spacecraft require controllers
that are able to deal with non-linearities, and in the ADR case possibly with unknown or uncertain model
parameters.

Previous research into this application and related topics can be roughly split into two broad categories:
adaptive controllers and robust controllers. Adaptive controllers can adapt their model or control law
online, for example by using system identification techniques. Robust controllers instead opt to design
controllers that account for the uncertainty directly.

Both controller types have been thoroughly studied and applied abundantly in simulated ADR mission
studies and concepts. Wang et al have shown an adaptive controller that can compensate for actuator
faults, an error in the inertia tensor, and external disturbances [39]. Their implementation considers
thrusters as the attitude actuators, without considering bounds on the thrust, or bounds on the control
torque in general. Ning et al do consider this, and implement a fuzzy logic system. However, their
case is for a cellular satellite system and they are not able to achieve asymptotic pointing accuracy
[40]. Several proposed methods also use a baseline conventional controller which is augmented using
neural net or general learning based approaches. In the context of ADR, this was demonstrated by
Leeghim et al using a sliding mode controller with an adaptive term based on an normalized input
neural network, with a five-neuron hidden layer [41]. Wei et al used a static prescribed performance
controller supplemented by an approximate dynamic programming1 controller to enhance adaptiveness
also for the purpose of an ADR mission [42]. Both approaches achieve performance better than the

1The terminology of the class of methods referred to as reinforcement learning in this research is often interchanged in
literature. Wei et al, and most control theory researchers, call this approximate dynamic programming. In this research, the
name reinforcement learning is used.

1.3. Post-capture attitude control introduction 6

baseline without the adaptive neural supplement, which indicates that learning-based can contribute
to dealing with uncertainty at least in some cases. However, while both studies prove uniform ultimate
boundedness of the signals, an assessment of the reliability and robustness of the controllers has not
been carried out.

Robust control methods have also been studied extensively, such as multiple different techniques for
robustifying a controller for a flexible ADR mission by Singh [38]. Their worked showed that while the
controllers are able to achieve convergence in rigid bodymotion, certain eigenmodes of the flexible body
are excited which the unfiltered controllers fail to appropriately dampen. They are able to dampen these
out with a notch filter, notably using higher order filters, but they also note that this approach has limits
due to computational constraints in tuning these filters. An example of their controller’s performance,
using a model of Envisat with a flexible solar panel, in the form of angular rates using are shown in
figure 1.4. While their controller did not achieve arbitrarily small errors, the requirements discussed
above could possibly be met with follow-on work.

Figure 1.4: Angular rates for the flexible multibody INDI controller as designed by Singh and Mooij [38]. Note the remaining
lower frequency vibration in the filtered (F) case, indicating a need for further filtering.

Huang et al used prescribed performance methods [43] to control a spacecraft while considering distur-
bances, inertia uncertainties, and actuator saturation. Luo et al and Huang and Duan also implemented
variants of prescribed performance for similar cases [44][45]. A drawback of prescribed performance
is that it is better suited for cases where the transient performance is important. It does not generally
allow for asymptotic convergence to the target, and does generally not ensure limits on the amount of
jitter, which can sometimes be important for spacecraft pointing. Furthermore, as noted in the former,
designing a pure prescribed performance controller yields poor performance [43], hence, all three of
the mentioned studies include disturbance observers. Such observers are often difficult to tune. Slid-
ing mode and backstepping methods have also been applied to design robust controllers [46][47][48].
For each of these methods, complexities or drawbacks remain. For example, sliding mode controllers
need a way to deal with the problem of chattering. Gao et al designed a sliding mode controller with-
out chattering issues and capable of dealing with disturbances [46], an example of which has been
shown in figure 1.5. However, their method is data-driven and requires a different controller in the first
100 seconds (in their implementation) to train a forecasting neural network. So, despite demonstrat-
ing the good performance visible in the figure, for a post-capture setting, this method cannot be used
end-to-end.

The non-linear nature of satellite attitude control is also a key consideration in the design of a controller.
One way to deal with this is the concept of non-linear dynamic inversion [49]. A drawback of this method
is that it requires knowledge of or accurate identification of the system dynamics, which can be difficult,
especially in the context of an ADRmission due to the uncooperativeness of some targets. Incremental
non-linear dynamic inversion (INDI) [50] is a method which implements the dynamic inversion to an
incremental model of the system. This relies on the assumption of a high sampling rate for the system

1.4. Reinforcement Learning 7

Figure 1.5: Vector components of the attitude error quaternion over time of a spacecraft attitude model by Gao et al [46] using
three different attitude controllers.

states, and allows for an even higher degree of simplification in case of sufficient time scale separation.
INDI has been applied in the context of spacecraft before, such as by Acquatella et al [51]. While their
results are successful, they argued for further research into the real-world effects of actuator output and
angular acceleration measurements. Further studies have made progress in designing a more robust
controller using INDI [52][53], but the method has not been thoroughly tested yet for the case of ADR or
takeover control with all its uncertainties. Singh and Mooij [38] did implement it for an ADR mission and
achieved convergent behavior. However, as discussed previously, the flexibility of the satellite under
investigation caused excitation of certain eigenmodes that caused the INDI controller to diverge slowly,
which caused them to conclude that INDI was not sufficient for control of flexible perturbations.

Zhou et al investigated the case of a partial observability, using the example of spacecraft attitude
control with fluid sloshing, and applied a policy gradient reinforcement learning method. They used
an incremental model in closing the update loop for the policy weights [54], resulting in a model-based
architecture. It still relies on accurate identification of this incremental model, which makes it vulnerable
to sensor errors. Nevertheless, their results show that such architectures are able to converge relatively
quickly, and that reinforcement learning methods can also be used in an end-to-end fashion, instead of
having a conventional controller that is augmented by a neural-network based term, which is a relatively
well-studied architecture both for spacecraft attitude control, such as Zhou et al [55] and other control
problems with many nonlinearities and uncertainties such as robotic manipulator systems, such as Vo
et al [56]. This greatly simplifies the design of these controllers, and is one of the reasons why an
explorative study into the limits of these controllers is interesting.

1.4. Reinforcement Learning
Reinforcement learning (RL) is a form of machine learning that is based on the concept of maximizing
a numerical reward signal [57]. This is very similar to a control problem, where the problem is often
formulated in the form of minimizing some metric, often derived from the state error and control effort.
Some reinforcement learning methods have advantages that make them compelling candidates for the

1.4. Reinforcement Learning 8

post-capture attitude control of ADR spacecraft. For example, a class of methods called model-free
reinforcement learning methods do not require prior knowledge of a systemmodel. Prior research such
as that of Liu et al [58] claim to have demonstrated the application and robustness of such methods
for an attitude controller for a disturbed rigid spacecraft. However, often, like in the case of Liu, it
is not clear how certain design decisions have been made. These decisions, like the selection of
feature basis functions or other hyperparameters, can influence the behavior and performance of the
resulting policies dramatically. A comprehensive consideration of the various model-free RL algorithms,
investigating the limits of their applicability, has not been performed.

Another interesting note is the fundamental difficulty of applying reinforcement learning algorithms in
the real world [59]. While previous research has shown some success in real-world applications, for
example in various robotic arm controller tasks [60][61], this is not without difficulty as many advances
in reinforcement learning rely on assumptions that are rarely satisfied in real-world environments. Rein-
forcement learning methods depend on trial-and-error learning processes. Current algorithms require
a large number of environment interactions to make meaningful progress and achieve sufficient gener-
alization. This is called a high sample complexity. Training the algorithm using real-world interaction
can be expensive or difficult to do to the required extent compared to training on a simulated environ-
ment. However, simulations will always involve mismatches with the real-world [62]. Thus, ensuring
that the insights gained from the design of a reinforcement learning-based controller for a simulated
model of spacecraft attitude control result in meaningful insights for the design of such a controller for
a real spacecraft is a second priority for a research topic in this area.

1.4.1. Formal definition
A reinforcement learning algorithm is characterized and fully defined by a Markov Decision Process
(MDP). An MDP is defined by the tuple (S,A, p, r, γ). S is the set of possible states, and A is the set of
actions, both of which can be continuous or discrete. Probability p : S ×S ×A → [0, 1] is the probability
that any state-action pair st ∈ S and , at ∈ A will result in state st+1 ∈ S with probability p(st+1 | st, at).
The reward function is specified by r(st, at), which maps r : S × A → R. The factor γ ∈ [0, 1] is called
the discount factor. At γ = 1, the MDP is called undiscounted. A key factor in reinforcement learning
is the (discounted) sum of future rewards:

J =

∞∑
i=0

γir(si, ai) (1.1)

A subset of all MDPs are the episodic problems. In episodic problems, there exists a set of terminal
states ST , after which all subsequent rewards are zero, ending a so-called episode. To further interact
with the environment, a new episode has to be initiated. In the episodic case, equation (1.1) becomes
J =

∑k
i=0 γ

ir where the terminal state is reached at step k. The other possibility is the continuing case,
where equation (1.1) holds and is summed until infinity in the limit.

Reinforcement learning algorithms aim to maximize an objective function, generally the reward to go
in equation (1.1), as will be shown here. The notation used is that of OpenAI’s Spinning Up [63]. This
is done by learning a policy π : A×S → [0, 1]. The policy π(a|s) determines the probability of choosing
action a given state s. The optimal policy π∗ is defined by the policy that maximizes J :

π∗ = argmax
π

Jπ = argmax
π

∞∑
i=0

γirπ (1.2)

where rπ = rπ(a, s) are the rewards obtained by always selecting action a based on state s following
policy π(·|s). For a given policy π, a state can be assigned a value using the value function, which is
defined as the expectation of the reward to go under policy π when starting from state s:

Vπ(s)
.
= E

π

[∞∑
k=0

γkrt+k+1

∣∣∣∣∣ s0 = s

]
(1.3)

1.4. Reinforcement Learning 9

A key insight first had by Bellman in 1954 [64] is that the value function can be defined recursively:

Vπ(s) = E
π

[∞∑
k=0

γkrt+k+1

∣∣∣∣∣ s0 = s

]
(1.4)

= E
a∼π

[
r(s, a) + γ

∞∑
k=0

γkrt+k+2

∣∣∣∣∣ s0 = s

]
(1.5)

= E
a∼π
s′∼p

[r(s, a) + γVπ(s
′)] (1.6)

Where s′ ∼ p(·|s, a). Equation (1.6) is known as the Bellman equation. The optimal policy is also
the policy that selects (possibly one of the multiple) actions that maximize V (s). As a result, also the
optimal value function can be defined as the value function of the optimal policy:

V ∗(s) = max
π

E
π

[∞∑
k=0

γkrt+k+1

∣∣∣∣∣ s0 = s

]
(1.7)

or recursively as
V ∗(s) = max

a
E

s′∼p
[r(s, a) + γV ∗(s′)] (1.8)

So in turn, the optimal policy can also be defined as π∗ = argmaxπ Vπ(s). An important concept similar
to the value function is that of the state-action value function. It is the expectation of the discounted
rewards to go starting in state s, taking action a, and consequently following π. The action-value function
can be defined respectively in terms of discounted reward to go or recursively:

Qπ(s, a)
.
= E

π

[∞∑
k=0

γkrt+k+1

∣∣∣∣∣ s0 = s, a0 = a

]
(1.9)

= E
s′∼p

[
r(s, a) + γ E

π
[Qπ(s

′, a′)]
]

(1.10)

As such, the value function and action-value function are related as follows:

Vπ(s) = E
a∼π

[Qπ(s, a)] =
∑
a∈A

π(a|s)Qπ(s, a) (1.11)

Qπ(s, a) =
∑
s∈S

p(s′ | s, a)
[
R(s, a, s′) + γVπ(s

′)
]

(1.12)

In equation (1.12),R(s, a, s′) is the reward function, defined for the more general case where the reward
depends not only on the previous state-action pair (s, a) but also on the next state the MDP arrives on
s′. Usually, this reduces down to R(s, a, s′) = r(s, a). The optimal functions also relate as follows:

V ∗(s) = max
a

Q∗(s, a) (1.13)

and the optimal action (and thus the optimal policy) can be taken from the optimal action-value function,
which is very easy in the tabular case:

a∗(s) = argmax
a

Q∗(s, a) (1.14)

To maximize the objective function in the MDP, different reinforcement learning algorithms employ dif-
ferent strategies. Bellman defined a set of techniques called dynamic programming [65]. In general,
methods based on this technique sweep through the state space, performing some update on a state.
Howard in 1960 proposed a process of alternating policy evaluation (calculating the value function for
a policy) and policy iteration (improving the policy using the current value function), until convergence
to the optimal policy value function [66]. Another major technique is the set of Monte Carlo methods,
which update value functions based on environment interactions in the form of many complete episodes.
An important implication is that generally, Monte Carlo methods do not need bootstrapping. Temporal

1.4. Reinforcement Learning 10

Difference learning is a technique that combines the bootstrapping and online learning potential of dy-
namic programming with the idea of learning from experience in environment interaction, like Monte
Carlo methods [67].

Built upon fundamental learning principles like these, roughly two major classes can be identified:
model-based methods and model-free methods. The basic information flow for a reinforcement learn-
ing agent is shown in figure 1.6. A model-based method learns a model of the system and uses this

Figure 1.6: Schematic illustration of information flow in a model-based reinforcement learning agent, from Sutton and Barto
[57]. In a model-free agent, no model is learned, and hence no planning is done. In that case, only the loop between the

value/policy and the experience remains, and the value/policy is learned directly.

model in a planning stage. The aforementioned conventional dynamic programming requires a model
of the system. On the contrary, a model-free method is essentially a trial-and-error based approach.
Monte Carlo is a model-free approach, since it uses information sampled from real experience.

A second key classification set is the distinction between on-policy and off-policy learning. In reinforce-
ment learning, there is always a balance between exploitation (the greedy policy; selecting the best
action possible for the current state) and exploration (choosing a different action to find potentially bet-
ter policies). This gives rise to a problem: the optimal policy is greedy with respect to the value function,
and thus cannot do any exploration. If an algorithm uses only data sampled using the current policy
to learn, it is an on-policy algorithm. If it is able to use experience sampled using a different policy (for
example, a policy that explores more), it is an off-policy algorithm.

The third and final classification is the state and action space type. Thesemay be continuous or discrete,
which has a substantial impact on stability and convergence guarantees of algorithms. Many algorithms
are only guaranteed to converge to a local or global optimum in the tabular (discrete) case, or sometimes
only in the linear case [68]. Furthermore, discrete domains have a large risk of suffering from the curse
of dimensionality [69], where computational costs rise exponentially due to the size of the search or
state space S. Function approximation, often by switching to a continuous domain, is a way of avoiding
this issue.

Different algorithms trade off the pros and cons of these classifications, and might perform wildly dif-
ferent in different problems. Sometimes, it is possible to infer and predict how different algorithms will
behave, but the results can also be surprising. To determine which algorithm is best suitable to a given
problem, an in-depth analysis could be done.

1.4.2. Reinforcement learning-based post-capture attitude control
Before formulating an approach for designing a controller for the presented case of post-capture attitude
control for an active debris removal spacecraft, the difficulties associated with such a problem need to
be well understood, which is the topic of this section. Within the context of reinforcement learning for
such an application, three focus points arise.

The first is the uncertainty in model parameters. For many target debris objects, the total mass, inertia,
and center of mass will be unknown or uncertain [6]. As previously discussed, methods to estimate
these already exist. However, the uncertainty in these dynamical parameters will never go to zero

1.4. Reinforcement Learning 11

and these methods can have other drawbacks. This means that the attitude controller needs to be
able to adapt to unknown or uncertain model parameters post-capture, or be robust2 enough to deal
with this uncertainty directly. Simultaneously, the uncertainty in model parameters makes an agent
difficult to train. Even the highest sample efficient reinforcement learning algorithms require a significant
number of environment interactions to result in good policies, as RL algorithms are considered sample
inefficient [70], which results in slow learning. Although research into speeding up learning has shown
promise in the form of distributed reinforcement learning like Seed-RL [71], this is based on simulated
experience instead of real experience, making training from scratch in the post-capture phase at least
currently likely not feasible. Model-based RL algorithms that include a component of online system
identification can significantly improve the sample efficiency, which enables a fast learning agent such
as demonstrated by Zhou et al [72]. However, a value function approximation and policy still have
to be trained off-line, while the system identification approach requires a set up assumptions to be
valid (in their case, high-frequency data sampling and a relatively slow-varying system) which limits
the applicability of the controller. As such, with current techniques, an RL-based agent used for a
spacecraft attitude control purposes will likely have to be pre-trained before capture of the target.

The second difficulty is in training the agent for the real-world, as it has to be trained on representative
samples. Training an agent in a real space environment is too expensive. Accurately setting up a
simulated environment on the ground is difficult and also expensive. Hence, training has to rely at least
partially on simulations, which will always be only an approximation of real world conditions. This type
of problem is called sim to real transfer. A secondary effect of real-world effects, which includes con-
siderations like actuator constraints, noise and bias in multiple system components, imperfect actuator
responses, and signal and input delays, is that there is a risk of an apparent non-Markovian system
for the agents. Reinforcement learning algorithms can have a hard time solving these and it can break
performance and convergence guarantees of algorithms [73]. The non-Markovian can be caused by a
model of too low fidelity. If the system is only partially observable, such as in case of a flexible space-
craft, it can also create the illusion of a non-Markovian environment [74], called a Partially Observable
Markov Decision Process (POMDP).

Finally, the third problem is the required reliability of the controller. In space applications, reliability
requirements are very stringent. The reliability of an attitude determination and control system can often
be 99% [75] or more. Furthermore, depending on the mission, precise requirements on the pointing
accuracy could exist. The problem with deep reinforcement learning is that the behaviour of learned
policies are often difficult to explain, which makes the decisions taken using the policies difficult to verify
[76]. Also, guarantees on stability of convergence can be difficult to obtain, be limited to guarantees
such as uniformly ultimate boundedness [77], or even be impossible to obtain [78].

In dealing with the above issues directly, several influential and state-of-the-art algorithms are selected
and discussed in section 1.4.3. In that section, general considerations of the discussed algorithms are
highlighted. Only model-free algorithms are considered. Model-free methods are considered to suffer
from high sample complexity [79]. However, since training on the ground is assumed to be required
regardless of the RL algorithm type as discussed before, the computation time and hence the required
sample complexity is not an issue. Furthermore, model-based methods require identification of the
model, which can be computationally prohibitively expensive or difficult to achieve with sufficient accu-
racy. Methods to reduce the computational cost and reduce the difficulty of obtaining a sufficient fidelity
model for model-based algorithms exist, such as shown by Zhou et al [54], who used an incremental
model-based reinforcement learning approach, called incremental approximate dynamic programming.
However, model-free methods have also shown promise in real-world applications, demonstrating their
ability to perform well even without an approximation of the system in the feedback loop. An example is
the application in dexterous in-hand object manipulation, which, even when trained only on simulated
data, shows that model-free agents are capable of sufficient generalization for real-world applications
[80]. Hence, model-based methods will be left for future research, while the focus is put on model-free
methods in this research.

An influential idea in model-free control methods is the concept of Q-learning [81], where action-values
2In this literature review, the robustness of the controller refers to the definition of robust in the control theory convention

(dealing explicitly with model uncertainty), not in the reinforcement learning sense (where robustness refers to an algorithm’s
ability to result in a good policy with low sensitivity to hyperparameter settings).

1.4. Reinforcement Learning 12

are learned. Given a state, the optimal policy selects the action based on the largest subsequent value
of Q (equation (1.14)). Using policy evaluation, given sufficient samples and exploration, the optimal
action-values can be calculated. This method does not require knowledge of the model (model-free),
is off-policy, and is applicable for discrete state and action spaces. Mnih et al extended this idea to
the function approximation case in highly influential works, showing excellent performance in various
(simulated gaming) environments [82][83]. This approach still requires a solution for sampling an action
from the Q-network. If the action space is discrete and relatively low-dimensional such as in the works
of Mnih, this can be reasonably done by searching over the entire action space. If the action space is
continuous, this becomes more difficult [84]. For example, Wang et al did this for spacecraft attitude
control by discretizing the action space [85]. In case the continuous action space cannot be discretized,
other constraints might be required to sample an action from the Q-network efficiently. For example, a
linear combination of basis functions can be used as the action-value function approximation. This has
been applied to the problem of spacecraft attitude control by Liu et al [58]. While they demonstrated
performance better than an advanced sliding mode controller in an example simulation, they did not
show robustness to different dynamical model parameters, nor did they share how they determined
the appropriate feature vector for the linear Q-function, which is a critical consideration in ensuring
appropriate generalization [57] and in the design of these agents.

For higher degrees of generalization, policy gradient methods have shown promise [86][84]. Instead
of deriving a policy from (an approximation of) a value-function or action-value function, the policy is
parameterized directly. This has two main advantages: the parameterized approximate policy can
approach a deterministic policy over time if that policy is the more optimal policy, inherently trading ex-
ploration for exploitation, and the approximate policy can be stochastic, whereas action-value methods
cannot result in stochastic policies naturally [57].

1.4.3. Policy gradient algorithms
Policy gradient methods that estimate both a value function (critic) and a policy (actor) are called actor-
critic methods. These are the methods that have recently showed impressive results for multiple differ-
ent applications, both simulated [84] as well as real-life [87].

Such actor-critic agents can be applied as a closed-loop controller. A generic architecture is shown in
figure 1.7. The blue box highlights the boundaries of the RL agent, and represents the controller. As
shown here, the environment also outputs some reward, based on the current state and latest action.
The critic calculates a state (or sometimes action) value, which is combined with the reward information
to calculate an advantage. This is used to calculate a gradient of the actor, and the value function itself
is used to calculate a gradient of the critic, updating both neural nets.

Figure 1.7: Generic actor-critic agent block diagram. Continuous lines indicate the flow of a signal, while the dotted line
indicates the update rules for the actor and critic neural nets. The blue box indicates the scope of what is called the

reinforcement learning agent.

Many variations on this block diagram exist, whether due to architectural design choices or due to real
world effects. The neural nets might use different inputs, the update rules might be different, various

1.4. Reinforcement Learning 13

noise, disturbance, or delay components can enter in the block diagram, and the state might not be
fully observable. Furthermore, the agent could save interaction tuples in a replay buffer to use for later
training. In off-policy algorithms, a replay buffer is required, while some on-policy algorithms don’t have
one and have to sample new interactions after every update of the actor.

An influential example of an on-policy algorithm is Proximal Policy Optimization (PPO), introduced by
Schulman et al [88]. It is both an improvement on and simplification of prior work by Schulman, the Trust
Region Policy Optimization (TRPO) [89]. It is one of the most widely used on-policy algorithms. TRPO
and PPO are both based on the concept of limiting the distance between the policy parameters before
and after a policy gradient update. Both algorithms consider the KL distance between the policies as a
constraint on the optimization problem. TRPO solves this directly using an algorithm such as conjugate
gradient, while PPO (or specifically, as used in this research, the PPO-clip variant) solves it as a first-
order method while clipping the objective. PPO has demonstrated great results in certain areas, such
as in training a large language model like InstructGPT using humans in the loop [90], or more relevant,
in the attitude control of a fixed-wing UAV [91] and even for spacecraft attitude control by Elkins et
al [92][93]. In their first paper on using PPO, they showed that the trained agents can reliably point
the spacecraft to within 0.005◦, under simplifying assumptions such as no disturbances. They used a
discretized action space, restricting the agent’s commanded control output [92]. In their second paper,
they switched to a (stochastic) continuous output of PPO, requiring sampling to obtain the output action
of the agent [93]. In this work, they are able to slew the spacecraft using a PPO agent. In general, the
drawbacks of an on-policy algorithm are the trade-off between exploration and exploitation and the
required amount of episodes to train a policy. However, generally, on-policy algorithms are more stable
[94].

Deep Deterministic Policy Gradient (DDPG) is an influential example of an off-policy algorithm. In-
troduced in 2015 by Lillicrap et al [95], it extends the deep Q-network method (DQN) by Mnih et al
[82][83] to the continuous, deterministic control domain. It makes use of two (feedforward) neural net-
works. One to estimate Q (the critic), and one for the policy (actor). It is an off-policy method, sampling
training data from a replay buffer.

Twin Delayed Deep Deterministic Policy Gradient (TD3), introduced by Fujimoto et al [96] improves
upon DDPG in three significant ways. It reduces overestimations of the action-value function by adding
a second critic, as first proposed by Van Hasselt et al [97]. Secondly, the variance and stability is
improved by making use of target networks. Thirdly, it adds a small amount of clipped Gaussian noise
to the target policy, which is a smoothing regularization to the policy. This reduces the potential for the
policy to exploit narrow peaks in the value function. TD3 has been used in the context of spacecraft
attitude control by Elkins et al [98]. In their later work, they compared it to PPO, and investigated
methods for online learning using both agents. Some of their results are shown in figure 1.8. Across
all scenarios, which is also visible in this figure, TD3 showed better performance. Furthermore, the
stochastic sampled actions of PPO show up in a slight oscillation of the angular rates. They state the
belief that the deterministic TD3 agent is hence better for such an application. However, it is unclear
how the chosen settings like hyperparameters and the choice of their model influenced this comparison.
Hence, a conclusion like this is too strong for the generalized case and merits further investigation,
especially since the demonstrated performance is relatively good.

Recently, Fujimoto et al proposed a further improved algorithm that they named TD7 [99]. It adds four
more improvements to TD3. It samples minibatch using LAP [100], a form of prioritized experience
replay. In a fully offline learning case, the agent adds a behavior cloning term, which is only beneficial
in a fully offline case where only a fixed dataset of environment interactions are possible. In this case
it prevents divergence due to overestimations in the value function. The third addition is the inclusion
of a representation learning method in the form of state-action learned embeddings. Representation
learning has shown promise in tasks such as image classification or generative models such as GPT
[101]. The implementation is done by adding two extra neural nets (encoders), one for the state and one
for the state-action pair, which are trained in an unsupervised way and are aiming to capture relevant
structure in the observation space. The resulting embeddings are concatenated to the features for the
actor and the critic. The final improvement comes in the form of policy checkpoints, which in essence
save the best performing policy during training.

The previously discussed policies have all been deterministic. The Soft Actor-Critic algorithm [102]

1.5. Research objective 14

Figure 1.8: Euler axis rotation angle and attitude rates for TD3 (black) and PPO (red) agents, from Elkins et al [93].

augments the cost function of equation (1.1) to include an entropy term, scaled by a temperature hy-
perparameter, and models a stochastic policy. It is an off-policy algorithm. Due to the stochastic nature
of the policy, exploration is inherent to the policy and is even encouraged (the policy is being optimized
for future rewards while being as random as possible). The policy is able to reduce its stochasticity
to become more deterministic if that is more optimal, which directly resolves the exploration versus
exploitation issue. Also, the policy is able to capture multiple near-optimal behaviors [103].

TD7 is an example of a very recent, state-of-the-art algorithm. The authors claim performance equal to
or exceeding the performance of other algorithms in a variety of benchmarks. Due to the novelty, this
has not been independently replicated by other researchers. Soft actor-critic and PPO are often used in
benchmarks for new algorithms, so could be considered state-of-the-art in that respect as well. Other
examples of newer algorithms or improvements to existing algorithms do exist, such as TQN [104].
Current major areas of research include for example distributional algorithms such as Distributional
Soft Actor-Critic [105], meta-reinforcement learning where recurrent neural networks are used [106], or
using memory in reinforcement learning [107].

In this research, four algorithms were investigated, with the goal of identifying which type of algorithms
are suitable for application in ADR post-capture attitude control. PPO was chosen to investigate a
well-understood on-policy algorithm. TD3 is representative of a well-understood off-policy algorithm.
SAC is also off-policy, but is stochastic instead of deterministic. Finally, TD7 represents a state-of-
the-art algorithm. With these four algorithms, the research has a broad representation of the possible
reinforcement learning algorithm, while being manageable in the available time.

1.5. Research objective
In the previous sections, it was established that active debris removal likely a necessary intervention to
ensure sustainable access to space [13]. A likely candidate method for this, using space manipulators,
is not without remaining challenges. A good example of such an open challenge is the post-capture
attitude control of a combined chaser-target spacecraft.

Post-capture attitude control for an ADR mission is a control problem that has many uncertainties.
The problem includes not just uncertainty in dynamical parameters such as inertia, but even in the
way the problem can be approximated, such as the consideration of a rigid or a flexible body. Model
free-reinforcement learning methods are known to in some cases exhibit properties that make them
especially suitable for dealing with precisely these uncertainties, as they do not require knowledge
of a model. Furthermore, they have been researched quite extensively and have shown promise in
simulated scenarios as well as in some real-world applications. This is especially important in the case
where offline training is possible before deployment in the real world, as is the case for ADR spacecraft

1.5. Research objective 15

attitude control due to the costs of such tests.

While RL agents have been adopted for attitude control of a spacecraft before, a broad and comparative
study of the merits of various algorithms in problems of this type has not yet been undertaken, which
in the view of the author is a gap of interest in the literature. Executing such a study could result in two
scientific advancements.

The first would be for the field of reinforcement learning. Studies comparing different algorithms for
different use cases are numerous, and efforts have been made to make benchmarks representative
of the real world [87][59]. However, it remains difficult to explain which aspects of an agent’s RL archi-
tecture contribute to poor or great performance, which is also highly dependent on the environment. A
comparative study for attitude control of even a non-ADR spacecraft is lacking, which complicates both
the selection of existing algorithms as well as designing new algorithms for an ADR application.

The second advancement would be for the field of post-capture control. Post-capture control requires
a high degree of adaptability or robustness from a controller, which reinforcement learning agents have
been demonstrated to be capable of in the past in different problem settings. A study in this area
could contribute to determining whether these capabilities of such agents could translate well to the
application of post-capture control.

Apart from the argument of the two possible advancements mentioned above, a secondary considera-
tion exists. Recently, the field of machine and reinforcement learning have shown rapid developments
and impressive results. This forms the foundation for a scientific curiosity for the performance of these
techniques in various applications, which makes it interesting to experiment with these RL methods on
difficult problems, such as the problem of post-capture attitude control.

As a result of these considerations, the objective of the research is formalized as follows:

To assess and compare the implementation and performance of state-of-
the-art model-free reinforcement learning algorithms in the context of post-
capture attitude control for an active debris removal mission accounting for
dynamic and kinematic uncertainties.

This research objective is relevant due to the need for efficient, reliable, and autonomous control ca-
pabilities in active debris removal missions. With this goal, the results of the research will support the
decision-making process in selecting a control algorithm for an ADR mission. Furthermore, it either
inspires future research into reinforcement learning for post-capture control, or in cases of negative re-
sults, encourage research into alternative options. It also enables future research in the application of
specific reinforcement learning algorithms in the field of spacecraft attitude control and contribute to a
deeper understanding of reinforcement learning algorithms in various applications. Fundamentally, the
major contribution of this research is to be a generalized reference for the design of RL-based attitude
controllers in an ADR mission in the post-capture phase.

In the objective, dynamic and kinematic uncertainties are mentioned. The former includes uncertain-
ties in model parameters such as inertial parameters and torque effectiveness. The latter includes
assessing different state representations and sensor effects.

A final critical distinction in this objective is the inclusion of the model-free qualifier. This does not
mean that the spacecraft is not modelled in the simulation process (the spacecraft modelling will be
discussed in section 2.2), or that the uncertainties are applied in several different ways. It means that
the algorithms are completely isolated from this model information, that the algorithms do not learn a
model, and that the algorithms have to learn a policy directly from environment interaction experience,
despite the applied uncertainties in the spacecraft model that make this experience less consistent.

The scope of the research was carefully set, based on the available literature and time constraints.
Research opportunities for designing (RL) controllers for the capture phase are also highly relevant.
However, it is deemed a good strategy to first assess the simpler post-capture phase, which in later
research could be extended to the capture phase.

1.6. Research questions 16

1.6. Research questions
The research objective is achieved by formulating an answer to the research question. The research
question has been formulated as follows:

To what extent can the implementation of model-free reinforcement learning
algorithms impact the performance of post-capture control in active debris
removal missions under the influence of inherent dynamic and kinematic
uncertainties?

In this research question and in the rest of the research, the performance is measured and defined
in relation to the requirements (see table 1.1). The performance is measured in several ways. These
metrics are described in detail in chapter 2, specifically in section 2.4 and section 2.5. In short, the
performance is acceptable or not based on an agents capability of pointing the spacecraft to the target
attitude within the requirements (described in section 1.3.2) or not. The fraction of times an agent
meets this requirement determines the convergence rate of the agent. Then, also the settling time, the
total control effort, the total episodic reward, and the angular error at the final timestep are measured.
Finally, the wall time for agent training (on the same hardware) is measured.

The research question is broken into four sub-questions (SQ), to provide more structure to the research
process:

SQ1: How can model-free reinforcement learning algorithms be effectively
adapted for the design of a controller for post-capture control in the context
of active debris removal missions?
SQ2: To what extent is the stability and convergence of a model-free rein-
forcement learning-based controller reliable?
SQ3: How do inherent uncertainties in the dynamic and kinematic properties
of the system affect the performance of a model-free reinforcement learning-
based controller in the post-capture phase of an active debris removal mis-
sion?

The sub-questions combined provide a comprehensive picture for answering the main research ques-
tion. The sub-questions also nicely consider the different design phases. The first sub-question focuses
fully on the algorithmic considerations of the research question, namely the effects of the architectural
differences between the different algorithms. By implementing PPO, SAC, TD3, and TD7 and compar-
ing them, it explores what the effects are of implementing different model-free reinforcement learning
agents based on different principles such as on-policy and off-policy learning and stochastic and de-
terministic actors, and the effects of tuning the associated hyperparameters. The brittleness to hyper-
parameter settings are quantified, as well as the sensitivity to initial and final conditions. Finally, the
required computational power is measured, which is compared relatively between different agents.

The second sub-question is fully quantitative. As previously explained, reliability is key for spacecraft
attitude control. This sub-question aims to provide insights into what affects the reliability of the agents.
The insights from sub-question 1 are used in this process. Controller performances is assessed for
many episodes, statistically averaging the results and obtaining a quantified measure of the overall
reliability of the agents. A theoretical study about or a proof of a bound on the reliability was not
pursued, as the emphasis of the research question lies on the implementation of existing controllers
instead. Hence, the research of convergence guarantees is outside the scope of this research.

The third sub-question extends the work from the prior two sub-questions by introducing the emphasis
on the dynamic and kinematic uncertainties. This is done by testing the performance of the trained
agents on many different spacecraft models with different dynamic and kinematic parameters. By
doing so, a sense of the robustness of the controller is obtained. The effect of training agents with
these uncertainties in the loop is also assessed.

The answer to the sub-questions are inter-dependent. The sub-questions were hence not sequentially

1.7. Report structure 17

treated in both the research process and this report, but were rather taken as the reference upon which
the methodology was set up in a comprehensive fashion.

The research questions together address one of two major promising characteristics of reinforcement
learning algorithms: the ability to generalize, which possibly makes the agents more robust. The other
major characteristic is the possibility to fine-tune trained agents, which possibly makes the agents more
adaptable. This decision was made to maintain a manageable scope, so that a thorough investigation
into the robustness was possible. Because of this, exploring the adaptability of the agents is the first
recommendation for possible follow-on research.

1.7. Report structure
The report is structured to provide the reader a good understanding of both the individual components
that make up the full model, as well as how the components are connected. This was started in this
chapter, where the background to the research problem was given and discussed, and the research
question was motivated and formulated.

Chapter 2 will discuss how the research questions are transformed into a methodology to answer them.
This includes an overview of the general flow of information processing, modelling the spacecraft, and
setting up the reinforcement learning agents. It also discusses specific settings in terms of hyperpa-
rameters and reward function formulation. In addition, the definitions for performance are formulated
and measured. The chapter is closed by a discussion on what off-baseline settings the trained agents
will be tested in to assess their robustness, and how training using domain randomization is used with
the goal of improving the robustness.

Before the results are presented, first, the methodology is underwritten by the supporting verification
and validation work that was done in chapter 3. This chapter starts with discussing the different unit tests
and verification of generic software tools. Verification work of the custom PID and TD7 implementations
are showcased, after which both the rigid and flexible spacecraft models are verified against other works.
The full learning process is validated by comparing against the work of Elkins [92][98].

Chapter 4 next goes into detail about the obtained results. This is done in sections, building up in com-
plexity. The research sub-questions are answered one-by-one, so that an answer to the full research
question is formulated. This starts with a comparison between the baseline agents, where the four
algorithms are compared against each other and against a reference PD controller. Then, the influ-
ence of the reward function on agent performance is discussed. Effects of changing hyperparameters,
in particular including sensitivity to the hyperparameters, are presented next. This is followed by the
results of the domain randomization experiments. Finally, the influence of flexibility in the spacecraft
model is assessed in detail.

The report is concluded in chapter 5. The research question is answered, and the answer and the full
work is evaluated. The core insights that result from this work are discussed. The chapter also includes
recommendations for future work.

2
Methodology

To gain the insights that are required for sufficiently answering all the sub-questions comprehensively,
a modular information processing pipeline, from here called the ’full model’, was required. This full
model needed to be able to easily switch between a rigid and flexible spacecraft model, including
corresponding uncertainties, and be able to use several reinforcement learning algorithms in a learning
process. It also needed to do this while retaining a common programming interface to run a large
number of different experiments with relative ease.

The full model was implemented in Python. This choice was made due to the strong suite of public
libraries available for reinforcement learning and machine learning in general. This would both aid in
the implementation of the selected reinforcement learning algorithms, as well as the spacecraft model.

Before explaining the full model and its parts, some definitions are given. In this report, a simulation
refers to a single training process of a single agent. From a higher level, an ’experiment’ refers to
a group of simulations with a common set of simulation settings (reward function, hyperparameters,
model type and settings, etc.). The utility in repeating simulations with the same settings is to get the
average result and a sense of the distribution of the results, which is stochastic due to the random
initializations. On the highest level, a ’study’ is referring to a group of experiments that investigate a
similar effect. For example, a study could be optimizing a single or group of hyperparameters, training
a model with noise inserted in the process, or another common variable to be studied. Finally, an
’environment’ is referring to the spacecraft model. This includes the rigid and flexible spacecraft models,
and all settings like inertia tensors, maximum control torque, etc. It should be noted that the definition
for environment also contains the reward function, which is implemented as a wrapper around the
spacecraft model.

A schematic overview of the full model is shown in figure 2.1. The process starts on the left, with
information flowing to the right. All study settings are set in a study configuration file. This is where
any setting can be changed that is relevant for the scope of the research, including agent selection,
specifying hyperparameter values or hyperparameters to be automatically sampled, reward functions,
or the domain randomization parameters, for example.

This chapter explains the thought behind the full model, and describes choices made in the process of
setting up the model. It also details individual components. First, general notes on spacecraft control
are described in section 2.1, and how those are taken into consideration in the full model. Second, the
different spacecraft models are discussed in section 2.2, including both the rigid and flexible space-
craft models. Third, the setup of the reinforcement learning agents is discussed in section 2.3. This
includes methodology for the problem formulation as well as the reward function, specific agent settings
(including decisions made about the hyperparameter settings used as a baseline), and how the learn-
ing process is set up for each agent. The final two sections, section 2.4 and section 2.5 discuss how
the learning process and the robustness of the experiments and trained agents are assessed, respec-
tively. Combined, they provide a definition of performance, which is used to answer the sub-questions
directly.

18

2.1. Attitude control simulation architecture 19

Figure 2.1: Schematic representation of the full model.

In general, the methodologies of this research can be categorized in two types of contributions. The first
sections (until section 2.3) are largely taking various prior research results and existing methodologies
and combining and adapting them appropriately for answering the research question. The second cat-
egory is that of more novel contributions. The assessment method in section 2.4 is a novel contribution,
as are the robustness assessment (including the sensitivity analysis) methods of section 2.5.

2.1. Attitude control simulation architecture
The process of controlling a spacecraft under the dynamic and kinematic uncertainties described in
chapter 1 is a problem that is non-trivial, as there exist many real-world effects that are difficult to
account for in a model. The fundamental control architecture that is used in this report is the closed-
loop controller shown in the block diagram in figure 2.2, discussed below.

The attitude control is done using a closed-loop control system, where the controller (red) tries to track a
reference attitude qref and attitude rate ωref. This reference is combined with the previous best estimate
of the spacecraft’s attitude and rates, which result in an error representation (qe, ωe). Based on this
error, the controller outputs a commanded control torque uc, which is clipped to the control torque limits
(u), and is forwarded to the spacecraft model (in blue). An external disturbance torque ud, if applicable,
is also taken into consideration, as well as various system uncertainties, such as thrust misalignment.

Based on the control and disturbance torques, the spacecraft model is then propagated further in time
numerically. The choice of representation for the attitude and rates and the numerical integration setup
can result in a buildup of an integration error. Furthermore, if the spacecraft model does not accurately
represent reality, then a modelling error will also be present. All spacecraft models rely on certain
assumptions for their validity. Central to this report is an assumption of a rigid or flexible spacecraft.
However, even under this assumption, if uncertainties exist in this model such as uncertainties in the
inertia tensor, these can highly influence the modelling error term. The numerical integration step is set
to a value that limits the numerical error to negligible sizes. However, the modelling error is deliberately
neglected in this research. As previously explained, this is due to the cost of a real-life comparison,
and relevant real-life data for validation purposes is not readily available. The state that is outputted by

2.2. Spacecraft dynamics and kinematics model 20

r

Controller Spacecraft Sensors
uc u

ud
Sensor noiseModel

uncertainties

system
response

uncertainties

Numerical errors,
state representation

Spacecraft
state (full),

+

-

-
+

Reward function

Figure 2.2: Full block diagram for the learning process for a spacecraft attitude reinforcement learning controller, color-coded:
The blue box is the spacecraft model discussed in section 2.2, the red box is the (reinforcement learning) controller discussed
in section 2.3.4, and the green box is the reward function discussed in section 2.3.2. The gray dashed box represents the

sensors.

the spacecraft model is hence treated to be the true system state.

The system state is measured by the sensors (gray dashed). No sophisticated state estimation is
considered, since that is not within the scope of the research. The sensors can introduce noise or
other imperfections in the measurement of the state, but in the baseline case are considered ideal
and perfect sensors. This measured state q̃, ω̃ (and in the fully observable flexible case also modal
coordinates η̃ and ˜̇η) is fed back into the controller.

Finally, the system state is used directly for the calculation of the instantaneous reward. This is used
to train the controller. The system state is used directly, rather than the measured state. While it is
possible to use rewards obtained from noisy measurements as shown by Wang et al [108], if not dealt
with appropriately, it can be detrimental to learning performance, as Everitt et al showed [109]. This
consideration, however, falls outside of the scope of the research, as the focus lies on the offline learning
of the agents, which is a setting in which the spacecraft state is known without errors, improving the
learning signal for the agent.

2.2. Spacecraft dynamics and kinematics model
Fundamentally, the objective is to train an RL agent to achieve the highest performance in a real-
world spacecraft attitude control scenario. However, real-world experience for this specific case of
post-capture control is not readily available to train the RL agent. Furthermore, what real-world expe-
rience exists is not easily modified to be representative of the wide range of uncertainties that will be
investigated (as later discussed in section 2.5). Hence, a simulated spacecraft is used to generate the
experience.

Because a simulated spacecraft is used, the insights gained from using the selected spacecraft model
do no longer transfer 1 to 1 to the real world. This is exactly why the uncertainties are applied, so
that an understanding can be obtained about the effects of particular types of real-world effects on
the performance of these agents, without having to use a model with extremely high fidelity. Thus,
two fundamental types of relatively simple models are used: a rigid spacecraft model and a flexible
spacecraft model. These are described in this section.

The first three subsections describe respectively general target considerations, the reference frames
used, and the control torque actuator and numerical settings. Then, the rigid spacecraft model is
presented. Finally, a flexible spacecraft model, based on a modal coordinate representation of internal
vibrations, is discussed. For these models, as well as sign, reference frame, or notation conventions,
the book of Markley is used [110].

2.2. Spacecraft dynamics and kinematics model 21

2.2.1. Target selection
Key to modelling the dynamics of the combined spacecraft is the inertia tensor, which describes some-
thing about the mass distribution of the spacecraft. In the active debris removal context of this research,
as discussed in chapter 1, this combined spacecraft consists of a chaser and a target. Hence, first, a
target needs to be selected.

As stated in section 1.2 based on literature [26][28] the most critical objects for ADR missions include
Envisat, as well as a group of Kosmos 3M upper stages. For this research, it was decided to focus
on Envisat, as many other ADR studies consider this object which makes it well-studied. Because
it’s well studied, its dynamical properties are well-characterized. Furthermore, selecting Envisat for
this research, opportunities for future comparisons arise with similar studies, such as the extensive
e.Deorbit study [19].

The chaser differs wildly between different studies. This among other factors depends on the objective
of the specific ADR mission under consideration: what capture and removal method is used, will it
capture one or multiple targets, and what is the target? The e.Deorbit chaser is significantly smaller
than Envisat [19]. It is hence difficult to select an appropriate chaser (and corresponding dynamical
parameters) without losing generality. Instead, it is more useful to assess the effects of changes in the
inertia tensor on the behavior of a controller. For this reason, the chaser inertia is simply neglected,
which is further motivated below. The inertia tensor that is used for this research is hence simply
the inertia tensor of Envisat. The values for Envisat’s inertia tensor have been taken from Arroz and
Gandía’s report [111]:

J =

17023.3 397.17 −2171.4
397.1 124825.7 344.2

−2171.4 344.2 129112.2

 [kgm2] (2.1)

As described in the research question, the goal is to assess whether reinforcement learning algorithms
has potential for ”post-capture control in active debris removal missions under (…) dynamic and kine-
matic uncertainties” in a broad generalized sense, not for any specific mission. To achieve this, the
inertia tensor is varied in two major ways. The first is a change in scale, which is implemented by scal-
ing the components of the diagonalized inertia tensor. The second is a rotation of the inertia tensor.

These changes will result in a change in the rotational coupling behavior and time scale of the final
dynamics. Provided the dynamics and associated uncertainties are representative of the active debris
removal mission scope, these changes in behavior are also appropriately varied when simply only using
Envisat’s inertia and no chaser inertia. This means that the research question can still be answered
appropriately. Note that a different chaser in the flexible case can influence other dynamic and kinematic
factors as well, such as natural frequencies of internal vibrations, but this will be further discussed in
section 2.2.5.

In conclusion, the chaser inertia is neglected, and Envisat’s inertia is used as a baseline for all exper-
iments. The effect of random rotations or random changes to the mass distribution is also studied,
to ensure the effect of uncertainties and variations in inertia tensors are represented appropriately. It
should be noted that these uncertainties are not necessarily present for Envisat’s inertia tensor, but
they are present for other potential ADR targets, and thus are still relevant to investigate. The specific
implementation of these inertia modifications are discussed in more depth in section 2.5.

2.2.2. Reference frame
In order to put any description of a spacecraft in the right context, a key requirement is a well-defined
reference frame of the model. Two reference frames are used in the context of this research: a body-
fixed frame, and an inertial frame.

The body fixed frame B is attached to the spacecraft. For Envisat, the reference frame in figure 2.3
is used, based on Virgili et al [112]. This frame rotates with the spacecraft, with respect to an inertial
frame.

The inertial frame, I is the second important reference frame. It is the frame in which Newton’s laws
of motion are valid, which form the basis for deriving further equations, such as Euler’s equation equa-
tion (2.2). It is an unchanging and unmoving reference frame.

2.2. Spacecraft dynamics and kinematics model 22

Figure 2.3: The Envisat body frame, from Virgili et al [112].

A third important reference frame in spacecraft attitude control is the local vertical local horizontal ref-
erence frame. It is often convenient to use this reference frame, for example to describe the attitude
of the spacecraft of an Earth-pointing spacecraft [110]. The reference frame is defined in relation to
the local horizon, the orbital angular momentum vector, and nadir direction. The difference with the
inertial frame is expressed in terms of a coriolis term (under assumptions of a simple orbit). In this
research, however, the orbital motion of the satellite is not directly considered. This enables a full fo-
cus on the attitude control, while removing the extra complexity introduced by the orbital motion. The
local vertical local horizontal reference frame is thus not used further in this work. The assumption of
an inertial frame is valid for investigating attitude control as the attitude dynamics of the system do not
meaningfully change on a relevant timescale for ADR missions due to orbital motion effects.

2.2.3. Control torque actuator selection and numerical settings
The next step in setting up a spacecraft model requires the selection of an appropriate control torque
actuator. In case of a mission design process, this selection can be driven by requirements such as a
time limit on a slew manoeuvre. However, the research question again aims to answer the appropriate-
ness of an RL controller for ADR post-capture attitude control in a general sense, without necessarily
constraining to a single slew time. A fixed slew time, combined with a fixed inertia tensor, dictates the
maximum control torque that the actuator needs to provide. Together, these also constrain the time
scale of the dynamical system. As the RL agent will learn a policy in a simulated manner, a larger (or
smaller) maximum control torque can be used in the simulation, as long as the simulated time (and con-
troller sampling frequency) is also scaled appropriately when drawing conclusions from this research
for a specific mission in the future. Hence, this design decision is also considered free.

The design decision for maximum control torque was taken in tandem with the sampling frequency.
The sampling frequency was set to 1 Hz, based on a conservative estimate for the availability of sensor
measurements. Initial experiments indicated that the learning speed of the reinforcement learning
agents was influenced by the maximum control torque, dependent on the agent hyperparameters. The
maximum control torque was hence set to a rough optimum of learning performance (based on the
early trial experiments) of umax = 200 Nm.

Finally, the numerical integration scheme and integration time step used are a Runge-Kutta 4 integration
schemewith a timestep of 1/60 s. In the timescale of the system dynamics and themaximum integration

2.2. Spacecraft dynamics and kinematics model 23

time, these settings proved sufficient to keep the numerical error negligible in comparison to other errors
or uncertainties (as verified in section 3.1.3). This timestep size means that 60 propagation steps are
done per controller sampling step. During these propagation steps, the control torque is kept constant.
Changing this to semi-impulsive control, where only the first propagation step used a non-zero control
torque provided by the controller, like the work of Elkins [93], did not affect learning performance in
early tests and was not further considered.

2.2.4. Rigid spacecraft dynamics and kinematics
The underlying assumption for what in this report is called the rigid spacecraft model is, unsurprisingly,
that the spacecraft is fully rigid. The implication of this assumption is that the dynamics of the system
can be described fully by Newton-Euler dynamics. Following Markley’s book [110]:

ω̇BI
B = (Jc

B)
−1

[
M c

B − ωBI
B × (Jc

Bω
BI
B)

]
(2.2)

Here, ωBI
B represents the rotational rate of the body frame B with respect to the inertial frame I, in the

body frame B. Jc
B represents the inertia tensor at the centroid, also expressed in the body frame B.

Finally, M c
B is the sum of the external torques on the body, acting at centroid c and expressed in the

body frame B. The symbol × indicates the cross product operator. The reference frames are dropped
for the rest of this report for ease of reading, and can be assumed to be the same as in this equation,
unless otherwise clear from context.

In this definition,M c
B is the sum of all external torques. This means that it both contains the commanded

control torque u (modelled using ũ, which includes its uncertainty effects such as misalignment, as
described later in section 2.5) and possible disturbance torques ud are summed and represented by
this single term:

MB = ũ+ ud (2.3)

It should be noted that the model in equation (2.2) does not assume a specific type of actuator. For
example, in case of reaction or momentum wheels, additional coriolis terms should be accounted for
due to the rotation of these wheels, or in case of a thruster-based system, the system mass (and hence
inertia tensor) should also change due to the expelled propellant. These effects are neglected here,
because the dynamical perturbations that these real actuators cause are of the same type that will
be investigated by perturbing the inertia tensor and actuator response by the methods described in
section 2.5.2.

To obtain the control torque u =
[
u1, u2, u3

]T , the commanded control torque uc =
[
uc,1 uc,2 uc,3

]T ,
which is the output of the controller, is clipped to a maximum control torque:

ui =


umax if uc,i > umax

uc,i if umin ≤ uc,i ≤ umax

umin if uc,i < umin

(2.4)

for i = 1, 2, 3.

The response of the spacecraft dynamics described in equation (2.2) to a given control torque are fully
determined by the initial attitude rate ω0 and the inertia tensor J . These terms are therefore analysed
and set appropriately as described below.

An appropriate setting for an initial rate of the system is determined by the control phase the spacecraft
is in, as discussed in section 1.3.1. As discussed, detumbling is relatively easy to do via other methods,
which can be quite a bit cheaper. Furthermore, early tests indicated that training a policy that could
detumble a spacecraft was relatively trivial. The interesting phase is the pointing control, where difficult
requirements can exist on the pointing accuracy. For such a control phase, the initial rates are very
small. As a result, all subsequent simulations were done with an initial rate of 0.

The decision to use 0 initial rates instead of a small rate was done so that a random factor contributing
to the variance of the results could be eliminated. The assumption is that the results from a zero
initial rate is not significantly different from one with a small non-zero rate, as the agents will encounter
many states with non-zero rates during the learning process anyway. Furthermore, metrics such as the

2.2. Spacecraft dynamics and kinematics model 24

settling time become a more reliable measure of the agent performance, due to the lower reliance on
the initial conditions: with zero initial rates, it is only dependent on the initial attitude and policy itself.

The second part of the spacecraft model is the representation of the attitude. For this, several options
exist. These options are listed with their pros and cons in table 2.1. Due to the linearity of the kinematic
equations and the lack of a singularity, this research uses a quaternion representation. The added
computational load due to the fourth parameter is insignificant in comparison with the computational
load due to training the neural networks of the RL agents.

Table 2.1: Comparison of Attitude Representations

Attitude
Representation Pros Cons

Direct Cosine
Matrix

• Clear physical meaning
• No singularities

• 9 parameters to track
• Orthogonality constraint to be
enforced

Euler angles
(Tait-Bryan)

• 3 parameters to track
• Intuitive understanding

• Singularities at pitch = π/2
• Non-linear derivative
• Multiple angle conventions

Quaternions
• No singularities
• Linear derivative

• 4 parameters to track
• Not intuitive
• Unit length constraint to be
enforced

Modified
Rodriguez
Parameters

• Singularities can be
avoided

• 3 parameters to track

• Not intuitive
• Non-linear derivative

The quaternion is defined in terms of euler axis e and euler angle ϕ as:

q(e, ϕ) =

[
e sin(ϕ/2)
cos(ϕ/2)

]
(2.5)

The kinematics of the rigid spacecraft are defined by [110]:

q̇ =
1

2
Ξ(q)ω (2.6)

where:

Ξ(q) ≡
[
q4I3 + [q1:3×]

−qT
1:3

]
=


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3

 (2.7)

This is dependent on the convention that q1:3 is the vector part of the quaternion and q4 is the scalar
part, which means that:

q =

[
q1:3
q4

]
=


q1
q2
q3
q4

 =


qx
qy
qz
qw

 (2.8)

2.2. Spacecraft dynamics and kinematics model 25

After every numerical timestep (using RK4 as described in section 2.2.2), the quaternion is normalized
to ensure the quaternion is always a versor.

The state error, computed between the measured states (which is computed on the left side of fig-
ure 2.2), is calculated by:

qe =


qe,1
qe,2
qe,3
qe,4

 = q̃ ⊗ qref =


q̃4 q̃3 −q̃2 q̃1
−q̃3 q̃4 q̃1 q̃2
q̃2 −q̃2 q̃4 q̃3
−q̃1 −q̃1 −q̃3 q̃4

 ·


qref,1
qref,2
qref,3
qref,4

 (2.9)

ωe =

ωe,1

ωe,2

ωe,3

 = ω̃ − ωref (2.10)

Here, the attitude q̃ and ω̃ are the quaternion attitude and attitude rates, respectively, as measured by
the sensors in figure 2.2.

2.2.5. Flexible spacecraft dynamics and kinematics
The flexible model formulation used to investigate the research question is another non-trivial decision.
This is because the model fidelity can be almost arbitrarily complex, using for example multi-physics
numerical model. However, modelling the intricacies of the flexibilities encountered in the post-capture
phase of a robotic active debris removal mission is not the focus of the research. A balance was sought
between model fidelity and model simplicity, while keeping computational cost down.

A suitable model for this case has been used for a long time by NASA [113] and ESA [114] for relatively
simple analysis of flexible models. Gennaro’s adaptation [115][116] of this model serves as the basis for
the implementation used in this research. This is because this model can capture flexible interactions
of multiple flexible components, under different boundary conditions. It is based on a dimensionless
modal coordinate representation of shape function amplitudes η, following:

ux(z, t) =

N∑
i=1

Φxi(z)ηi(t) = ΦT
x (z)η(t) (2.11)

uy(z, t) =

N∑
i=1

Φyi(z)ηi(t) = ΦT
y (z)η(t) (2.12)

θz(z, t) =

N∑
i=1

Φzi(z)ηi(t) = ΦT
z (z)η(t) (2.13)

This describes the deflection u(z, t) of a point at coordinate z along a flexible beam with end mass mp

at time t, using a linear combination of ux, uy, and θz, following the geometry as shown in figure 2.4.
N represents the number of modes considered, and Φ are admissible functions that depend on the
boundary conditions.

The modal coordinates η are coupled with the attitude rates of the main body. Together, they are
modelled as:

Jmbω = −ω × (Jω + δT η̇) + δT (Kη + Cη̇) +MB (2.14)

η̈ = −δω̇ − (Kη + Cη̇) (2.15)

Here, Jmb represents the inertia of the main body, which is related to the inertia tensor of the full body
J using the rigid-flexible coupling matrix δ by J = Jmb + δT δ. The matrices K and C are the stiffness
and damping matrix, respectively. They depend on the damping ratios and natural frequencies as
C = diag{2ζ1ω1, . . . , 2ζNωN} and K = diag{ω2

1 , . . . , ω
2
N} where the pair (ζk, ωk) are respectively the

damping ratio and natural frequency of mode k.

Comparing equation (2.2) with equation (2.14), if δ is a zero matrix (no coupling between the rigid and
flexible dynamics, which also implies J = Jmb), the flexible dynamics reduce down exactly to the rigid

2.2. Spacecraft dynamics and kinematics model 26

Center of Mass

Figure 2.4: Spacecraft with a flexible boom, reproduced from Gennaro [117].

dynamics. Furthermore, K and C fully describe the vibrational behavior in terms of ζi and ωi for all
i = 1, . . . , N . These can be derived from the vibrational eigenmodes [113], for example by using a finite
element analysis [118]. The masses and inertia of the flexible components are accounted for by δ.

As the goal is to compare a rigid scenario and a flexible scenario, the parameters of the flexible model
have been set to resemble the rigid model as closely as possible. The case that is under investigation
can be described as a chaser that has grabbed the target using robotic arms. The chaser and target
are considered to be rigid bodies, while the robotic arm connecting the two can flex to some degree.
The dynamics should be representative for cases like these, but are not constrained to one specific
case. This means that the matrix J is still set to Envisat’s inertia tensor, the sampling frequency is still
1 Hz, and the maximum control torque is still 200 Nm, to make comparisons between the rigid and
flexible case easier.

The inertia tensor of the spacecraft Gennaro uses for his analysis is roughly 225 times smaller than
Envisat’s inertia tensor. The matrix δ used by Gennaro is hence scaled up by a factor of

√
225 = 15.

This results in the following final matrix:

δ =


96.84555 19.1721 32.34435
−18.84285 13.7634 −25.0896
16.75305 37.33515 −12.5511
18.54555 −39.8715 −16.87545

 [
√
kgm] (2.16)

The damping ratios were unchanged from Gennaro’s analysis. The natural frequencies were scaled
to be in the same order of magnitude as natural frequencies that could be expected for a flexible
target-chaser combined body, using order-of-magnitude analysis. The robotic arm is on the order of
magnitude of a meter in length. If the robotic arm is assumed to be an Euler-Bernoulli flexible beam,
using a Young’s modulus of 100 GPa (order of magnitude of the stiffness of carbon fibre, a material used
on space manipulators such as the canadarm 2 [119]), and representative dimensions and inertias, the
natural frequency of the beam in bending is on the order of 0.1 rad/s. The natural frequencies used
by Gennaro are on the order of approximately 1 rad/s, so these are multiplied by 0.1 to get the natural
frequencies used in this research. As a result, the damping ratios ζ, natural frequencies ωn, and
corresponding K and C matrices are:

ζ =
[
0.005607, .00862, 0.01283, 0.02516

]T (2.17)

ωn =
[
0.07681, 0.11038, 0.18733, 0.25496

]T
[rad/s] (2.18)

2.3. Reinforcement learning setup 27

K =


0.00589978 0 0 0

0 0.01218374 0 0
0 0 0.03509253 0
0 0 0 0.0650046

 (2.19)

C =


0.00086135 0 0 0

0 0.00190295 0 0
0 0 0.00480689 0
0 0 0 0.01282959

 (2.20)

The decision to scale Gennaro’s values using order-of-magnitude analysis instead of deriving exact
values was driven by two considerations. The first is that as long as the dynamics are representative,
but not necessarily representing an actual case, the research question can still be answered. Scaling
Gennaro’s values achieves this. The second is a time consideration, to spend the time available for
the project on other topics that are more relevant to the research at hand (reinforcement learning in
spacecraft control) instead of an in-depth (vibrational) analysis.

It should be noted that all other environment settings of the flexible spacecraft model are the same
as the rigid model. This includes the numerical integration settings, with the timestep of 1/60 s. This
timestep ensures the vibrations are accurately modelled without running into sampling issues. However,
the agent is still modelled at 1 Hz. Given the natural frequencies, the vibrations are at least 24 times
smaller than 1 Hz. The agents should hence be able to dampen all the vibrations. Checking whether
they can actually do this is hence a point of interest.

2.3. Reinforcement learning setup
Simply inserting an off-the-shelf reinforcement learning algorithm in the place of the controller in fig-
ure 2.2 does not suffice for the purposes of this research. This is because of the different variables
the studies will investigate, but also because of the nuances that make certain reinforcement learning
agents performant or not. This section explains how the RL agents are implemented in a training loop,
so that their performance can be assessed and compared.

Furthermore, the settings of the agents’ learning process, which include the agents’ hyperparameters
and learning parameters such as maximum number of timesteps per episode, has a large effect on the
performance of the agents. At the same time, the space of possible configurations is very large and
highly multi-dimensional. As a result, this section also includes the settings around the learning process
including an explanation and motivation. Then, the settings for the individual agents are discussed.

Settings other than the ones mentioned in this chapter are directly the ones used by the original au-
thor implementations. As an example, the reinforcement learning algorithms use feed-forward deep
neural networks with two hidden layers, as specified in each of the original algorithm proposal papers
[88][102][96][99].

2.3.1. Problem formulation
The first crucial definition in the formulation of the environment for the agent is that of the observa-
tion space. As discussed in chapter 1, reinforcement learning algorithms are generally built upon the
assumption of a Markov Decision Process [120]. However, they can also perform well in a partially
observable MDP.

The observation vector is taken as the feature vector for the reinforcement learning agent’s neural net-
works. In the baseline scenario of this research, the observation vector is comprised of the quaternion
attitude and the attitude rates, as measured by perfect sensors. The baseline case is formulated as
a fully-observable MDP. The reward function, which will be described in more depth in the following
subsection, includes a bonus in case the spacecraft’s state has improved with respect to the previous
timestep, based on the scalar part of the quaternion qe,4. To ensure the system still has the Markov
property, qe,4 of the previous timestep is also appended to the feature vector, resulting in the baseline
feature vector for the rigid baseline at timestep tk as:

o(tk) = ok =
[
qe,1k qe,2k qe,3k qe,4k ωe,1k ωe,2k ωe,3k qe,4k−1

]T (2.21)

2.3. Reinforcement learning setup 28

In the flexible case, the baseline experiment is the same as the rigid case, even though the system
variables now include the modal coordinates and their derivatives. This means that the baseline flexible
case is a partially observable one.

Three variations to the observation space are investigated. The first two are to replace the four quater-
nion components with either the three Tait-Bryan angles or the three modified rodrigues parameters.
The third variation only exists in the flexible case, and is the fully observable case. In the third case, the
observation vector given the parameters set in section 2.2.5 (with four modal coordinates) is set as:

o(tk) = ok =
[
ork ofk qe,4k−1

]T (2.22)

ork =
[
qe,1k qe,2k qe,3k qe,4k ωe,1k ωe,2k ωe,3k

]
(2.23)

ofk =
[
ηe,1k ηe,2k ηe,3k ηe,4k η̇e,1k η̇e,2k η̇e,3k η̇e,4k

]
(2.24)

It should be noted that the environment always simulated the kinematics using quaternions, even if Tait-
Bryan angles or MRP representations were used in the observations. In these cases, the quaternions
were simply converted to these other representations using the following coordinate transformations
respectively before generating the observation vector [110]:

ϕ = atan2
(
2(qwqx + qyqz), 1− 2(q2x + q2y)

)
θ = arcsin (2(qwqy − qzqx))

ψ = atan2
(
2(qwqz + qxqy), 1− 2(q2y + q2z)

) (2.25)

p =

[
qx qy qz

]T
1 + qw

(2.26)

The second major definition is that of the action space. While related work by Elkins has successfully
used a discrete action in the past [92], the focus of this work is on continuous control. Initial experiments
indicated that performance for an arbitrary symmetric action space [−umax, umax] was sometimes very
poor. Hence, the last operation within a policy network was set to a hyperbolic tangent activation layer,
constraining the commanded action to between [−1, 1]. Outside of the policy network, the action would
be scaled back to the original [−200, 200] Nm action space in a linear fashion.

2.3.2. Reward function specification
The reward signal is what the reinforcement learning agent ultimately uses to learn, and tries to max-
imize. Since the reward function is usually set manually by humans, human biases are inherent to
these signals. The solution to this problem is called reward function shaping, and is still an active area
of research [121][122].

Optimizing the reward function for reinforcement learning performance is outside of the scope of this
research. However, investigating the effects of often employed strategies in reward function shaping
is within the scope, as these can guide future work on designing an optimal reward function.

As a baseline, the reward function used by the related work by Elkins is used [93]. He describes a
reward function with four distinct notable properties:

1. A shaped reward function that is shaped exponentially towards the goal state of zero attitude
error. Larger rewards are given if the state is closer to the goal state, incentivizing the agent
to reach this region of the state-space as quickly as possible to maximize the total discounted
reward (equation (1.1)).

2. A penalty for control effort, linearly proportional to the norm of the commanded control torque
vector. This discourages the agent from always only choosing agents near the boundary of the
action space. The intent is for the agent to learn a policy within the subset of optimal policies
that minimizes the control effort required. This translates to lower propellant consumption or less
frequent desaturation procedures, depending on the type of control actuator used.

2.3. Reinforcement learning setup 29

3. A penalty if the current state is worse than the previous state (attitude error is further from zero).
This further incentivizes the agent to continuously improve the state, reaching the target state as
quickly as possible.

4. A large bonus in case the attitude error is within the requirement (0.25◦ in their case). This
large bonus incentivizes the agent to stay within the requirements, which stabilizes the spacecraft
around the target attitude.

They hence calculate the reward using:

ra,t =

exp
(

−ϕt

0.14·2π

)
− 0.5 ∥Mt∥

∥Mmax∥ ϕt ≤ ϕt−1

exp
(

−ϕt

0.14·2π

)
− 0.5 ∥Mt∥

∥Mmax∥ − 1 otherwise
(2.27)

rt =

{
ra,t + 9 if ϕt ≤ 0.25◦

ra,t otherwise
(2.28)

ϕt represents the rotation around the euler axis that together represent the rotation error from the
target, meaning that the goal state for ϕ should be 0. It is calculated by the inverse of the definition
of the scalar part of the quaternion (see equation (2.5)), as: ϕ = 2arccos(qe,4). In equation (2.27), the
factor 0.14 · 2π in the denominator ensures the exponential part of the reward is within approximately
[0, 1], and determines the slope of the reward as a function of ϕ ∈ [0, 2π]. The fraction ∥Mt∥

∥Mmax∥ is within
[0, 1], and is scaled by a factor -0.5. The penalty in case the state is worse than the previous state
(ϕt > ϕt−1) is set to -1. Finally, in equation (2.28), the bonus for a state that is within the pointing
requirement of 0.25◦ (the requirement used by Elkins) is +9.

As explained, this reward function is also used as a baseline in this research. However, for this case
the baseline requirement is 1◦ instead of 0.25◦, as explained in section 1.3.2. Furthermore, of interest
is how these different components to the reward function influence the learning process. Hence, the
generalized reward function used in this research is formulated as:

ra,t =

exp
(

−ϕt

0.14·2π

)
− ca

∥Mt∥
∥Mmax∥ ϕt ≤ ϕt−1

exp
(

−ϕt

0.14·2π

)
− ca

∥Mt∥
∥Mmax∥ − cp otherwise

(2.29)

rt =

{
ra,t + 9 if ϕt ≤ cr

◦

ra,t otherwise
(2.30)

where coefficients ca, cp, and cr represent the action penalty multiplier, the penalty if the state does not
improve, and the requirement in degrees, respectively, and have the default values 0.5, 1, and 1.

It should be noted that Elkins set up their environment to give a different reward upon episode termina-
tion. An episodes terminates due to a too large rotational rate, after which a large negative reward of
-25 is given. This was also implemented in the reward function used in this research, with the termina-
tion criterion of 0.5π rad/s. This was done to discourage the agent to explore areas of the state-space
with an exceedingly large rotational rate, which is counterproductive to convergence.

Elkins also implemented different rewards upon episode truncation. After 500 agent timesteps (in this
research sampled in time intervals of 1 second/at 1 Hz), the episode truncates. In case the agent is
within the required angular error, the reward in Elkins’s environment is set to +50, and is 0 otherwise.
They motivate this by stating that this further incentivizes the agent to stabilize within the requirements.

This truncation reward was not used within this research, as it takes away the Markov property, unless
for example the time step is given in the observation vector. This decision was made because the
agent has to ultimately control the spacecraft attitude in a continuous manner instead of an episodic
manner. It is further motivated by the hypothesis that allowing the agent to do proper bootstrapping in
the episodic case will result in better continuous performance. The motivation for this is illustrated by
an example.

In this example, it is assumed that upon truncation, the agent is within the requirement and would stay
there in case the episode were not truncated. In such a case, the lower bound on the instantaneous

2.3. Reinforcement learning setup 30

Figure 2.5: Exponential part of the reward function, original (asymmetric, blue) and alternative (symmetrical around ϕ = π,
orange) variants.

reward is 7.5, based on equation (2.30) for the default values of ca and cp. If the environment is assumed
to be continuous instead of episodic and bootstrapping is used, the lower bound on the expected reward
to go (as the right-hand term in the Bellman equation, see equation (1.5)) can be calculated as:

G = γ

∞∑
k=0

γkrt+k+2 = γ · 7.5

1− γ
(2.31)

which for γ = 0.99 works out to G = 742.5. A positive reward of +50 at the instant of truncation
would hence only increase the bootstrapped value of G by 6.7%, while preventing the critic from ever
converging to a loss of 0 due to the loss of the Markov property and hence increasing variance.

One note about the reward function described in equation (2.30) is that it rewards ϕ→ 0 (equivalent to
q4 → 1) more, while not rewarding ϕ → 2π (equivalent to q4 → −1), even though both would push the
environment towards zero attitude error. This touches upon a deeper property of quaternions, which
is the ’double cover’ property. The double cover property means that a versor q and −q represent the
exact same rotation matrix. Intuitively, this can be interpreted by the fact that a rotation around Euler
axis e by angle ϕ is equivalent to rotating about the opposing −e axis by rotation angle −ϕ. This is also
clear from equation (2.5) as q(e, ϕ) = q(−e,−ϕ).

A variant on the reward function was hence considered. In this variant, the exponential term of the
reward rb in equation (2.29), where −ϕ in the exponent was replaced by |ϕ− π| − π. This results in the
figure shown in figure 2.5.

It was found that this alternate reward function drastically reduced learning stability, resulting in a higher
probability of policy collapse during training and also generally resulted in lower pointing accuracy.
However, precisely because of the double cover property, the representation of a rotation by either q or
−q is an arbitrary decision. The initial state is hence always represented in what is called the canonical
form, in which q4 ≥ 0. This minimizes the distance q4(t0)−q4,goal, in case q4,goal = 1. Hence, the original
asymmetric reward function was used instead of the symmetric-around-π alternative reward function.

Apart from the reward function inspired by Elkins, a reward function similar to a more conventional
control cost function was also investigated. A quadratic cost function, similar to one used for LQR
control, was tried:

r = oTQo+ uTRu (2.32)

2.3. Reinforcement learning setup 31

with o as the observation and u as the commanded control torque. A problem with this formulation is
that as the orientation error goes to zero, the reward hardly changes. This can be seen if the derivative
∂r
∂ϕ is considered. When combining equation (2.32) with equation (2.21) and equation (2.5), it can be
seen that this derivative goes to zero as well (due to the cosine term in equation (2.5)). This means
that a large improvement in error angle ∂ϕ (which is sought) only results in a minimal improvement in
the reward ∂r, which limits the incentive for the agents to further improve pointing performance.

Indeed, using this quadratic reward function in early test experiments resulted in the agents being
able to stabilize the attitude close to the target orientation, but with a non-zero (and outside of the
requirements) steady-state error. While there are ways to modify the quadratic reward function to
reduce this behavior, such modifications will look a lot like the exponential term in equation (2.29). The
variable coefficients in this reward function already allow for the comparison of the effects that different
components of the reward function will have on the learning process of the agents. Literature, such as
the work by Engel and Babuška [123], also suggests that a quadratic reward function, with parallels to
LQR control, are not the best type of reward function for reinforcement learning. While they conclude
this for different reasons, both these considerations were cause for not further considering a quadratic
reward function in the final experiments.

2.3.3. Learning setup
To conduct a valid comparison between different agents, the environment and learning variables are
kept equal as much as possible. The first of these is the interaction with the environment. At the core,
the environment is simulated in an episodic fashion.

Every episode starts with a random initial state. The initial quaternion is set by sampling a random
rotation matrix C ∈ SO(2), and converting the matrix to a unit quaternion by using:

1 + 2C11 − trC
C12 + C21

C13 + C31

C23 − C32

 = 4q1q,


C21 + C12

1 + 2C22 − trC
C23 + C32

C31 − C13

 = 4q2q


C31 + C13

C32 + C23

1 + 2C33 − trC
C12 − C21

 = 4q3q,


C23 − C32

C31 − C13

C12 − C21

1 + trC

 = 4q4q (2.33)

Which equation is used depends on whether trC is larger than each Cii for i = 1, 2, 3. If it is larger the
equation for q4 is used, else the equation for qi is used depending on which Cii is largest. This selection
of equation is done to limit numerical errors [110]. As discussed previously, the resulting quaternion
was set to the canonical form, resulting in q4(t0) ≥ 0. Furthermore, as also discussed earlier, the initial
attitudes rates were set to zero. In case of the flexible model, the generalized modal coordinates and
their derivatives were also initialized with zeros.

The second large consideration for episodic learning is the amount of steps per episode. This was
set at 500 agent samples per episode. The agent sampling rate was set to 1 Hz, per section 2.2.2,
resulting in a maximum episode length of 500 seconds. 500 steps was chosen because given the
system time scale (driven by the control torque and inertia, as also explained in section 2.2.2) allows a
tuned controller to reach a steady-state around the target orientation after between 50 and 200 seconds.
Hence, given 500 time steps, an RL agent has sufficient time steps to explore a large section of the
state space and to potentially converge to the target orientation. At the same time, a partially trained
agent is prevented by the episode truncation from spending a disproportionate amount of time in the
section of the state-space that is near the target orientation, which ensures the agent learns from a
wider distribution of samples (supporting more exploration), reducing the probability that the agent gets
stuck in a local optimum.

The third and fourth fundamental learning process considerations are the total amount of training iter-
ations and the amount of runs per experiment. These have been set depending on which algorithm is
used for the agent, so will be discussed in the next section.

2.3. Reinforcement learning setup 32

The method for optimizing hyperparameters is the final important learning setting. The hyperparam-
eters themselves, including default values, are discussed in the next subsection. However, the way
these are optimized is generalized. The hyperparameters are sampled using a tree-structured Parzen
estimator. This was done because it is the default optimization algorithm that is used by the chosen
optimization software, Optuna [124], and they note that this algorithm tends to give better results than
other algorithms (also random sampling) in case compute power is limited. Since achieving the most
efficient optimization possible is not the focus of this research, this recommendation has simply been
adopted.

2.3.4. Agent types and hyperparameters
As discussed in chapter 1, four different agents will be investigated: PPO, SAC, TD3, and TD7. For the
former three, the implementation by the software package Stable-Baselines3 [125] is used. This was
done because this implementation is a versatile implementation that eased the implementations of other
aspects of this research, and because of the extent to which it is used by the others, which contributes
to the reproducibility of the results in this research. The TD7 algorithm has been implemented on top
of the Stable-Baselines3 programming interfaces, based on the original author’s implementation [99].

Some hyperparameters are shared between these algorithms, but others are unique to the respective
algorithm. First, the general hyperparameters are discussed.

All of these algorithms are actor-critic algorithms. This means that they have two (in case of TD7 three,
this will be discussed later) feedforward neural nets. These nets are defined by the amount of nodes
in a hidden layer, the amount of hidden layers, and the activation function between these layers. All
of networks are iterated using a batch of environment interaction samples of a certain batch size at a
time, under influence of the optimization algorithm. The step size of the optimizer is influenced by a
learning rate. Finally, the learning process is influenced by the selection of the discount factor.

The baseline hyperparameters are listed in table 2.2. The hyperparameters, when possible, are taken
from Elkins et al [93], so that insights between this research and theirs can be compared. Other hyper-
parameters are taken from the Stable-Baselines3 implementation of the algorithms, which have been
optimized for a wide range of environments [126], or in case of TD7, taken from the original paper [99].

Stable-Baselines3, and hence all the agents used in this research, have been implemented using Py-
Torch [127]. Weights of the neural networks are initialized using the default PyTorch implementation,
which is based on Kaiming uniform initialization [128].

This random initialization of weights influences the learning process and the final performance of the
trained agent. To be able to draw conclusions about specific settings or architectural considerations in
the learning setup, the effects of this randomization need to be minimized. Hence, every experiment is
run multiple times. The computational power available for this project is limited, which is constraining
the total amount of runs. For every study, roughly the same amount of runs was selected. Some of
the studies assess the effects of changing a single parameter by a fixed amount, while others use
Optuna to sample hyperparameter values across multiple experiments, resulting in different results
every experiment. In the former case, an experiment was repeated at least 7 times, while an experiment
with a single sampled hyperparameter was run 2 times (but at least 10 different samples were tried).

The total training steps were, as discussed, differed per agent. This was done to keep the total compu-
tational time per run limited, while still obtaining valid results. The cut-off was set at a point after which
the performance of the baseline agent did not change meaningfully anymore, based on multiple early
experiments. This is further illustrated in figure 2.6.

PPO on average required the most environment interactions by a large margin (but was also the fastest
by far). Hence, the total steps done for this algorithm was set at 3.5M steps. The computational time
required for SAC and TD3, as well as the point after which no meaningful change occured anymore,
was quite similar. Both have been set to stop training after 400,000 steps. TD7 required significantly
more computational resources, but also often was more sample efficient. It’s maximum training steps
was set to 250,000.

Based on initial tests, the sample efficiency of some of the algorithms was determined to be (much)
larger than others, warranting evaluation steps at a higher frequency. PPO was evaluated every 10000

2.3. Reinforcement learning setup 33

Table 2.2: Baseline hyperparameters for the reinforcement learning agents

Category Hyperparameter Value

Shared

Discount factor γ 0.99
Learning rate 0.0003
Layer count 2
Optimization algorithm Adam

PPO

Batch size 64
Steps per training iteration 2048
Amount of training epochs 10
GAE-λ 0.95
Clip range 0.2
Value function coefficient 0.5
Maximum gradient norm 0.5
Target KL divergence Unused
Activation function ReLU
Node counts in critic hidden layers 400-300
Node counts in actor hidden layers 400-300
Exploration noise σ 0.0

SAC

Batch size 256
Polyak update coefficient τ 0.005
Train frequency 1 (step)
Gradient steps per train iteration 1
Target update interval 1
Activation function ReLU
Node count in all hidden layers 256
Amount of critics 2
Exploration noise σ 0.0

TD3

Exploration noise σ 0.1
Batch size 256
Polyak update coefficient τ 0.005
Train frequency 1 (step)
Gradient steps per train iteration 1
Policy delay 2
Target policy noise 0.2
Target noise clip 0.5
Activation function ReLU
Node counts in critic hidden layers 400-300
Node counts in actor hidden layers 400-300
Amount of critics 2

TD7

Exploration noise σ 0.1
Batch size 256
Checkpointing Enabled
Late assessment episodes 20
Criteria reset weight 0.9
Target update frequency 250
Probability smoothing α 0.4
Policy delay 2
Target policy noise 0.2
Target noise clip 0.5
Activation function ELU
Node count in all hidden layers 256
Amount of critics 2
Encoder hidden layers 2

2.4. Learning process assessment 34

Figure 2.6: Demonstration of the diminishing returns for longer training times for the four algorithms. The algorithms no longer
show continued improvements in performance after a relatively early timestep. Results are shown for a single training process

of a baseline agent in the rigid environment, without smoothing applied.

steps, and the off-policy algorithms every 2500 steps.

2.4. Learning process assessment
During the learning process, the agents are assessed at regular intervals. This allows for the charac-
terisation and reliability of the learning process, which is important for understanding and explaining
the final results, which are explained in the next section.

Tracking learning progress in machine learning is mainly done [99] by visualising the process in a
learning curve, showing total episode reward over time. Often, every point in this curve is averaged
over a set of episodes. Furthermore, the curves themselves are the average of multiple runs of the
same experiment. Finally, the curves are smoothed.

An important note for this research compared to some other research is that multiple reward functions
are used, making the comparison of total episode reward over time invalid. Hence, during the training
of an agent, a base reward is also calculated and saved. This is purely based on the actual error angle,
and is calculated using:

rb = exp
(

−ϕt
0.14 · 2π

)
(2.34)

Evaluations of agents during training done by running the agent for 20 episodes. During these episodes,
the following statistics are saved:

1. Total undiscounted episode reward
2. Total undiscounted episode base reward
3. Total episode control effort
4. Episode length
5. Settling time

2.4. Learning process assessment 35

6. Angular error at the final episode timestep ϕ(tend)
7. Smallest angular error of the entire episode (minϕ(ti) for i = 0, . . . , T)
8. Convergence (boolean)

Of these metrics, except for the convergence flag, the means, standard deviations, minima, and max-
ima are saved. Convergence is defined as the case in which the angular error and rate on the final
timestep of the episode are below the requirements (1◦ and 0.1◦/s respectively, as discussed in sec-
tion 1.3.2). The settling time is set based on the convergence: if the episode converged, the settling
time is the last moment after which the angular error and rates stay within the requirements. If it is not
converged, the settling time is set to the episode length. Hence, the average settling time for an agent
that does not converge is 499 s, the maximum episode length.

The total episode control effort (in Nms) is calculated by taking the (numerically calculated) integral of
the norm of the commanded control torque vector over the entire episode:

utot =

∫ tend

0

∥u(t)∥dt (2.35)

All the mentioned performance metrics are compared to the performance metrics of a PD controller.
This is done to provide a well-understood frame of reference of the performance of the trained agents,
while being easily replicable. These PD controllers were tuned by hand, for the same environment setup
as the reinforcement learning agents. This means that the output of the PD controller was clipped to the
control torque limits. Furthermore, since the environments are defined to receive a scaled commanded
control torque in [−1, 1], the clipped output was linearly rescaled to this range.

The tuning of the PD controllers was done for both the rigid and flexible cases separately. The controller,
which was implemented as a full PID controller, is defined as:

u(t) = Kpoe(t) +Ki

∫ t

0

oe(τ)dτ +Kdȯe(t) (2.36)

with gain matricesKp, Ki, andKd. Furthermore, o is the observation vector, as defined and described
in section 2.3.1. For the rest of this research (except in the verification section 3.2), the integral gain
Ki is the zero matrix. The proportional and derivative gain matrices used were set to:

Kp =

kp,q 0 0 0 kp,ω 0 0
0 kp,q 0 0 0 kp,ω 0
0 0 kp,q 0 0 0 kp,ω

 , Kd =

kd,q 0 0 0 0 0 0
0 kd,q 0 0 0 0 0
0 0 kd,q 0 0 0 0

 (2.37)

with the variable gains listed for both the rigid and flexible environments in table 2.3. kd,q was included
(even though kp,ω was also included) as in the tuning process the controllers with a non-zero kd,q
performed better. This is likely a result of the coupling in equation (2.6).

It should be noted that the observation vector o in equation (2.36) was truncated to exclude qe,4k−1
and

any modal coordinates, if applicable, leaving only the error quaternion and rate error in the observation
vector.

Table 2.3: PD gains tuned for the rigid and flexible environments.

Gain Rigid tuned Flexible tuned
kp,q -1200 -625
kp,ω -14400 -11440
kd,q -600 -440

The performance of these PD controllers, both for the intended environment and also the other envi-
ronment variant, has been tabulated in table 2.4 for reference.

In table 2.4, it should be noted that when looking at the flexible environment but also in general, the
base reward is not an adequate metric for performance. It is clear that even though the convergence

2.5. Robustness assessment 36

Table 2.4: PD controller performance in the different environments. The values after ± represent the standard deviation of the
value over 200 randomly initialized episodes.

Environment Rigid Flexible
Controller (PD) Rigid tuned Flexible tuned Rigid tuned Flexible tuned
Episode length 499±0 499±0 499±0 499±0
Episode reward 3942.2±114 3570.7±180 1657.3±615 3362.8±276

Episode base reward 458.3±10.2 440.8±12.9 448.4±10.7 442.1±13.3
Final angle [deg] 0±0 0±0 1.003±0.530 0.267±0.158
Best angle [deg] 0±0 0±0 0.036±0.029 0.066±0.036

Control effort [Nms] 4917.2±4272.7 3987.5±3140.7 38444.9±40223.2 4846.8±2582.4
Settling time [s] 97.5±12.9 150.5±19.0 499±0 175.1±61.3
Convergence rate 100% 100% 0% 100%

rate is 0%, the base reward is still relatively high at 448.4. However, when the PD controller is properly
tuned for the flexible environment, the base reward drops down to 438.8, while practically all other
performance metrics move in the direction that indicates better performance. Hence, it should only be
used to compare between agents that have different reward functions but are otherwise identical, and
only together with the other performance metrics.

The learning curves that will be shown are in some cases smoothed by using a 10-step window average.
This is indicated if it is not the case.

The final important metric that is looked at is the computational time. This measurement simply mea-
sures the wall time elapsed between different milestones. This can either be the total trainign time, time
per 100k steps, of the time at which the agent exceeds the mean total episode reward of the appropri-
ate PD controller. This provides indication of the learning speed, sample efficiency, and computational
cost. Note that the measurement of the computational time also includes the time required to simulate
the spacecraft and to evaluate the agent. However, the spacecraft is simulated with the exact same
numerical settings for each algorithm.

2.5. Robustness assessment
The appropriately tuned controllers of table 2.4 for the respective models already have a fairly good
nominal performance, achieving fairly rapid settling times for a reasonable total control effort, with a
100% convergence rate. However, the research question investigates performance under the influence
of inherent dynamic and kinematic uncertainties. In this section, it is explained how these uncertainties
are modelled, and also implemented in the full model.

2.5.1. Uncertainty modelling using perturbations
In this research, the set of off-baseline experiments are called perturbed experiments, and the changes
are called perturbations. These perturbations are only applied orthogonally, meaning that no two per-
turbations are applied at the same time. This was decided due to computational limitations.

The perturbations were implemented identically for both the rigid and the flexible environments. The
perturbations that were investigated in this research are listed below.

1. Inertia scaling. The perturbation applied represents the sensitivity of a controller to different mass
distributions. This was done by rescaling the inertia tensor. First, the inertia tensor was diagonal-
ized:

J = PJdP
T (2.38)

Here, Jd represents the inertia tensor in the frame of the body’s principal axes, and P represents
the rotation matrix between the body frame and the principal axes frame. This diagonalization is
always possible, as an inertia tensor is positive-definite. Then, each component of the diagonal
matrix Jd is scaled by a random scaling factor:

J̃d = diag{α1j1, α2j2, α3j3} (2.39)

2.5. Robustness assessment 37

where αi ∼ N (1, σ2
J) and ji is the entry on the diagonal of Jd, for each i = 1, 2, 3. After rescal-

ing this diagonal, the inertia tensor in the body frame is obtained again by using the inverse of
equation (2.38), J̃ = P J̃dP

T .

The perturbation is hence characterized by σJ . In the unperturbed case, it is set to 0. In the
perturbed case, a value of σJ = 0.006 is used, as the results from inertia estimation studies in
an ADR context, such as Zhang et al [129] show that errors in inertia tensor estimation of around
0.6% are reasonable for this case.

2. Inertia rotation. This is the second perturbation that represents errors in the mass distribution
estimation. For this perturbation, a random unit vector e ∈ S2 is sampled. Then, a random
rotation angle ϕ is sampled from N (0, σ2

R). This rotation axis and angle is then converted to the
representative rotation matrix R. Finally, the inertia tensor is rotated by this rotation matrix:

J̃ = RJRT (2.40)

In the unperturbed case, σR = 0, resulting in R = I3×3. In the perturbed case, a value of 0.19
rad is used, again based on Zhang et al [129].

3. Gyroscope noise. This perturbation simulates the presence of noise in gyroscope measurements,
which is the assumed way of measuring the attitude rates for the spacecraft. The noise is modeled
as Gaussian white noise, added to the true angular velocity readings:

ω̃ = ω + ε (2.41)

where εi ∼ N (0, σ2
ω), i = 1, 2, 3 represents the white noise vector, sampled every step. In the

unperturbed case, σω = 0. For the perturbed case, ση = 0.057 rad/s is used to reflect realistic
noise levels found in gyroscopic sensors, based on Thienel and Sanner [130].

4. Gyroscope bias - constant. This perturbation accounts for a constant bias present in the gy-
roscope measurements, which can result from sensor imperfections or calibration errors. The
biased measurement ω̃ is modeled as:

ω̃ = ω + b (2.42)

where b is a constant bias vector. The value of b is chosen based on typical bias levels observed in
real gyroscopes. Other studies use values around the order of magnitude of 1 deg/s [130][131],
but it can also be chosen semi-arbirarily [132]. In this research, b =

[
b1 b2 b3

]T which is
sampled by bi ∼ N (0, σ2

b), i = 1, 2, 3. In the unperturbed case, σb = 0◦, which results in b = 0.
In the perturbed case, σb = 0.1◦. The bias is kept constant for the entire episode.

5. Gyroscope bias - random walk. This perturbation is introduced using equation (2.42) as well.
However, in this case, the bias is time-varying, modeled as a random walk process. The bias is
modelled using:

dbt = σbdWt (2.43)

where W is a Wiener process, characterized by Wt −Wt−1 ∼ N (0,∆t). Since the noise is only
relevant in the sensors as seen in figure 2.2, the bias is propagated at the same frequency as
the agent is sampled, so ∆t = 1 s. σb characterizes the variance of the bias term. b(0) = 0 is
used as the initial condition. In the unperturbed case, σb = 0, meaning that b(t) = 0 ∀ t. In the
perturbed case, σb = 0.057, following Thienel and Sanner [130].

6. Torque misalignment. This perturbation represents misalignments in the actuation system, where
the applied torques are not perfectly aligned with the intended control axes. The actual torque ũ
applied modelled as:

ũ = (Ruu) ◦ τ + η (2.44)

Here,Ru is a rotationmatrix representing themisalignment. ◦ represents the operator for element-
wise multiplication of the vectors, τ represents the action scaling vector discussed in the next
perturbation, and η represents the action noise, discussed in the perturbation after that.

Ru is sampled using the same process as perturbation number 2, inertia rotation, but using a
rotation angle sampled from N (0, σ2

u) instead. In the unperturbed case, Ru is the identity matrix,

2.5. Robustness assessment 38

as σu = 0. In the perturbed case, a value of σu = 10◦ is used. This value is quite large, but
is set to investigate the effects of misalignments that cause a change in thrust on the order of a
few percent, which is roughly the order of magnitude Visser et al found to be reasonable for the
magnetorquers on GOCE [133]. Even through magentorquers are not representative at all of a
maximum torque of 200 Nm, as discussed previously, the goal is to research a suitable scope of
perturbations that give insights into the applicability of the RL agents for a wide range of possible
missions and control architectures.

7. Action scale. This perturbation scales the control inputs, simulating variations in actuator ef-
fectiveness or changes in control gains. It is modelled by the τ term in equation (2.44). τ =[
τ1 τ2 τ3

]T is sampled by τi ∼ N (1, σ2
τ), i = 1, 2, 3. In the unperturbed case, στ = 0. In the

perturbed case, στ = 0.03, causing a change on the order of a few percent.
8. Action noise. This perturbation adds noise to the control inputs, reflecting imperfections in the

actuation system. This is modelled by the term η in equation (2.44). The noise term is sampled
every step as η ∼ N (0, σ2

ηI). In the unperturbed case, ση = 0. In the perturbed case, ση =
0.03umax = 6 Nm, again causing a change on the order of a few percent.

9. Disturbance torque. This perturbation includes external torques acting on the spacecraft, such
as those due to environmental effects like aerodynamic drag or gravitational torques. The distur-
bance torque ud is added to the control torque, as previously shown in equation (2.3), repeated
here:

MB = ũ+ ud (2.3)

In the unperturbed case, ud = 0. The perturbed case is based on the work by Cao et al [134],
where the disturbance torque is given by:

ud =

 −3 + 4 cos(0.2πt)− cos(0.4πt) + 2ω1 sin(0.11t)
4 + 3 sin(0.2πt)− 2 cos(0.4πt) + ω2 cos(0.11t)

−3 + 4 sin(0.2πt)− 3 sin(0.4πt)− 2ω3 cos(0.11t)

 d (2.45)

Here, d is a scaling factor that Cao et al set to 10−4 Nm, while their maximum control torque was
set to 0.5 Nm. In this case, the inertia tensor and maximum control torque are of a much larger
order of magnitude. Hence, the value for d has been set to 0.04 Nm, to keep the ratio between
maximum disturbance magnitude and maximum control torque magnitude the same as in Cao’s
work.

10. (Flexible only) full observability. This case was already briefly discussed in section 2.3.1. The
full observability perturbation is the case in which the agent has access to the modal coordinates.
Conversely, in the unperturbed, the modal coordinates are hidden to the agent, making the un-
perturbed flexible case a partially observable MDP.

The perturbation terms that model noise are randomly sampled every time step. Perturbations that are
changes to the spacecraft model (such as the inertia perturbations) or control loop (bias in the sen-
sors) are reset every new episode, so that each new episode the agent encounters a new (perturbed)
spacecraft model.

All perturbations were either activate or not. No further activations, where for example the standard
deviations mentioned above were set to a different non-zero value than the one mentioned, were tried.
This is because the study does not focus on exactly quantifying the effect of one of these disturbances
for the specific mission (environment and agent settings mentioned). This has two reasons. The first
is a time constraint on the entire project, and the second is that the actual values for the perturbations
highly depend on the specific mission, which is as stated before outside the scope of the project.

2.5.2. Domain randomization
A consideration that is fundamental to answering the research question is not only whether a controller
trained on the baseline scenario is able to deal with the perturbations mentioned in the previous subsec-
tion. Rather, a key strength of reinforcement learning is its ability to generalize a good policy for a wide
range of cases. To get an idea about the ability of the algorithms to generalize (and hence, becoming
more robust), their training domain will be randomized, which should contribute to the transferability
from simulation to the real world, per Tobin et al [135].

2.5. Robustness assessment 39

The domain randomizations that were implemented include all of the perturbations of the previous
sections, meaning that these perturbations were applied during training time. These domain random-
izations were also only applied orthogonally: one at a time per training process.

Of course, the idea is that the domain randomized agents will learn more generalized policies. It is sug-
gested that these generalized policies are more robust than the baseline case. Hence, these domain
randomized agents are also tested against the same robustness tests as the baseline agents.

2.5.3. Robustness sensitivity analysis
The research question aims to answer ”to what extent” the RL agents are robust to the uncertainties,
implemented using the perturbations of section 2.5.1. Providing an answer to this question is not
straightforward however, which is why this research has opted to use a comparative method.

First, the robustness experiments (for all the perturbations, one by one, including the unperturbed case)
are ran for the baseline agents. In this context, the baseline agent refers to one of the agents with default
settings including hyperparameters, reward function, attitude representation, and observability.

Next, any variation in an agent is also evaluated using the robustness experiments (again, all the
perturbations, including the unperturbed case). Between all the repetitions (to reduce randomness in
the results, as mentioned in section 2.3.4) of the experiment the mean and standard deviation of every
performance metric is taken.

Next, the mean and standard deviation of the varied agent performance metrics x̂i and σ̂i for each
performance metric index i are rescaled to represent a percentage change of the mean baseline per-
formance xi:

x̄i =
x̂i − x

x
· 100%

σ̄i =
σ̂i
x

· 100%
(2.46)

Figure 2.7: Example sensitivity analysis figure for the rigid environment, with inertia scaling as the variation to the agent. Each
sub-figure shows a different performance metric, in this case (clockwise from top left) mean reward, mean settling time, mean
final angle, and mean total control effort. The x-axis shows which perturbation is applied during evaluation, while the different

bars represent the different algorithms that are used. The error bars indicate one standard deviation.

This percentage change x̄i indicates how much better or worse the varied agent performs with respect

2.5. Robustness assessment 40

to the baseline agent. As a result, it estimates the sensitivity of the total agent performance to the
variation. This differs per perturbation, and even per performance metric. Hence, these results will be
shown in a bar chart like the one in figure 2.7. Note that the standard deviation error bars are applied
in a symmetric way, but that this is not necessarily representative of the dataset. Also note that for
the reward variations, it was deemed more useful to have different bars represent a different value for
a coefficient (either cr, ca, or cp, see section 2.3.2) all for the same RL algorithm, instead of showing
multiple algorithms in a single figure.

3
Verification and Validation

Before the results of the research are presented, the implementation and validity of themethods are con-
firmed by the verification and validation efforts. Since multiple different reference works were adapted
and combined as described in chapter 2, this resulted in a high degree of complexity. Due to this com-
plexity, the focus of the main V&V efforts were also on the implementation of these combined methods.

In this chapter, first, the unit testing of important modelling components is discussed in section 3.1.
Then, the PD controller is verified in section 3.2. Next, the custom implementation of the TD7 algorithm
is verified in section 3.3. Next, both the rigid and the flexible spacecraft models are verified in section 3.4
and section 3.5 respectively. Finally, the full model is validated in section 3.6. Note that in reality, the
rigid environment, including its verification and validation work, was completed before the TD7 algorithm
was implemented and verified. Hence, in section 3.3, the environment should be considered verified,
even though the environment verification work is shown afterwards.

3.1. Unit testing and assumptions
Several software packages are used off-the-shelf. Some functions have been implemented in a custom
fashion. For both of these, it is important to reflect on their correctness, and not to assume without a
solid rationale. In this section, first, the largest assumptions in this process are explained. Then, the
coordinate transformation functions are discussed, followed by the verification of important implemen-
tation specific software elements.

3.1.1. Assumptions
All modelling efforts were completed in Python. This allowed for the usage of extensive and well-
maintained libraries for a wide range of functionalities. The most important of these are NumPy [136],
SciPy [137], Matplotlib [138], and PyTorch [127]. As these are widely regarded as the industry standard
in Python or the machine learning community, these libraries are assumed to be correct.

Other libraries are also used. The libraries of note are Gymnasium [139], Optuna [124], and Stable-
Baselines3 [125]. Gymnasium is used for the implementation of the environments, Optuna is used
for the tuning of hyperparameters, and Stable-Baselines3 is used as the primary reinforcement learn-
ing library. These libraries depend on the libraries that were mentioned before. While these libraries
are also widely used and actively maintained, these were screened by reviewing their source code.
Otherwise, these were also assumed verified.

It should be noted that the implementations used for the algorithms PPO, SAC, and TD3 are part of
Stable-Baselines3. These are hence also considered verified, but were also reviewed against the
original author papers. The validation for these was done by using a CartPole environment (from
Gymnasium). All environments converged quickly to a highly performant policy, as expected with this
very simple environment.

41

3.2. PD controller verification 42

Figure 3.1: Rigid environment episode, JIT (subscript jit) and non-JIT (subscript n) version, for the same initial condition and
random actions.

3.1.2. Coordinate transformations
A wide range of coordinate transformations was used. As mentioned in chapter 2, this includes trans-
formations between quaternions and Euler angles and modified rodriguez parameters, and rotation
matrices. These were implemented in a custom fashion, again based on the book by Markley [110]
(and shown in equation (2.33), equation (2.25), and equation (2.26)). All conversions that were imple-
mented were checked with success against the SciPy coordinate transformation functions. The custom
implementation was done because it made dealing with the specific notation conventions used in this
research easier.

3.1.3. Implementation specifics
The research project was limited in both schedule and computational time. Hence, efforts were done
to speed up the models. The most important of these is the usage of Numba [140]. It allows for Just-
In-Time (JIT) compilation of Python code, providing a notable speed increase after the compilation
has completed. Unfortunately, more complex Python packages such as PyTorch are not supported or
only supported partially. Hence, only the spacecraft models were JIT compiled. For the same initial
condition and the same applied (random) torque, the JIT versions were compared against the non-JIT
versions. The example for the rigid environment is visible in figure 3.1. To run 1M environment steps,
including the initial compilation, the non-JIT version on the author’s machine took 119 s, while the JIT
version took 40 s, indicating that the JIT version is roughly 200% faster.

In chapter 2, it was mentioned that the environment numerical integration was done with a timestep
of 1/60 s. Whether this makes the numerical error negligible, is an important assumption to verify.
Hence, two versions of the environment were ran with the same initial conditions, and the same arbitrary
constant torque ofu =

[
1,−2, 1.5

]
Nm. The nominal environment ran with a timestep of 1/60 s, while the

verification environment ran with 1/6000 s, a factor 100 more granular. Both were ran for 500 seconds,
the result of which is shown in figure 3.2. When calculating the difference between the quaternions or
rates, the difference for the quaternions was exactly 0 and for the rates exactly zero except for a couple
of timesteps, where the error was on the order of magnitude of 10−12 rad/s. Because PyTorch is used,
which on the author’s hardware only supports 32-bit floating point numbers for the neural networks in
the RL agents, the numerical error is negligible for a timestep of 1/60 s. This is because the 32-bit
floating point number truncation error is much larger (the machine epsilon ≈ 1.12 · 10−7).

3.2. PD controller verification
The reference PD controller also needs to be verified, as it is a custom implementation, for any com-
parison to be valid. It is implemented as a PID controller. Hence, verification is done by checking it
against the PID controller implementation in Matlab using the Control System Toolbox add-on. Matlab
and its Control System Toolbox are considered verified within this project.

3.2. PD controller verification 43

Figure 3.2: Verification of the numerical integration settings: nominal (subscript nom) environment with a timestep of 1/60 s
and a 100x finer timestep environment (subscript 100) dt = 1/6000 s.

The verification was done for a simple spring-damper system, following a reference by the University
of Michigan [141]:

mẍ+ bẋ+ kx = F (3.1)

where the variable x represents the position of the spring, andm, b, and k are the mass, damping, and
stiffness constants respectively. These have been set tom = 1 kg, b = 10 Ns/m, and k = 20 N/m. This
results in the transfer function:

X(s)

F (s)
=

1

s2 + 10s+ 20
(3.2)

The implementation of this system in Python was done numerically, while in Matlab, the transfer function
was used directly for the PID controller. The Python implementation was verified by checking the step
response of the system, using the matlab code:

1 s = tf('s');
2 P = 1/(s^2 + 10*s + 20);
3 t = 0:0.01:2;
4 [y, tOut] = step(P, t);

The output y was compared to the output of the Python implementation, as shown in figure 3.3. After

Figure 3.3: Simulation of a spring-damper system step response to verify the custom spring-damper system implementation.

the test system was verified, the PID was verified. This was done by setting the gain matrices in
equation (2.36) to:

Kp =
[
350 0

]
, Ki =

[
300 0

]
, Kd =

[
50 0

]
(3.3)

3.3. TD7 verification 44

as the observation vector of equation (2.36) for the numerical Python implementation of equation (3.1)
is defined as o =

[
x ẋ

]
. This was compared to the results of rest of the matlab script:

5 Kp = 350;
6 Ki = 300;
7 Kd = 50;
8
9 C = pid(Kp,Ki,Kd);
10 T = feedback(C*P,1);
11
12 [y_pid, tOut_pid] = step(T,t)

The results of this comparison are shown in figure 3.4. As the results match to within numerical errors,

Figure 3.4: Simulation of a spring-damper system controlled by a PID controller to verify the custom PID controller
implementation.

this concludes the verification of the PID controller.

3.3. TD7 verification
The custom implementation of TD7, while based on the author’s original implementation [99], is imple-
mented within the framework of Stable-Baselines3. This means that in order to verify that the model
has been implemented correctly, it should be compared to the author’s implementation. However, this
is difficult to do, as there are many random samples of random variables involved, and since the imple-
mentations are very different. Hence, instead of comparing individual values, the performance of the
algorithms was compared instead.

The environment that was used for this is the Pendulum-v1 gymnasium environment. It was used since
it is a simple and intuitively understandable environment with a continuous observation and action
space environment. The author’s original implementation was ran for 10 runs, with 15000 training
steps. Then, the custom implementation was ran for 10 runs, with the same settings. The original
author’s implementation achieved a mean episode reward at the end of training of -242, while the
custom implementation achieved a mean reward of -146.

Next, to validate that TD7 actually performed better than TD3 (over which it is intended to be an improve-
ment in terms of performance [99]), the two algorithms were tested together. Again, the Pendulum-v1
environment was used, with 15000 training steps. The TD7 agent was run with the default hyperpa-
rameters for the author’s paper, with the exception of setting learning_starts=100 (to align with TD3)
and steps_before_checkpointing=7500 (to ensure checkpointing was used from the halfway point).
The TD3 agent was ran with Stable-Baselines3’s default hyperparameters. The learning curves of the
average of 10 runs is shown in figure 3.5. TD7 outperforms TD3, as expected. Due to the similarity of
the results with the author’s implementation, and confirmation of TD7’s performance being better than
TD3 (at least for the default set of hyperparameters), the TD7 implementation was considered verified.

3.4. Rigid model verification 45

Figure 3.5: Learning curves of TD3 and TD7 for the Pendulum-v1 gymnasium environment for 15000 steps. Note that the
plotted value is the average reward per episode over the entire training process.

3.4. Rigid model verification
The spacecraft plays a central role in the full model. Hence, verification and validation efforts of the
spacecraft model have been conducted in a structured manner. First, the equations of motion verifi-
cation was executed, as well as a verification procedure for the implementation within the Gymnasium
API. Second, the reward wrappers, which wrap around the environment, were verified by comparing it
against the implementation from a different author.

3.4.1. Equations of motion
The rigid equations of motion, which are represented by Euler dynamics as discussed in equation (2.2)
and the quaternion kinematics in equation (2.6), were verified by comparing it to an analytical solution,
based on a chapter by Markley in the book of Wertz [142].

For the verification process, the inertia tensor was set to the axisymmetric values J = diag{J1, J2, J3} =
diag{Jt, Jt, J3} with Jt = 200 kg m2 and J3 = 300 kg m2. Furthermore, the control torque is set to 0 in
the verification process of the dynamics. The equations can then be written in scalar form as:

J1ω̇1 = ω3ω2(J2 − J3)

J2ω̇2 = ω1ω3(J3 − J1)

J3ω̇3 = ω1ω2(J1 − J2)

(3.4)

Because J1 = J2 = Jt = 200 Nm, ω̇3 = 0. Next, ωn is defined as:

ωn = ω3
Jt − J3
Jt

(3.5)

which results in:

ω̇1 = ω2ωn

ω̇2 = −ω1ωn

(3.6)

This describes a harmonic oscillator, and is dependent on initial conditions ω0 =
[
0.05, 0, 0.01

]
rad/s.

Solving the differential equations gives the analytical solutions:

ω1(t) = ω0,1 cos(ωnt) + ω0,2 sinωnt

ω2(t) = ω0,2 cos(ωnt)− ω0,1 sinωnt

ω3(t) = ω0,3

(3.7)

Furthermore, following Markley’s derivation in the book, an analytical solution for the quaternion state

3.4. Rigid model verification 46

can be obtained using:

q1 = h0,1 cos(α) sin(β) + h0,2 sin(α) sin(β)

q2 = h0,2 cos(α) sin(β)− h0,1 sin(α) sin(β)

q3 = h0,3 cos(α) sin(β) + sin(α) cos(β)

q4 = cos(α) cos(β)− h0,3 sin(α) sin(β)

(3.8)

with:

α =
1

2
ωnt (3.9)

β =
1

2
ωit (3.10)

h =
L0

∥L0∥
(3.11)

L0 = Jω0 (3.12)

where ωi = ∥L0∥/Jt. Note that the quaternion described in equation (3.8) is the same as the error
quaternion described in equation (2.9) if the target is qt =

[
0, 0, 0, 1

]
.

The analytical solutions of equation (3.7) and equation (3.8) were compared to the rigid spacecraft
model, with the same inertia of J =

[
200, 200, 300

]
kgm2, ω0 =

[
0.05, 0, 0.01

]
rad/s, and q0 =[

0, 0, 0, 1
]
. The results are shown in figure 3.6. Finally, the implementation within the Gymnasium and

Figure 3.6: Comparison of the rigid spacecraft dynamics and kinematics with an analytical solution (subscript a) from Markley
in the book of Wertz [142].

Stable-Baselines3 API was verified by using functions within those libraries. Gymnasium provides a
function for this, gymnasium.util.env_checker.check_env(), as does Stable-Baselines3 (which uses
a variant of the Gymnasium environments), stable_baselines3.common.env_checker.check_env(),
which checks a Stable-Baselines3 VecEnv. The implementation of the spacecraft model was checked
using these functions, and returned without errors. This verifies the implementation of the library’s
APIs.

3.4.2. Reward wrapper verification
As discussed previously, the spacecraft models are wrapped in a reward wrapper, which calculates
the instantaneous reward. These also have to be verified, to ensure that the RL agents receive the
intended reward.

The underlying spacecraft model calculates a base reward, as defined in equation (2.34). This function
is only dependent on the quaternion attitude, and not on the rate. The implementation of this base

3.4. Rigid model verification 47

reward was done by setting the state to zero rates and a given quaternion, for which the reward can
be analytically calculated using equation (2.34). The results of this are listed in table 3.1.

Table 3.1: Test quaternions and their corresponding expected reward, together with the actual reward given by the spacecraft
model.

Quaternion Expected reward Reward Difference
[0, 0, 0, 1] 1.0 1.0 0

[0,
√
2/2, 0,

√
2/2] 0.167677 0.167677 0

The reward wrapper implements the reward function discussed in section 2.3.2. Since this form of the
reward function was proposed by Elkins, the reward function of equation (2.30) was compared to the
publicly available implementation of Elkins1 [93], with the reward function coefficients set to ca = 0.5,
cp = 1, and cr = 0.25◦.

It should be noted that in Elkins implementation their previously discussed truncation bonus/penalty
was disabled for this simulation, to simplify the comparison. Furthermore, a mistake was found in their
implementation. They used an equation equivalent but different to equation (2.6), but forgot the factor
1

2
in the quaternion derivative2. After fixing this, and reviewing that the propagated states were the

same as those obtained using the (verified) equations of motion of the custom implementation for the
same conditions, the reward function verification was done. The comparison of the reward functions
for the same initial conditions, model parameters, numerical settings, and (random) applied actions are
shown in figure 3.7.

Figure 3.7: Verification of the reward function by comparing it with Elkins’ implementation. The environment state is reset
manually at step 234 to a state just within 0.25◦ from the target, resulting in a +9 bonus. After 500 steps, the episode truncates

automatically, as the maximum episode steps was configured for 500 steps for this test. The reset sets the state with a
rotational rate that is almost at the termination limit. Under the influence of the (same) random action, both environments reach

the terminal rotational velocity at timestep 998, resulting in a penalty instantaneous reward of -25 at this final timestep.

1As mentioned in their paper, the code they used is available via https://github.com/jakeelkins/rl-attitude-control.
2It is not expected that their results or conclusion would significantly differ had they not made this mistake, as the dynamics and

kinematics still exhibit the same behavior. It however does prevent a 1 to 1 comparison between a correct custom implementation
and the results shown in their paper.

https://github.com/jakeelkins/rl-attitude-control

3.5. Flexible model verification 48

3.5. Flexible model verification
The flexible model was implemented within the library APIs the same way as the rigid model. However,
since the model is not the same, it should be verified separately as well. This is done first by checking
the flexible model implementation in a rigidified case, where the flexible terms are set to 0. Then, the
full flexible behavior is verified against an assumed correct reference.

3.5.1. Rigidified flexible model verification
The implementation of the flexible model is first verified, again by using Stable-Baselines3’s check_env
function. After verifying that the implementation was correct, the underlying model was verified. From
equation (2.14), it can be seen that in case the rigid-flexible coupling matrix δ is set to the appropriate
zero matrix, then the model reduces down to the exact same model as the rigid case, equation (2.2).
This was done so that the flexible modifications to the rigid model could be verified in isolation.

The flexible environment was hence ran with the same initial conditions, numerical settings, and model
parameters as the rigid model, with δ set to the appropriate zero matrix (and C and K were arbitrary,
since their behavior is not coupled to the rigid dynamics). The comparison between the flexible and
the rigid models is shown in figure 3.8.

Figure 3.8: Verification of the flexible model (subscript f) with the flexible modifications to the model disabled, for the same
initial conditions, model settings, and numerical settings as the rigid model (subscript r).

3.5.2. Flexible model verification
The flexible model was compared against the source of the model, namely the paper by Gennaro
[116]. Their model was implemented separately from the custom flexible model implementation, and
their controller was also implemented. In this section, this model is referred to as the reference model.
Furthermore, the flexible model used in this research is simply referred to as the flexible model.

Since the reference model was implemented by the author of this research, instead of an off-the-shelf
solution, it cannot be assumed verified. Hence, the same model parameters that Gennaro describes to
have used for Figure 3 in his paper were adopted for the verification process. These parameters were
inserted both in the reference model as well as the flexible model. The control torques commanded by
Gennaro’s controller were used for both the reference model and the flexible model. The only differ-
ence between the used settings and the ones described by Gennaro was the addition of disturbances.
This is because Gennaro implemented the disturbances in a stochastic fashion, which is not exactly
reproducible based on the information provided in the paper. The resulting observations of both models
are shown in figure 3.9.

Note that the figures don’t match with the paper exactly. This is assumed to be due to the stochastic
disturbances that were not implemented. As the behavior of the results and the behavior shown by

3.6. Full learning process validation 49

(a) Quaternion components (b) Modal coorinates

(c) Modal displacements from Gennaro’s paper

Figure 3.9: Verification of the flexible model against the reference model by Gennaro [116]. The settings and parameters used
are the same as those used to generate figure 3 of his paper. The behavior shown by these results are very similar to the

behavior shown in his figures (bottom).

Gennaro’s plots is very similar (for example, the characteristic first oscillation of η4 in the first 4 seconds),
the implementation of the reference model is still considered verified, and since the flexible model
matches those, also the flexible model is considered verified.

3.6. Full learning process validation
The final step in the verification and validation process is the validation of the full model, which includes
the learning process of the agents. This was done by comparing it against the work by Elkins [93]. His
work only considers PPO and TD3. As the agents themselves are all considered verified, if the full
processing pipeline (which the only component that has not been verified) is verified for one model, the
full model is considered verified for all agents.

Elkins’ implementation was slightly adapted, to work with newer versions of the libraries. Furthermore,
the factor 1

2
that was mistakenly forgotten as mentioned before was fixed. Finally, the different trunca-

tion reward was disabled.

The comparison between Elkins’ work and the presented work was done using PPO. Elkins implemen-
tation is assumed validated. Hence, the method for validating the full model was to check whether the
learning behavior of the full model was the same as Elkins model, irrespective of the exact parameters
used. The parameters used were taken from the script by Elkins. This consisted of an inertia tensor
of diag{0.872, 0.115, 0.797} kgm2, an integration timestep of 1/240s, impulsive control modelled by a
constant torque during one time step then 20 time steps with 0 applied torque, a rate limit of 0.5 rad/s, a
maximum control torque of 0.5 Nm, a maximum of 500 steps per episode, a training time of maximum
10000 episodes, and the reward function parameters ca = 0.5, cp = 1, and cr = 0.25◦. The hyper-

3.6. Full learning process validation 50

parameters were the default for PPO from Stable-Baselines3, with the exception of a ReLU activation
function and a neural network architecture of two hidden layers with 400 and 300 nodes in the first and
second hidden layers, respectively, for both the actors and the value functions.

In figure 3.10, two training processes completed using both Elkins’ script as well as the full model of this
research are shown. The learning behavior seen for this particular set of settings and hyperparameters
is that the agent quickly learns how to get positive rewards instead of negative rewards, but it fails to get
the state to within the requirements (set to 0.25◦ as per Elkins). Hence, it does not get the +9 bonus of
equation (2.28). After the initial rapid learning process, performance deteriorates. While results from
individual runs can differ slightly, especially increasing in variance at a later stage in the training, This
behavior is identical for both Elkins implementation as well as the implementation used in this research.
Hence, the full model of this research is considered validated.

Figure 3.10: Validation process of the full model: comparison of the learning behavior between the custom implementation
used in this research and the implementation by Elkins, for two distinct random seeds.

4
Results and Discussion

In this chapter, the primary results of the different experiments are shown and explained. This is done
in a structured manner following from the research methodology.

Due to the extent of the experiments done, not all results can be shown and discussed, and as such,
only results deemed relevant are listed here. All other results are still included, but are shown in
appendix A.

Key to this chapter is that when it is stated that an algorithm is able to produce an agent with certain
properties, what is meant is that at a certain training step, the usage of the discussed algorithm has
resulted in at least one agent that has that certain property.

First, the results are only discussed for the rigid case, as this case is simpler to analyse. This is broken
down in several sections. In section 4.1, the baseline scenarios for the rigid case were investigated
and compared in multiple ways. Next, in section 4.2 the influence of different variants on the reward
function are compared. Then, the effects of the domain randomizations are discussed in section 4.3.
Section 4.4 then discusses the influence of hyperparameters on the performance of the agents. Finally,
the effects of the flexible uncertainties are investigated in section 4.5. This section includes an in-depth
discussion of the nuances of the flexible case, as well as a repeat of the analysis of the previous
topics. However, for brevity and ease of interpretation, only the the differences with the rigid case are
highlighted and discussed.

4.1. Baseline agent comparisons
Within this section the hyperparameters mentioned in table 2.2 were used. The discussion of the results
of this baseline configuration is divided into several subsections. First, the behavior of the controllers
for a single episode is compared in section 4.1.1. Then, the learning processes are compared in
section 4.1.2. Next, a comparison with the reference PD controller is discussed in section 4.1.3. This
is followed by a discussion of the differences in compute time in section 4.1.4, and is concluded by a
discussion of the robustness of these baseline agents in section 4.1.5.

The discussion of this section about the rigid baseline case provides the fundamental background
and reference performance for the more special cases in the later sections. Those cases, including
the flexible case and perturbed experiments, are where the research questions are answered. This
section also serves to give the reader an understanding on how to interpret the figures shown in later
sections.

4.1.1. Agent control behavior
The four algorithms were trained with their baseline settings on the rigid environment. The best per-
forming agents were saved during the training process. The behavior of these best performing agents
is assessed in this section.

For a random initial state of q0 =
[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , the controller
51

4.1. Baseline agent comparisons 52

behavior of the best performing PPO, SAC, TD3, and TD7 agents respectively have been shown in
figure 4.1, figure 4.2, figure 4.3, and figure 4.4.

From these figures, it can be seen that all agents settle within the requirements. PPO is the slowest,
then TD3, then SAC, and TD7 is the fastest to settle. Furthermore, from these results, PPO seems
to saturate the control torque and alternate between the minimum and maximum torque more readily
than the other agents, which might contribute to the longer settling time.

When looking at the attitude rates, PPO seems themost aggressive, as it reaches the highest (absolute)
attitude rate component of the four algorithms (roughly 10 deg/s compared to 5.5, 4, and 4.5 deg/s for
SAC, TD3, and TD7 respectively).

Finally, when looking at the instantaneous reward (top right subfigures), a direct conclusion about agent
behavior is difficult to draw. However, PPO seems to be the only algorithm that once it obtains the +9
requirement bonus loses it again for a short time (in this case between 158 and 181 s and between 194
and 206 s). Based on the Euler axis rotation error (top middle subfigure of figure 4.1) it seems that this
is caused by an overshoot. For the other algorithms, overshooting is not an issue.

4.1.2. Agent learning comparison
The worst and best case behavior of the agents is analysed first. A couple of interesting observations
can be identified from the data which are visualised in figure 4.5. All algorithms are able to produce an
agent that is able to bring the final state of at least one evaluation episode to within the requirements
(visible in the min/max bound shading). Furthermore, all algorithms are able to produce agents that
have a convergence rate of 100%.

The first differences between the agents becomes apparent when looking at settling time (top middle),
reward (bottom middle), and total control effort (bottom left). All agents except for PPO are able to
produce agents that perform better than the PD controller, meaning with a lower settling time, lower
average control effort, or higher reward (although these are not necessarily the same agents).

The implication of these observations is that each algorithm except for PPO has the capability to pro-
duce agents with performance metrics that are compliant with the requirements or even exceed the
performance of the PD controller with the rigid spacecraft model at some point during the training pro-
cess. In order to circumvent possible performance degradation later during training, simply, the best
performing agent during training is saved. The question of reliability of these agents is assessed later.

Furthermore, it can be seen that all agents, except for SAC, have trouble with reliably converging. Only
SAC after step 163000 has a consistent convergence rate (top right) of 100%. While TD7 near the end
of its training has an average convergence rate of 95%, TD3 and PPO fare worse with convergence
rates of approximately 76% and less than 50% respectively. To further illustrate this difference between
individual agents, the learning curve for TD3 and PPO are shown for individual agents (each with a
random seed) in figure 4.6.

To get a total episode reward higher than 500 (the maximum of equation (2.29) on its own), the agent
needs to be within the requirements at least once during an episode, in order to get the +9 instanta-
neous reward bonus of equation (2.30). Both algorithms demonstrate the capability to do this almost
consistently at least once during the episode, as illustrated by figure 4.6. However, convergence is
defined as whether the last time step of the episode was within the requirements (see section 2.4), and
this is more difficult to achieve consistently. This can be seen in the high variance in the final angle
subfigure (top). Another important note is that most PPO runs demonstrate relatively consistent im-
provement during learning in the first 400000 steps, as shown by the consistent decrease in final angle,
after which for most agents policy collapse takes place.

Since the training process is not always reliable, it is difficult to talk about an agent’s performance in
general terms. Hence, in the next sections, a filtering process is applied to the results. For filtered
results, only runs that result in a 100% convergence rate for at least one evaluation during the learning
process are considered. The performance of agents are then discussed in general terms using these
filtered results.

4.1. Baseline agent comparisons 53

Figure 4.1: A single episode for the rigid model, controlled using the best PPO agent. Initial quaternion is
q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial values all zero.

Figure 4.2: A single episode for the rigid model, controlled using the best SAC agent. Initial quaternion is
q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial values all zero.

4.1. Baseline agent comparisons 54

Figure 4.3: A single episode for the rigid model, controlled using the best TD3 agent. Initial quaternion is
q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial values all zero.

Figure 4.4: A single episode for the rigid model, controlled using the best TD7 agent. Initial quaternion is
q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial values all zero.

4.1. Baseline agent comparisons 55

Figure 4.5: Average, minimum, and maximum results for multiple learning processes with the four different algorithms in the
rigid case, with 10-step window smoothing applied.

(a) TD3 (b) PPO

Figure 4.6: Individual runs of the different algorithms for the rigid baseline case without smoothing applied. Different colours
represent different runs, while the gray horizontal striped line represents the total episode reward achieved on average when

using the rigid PD controller.

4.1. Baseline agent comparisons 56

4.1.3. PD comparison
As a result of the filtering, the results of figure 4.5 change slightly. The new filtered results are shown
in figure 4.7.

Figure 4.7: Results of the learning process of the four different algorithms in the rigid spacecraft environment. Average results
are shown including a 95% confidence interval, with 10-step window smoothing applied.

In this rigid case, the performance of the algorithms can be summarized as follows, when looking at
the settling time (top middle subfigure): The PPO algorithm can be dismissed when comparing to the
PD controller, as it consistently underperforms. TD3 sometimes shows performance better than the
PD controller, but on average is worse. SAC is the only that consistently outperforms the PD controller,
while also learning quite quickly.

In terms of final angles, SAC shows the best performance. However, when settling time and episode
reward are considered, TD7 shows the highest performance, conditional on agents that perform within
the pointing requirements.

4.1.4. Compute time results
For RL algorithms, performance is not the full picture. Even though only the initial training is considered
here, and no online fine-tuning as explained in section 1.6, looking at computational time gives a sense
of the learning speed, sample efficiency, the computational cost, and potential training cost of the
agents.

Two types of computational times are considered. The first is wall-time, where the actual time for the
training to complete is measured, as well as a measure of the average amount of training steps per
second. The second is a metric of how fast it achieves a good performance, measured by the average
amount of training steps (and, using the average steps per second) until an agent receives an average
episode reward that exceeds that of the PD controller. Note that the timestep at which an agent reaches
this performance level for the first time is used, even if the agent’s performance degrades later during
training. As PPO does not exceed the performance of the PD controller, also the reward at 100k
steps is shown, so that its sample efficiency can still be compared. For the rigid baseline case, the
computational wall-time cost can be found in table 4.1, and the comparative compute time metrics can
be found in table 4.2.

4.1. Baseline agent comparisons 57

Table 4.1: Computational time metrics for the rigid baseline case.

Agent Steps per second Training time [s] (total steps) Time per 100k steps [s]
PPO 324.9 11262 ± 2176 (3.5M) 307.8
SAC 55.0 7346 ± 710 (400k) 1819
TD3 59.2 6873 ± 952 (400k) 1688
TD7 20.7 12543 ± 2756 (250k) 4826

Table 4.2: Comparative computational time metrics for the rigid baseline case.

Agent PD exceed steps PD exceed time [s] Reward at 100k steps
PPO - - -226.9 ± 39.1
SAC 59000 ± 1073 1073 3996.5 ± 53.8
TD3 184977 ± 3112 3122 1647.8 ± 1679.7
TD7 52949 ± 2555 2555 4142.3 ± 17.7

From table 4.1, it can be seen that PPO executes the most training steps per second. However, the
reward at 100k steps is still very low (as seen in table 4.2), in comparison to the other algorithms,
indicating a much lower sample efficiency. It is also clear that TD3 is the fastest off-policy algorithm in
terms of steps per second, followed not far behind by SAC, and that TD7 is the slowest of all.

When looking deeper into the results from table 4.2, this view changes slightly. Even though TD3 goes
through iterations the fastest of all the off-policy algorithms, it is the slowest in reaching the performance
of the PD controller. Furthermore, TD7, even though it is much slower in terms of steps per second
than TD3, reaches the PD level performance sooner than TD3, on average.

A couple of interesting remarks can be drawn from these results. First, if the performance of PPO
could be stabilized and policy collapse could be prevented, PPO could be a very strong candidate for
an online learning agent. Second, in case computational constraints are not limiting and in cases where
sample efficiency is the most important, then TD7 seems promising, as it gets the highest reward at an
equal number of training steps of all algorithms, with the lowest variance at that timestep as well. Third,
SAC’s training process seems to be most balanced, with relatively fast training speed, good sample
efficiency (with relatively low variance), and relatively good reliability (when combined with the insights
from figure 4.7, as TD7 shows at least in one case a short-lived policy collapse at around step 200000).

4.1.5. Baseline robustness analysis
As explained in chapter 2, the robustness is assessed by applying several perturbations, one by one, to
each agent. The performance metrics of the baseline agents when perturbed can be seen in table 4.4,
where the number next to the performancemetric (second column) indicates the index of the pertubation
applied, as listed in table 4.3. This table is shown in full here (instead of in the appendix) as it provides
the important reference values for the sensitivity analyses in the following sections. The PD controller
performance is highlighted in orange, while agent performances equal to or better than the PD controller
have been highlighted in blue, to aid visual comparison. Note that this table is unfiltered, so it displays
the average results of the agents both at the evaluation with the highest reward (best agents) and at
the end of training (final agents).

A few things stand out from this table:

1. There is a large difference between the performance of the best agents and the performance of
the final agents, except for that of SAC. This indicates that the learning process is unstable to
some extent for the agents. However, this does not meaningfully change in the perturbed cases
(indices 2-10).

2. None of the agents converge for any of the perturbations in the gyroscope (indices 4-6). This
indicates that the policy of the agents is not generalized enough to be robust to these perturbations.
In many ADCS architectures, a state estimator is included to deal with this issue, which could
potentially also improve performance here, but is not within the scope of the current research. An
alternative could be to let the agent learn online, but as discussed before, this is also outside of

4.2. Effects of reward function variations 58

Table 4.3: Keys for the perturbations listed in table 4.4.

Perturbation Perturbation index
Unperturbed 1
Inertia scaling 2
Inertia rotation 3
Gyro noise 4
Gyro constant bias 5
Gyro drift 6
Torque misalignment 7
Torque scaling 8
Torque noise 9
Disturbance torque 10

the scope of the current research. It is clear that the algorithms are not able to deal with these
types of perturbations by their own.

3. All agents have difficulty with the torque scaling perturbation (index 8). This is a similar type of
problem that is sometimes resolved using for example a state estimator (or in this case more
appropriately, a disturbance observer) or other methods. The algorithms are also not sufficiently
able to deal with these types of perturbations on their own.

4. Inertia scaling (index 2) seems to have little effect on the performance of the controllers. With
respect to this perturbation, the agents are hence already robust.

5. Inertia rotation (index 3) seems to be manageable for the baseline agents. Reliability is slightly
degraded with convergence rates of less than 100% in some cases, and a higher average settling
time and total control effort. However, the other performance metrics don’t degrade significantly.
The agents are hence already relatively robust to this perturbation, but not fully.

6. The performance values for the remaining torque perturbations (misalignment, noise, and the
disturbance torque, with indices 7, 9 and 10 respectively) don’t differ much from the unperturbed
case. However, notable differences can still be identified, for example how for torque misalign-
ment, even though the mean episode reward is the same as the unperturbed case, the settling
time is significantly larger. Moreover, for torque noise and the disturbance torque, the only no-
table difference is visible in the total control effort. This shows that the agents are able to deal
with these perturbations very effectively already, at the cost of some extra control effort.

7. When comparing the PD controllers with the agents in terms of mean total control effort (regard-
less of the perturbation applied), the agents perform slightly or significantly worse, as visible by
a lack of blue shaded cells. This means that in the rigid case, even if both the PD controller and
the agents are robust to a perturbation, the PD controller generally achieves a lower total control
effort. Hence, the agents never offer an advantage when looking at this performance criterion.

It should be noted that comparisons in later sections with agents that failed to learn properly (such as all
baseline agents in the gyro perturbations) can’t be used to discuss the learning performance. Hence,
these are omitted from discussion in the following sections.

4.2. Effects of reward function variations
The first variation to be investigated in detail is the design decision of the reward function, equa-
tion (2.30). Here, the coefficients and their default values that were changed are cr = 1◦, ca = 0.5,
and cp = 1. The full reward function is repeated here:

ra,t =

exp
(

−ϕt

0.14·2π

)
− ca

∥Mt∥
∥Mmax∥ ϕt ≤ ϕt−1

exp
(

−ϕt

0.14·2π

)
− ca

∥Mt∥
∥Mmax∥ − cp otherwise

(2.29)

rt =

{
ra,t + 9 if ϕt ≤ cr

◦

ra,t otherwise
(2.30)

4.2. Effects of reward function variations 59

Table 4.4: Rigid robustness performance of the baseline agents. Shown are mean performance values of the best performing
agents during training (best) or the agents at the end of training (final), before filtering for convergence. Highlighted in blue
are performance values that are equal to or better than the PD controller (right-most column). Note, for the convergence rate
and mean episode reward, this means that the values are higher than the PD, but for mean settling time, control effort, and final

angle, the values are lower than the PD.

Best agents Final agents
Index PPO SAC TD3 TD7 PPO SAC TD3 TD7 PD

C
on

ve
rg
en

ce
ra
te

1 1.00 1.00 0.99 1.00 0.30 1.00 0.77 0.95 1.00
2 1.00 1.00 0.99 1.00 0.30 1.00 0.77 0.95 1.00
3 1.00 1.00 0.82 1.00 0.30 0.84 0.48 0.95 1.00
4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 1.00 1.00 0.99 1.00 0.30 1.00 0.80 0.95 1.00
8 1.00 1.00 0.95 1.00 0.30 1.00 0.75 0.95 1.00
9 1.00 1.00 0.96 1.00 0.30 1.00 0.77 0.95 1.00
10 1.00 1.00 0.99 1.00 0.30 1.00 0.77 0.95 1.00

M
ea
n
ep

is
od

e
re
w
ar
d

1 3350.4 4063.4 3889.7 4156.5 733 4050.7 3860.1 3894.4 3942.2
2 3348.8 4052.1 3887.7 4160.8 731.9 4051.4 3860.7 3896.5 3943.5
3 3330.4 4057.5 3827.8 4148.7 717.7 4010.5 3761.3 3902.3 3940
4 -219.3 -383.3 -429.3 -484.1 -247.4 -383.4 -422.9 -476.2 -314.8
5 115.2 77.5 15.6 172.3 -13.3 101.7 -27.5 169.8 46.6
6 -624.6 -579.9 -593.5 -607 -607.4 -574.8 -579.1 -598.3 -569.9
7 3252.5 3994.6 3827.9 4116.9 675.9 3993.2 3809.5 3871.5 3877.9
8 3348.3 4057.8 3873.9 4155.5 728 4049.2 3852.4 3898.2 3932.8
9 3343.5 4038.1 3863.7 4133.9 721.3 4034 3853.9 3900.1 3896.8
10 3347.9 4044.4 3878.7 4132.8 730.2 4046.7 3856.1 3903 3942.2

M
ea
n
se
ttl
in
g
tim

e

1 157.9 79.8 98.4 69.4 416.4 80.1 187.8 78.2 97.5
2 158 79.8 98.4 69.4 418.8 80.1 188 78.3 97.4
3 160.7 79.9 169.7 69.8 415.9 148.8 305.8 78.6 98.6
4 499 499 499 499 493 497.8 499 486.5 499
5 499 499 499 499 491.8 499 499 486.5 499
6 498.6 442.4 447.1 462.4 493.8 436.5 436.9 453.9 429.9
7 169.2 85.4 129.2 73.2 424 85.2 202.3 82.2 105.6
8 158.4 79.8 116 69.5 417.9 80.1 195 78.2 98.4
9 159 79.9 146.9 69.5 423.7 80.2 190.7 78.4 97.6
10 157.9 79.8 98.4 69.4 416.3 80.1 187.8 78.2 97.3

M
ea
n
co

nt
ro
le
ffo

rt

1 10730 5790 8673 5867 20829 5877 19853 8374 4917
2 10744 5790 8505 5870 20847 5875 20029 8391 4901
3 11035 5975 21418 6341 21783 14979 39122 9051 5073
4 72730 90081 94976 94126 54748 90098 96449 91570 90662
5 10858 6211 18118 6295 20888 6244 17439 8621 5723
6 90554 85971 88649 91099 86806 84955 87107 89898 84583
7 11261 6521 9610 6327 22926 6305 19374 8783 5704
8 10751 5805 9762 5888 21095 5885 21129 8369 4915
9 11245 7373 11182 7537 21648 7584 21506 10083 5554
10 10763 5844 8703 5924 21183 5930 19895 8421 4966

M
ea
n
fin

al
an

gl
e

1 0.4 0.1 1 0.2 22.9 0.1 0.2 10.5 0
2 0.4 0.1 1 0.2 27 0.1 0.2 6.9 0
3 0.4 0.1 1 0.2 26.7 0.1 0.2 12.6 0
4 13 36.6 45.1 67 46.7 37.2 44.5 83.6 20.8
5 8 16.8 19.2 13.3 25.8 16.2 22.3 22.8 24.2
6 171.7 192.6 178.1 172.5 183 180.4 176.5 167.5 186.6
7 0.4 0.9 1.3 0.2 30 0.1 0.2 9.5 0
8 0.4 0.1 1 0.2 27.1 0.1 0.2 11.3 0
9 0.4 0.1 1 0.2 25 0.1 0.2 10.1 0.1
10 0.4 0.1 1 0.2 24.1 0.1 0.2 11 0

4.2. Effects of reward function variations 60

All the results were be compared with the baseline scenario, in which the default values were used for
the reward function coefficients. The sensitivity of the mean episode base reward, mean settling time,
mean total control effort, and mean final angle were assessed for PPO, SAC, TD3, and TD7 separately.
Note that the base reward of equation (2.34) and not the actual reward (which is used for the domain
randomized agents and the hyperparameter tuned agents to be discussed later) was used because the
actual reward function changes, which as a result cannot be compared 1 to 1. The sensitivity of these
metrics is shown by the percentage change in these metrics with respect to a baseline controller, as
discussed in section 2.5.3. The sensitivities are also shown for perturbed cases, where the sensitivity
is with respect to the baseline controller under the influence of the same perturbation.

The best performing agents were considered, not the agents at the end of the training process. Fur-
thermore, only the agents that upon evaluation had a 100% convergence rate for the unperturbed case
were used for the calculation of the performance measures, meaning that the data was filtered.

The first parameter to be changed was the coefficient governing the+9 requirement bonus. The default
value, cr = 1◦, was changed to cr = 2◦, cr = 0.5◦, and cr = 0◦. By doubling and halving the default
value, a sense of the sensibility of the agents to this value was obtained. Furthermore, by disabling the
bonus altogether (by setting it to zero), a qualitative insight on the effect of the coefficient was obtained.

The results for PPO, SAC, TD3, and TD7 can be found respectively in figure 4.8, figure 4.9, figure 4.10,
figure 4.11. In these (and other sensitivity figures later), the error bars represent the standard deviation,
as discussed in section 2.5.3.

(a) PPO - Torque perturbations (b) PPO - Inertial and gyroscope perturbations

Figure 4.8: Performance of PPO agents trained with variations in cr in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

4.2. Effects of reward function variations 61

(a) SAC - Torque perturbations (b) SAC - Inertial and gyroscope perturbations

Figure 4.9: Performance of SAC agents trained with variations in cr in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

(a) TD3 - Torque perturbations (b) TD3 - Inertial and gyroscope perturbations

Figure 4.10: Performance of TD3 agents trained with variations in cr in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

(a) TD7 - Torque perturbations (b) TD7 - Inertial and gyroscope perturbations

Figure 4.11: Performance of TD7 agents trained with variations in cr in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

When looking purely at the unperturbed cases, the influence of a non-zero cr is clear. For PPO, any

4.3. Effects of domain randomization 62

change in cr degrades the controller performance, in terms of base reward and settling time. This
means that for PPO, cr = 1◦ is (close to) a local maximum in unperturbed performance. For the off-
policy algorithms however, the story slightly changes. Setting cr = 0◦ seems to degrade base reward
performance by a few percent, and also seems to be detrimental to the settling time, with extreme
cases seeing a 400% increase in settling time. Hence, it is clear that the inclusion bonus reward for
states within the requirements pushes the agents to achieve the target state much faster, with a small
penalty of extra required control effort over the entire episode, as seen in the bottom left subfigures for
cr = 0◦. A higher value for cr seems to be beneficial only for TD3, where reward increases and settling
time decreases when cr = 2◦. SAC and TD7 are not significantly affected by an increase or decrease
of cr.

The robustness to the torque perturbations (except torque scaling) and both types of inertia perturba-
tions is not affected significantly by a change in cr. This is clear from the similar changes in performance
for the unperturbed case. This makes sense for the rigid case, as the system is deterministic. Since
these perturbations should have a mean zero effect, all they do in the rigid case is add noise to the
environment experience sampling for the agent. More importantly, the requirement bonus should not
affect the ability of an agent to generalize directly.

It should be noted that the sensitivity for the gyro perturbations is less intuitive to interpret, as all RL
agents for the default cr had a convergence rate of 0 for those perturbations (see table 4.4). In general,
robustness to a torque scaling, random drift in the gyro bias or random noise in the gyro might be
affected by a change in cr, but the spread of the data (standard deviations are on the order of or larger
than the averages) is too high to draw any such conclusions with the sample size.

The standard deviation of the results for the second coefficient ca is generally larger than the change
in the mean performance. Furthermore, the percent change is on the order of 1% for PPO and on the
order of 0.1% for the off-policy algorithms. Hence, the effect of this change on the base reward is not
significant. The results for this have been included in appendix A.

The most significant effect of ca would be expected in mean total control effort, as ca directly penalizes a
higher instantaneous commanded control torque. When ca was disabled (no penalty) by setting ca = 0,
the mean control effort for every algorithm indeed increased significantly. However, also the variance in
the data rises dramatically. This is explained by the fact that ca imposes a soft constraint on the control
torque directly. When it is removed, an agent is free to choose any control torque, without a direct
effect on the instantaneous reward. Hence, ca might be acting as a regularizer on the control torque.
However, as stated before, the variance of the data is too larget to confidently draw such conclusions.

The final coefficient, cp, was the final coefficient to be investigated. This coefficient penalizes the agent
in case the new state is not better than the previous state. The idea is that this forces the agent to climb
the gradient in the reward function as quickly as possible for the greatest reward.

The results from these tests show that the variance is also too large to draw any reliable conclusions.
The variance in base reward, settling time, and mean control effort is sometimes several times larger
than the change in the average, for both the unperturbed and most perturbed cases. This data is still
shown in appendix A.

The large increase in variance across the board without a clear relationship between cp and the per-
formance metrics indicate that this parameter does not provably improve the learning process. In fact,
due to the increase in variance without any benefits, it reduces the consistency and hence the reliability
of the learning process.

4.3. Effects of domain randomization
The first domain randomizations that were investigated were the inertia perturbations: scaling and
rotation. The filtered learning curves for the former is shown in figure 4.12.

4.3. Effects of domain randomization 63

Figure 4.12: Results of the learning process of the four different algorithms in the rigid spacecraft environment, with an inertia
rotation domain randomization applied. Average results are shown including a 95% confidence interval, with 10-step window

smoothing applied.

In comparison with figure 4.7 (the baseline case), the learning process looks very similar. The same
behaviors that were described for that case also apply for these domain randomizations, which indicates
that the applied domain randomizations do not influence the agents’ learning behavior in a significant
way. In fact, the learning process for the majority of the domain randomized agents did not seem to
change significantly, except for the domain randomizations applied to the gyroscope.

Figure 4.13: Performance of agents with domain randomization applied in the form of inertia rotation, with respect to the
baseline performance. Bars indicate one standard deviation.

From the performance sensitivity for the inertia rotation domain randomized agent shown in figure 4.13,
it can be seen that for the unpertubed case, the performance in terms of reward does not meaningfully
change for all agents, with a worst-case average change of -5% (for TD3) and no difference for TD7

4.3. Effects of domain randomization 64

Table 4.5: Summary of performance for the PD controller and the baseline (BL) and inertia rotation domain randomized (DR)
TD3 and TD7 agents. The performance shown is the performance of the controllers for the rigid case when the inertia rotation

perturbation is applied.

PD TD3 BL TD3 DR TD7 BL TD7 DR
Convergence rate 1 0.82 1 1 1
Episode Reward 3940 3827.8 3658 4148.7 4096.1
Episode base reward 458.4 452.7 448.1 465.3 464.5
Settling time [s] 98.6 169.7 121.1 69.8 71.6
Control effort [Nms] 5073.6 21418.7 13923.6 6341.5 10803.2
Final angle [deg] 0 1 0.5 0.2 0.1

in the best case. The standard deviation is also very large. However, when looking at the settling
time and mean control effort statistics, TD3 shows a meaningful improvement over the baseline case
for the inertia rotation perturbation, with the settling time and control effort decreasing with around
30% on average. TD3 is the algorithm that showed the highest amount of variance, while TD7’s and
SAC’s baseline cases were already capable of producing policies that could deal with this perturbation
relatively well. Nevertheless, TD3’s convergence rate with the inertia rotation perturbation applied
increases from 0.82 (see table 4.4; relevant numbers repeated in table 4.5) to 1.0, and its mean settling
time decreases from 170 s to 121 s. In contrary, TD7’s performance in the inertia rotation perturbation
seems to not be affected with this domain randomization, with exception of the total control effort,
which rises substantially. This indicates that this domain randomization is not beneficial in all cases.
The performance changes of TD3 and TD7 have been summarized in table 4.5.

In the case of the inertia scaling perturbation, of which the sensitivity has been shown in appendix A,
no such relationships can be identified. Although the performance in the unperturbed case does not
differ significantly, an improvement in performance for the inertia scaling perturbation cannot be seen
due to the high variance of the data. This is to be expected, as in section 4.1.5 it was established that
the baseline controller was already very robust to this perturbation. Again, the detrimental effect of this
domain randomization on the inertia rotation perturbation is seen. The high variance indicates that a
clear relationship cannot be identified, but it does provide further evidence that domain randomization
does not always deliver positive results in terms of robustness.

The next domain randomizations are those in the gyroscope, including gyroscope noise, constant gy-
roscope bias, and drifting gyroscope bias. These did not result in converging controllers, and hence
the final agents are looked at instead. The results of the noisy gyroscope learning curves are shown
in figure 4.14. Note that to show the extent of the failure, in this case the shading represents the mini-
mum/maximum results of the agents, instead of the 95% confidence interval, and to ensure no (positive
or negative) outliers get lost in the data, no smoothing is applied.

This result shows that none of the agents are able to find any acceptable policy in this randomized
domain. Hence, the reinforcement learning algorithms as applied in this research are not able to deal
with these types of uncertainties and perturbations. The same conclusion can be drawn for gyroscope
bias, both constant and drifting, as their learning curves look very similar to that of the noisy gyroscope
(figure 4.14). These figures have been put in appendix A.

The next domain randomizations that were investigated is the usage of a different attitude representa-
tion. Both Euler angles and modified rodrigues parameters were tried. These variations are not strictly
a ’domain randomization’, but fall into the same category of study variations. Since this variation is
not expected to significantly influence the robustness of the agents, only the unperturbed case is dis-
cussed here. Furthermore, since the intent is to assess whether a different representation results in
more stable learning, the final agents instead of the best agents are compared. The sensitivity results
for the Euler representation are shown in figure 4.15a, while figure 4.15b shows the MRP sensitivity
results. It should be noted that these results are filtered to the converged agents. The convergence
rates can be found in table 4.6.

4.3. Effects of domain randomization 65

Figure 4.14: Results of the learning process of the four different algorithms in the rigid spacecraft environment, with a noisy
gyroscope domain randomization applied. Average results are shown including the minimum and maximum results, without

any smoothing.

Table 4.6: Average convergence rates for the final agents for each of the four algorithms in the three different attitude
representation cases.

Convergence rate case PPO SAC TD3 TD7
Baseline (quaternion) 0.305 1.0 0.767 0.947

Euler 0.243 1.0 0.3 1.0
MRP 0.143 1.0 0.1 1.0

(a) Euler (b) MRP

Figure 4.15: Performance of agents with domain randomization applied in the form different attitude representations, with
respect to the baseline performance, between all agents at the end of training. The crosses indicate that no results are

available due to the filtering, meaning that none of the final agents had a convergence ratio of 1.0.

It can be seen that the algorithms generally perform worse or roughly equally to the baseline. This
makes sense, as the reward function is more directly related to the quaternions than the Euler angles
or MRPs. Furthermore, while inherently Euler angles and MRPs give the agent the same information,

4.3. Effects of domain randomization 66

the relationship between the attitude representation and the reward function is much more non-linear
than for quaternions, as the same information has to be transferred in 3 rather than 4 parameters, which
could make it more difficult for the agent to learn any patterns or relationships.

TD7 and SAC seem to be the only algorithms that is not as negatively affected by any of the alternative
representations as the other algorithms. Furthermore, TD7 exhibits higher convergence rates for the
alternative representations. A possible explanation for why TD7 manages to retain its performance,
even though the other algorithms break down to some extent, might be that TD7 spends extra compu-
tation to learning latent state-action representations [99], which are fed into the actor and critics. Still,
overall, the quaternion representation performs best.

The final domain randomization parameters to be investigated are the torque randomizations (noisy,
scaled, misaligned, and disturbance torques). First, the torque misalignment learning curves have
been shown in figure 4.16. The learning process still looks relatively the same as figure 4.7. This
means that unlike for the gyroscope domain randomizations, the agents are able to deal with this do-
main randomization and still result in performant policies. The same holds for the other torque domain
randomizations. The sensitivity analysis for the misalignment domain randomization is shown in fig-
ure 4.17.

Figure 4.16: Results of the learning process of the four different algorithms in the rigid spacecraft environment, with torque
misalignment domain randomization applied. Average results are shown including a 95% confidence interval, with 10-step

window smoothing applied.

The standard deviation of the data is significantly larger than the change itself, which again makes
it difficult to draw conclusions. Furthermore, the sensitivity to the misalignment perturbation is not
different than for the unperturbed evaluations. As such, meaningful improvements in performance for
the misalignment perturbation are not apparent in the sensitivity analysis.

Similar results were obtained for the torque scaling, torque noise, and disturbance torque domain ran-
domizations. The charts showing this are displayed in appendix A. These results can be expected, as
the baseline agents are already able to deal with all these torque perturbations well, as is clear from
table 4.4.

4.4. Effects of hyperparameter tuning 67

Figure 4.17: Performance of agents with domain randomization applied in the form of torque misalignment, with respect to the
baseline performance.

4.4. Effects of hyperparameter tuning
The influence of the hyperparameters on the agent performance is investigated separately per hyper-
parameter. The goal is not to obtain the most optimal hyperparameters for the specific environment
settings, but to get an idea of the relationship between the hyperparameters and agent performance.
As discussed in chapter 2, the hyperparameter tuning was done automatically by Optuna. Hence, while
Optuna always did multiple simulations for the default hyperparameters, the sampling of new values is
done following its tree-structured Parzen estimator, semi-randomly. The domain of the hyperparame-
ters is hence also different per algorithm (as is the default in some cases, as shown in table 2.2).

4.4.1. Common hyperparameters
The first hyperparameters to be discussed are the common hyperparameters of all agents: the explo-
ration noise, the activation function, the discount factor γ, the learning rate, and the node count in the
hidden layers. The first of these, the exploration noise, has a very similar effect on the environment
interaction samples as the action noise perturbation. The only difference is at which step in the loop
the noise gets applied: directly on the output of the actor, or within the environment (as described in
equation (2.44)). Its performance has been plotted for the unperturbed rigid case in figure 4.18.

4.4. Effects of hyperparameter tuning 68

Figure 4.18: Performance of the best agents during their training process plotted against the exploration noise hyperparameter
value for all four algorithms in the rigid unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is
R2 = 0.55, which is a bad fit (indicating that the relation is not linear). The trendlines have still been included, to provide a

sense of the first-order trend.

From this figure, it can be seen that SAC and TD7 are not very sensitive to the action noise. TD3
and TD7 rely on it primarily to explore the state-space, and hence, a drop in convergence rate and
reward can be seen for very low values of the action noise. SAC and PPO both train a stochastic policy.
Since the environment is fully deterministic, a fully deterministic optimal policy exists. It makes sense
that SAC and PPO therefore are less affected by extra noise included in their policies, as the gradient
descent of their policies are pushed towards policies with a tighter distribution. PPO seems to perform
significantly worse than the other algorithms, but not significantly worse under influence of the action
noise (which is 0.0 by default for this algorithm).

The next hyperparameter is the activation function. Four options were investigated: ELU, ReLU, Sig-
moid, and tanh. The results are shown in appendix A, as a clear relationship between performance of
the agents and activation function cannot be identified in general. However, the convergence rate of
the controllers was 100% for all tried combinations of algorithms and activation functions, meaning that
all activation functions can be used for this application. When taking a more detailed look, it seems
like ReLU might perform slightly better than ELU for all algorithms, and in the category of S-shaped
activation functions, tanh seems to perform slightly better in terms of reward and settling time for SAC
and TD3 than sigmoid, but this effect cannot be seen for TD7.

The next hyperparameter is the discount rate γ. The performance of different values for this parameter
has been shown in figure 4.19. In general, values of γ above 0.985 seem to result in more variance
in the results. However, higher values of γ also seem to result in a higher total reward, lower settling
time, and smaller control effort (the latter with exception to TD3). For very large values (γ > 0.999), this
trend seems to break down.

4.4. Effects of hyperparameter tuning 69

Figure 4.19: Performance of the best agents during their training process plotted against the γ hyperparameter value for all
four algorithms in the rigid unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is R2 = 0.76,
which is a bad fit (indicating that the relation is not linear). The trendlines have still been included, to provide a sense of the

first-order trend.

The learning rate’s influence is plotted in figure 4.20. A linear relationship between its value and agent
performance cannot be clearly recognized. However, for it can be seen that for SAC and TD3, a value
n the order of 0.001 or lower is likely optimum, while TD7 benefits most from a value around 0.0003 (the
default), and PPO has the best performance with a slightly lower learning rate. This is in disagreement
with Elkins, who used lower values for TD3 (varying from 0.0003 → 0.00001).

Figure 4.20: Performance of the best agents during their training process plotted against the learning rate hyperparameter
value for all four algorithms in the rigid unperturbed environment. Of all the trendlines shown in the mean episode reward figure
(all linear trends), the best fit is R2 = 0.28, which is a bad fit (indicating that the relation is not linear). The trendlines have still

been included, to provide a sense of the first-order trend.

4.4. Effects of hyperparameter tuning 70

Figure 4.21: Agent performance metrics for different combinations of node count hyperparameter values for PPO, for the rigid
environment.

The final common hyperparameter is the node count of the hidden layers. The performance of different
combinations between the actor net (pi) and critic net (cr) hidden node counts (for two hidden layers)
have been shown in figure 4.21, figure 4.22, figure 4.23, and figure 4.24.

PPO’s optimal hidden node counts seem to be a little lower than its default values of 400 (first layer)
and 300 (second layer). Rather, a node count of just under 300 seems to result most consistently in
the highest performance. For SAC, with 256 nodes by default in both layers, the agents seem to be
performing better with higher node counts, just under 500. However, the difference is not large. TD3
and TD7 both seem to benefit from node counts around this level as well, so a bit larger nets than their
defaults of (400-300) and 256, respectively.

Interestingly, when looking only at the maximum control torque, the off-policy algorithms seem to benefit
from lower node counts, at around 80-120. The lower node count could be having a regularizing effect,
which has been previously described in works such as that of Neyshabur [143]. A smoother policy
would be beneficial to the total control effort, as it would exhibit fewer characteristics of a ’bang-bang’
behavior. A reason why this does not show up for PPO could be the on-policy learning strategy, which
makes it less prone to overfitting irrespective of network size as it can’t replay a previous experience.

4.4.2. Algorithm specific hyperparameters
First, the hyperparameters for PPO will be discussed. When looking at the best agents for the clip
range hyperparameter (clipping the policy gradient, default 0.2) on first inspection seems to have a
higher performance for all metrics with lower values. However, the linear fit is very bad, indicating a low
confidence in the first-order relationship. Furthermore, the amount of samples for the off-default value
is often low, with two agents per point. Hence, whether there is actually a performance improvement
is not sufficiently certain. A similar effect shows up for the number of epochs hyperparameter. The
lower values (default 10) seem to be higher performing. Although, again, the sample size is too low
for the limited dataset to definitively conclude this. The figures for these have hence been placed in
appendix A.

The hyperparameters GAE-λ, max gradient norm, vf coefficient, and number of steps (defaults 0.95,
2048, 0.5, and 0.5 respectively) don’t show signs of affecting performance, when varying them between
roughly 0.84-0.99, 512-8192, 0.2-0.8 and 0.4-0.6, respectively. The figures for these have been put
in appendix A. The target KL divergence hyperparameter does not have an effect on the performance
with respect to the disabled case (the default), when varied between 0.094 and 0.098. This is also put
in the appendix. In conclusion, none of the hyperparameters specific to PPO seem to meaningfully
affect the performance of the agents with a high degree of confidence.

4.4. Effects of hyperparameter tuning 71

Figure 4.22: Agent performance metrics for different combinations of node count hyperparameter values for SAC, for the rigid
environment.

Figure 4.23: Agent performance metrics for different combinations of node count hyperparameter values for TD3, for the rigid
environment.

Figure 4.24: Agent performance metrics for different combinations of node count hyperparameter values for TD7 (excluding
encoder layers), for the rigid environment.

4.4. Effects of hyperparameter tuning 72

Next to be discussed is SAC. Its only two non-generic hyperparameters are the target update interval
and τ , the Polyak averaging coefficient. The first of these is shown in appendix A. Any change in this
parameter (from the default 1) does not significantly and consistently affect the results by a meaningful
amount.

Figure 4.25: Performance of the best agents during their training process plotted against the τ hyperparameter value for SAC
and TD3 in the rigid unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is R2 = 0.34, which is
a bad fit (indicating that the relation is not linear). The trendlines have still been included, to provide a sense of the first-order

trend.

In figure 4.25, the effect of τ is shown. It is also shown together with the effect on TD3, as this is a
shared hyperparameters. For both agents, the highest peaks are visible at around τ = 0.003 or less
(default value of 0.005). However, the sampling size and interval is too low to determine whether this
is the result of randomness or whether there is actually an optimum here. In general, for values of
τ < 0.01, the performance seems best. Furthermore, on SAC the effect of τ below this value seems to
not have much of an effect, while for TD3 its previously discussed variance seems to still be an issue,
hence no firm conclusions are possible.

Figure 4.26: Performance of the best agents during their training process plotted against the policy delay hyperparameter
value for TD3 and TD7 in the rigid unperturbed environment. Of all the trendlines shown (all linear trends), the best two fits are
R2 = 0.91 and R2 = 0.36, which is a bad fit (indicating that the relation is not linear). The trendlines have still been included, to

provide a sense of the first-order trend.

4.4. Effects of hyperparameter tuning 73

For TD3, the next hyperparameters are all shared with TD7. The first of these is that of policy delay
(default value 2 for both), as shown in figure 4.26. Here, it can be seen that TD7 is not affected much
by policy delay, while TD3 seems to benefit from higher policy delays.

The next hyperparameters are about the target smoothing noise. There are two hyperparameters that
define its implementation (as a Gaussian around 0), the standard deviation and the clipping value for
the noise. By default, this is 0.2 and 0.5 respectively for these values, for both TD3 and TD7. In
figure 4.27, the example is shown for the standard deviation, but the insight drawn from it holds also
for the clipping (which can be found in appendix A). In TD7, there is no apparent relationship with the
hyperparameter and the agent’s performance. In TD3, there might be a relationship, but the variance
is too high to make any meaningful conclusions.

Figure 4.27: Performance of the best agents during their training process plotted against the target smoothing noise standard
deviation hyperparameter value for TD3 and TD7 in the rigid unperturbed environment. Of all the trendlines shown (all linear
trends), the best fit is R2 = 0.28, which is a bad fit (indicating that the relation is not linear). The trendlines have still been

included, to provide a sense of the first-order trend.

Finally, TD7 has a few dedicated hyperparameters. The first of these are the criteria reset weight, which
is relevant for the checkpointing functionality. The default is 0.9. When varying between 0.8 and 1.0,
no significant effect seems to be present. The same seems to be true for the late assessment episode
count (default 20, varying between 1 and 25). Their figure can be found in appendix A.

TD7 defines specific hyperparameters for the learned embeddings layer size. From the author paper,
the diagram for the critic and actor nets is displayed in figure 4.28, showing the integration of the state-
action learned embeddings.

These parameters specify the output size of the encoders ft(s) and gt(zst , a)with parameter hdimen, and
the size of the Linear(s, a) and Linear(s) with parameters hdimcr and hdimac, respectively. The defaults
are 256 nodes for each parameter. The result of varying these parameters are shown in figure 4.29.

Interestingly, the same pattern emerges as for the hidden layer node counts in figure 4.24 (where
these refer to the hidden layers of the Qt+1(z

sa
t , zst , ϕ

sa) and πt+1(z
s
t , ϕ

s) neural nets as depicted in
figure 4.28). A node count of roughly 250 consistently delivers the highest results . However, a lower
node count is beneficial for the mean total control effort. This is further evidence that a relationship
between these layer sizes and the performance of the agents exists. When looking at the effect of the
learned embeddings dimension hdimem specifically, it seems like a lower node size (when hdimac and
hdimcr are kept roughly constant) is especially limiting for performance, for example when looking at the
mean reward, mean base reward, and mean settling time. Fujimoto hypothesized that the state-action
embedding of TD7 (zsa) has a tendency to expand the action input and increases the likelihood that the
value function over-extrapolates on unknown actions. They stabilize this by introducing a clipping on

4.4. Effects of hyperparameter tuning 74

Figure 4.28: Diagram of State-Action Learned Embeddings (SALE), from Fujimoto’s original paper [99].

Figure 4.29: Agent performance metrics for different combinations of embedding node count hyperparameter (hdim) values for
TD7, for the rigid environment.

Figure 4.30: Agent performance metrics for different combinations of node count hyperparameter values for TD7 (including
encoder layers), for the rigid environment.

4.4. Effects of hyperparameter tuning 75

the value function target during training [99]. However, the described effect is still visible in the results
of this research.

When repeating the experiments for hidden layer size when also varying the layer size of the encoder,
the results shown in figure 4.30 tell the same story. The optimum seems to lie in intermediate values
of hidden layer dimension (≈ 250).

TD7 incorporates a loss-adjusted prioritized replay buffer [100]. This buffer is characterized by the hy-
perparameter α, which controls the prioritization. Its default is 0.4. The results of varying this parameter
on the performance is shown in figure 4.31. The results seem to indicate that values of α higher than
0.4 have a negative effect on the performance. However, the effect is small, with only a decrease of
1% in mean total reward visible for the results around α = 0.8. Furthermore, for α < 0.4, the results
don’t seem to change. Hence, while this hyperparameter might be of influence on the performance, it
is not significant and 0.4 seems to be (close to) the optimum.

Figure 4.31: Performance of the best agents during their training process plotted against the α hyperparameter value for TD7
in the rigid unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is R2 = 0.80, which is a

reasonable fit.

TD7’s final hyperparameter is the target update frequency. This parameter controls the update rule
for the target nets (analogous to how Polyak averaging controlled by τ is used for SAC and TD3).
From figure 4.32, it can be seen that the relationship is positive: when the update frequency rises,
the performance goes up (if the associated increase in mean total control effort is considered to be
acceptable). Beyond 250 (the default), however, no further decrease in mean settling time can be
observed. A possible explanation is that a larger value (increasing the time between updates) increases
the variance in the samples seen by the agent, which in the relatively low dimensional state-space can
be beneficial to exploration, speeding up learning. The plateau in settling time could be the minimum
average settling time of (near) optimal agents, which cannot be improved further. However, these
explanations for the relationship need to be further investigated before they can be accepted.

4.5. Flexibility effects 76

Figure 4.32: Performance of the best agents during their training process plotted against the update frequency
hyperparameter value for TD7 in the rigid unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is

R2 = 0.88, which is a strong fit.

4.5. Flexibility effects
The baseline agent performance for the flexible model has been shown in table 4.7. The perturbations
are still indexed by table 4.3, which is repeated below for convenience. In table 4.7, it can be seen that
even the PD controller (this time the one tuned for the flexible model, as described in table 2.3) does
not result in a 100% convergence rate for all the non-gyroscope perturbations (indices 1-3 and 7-10).
What also stands out is that the RL agents do no longer achieve a convergence rate of 100% relatively
consistently for all the non-gyroscope perturbations, for both the best and final agents.

Table 4.3: Keys for the perturbations listed in table 4.7 (repeated from page 58).

Perturbation Perturbation index
Unperturbed 1
Inertia scaling 2
Inertia rotation 3
Gyro noise 4
Gyro constant bias 5
Gyro drift 6
Torque misalignment 7
Torque scaling 8
Torque noise 9
Disturbance torque 10

In contrast to the rigid case, PPO fails to deal with the dynamic complexities of the flexible spacecraft.
The convergence rates are so low that no agent at any point during training achieved a 100% conver-
gence rate during any evaluation, resulting in a lack of ’best’ agents in table 4.7. It might be that if the
policy collapse observed in the rigid case can be fixed, that PPO could offer better performance, so it
is not necessarily inherent to the on-policy nature of this algorithm.

Another point of contrast is the mean control effort. The PD controller achieves its performance using
on average much less total control effort than the RL agents. However, whereas the rigid PD and most
agents were able to achieve settling times on the order of 100 s or less on average, it can be seen that
the flexible PD only achieves a settling time of 175 s on average. The RL agents trained on the flexible
environment reduce this back down to the order of 100 s. This is an indication that there is potential
for the RL agents to significantly outperform the PD controller, at least in some metrics.

4.5. Flexibility effects 77

Table 4.7: Flexible robustness performance of the baseline agents. Shown are mean performance values of the best
performing agents during training (best) or the agents at the end of training (final), before filtering for convergence. Note that
PPO converged zero agents that converged during any point during the training, so no performant ’best’ agent(s) exist for that

algorithm, which is why it is omitted. Highlighted in blue are performance values that are equal to or better than the PD
controller (right-most column). Note, for the convergence rate and mean episode reward, this means that the values are

higher than the PD, but for mean settling time, control effort, and final angle, the values are lower than the PD.

Best agents Final agents
Index SAC TD3 TD7 PPO SAC TD3 TD7 PD

C
on

ve
rg
en

ce
ra
te

1 1.00 1.00 1.00 0.16 1.00 1.00 0.92 1.00
2 0.98 0.71 1.00 0.16 0.94 0.65 0.76 1.00
3 0.46 0.02 0.79 0.18 0.42 0.43 0.62 1.00
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0
7 0.99 0.97 0.95 0.19 1.00 0.90 0.81 1.00
8 1.00 1.00 1.00 0.18 1.00 1.00 0.86 1.00
9 0.58 0.56 0.50 0.14 0.55 0.59 0.60 0.90
10 1.00 1.00 1.00 0.18 1.00 1.00 0.90 1.00

M
ea
n
ep

is
od

e
re
w
ar
d

1 4050.8 3950.6 4111 416.9 4040.19 3873.1 4120.3 3362.8
2 4048.6 3904.3 4106.6 414.2 4036.58 3824.2 4113.7 3361
3 3666.9 2984.8 4077.4 413.9 3231.6 3761.6 3692.7 3369.7
4 -390.5 -458.1 -476.4 -220.1 -399.3 -478 -526.8 -332.6
5 54.1 -25.1 78.4 5.3 78.7 -53.8 96.4 -53.1
6 -580.0 -527.1 -600.6 -626.7 -572.2 -552.6 -583.5 -570.3
7 4007.2 3893.7 4058.5 392.9 3997.2 3843.2 4064.5 3268.8
8 4051.3 3951.3 4109.8 412.5 4038.8 3871.8 4118 3365.8
9 4049.7 3940 4099.9 410.4 4036.2 3861.7 4101.8 3335.8
10 4051.2 3951.1 4111.2 419 4040.3 3873.9 4120.2 3360.2

M
ea
n
se
ttl
in
g
tim

e

1 77.7 100.5 104.7 495.1 76.4 107.7 226.7 175.1
2 119.6 236.6 73.7 495.1 209.0 270.6 319.9 179.9
3 331.9 499 232 493.7 332.4 347.7 362.4 172.9
4 499 499 499 499 499 499 499 499
5 499 499 499 499 499 499 499 499
6 441.6 393.9 460.2 498.5 434.4 413.1 443.3 430.6
7 308.5 310.2 405.6 491.6 310.1 384.2 428.2 199.5
8 84.8 109 103.1 495.1 88.3 113.6 253.5 173.6
9 496.6 497 497.3 498.1 496.8 497.3 495.6 470.6
10 79.8 99.6 106.8 495.1 76.4 110 226.4 175.1

M
ea
n
co

nt
ro
le
ffo

rt

1 13747 14041 12768 19096 13652 16902 14227 4847
2 14017 23217 12812 19115 14341 26298 14823 4813
3 36499 62236 19828 18824 45795 41673 27673 4846
4 89491 95378 93224 58241 89193 95640 93635 88644
5 13674 24584 13440 19632 13711 32207 13970 6047
6 85572 78380 90531 91943 84267 82175 87746 84334
7 13631 14554 14124 18501 13857 16746 14968 5815
8 13734 14056 12766 18984 13625 16918 14294 4843
9 14519 16115 14104 19126 14768 19037 15746 5793
10 13746 14060 12773 19096 13651 16907 14270 4851

M
ea
n
fin

al
an

gl
e

1 0.3 0.3 0.3 10.3 0.3 0.3 0.3 0.3
2 0.3 0.3 0.3 10.3 0.3 0.3 0.3 0.3
3 0.4 0.7 0.4 10.3 0.5 0.3 0.5 0.3
4 44.7 66.7 67.4 21.1 45.5 94.6 119.4 18.7
5 16.6 21.6 14.2 15.5 14.3 18.7 13.2 37.3
6 186.3 179.7 174 161.3 177.5 179.9 182.3 159.7
7 0.3 0.3 0.4 10.3 0.3 0.3 0.4 0.3
8 0.3 0.3 0.3 10.3 0.3 0.3 0.4 0.3
9 0.3 0.3 0.4 10.3 0.3 0.3 0.4 0.3
10 0.3 0.3 0.3 10.3 0.3 0.3 0.3 0.3

4.5. Flexibility effects 78

Finally, an important note is that while the convergence rate for the RL agents is no longer 100% for
the inertia scaling, inertia rotation, torque misalignment, and torque noise perturbations (indices 2, 3,
7, and 9), the mean performance, at least in terms of reward and mean final angle, is still acceptable.
The higher settling time could be an artifact of the way the mean settling time is calculated when the
convergence rate is not 100%, as discussed in section 2.4.

The first important aspect of the agent behavior to investigate is the behavior for a single episode, in-
stead of only average performance. For this, the best performing baseline agents were simulated for
an episode with initial attitude quaternion q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T ,
zero initial rotation, and modal coordinates and rates initialized to zero. For PPO, no acceptable agent
was available, so a random final agent was taken. The results are shown for the flexible PD con-
troller, PPO, SAC, TD3, and TD7 respectively in figure 4.33, figure 4.34, figure 4.35, figure 4.36, and
figure 4.37.

When comparing the behavior of these different agents, a few things stand out. The first is the behavior
shown by TD3 before roughly 105s: the control torque becomes very erratic, is almost always fully
saturated, and switches quickly between the two extremes (as shown in the control moment over time
subfigure of figure 4.36). This behavior is also observed for different TD3 agents with different seeds
and different initial episode states. TD3 is the only algorithm where this behavior shows up. It might
explain some of the large variance observed in the learning results later on. Possibly, with the inclusion
of regularizing strategies, TD3 can be taught to lose this behavior, but this falls outside the scope of
this research.

It can also be observed that PPO is best of all agents in damping the modal coordinate excitations. This
is visible in the amplitude of the oscillation of η2 in the four figures (top right sub-figure). Even though
the maximum amplitude is not the same for each agent (roughly 210, 220, 60, and 200 for PPO, SAC,
TD3, and TD7 respectively) initially, it can be seen that PPO dampens this amplitude significantly to a
value of roughly 140 (reduction of one third) by the end of the episode, while the amplitude for TD7 is
still larger than 160 by the end of the episode (reduction of one fourth). Hence, if the performance of
PPO is made higher and more stable somehow, then PPO is a promising option due to the damping
behavior it displays.

Figure 4.33: A single episode for the flexible model, controlled using the PD controller. Initial quaternion is
q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial values all zero.

4.5. Flexibility effects 79

Figure 4.34: A single episode for the flexible model, controlled using a final PPO agent.Initial quaternion is
q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial values all zero.

Figure 4.35: A single episode for the flexible model, controlled using the best SAC agent. Initial quaternion is
q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial values all zero.

4.5. Flexibility effects 80

Figure 4.36: A single episode for the flexible model, controlled using the best TD3 agent. Initial quaternion is
q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial values all zero.

Figure 4.37: A single episode for the flexible model, controlled using the best TD7 agent. Initial quaternion is
q0 =

[
0.73029674 −0.36514837 0.54772256 0.18257419

]T , with other initial values all zero.

4.5. Flexibility effects 81

When looking at PPO in more detail, it excites the modal vibrations the most, together with SAC and
TD7. At the same time, while the other two display performance within the requirements, PPO is not
able to deal with this effectively, resulting in a (roughly) steady state error of larger than 25◦.

A key observation of all the RL agents is that an oscillation in the control torque remains until the end
of the episode. This oscillation is largest in u0, and matches the frequency of η2 phase-shifted by half
a period. This indicates that the control torque is directly compensating for the oscillation, but is not
effectively damping it. The continued oscillation of the control torque also shows up for the PD controller,
but is of much lower amplitude. This might explain the large difference in total control effort seen in
table 4.7 between the PD controller and the RL agents.

The off policy algorithms are all not damping the modal vibrations effectively. However, these agents
are able to point the spacecraft to the target within the requirements and with a low settling time, and
keep it pointed there. The agents still compensate the oscillation (TD7 and SAC more than TD3), but
as long as total control effort is not important and the structures of the chaser, target, and capture
mechanism can withstand continuous oscillations, this could be acceptable.

A final interesting note is about the internal vibrations and the influence of the 1 Hz control sampling.
From equation (2.18), when converted to Hz, the eigenfrequencies of the four different modes are set to
fη =

[
0.01222469 0.01756752 0.0298145 0.04057814

]T Hz. After the initial slew maneuver (and the
resulting excitation of the vibrational modes), the agents are not further exciting the vibrations, so no
resonance takes place. This does not generalize directly to other (especially higher) eigenfrequences
and modes, however, and should be checked before an RL agent can be used in the attitude control
of a spacecraft.

Next, the learning process was assessed for the flexible model. The baseline case (with minima and
maxima shading) has been displayed unfiltered in figure 4.38. For this flexible case, similar observa-
tions can be done as for the rigid case: SAC and TD7 have the highest performance (with TD7 having
the highest performance), SAC is most consistent, and PPO never achieves a convergence rate of 1.0.

Figure 4.38: Average, minimum, and maximum results for multiple learning processes with the four different algorithms in the
flexible case, with 10-step window smoothing applied.

4.5. Flexibility effects 82

When looking at the computational time of the flexible model, as shown in table 4.1 and table 4.9, the
computational time is slightly higher than the rigid case. This is explained by the increase in model
complexity and hence computational complexity in the environment. However, the difference in reward
at 100k steps becomes larger, as TD7 and SAC are the only agents that shows performance corre-
sponding to a convergent agent. TD3 learns more slowly, as is also visible in figure 4.38, and PPO
is having trouble properly learning at all. TD7 is also still faster than TD3 in terms of PD exceed time.
Hence, in terms of computational efficiency, TD7 is always (both in the rigid and flexible cases) better
than TD3. SAC still is the most computationally efficient algorithm.

Table 4.8: Computational time metrics for the flexible baseline case.

Agent Steps per second Training time [s] (total steps) Time per 100k steps [s]
PPO1 315.8 11206 ± 1154 (3.5M) 316.7
SAC 48.2 8309 ± 293 (400k) 2075
TD3 45.8 8873 ± 1142 (400k) 2183
TD7 18.5 13558 ± 876 (250k) 5405

Table 4.9: Comparative computational time metrics for the flexible baseline case.

Agent PD exceed steps PD exceed time [s] Reward at 100k steps
PPO - - -186.6 ± 20.0
SAC 65500 ± 9682 1359 3942.1 ± 64.2
TD3 125439 ± 14814 2739 1230.8 ± 783.1
TD7 49121 ± 4680 2655 4110.2 ± 33.9

The above results can be summarized as follows. PPO does not perform sufficiently for the flexible
model at all. TD7 is more computationally efficient than TD3 and achieves better results than TD3. It
is also the best performing model. However, if performance is not critical, or if computational efficiency
is critical, SAC might be a better choice, as it is as robust as TD7 and requires a much lower control
effort.

The requirement coefficient of the reward function cr does not affect the performance differently in the
flexible case when compared to the rigid case. The sensitivity graphs for this are hence shown in
appendix A. The same is true for ca and cp, no significant difference with the rigid case is observed and
hence those results can also be found in the appendix. The data for ca and cp is also still of too high
variance to draw any reliable conclusions, just like in the rigid case.

One exception to this exists. Interestingly, SAC’s performance in terms of settling time for the unper-
turbed case becomes much worse when cp = 0, as shown in figure 4.39. The standard deviation, while
still large, is not larger than the change itself, in contrast to the other results for cp.

This result seems to indicate that cp can be beneficial (or in case of SAC, even required) for agent
convergence. This is in contrast to the rigid case. This extra penalty for a non-improving state change
might be beneficial for generalizing a policy for the more complex flexible model.

In terms of domain randomizations, some algorithms had trouble to converge with the domain ran-
domizations applied. For example for the inertia rotation randomization, only 1 TD7 agent did, and no
other algorithms converged. This means that TD7 has too few converged agents to make a statistically
significant comparison between mean performance, robustness, and the application of this domain
randomization. For inertia scaling, the standard deviations are larger than the changes of the means.
Hence, no straightforward conclusion can be drawn from the data. Both of these are hence included
in appendix A.

For the gyroscope perturbation domain randomizations, again, none of the algorithms result in perfor-
mant policies. The sensitivity analysis is nonsensical for unconverged agents. Hence, these figures

1The metrics for PPO are only for unfiltered agents, as filtering the agents in case of PPO would result in all the data being
removed, as no single agent achieved 100% convergence at any evaluation point during training.

4.5. Flexibility effects 83

Figure 4.39: Performance of SAC agents trained with variations in cp in the reward function. Shown are the changes with
respect to the baseline under all the investigated perturbations, only for the flexible environment. Bars indicate one standard

deviation.

are omitted. These domain randomizations are hence not suitable in both the rigid and flexible cases
to deal with the gyroscope perturbations. Two possible insights can be drawn from this. Either the
perturbations tested are too large, and the domain randomizations might still be effective for smaller
magnitude perturbations, or the agents are simply not capable of dealing with these perturbations with-
out further modifications or additions to the control loop.

The attitude representation variations for the flexible case do not improve performance. Just like the
rigid case, in terms of reward, if there is any relation, it is a net negative for both the Euler and MRP
representations when compared to the quaternion representation. However, in the flexible case, the
standard deviation of the data is even larger. Hence, no clear insights can be taken from the data. The
results are shown in appendix A.

As visible in figure 4.40, the misalignment domain randomization does not improve the robustness
performance to the torque misalignment with sufficient certainty. Interestingly, the settling time for the
unperturbed case does decrease, with a low standard deviation (so higher certainty), for TD3 and
TD7 (based on 8 and 10 convergent agents, respectively). The reward does not change, and the mean
control effort goes up by 4.4 and 6.9% respectively. Hence, this domain randomization might contribute
to a policy that is higher performing in the unperturbed case.

This is clear because the domain randomization does help to improve the convergence rate for SAC,
TD3, and TD7, as summarized in table 4.10. This shows that the RL agents respond well to the domain
randomization, and achieve better generalization when it is implemented. It is further evidence that
domain randomization can in some cases help improve performance. Still, the settling time of the PD
controller is lower than the settling times of any of the RL agents for this perturbation.

The torque scaling, torque noise, and disturbance torque domain randomizations result in performances
with standard deviations larger than the differences in mean between the DR-agents and the baseline
agents. Hence, no confident insights can be drawn from these results. The sensitivity analysis figures
are included in appendix A.

4.5. Flexibility effects 84

Figure 4.40: Performance of agents with domain randomization applied in the form of torque misalignment, with respect to the
baseline performance, in the flexible case.

Table 4.10: Summary of performance for the PD controller and the baseline (BL) and torque misalignment domain randomized
(DR) SAC, TD3, and TD7 agents. The performance shown is the performance of the controllers for the flexible case when the

torque misalignment perturbation is applied.

PD SAC (BL) SAC (DR) TD3 (BL) TD3 (DR) TD7 (BL) TD7 (DR)
Convergence rate 1 0.99 1 0.97 1 0.95 1
Episode Reward 3268.8 4007.2 3999.6 3893.7 3908.9 4058.5 4023.9
Episode base reward 437.7 459.2 458.7 453.6 453.7 460.6 458.7
Settling time [s] 199.5 308.5 305.3 310.2 275.7 405.6 337.6
Control effort [Nms] 5815.8 13631 13592.7 14554.2 14878.3 14124.3 14326.5
Final angle [deg] 0.3 0.3 0.3 0.3 0.3 0.4 0.3

Figure 4.41: Average, minimum, and maximum unfiltered results for multiple learning processes with the four different
algorithms in the flexible case with the full observation vector available, with 10-step window smoothing applied.

4.5. Flexibility effects 85

The only domain randomization that is unique to the flexible case is the full observability domain ran-
domization, as described in equation (2.22). The learning curves for this case are shown in figure 4.41,
and the sensitivity analysis for all the perturbations is shown in figure 4.42.

Figure 4.42: Performance of agents with full observability enabled, with respect to the baseline performance, in the flexible
case, for the (filtered) final agents.

The expectation would be that with the full observability enabled, the agents would be able to generalize
better. The risk is that the agents will overfit to the sampled data more. Both of these cannot be clearly
identified or disproven based on the data. The reward is slightly higher for SAC with full observability
enabled, but the variance is large. Furthermore, due to the latent state action embeddings of TD7, the
effect of the full observability is expected to be lower. The reward does not meaningfully change for
TD7. However, again, the variance is large.

For all agents, it is clear that the variance in the fully observable case is relatively high. Drawing any
firm conclusions is hence difficult from these results. One remark is that the performance of SAC seems
to improve significantly when looking at the inertia rotation perturbation with full observability. This is
another indication that this perturbation can be dealt with appropriately in several ways, but that drawing
generalized conclusions about what design decisions work well in all cases is still difficult.

The insight for the hyperparameters from the rigid case transfers relatively well as well. For example, for
the exploration noise hyperparameter (which is shown in figure 4.43) still exhibits a rise in performance
for TD3 with a larger exploration noise. However, the effect disappears for TD7 (for which the sample
range is too small to draw meaningful conclusions anyway). Furthermore, the changes of PPO cannot
be attributed to solely the change in hyperparameter, as PPO does not perform consistently in the
baseline case.

The same is true for other hyperparameters, such as γ shown in figure 4.44. The relationship between
γ and the performance seen in the rigid case is preserved for the flexible case for TD3, but not for
PPO. SAC’s sampling range is too small to make meaningful conclusions, and TD7 did not result in
convergent agents for this study.

4.5. Flexibility effects 86

Figure 4.43: Performance of the best agents during their training process plotted against the exploration noise hyperparameter
value for all four algorithms in the flexible unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is

R2 = 0.67, which is a bad fit (indicating that the relation is not linear). The trendlines have still been included, to provide a
sense of the first-order trend.

Figure 4.44: Performance of the best agents during their training process plotted against the γ hyperparameter value for all
four algorithms in the flexible unperturbed environment. The trendline for TD3 in the mean episode reward figure has an

R2 = 0.87, indicating that the relation is (roughly) linear. However, the trendline of SAC has R2 = 0.18, which is a very bad fit.
The trendlines have still been included, to provide a sense of the first-order trend.

The learning rates still do not exhibit a clear straightforward relationship to performance. Based on
the results in figure 4.45 (here, the final agents have been plotted instead of the best agents, as the
algorithms did not result in many acceptable agents), the optimum learning rates are slightly lower than
the rigid case, especially for SAC and TD3. This might be explained by the higher model complexity of

4.5. Flexibility effects 87

the flexible model, which is more difficult to generalize for.

Figure 4.45: Performance of the final agents during their training process plotted against the learning rate hyperparameter
value for all four algorithms in the rigid unperturbed environment. Of all the trendlines shown in the mean episode reward figure
(all linear trends), the best fit is R2 = 0.30, which is a bad fit (indicating that the relation is not linear). The trendlines have still

been included, to provide a sense of the first-order trend.

The other common hyperparameters (hidden layer sizes and activation function) did not display mean-
ingfully different results than the rigid case. The same is true for the hyperparameters specific to one
or multiple of the algorithms. Hence, these figures have all been included in appendix A.

5
Conclusion and recommendation

This chapter takes the insights gathered in the results chapter, and reconnects them with the specific
research questions. The implications of the answers to the questions are then also reflected upon.
First, in section 5.1, the conclusions are laid out. Then, finally, in section 5.2, the recommendations are
formulated and the research is wrapped up.

5.1. Conclusions
This section draws the relevant conclusions for the research. This is done separately for the rigid and
flexible cases, because the differences between the spacecraft categories they accurately represent
are quite large. Some ADR missions will not be meaningfully flexible at all, and might be sufficiently
modelled using the rigid body. In that case, it is much clearer to just see the rigid results. The flexible
results and conclusions are an extension to this, for readers to which a higher fidelity model is more
relevant.

In the rigid case, the baseline controller performs surprisingly well. All algorithms are able to produce
agents that achieve a performance at least on-par with the appropriately tuned PD controller, which in
case of this relatively simple model already delivers arguably very good results.

When the robustness is tested, the agent shows robustness to some of the perturbations. Especially
a small change (the perturbations were on the order of at most a few percent, as discussed in sec-
tion 2.5.1) in model parameters are manageable to a more or lesser extent by the agents. This includes
perturbations in the inertia tensors (representing uncertainty in the mass distribution) and uncertainties
in the torque response (by slight misalignment, random noise, and a disturbance torque).

Where the agents struggle is with perturbations that are applied directly on the input of the agent. This
includes all the gyroscope perturbations. The agents are not resistant to these perturbations at all, or
at least to the magnitude of the perturbations used in this research. It could be expected that with fine-
tuning, the RL agents could learn the bias of the gyroscope, and perform well despite this bias. This
would warrant further research, however.

The robustness comparison with the PD controller is also quite positive. The PD controller fails in the
cases where the gyroscope data is perturbed as well, as can be seen in table 4.4. Furthermore, in
all cases where the PD controller doesn’t fail, SAC and TD7 outperform PD in terms of mean episode
reward and settling time, when looking at the best agents.

Hence in conclusion, for the rigid case, the baseline agents do not offer a meaningful robustness im-
provement, as the PD controller is often more robust. However, in the cases where the agents are
robust, the demonstrated performance of at least SAC and TD7 is better than the PD controller on its
own.

This conclusion is somewhat adjusted when looking at the performance for one of the domain random-
ized agents. For example, when looking at the performance of the inertia rotation domain randomized

88

5.1. Conclusions 89

Table 4.5: Summary of performance for the PD controller and the baseline (BL) and inertia rotation domain randomized (DR)
TD3 and TD7 agents. The performance shown is the performance of the controllers for the rigid case when the inertia rotation

perturbation is applied (repeated from page 64).

PD TD3 BL TD3 DR TD7 BL TD7 DR
Convergence rate 1 0.82 1 1 1
Episode Reward 3940 3827.8 3658 4148.7 4096.1
Episode base reward 458.4 452.7 448.1 465.3 464.5
Settling time [s] 98.6 169.7 121.1 69.8 71.6
Control effort [Nms] 5073.6 21418.7 13923.6 6341.5 10803.2
Final angle [deg] 0 1 0.5 0.2 0.1

agents, the convergence rate of TD3 is brought back to 1.0 for when evaluated in an inertia rotation per-
turbed environment (instead of 0.82), and its settling time performance of is also improved significantly.
This is summarized in table 4.5, repeated here. TD7 is also included in this table to demonstrate that
the performance does not improve in all cases, and can even degrade significantly (as seen by the
rise in mean total control effort). This means that domain randomizations should not be applied without
careful thought or without trying the performance when omitting the domain randomization.

From the above, it is clear that domain randomization, when set up correctly, could have a robustness
improving effect on RL-based controllers. Furthermore, it is also clear that improvements upon the
baseline agents are difficult. Finally, compared to the PD controller, the best RL-based controllers
achieve a higher reward and significantly lower settling time. However, the PD controllers often require
a lower mean total control effort.

An important remark should be highlighted in the summarized conclusions above: The reliability of
the RL-based agents is debatable at best. While the convergence rate of the best agents is 100% in
the unperturbed case, when perturbations are applied this often drops below 100%. Furthermore, the
final agents (at the end of training), don’t get 100% performance at all. From a theoretical perspective,
a proof of convergence (given even a simple model, for example a linearized one), is difficult if not
impossible to obtain. Hence, the research sub-questions are answered for the rigid case as follows:

• SQ1: How can model-free reinforcement learning algorithms be effectively adapted for the design
of a controller for post-capture control in the context of active debris removal missions?

→ A quaternion state representation is most suitable for the attitude. This is combined with a
reward function that is exponentially shaped towards the target, penalizes the control torque
by at most half the magnitude of the maximum shaped reward, and gives a bonus reward
one order of magnitude larger than the rest of the reward when within the requirements.
A bonus for improvement of the state (with respect to the prior state) does not affect the
learning performance.

→ All four model-free reinforcement learning algorithm are able to generate policies that are
more performant than a hand-tuned PD controller when using conventional hyperparame-
ters, if the post-capture attitude control problem can be modelled as an idealized rigid space-
craft without perturbations.

→ Off-policy algorithms are generally more performant than on-policy algorithms. TD7 is the
most performant algorithm. SAC’s learning process is most reliably increasing the agent
performance, with a reasonable computational cost and the lowest computational cost of
the investigated off-policy algorithms. PPO offers the lowest computational cost of all the RL
algorithms.

→ The optimization of hyperparameters can in some cases offer either improved performance
or a policy that is smoother. However, this depends highly on the models and algorithms
used, and is not the case in the general sense.

• SQ2: To what extent is the stability and convergence of a model-free reinforcement learning-
based controller reliable?
→ The stability and convergence of the agents during the learning process is not strictly increas-

5.1. Conclusions 90

ing. The best performing agents should be saved during training and separately evaluated
to achieve the highest convergence rate.

→ No strict guarantees on stability and convergence exists for these agents. However, when
testing agents for many randomly initialized episodes on the simple rigidmodel, all algorithms
could produce agents for which the convergence rate hit 100% at least once during training.

• SQ3: How do inherent uncertainties in the dynamic and kinematic properties of the system af-
fect the performance of a model-free reinforcement learning-based controller in the post-capture
phase of an active debris removal mission?
→ The algorithms are able to deal with some perturbations effectively, like disturbance torques,

inertia scaling, inertia rotation, torque scaling, torque misalignment, and torque noise.
→ A hand-tuned PD controller is also able to perform with these perturbations. The agents

hence do not offer meaningful robustness improvements over the PD controller in the rigid
case. In the cases where both the PD controller and a reinforcement learning agent are
robust to the perturbation, the PD controller achieves this with a lower mean total control
effort.

→ In some cases, the application of domain randomization can improve the robustness of the
reinforcement learning agents to these perturbations.

→ The agents fail to deal with perturbations that directly affect the input of the policy (perturba-
tions in the gyroscope). These uncertainties deteriorate the performance of the agents to a
convergence rate of 0%. The robustness is not improved by using domain randomization in
this case.

When looking at the flexible case, the conclusions for the rigid case above translate relatively well. In
this case, the inter-agent comparison can be summarized by stating that TD7 is the most performant
algorithm, followed by SAC. SAC and TD7 are the two most robust algorithms, where sometimes TD7
is more robust and sometimes SAC is more robust. In case a reinforcement learning agent is robust, in
contast to the rigid case, the RL agents can offer significantly better performance than the PD controller,
for example in the settling time, for some of the perturbations. Finally, PPO in the current form of
implementation is entirely inadequate for the flexible model.

An important distinction with the rigid case is that the baseline SAC and TD7 agents now no longer
consistently achieve a 100% convergence rate for the inertia scaling and rotation nad torque misalign-
ment and noise perturbations. The PD controller still achieves 100%, except for under the torque noise
perturbation.

In terms of computational cost, TD7 is still the most computationally expensive in terms of compute time
per step. However, as relatively more computational time is spent on the spacecraft model instead of
training the agent, the difference is a little smaller than in the rigid case. Furthermore, just like in the rigid
case, TD7 is much more computationally efficient, meaning that its agents exceed the PD performance
in a lower wall time than TD3. SAC is still a good balance between good sample efficiency, performance,
and overall computational cost.

In the rigid case, the domain randomization only offered meaningful performance improvements in
some specific cases. This also generally holds for the flexible case. For example, within the misalign-
ment domain randomization. This randomization showed that the convergence rate can be increased
(and hence, the reliability), and that performance metrics can improve (in this case, the settling time).

An important distinction with the rigid case is the insight that the non-improvement penalty reward cp
could have a positive effect on agent performance, which was observed to be the case for SAC.

The full observability variation that was tried does not seem to meaningfully improve performance. The
agents, especially TD7, are able to produce agents that perform very well for the reward functions spec-
ified even in the default partially observable case (which even though improvements to the algorithms
in the POMDP case exist [144] is generally in agreement with previous findings about policy gradient
algorithms[145][57]). The fact that full observability is not required for acceptable agent performance,
at least under the requirements of this research, is positive as it means that any ADR spacecraft would
not require a sensing system to measure the vibrations. This lowers complexity and ultimately the cost
of a mission.

5.1. Conclusions 91

Importantly, only PPO learned policies that dampened the oscillations in the modal displacements sig-
nificantly. The other algorithms simply compensate for the internal vibration with the control torque,
keeping the spacecraft pointed on target. In case this is undesirable, a penalty could be added to the
reward for larger amplitudes in modal vibrations, to incentivize the agents to dampen the vibrations. In
this case, full observability would be expected to further improve the performance of the agents, since
the agents would have direct access to the states they need to dampen. In this research, however, this
was outside of the scope.

The insights for the flexible model are hence used to formulate additional answers to the research
sub-questions, specific to the flexible case:

• SQ1: How can model-free reinforcement learning algorithms be effectively adapted for the design
of a controller for post-capture control in the context of active debris removal missions?

→ In case system flexibilities are present, the deterministic algorithms TD3 and TD7 are able to
deal with these adequately, resulting in performance better than a hand-tuned PD controller.
PPO is not adequate for this case at all with the settings described in this research. SAC
also deals with the flexible model effectively, but the performance is lacking with respect to
the PD controller.

→ SAC, TD3, and TD7 exhibit rapid and large oscillation behavior in the commanded control
torque. In case this is not desirable, this might be mitigated with regularization techniques,
and should be investigated further.

• SQ2: To what extent is the stability and convergence of a model-free reinforcement learning-
based controller reliable?
→ SAC and TD7 exhibit better robustness than TD3, however generally slightly worse than the

PD controller. In general, the off-policy methods tried in this research seem to generalize
relatively well, which for some perturbation types result in a tested convergence rate of 100%.

→ In the flexible case, provable performance guarantees remain difficult or impossible to find.
• SQ3: How do inherent uncertainties in the dynamic and kinematic properties of the system af-
fect the performance of a model-free reinforcement learning-based controller in the post-capture
phase of an active debris removal mission?
→ Between all the algorithms, the agents exhibit the ability to either dampen inertial vibrations,

or compensate for these vibrations while keeping the spacecraft pointed to within the require-
ments.

→ In case flexibilities are present in the system, RL agents can demonstrate performance sig-
nificantly better than a hand-tuned PD controller, such as in the settling time. Hence, there
is definitive potential for such agents to deal with the uncertainties in an end-to-end fashion.
However, this is not always the case. For some of the perturbations the PD controller obtains
a much lower settling time, such as for inertia rotation or torque misalignment.

Together with the insights from the rigid case, the answers to the sub-questions allow for the formulation
of an answer to the main research question:

To what extent can the implementation of model-free reinforcement learning algorithms im-
pact the performance of post-capture control in active debris removal missions under the
influence of inherent dynamic and kinematic uncertainties?

Off-policy model-free reinforcement learning algorithms can deliver better performance than a hand-
tuned PD controller for the post-capture control in active debris removal missions under the influence
of flexibilities in the system, imperfections in the torque actuation, and uncertainties in inertial model
parameters. The on-policy algorithm PPO does not provide adequate performance. A clear difference
between the performance of stochastic and deterministic policies was not observed.

Performance could possibly be improved further by tuning hyperparameters, but no straightforward
relationships between hyperparameter values and agent performance have been identified. Further-
more, domain randomization might be an option for improving model performance, but implementing
this correctly does not guarantee an improvement in agent performance and might even be detrimental
to the performance. The RL agents are relatively robust, except for the case where the input to the

5.2. Recommendations 92

model is disturbed in the form of (relatively) large imperfections in the gyroscope measurements. In
the end-to-end implementation in this research, SAC and TD7 already proved to be more robust than
the hand-tuned PD controller in some cases, but did not always achieve better performance.

Finally, the control behavior of the agents in the flexible case is sometimes non-ideal as it oscillates be-
tween large positive and negative commanded torque values to compensate for the internal vibrations.
Further approaches to damping these vibrations should likely be investigated before these algorithms
will be applicable for post-capture attitude control of an active debris removal mission.

5.2. Recommendations
The insights in this research can be leveraged to design a controller optimized for a specific real mis-
sion. The uncertainties associated with such a mission can then also be quantified, as well as clear
requirements on the robustness of the controller. This is the first recommendation of this research, to
investigate how these results transfer to a real mission in the real world.

While the effects of domain randomization and hyperparameter optimization were investigated to a
first order, the optimization can be done in a lot more detail. In this research it was found that some
combinations of hyperparameters and settings would often result in failure of the algorithms to produce
convergent agents, but explaining why remains difficult. Doing an in-depth optimization for a single
algorithm is a good opportunity to unify the changes in performance with the theoretical background of
the algorithms.

This optimization should also incorporate a more in-depth reliability study. In this research, the agents
were simply tested for many initial conditions. The robustness could be tested to a much better extent.
An interesting machine-learning based method could be to train an adversarial network that finds initial
conditions or small changes/uncertainties to the model that the controlling agents fail for, and then
co-training these agents. This could also be an interesting avenue to investigate the extent to which
domain randomization can improve the performance of these agents, instead of the semi-quantitative
method employed in this research.

A follow-up research should also focus on the ability of the reinforcement learning algorithms to fine-
tune on-line. This potentially could make the agents much more adaptable to the perturbations, and
is fundamentally one other big reason why reinforcement learning algorithms are an interesting study
topic for application in post-capture control of an ADR mission in general, where adaptability could be
very important.

Moreover, state estimators like advanced Kalman Filters or disturbance observers (even though they
can be difficult to tune) should be looked at for implementation in the feedback loop to estimate distur-
bances and filter out parametric noise like gyroscope bias and noise, which might improve robustness
significantly [146][147]. While the RL agents are not able to deal with these gyroscope perturbations
in an end-to-end fashion, it could be expected that with the inclusion of such an estimator/observer, an
RL-based controller could offer high performance.

The TD7 algorithm includes an addition for offline learning, which implements practically a form of imi-
tation learning. This was not used in this research, due to the end-to-end training process investigation.
Using this functionality for the initial few training steps, for example by letting the agent learn from the
output of the PD controller, it could be a suitable method to even further improve the sample efficiency
of this algorithm.

Furthermore, the full model has been validated thoroughly in this work. It is made to be very adaptable,
requiring minimal adjustments to implement different algorithms, as long as the algorithms are written
within the Stable-Baselines 3 API. Many such algorithms are publicly available, so it would be interesting
and relatively easy to repeat the experiments with more algorithms.

Besides potential follow-on studies, the presented study can also be improved in several fundamental
ways. The first is to have another look at the selection of domain randomization and perturbation types
and especially their magnitudes. This would offer much deeper insight into the extent of the robustness
of the tested controllers, instead of a qualitative measure of robustness. Furthermore, the effects were
investigated only one at a time. The application of a combination of several kinds of randomizations at

5.2. Recommendations 93

the same time is usually the way domain randomization is best applied [80].

A further remark on the current research is that of sampling frequency and latency. The sampling
frequency was chosen relatively arbitrarily, while effects of changing this (especially on the flexible
model) were not quantified. The sampling frequency is an important metric to carefully set, especially
if computational power is a limiting factor (as is likely the case when using deep feed-forward neural
nets). The latency is the second factor of this that was neglected in this research. Delays in the
feedback signal can greatly deteriorate reinforcement learning agent performance, such as shown by
[148]. Furthermore, a non-zero latency is inevitable in a real-world implementation. This is hence an
important factor to address in the design of RL agents for attitude control.

A small shortcoming of the research is the inconsistent training times and sample sizes. These de-
cisions were made due to scarce computational resources, and because they were deemed to be
reasonable compromises between provided confidence in the results and the amount of different ex-
periments this enabled. In a continuation of the research, the agents should be trained to the full extent
at least once per experiment, so that no new behavior later in the training gets overlooked. Furthermore,
the sample size should be increased for the experiments with large standard deviation in the data (or
experiments that often failed and as a results have few successful results to work with).

The flexibility analysis of this research also only remained more broad than deep. The effect of different
model parameters than the chosen inertia, δ, K, and C (or even a higher-fidelity model) has not been
investigated. Important in this case is the ability of the agents to deal with the excited vibrational
modes. A more in-depth analysis could be done by analyzing the frequency response of the system
with the trained agents as controller. An idea about the damping for a range of frequencies can be
obtained using this method, which is useful for meeting and validating possible vibrational requirements.
As discussed in section 5.1, a penalty for larger vibrations could be added to the reward function to
incentivize the agents to dampen the vibrations. The effect of such penalties would be nicely quantified
by testing the frequency response with different agents in the control loop.

A deeper improvement to the current research is to relate the flexible model parameters more to an
actual mission with a robotic arm. For generalized research and semi-quantitative insights into the
effects of flexibilities the current model sufficed. However, the link between the current model and real-
world ADR spacecraft problems is relatively weak, and should be evaluated and further validated in
future research. Examples of how this can be done are a finite element analysis [118] or a multibody
analysis [149].

The PD controller is another limiting factor of this research. Even though it does provide a simple and
intuitive baseline for comparison of the agents, the controller is not very advanced or representative of
the serious alternatives that designers of attitude controllers for a post-capture phase in an ADRmission
will likely consider. The first step would be to tune the PD (or even a full PID) in a more structured way
manually or to use off-the-shelf software tools that do this automatically. A further step would be to take
a representative controller from literature and to compare the agents against it.

Finally, this research demonstrated that in the more complex flexible model, some RL agents can
exhibit very favorable properties, resulting in a significantly better performance than the PD controller.
However, due to the absence of performance guarantees, it is difficult to see how a reinforcement
learning agent can be reliably used in a real spacecraft. Prior research has aimed to combine the
favorable properties of the RL agents with the reliability and explainability of a conventional controller.
This could also be further investigated in follow-up research.

References

[1] Pierre Bernhard, Marc Deschamps, and Georges Zaccour. “Large satellite constellations and
space debris: Exploratory analysis of strategic management of the space commons”. In: Euro-
pean Journal of Operational Research 304.3 (2023), pp. 1140–1157.

[2] Donald J. Kessler and Burton G. Cour-Palais. “Collision frequency of artificial satellites: The
creation of a debris belt”. In: Journal of Geophysical Research: Space Physics 83.A6 (1978),
pp. 2637–2646.

[3] K. Merz et al. “Current collision avoidance service by ESA’s Space Debris Office”. In: 7th Euro-
pean Conference on Space Debris. 2017, p. 219.

[4] Jer Chyi Liou. “Highlights of recent research activities at the NASA Orbital Debris Program
Office”. In: European Conference on Space Debris. JSC-CN-39199. 2017.

[5] Hanspeter Schaub et al. “Cost and risk assessment for spacecraft operation decisions caused
by the space debris environment”. In: Acta Astronautica 113 (2015), pp. 66–79.

[6] Minghe Shan, Jian Guo, and Eberhard Gill. “Analysis of the Concept of Noncooperative Targets
and Associated Tailored Active Debris Removal Methods”. In: IAC Conference. 2014.

[7] Phillip Anz-Meador, John Opiela, and Jer-Chyi Liou. History of on-orbit satellite fragmentations.
Tech. rep. 2023.

[8] A. Rossi and G.B. Valsecchi. “Collision risk against space debris in Earth orbits”. In: Celestial
Mechanics and Dynamical Astronomy 95.1-4 (2006), pp. 345–356.

[9] NASA Orbital Debris Program Office. LEGEND: 3D/OD Evolutionary Model. URL: https://
www.orbitaldebris.jsc.nasa.gov/modeling/legend.html. (accessed: 30-08-2023).

[10] IADC Steering Group and Working Group 4. IADC Space Debris Mitigation Guidelines. URL:
https://iadc-home.org/documents_public/index. (accessed: 30-08-2023).

[11] Jer Chyi Liou and Nicholas L. Johnson. “Instability of the present LEO satellite populations”. In:
Advances in Space Research 41.7 (2008), pp. 1046–1053. ISSN: 0273-1177.

[12] B. Bastida and H. Krag. “Analyzing the criteria for a stable environment”. In: AAS/AIAA Astro-
dynamics Specialist Conference, Girdwood, Alaska. 2011.

[13] Jer Chyi Liou, Nicholas L. Johnson, and Nicole M. Hill. “Controlling the growth of future LEO
debris populations with active debris removal”. In: Acta Astronautica 66.5-6 (2010), pp. 648–
653.

[14] Remi Soulard et al. “ICAN: A novel laser architecture for space debris removal”. In: Acta Astro-
nautica 105.1 (2014), pp. 192–200.

[15] Claudio Bombardelli and Jesus Peláez. “Ion beam shepherd for contactless space debris re-
moval”. In: Journal of guidance, control, and dynamics 34.3 (2011), pp. 916–920.

[16] Minghe Shan, Jian Guo, and Eberhard Gill. “Review and comparison of active space debris
capturing and removal methods”. In: Progress in Aerospace Sciences 80 (2016), pp. 18–32.

[17] Robin Biesbroek et al. “The e. deorbit CDF study: a design study for the safe removal of a large
space debris”. In: 64th International Astronautical Congress (IAC), Beijing. 2013.

[18] D. Reintsema et al. “DEOS–the German robotics approach to secure and de-orbit malfunctioned
satellites from low earth orbits”. In: Proceedings of the i-SAIRAS. Japan Aerospace Exploration
Agency (JAXA) Japan. 2010, pp. 244–251.

[19] Robin Biesbroek et al. “e. Deorbit-ESA’s active debris removal mission”. In: Proceedings of the
7th European Conference on Space Debris. Vol. 10. ESA Space Debris Office. 2017.

94

https://www.orbitaldebris.jsc.nasa.gov/modeling/legend.html
https://www.orbitaldebris.jsc.nasa.gov/modeling/legend.html
https://iadc-home.org/documents_public/index

References 95

[20] Evangelos Papadopoulos et al. “Robotic manipulation and capture in space: A survey”. In: Fron-
tiers in Robotics and AI (2021), p. 228.

[21] Guglielmo S. Aglietti et al. “RemoveDEBRIS: An in-orbit demonstration of technologies for the
removal of space debris”. In: The Aeronautical Journal 124.1271 (2020), pp. 1–23.

[22] Guglielmo S. Aglietti et al. “The active space debris removal mission RemoveDebris. Part 2: In
orbit operations”. In: Acta Astronautica 168 (2020), pp. 310–322.

[23] Jason Forshaw et al. “The ELSA-d End-of-life debris removal mission: mission design, in-flight
safety, and preparations for launch”. In: Proceedings of the Advanced Maui Optical and Space
Surveillance Technologies Conference, Maui Economic Development Board, Kihei, HI, USA.
2019, pp. 17–20.

[24] Aishling Dignam et al. “In-Space Situational Awareness: Developing Spaceborne Sensors for
Detecting, Tracking and Characterising Space Debris”. In: 2nd NEO and Debris Detection Con-
ference. 2023, p. 50.

[25] Robin Biesbroek et al. “The clearspace-1 mission: ESA and clearspace team up to remove
debris”. In: Proc. 8th Eur. Conf. Sp. Debris. 2021, pp. 1–3.

[26] Christophe Bonnal, Jean-Marc Ruault, and Marie-Christine Desjean. “Active debris removal:
Recent progress and current trends”. In: Acta Astronautica 85 (2013), pp. 51–60.

[27] Jer Chyi Liou. “An active debris removal parametric study for LEO environment remediation”.
In: Advances in space research 47.11 (2011), pp. 1865–1876.

[28] C. Wiedemann et al. “Cost estimation of active debris removal”. In: Proceedings of the Interna-
tional Astronautical Congress, IAC 4 (Jan. 2012), pp. 2637–2646.

[29] Paula S. Morgan. “Fault protection techniques in JPL Spacecraft”. In: (2005).
[30] Christopher Masaru Pong. “High-precision pointing and attitude estimation and control algo-

rithms for hardware-constrained spacecraft”. PhD thesis. Massachusetts Institute of Technology,
2014.

[31] Valdemir Carrara et al. “The ITASAT cubesat development and design”. In: Journal of Aerospace
Technology and Management 9 (2017), pp. 147–156.

[32] Jürgen Telaar et al. “GNC architecture for the e. Deorbit mission”. In: 7th European Conference
for Aeronautics and Space Sciences (EUCASS). ESA Publications Division, ESTEC Noordwijk,
The Netherlands. 2017, pp. 1–15.

[33] Pablo Colmenarejo et al. “Results of the COMRADE project: combined control for robotic space-
craft and manipulator in servicing missions: active debris removal and re-fuelling”. In: 11th Inter-
national ESA Conference on Guidance, Navigation & Control Systems. 2020, pp. 10–23.

[34] C.M. Pong and D.W. Miller. “Angular rate estimation from geomagnetic field measurements and
observability singularity avoidance during detumbling and sun acquisition”. In: AAS Guidance
and Control Conference, Breckenridge, CO. 2013.

[35] Panfeng Huang et al. “Attitude takeover control for post-capture of target spacecraft using space
robot”. In: Aerospace Science and Technology 51 (2016), pp. 171–180.

[36] G.A. Beals et al. “Hubble Space Telescope precision pointing control system”. In: Journal of
Guidance, Control, and Dynamics 11.2 (1988), pp. 119–123.

[37] Panfeng Huang et al. “Reconfigurable spacecraft attitude takeover control in post-capture of
target by space manipulators”. In: Journal of the Franklin Institute 353.9 (2016), pp. 1985–2008.

[38] Sunayna Singh and Erwin Mooij. “Robust control for active debris removal of a large flexible
space structure”. In: AIAA Scitech 2020 Forum. 2020, p. 2077.

[39] Zheng Wang, Jianping Yuan, and Dejia Che. “Adaptive attitude takeover control for space non-
cooperative targets with stochastic actuator faults”. In: Optik 137 (2017), pp. 279–290.

[40] Kai Ning, Baolin Wu, and Chuang Xu. “Event-triggered adaptive fuzzy attitude takeover control
of spacecraft”. In: Advances in Space Research 67.6 (2021), pp. 1761–1772.

[41] Henzeh Leeghim, YoonhyukChoi, andHyochoong Bang. “Adaptive attitude control of spacecraft
using neural networks”. In: Acta Astronautica 64.7-8 (2009), pp. 778–786.

References 96

[42] Caisheng Wei et al. “Learning-based adaptive prescribed performance control of postcapture
space robot-target combination without inertia identifications”. In: Acta Astronautica 146 (2018),
pp. 228–242.

[43] Xiuwei Huang, James D. Biggs, and Guangren Duan. “Post-capture attitude control with pre-
scribed performance”. In: Aerospace Science and Technology 96 (2020), p. 105572.

[44] Jianjun Luo et al. “Robust inertia-free attitude takeover control of postcapture combined space-
craft with guaranteed prescribed performance”. In: ISA transactions 74 (2018), pp. 28–44.

[45] Xiuwei Huang and Guangren Duan. “Fault-tolerant attitude tracking control of combined space-
craft with reaction wheels under prescribed performance”. In: ISA transactions 98 (2020), pp. 161–
172.

[46] HanGao et al. “Forecasting-based data-drivenmodel-free adaptive slidingmode attitude control
of combined spacecraft”. In: Aerospace Science and Technology 86 (2019), pp. 364–374.

[47] Panfeng Huang et al. “Postcapture attitude takeover control of a partially failed spacecraft with
parametric uncertainties”. In: IEEE Transactions on Automation Science and Engineering 16.2
(2018), pp. 919–930.

[48] Panfeng Huang et al. “Adaptive postcapture backstepping control for tumbling tethered space
robot–target combination”. In: Journal of Guidance, Control, andDynamics 39.1 (2016), pp. 150–
156.

[49] Jean-Jacques E. Slotine, Weiping Li, et al. Applied nonlinear control. Vol. 199. 1. Prentice hall
Englewood Cliffs, NJ, 1991.

[50] Barton Bacon and Aaron Ostroff. “Reconfigurable flight control using nonlinear dynamic inver-
sion with a special accelerometer implementation”. In: AIAA Guidance, Navigation, and Control
Conference and Exhibit. 2000, p. 4565.

[51] Paul Acquatella et al. “Robust Nonlinear Spacecraft Attitude Control using Incremental Nonlin-
ear Dynamic Inversion.” In: AIAA Guidance, Navigation, and Control Conference. 2012, p. 4623.

[52] Ronald van’t Veld, Erik-Jan van Kampen, and Qi Ping Chu. “Stability and robustness analysis
and improvements for incremental nonlinear dynamic inversion control”. In: 2018 AIAA Guid-
ance, Navigation, and Control Conference. 2018, p. 1127.

[53] Xuerui Wang et al. “Stability analysis for incremental nonlinear dynamic inversion control”. In:
Journal of Guidance, Control, and Dynamics 42.5 (2019), pp. 1116–1129.

[54] Ye Zhou, Erik-Jan Van Kampen, and Qi Ping Chu. “Incremental model based online heuris-
tic dynamic programming for nonlinear adaptive tracking control with partial observability”. In:
Aerospace Science and Technology 105 (2020), p. 106013.

[55] Zhi-Gang Zhou et al. “Adaptive actor-critic learning-based robust appointed-time attitude track-
ing control for uncertain rigid spacecrafts with performance and input constraints”. In: Advances
in Space Research 71.9 (2023), pp. 3574–3587.

[56] Anh Tuan Vo, Thanh Nguyen Truong, and Hee-Jun Kang. “Fixed-time rbfnn-based prescribed
performance control for robot manipulators: Achieving global convergence and control perfor-
mance improvement”. In: Mathematics 11.10 (2023), p. 2307.

[57] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction. MIT press,
2018.

[58] Yuhan Liu et al. “Neural network-based reinforcement learning control for combined spacecraft
attitude tracking maneuvers”. In: Neurocomputing 484 (2022), pp. 67–78.

[59] Gabriel Dulac-Arnold et al. “Challenges of real-world reinforcement learning: definitions, bench-
marks and analysis”. In: Machine Learning 110.9 (2021), pp. 2419–2468.

[60] Dmitry Kalashnikov et al. “Qt-opt: Scalable deep reinforcement learning for vision-based robotic
manipulation”. In: arXiv preprint arXiv:1806.10293 (2018).

[61] Mel Vecerik et al. “A practical approach to insertion with variable socket position using deep
reinforcement learning”. In: 2019 international conference on robotics and automation (ICRA).
IEEE. 2019, pp. 754–760.

References 97

[62] Wenshuai Zhao, Jorge Peña Queralta, and Tomi Westerlund. “Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey”. In: 2020 IEEE symposium series on computational
intelligence (SSCI). IEEE. 2020, pp. 737–744.

[63] Joshua Achiam. Spinning Up in Deep Reinforcement Learning. URL: https://github.com/
openai/spinningup. (accessed: 12-11-2023).

[64] Richard Bellman. “Some problems in the theory of dynamic programming”. In: Econometrica:
Journal of the Econometric Society (1954), pp. 37–48.

[65] Richard Bellman. “A Markovian decision process”. In: Journal of mathematics and mechanics
(1957), pp. 679–684.

[66] Ronald A. Howard. “Dynamic programming and markov processes.” In: (1960).
[67] Richard S. Sutton. “Learning to predict by the methods of temporal differences”. In: Machine

learning 3 (1988), pp. 9–44.
[68] John N. Tsitsiklis and Benjamin Van Roy. “An analysis of temporal-difference learning with func-

tion approximation”. In: Rep. LIDS-P-2322). Lab. Inf. Decis. Syst. Massachusetts Inst. Technol.
Tech. Rep (1996).

[69] AndrewG. Barto and Sridhar Mahadevan. “Recent advances in hierarchical reinforcement learn-
ing”. In: Discrete event dynamic systems 13.1-2 (2003), pp. 41–77.

[70] Yang Yu. “Towards Sample Efficient Reinforcement Learning.” In: IJCAI. 2018, pp. 5739–5743.
[71] Lasse Espeholt et al. “Seed rl: Scalable and efficient deep-rl with accelerated central inference”.

In: arXiv preprint arXiv:1910.06591 (2019).
[72] Ye Zhou, Erik-Jan van Kampen, and Qi Ping Chu. “Adaptive spacecraft attitude control with

incremental approximate dynamic programming”. In: 68th International Astronautical Congress
(IAC). 2017, pp. 25–29.

[73] Peter Dayan and Christopher J.C.H. Watkins. “Q-learning”. In: Machine learning 8.3 (1992),
pp. 279–292.

[74] Daniel Neider et al. “Advice-guided reinforcement learning in a non-markovian environment”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 35. 10. 2021, pp. 9073–9080.

[75] Rania Hassan and William Crossley. “Spacecraft reliability-based design optimization under
uncertainty including discrete variables”. In: Journal of Spacecraft and Rockets 45.2 (2008),
pp. 394–405.

[76] Nicholay Topin and Manuela Veloso. “Generation of policy-level explanations for reinforcement
learning”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33. 01. 2019,
pp. 2514–2521.

[77] Minghao Han et al. “Reinforcement learning control of constrained dynamic systems with uni-
formly ultimate boundedness stability guarantee”. In: Automatica 129 (2021), p. 109689.

[78] Hado Van Hasselt et al. “Deep reinforcement learning and the deadly triad”. In: arXiv preprint
arXiv:1812.02648 (2018).

[79] Qingyan Huang. “Model-based or model-free, a review of approaches in reinforcement learning”.
In: 2020 International Conference on Computing and Data Science (CDS). IEEE. 2020, pp. 219–
221.

[80] OpenAI: Marcin Andrychowicz et al. “Learning dexterous in-hand manipulation”. In: The Inter-
national Journal of Robotics Research 39.1 (2020), pp. 3–20.

[81] Christopher John Cornish Hellaby Watkins. “Learning from delayed rewards”. In: (1989).
[82] VolodymyrMnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint arXiv:1312.5602

(2013).
[83] Volodymyr Mnih et al. “Human-level control through deep reinforcement learning”. In: nature

518.7540 (2015), pp. 529–533.
[84] Yan Duan et al. “Benchmarking deep reinforcement learning for continuous control”. In: Interna-

tional conference on machine learning. PMLR. 2016, pp. 1329–1338.

https://github.com/openai/spinningup
https://github.com/openai/spinningup

References 98

[85] Yuejiao Wang et al. “A new spacecraft attitude stabilization mechanism using deep reinforce-
ment learning method”. In: 8th European Conference for Aeronautics and Space Sciences (EU-
CASS). 2019.

[86] Richard S. Sutton et al. “Policy gradient methods for reinforcement learning with function ap-
proximation”. In: Advances in neural information processing systems 12 (1999).

[87] A. RupamMahmood et al. “Benchmarking reinforcement learning algorithms on real-world robots”.
In: Conference on robot learning. PMLR. 2018, pp. 561–591.

[88] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint arXiv:1707.06347
(2017).

[89] John Schulman et al. “Trust region policy optimization”. In: International conference on machine
learning. PMLR. 2015, pp. 1889–1897.

[90] Long Ouyang et al. “Training language models to follow instructions with human feedback”. In:
Advances in Neural Information Processing Systems 35 (2022), pp. 27730–27744.

[91] Eivind Bøhn et al. “Deep reinforcement learning attitude control of fixed-wing uavs using proxi-
mal policy optimization”. In: 2019 international conference on unmanned aircraft systems (ICUAS).
IEEE. 2019, pp. 523–533.

[92] Jacob Elkins, Rohan Sood, and Clemens Rumpf. “Autonomous spacecraft attitude control using
deep reinforcement learning”. In: 71st International Astronautical Congress (IAC). Vol. 2020.
2020.

[93] Jacob G Elkins, Rohan Sood, and Clemens Rumpf. “Bridging reinforcement learning and on-
line learning for spacecraft attitude control”. In: Journal of Aerospace Information Systems 19.1
(2022), pp. 62–69.

[94] Nessrine Hammami and Kim Khoa Nguyen. “On-policy vs. off-policy deep reinforcement learn-
ing for resource allocation in open radio access network”. In: 2022 IEEE Wireless Communica-
tions and Networking Conference (WCNC). IEEE. 2022, pp. 1461–1466.

[95] Timothy P. Lillicrap et al. “Continuous control with deep reinforcement learning”. In: arXiv preprint
arXiv:1509.02971 (2015).

[96] Scott Fujimoto, Herke Hoof, and David Meger. “Addressing function approximation error in actor-
critic methods”. In: International conference on machine learning. PMLR. 2018, pp. 1587–1596.

[97] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning with double
q-learning”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 30. 1. 2016.

[98] Jacob Elkins, Rohan Sood, and Clemens Rumpf. “Adaptive continuous control of spacecraft
attitude using deep reinforcement learning”. In: 2020 AAS/AIAA Astrodynamics Specialist Con-
ference. AIAA Reston, VA. 2020, pp. 420–475.

[99] Scott Fujimoto et al. “For SALE: State-Action Representation Learning for Deep Reinforcement
Learning”. In: arXiv preprint arXiv:2306.02451 (2023).

[100] Scott Fujimoto, David Meger, and Doina Precup. “An equivalence between loss functions and
non-uniform sampling in experience replay”. In: Advances in neural information processing sys-
tems 33 (2020), pp. 14219–14230.

[101] Alec Radford et al. “Improving language understanding by generative pre-training”. In: (2018).
[102] Tuomas Haarnoja et al. “Soft actor-critic: Off-policy maximum entropy deep reinforcement learn-

ing with a stochastic actor”. In: International conference on machine learning. PMLR. 2018,
pp. 1861–1870.

[103] TuomasHaarnoja et al. “Soft actor-critic algorithms and applications”. In: arXiv preprint arXiv:1812.05905
(2018).

[104] Arsenii Kuznetsov et al. “Controlling overestimation bias with truncated mixture of continuous
distributional quantile critics”. In: International Conference on Machine Learning. PMLR. 2020,
pp. 5556–5566.

References 99

[105] Jingliang Duan et al. “Distributional soft actor-critic: Off-policy reinforcement learning for ad-
dressing value estimation errors”. In: IEEE transactions on neural networks and learning sys-
tems 33.11 (2021), pp. 6584–6598.

[106] Jacob Beck et al. “A survey of meta-reinforcement learning”. In: arXiv preprint arXiv:2301.08028
(2023).

[107] Dhruv Ramani. “A short survey on memory based reinforcement learning”. In: arXiv preprint
arXiv:1904.06736 (2019).

[108] Jingkang Wang, Yang Liu, and Bo Li. “Reinforcement learning with perturbed rewards”. In: Pro-
ceedings of the AAAI conference on artificial intelligence. Vol. 34. 04. 2020, pp. 6202–6209.

[109] Tom Everitt et al. “Reinforcement learning with a corrupted reward channel”. In: arXiv preprint
arXiv:1705.08417 (2017).

[110] F. Landis Markley and John L. Crassidis. Fundamentals of spacecraft attitude determination
and control. Vol. 1286. Springer, 2014.

[111] Pedro Arroz and Fernando Gandía.Detumbling Executive Summary. Version 1.0. ESA Contract
No. 4000113022/14/NL/MV. Isaac Newton, 11; PTM Tres Cantos; Madrid 28760, Sept. 2017.
URL: www.gmv.com.

[112] B. Bastida Virgili, S. Lemmens, and H. Krag. “Investigation on Envisat Attitude Motion”. In:
e.Deorbit Workshop. ESA/ESOC Space Debris Office, May 2014.

[113] Peter W Likins. Dynamics and control of flexible space vehicles. Tech. rep. 1970.
[114] S Monaco, DN Cyrot, and S Stornelli. “Sampled nonlinear control for large angle maneuvers of

flexible spacecraft”. In: ESA Proceedings of the Second International Symposium on Spacecraft
Flight Dynamics p 31-38(SEE N 87-25354 19-18). 1986.

[115] Stefano Di Gennaro. “Passive attitude control of flexible spacecraft from quaternion measure-
ments”. In: Journal of optimization theory and applications 116 (2003), pp. 41–60.

[116] Stefano Di Gennaro. “Output stabilization of flexible spacecraft with active vibration suppres-
sion”. In: IEEE Transactions on Aerospace and Electronic systems 39.3 (2003), pp. 747–759.

[117] S Di Gennaro. “Active vibration suppression in flexible spacecraft attitude tracking”. In: Journal
of Guidance, Control, and Dynamics 21.3 (1998), pp. 400–408.

[118] Pierangela Morga, Mauro Mancini, and Elisa Capello. “Flexible spacecraft model and robust
control techniques for attitude maneuvers”. In: 2022 American Control Conference (ACC). IEEE.
2022, pp. 1120–1126.

[119] Anne-Marie Lanouette et al. “Residual mechanical properties of a carbon fibers/PEEK space
robotic arm after simulated orbital debris impact”. In: International Journal of Impact Engineering
84 (2015), pp. 78–87.

[120] Martijn VanOtterlo andMarcoWiering. “Reinforcement learning andmarkov decision processes”.
In: Reinforcement learning: State-of-the-art. Springer, 2012, pp. 3–42.

[121] Yujing Hu et al. “Learning to utilize shaping rewards: A new approach of reward shaping”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 15931–15941.

[122] Rodrigo Toro Icarte et al. “Reward machines: Exploiting reward function structure in reinforce-
ment learning”. In: Journal of Artificial Intelligence Research 73 (2022), pp. 173–208.

[123] Jan-Maarten Engel and Robert Babuška. “On-line reinforcement learning for nonlinear motion
control: Quadratic and non-quadratic reward functions”. In: IFAC Proceedings Volumes 47.3
(2014), pp. 7043–7048.

[124] Takuya Akiba et al. “Optuna: A Next-generation Hyperparameter Optimization Framework”. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 2019.

[125] Antonin Raffin et al. “Stable-Baselines3: Reliable Reinforcement Learning Implementations”.
In: Journal of Machine Learning Research 22.268 (2021), pp. 1–8. URL: http://jmlr.org/
papers/v22/20-1364.html.

[126] Antonin Raffin. RL Baselines3 Zoo. https://github.com/DLR-RM/rl-baselines3-zoo. 2020.

www.gmv.com
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://github.com/DLR-RM/rl-baselines3-zoo

References 100

[127] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning library”. In:
Advances in neural information processing systems 32 (2019).

[128] Kaiming He et al. “Delving deep into rectifiers: Surpassing human-level performance on ima-
genet classification”. In: Proceedings of the IEEE international conference on computer vision.
2015, pp. 1026–1034.

[129] Fan Zhang et al. “On-line estimation of inertia parameters of space debris for its tether-assisted
removal”. In: Acta astronautica 107 (2015), pp. 150–162.

[130] J Thienel and Robert M Sanner. “A coupled nonlinear spacecraft attitude controller and observer
with an unknown constant gyro bias and gyro noise”. In: IEEE transactions on Automatic Control
48.11 (2003), pp. 2011–2015.

[131] Jovan D Boskovic, S-M Li, and Raman K Mehra. “Fault tolerant control of spacecraft in the
presence of sensor bias”. In:Proceedings of the 2000 American Control Conference. ACC (IEEE
Cat. No. 00CH36334). Vol. 2. IEEE. 2000, pp. 1205–1209.

[132] KS Low, ST Goh, et al. “On-orbit gyroscope bias compensation to improve satellite attitude
control performance”. In: 2021 IEEE Aerospace Conference (50100). IEEE. 2021, pp. 1–10.

[133] Tim Visser et al. “Torque model verification for the GOCE satellite”. In: Advances in Space
Research 62.5 (2018), pp. 1114–1136.

[134] Xibin Cao et al. “Time efficient spacecraft maneuver using constrained torque distribution”. In:
Acta Astronautica 123 (2016), pp. 320–329.

[135] Josh Tobin et al. “Domain randomization for transferring deep neural networks from simulation
to the real world”. In: 2017 IEEE/RSJ international conference on intelligent robots and systems
(IROS). IEEE. 2017, pp. 23–30.

[136] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),
pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL: https://doi.org/10.1038/s41586-
020-2649-2.

[137] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”. In:
Nature Methods 17 (2020), pp. 261–272. DOI: 10.1038/s41592-019-0686-2.

[138] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science & Engineering
9.3 (2007), pp. 90–95. DOI: 10.1109/MCSE.2007.55.

[139] Mark Towers et al. Gymnasium. Mar. 2023. DOI: 10. 5281/ zenodo .8127026. URL: https:
//zenodo.org/record/8127025 (visited on 07/08/2023).

[140] Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert. “Numba: A llvm-based python jit compiler”.
In: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC. 2015,
pp. 1–6.

[141] University of Michigan. Control Tutorials for MATLAB and Simulink - Introduction: PID Controller
Design. https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion
=ControlPID. Accessed: 2024-05-31. 2024.

[142] James R Wertz. Spacecraft attitude determination and control. Vol. 73. Springer Science &
Business Media, 2012.

[143] BehnamNeyshabur. “Implicit regularization in deep learning”. In: arXiv preprint arXiv:1709.01953
(2017).

[144] Kamyar Azizzadenesheli, Yisong Yue, and Animashree Anandkumar. “Policy gradient in par-
tially observable environments: Approximation and convergence”. In: arXiv preprint arXiv:1810.07900
(2018).

[145] Douglas Aberdeen et al. “Policy-gradient algorithms for partially observable Markov decision
processes”. In: (2003).

[146] Naeem Khan, M Irfan Khattak, and Dawei Gu. “Robust state estimation and its application to
spacecraft control”. In: Automatica 48.12 (2012), pp. 3142–3150.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.5281/zenodo.8127026
https://zenodo.org/record/8127025
https://zenodo.org/record/8127025
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID
https://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlPID

References 101

[147] Liang Sun and Zewei Zheng. “Disturbance-observer-based robust backstepping attitude stabi-
lization of spacecraft under input saturation and measurement uncertainty”. In: IEEE Transac-
tions on Industrial Electronics 64.10 (2017), pp. 7994–8002.

[148] Wei Wang et al. “Addressing Signal Delay in Deep Reinforcement Learning”. In: The Twelfth
International Conference on Learning Representations. 2023.

[149] Sunayna Singh. “Multibody Approach to Controlled Removal of Large SpaceDebris with Flexible
Appendages”. An electronic version of this thesis is available at http://repository.tudelft.
nl/. MSc Thesis Report. Delft University of Technology, 2018.

http://repository.tudelft.nl/
http://repository.tudelft.nl/

A
Sensitivity analysis figures

A.1. Reward function coefficients - rigid

(a) PPO - Torque perturbations (b) PPO - Inertial and gyroscope perturbations

Figure A.1: Performance of PPO agents trained with variations in ca in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

(a) SAC - Torque perturbations (b) SAC - Inertial and gyroscope perturbations

Figure A.2: Performance of SAC agents trained with variations in ca in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

102

A.1. Reward function coefficients - rigid 103

(a) TD3 - Torque perturbations (b) TD3 - Inertial and gyroscope perturbations

Figure A.3: Performance of TD3 agents trained with variations in ca in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

(a) TD7 - Torque perturbations (b) TD7 - Inertial and gyroscope perturbations

Figure A.4: Performance of TD7 agents trained with variations in ca in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

(a) PPO - Torque perturbations (b) PPO - Inertial and gyroscope perturbations

Figure A.5: Performance of PPO agents trained with variations in cp in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

A.1. Reward function coefficients - rigid 104

(a) SAC - Torque perturbations (b) SAC - Inertial and gyroscope perturbations

Figure A.6: Performance of SAC agents trained with variations in cp in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

(a) TD3 - Torque perturbations (b) TD3 - Inertial and gyroscope perturbations

Figure A.7: Performance of TD3 agents trained with variations in cp in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

(a) TD7 - Torque perturbations (b) TD7 - Inertial and gyroscope perturbations

Figure A.8: Performance of TD7 agents trained with variations in cp in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the rigid

environment. Bars indicate one standard deviation.

A.2. Reward function coefficients - flexible 105

A.2. Reward function coefficients - flexible
PPO did not result in any convergent agents for cr, ca, and cp.

(a) SAC - Torque perturbations (b) SAC - Inertial and gyroscope perturbations

Figure A.9: Performance of SAC agents trained with variations in cr in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the flexible

environment. Bars indicate one standard deviation.

(a) TD3 - Torque perturbations (b) TD3 - Inertial and gyroscope perturbations

Figure A.10: Performance of TD3 agents trained with variations in cr in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the flexible

environment. Bars indicate one standard deviation.

A.2. Reward function coefficients - flexible 106

(a) TD7 - Torque perturbations (b) TD7 - Inertial and gyroscope perturbations

Figure A.11: Performance of TD7 agents trained with variations in cr in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the flexible

environment. Bars indicate one standard deviation.

(a) SAC - Torque perturbations (b) SAC - Inertial and gyroscope perturbations

Figure A.12: Performance of SAC agents trained with variations in ca in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the flexible

environment. Bars indicate one standard deviation.

(a) TD3 - Torque perturbations (b) TD3 - Inertial and gyroscope perturbations

Figure A.13: Performance of TD3 agents trained with variations in ca in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the flexible

environment. Bars indicate one standard deviation.

A.2. Reward function coefficients - flexible 107

(a) TD7 - Torque perturbations (b) TD7 - Inertial and gyroscope perturbations

Figure A.14: Performance of TD7 agents trained with variations in ca in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the flexible

environment. Bars indicate one standard deviation.

(a) SAC - Torque perturbations (b) SAC - Inertial and gyroscope perturbations

Figure A.15: Performance of SAC agents trained with variations in cp in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the flexible

environment. Bars indicate one standard deviation.

(a) TD3 - Torque perturbations (b) TD3 - Inertial and gyroscope perturbations

Figure A.16: Performance of TD3 agents trained with variations in cp in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the flexible

environment. Bars indicate one standard deviation.

A.3. Extra domain randomization results - rigid 108

(a) TD7 - Torque perturbations (b) TD7 - Inertial and gyroscope perturbations

Figure A.17: Performance of TD7 agents trained with variations in cp in the reward function. Shown are the changes in mean
performance with respect to the baseline, also under torque, inertial, and gyroscope perturbations, only for the flexible

environment. Bars indicate one standard deviation.

A.3. Extra domain randomization results - rigid

Figure A.18: Performance of agents with domain randomization applied in the form of inertia scaling, with respect to the
baseline performance. Bars indicate one standard deviation.

A.3. Extra domain randomization results - rigid 109

Figure A.19: Results of the learning process of the four different algorithms in the rigid spacecraft environment, with a drifting
gyroscope bias domain randomization applied. Average results are shown including the minimum and maximum results,

without any smoothing.

Figure A.20: Performance of agents with domain randomization applied in the form of torque scaling, with respect to the
baseline performance in the rigid case. Bars indicate one standard deviation.

A.3. Extra domain randomization results - rigid 110

Figure A.21: Performance of agents with domain randomization applied in the form of torque noise, with respect to the
baseline performance in the rigid case. Bars indicate one standard deviation.

Figure A.22: Performance of agents with domain randomization applied in the form of a disturbance torque, with respect to the
baseline performance in the rigid case. Bars indicate one standard deviation.

A.4. Extra domain randomization results - flexible 111

A.4. Extra domain randomization results - flexible

Figure A.23: Performance of agents with domain randomization applied in the form of inertia rotation, with respect to the
baseline performance in the flexible case. Bars indicate one standard deviation.

Figure A.24: Performance of agents with domain randomization applied in the form of inertia scaling, with respect to the
baseline performance in the flexible case. Bars indicate one standard deviation.

A.4. Extra domain randomization results - flexible 112

Figure A.25: Performance of agents with the Euler state representation with respect to the baseline performance in the flexible
unperturbed case. Bars indicate one standard deviation.

Figure A.26: Performance of agents with the MRP state representation with respect to the baseline performance in the flexible
unperturbed case. Bars indicate one standard deviation.

A.4. Extra domain randomization results - flexible 113

Figure A.27: Performance of agents with domain randomization applied in the form of torque scaling, with respect to the
baseline performance in the flexible case. Bars indicate one standard deviation.

Figure A.28: Performance of agents with domain randomization applied in the form of torque noise, with respect to the
baseline performance in the flexible case. Bars indicate one standard deviation.

A.5. Hyperparameter sensitivity - rigid 114

Figure A.29: Performance of agents with domain randomization applied in the form of a disturbance torque, with respect to the
baseline performance in the flexible case. Bars indicate one standard deviation.

A.5. Hyperparameter sensitivity - rigid

Figure A.30: Performance of the best agents during their training process plotted against the activation function value for all
four algorithms in the rigid unperturbed environment. The N/A marker means that no data was available for this case (the

sampler did not select this activation function).

A.5. Hyperparameter sensitivity - rigid 115

Figure A.31: Performance of the best agents during their training process plotted against the clip range hyperparameter value
for PPO in the rigid unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is R2 = 0.18, which is a
bad fit (indicating that the relation is not linear). The trendlines have still been included, to provide a sense of the first-order

trend.

Figure A.32: Performance of the best agents during their training process plotted against the number of epochs
hyperparameter value for PPO in the rigid unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is

R2 = 0.47, which is a bad fit (indicating that the relation is not linear). The trendlines have still been included, to provide a
sense of the first-order trend.

A.5. Hyperparameter sensitivity - rigid 116

Figure A.33: Performance of the best agents during their training process plotted against the number of steps value for PPO in
the rigid unperturbed environment.

Figure A.34: Performance of the best agents during their training process plotted against the GAE-λ value for PPO in the rigid
unperturbed environment.

A.5. Hyperparameter sensitivity - rigid 117

Figure A.35: Performance of the best agents during their training process plotted against the vf-coefficient value for PPO in the
rigid unperturbed environment.

Figure A.36: Performance of the best agents during their training process plotted against the maximum gradient norm value
for PPO in the rigid unperturbed environment.

A.5. Hyperparameter sensitivity - rigid 118

Figure A.37: Performance of the best agents during their training process plotted against the target KL value for PPO in the
rigid unperturbed environment.

Figure A.38: Performance of the best agents during their training process plotted against the target update interval
hyperparameter value for SAC in the rigid unperturbed environment. Of all the trendlines shown (all linear trends), the best fit is

R2 = 0.33, which is a bad fit (indicating that the relation is not linear). The trendlines have still been included, to provide a
sense of the first-order trend.

A.5. Hyperparameter sensitivity - rigid 119

Figure A.39: Performance of the best agents during their training process plotted against the target noise clip value for TD3
and TD7 in the rigid unperturbed environment. Note that no TD3 agent converged.

Figure A.40: Performance of the best agents during their training process plotted against the criteria reset value for TD7 in the
rigid unperturbed environment.

A.6. Hyperparameter sensitivity - flexible 120

Figure A.41: Performance of the best agents during their training process plotted against the late assessment episodes
hyperparameter value for TD7 in the rigid unperturbed environment.

A.6. Hyperparameter sensitivity - flexible

Figure A.42: Performance of the final agents during their training process plotted against the activation function value for all
four algorithms in the flexible unperturbed environment. The N/A marker means that no data was available for this case (the

sampler did not select this activation function).

A.6. Hyperparameter sensitivity - flexible 121

Figure A.43: Average best agent performance metrics for different combinations of node count hyperparameter values for
PPO, for the flexible environment. Note that only one agent converged.

Figure A.44: Average best agent performance metrics for different combinations of node count hyperparameter values for
SAC, for the flexible environment.

A.6. Hyperparameter sensitivity - flexible 122

Figure A.45: Average best agent performance metrics for different combinations of node count hyperparameter values for
TD3, for the flexible environment.

Figure A.46: Average best agent performance metrics for different combinations of node count hyperparameter values for
TD7, for the flexible environment.

A.6. Hyperparameter sensitivity - flexible 123

Figure A.47: Performance of the final agents during their training process plotted against the number of steps value for PPO in
the flexible unperturbed environment.

Figure A.48: Performance of the final agents during their training process plotted against the number of epochs value for PPO
in the flexible unperturbed environment.

A.6. Hyperparameter sensitivity - flexible 124

Figure A.49: Performance of the final agents during their training process plotted against the GAE-λ value for PPO in the
flexible unperturbed environment.

Figure A.50: Performance of the final agents during their training process plotted against the clip range value for PPO in the
flexible unperturbed environment.

A.6. Hyperparameter sensitivity - flexible 125

Figure A.51: Performance of the final agents during their training process plotted against the vf-coefficient value for PPO in the
flexible unperturbed environment.

Figure A.52: Performance of the final agents during their training process plotted against the max gradient norm value for PPO
in the flexible unperturbed environment.

A.6. Hyperparameter sensitivity - flexible 126

Figure A.53: Performance of the final agents during their training process plotted against the target KL value for PPO in the
flexible unperturbed environment.

Figure A.54: Performance of the best agents during their training process plotted against the τ value for TD3 and SAC in the
flexible unperturbed environment.

A.6. Hyperparameter sensitivity - flexible 127

Figure A.55: Performance of the best agents during their training process plotted against the target update hyperparameter
value for SAC in the flexible unperturbed environment.

Figure A.56: Performance of the best agents during their training process plotted against the policy delay value for TD3 and
TD7 in the flexible unperturbed environment.

A.6. Hyperparameter sensitivity - flexible 128

Figure A.57: Performance of the best agents during their training process plotted against the target noise standard deviation
value for TD3 and TD7 in the flexible unperturbed environment.

Figure A.58: Performance of the best agents during their training process plotted against the target noise clip value for TD3
and TD7 in the flexible unperturbed environment.

A.6. Hyperparameter sensitivity - flexible 129

Figure A.59: Performance of the best agents during their training process plotted against the α value for TD7 in the flexible
unperturbed environment.

Figure A.60: Performance of the best agents during their training process plotted against the criteria reset value for TD7 in the
flexible unperturbed environment.

A.6. Hyperparameter sensitivity - flexible 130

Figure A.61: Performance of the best agents during their training process plotted against the hidden layer dimension size for
TD7 in the flexible unperturbed environment.

Figure A.62: Performance of the best agents during their training process plotted against the late assessment episodes
hyperparameter value for TD7 in the flexible unperturbed environment.

A.6. Hyperparameter sensitivity - flexible 131

Figure A.63: Performance of the best agents during their training process plotted against the hidden layer node count values
(including embedding layers) for TD7 in the flexible unperturbed environment.

Figure A.64: Performance of the best agents during their training process plotted against the update frequency
hyperparameter value for TD7 in the flexible unperturbed environment.

	Preface
	Nomenclature
	Introduction, background, and Research Plan
	Space debris and debris characterization
	Active Debris Removal
	Post-capture attitude control introduction
	General ADR attitude control background
	Requirements for post-capture attitude pointing control
	Non-reinforcement learning post-capture attitude control

	Reinforcement Learning
	Formal definition
	Reinforcement learning-based post-capture attitude control
	Policy gradient algorithms

	Research objective
	Research questions
	Report structure

	Methodology
	Attitude control simulation architecture
	Spacecraft dynamics and kinematics model
	Target selection
	Reference frame
	Control torque actuator selection and numerical settings
	Rigid spacecraft dynamics and kinematics
	Flexible spacecraft dynamics and kinematics

	Reinforcement learning setup
	Problem formulation
	Reward function specification
	Learning setup
	Agent types and hyperparameters

	Learning process assessment
	Robustness assessment
	Uncertainty modelling using perturbations
	Domain randomization
	Robustness sensitivity analysis

	Verification and Validation
	Unit testing and assumptions
	Assumptions
	Coordinate transformations
	Implementation specifics

	PD controller verification
	TD7 verification
	Rigid model verification
	Equations of motion
	Reward wrapper verification

	Flexible model verification
	Rigidified flexible model verification
	Flexible model verification

	Full learning process validation

	Results and Discussion
	Baseline agent comparisons
	Agent control behavior
	Agent learning comparison
	PD comparison
	Compute time results
	Baseline robustness analysis

	Effects of reward function variations
	Effects of domain randomization
	Effects of hyperparameter tuning
	Common hyperparameters
	Algorithm specific hyperparameters

	Flexibility effects

	Conclusion and recommendation
	Conclusions
	Recommendations

	References
	Sensitivity analysis figures
	Reward function coefficients - rigid
	Reward function coefficients - flexible
	Extra domain randomization results - rigid
	Extra domain randomization results - flexible
	Hyperparameter sensitivity - rigid
	Hyperparameter sensitivity - flexible

