
Delft Center for Systems and Control

Graph Based LiDAR-Inertial Lo-
calization with a Low Power Solid
State LiDAR

AF Vonk

M
as

te
ro

fS
cie

nc
e

Th
es

is

Graph Based LiDAR-Inertial
Localization with a Low Power Solid

State LiDAR

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

AF Vonk

March 28, 2022

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was carried out in cooperation with CGI The Netherlands.

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
Graph Based LiDAR-Inertial Localization with a Low Power Solid

State LiDAR
by

AF Vonk
in partial fulfillment of the requirements for the degree of

Master of Science Systems and Control

Dated: March 28, 2022

Supervisor(s):
dr.ir. C.S.Smith

ir. R. Voûte

Reader(s):
dr.ir. A.J.J. van den Boom

Abstract

Mapping an environment with a Light Detection and Ranging (LiDAR) sensor through the
use of a LiDAR Simultaneous Localization And Mapping (SLAM) algorithm is a powerful
technology that allows for the creation of detailed 3D models. Recently various LiDAR sensors
have been developed based on Micro-Electro-Mechanical System (MEMS) technology. These
LiDARs are very low cost and considerably smaller than conventional LiDARs. They also
often incorporate other sensors such as Inertial Measurement Unit (IMU)s and cameras into
the same device.
Performing LiDAR SLAM with MEMS based LiDAR is challenging due to the short range,
the smaller Field of View (FOV) and the sensitivity to ambient light of MEMS based LiDAR.
In this thesis the objective is to reduce the effect of these factors when doing LiDAR SLAM
by incorporating IMU measurements into the position estimation of the sensor.
A graph based positioning approach is proposed to achieve tight coupling of the IMU sensor
and LiDAR position estimates. The method is made more robust by incorporating an outlier
detection mechanism that reduces the influence of wrong LiDAR position estimates caused
by insufficient points in the LiDAR FOV or by ambient light disturbance.
The method was built in ROS and implemented on the Intel® L515 sensor. The performance is
evaluated in indoor situations with varying presence of ambient sunlight and where room size
approaches the maximum limit of the sensor range. The algorithm achieves lower drift than
the current state of the art for the Intel® L515. The algorithm especially achieves altitude
drift reduction and increases robustness to outliers in the LiDAR positioning.

Master of Science Thesis AF Vonk

ii

AF Vonk Master of Science Thesis

Table of Contents

Preface & Acknowledgements ix

1 Introduction 1
1-1 Simultaneous Localization And Mapping . 3

1-1-1 LiDAR based SLAM . 3
1-2 Sensor Overview . 7

1-2-1 Lidar Methods . 7
1-2-2 Differences between the Intel L515 and conventional LiDAR 8
1-2-3 Inertial Measurement Unit . 10

1-3 Problem Formulation . 11
1-4 Outline of the Thesis . 12

2 Background Theory 13
2-1 Motion Model . 13

2-1-1 Homogeneous Transformation . 14
2-1-2 State of the Sensor . 14

2-2 Graph Based Optimization . 15
2-3 IMU preintegration . 16

2-3-1 Summarizing the IMU measurments . 16
2-3-2 Bias model updating . 18
2-3-3 Bias Factor . 19

2-4 Lidar Odometry and Mapping . 19
2-4-1 Lidar Edge/Plane Detection . 19
2-4-2 Lidar Movement Estimation . 21
2-4-3 Defining the Lidar Factor . 22

2-5 Incremental Smoothing and Mapping . 23

Master of Science Thesis AF Vonk

iv Table of Contents

3 Manuscript 25
3-1 Introduction . 26
3-2 Related Work . 27
3-3 Methodology . 27
3-4 Experimental Evaluation . 31
3-5 Conclusions and Future Works . 33
3-6 Acknowledgements . 34
3-7 References . 34

4 Conclusions and Future Work 37
4-1 Conclusions . 37
4-2 Future Works . 38

Bibliography 41

Glossary 43
List of Acronyms . 43
List of Symbols . 43

AF Vonk Master of Science Thesis

List of Figures

1-1 Point Cloud of a staircase created with the Lidar Odometry and Mapping (LOAM)
algorithm [22]. 5

1-2 (a,b) Overview of the LIO-SAM algorithm results (c) The LIO-SAM setup [17]. . 6
1-3 Expanded view of all the components of the Intel L515 Sensor. The sensors contains

a camera, Lidar and Inertial measurement unit [10]. 7
1-4 (a) Flash LiDAR (b) Optical Phase Array scanning LiDAR (c) Mechanical scanning

LiDAR (d) MEMS based scanning LiDAR [19]. 7
1-5 Field of view projected onto the x,y plane of the Intel L515 compared to the

Velodyne VLP-16. All distances in this figure are in meters. 8
1-6 The input of the L515 lidar when looking at an area with windows on the right

side. Pixels for which there is no depth information are dark blue. 9
1-7 Integration of a white noise signal yt ∼ N (0, 1) for 50 noise realizations [13]. . . 11

2-1 Visualization of the factor graph of the graph based optimization performed in this
thesis. 15

2-2 The three step process to solve a factor graph with 2 nodes. 15
2-3 Example of filtering a point cloud obtained with the Intel® RealSense™ LiDAR

Camera L515 (Intel L515) with edge/plane detection. (a) The visual input of the
scene. (b,c) The filtered edge (blue) and plane (yellow) points of the scene from
two different viewing angles. 21

Master of Science Thesis AF Vonk

vi List of Figures

AF Vonk Master of Science Thesis

List of Tables

1-1 Specifications of the Intel L515, a low power MEMS based LiDAR, compared with
the Velodyne VLP 16, a widely used motorized mechanical LiDAR. 10

Master of Science Thesis AF Vonk

viii List of Tables

AF Vonk Master of Science Thesis

Preface & Acknowledgements

Being stuck in a room while feeling lost is unfortunately the experience a lot of master stu-
dents had when they were working on their thesis during the corona pandemic.
How nice it would have been if you had a device that you could put on your head to map the
environment and find a way out of that situation.
Jokes aside. I really enjoyed working in the field of Simultaneous Localization and Mapping.
It felt like the further I got into the thesis, and the more skills I developed handling the Intel
L515, the more I was able create my own map out of the room I was stuck in. (re)Discovering
points of interest, into a better, more interesting, and more enjoyable life. Since childhood
I’ve always been obsessed with creating (virtual) machines. I love solving the spatial puzzle
(in a wide sense) of which piece needs to be placed where, when, and in what order, to create
something that does something new or in a different way.
The pieces I used in my life were first bricks, later self-made parts, and after a quick detour
of play and screenplay lines: lines of code.
Control allows the creation of the ultimate machine: one that functions on its own.
Since Robert Voûte introduced me to the Intel Sensor and we created the topic, I’ve been
intrigued by what is already possible in the field of SLAM, and very excited about the possi-
bilities that the future will hold.

I would like to thank my supervisor dr.ir. C.S.Smith for his assistance, insight, guidance,
honesty and patience during the writing of this thesis.
I would also like to thank Robert Voûte for making me feel at home within CGI.
Furthermore I would like to thank Annet, Jan, Annet, Jeroen, Eline, Dorinde, Laura, David,
Jasper, Irek, Laurens, Jim, Johan, Mark, Mels, Arend, Max, Kitty, Jan, Sara, Joris, Trijntje,
Muus, Annie, Sjoerd, de Neven, Jimi, Douglas, Cal, Gary, Viktor, Mihalyi, and Martin for
giving me strength, insight and love during this thesis.

I hope that by reading this thesis you also, like me, become fascinated by the field of Simul-
taneous Localization and Mapping. If not, believe me, I had worse audiences.

Delft, University of Technology AF Vonk
March 28, 2022

Master of Science Thesis AF Vonk

x Preface & Acknowledgements

AF Vonk Master of Science Thesis

“Contrary to what we usually believe, moments like these, the best moments in
our lives, are not the passive, receptive, relaxing times—although such experiences
can also be enjoyable, if we have worked hard to attain them. The best moments
usually occur when a person’s body or mind is stretched to its limits in a voluntary
effort to accomplish something difficult and worthwhile. Optimal experience is
thus something that we make happen. For a child, it could be placing with
trembling fingers the last block on a tower she has built, higher than any she has
built so far; for a swimmer, it could be trying to beat his own record; for a violinist,
mastering an intricate musical passage. For each person there are thousands of
opportunities, challenges to expand ourselves.”
— Mihaly Csikszentmihalyi

Chapter 1

Introduction

The Greek philosopher Anaximander (610–546 BC) has been credited with having created
one of the first maps of the world [8]. The map contained 3 continents: Libya (Africa), Europe
and Asia. Split by the river Nile, the Mediterranean sea and the Black sea.
Maps nowadays are more often generated by satellites instead of ancient Greek philosophers.
Satellite images can reach a resolution of up to 15 cm [3], providing very detailed pictures of
environments, and a good start for creating a map. Many things can be localized on those
maps by using other satellites that emit GNSS signals and a GPS.
If one wants to monitor aeroplanes, trains or cars, they can also be placed on the map by
outfitting them with a GPS.
The maps and monitoring systems created in this way have allowed humankind to create safer
flying conditions, more efficient railway systems and up to date traffic information.
But as great as these systems are, due to their reliance on GNSS, they break down when
localizing and mapping in indoor environments.

The current state of the art in indoor localization and mapping is reliant on Simultaneous
Localization And Mapping (SLAM) techniques. SLAM tries to solve the chicken and egg
problem of creating a map of an environment and positioning oneself in that map.
The map and the motion model of the agent in the map can be 2D, but also 3D when one
wants to capture additional information of the complexities of the indoor structure.
SLAM has been a breakthrough technology in various field where autonomous operation in
unknown environments is needed, or where a map or model of an environment is wanted.
Example use-cases include autonomous driving, building modelling, unmanned autonomous
flight and underground localization.
Currently one of the most detailed ways to build an indoor 3D model of a building is by
using a Light Detection and Ranging (LiDAR) sensor and performing LiDAR SLAM. The
laser pulses emitted by a LiDAR provide very accurate distance measurements, allowing for
detailed maps.
LiDAR technology is however expensive and the equipment used is also heavy. Especially
compared to doing visual SLAM with a camera.
The prohibitive cost and size of LiDAR is starting to change however in recent years since

Master of Science Thesis AF Vonk

2 Introduction

Micro-Electro-Mechanical System (MEMS) technology has been introduced in LiDAR scan-
ning. MEMS technology has in the past drastically reduced the cost and size of a variety of
sensors by scaling down the mechanical parts and using integrated circuit batch processing
techniques.
One of the first generation of MEMS based LiDAR devices, the Intel® RealSense™ LiDAR
Camera L515 (Intel L515), has been introduced to the market in 2020. This device is de-
signed for indoor use, is very small, and costs a fraction of what a conventional mechanical
non-MEMS based lidar costs.
It does however suffer from poor performance when ambient sunlight is present due to its
lower power, and its smaller Field of View (FOV) causes degeneracy problems with current
LiDAR SLAM methods.
The Intel L515 does however have the advantage of also accommodating a camera and Inertial
Measurement Unit (IMU) into the device, that can also be used for SLAM. In this thesis,
the advantage of fusing IMU data with LiDAR data for to the accuracy and robustness of
LiDAR SLAM with the Intel L515 is researched.
In this chapter the SLAM problem is introduced, and the current state of the art in LiDAR
slam with or without other sensors is reviewed.
Then the Intel L515 is introduced and compared to conventional LiDARs.
The problem statement is then introduced which is the guideline for the rest of the thesis.

AF Vonk Master of Science Thesis

1-1 Simultaneous Localization And Mapping 3

1-1 Simultaneous Localization And Mapping

When doing SLAM, one tries to create a map of an environment while also positioning oneself
in that environment.
SLAM was first mentioned in 1995 [4] and has been a widely researched topic ever since. The
SLAM problem can be described as a Maximum A Posteriori (MAP) problem (1-1).

P (M,x1:t|y1:t, u1:t) (1-1)

Here M is the map that is created and x1:t is the state of the observer in the environment at
various points in time.
The states are estimated with sensor observations y1:t, as well as observed inputs to the sys-
tem u1:t.
The sensor observations can come from a variety of sensors. There are sensors that measure
the location or orientation of the observer directly like GNSS or magnetometers, but sensors
that don’t measure the state directly are also commonly used like for example (stereo)camera’s,
accelerometers, LiDARs, sonars, radars etc.
Possible solutions for the SLAM problem vary and are highly dependent on which sensor is
used.
In this thesis a 3 dimensional environment is assumed, and hence the map is 3 dimensional,
and the position and orientation of the sensor both have 3 dimensions.

1-1-1 LiDAR based SLAM

A LiDAR sensor measures the distance to points in its FOV. The points are measured at a
set interval angle that ultimately covers the FOV. These points are often visualized in three
dimensional space as a point cloud.
When the LiDAR moves through the environment, new points are captured as they enter the
FOV of the LiDAR. Previously captured points are also recaptured but will be at a different
location with respect to the LiDAR because of the movement of the sensor.
These previously captured points are the key to finding the movement of the LiDAR.
LiDAR SLAM methods estimate the movement of the sensor by quantifying the movements
of points that have been observed. LiDAR SLAM methods roughly preform these two steps:

1. Points observed in a new scan are matched to the same point observed in a previous
scan (point matching step).

2. The motion of the LiDAR sensor is estimated based on the distance between these point
matches (motion estimation step).

The Iterative Closest Points algorithm

One of the first methods that does these steps is the Iterative Closest Points (ICP) algorithm
[1]. In ICP, the newly observed point cloud is compared to the previously observed point
cloud. ICP roughly walks through these four steps in order:

Master of Science Thesis AF Vonk

4 Introduction

1. ICP does point matching for every point in the newly observed point cloud by finding
the closest point in the previously observed point cloud.

2. The motion is estimated by performing a least squares optimization that minimizes the
distance between matches as a function of the LiDAR motion.

3. The newly observed point cloud is then transformed with this motion.

4. ICP returns to step 1. After a number of iterations the final relative movement is
obtained.

ICP is generally too slow for real time performance because of the large number of points that
a LiDAR gathers. The LiDAR point cloud can be sampled down, but that is not desirable,
since then useful information is lost.
Because ICP matches the closest points with each other, it does not necessarily matches points
that are at the same location in the world. These false matches are quite common with ICP
and make ICP prone to end up in a local minima for the relative motion in the optimization
step. A good initial guess can reduce the chance of ending in a local minima, but that may
not always be available.
The chance of ending in a local minima with ICP is even higher in 3D because of the extra
dimensions adding variables and options for false point matches.

The Lidar Odometry and Mapping algorithm and Extensions

The alternatives to ICP that perform the best nowadays are heavily inspired by the LiDAR
Odometry And Mapping (LOAM) [22] algorithm.
LOAM is able to achieve real time performance by making some key differences compared
to ICP. First LOAM performs a feature detection step before matching points. The feature
detection step detects plane and edge points, which allows for a better description of the
properties of the newly observed pointcloud.
Because the plane and edge points correlate to a line in the case of an edge, or a plane in
the case of a plane, the point-to-line distance or point-to-plane distance can be used as a
description during the motion estimation step. The workflow of LOAM is as follows:

1. Edge and plane points are extracted from the unordered point cloud produced by the
LiDAR.

2. For these edge and plane points the closest two or three previously observed correspon-
dences are found (two for edges, and three for planes).

3. LOAM uses these previously observed correspondences to describe edge lines or planes.

4. The motion is obtained by minimizing the distance of the newly observed points to
those edges and planes by varying the pose of the LiDAR.

After the position of the sensor is determined, the newly observed points are projected to
the global map model of LOAM. The result of a point cloud model created with LOAM is

AF Vonk Master of Science Thesis

1-1 Simultaneous Localization And Mapping 5

Figure 1-1: Point Cloud of a staircase created with the Lidar Odometry and Mapping (LOAM)
algorithm [22].

presented in figure 1-1. Over the years LOAM [22] has been improved with various extensions.
LeGO - LOAM [16] extends LOAM by splitting the pose estimation in two separate proce-
dures. First the ground plane is extracted which is used to estimate the yaw, pitch and height
of the pose. Then the other feature points are used to estimate the rest of the pose.
IMU’s have also been used in combination with LOAM algorithms. The fusion of the IMU
in these Lidar Inertial algorithms can be distinguished in two classes: Loosely coupled and
tightly coupled.
In loosely coupled algorithms the IMU position estimates are used as a prior for the opti-
mization done by the LiDAR algorithm. In tightly coupled algorithms, the final localization
estimates are a direct combination of IMU based estimates and LiDAR based estimates.
Loose coupling of the IMU was already done by the original LOAM algorithm. Where the
IMU could be used as an initial guess for the optimization.
Tight coupling of the IMU can be achieved through various Kalman filter approaches [23, 16,
21] or by using a graph based approach [17] [18].
The advantage of using a graph based approach over a filtering based approach is that it
allows for the implementation of loop closures.
Loop closures are movement estimates between states that are close to each other in the
spatial domain, but can greatly differ in time. Loop closures greatly reduce long term drift
[17].
The Lidar Inertial Odometry via Smoothing And Mapping (LIO-SAM) algorithm uses a
graph based approach to combine LiDAR estimates, IMU estimates, and (optionally) GPS
measurements. Loop closures are created by performing scan matching between non sequen-
tial scans that are estimated to be within a certain euclidean distance of each other. The
results of LIO-SAM are shown in Fig. 1-2. The loop closures are the yellow matches in (Fig
1-2a). These are created in a process on a separate thread, and added to the factor graph

Master of Science Thesis AF Vonk

6 Introduction

(a) Park Dataset (b) Amsterdam Dataset

(c) Handheld setup

Figure 1-2: (a,b) Overview of the LIO-SAM algorithm results (c) The LIO-SAM setup [17].

when found. LIO-SAM is able to maintain positioning over long intervals as can be seen
by the Amsterdam dataset performance (Fig. 1-2b). The LIO-SAM datasets were created
wit a Velodyne VLP-16 Mechanical LiDAR and a MicroStrain 3DM-GX5-25 IMU. In the
Amsterdam dataset GPS measurements were also used in the optimization.

The approaches discussed up until this point have only been tested with expensive mechanical
LiDARs. Literature for MEMS based LiDARs is scarce, because of their recent introduction.
The first and only (at the time of writing) LiDAR SLAM algorithm for the Intel L515 is the
Solid State Lidar Simultaneous Localization and Mapping (SSL-SLAM) algorithm.
SSL-SLAM [20] takes a similar approach as LOAM with a different metric for feature detec-
tion. This algorithm provides functional SLAM inside a laboratory environment. SSL-SLAM
loses track in high ambient light or open rooms because the LiDAR of the Intel L515 is not
able to obtain (usable) feature points in that case. This causes the algorithm to lose track in
rooms where there are open areas as well as when the sensor is confronted by sunlight coming
from windows. These problems are further elaborated in Sec. 1-2-2.

AF Vonk Master of Science Thesis

1-2 Sensor Overview 7

1-2 Sensor Overview

The Intel L515 consists of a LiDAR sensor, an IMU and a camera (Fig. 1-3). The lidar sensor
is a MEMS based scanning LiDAR. The intertial measurement unit is a Bosch BMI085 [10].
In Sec. 1-2-1 the specifics of the Intel sensor are briefly introduced. In Sec. 1-2-2, the
challenges and differences between the Intel L515 and conventional LiDAR is explained.
The IMU sensor is briefly reviewed in Sec. 1-2-3 to finalize the section.

Figure 1-3: Expanded view of all the components of the Intel L515 Sensor. The sensors contains
a camera, Lidar and Inertial measurement unit [10].

1-2-1 Lidar Methods

A LiDAR measures distance to surfaces in its environment. A LiDAR emits laser pulses to
measure distance. When these laser pulses return to the sensor after reflection, the time of
flight is used to determine distance.
To measure space and create a point cloud, the laser needs to cover an area. The area covered
by the laser beam is called the FOV of the LiDAR.

LiDAR sensors can be divided in two groups based on how they cover their FOV [19]: scan-
ning LiDAR and non-scanning LiDAR.
The scanning LiDARs can be divided in three subgroups [19]: Optical Phase Array Scanning
LiDAR, Mechanical scanning LiDAR and MEMS based scanning LiDAR (Fig.1-4)

Figure 1-4: (a) Flash LiDAR (b) Optical Phase Array scanning LiDAR (c) Mechanical scanning
LiDAR (d) MEMS based scanning LiDAR [19].

Non-scanning LiDAR or "Flash" LiDAR entirely illuminates its FOV with the laser at once,
while scanning LiDAR covers the FOV piece by piece.

Master of Science Thesis AF Vonk

8 Introduction

Flash LiDAR suffers from a low signal-to-noise ratio (SNR) because only a small fraction of
the send out light is returned to its receivers because the laser is not focused during emission
[19]. This limits its measurement range or requires a very high power laser [19].
Scanning LiDAR can achieve a higher signal to noise ratio because of the focus of the lidar
pulses and is therefore often preferred when doing SLAM [19].
Scanning LiDAR systems steer the laser beam over time to cover the FOV. The most popular
kind of scanning LiDARs do this mechanically through use of a motor. A good example of a
motorized mechanical LiDAR scanner is the Velodyne VLP-16.
The Velodyne consists of an array of vertically stacked emitters and receivers that are rotated
along an axis by a motor (Fig. 1-4 c).
Recently a new branch of scanning LiDARs has been introduced that, instead of using a
motor, uses a moving mirror based on MEMS technology to let the laser beam scan the FOV
(Fig. 1-4 d). The Intel L515 falls in this category.

1-2-2 Differences between the Intel L515 and conventional LiDAR

The Intel L515 utilizes a MEMS mirror for scanning instead of a motor that spins the laser
beam. The low power of the laser utilized in the Intel L515 compared to a motorized me-
chanical LiDAR also has less sensing range. This makes the overall FOV different from a
motorized mechanical LiDAR (Fig. 1-5). The Intel has got a maximum range of 9m assum-
ing optimal conditions and covers a viewing angle of 70 degrees. The Velodyne VLP-16 which
is a the most commonly researched mechanical LiDAR has got 90m range and 360 degrees
FOV clearly outmatching the FOV of the Intel L515.

Figure 1-5: Field of view projected onto the x,y plane of the Intel L515 compared to the Velodyne
VLP-16. All distances in this figure are in meters.

The small FOV of the Intel L515 can cause the degenerate situtations in which a LiDAR
SLAM algorithm is not able to localize itself. Degenerate situations are mostly caused by too

AF Vonk Master of Science Thesis

1-2 Sensor Overview 9

few features, or when all features lie on a plane, causing directions parallel to the plane to be
unobservable.

Another difference between the Intel L515 and more expensive LiDARs is its sensitivity to
ambient light. If ambient sunlight enters a room through windows, it can cause blackouts in
the LiDAR stream (Fig. 1-6).
The blackouts reduce the effective range of the Intel L515 dramatically. This is another prob-
lem that needs to be solved to use the Intel L515 for indoor localization. In the scene of
Figure 1-6, the lidar depth stream contained only 19 % pixels with depth information when
sunlight was entering through windows. At night without the ambient light 54 % of pixels
had depth information.

(a) lidar depth stream (night) (b) lidar depth stream (day)

Figure 1-6: The input of the L515 lidar when looking at an area with windows on the right side.
Pixels for which there is no depth information are dark blue.

The main advantages of using a MEMS based LiDAR like the Intel L515 woud be: lower
weight, lower cost and power consumption. This makes the sensor interesting for operation
in autonomous robotics or scenario’s where the least amount of inference on work is required.
The full specs of the Intel L515 compared to the Velodyne VLP-16 are found in Table 1-1.

Master of Science Thesis AF Vonk

10 Introduction

Table 1-1: Specifications of the Intel L515, a low power MEMS based LiDAR, compared with
the Velodyne VLP 16, a widely used motorized mechanical LiDAR.

Intel L515 Velodyne VLP16
Cost ~$ 350 > $ 4000
Field of View 70°x 55 ° 360°x 32 °
Range 0.25 - 9 m 0.5-100 m
Accuracy 1.4 cm 3 cm
Update rate 30 Hz 5-20 Hz
Horizontal Resolution 0.07 ° 0.1-0.4°
Vertical Resolution 0.07 ° 2 °
Dimensions 61 x 26 mm 103 x 72 mm
Weight 95 g 860 g
Power Consumption < 3.5 W 8 W
Maximum Illuminance < 500 lux (office light) [10] > 20.000 lux approx. Any-

thing but direct sunlight [12]

1-2-3 Inertial Measurement Unit

The IMU of the Intel L515 consists of an accelerometer and a gyroscope. The gyroscope
measures angular velocity and the accelerometer measures linear acceleration. The sensors
can be modelled as a perfect measurement with some added bias and some Gaussian noise
(1-2, 1-3)[5].

Bωm =B ωr + bg +B λω (1-2)
Bam =B ar + ba +W g +B λa (1-3)

Bωm,
B am are the measured angular velocity and linear acceleration. Bωr,

B ar are the real
angular velocity and linear acceleration. Wg is the gravity vector and Bλa,

B λω are additional
white noise.

MEMS technology allows to produce small cheap IMUS. The IMU measurements can be mod-
eled as a perfect measurement with additional bias and white noise. Depending on the quality
of the sensor these effects can be reduced. To obtain the pose out of IMU measurements the
linear acceleration measurements of the accelerometer need to be integrated twice, while the
angular velocity measurements need to be integrated once. This process is called dead reckon-
ing. The integration causes drift in the final pose estimate because the white noise present in
the signal will accumulate upon integration and impact the final pose estimate. To illustrate
the accumulation of drift in dead reckoning, figure 1-7 shows an example of integration of
white noise accumulates [13]. As can be seen from Figure 1-7, as the noise gets integrated
over 100 samples, it’s not unrealistic for the drift (the integrated signal) to be 15 times larger
than the original noise variance.

AF Vonk Master of Science Thesis

1-3 Problem Formulation 11

Figure 1-7: Integration of a white noise signal yt ∼ N (0, 1) for 50 noise realizations [13].

1-3 Problem Formulation

LiDAR SLAM is a powerful tool for mapping an unknown environment. In recent years tools
have been developed for LiDARs to do real time SLAM [22] [17]. LiDAR SLAM allows for
localization and mapping without GNSS, while building very accurate maps due to the accu-
racy of the LiDAR.
The prohibitive costs of LiDARs and the size of the equipment is however a drawback keeping
the technology from widespread use for situational awareness in emergencies.
The Intel L515 is an interesting device to use for LiDAR SLAM because it bypasses these
drawbacks with its small size and weight, low power consumption and low cost.
The Intel L515 does have some problems that prevent it from being used for situational aware-
ness, namely a large sensitivity to ambient (sun) light and a higher chance to end up in a
degenerate scenario because of its small FOV.
The IMU of the Intel L515 should be able to counter these effects to some extend, since it
doesn’t depend on the availability of nearby features nor ambient light.
To fuse the IMU measurements with the LiDAR odometry estimations, a graph based ap-
proach is chosen that is customized for use with the Intel L515.
In this thesis the problems plaguing the LiDAR are researched and graph based sensor fusion
with an IMU is proposed as a solution.

The following main research question is chosen to verify the research:

What is the added benefit of adding an IMU to localization of the Intel L515
when performing LiDAR SLAM?

This question is divided into three sub questions:´

1. How will the IMU affect localization drift?

2. What is the benefit of the IMU when ambient light is present?

3. To what extent can the IMU be used to reduce the effect of degenerate LiDAR sce-
nario’s?

Master of Science Thesis AF Vonk

12 Introduction

1-4 Outline of the Thesis

This chapter covered the most relevant topics and challenges for using the Intel L515 for
LiDAR SLAM. Chapter 2 of this thesis focuses on the LiDAR localization pipeline in detail.
Chapter 3 describins the main findings of this thesis on the applicabilaty of the Intel L515 for
doing LiDAR inertial SLAM in the form of a manuscript. Chapter 4 concludes the findings
and provides an outlook on follow up research on this topic.

AF Vonk Master of Science Thesis

Chapter 2

Background Theory

This chapter introduces the background theory that is necessary for doing graph based lidar
inertial localization. First the motion model of the sensor is derived when the sensor is moving
through the world, along with the state description of the sensor (Sec. 2-1).
Then the factor graph model of our state estimation problem is introduced Sec 2-2. The factor
graph model is a visualization of the overall optimization problem of finding the locations of
the sensor at different points in time.
To find the most likely set of states of the sensor, the factor graph problem needs to be defined
in terms of input measurements from the Light Detection and Ranging (LiDAR) and Inertial
Measurement Unit (IMU). The problem formulation for the IMU is described in Sec. 2-3,
followed by the problem formulation for the LiDAR in Sec. 2-4.
The final step for finding the locations of the sensor at different points in time and therefore
solving the localization problem comes after the cost function for the graph based optimization
is created with the measurement models. When the cost function is created, it needs to be
minimized to obtain the optimal set of states that match the measurements. This needs to
be done in a computationally efficient way, which is described in Sec. 2-5.

2-1 Motion Model

An object moving through three dimensional space has got six degrees of freedom. The
position of the object has three degrees of freedom. The orientation of the object has also got
three degrees of freedom. The combination of a position and orientation is called a pose. The
pose of an object can be described by fixing a coordinate frame to the object and relating it
to another coordinate frame.
In the case of a sensor moving through an unknown environment, the pose can by described
by fixing the body coordinate frame B to a point on the sensor and then relating it to the
world coordinate frame W that is fixed in the environment.
At least six coordinates are needed to describe this relation: three for the position and three
for the orientation.

Master of Science Thesis AF Vonk

14 Background Theory

One of the ways to describe the pose of B in W is by using the Euclidean distance between
the centers of B and W to describe the position, combined with Euler angles to define the
rotation. In that case, the position of the sensor is described by the Cartesian coordinates
x, y, z ∈ R3 while the orientation is described by the angles α, β, γ ∈ SO(3). Here SO(3) is
the 3D rotation group.
Mapping any point from B toW can be done by doing a translation t and applying a rotation
R (2-1).

Wp =

cos γ cosβ − sin γ cosα+ cos γ sin β sinα sin γ sinα+ cos γ sin β cosα
sin γ cosβ cos γ cosα+ sin γ sin β sinα − cos γ sinα+ sin γ sin β cosα
− sin β cosβ sinα cosβ cosα


︸ ︷︷ ︸

WRB

Bp+W tB

(2-1)
Here Wp is a vector containing the coordinates of a point in the world, WRB is the rotation
matrix that maps the body frame to the world frame. W tB is the translation vector containing
the x, y, z coordinates of the center of B expressed in the W -frame. α, β, γ are the rotations
of the axis following Euler rotations. The R matrix can also be defined differently by using
other representations like for example quaternions, or Tait-Bryan angles. As long as the R
matrix that follows from the representation doesn’t violate the rules of the SO(3) group, it’s
a valid representation of the orientation.

2-1-1 Homogeneous Transformation

To speed up the transformation of a point between coordinates frames, one can use ho-
mogenous coordinates. The homogeneous coordinates of a point (Xc, Yc, Zc) in Cartesian
coordinates can be obtained by adding a 1 as a fourth coordinate (i.e. (Xc, Yc, Zc, 1)).
By using homogeneous coordinates, the transformation of a point from one coordinate frame
to another can be done with a single multiplication (2-2) instead of a multiplication and
addition as is the case in Eq. 2-1.

[
Wp
1

]
=
[
WRB

W tB
0 1

]
︸ ︷︷ ︸

WHB

[
Bp
1

]
(2-2)

Here WHB is the homogenous transformation matrix.

2-1-2 State of the Sensor

The localization problem of the sensor can be phrased as a state estimation problem. In the
case of the Intel® RealSense™ LiDAR Camera L515 (Intel L515) sensor, the state at time i
is a combination of the orientation WRTB(i) , position WpT (i), linear velocity WvT (i), the
accelerometer bias (BbTa (i)) and gyroscope bias BbTg (i) (2-3).

x(i) = [WRTB(i),W pT (i),W vT (i),B bTa (i),B bTg (i)] (2-3)

AF Vonk Master of Science Thesis

2-2 Graph Based Optimization 15

2-2 Graph Based Optimization

To obtain the states of the sensor at different points in time a graph based optimization needs
to be done. The optimization problem can be visualized as a factor graph (Fig. 2-1). The
factor graph provides an intuitive way of understanding the optimization problem at hand.

Figure 2-1: Visualization of the factor graph of the graph based optimization performed in this
thesis.

The variables of the optimization are the nodes of the graph. These nodes are visualized by
the circles in Fig. 2-1.
The nodes are constrained by their relations to other nodes in the graph. These relations are
the factors of the graph and are visualized by arrows in Fig. 2-1.
In the factor graph model of the optimization done in this thesis only sequential factors are
present i.e. factors that relate sequential nodes. It is also possible to create loop closures in
the model by creating non-sequential factors, but this is deemed out of scope for answering
the research questions.
The sequential factors in our model consist of preintegrated IMU measurements, LiDAR pose
measurements and bias evolution changes.
For each of the factors a reprojection error is defined (Fig. 2-2). The reprojection error is
defined as the difference between the current estimate of a node of the graph and the estimated
location by the factors.

(a) Initialize estimate (b) Define reprojection error (c) Minimize reprojection error

Figure 2-2: The three step process to solve a factor graph with 2 nodes.

After the reprojection error is defined for all the factors in the graph, they can be combined
to create a cost function. This cost function can be solved by a graph based optimization

Master of Science Thesis AF Vonk

16 Background Theory

algorithm to find the optimal configuration of the nodes. The cost function used in this thesis
consists of the reprojection errors of all the factors (2-4) [5].

X∗1:n → argmin
x
‖r0(x)‖2Σ0 +

n∑
x=0

(
‖rL(x)‖2ΣL

+ ‖rI(x)‖2ΣI
+ ‖rb(x)‖2Σb

)
(2-4)

Here r0(x) is the initial pose estimate error, rL(x) is the LiDAR estimate reprojection error,
rI(x) is the IMU preintegration reprojection error, and rb(x) is the bias reprojection error.
Each of these reprojection errors is weighted by their respective covariance Σ as formulated
in Formula 2-5.

‖rx(i)‖2Σx
= rx(i)TΣxri(x) (2-5)

The IMU preintegration reprojection error is explained in Sec. 2-3. The lidar movement
estimation reprojection error is explained in Sec. 2-4. The bias evolution reprojection error
is explained in Sec. 2-3-3.
The graph based optimization algorithm used for the sensor fusion in this thesis is then explain
in Sec. 2-5.

2-3 IMU preintegration

The IMU factors are constructed by using IMU preintegration [5]. IMU preintegration allows
combining a large amount of IMU measurements into a single measurement: a preintegrated
IMU measurement.
This is desirable because IMU measurements have a much faster update frequency than lidar
measurements. By updating the factor graph only at new lidar estimates and using Preinte-
grated IMU measurements to summarize all the measurements between two lidar estimates,
the graph becomes smaller than when updating the graph for every IMU measurement. The
smaller graph allows for real time localization.
Preintegrated IMU measurements also have an advantage over normally integrating the IMU
measurements between two lidar estimates. A Preintegrated IMU measurement between two
lidar estimates is namely described in such a way that it avoids having to iterate through
every single IMU measurement again when the values of the nodes change. In the case of
normally integrating the IMU measurements this is not the case.

2-3-1 Summarizing the IMU measurments

In this section the process of creating an IMU preintegration factor is derived, starting with
the IMU measurement model (2-6, 2-7) [5].

Bωm =B ωr + bg +B λω (2-6)
Bam =B ar + ba +W g +B λa (2-7)

AF Vonk Master of Science Thesis

2-3 IMU preintegration 17

Here ωr and ar are the real angular velocity and linear acceleration. They consist of respec-
tively the measurements ωm and am, the biases of the sensor ba,bg and additional gaussian
noise λω, λa.
In this section it is assumed that the bias of the sensors is preset at a certain value, and does
not change over time. In Sec. 2-3-2 the model is updated to incorporate bias changes. The
preset bias for the accelerometer and gyroscope at time i are written with b̄a(i) and b̄g(i)
respectively. ωr and ar can be integrated (twice in the case of ar) to obtain the orientation
and position of the sensor at the next measurement (2-8-2-10)[5].

WRB(i+ 1) =W RB(i)Exp(Bωr(i)∆t) (2-8)
Wv(i+ 1) =W v(i) +W ar(i)∆t (2-9)
Wp(i+ 1) =W p(i) +W v(i)∆t+ 1

2
War(i)∆t2 (2-10)

Here ∆t is the time difference between the two IMU measurements.
By substituting (2-6, 2-7) into (2-8 - 2-10), and transforming War(i) to the B frame, the
equation relating the measurements to state updates is obtained (2-11-2-13).

WRB(i+ 1) = WRB(i)Exp((ωm(i)− b̄g(i)− λω(i))∆t) (2-11)
v(i+ 1) = v(i) + g∆t

+R(i)(Bam(i)− b̄a(i)− λa(i))∆t
(2-12)

p(i+ 1) = p(i) + v(i) + 1
2g ∆t2

+ 1
2
WRB(i)(Bam(i)− b̄a(i)− λa(i))∆t2

(2-13)

Now that the update equation between two consecutive IMU measurements is created, a
formulation needs to be derived that describes the state update between two arbitrary time
points.
The relative movements ∆vij ,∆pij ,∆Rij (2-14 - 2-16) can be found by iterating (2-11-2-13),
and compensating for the initial state.

∆pij = RTi

(
pj − pi − vi∆tij −

1
2g∆t2ij

)
=

j−1∑
k=i

(3
2∆Rik

(
am(k)− b̄a(k)− λa(k)

)
∆t2

) (2-14)

∆vij = RTi
(
vj − vi − g∆tij

)
=

j−1∑
k=i

∆Rik
(
am(k)− b̄a(k)− λa(k)

)
∆t

(2-15)

∆Rij = RTi Rj

=
j−1∏
k=i

Exp
((
ωm(k)− b̄g(k)− λω(k)

)
∆t
) (2-16)

Master of Science Thesis AF Vonk

18 Background Theory

With ∆vij ,∆pij ,∆Rij the difference of the state values between the state at timestamp i
and any arbitrary future state j.

The equations on the top lines of (2-14-2-16) are dependant on the nodes of the factor graph.
The equation on the bottom lines of (2-14-2-16) only depend on the measurements, and are
therefore independent of the states in the graph. This is critical, because this means that the
bottom parts only have to be computed once, when doing graph based optimization.
The residuals errors are defined as the difference between the two lines of each equation (2-17
- 2-19).

r∆pij
= RTi

(
pj − pi − vi∆tij −

1
2g∆t2ij

)
−∆pij − δpij(b)

(2-17)

r∆vij
= RTi

(
vj − vi − g∆tij

)
−∆vij + δvij(b)

(2-18)

r∆Rij
= Log

((
∆RijExp(δRij(b))

)T
RTi Rj

)
(2-19)

rI(x) =
[
r∆pij

r∆Rij
r∆vij

0
]T

(2-20)

Where r∆pij
, r∆vij

, r∆Rij
is the position, velocity and orientation reprojection error for IMU

preintegration. The IMU preintegration reprojection error (2-20) can now be formed, which
is inserted in the graph based cost function for all sensors (2-4).

2-3-2 Bias model updating

In section 2-3-1 the bias was assumed to be constant. Because the bias is also part of the
state (2-3), the model needs to be extended to incorporate bias changes. In [5] a model for
adding a perturbation to the bias is derived. This model leads to the reprojection errors that
are needed in the factor graph model (2-21, 2-22, 2-23)[5].

r∆pij
= RTi

(
pj − pi − vi∆tij −

1
2g∆t2ij

)
− [∆pij(b̄a(i), b̄g(i)) + ∂∆p̄ij

∂bg δbg + ∂∆p̄ij
∂ba δba]

(2-21)

r∆vij
= RTi

(
vj − vi − g∆tij

)
− [∆vij(b̄a(i), b̄g(i)) + ∂∆v̄ij

∂bg δbg + ∂∆v̄ij
∂ba δba]

(2-22)

r∆Rij
= Log

((
∆Rij(b̄g(i)) Exp(∂∆R̄ij

∂bg δbg)
)T
RTi Rj

)
(2-23)

Here the Jacobians { ∂∆p̄ij

∂bg ,
∂∆v̄ij

∂bg ,
∂∆R̄ij

∂bg } are calculated when the factor is created, avoiding
recalculation as the bias changes. The δbg and δba are defined as the differences between the
bias according to the state estimation and the bias at the linearization point (2-24, 2-25).

δbg = bg − b̄g (2-24)
δba = ba − b̄a (2-25)

AF Vonk Master of Science Thesis

2-4 Lidar Odometry and Mapping 19

2-3-3 Bias Factor

The bias is assumed to change like a Brownian motion between two state updates (2-26 -
2-27) [5].

ba(i+ 1) = ba(i) + ηa(i) (2-26)
bg(i+ 1) = bg(i) + ηg(i) (2-27)

With ηg = ∆ti,i+1Cov(ηgd) and ηa = ∆ti,i+1Cov(ηad). ηad, ηgd are properties of the IMU, and
are defined as a zero mean random process with covariance equal to ηgd, ηad.
The bias change is zero mean Gaussian. The reprojection error for this model is simply
the difference between two subsequent bias values, weighted by their respective covariance
matrices (2-28)[5].

‖rb(i)‖2Σb = ‖bg(j)− bg(i)‖2ηg
+ ‖ba(j)− ba(i)‖2ηg

(2-28)

This bias reprojection error rb(i) is then added to the cost function for all sensors (2-4).

2-4 Lidar Odometry and Mapping

The method used in this thesis for obtaining the lidar movement is Solid State Lidar Simulta-
neous Localization and Mapping (SSL-SLAM) [20]. SSL-SLAM is based on LiDAR Odometry
And Mapping (LOAM) [22], but modified for use with the Intel L515 instead of a mechanical
LiDAR. SSL-SLAM, like LOAM is a feature based LiDAR Simultaneous Localization And
Mapping (SLAM) algorithm. Feature based LiDAR SLAM algorithms provide better per-
formance and computational speed than point based methods that match points directly [9].
This allows for real time localization.
SSL-SLAM, like LOAM, uses a two step process to estimate motion out of the LiDAR point
cloud scan.
First edge and plane feature points are extracted from the unordered pointcloud (Sec. 2-4-1).
Then, the relative transformation of the sensor is found iteratively by matching these points
to previously observed planes and edges and minimizing a cost function based on the distance
of the observed feature points to their matched counterparts (Sec. 2-4-2).
This relative motion estimate is then used to define the lidar factor in the factor graph (Sec.
2-4-3).

2-4-1 Lidar Edge/Plane Detection

Edge and plane point detection is the first step for obtaining usable features out of the
unordered pointclouds. Because the Intel L515 scans a plane instead of a line like a mechanical
lidar, the edge/plane detection metric of LOAM [22] cannot be used. The edge/plane metric
of SSL-SLAM [20] is based on scanning a plane, and is therefore used.
In this section the edge/plane detection of SSL-SLAM [20] is explained.
Let Pk be the set of LiDAR points that is obtained from the LiDAR at time k. To obtain the

Master of Science Thesis AF Vonk

20 Background Theory

feature points, Pk is first segmented into smaller blocks. Let pi,jk be a point in Pk with x, y, z
coordinates expressed in the body frame of the sensor. The vertical angle αi,j and horizontal
angle θi,j between the point and the optical axis of the lidar is then defined (2-29, 2-30) [20].

αi,j = arctan
(yi,j
xi,j

)
(2-29)

θi,j = arctan
(zi,j
xi,j

)
(2-30)

The points in Pk are segmented based on their αi,j and θi,j into M × N blocks. The seg-
mentation is done by splitting the interval between the lowest vertical angle αmin and the
highest vertical angle αmax into M parts that each cover an angle range of αres = αmax−αmin

M .
Let m be the vertical cell number of one of the blocks, then all the points for which m = 1
lie in interval [αmin, αmin + αres], and the points for which m = 4 for example lie in interval
[αmin + 3αres, αmin + 4αres].
The horizontal interval is similarly split into N parts between the lowest horizontal angle
θmin and the highest horizontal angle θmax. Each of these N parts cover an angle range of
θmax−θmin

N .
Let n be the horizontal cell number of each block, then each point p(i,j)

k can be assigned to a
block m,n based on αi,j , θi,j .
After all points pi,jk ∈ Pk are added to their respective (m,n), the geometric center of each
cell p(m,n)

k . This geometric center is then used to create the smoothness metric σm,nk (2-31)[20]
for each (m,n).

σm,nk = 1
λ2 ·

∑
p(i,j)

k
∈S(m,n)

k

(||p(i,j)
k ||22 − ||p

(m,n)
k ||22) (2-31)

with
S(m,n)
k = { pi,jk | i ∈ [m− λ,m+ λ], j ∈ [n− λ, n+ λ]} (2-32)

Here λ is a pre defined searching radius.

In the case that the points in a cell (m,n) lie on a plane, the values of the points p(i,j)
k ∈ S(m,n)

k

are distributed approximately equal around p(m,n)
k . A low value for the sum in (2-31) is then

achieved because the points farther away from p(m,n)
k in (2-31) counterbalance each other due

to the symmetry of the plane. This causes a low σm,nk .
If σm,nk lies below a threshold, then the corresponding p(m,n)

k is marked as a plane point.
If an edge is present in a cell (m,n), a high σm,nk is achieved. In that case the value for the
sum of (2-31) is maximized because of the edge geometry.
If σm,nk is larger than a threshold, the corresponding p(m,n)

k is marked as an edge point.
The result of filtering out the plane and edge points of an unordered point cloud is shown in
Fig. 2-3.

AF Vonk Master of Science Thesis

2-4 Lidar Odometry and Mapping 21

(a) Camera Input

(b) Filtered pointcloud (camera viewpoint) (c) Filtered pointcloud (another viewpoint)

Figure 2-3: Example of filtering a point cloud obtained with the Intel L515 with edge/plane
detection. (a) The visual input of the scene. (b,c) The filtered edge (blue) and plane (yellow)
points of the scene from two different viewing angles.

2-4-2 Lidar Movement Estimation

SSL-SLAM finds the relative lidar movement by creating a cost function based on the distance
between the observed feature points and previously observed features. The distance between
the observed feature points and previously observed features is then minimized to find the
optimal pose.
The first step of this process is transforming the observed feature points to the same coordinate
frame as the previously observed features. The previously observed features are stored in the
world coordinate frame. The features in a new scan k are projected to this coordinate frame
as a function of the lidar pose (2-33).

pi,jk,W = Tk pi,jk (2-33)

With Tk the homogenous transformation matrix that translates pi,jk from the lidar frame to
the world frame based on lidar pose.

The feature point locations are initialized by projecting the previous lidar movement into the
future (2-34) to obtain an initial estimate for pi,jk,W .

Tk,init = Tk−1
(
T−1
k−2Tk−1

)
(2-34)

Here Tk−1 and Tk−2 are the homogeneous transformation matrices of the previous two poses.
With this initial pose estimate the feature points are projected to the world frame using (2-
33).

Master of Science Thesis AF Vonk

22 Background Theory

For each of the projected feature points in the world frame, the closest corresponding feature
points from previous scans are found.
In the case of edge points, the two closest edge points p1,p2 in the local map are found.
For each of the feature points, these close corresponding matches are used to conjure a cost
function for the optimization.
In the case of edge points the two closest edge points in the local map are used to construct a
line. The distance of the newly observed edge point to this line is then defined as a function
of the pose of the sensor to build the error metric (2-35).

fE(p̂k) = |(p̂k − p2)× (p̂k − p1)|
|(p2 − p1)| (2-35)

With p̂k = Tk pi,jk .

In the case of a plane point, the three closest plane points in the local map are used to
define a plane. The distance of the newly observed plane point to this plane is then defined
as a function of the pose of the sensor to build the error metric for the plane point (2-36.

fP(p̂k) = |(p̂k − p1)T · (p1 − p2)× (p1 − p3)
|(p1 − p2)× (p1 − p3)| | (2-36)

With p̂k = Tk pi,jk .

The lidar pose T̂k is found by stacking (2-35) and (2-36) for every observed edge and plane
feature and minimizing the cost (2-37) [20].

T̂k → arg min
Tk

∑
fE(p̂k) + fP(p̂k) (2-37)

This process is done iteratively. At every iteration after the first, the newly found T̂k is used
to project the feature points at k to the world frame. This can cause changes in the feature
point matches in the local map that are closest to the feature points in k, resulting in updates
of the cost function.

2-4-3 Defining the Lidar Factor

The relative movement estimations of SSL-SLAM are prone to outliers. The outliers are
caused by degenerate scenarios, either due to the small Field of View (FOV) of the sensor or
because of ambient light limiting the range of the sensor.
To counter the effects of outliers, the relative movement estimates of the ssl slam algorithm
are compared to the motion predictions of the IMU. If the LiDAR predictions lie within a
threshold of the Imu prediction, the lidar prediction is classified as an inlier and given a low
uncertainty in the cost function (2-4). In the case the LiDAR estimate exceeds the threshold,
it is classified as an outlier and given a high uncertainty value in the cost function (2-4).
The LiDAR factor is defined as the difference between the relative lidar pose estimate (2-37)
and the pose change between the related nodes. The noise for the lidar factor is assumed to
be Gaussian.

AF Vonk Master of Science Thesis

2-5 Incremental Smoothing and Mapping 23

2-5 Incremental Smoothing and Mapping

The ISAM2 [11] algorithm is used to solve the factor graph. ISAM2 [11] is used over solvers
like Gauss Newton or Levenberg Marquardt due to speed.
The impact of adding a new state to the factor graph as a new LiDAR or IMU preintegration
measurement is obtained, is local i.e. only recent states are affected.
ISAM2 introduces a new data data structure called the Bayes tree. The Bayes tree encodes
the probability density functions of the states in the factor graph.
ISAM2 leverages the local effect of new measurements, and only updates variables of the state
that are affected by a new measurement. Real time performance is achieved by performing
only these partial state updates as new measurements are added instead of solving the full
optimization problem.

Master of Science Thesis AF Vonk

24 Background Theory

AF Vonk Master of Science Thesis

Chapter 3

Manuscript

This chapter presents the main findings of the research as an unpublished manuscript.

Master of Science Thesis AF Vonk

Graph Based Lidar Inertial Sensor Fusion for Localization with a Low
Range Solid State LiDAR

Arjan Vonk
Delft University Of Technology,
2628 CD Delft, The Netherlands

Abstract— Using Mechanical Light Detection And Ranging
(LiDAR) to map an environment is currently the most accurate
and well deserved go-to method.
Recently a new branch of LiDARs: Solid State LiDAR’s have
entered the market. Solid State LiDARs are interesting to use
for robotics and real time indoor localization and mapping
purposes because of their cheap cost and small size.
In this paper a graph based localization algorithm is proposed
to improve the positioning accuracy of a short range solid state
LiDAR: The Intel L515. The proposed algorithm fuses location
estimates of an Inertial Measurement Unit (IMU) with location
estimates by LiDAR scans to improve the localization accuracy.
Outlier detection is performed with the IMU to minimize the
effect of faulty LiDAR estimates caused by the short range of
the LiDAR. The optimization is solved incrementally and runs
in real time. The algorithm improves the localization robustness
and accuracy compared to the current state of the art for the
Intel L515. The addition of the IMU especially reduces altitude
drift in Z-direction.

I. INTRODUCTION

Getting a reliable 3-dimensional overview of an emergency
situation in real time can be critical for firefighters or police
officers on duty [22]. Be it manually or through the use of
robots, a 3-dimensional overview of an emergency situation
allows better decision making and provides more feedback
in situations where a mistake can cost lives [22].
These emergency situations are often indoors, where GNSS
is unavailable. To not interfere with the operations it’s also
required that tools are small and attachable [23].
The process of positioning yourself and mapping an un-
known environment with moving sensors is called Simul-
taneous Localization and Mapping (SLAM).
SLAM has been a widely researched topic since it’s inception
[30]. The SLAM problem can be summarized as a probabilis-
tic minimization problem (1) [32]:
What is the most likely set of states x1:t and environment
map m, given our inputs u1:t and observations z1:t? .

p(x1:t, m | z1:t,u1:t) (1)

In SLAM, the sensors used to obtain the observations
of the state can be pre-placed (Bluetooth dongles, security
cameras or Wifi) or mobile (Inertial Measurement Units
(IMU), cameras, or Light Detection and Ranging (LiDAR)
units that are moving through the environment) [23].
The research in this paper focusses on using an IMU and

This work was supported by CGI The Netherlands

LiDAR to estimate the state in Equation 1 with a recently
introduced short range solid state LiDAR: The Intel L515.
The Intel L515 is different from conventional mechanical
LiDARs because it uses a Micro Electro Mechanical Systems
(MEMS)-mirror to scan the field of view instead of a motor.
Using MEMS has got the advantage of faster scanning in a
small device, at the cost of decreased laser intensity and Field
of View (FoV). The price of the Intel L515 is comparable
to the price of a camera, and about 10 times lower than a
mechanical LiDAR. This low cost makes the cost comparable
to the cost of visual SLAM, it’s main competitor, and also
attractive for low budget scanning.
Visual SLAM uses a camera to obtain images and then
tracks the motion of pixels directly or of observed features
in the camera image to retrieve the motion of the camera
[15]. Visual SLAM excels at place recognition compared
to LiDAR SLAM due to the contrasting textures present in
images, that are not present in LiDAR scans.
Visual SLAM algorithms however suffer in low light con-
ditions [19], can suffer from motion blur, and require other
sensors or at least two cameras to determine scale. The map
created by visual SLAM algorithms is generally sparse and
requires triangulation to obtain, because a camera doesn’t
measure the distance to the features it observes directly.
To create a detailed map, LiDAR is often preferred. The
time of flight (ToF) laser sensor of a LiDAR has got higher
accuracy, and a larger field of view (FoV) than a camera.
LiDAR based methods are known for being largely invariant
to illumination change [10]. This however, is not the case
for the Intel L515. Even on a cloudy day, if ambient
sunlight comes in through a window, the maximum range
of the intel L515 drops to about 2-3 meters instead of the
described 9 meter range in the product datasheet (Fig. 1) [28].
Currently there is only one algorithm that performs LiDAR-
SLAM with the Intel L515: Solid State LiDAR-SLAM (SSL-
SLAM) [2]. SSL-SLAM [2] only uses the LiDAR in its state
estimation. The small FoV of the Intel L515, combined with
the decreased range from ambient light causes tracking errors
with SSL-SLAM [2]. These tracking errors are especially
prevalent when doing indoor localization when ambient light
is present, or when the scene doesn’t contain enough features
for localization for a short amount of time.
In this paper the prospects of adding an IMU into the
localization process of SSL-SLAM [2] is researched. The
goal is to improve the state estimation robustness and posi-

(a) LiDAR depth stream (night) (b) LiDAR depth stream (day)

Fig. 1: The input of the L515 LiDAR when looking at an area
with windows on the right side. The Intel L515 performance
drops significantly when ambient (sun)light is present. At
night 54 % of pixels contain depth information (a), during
the day only 19 % of pixels contain depth information (b).
Pixels for which there is no depth information are dark blue.

tioning accuracy. The main contributions of this paper can
be summarized as follows:
• A tightly-coupled LiDAR inertial graph based fusion

algorithm for the Intel L515 MEMS based solid state
LiDAR.

• Incorporating outlier detection for faulty LiDAR mea-
surements on top of SSL-SLAM [2] to improve posi-
tioning robustness.

• The algorithm is benchmarked in various ambient light
settings, movement conditions and with different feature
availability.

II. RELATED WORK

Early LiDAR based localization methods like the Iterative
Closest Points (ICP) algorithm focus on directly matching
point cloud points to obtain the position [6]. ICP is not
suitable for real time LiDAR localization due to rapidly
increasing complexity when the number of points increases
[33]. It’s also prone to end up in local minima, and therefore
needs good initialization [33].
To limit the computational complexity, feature based
methods have been proposed. One such method is LiDAR
Odometry and Mapping (LOAM) [1]. LOAM first extracts
edge and plane features from the LiDAR scan. LOAM
then minimizes the point-to-line / point-to-plane distance of
these points to corresponding features to retrieve the relative
motion in real time.
LOAM can also be used with an IMU. In LOAM, the IMU
is used only for initialization of the optimization, making
the IMU loosely coupled.
Since the conception of LOAM more LiDAR feature
based localization and mapping algorithms have been
developed that perform the same edge and plane detection
steps, together with point-to-line / point-to-plane distance
minimization.
LEGO-LOAM [18] for example utilizes LOAM but first
filters out the ground plane to estimate height, roll and pitch
before estimating the rest of the state.
A current state of the art method that combines LiDAR

state estimation with IMU measurements is the Lidar
Inertial Odometry via Smoothing and Mapping (LIO-SAM)
algorithm [10]. LIO-SAM [10] is a tightly coupled method
that utilizes a graph based model to couple the IMU and
LiDAR measurements, as well as GPS measurements.
Tight coupling of the IMU generally improves localization
accuracy [10]. The graph based structure of LIO-SAM also
allows for integration of other sensors. LVI-SAM [?] is an
extension of LIO-SAM that also incorporates a camera into
the state estimation that performs visual odometry.
The structure of graph based methods allows for loop
closures, which are relations between non sequential states.
The graph based structure also makes it easier to incorporate
sensors that have different update frequencies with each
other.
For MEMS based Solid State LiDARs there exist few
algorithms, because of their recent introduction. One Solid
State LiDAR algorithm that achieves solid performance is
LOAM Livox [7]. LOAM Livox utilizes a solid state Livox
LiDAR, that has an angular field of view that is comparable
to the Intel L515. The range of the Livox LiDAR however
is 260 meters in perfect conditions, which is 25 times higher
than the range of the Intel L515.
SSL-SLAM [2] is currently the only LOAM-based algorithm
that has been developed on the Intel L515. It has got a
modified edge/plane detection metric to compensate for the
Intel specifications compared to ordinary LOAM. It is only
tested in a warehouse environment without any ambient
light, and fails in cases where not enough features are
available for scanning because ambient light is present or
features are too far from the LiDAR (Section IV).
RTAB map [31] can also be implemented on the Intel L515.
RTAB map is a visual method that employs a graph based
structure to do loop closures. RTAB map only uses the
LiDAR to determine the distance to points observed by the
visual algorithm, therefore it’s not a full LiDAR SLAM
algorithm.

III. METHODOLOGY

An optimization based approach is used to fuse the mea-
surements of the IMU and LiDAR. First the system model
and the cost function of the optimization are introduced III-
A. Then the individual building blocks of the cost functions
are elaborated in III-B - III-D. To conclude the methodology,
the optimization is solved III-E.

A. System Overview

The state of the sensor consists of the pose of the sensor
together with the IMU bias (2).

x(i) = [WRT
B(i),W pT (i),W vT (i),B bT

a (i),B bT
g (i)] (2)

The IMU frame coincides with the body frame B. B moves
relative to the world frame W . WRB ∈ SO(3) represents
the rotation matrix that maps B to W . Wp represents the
position of B in W . Wv ∈ R3 represents the linear velocity

Fig. 2: System model relating the inputs from the IMU and LiDAR to the graph based estimation module

of B in W . Bba and Bbg represent the bias of the measure-
ments of the accelerometer and gyroscope respectively.
At every new LiDAR pose update i, a state update happens
and a new state xi is added to the optimization. The evolution
of the state is visualized as a factor graph in Figure 3.
The cost function for the pose optimization consists of the
residual errors of the factors in Figure 3 (3).

X∗1:n → argmin
x
‖r0(x)‖2Σ0

+
n∑

x=0

(
‖rL(x)‖2ΣL

+

‖rI(x)‖2ΣI
+ ‖rb(x)‖2Σb

) (3)

With:
‖rx‖2Σx

= rTx Σxrx (4)

Here r0, rL, rI , rb are the reprojection errors of the initial
pose, LiDAR poses, IMU preintegration measurements, and
the bias evaluation. The weights (Σ) given to the errors were
determined empirically by a series of experiments (Section
IV). The full estimation is done by minimizing the weighted
sum (3) [25]. The state is estimated incrementally at every
LiDAR update by updating and solving the cost function
using incremental smoothing and mapping with the Bayes
tree (iSAM2) [20].

B. LiDAR factor Generation
SSL-SLAM [2] is used for generating the LiDAR factors.

The algorithm extracts feature points (planes/ edges)(III-
B.1), and matches these to earlier found feature points that
are stored in a local map. These correspondences are used

to build up a cost function that is dependant on the relative
movement. This cost function is minimized to estimate the
relative movement (III-B.2).
The relative movement estimate is used to generate the factor
for the sensor fusion (III-B.3).

1) Feature Extraction: Let the point cloud of a new
frame k be written as Pk. The point cloud is split into
M × N cells based on the horizontal and vertical angle of
the observed points. Here M is half of the total number of
observed points in vertical direction. N is half of the total
number of observed points in horizontal direction.
For every cell created by this procedure the local smoothness
is calculated with (5). The local smoothness is high for
edge features, while it is low for plane features[2].

σm,n
k =

1

λ2
·

∑

p(i,j)
k ∈S(m,n)

k

(||p(i,j)
k ||22 − ||p(m,n)

k ||22) (5)

Here (m,n) are the cell numbers of the cells in Pk. p
(m,n)
k is

the geometry center of all points within the cell. The smooth-
ness metric is formed by taking the difference between this
geometry center and individual points in the cell as well as
cells within a search radius λ.
The cells with the highest σ

(m,n)
k are selected as edge

features. The cells with the lowest σ(m,n)
k are selected as

plane features.
2) Relative Movement: To find the relative movement

between scan k and k−1, the feature points found in Sec. III-

Fig. 3: The factor graph model of our method. The states x0:xn are the unknowns to be optimized. The edges of the graph
(the factors) are generated by preintegrated IMU measurements, LiDAR scans, the bias model and an initial pose.

B.1 are compared to a local map Mk generated by previous
scans. The local map Mk = {Pk−1,Pk−2, ...,Pk−q} is
defined by the previous q scans.
The edge and feature points found in k are transformed
to the local map by applying homogenous transformation
Tk ∈ SE(3) to find corresponding edge and feature points
in previous scans. Now that the feature point from k is
transformed to the local map, the closest corresponding
feature point for each feature point is found. The local map
is build with a K-D tree to improve search efficiency. When
two matches are found for edge features, or three matches
for plane features, they can be used to define the error metric
that is used to find the relative LiDAR transformation.
The edge points use the point to line distance error metric
to define the error. For every edge point pk and it’s corre-
spondences p1,p2 the error is defined as [2]:

fE(p̂k) =
|(p̂k − p2)× (p̂k − p1)|

|(p2 − p1)| (6)

The plane points use the point to plane distance error
metric to define the error. For every plane point pk and its
correspondences p1,p2,p3 the following error metric is used
[2]:

fP(p̂k) = |(p̂k − p1)T · (p1 − p2)× (p1 − p3)

|(p1 − p2)× (p1 − p3)| | (7)

The current position T̄k is found by stacking Equation 6 and
7 for every observed edge and plane feature and minimizing
the cost (8) [2].

T̄k → arg min
Tk

∑
fE(p̂k) + fP(p̂k) (8)

3) Factor Generation: The reprojection error rL(x) is
defined as the difference between the estimated relative
transformation Tk−Tk−1 of the graph based algorithm and

the measured relative transformation T̄k −Tk−1.

rL(k) = T̄k −Tk−1 (9)

The weight of the reprojection error for the LiDAR estimate
is assessed by verifying whether the current measurement is
an outlier. In the case that the difference between the IMU
estimate and the LiDAR estimate exceeds a threshold, the
LiDAR pose estimate is considered an outlier, and given a
low weight. In the case that the LiDAR pose doesn’t exceed
the threshold, a high weight is passed.
The measurement uncertainty values passed to the algorithm
for the LiDAR estimates have been determined empirically
by minimizing the end-to-end trajectory error on the double
staircase dataset (Fig. 6).

C. Preintegrated Inertial Factor generation
The measurements of the IMU are converted to prein-

tegrated IMU measurements [25]. Preintegrated IMU mea-
surements summarize multiple IMU measurements between
two subsequent state updates into one single measurement
[25]. This is done instead of updating the graph for every
measurement, since the IMU update frequency (200 Hz)
would make the graph unnecessarily large.
The gyroscope and the accelerometer measurements of the
IMU are modelled as a perfect measurement with additional
bias and Gaussian noise (10, 11).

Bωm =B ωr + bg +B λω (10)
Bam =B ar + ba +W g +B λa (11)

Here ωr and ar are the real angular velocity and linear
acceleration. They consist of respectively the measurements
ωm and am, the biases of the sensor ba,bg and addi-
tional gaussian noise λω, λa. For the construction of the
preintegrated IMU factor the bias is assumed to be known
beforehand and constant between two LiDAR pose updates.

Changes in bias are later implemented in Eq. 21-23.
ωr and ar can be integrated (twice in the case of ar) to
obtain the orientation and position of the sensor at the next
timestep (12-14)[25].

WRB(i+ 1) =W RB(i)Exp(Bωr(i)∆t) (12)
W v(i+ 1) =W v(i) +W ar(i)∆t (13)

W p(i+ 1) =W p(i) +W v(i)∆t+
1

2
W ar(i)∆t2 (14)

Here ∆t is the time difference between two LiDAR scans.
By substituting (10, 11) into (12-14), and transforming
War(i) to the B frame, the equation relating the measure-
ments to state updates is obtained (15-17).

WRB(i+ 1) = WRB(i)Exp((ωm(i)− bg(i)− λω(i))∆t)

(15)
v(i+ 1) = v(i) + g∆t

+R(i)(Bam(i)− ba(i)− λa(i))∆t
(16)

p(i+ 1) = p(i) + v(i) +
1

2
g ∆t2

+
1

2
WRB(i)(Bam(i)− ba(i)− λa(i))∆t2

(17)

By iterating (15-17), and then compensating for the ini-
tial state (18-20) we finally get the relative movements
∆vij ,∆pij ,∆Rij , that describe the motion between the
state at timestamp i and any arbitrary future state j.

∆pij = RT
i

(
pj − pi − vi∆tij −

1

2
g∆t2ij

)

=

j−1∑

k=i

(3

2
∆Rik

(
am(k)− ba(k)− λa(k)

)
∆t2

)

(18)

∆vij = RT
i

(
vj − vi − g∆tij

)

=

j−1∑

k=i

∆Rik

(
am(k)− ba(k)− λa(k)

)
∆t

(19)

∆Rij = RT
i Rj

=

j−1∏

k=i

Exp
((
ωm(k)− bg(k)− λω(k)

)
∆t
) (20)

The equations on the top lines of (18-20) are dependant
on the nodes of the factor graph, the equations on the
bottom lines of (18-20) only depend on the measurements,

and are therefore independent of the states in the graph.
The residuals errors are defined as the difference between
the two lines of each equation (21-23).

r∆pij
= RT

i

(
pj − pi − vi∆tij −

1

2
g∆t2ij

)

−∆pm,ij − δpij(b)
(21)

r∆vij
= RT

i

(
vj − vi − g∆tij

)

−∆vm,ij + δvij(b)
(22)

r∆Rij
= Log

((
∆Rm,ijExp(δRij(b))

)T
RT

i Rj

)
(23)

rI(j) =
[
r∆pij

r∆Rij
r∆vij

0
]T

(24)

Here the δ’s are added to incorporate changes in the bias.
For a full definition of the δ’s the reader is referred to [25].
By formulating the residual errors in this manner, only
the small deviation δ’s need to be updated when the bias
changes. This avoids having to change the linearization
point of the optimization, and having to reiterate through
each individual IMU measurement again.

D. Bias Factor Generation
The bias forms a separate factor in the factor graph (Fig.

3). The evolution of the bias is assumed to be a zero
mean Brownian motion [25] with variance ηgd, ηad for the
gyroscope and accelerometer respectively. The residual error
between two subsequent points in time i and j can than be
defined with the change in bias (25)[25].

‖rb(j)‖2 = ‖bg
j − bg

i ‖2Σg
+ ‖ba

j − ba
i ‖2Σa

(25)

with:

Σg = ∆ti,jCov(ηgd) (26)
Σa = ∆ti,jCov(ηad) (27)

Here bg
i ,b

g
j is the gyroscopic bias at i and j. ba

i ,b
a
j is the

accelerometer bias at i and j. ∆ti,j is the time difference
between i and j.

E. Solving the Factor Graph
The graph consists of nodes and edges. The nodes (circles

in Fig. 3) contain the state of the system at a single time step
(2). The nodes are the unknowns in the system that need to
be estimated. The edges, that are known, are the relations
between the nodes. The factors created by the LiDAR and
IMU are inserted as edges into the graph with the GTSAM
[21] toolbox.

The values are initialized by the preintegrated IMU mea-
surements. The nodes are then estimated incrementally using
the Incremental Smoothing and Mapping algorithm (ISAM2)
[20]. ISAM2 stores the variables of the factor graph in an
efficient data structure that takes into account the effect that
changing a variable has on other variables in the graph.
When adding new variables to the graph, ISAM2 only
updates the states that are affected by the new update to
reduce computational cost. The full algorithm is summarized
in Algorithm 1. A graph based model has been chosen
because of the ability to implement loop closures [21] and
because it can be updated incrementally allowing real time
performance, even the graph becomes very large [20].

Algorithm 1 Factor Graph Optimization Node

Input: LiDAR scans L0:n, IMU measurements Z0:m

Prerequisites: Last LiDAR Keyframe Li, IMU queue
Zi:k, Nonlinear Factor Graph F
Output: Trajectory x1:n

begin
while Running do

if IMU measurement Zk+1 then
append Zk+1 to Zi:k

else if LiDAR scan Lj then
Extract Edge and Plane features from Lj

Compute Relative LiDAR transformation HL
ij

Compute Relative IMU transformation HI
ij

if abs(HL
ij −HI

ij) < threshold then
create factor FL,ij with small ΣL

else
create factor FL,ij with high ΣL

Add FL,ij to Nonlinear factor graph F
Create IMU preintegration factor FI,ij from Zi:k

Add FI,ij to Nonlinear factor graph F
Create Bias Factor FB,ij

Add FB,ij to Nonlinear factor graph F
Solve F with ISAM2 to get x1:n

update key from i to i+ 1
Empty IMU queue Zi:k

end if
end if

end while
return x1:n, M
end

IV. EXPERIMENTAL EVALUATION

The algorithm is tested in four different situations
to evaluate the performance (Table I). In each of the

TABLE I: Dataset Overview. At point insufficiencies <
20 edge and/or plane points are available for the LiDAR
estimation.

Dataset Duration[s] Point Insuf-
ficiencies

Challenge

Office (Night) 87.4 0 Optimal LiDAR condi-
tions

Office (Day) 85.15 2 Mild Ambient Sun light
Staircase 230.8 0 Vertical Movement

Open Spaces 167 10 Degenerate scenarios

TABLE II: End-to-end translation error in meters (Z-
translation error).

Dataset SSL-SLAM Our Method
Office (Night) 1.27 (-1.20) 0.31 (0.23)
Office (Day) 0.825 (0.251) 0.368 (0.268)

Staircase 6.406 (4.581) 2.362 (0.563)
Open Spaces >10 >10

experiments, the Intel L515 was held in hand by a person
walking through the environment. The starting location was
marked in each experiment, and the person walking with
the sensor returned to the starting location at the end of
the experiment. The experiments are designed to test the
robustness and performance of the sensor to ambient (sun)
light, vertical movement, and degenerate mapping scenarios.
The Intel L515 datasets are captured and processed by
a computer with 16gb RAM and AMD Ryzen 5 4500u
processor running Ubuntu 20.04 LTS and ROS Noetic [27].
The bag files were recorded at 15 frames per second for the
LiDAR scans and 200 Hz for the IMU.

A. The Office (Night)

The Office (Night) experiment is conducted in a feature
rich office environment. The office has got windows through
which ambient (sun)light can enter the environment. This
first experiment is done at night with the office lighting
turned off to minimize the effect of ambient light on the
sensor. Over the trajectory the proposed method achieved
a lower end to end trajectory error (Fig. 4). The method
especially reduces altitude drift (Table II).

B. The Office (Day)

The Office (Day) experiment is performed by walking
along approximately the same trajectory in the same office
environment as IV-A, but this time during the day. Ambient
light enters the office through the windows that are located

(a) Trajectory comparison (x,y)

(b) Trajectory comparison (x,z)

Fig. 4: Results of walking through the office and returning
at the starting position at night. The trajectory direction is
counter clockwise

at the sides of the environment. The outside conditions were
cloudy during the experiment: direct sunlight was absent
and only indirect sunlight was present. This experiment
is conducted to evaluate the effect of ambient sunlight on
the sensor. During the experiment it occurred twice that
there were few (less than 20) edge/plane feature points
available for LiDAR localization. Our method achieved
an end-to-end translation error of 0.368 m compared to
0.825 m for SSL-SLAM over the trajectory. During the
experiment the altitude of the sensor was kept constant.
Even though the end-to-end error in Z-direction is slightly
less for SSL-SLAM (Fig. 5b) compared to our method,
SSL-SLAM drifts more over the trajectory in Z-direction
than our method. Our method performs comparable to
the Office (Dark) experiment, while for SSL-SLAM the

trajectory is at times more than 2 meters different.

C. Staircase

The Staircase dataset features two staircases to test vertical
movement. In the experiment, the person holding the sensor
walked toward a staircase and then climbed two floors. The
person then turned around and descended the same stairs and
eventually returned to the starting point of the experiment.
Our method achieves an altitude error at the end of the tra-
jectory of 0.56m (compared to 4.58m for SSL-SLAM). The
end-to-end translation error is 2.36m (compared to 6.41m for
SSL-SLAM). The trajectory is plotted in Fig. 6). The end-
to-end translation error of our method is especially lowered
in Z-direction as can be seen in Fig. 6b. The structure of the
staircase can easily be seen when the trajectory is plotted in
3D (figure 6c).

(a) Trajectory comparison (x,y)

(b) Trajectory comparison (x,z)

Fig. 5: Results of walking through the office and returning at
the starting position during the day. The trajectory direction
is counter clockwise.

(a) Trajectory comparison (x,y)

(b) Trajectory comparison (x,z)

(c) 3D Trajectory of our method

Fig. 6: Results of the Staircase experiment.

D. Open Spaces

The Open Spaces experiment was done by traversing
the trajectory in Fig. 7. The parking garage features large
open spaces, were features are scarce and often more than
5 m away from the sensor. The experiment was done at
night to minimize the influence of ambient sunlight on
the performance. This experiment was done to test the
performance of the method in situations were features are

far away or mostly on the same plane (in case of the roof of
the parking garage). Both our method and SSL-SLAM failed
to generate meaningful results (Table II). The optimization
of III-E eventually became ill constrained in the case of
our method. For SSL-SLAM the trajectory diverged multiple
meters from the real trajectory within seconds.

Fig. 7: During the Open Spaces experiment the red triangle
was traversed in counter clockwise direction. Features are
mostly located on the beams of the roof and on the floor.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this work we presented a tightly coupled graph based
method for fusing LiDAR and IMU measurements for the
Intel L515 LiDAR Sensor. The IMU factors in the graph are
generated by using IMU preintegration [25]. The LiDAR
factors are generated through feature based scan matching
based on SSL-SLAM [2]. These factors are combined in a
non-linear factor graph to estimate the pose of the sensor.
Solving the factor graph is done incrementally with ISAM2
[20] in the GTSAM toolbox [21].
Our method results in reduced drift compared to SSL-
SLAM and especially reduces altitude drift. The algorithm
was tested in various environments, with different light
conditions, vertical movement and feature availability. The
algorithm is robust against short failures in the LiDAR
estimation, but fails in the case of of longer failures when
not enough features are present.

B. Future Works

Currently the algorithm suffers from long term drift. Long
term drift in graph based algorithms can be reduced by
creating edges between non sequential states in the factor
graph (figure 3). These loop closures have been successfully

implemented in visual algorithms[13][31], as well as LiDAR
algorithms [10] to reduce long term drift.
The algorithm can also be improved by using the camera of
the Intel L515 to perform visual odometry. Visual odometry
approaches like [13] [4] [5] have shown robust performance
in outdoor conditions where ambient (non-direct) sunlight
is present, like the KITTI [39] dataset. Visual odometry
can particularly help in cases where the L515 LiDAR input
is handicapped by ambient (non-direct) sunlight, or where
there are many visual features but not enough LiDAR
features are available, like in Section IV-D.

VI. ACKNOWLEDGMENTS

SSL-SLAM-code [41] was used for creating the LiDAR
factors. GTSAM-fusion [40] code was used for the GTSAM
[21] implementation.

REFERENCES

[1] Zhang, Ji & Singh, Sanjiv. (2017). Low-drift and Real-time Lidar
Odometry and Mapping. Autonomous Robots. 41. 401-416.

[2] H. Wang, C. Wang and L. Xie, ”Lightweight 3-D Localization
and Mapping for Solid-State LiDAR,” in IEEE Robotics and Au-
tomation Letters, vol. 6, no. 2, pp. 1801-1807, April 2021, doi:
10.1109/LRA.2021.3060392.

[3] J. Zhang and S. Singh, ”Visual-lidar odometry and mapping: low-drift,
robust, and fast,” 2015 IEEE International Conference on Robotics and
Automation (ICRA), 2015, pp. 2174-2181

[4] C. Forster, M. Pizzoli, and D. Scaramuzza, “SVO: Fast semi-direct
monocular visual odometry,” in Proc. IEEE Intl. Conf. on Robotics
and Automation, Hong Kong, China, June 2014, pp. 15–22.

[5] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versatile
monoc- ular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, 2018

[6] P.J. Besl and N.D. McKay, “A Method for Registration of 3D Shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
14(2): 239-256, 1992.

[7] J. Lin and F. Zhang, ”Loam livox: A fast, robust, high-precision Li-
DAR odometry and mapping package for LiDARs of small FoV,” 2020
IEEE International Conference on Robotics and Automation (ICRA),
2020, pp. 3126-3131, doi: 10.1109/ICRA40945.2020.9197440.

[8] Shan, Tixiao & Englot, Brendan & Ratti, Carlo & Rus, Daniela.
(2021). LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via
Smoothing and Mapping.

[9] Cvišić, I, Ćesić, J, Marković, I, Petrović, I. SOFT-SLAM: Computa-
tionally efficient stereo visual simultaneous localization and mapping
for autonomous unmanned aerial vehicles. J Field Robotics. 2018; 35:
578– 595.

[10] Shan, Tixiao et al. “LIO-SAM: Tightly-coupled Lidar Inertial Odom-
etry via Smoothing and Mapping.” 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2020): 5135-
5142.

[11] Zuo, Xingxing et al. “LIC-Fusion 2.0: LiDAR-Inertial-Camera Odom-
etry with Sliding-Window Plane-Feature Tracking.” 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS)
(2020): 5112-5119.

[12] X. Zuo, P. Geneva, W. Lee, Y. Liu and G. Huang, ”LIC-Fusion:
LiDAR-Inertial-Camera Odometry,” 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019, pp. 5848-
5854, doi: 10.1109/IROS40897.2019.8967746.

[13] Mur-Artal, Raul & Montiel, J. & Tardos, Juan. (2015). ORB-SLAM:
a versatile and accurate monocular SLAM system. IEEE Transactions
on Robotics. 31. 1147 - 1163. 10.1109/TRO.2015.2463671.

[14] Mur-Artal, Raul & Tardos, Juan. (2016). ORB-SLAM2: an Open-
Source SLAM System for Monocular, Stereo and RGB-D Cameras.
IEEE Transactions on Robotics. PP. 10.1109/TRO.2017.2705103.

[15] Campos, Carlos et al. “ORB-SLAM3: An Accurate Open-Source
Library for Visual, Visual–Inertial, and Multimap SLAM.” IEEE
Transactions on Robotics 37 (2021): 1874-1890.

[16] M. Labbé and F. Michaud, “RTAB-Map as an Open-Source Lidar
and Visual SLAM Library for Large-Scale and Long-Term Online
Operation,” in Journal of Field Robotics, vol. 36, no. 2, pp. 416–446,
2019.

[17] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM:
Real-time single camera SLAM,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 29, no. 6, pp. 1052–1067, 2007.

[18] T. Shan and B. Englot, “LeGO-LOAM: Lightweight and Ground- op-
timized Lidar Odometry and Mapping on Variable Terrain,” IEEE/RSJ
International Conference on Intelligent Robots and Systems,

[19] Myriam Servieres, Valérie Renaudin, Alexis Dupuis, Nicolas Antigny.
Visual and Visual-Inertial SLAM: State of the Art, Classification, and
Experimental Benchmarking. Journal of Sensors, 2021, 2021, 26 p

[20] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard and F. Dellaert,
”iSAM2: Incremental smoothing and mapping with fluid relineariza-
tion and incremental variable reordering,” 2011 IEEE International
Conference on Robotics and Automation, 2011, pp. 3281-3288, doi:
10.1109/ICRA.2011.5979641.

[21] Frank Dellaert, ”Factor Graphs and GTSAM: A Hands-on Introduc-
tion”, September 2012, Technical Report number GT-RIM-CP&R-
2012-002

[22] Diehl S, Neuvel JM, Zlatanova S, Scholten H (2006) Investigation of
user requirements in the emergency response sector: the Dutch case.
In: van de Walle B, Song Y, Zlatanova S, Li J (eds) Second symposium
on Gi4DM, Goa, India, p 6

[23] Ferreira, A. F. G., Fernandes, D. M. A., Catarino, A. P.; Monteiro,
J. L. (2017). Localization and Positioning Systems for Emergency
Responders: A Survey. IEEE Communications Surveys and Tutorials,
19(4), 2836–2870. https://doi.org/10.1109/COMST.2017.2703620

[24] M. Demir and K. Fujimura, “Robust Localization with Low-Mounted
Multiple LiDARs in Urban Environments,” IEEE Intelligent Trans-
portation Systems Conference, pp. 3288-3293, 2019

[25] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-Manifold
Preintegration for Real-Time Visual-Inertial Odometry,” IEEE Trans-
actions on Robotics, vol. 33(1): 1-21, 2016.

[26] T. Lupton and S. Sukkarieh. Visual-inertial-aided navigation for high-
dynamic motion in built environments without initial conditions. IEEE
Trans. Robotics, 28(1): 61–76, Feb 2012.

[27] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A.Y. Ng, “ROS: An Open-source Robot Operating
System,” IEEE ICRA Workshop on Open Source Software, 2009.

[28] Intel® RealSenseTM LiDAR Camera L515 Datasheet, Revision 003,
January 2021

[29] Kschischang, F., Frey, B., and Loeliger, H.-A. (2001). Factor graphs
and the sum-product algorithm. IEEE Trans. Inf. Theory, 47(2)

[30] H. Durrant-Whyte and T. Bailey, ”Simultaneous localization and
mapping: part I,” in IEEE Robotics & Automation Magazine, vol.
13, no. 2, pp. 99-110, June 2006, doi: 10.1109/MRA.2006.1638022.

[31] Labbé, M, Michaud, F. RTAB-Map as an open-source lidar and visual
simultaneous localization and mapping library for large-scale and
long-term online operation. J Field Robotics. 2019; 35: 416– 446.

[32] Kudriashov, Andrii and Buratowski, Tomasz and Giergiel, Mariusz and
Małka, Piotr,”SLAM as Probabilistic Robotics Framework Approach”
in ”SLAM Techniques Application for Mobile Robot in Rough Ter-
rain”, 2020, ”39–64”

[33] He, Ying et al. “An Iterative Closest Points Algorithm for Reg-
istration of 3D Laser Scanner Point Clouds with Geometric Fea-

tures.” Sensors (Basel, Switzerland) vol. 17,8 1862. 11 Aug. 2017,
doi:10.3390/s17081862

[34] S. Lynen, M.W. Achtelik, S. Weiss, M. Chli, and R. Siegwart, “A
Robust and Modular Multi-sensor Fusion Approach Applied to MAV
Navigation,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 3923-3929, 2013.

[35] S. Yang, X. Zhu, X. Nian, L. Feng, X. Qu, and T. Mal, “A Robust
Pose Graph Approach for City Scale LiDAR Mapping,” IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 1175-
1182, 2018.

[36] M. Demir and K. Fujimura, “Robust Localization with Low-Mounted
Multiple LiDARs in Urban Environments,” IEEE Intelligent Trans-
portation Systems Conference, pp. 3288-3293, 2019.

[37] Y. Gao, S. Liu, M. Atia, and A. Noureldin, “INS/GPS/LiDAR Inte-
grated Navigation System for Urban and Indoor Environments using
Hybrid Scan Matching Algorithm,” Sensors, vol. 15(9): 23286-23302,
2015

[38] S. Hening, C.A. Ippolito, K.S. Krishnakumar, V. Stepanyan, and M.
Teodorescu, “3D LiDAR SLAM integration with GPS/INS for UAVs
in urban GPS-degraded environments,” AIAA Infotech@Aerospace
Conference, pp. 448-457, 2017

[39] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013

[40] P. Kemppi, ”GTSAM-Fusion Github”, https://github.com/
PaulKemppi/gtsam_fusion, September 2020

[41] W. Hang, ”ssl slam Github”, https://github.com/
wh200720041/ssl_slam, Mar 2021

36 Manuscript

AF Vonk Master of Science Thesis

Chapter 4

Conclusions and Future Work

4-1 Conclusions

New advances in Micro-Electro-Mechanical System (MEMS) technology have allowed for the
development of a cheaper and smaller kind of Light Detection and Ranging (LiDAR) sensor.
These new sensors have a lower observation range than conventional LiDAR sensors, as well
as decreased performance in situations that are rich in ambient sunlight.
In this thesis a new graph based lidar inertial localization method was developed and tested on
the Intel® RealSense™ LiDAR Camera L515 (Intel L515) MEMS based LiDAR. The method
was proposed to improve the localization accuracy of LiDAR Simultaneous Localization And
Mapping (SLAM) algorithms on small low power LiDARs.
The graph based algorithm combines the measurements of the Inertial Measurement Unit
(IMU) and LiDAR of the sensor to determine the location, orientation and IMU bias of the
sensor.
These variables are determined in an optimization based approach that minimizes the sum of
all the reprojection errors of the sensor measurements.
The sum of all the reprojection errors is generated by LiDAR pose estimates calculated by the
SSL-SLAM algorithm [20], IMU preintegration measurements and a model for the evaluation
of the IMU bias [5].
The algorithm is tested in various conditions that either focus on optimal performance or
on one of the main situations in which localization is hard. The algorithm is compared to
the performance of the SSL-SLAM algorithm [20], since this is currently the only algorithm
tested on the Intel L515. The results are as follows:
Firstly, localization drift in general is reduced by applying the algorithm. Especially drift in
direction of gravity is reduced. The algorithm was tested in dark conditions to reduce the
effect of ambient light on the sensor. By testing the sensor in dark conditions an overall drift
reduction of 75 % was achieved compared to Solid State Lidar Simultaneous Localization and
Mapping (SSL-SLAM).
Secondly, the algorithm is able to reduce the effect of ambient sunlight on the performance
when doing LiDAR SLAM in an office environment with ambient sunlight entering through the

Master of Science Thesis AF Vonk

38 Conclusions and Future Work

windows. Thirdly, The algorithm was tested in degenerate situations. The outlier detection
approach that compares the SSL-SLAM estimates with the IMU measurements is able to
reduce the effect of short dropouts of accurate LiDAR localization due to degeneracy. These
dropouts should not be longer than a few seconds, because otherwise the algorithm may lose
track altogether. A review of this problem is presented in the future works.
From this thesis it can be concluded, that the localization accuracy of SSL-SLAM can be
improved by fusing it in a graph based approach with IMU data.

4-2 Future Works

The algorithm currently is only able to withstand short outliers of the SSL-SLAM algorithm
and only works partially in situations with ambient sunlight. Three approaches are recom-
mended to counter longer stretches of outliers and handle scenes where features are not always
available within the LiDAR range.

Implementing Visual Information

The system can be improved by incorporating the camera into the localization process. Vi-
sual odometry algorithms like Semi Direct Visual Odometry [6] and Orientated FAST Rotated
BRIEF-SLAM (ORB-SLAM) [14] [15], [2] are proven to have good performance in outside
conditions like the KITTI [7] dataset.
By adding a vision factor to the graph based localization algorithm, the algorithm is more ro-
bust against LiDAR dropout/degeneracies. Having full LiDAR visual inertial fusion counters
the inability of visual only localization algorithms to work in the dark. also counters one of the
main drawbacks of using a single camera for localization, which is the unobservability of scale.

Implementing Loop Closures

In LiDAR SLAM various methods for loop closures have been proposed [17]. Using a loop
closure method allows the camera to re-localize after localization is lost. This allows the
creation of non sequential factors in the factor graph.
The camera of the Intel L515 can also be used for implementing loop closures. By saving
observed features found with the camera they can be stored. If they are later observed again,
a feature matching algorithm can be used to create loop closures in the graph based algorithm.
In the case of visual methods this has shown to reduce long term drift significantly [2].

Extending the Field of View

The Field of View (FOV) of the sensor is a cone with a 70 x 55 degrees viewing angle. The
FOV can be increased by adding more sensors in order to come closer to a 360 degrees FOV,
while still being significantly cheaper than a conventional LiDAR setup. It is expected that
by extending the FOV with more sensors, the problem of scene degeneracy will be lessened
up to a point. In situations where the sensors are over saturated with ambient sunlight that

AF Vonk Master of Science Thesis

4-2 Future Works 39

leads to a blackout in localization, using another kind of sensor would be preferred over using
multiple Intel L515’s.

Master of Science Thesis AF Vonk

40 Conclusions and Future Work

AF Vonk Master of Science Thesis

Bibliography

[1] Paul J Besl and Neil D McKay. A Method for Registration of 3-D Shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[2] Carlos Campos, Richard Elvira, Juan J.Gomez Rodriguez, Jose M. Jose, and Juan D.
Tardos. ORB-SLAM3: An Accurate Open-Source Library for Visual, Inertial, and Mul-
timap SLAM. IEEE Transactions on Robotics, pages 1–15, 2021.

[3] Visual Clarity and Rapid Decisions. GEO4I ’ S ANALYSIS OF 15 CM HD MAXAR,
2021.

[4] Hugh Durrant-Whyte and Tim Bailey. Simultaneous Localisation and Mapping (SLAM):
Part I The Essential Algorithms. IEEE Robotics and Automation Magazine, 13, 2006.

[5] Christian Forster, Luca Carlone, Frank Dellaert, and Davide Scaramuzza. IMU
preintegration on manifold for efficient visual-inertial maximum-a-posteriori estimation.
Robotics: Science and Systems, 11, 2015.

[6] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. SVO: Fast Semi-Direct Monoc-
ular Visual Odometry. IEEE International Conference on Robotics and Automation
(ICRA), 2014.

[7] A Geiger, P Lenz, C Stiller, and R Urtasun. Vision meets robotics: The KITTI dataset.
The International Journal of Robotics Research, (October):1–6, 2013.

[8] William Arthur Heidel. Anaximander’s Book , the Earliest Known Geographical Treatise.
Proceedings of the American Academy of Arts and Sciences, 56(7):239–288, 1921.

[9] Feng Huang, Weisong Wen, Jiachen Zhang, and Li-Ta Hsu. Point wise or Feature wise?
Benchmark Comparison of Public Available LiDAR Odometry Algorithms in Urban
Canyons. Arxiv, abs/2104.0, 2021.

[10] Intel. Intel ® RealSense TM LiDAR Camera L515 Datasheet. (January), 2021.

Master of Science Thesis AF Vonk

42 Bibliography

[11] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John Leonard, and
Frank Dellaert. iSAM2: Incremental Smoothing and Mapping Using the Bayes Tree. Spe-
cial Issue on the Ninth International Workshop on Algorithmic Foundations of Robotics
(WAFR), 31(2):216–235, 2012.

[12] John Ryan Kidd. Performance Evaluation of the Velodyne VLP-16 System for Surface
Feature Surveying. Master’s Theses and Capstones, 2017.

[13] Manon Kok and Thomas B Schön. Estimation Using Inertial Sensors. IEEE Signal
Processing Letters, 26(11):1673–1677, 2019.

[14] J M M Montiel, Raul Mur-Artal, and Juan D. Tardos. ORB-SLAM : A Versatile and
Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31(5):1147–1163,
2015.

[15] Raul Mur-Artal and Juan D. Tardos. ORB-SLAM2: An Open-Source SLAM System for
Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics, 33(5):1255–
1262, 2017.

[16] Tixiao Shan and Brendan Englot. LeGO-LOAM : Lightweight and Ground-Optimized
Lidar Odometry and Mapping on Variable Terrain. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), (October):4758–4765, 2018.

[17] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Daniela
Rus. LIO-SAM : Tightly-coupled Lidar Inertial Odometry via Smoothing and Map-
ping. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
(July):5135–5142, 2020.

[18] Tixiao Shan, Brendan Englot, Drew Meyers, Wei Wang, Carlo Ratti, and Daniela Rus.
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping.
IEEE International Conference on Intelligent Robots and Systems, pages 5135–5142,
2021.

[19] Dingkang Wang, Connor Watkins, and Huikai Xie. MEMS mirrors for LiDAR: A review.
Micromachines, 11(5), may 2020.

[20] Han Wang, Chen Wang, and Lihua Xie. Lightweight 3-D Localization and Mapping for
Solid-State LiDAR. IEEE Robotics and Automation Letters, (January):1–8, 2021.

[21] Wei Xu and Fu Zhang. FAST-LIO : A Fast, Robust LiDAR-Inertial Odometry Package
by Tightly-Coupled Iterated Kalman Filter. IEEE Robotics and Automation Letters,
6(2):3317–3324, 2021.

[22] Ji Zhang and Sanjiv Singh. LOAM: Lidar Odometry and mapping in Real-time. Robotics:
Science and Systems, 2014.

[23] Xingxing Zuo, Patrick Geneva, Woosik Lee, Yong Liu, and Guoquan Huang. LIC-Fusion:
LiDAR-Inertial-Camera Odometry. IEEE International Conference on Intelligent Robots
and Systems, (September):5848–5854, 2019.

AF Vonk Master of Science Thesis

Glossary

List of Acronyms

FOV Field of View
LiDAR Light Detection and Ranging
ICP Iterative Closest Points
IMU Inertial Measurement Unit
Intel L515 Intel® RealSense™ LiDAR Camera L515
LIO-SAM Lidar Inertial Odometry via Smoothing And Mapping
LOAM LiDAR Odometry And Mapping
MEMS Micro-Electro-Mechanical System
MAP Maximum A Posteriori
ORB-SLAM Orientated FAST Rotated BRIEF-SLAM
SLAM Simultaneous Localization And Mapping
SNR signal-to-noise ratio
SSL-SLAM Solid State Lidar Simultaneous Localization and Mapping

Master of Science Thesis AF Vonk

44 Glossary

AF Vonk Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Preface & Acknowledgements

	Main Matter
	Introduction
	Simultaneous Localization And Mapping
	LiDAR based SLAM

	Sensor Overview
	Lidar Methods
	Differences between the Intel L515 and conventional LiDAR
	Inertial Measurement Unit

	Problem Formulation
	Outline of the Thesis

	Background Theory
	Motion Model
	Homogeneous Transformation
	State of the Sensor

	Graph Based Optimization
	IMU preintegration
	Summarizing the IMU measurments
	Bias model updating
	Bias Factor

	Lidar Odometry and Mapping
	Lidar Edge/Plane Detection
	Lidar Movement Estimation
	Defining the Lidar Factor

	Incremental Smoothing and Mapping

	Manuscript
	Introduction
	Related Work
	Methodology
	Experimental Evaluation
	Conclusions and Future Works
	Acknowledgements
	References

	Conclusions and Future Work
	Conclusions
	Future Works

	Appendices
	Back Matter
	Bibliography
	Glossary
	List of Acronyms
	List of Symbols

