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Abstract

Modern web application development frameworks provide web application developers with high-
level abstractions to improve their productivity. However, their support for static verification of
applications is limited. Inconsistencies in an application are often not detected statically, but
appear as errors at run-time. The reports about these errors are often obscure and hard to trace
back to the source of the inconsistency. A major part of this inadequate consistency checking can
be traced back to the lack of linguistic integration of these frameworks. Parts of an applications
are defined with separate domain-specific languages, which are not checked for consistency with
the rest of the application. Examples include regular expressions, query languages and XML-
based languages for definition of user interfaces. We give an overview and analysis of typical
problems arising in development with frameworks for web application development, with Ruby
on Rails, Lift and Seam as representatives.

To remedy these problems, in this paper, we argue that domain-specific languages should
be designed from the ground up with static verification and cross-aspect consistency checking
in mind, providing linguistic integration of domain-specific sub-languages. We show how this
approach is applied in the design of WebDSL, a domain-specific language for web applications,
by examining how its compiler detects inconsistencies not caught by web frameworks, providing
accurate and clear error messages. Furthermore, we show how this consistency analysis can be
expressed with a declarative rule-based approach using the Stratego transformation language.

Key words: domain-specific language, web application development, linguistic integration,
consistency checking, verification, static analysis

1. Introduction

Web applications are complex software systems that combine many technical concerns,
such as database querying, input handling, user interface design, and navigation. Web
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application frameworks are often used to simplify web development and improve web

developer productivity. A web framework consists of a set of APIs built on a general-

purpose programming language. Popular web frameworks include JBoss Seam, Lift, Ruby

on Rails, and Django. These frameworks enable abstraction over many low-level details

of normal web application development, avoiding handwritten boilerplate code, thus in-

creasing developer productivity.

While web frameworks improve the clarity of the application and expressivity of devel-

opers that use it, applications containing inconsistencies (faults) often fail late, i.e. at run

time or deployment time instead of at compile time. Even inconsistencies in applications

written using a framework based on a statically typed language such as Java or Scala

are often only revealed at deployment time or at run time. The errors produced when

the application fails are often difficult to trace back to their origin and error messages

are typically not domain-specific, exposing framework implementation details.

1.1. Causes of Late Failure

Web frameworks use a combination of high-level APIs, meta-programming techniques,

and domain-specific languages to achieve higher developer expressivity. Meta-programming

techniques used range from reflection in Scala and Java-based frameworks to extension

and adaptation of classes and objects at runtime in frameworks based on dynamically

typed languages such as Ruby and Python. Domain-specific languages (DSLs) are used

for user interface construction (ASP.NET, JSF), access control policies (rule files), pat-

tern matching (regular expression) and database queries (SQL, HQL).

Domain-specific languages, as used by web frameworks, are not linguistically integrated

with the rest of the framework. Therefore, in practice, very few consistency checks are

performed on connections between the application aspects defined in different domain-

specific languages, resulting in late failure. Web frameworks based on statically typed

general purpose languages can report a limited class of application inconsistencies at

compile-time. Modern frameworks, such as JBoss Seam and Scala Lift, cannot identify

all inconsistencies during compilation, because the static checks they provide are limited

to the type checker of their host language (Java and Scala respectively). Other errors,

often inconsistencies between application components defined in separate DSLs, are only

reported at deployment time or at run time, resulting in the same issues web frameworks

based on dynamically typed languages have.

Frameworks based on dynamically typed languages, such as Ruby on Rails and Python’s

Django only provide runtime consistency checks. Typically, consistency in these frame-

works is not explicitly checked, but rather manifests itself when the faulty code is exe-

cuted. Consequently, errors are not always easily traced back to the source of the problem,

and the messages are often unclear and confusing, relating to the framework implemen-

tation and not the actual web application. Many errors – not all – include a stack trace

directing the developer to the point in the source code (either the framework’s code or the

developer’s) where the failure occurred. Reported error messages often expose underlying

implementation details. For instance, when routing to a non-existing controller in Ruby

on Rails, an “uninitialized constant” error is reported that refers to a name-mangled

version of the application’s controller name.
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1.2. Design for Consistency Checking

One solution to late failure and bad error reporting is to build static verifiers for
existing web frameworks. However, developing verifiers is very complicated because the
framework was never intended to be statically verified.

In this paper we propose a different solution: web languages should be designed to
enable static verification of its applications for consistency. We show that linguistic in-
tegration of the languages is essential for effective checking of consistency properties
that span multiple aspects of the application. Linguistic integration entails that different
technical concerns, typically expressed using completely separate languages, are instead
expressed using a single language integrating the syntax and semantics of multiple sub-
languages as described by Visser (2007).

We illustrate this approach with WebDSL, a web language integrating a number of
sub-languages for different concerns related to the construction of web applications with
a rich data model, such as a data modeling language, a user interface language, an action
language, and an access control language. Based on linguistic integration, consistency
properties that span multiple technical domains can still be statically checked in WebDSL.
Important domain concepts, such as entities, pages and templates are first-class language
elements in WebDSL ensuring that error messages for consistency violations are always
expressed in a domain-specific manner, e.g. “entity not found” rather than “undefined
constant”.

1.3. Contributions

This paper identifies early, accurate consistency checking of web applications as a prob-
lem. It is an important problem since it directly affects the productivity of web developers:
with better, more accurate static checks, maintenance of source code can be simplified.
Existing frameworks based on general-purpose programming languages provide only a
limited number of consistency checks. External tools that provide additional checks are
hard to construct and maintain, especially when targeting linguistically separate lan-
guages. We argue that only an integrated solution allows for an efficient implementation
of static consistency checking.

The contributions of this paper are as follows: (1) An analysis of areas where con-
sistency checks are typically lacking within current web frameworks. (2) An analysis of
the quality of failure of three state-of-the-practice web frameworks. (3) A declarative,
rule-based approach to linguistic integration and consistency checking. (4) A demonstra-
tion of this approach with an implementation in the Stratego transformation language
of consistency checking for a (subset of) WebDSL.

Previous papers on WebDSL by Visser (2007) and Hemel et al. (2009) gave an overview
of the implementation strategy used for the creation of WebDSL. The present paper
focuses on consistency checking, relating it to consistency checks in other frameworks,
providing a detailed description of the different static checks performed by the language,
showing novel, non-trivial ways a web application can be checked, and describing the
rule-based architecture in which these checks are implemented.

We begin this paper with a study of different classes of inconsistencies in web appli-
cations, showing how these are checked and reported in major web frameworks. In many
cases, these consistency checks are lacking in accuracy and in quality of the error reports.

3
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In Section 3 we analyze why this is the case, looking at the implementation of the dif-
ferent frameworks. In Section 4 we explain how to address the discovered problems, and
describe solutions applied in WebDSL. In Section 5 we demonstrate how a static checker
for a subset of WebDSL can be implemented using rewrite rules in Stratego. Section 6
handles discussion points and describes differences with previous work.

2. Failures in Web Applications

Modern web applications comprise a number of aspects, often expressed using dif-
ferent domain-specific languages, e.g. HTML for user interfaces and data models using
annotated Java code. Our experience with mainstream web development frameworks has
been that faults, especially across aspect boundaries, manifest themselves late, e.g. only
when the application is run and the specific page is loaded, often resulting in developer
annoyance and a decrease in productivity. Not only do failures occur late, they are often
difficult to trace back to their origin and provided error messages are not domain-specific
and expose implementation details of the framework.

To analyze failures in web application frameworks, we have conducted an experiment
investigating the problems in fault manifestation and reporting in the current state of
practice. We evaluate four aspects of mainstream web frameworks (data model, user
interface, application logic and access control). Through fault seeding we register when
and how applications built using these frameworks fail. Subsequently, the next section
will examine the reasons of failure and how they can be mitigated.

2.1. Web Application Aspects

Typical modern web applications comprise multiple aspects. Application aspects in-
clude the data model, user interface and business logic. To simplify development, frame-
works offer specialized languages and APIs for these aspects. For instance, user interfaces
are defined using an extension of HTML, data models are defined by annotating classes
with persistence annotations, and a rule language is used to declaratively specify access
control rules. While the use of specialized languages and APIs enable separation of con-
cerns, the application aspects are not completely independent. Each aspect contains links
to other application aspects. These inter-aspect links are an important cause of the late
detection of web application failures.

For our study we selected four common application aspects, which are listed below.
This list is not meant to be exhaustive, but we believe it is a representative list of aspects
that are typically covered by web application frameworks. Other application aspects have
similar issues. For each application aspect we list some common internal and inter-aspect
faults.

• Data model, web frameworks typically have APIs to define the data model of the web
application in a declarative manner. The data model represents the data structures
that need to be persisted. Common faults:
· Properties of non-existing types, the data model defines properties of types that do

not exist.
· Invalid inverse properties, inverse properties refer to non-existing properties.
· Invalid data validation, rules to validate the values of data model properties are

invalid, e.g. the regular expression that checks the zip code format contains a syntax
error.
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• User interface is typically defined using a separate DSL, usually an extension of
HTML. Common faults:
· Invalid page elements, the use of tags and controls that do not exist or are used

incorrectly
· Invalid element nesting, incorrectly nesting tags and controls in an invalid manner,

e.g. nesting list items outside a list.
· Invalid references to data model, the user interface often presents data from the data

model, references to the data model, e.g. entity properties, may be incorrect.
· Invalid links to pages, links to pages within the application do not exist or are linked

to with wrong parameters.
· Invalid links to actions, actions to be triggered, e.g. when pushing a button, do not

exist or are invoked incorrectly
• Application logic defines the business logic of the application. Common faults:

· Invalid references to data model, properties and types that do not exist.
· Invalid redirect from actions, the user is redirected to pages within the application

that do not exist.
· Invalid data binding, form data is bound to entities incorrectly.

• Access control defines who can access what parts of the application in a declarative
manner. Common faults:
· Invalid references to data model, access control rules link to non existing data model

entities and properties

2.2. Moment of Failure

Application faults should manifest themselves as soon as possible; the sooner the
developer knows, the sooner he or she can resolve the problem. Thus, the moment of
manifestation is an important quality of fault detection in frameworks. Once a fault has
manifested itself, the developer has to resolve the problem. Therefore, the retraceability
of the problem to its source is important; the location of the fault should be clearly
indicated in the code. Once the source of the problem has been pin-pointed, the reported
error message should indicate what the problem is in terms of the application domain
and should reveal as little about the underlying implementation as possible. For instance,
when a link to a non-existing page within the application is found, the error should use
domain terminology such as “page” and “link” rather than “constant” or “method”.

Thus, we can determine the quality of fault detection in frameworks and DSLs by
considering three aspects:

(1) The moment of manifestation, i.e. the moment the developer is presented with an
application inconsistency:
• compile time, detected during compilation of the application;
• deployment time, detected when the application is started or deployed to an

application server;
• runtime; detected at the server while the application is running, e.g. when loading

a page;
• or in the browser, when an error is only detected when a page is loaded by the

client (e.g. mistakes in Javascript, HTML etc.).
(2) Is the error retraceable to its origin? Is a source code filename and line number

clearly indicated?
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(3) Clarity and specificity of error message. Are domain-specific terms used in error
messages, or do they uncover the underlying implementations?

2.3. Frameworks

We evaluate three mainstream, available web application frameworks that represent
the state of the practice in web application development. We discuss other web frame-
works and languages in Section 6. We base our study on parts of example applications
and tutorials from the websites of the different frameworks. We apply the technique of
fault seeding by introducing small inconsistencies in parts of the application (often in the
form of simple typing errors, simulating what happens when an application is changed
or a developer makes a mistake) and observe how the errors manifest themselves.

The selected frameworks are:

• Ruby on Rails 1 , representing dynamically typed language frameworks. We chose Rails
as a representative of frameworks based on dynamic languages. Other frameworks such
as Django for Python are similar in terms of implementation techniques and error
handling.

• JBoss Seam 2 , a framework based on Java, combining a number of existing Java tech-
nologies such as the Java Persistence API (JPA) and JavaServer Faces (JSF). We
selected JBoss as a representative of Java-based frameworks. A comparable framework
is Spring.

• Lift 3 , a web framework based on Scala, a highly expressive object-oriented/functional
programming language with a sophisticated type system. Scala is a statically typed
language with a very flexible syntax, distinguishing Lift from the two other categories.

In the remainder section we highlight two faults related to the data model and the user
interface. A full overview of the cases we studied is given in Section A. We summarize
our results in tables that rank the three quality aspects of moment of manifestation,
retraceability, and clarity (labeled M , R, and C).

2.4. Case 1: Consistency of References to the Data Model

M R C

Rails Runtime + −
Seam Runtime − +

Lift Runtime + +

User interfaces are typically used to present data from a
database. Therefore user interface code contains references
to the data model, for instance to show the value of a certain
property, or binding a control to a certain entity property.

In Ruby on Rails, references from the user interface to
data model properties are constructed through embedded
Ruby code. The following example displays the value of the name property of the post

entity, encoded to be displayed in HTML:

<td><%=h post.name %></td>

Although references to undefined properties, such as post.nam instead of post.name,
are easily traced back to their source, the reported “undefined method” message is not
domain-specific and only reported at runtime.

1 We evaluated version 2.3.4 of Ruby on Rails, http://www.rubyonrails.org/.
2 We evaluated version 2.2.0.GA of Seam, http://www.jboss.com/products/seam.
3 We evaluated version 1.0 of Lift, http://www.liftweb.net/.
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Fig. 1. Seam exception when using an undefined property nam

In Seam, values of entity properties can be injected into a page using the #{...}

syntax:

Welcome #{user.name}

When invalid property names are used, a domain-specific runtime exception is reported
when the page is loaded (“Property ‘nam’ not found on type ...”), but no indication of
the source of the problem is supplied (see Fig. 1).

In Lift, the name property of an entity user is referenced as follows:

<user:name>User name</user:name>

When misspelling name as nam, Lift gives a clear, domain-specific error (“no such prop-
erty”) and reports the line and column number of the error.

All of the tested frameworks report faults in references to the data model only at
runtime, when the specific page is loaded.

2.5. Case 2: Consistency of Links to Pages
M R C

Rails Runtime + −
Seam Browser − −
Lift Browser − −

Creating hyperlinks between pages is a fundamental part
of the web. While broken links to external websites are
hard to avoid, broken links within a single web applications
should be avoided and, at least in principle, be automati-
cally detected.

Ruby on Rails provides a link_to helper for user interfaces:

<%= link_to ’Edit’, edit_post_path(post) %>

The edit_post_path method that is called is generated on the fly by convention, the
convention taking the form of <action>_<controller>_path(<args>). When the name
of this method is constructed incorrectly, a generic “undefined method” error is reported,
with accurate code and line and column numbers. This means that the framework is able
to detect broken, internal links before they are displayed to the user. However, the error
message is not domain-specific.

Seam uses a s:link tag to create links to arbitrary URLs. These URLs are not checked
by the framework:

<s:link id="register" view="/register.xhtml" value="Register New User"/>

When the linked page does not exist, the user is presented with a “page not found” error

7
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Manifestation Retraceability Clarity

Category Ra Se Li Ra Se Li Ra Se Li

Data model

Properties of non-existing types R C C - + + - + +

Invalid inverse properties R D C - + + +/- + +

Invalid data validation R C/D C/D - +/- +/- - + +

User interface

Invalid page elements R R R + + - - + -

Invalid element nesting B B B - - - - - -

Invalid references to data model R R R + - + - + +

Invalid links to pages R B B + - - - - -

Invalid links to actions R R R - + - + - -

Application logic

Invalid references to data model R C C + + + - + +

Invalid redirect from actions R R R - - - - - -

Invalid data binding R NA NA - NA NA - NA NA

Access control

References to data model R R C + - + - - +

Ra = Ruby on Rails, Se = Seam, Li = Lift

B = Browser, C = Compile, D = Deploy

NA = Not applicable, R = Runtime

Fig. 2. A summary of consistency checks in Ruby On Rails, JBoss Seam, and Lift.

when the link is clicked.
Lift does not have a special construct to define internal links, instead simple <a

href="..."> tags are used. Similar to Seam, links to non-existing pages go undetected
until they are clicked.

2.6. Summary

A summary of our results is shown in Fig. 2. Rather than tally the specific scores
of the individual frameworks, we conclude that there are many cases where errors are
not reported at the earliest possible opportunity, where errors are not easily traceable
to their source, and where error messages are unclear or confusing. In the next section
we discuss reasons in the design and implementation of the frameworks that cause these
deficiencies.

3. Impact of Language and Framework Design on Fault Detection

In this section we analyze why faults in web applications manifest themselves late in
the development process and why failures often have poor retraceability and clarity. The
examples of web application inconsistencies in the previous section illustrate that there
are many cases where inconsistencies lead to late failure. They may only be reported or
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otherwise manifest themselves once a definition is used, not when it is first compiled or
interpreted. In many cases, reported error messages are very generic, revealing details
about the implementation of the framework (i.e., revealing leaky abstractions). Error
messages also do not always show the origin of the error, as they are reported in various
ways and definitions are not directly checked.

The frameworks in our survey have been implemented using different programming
techniques and based on different programming languages. In the following subsections
we analyze different properties of the frameworks that impact the manifestation of faults.

3.1. Reflection and Run-time Code Manipulation

Reflection and run-time code generation are common techniques for integration and
deployment of components in web application frameworks. Based on the dynamic lan-
guage Ruby, Rails in particular makes heavy use of these techniques to provide conve-
nient, high-level abstractions. JBoss Seam makes use of reflection techniques to process
annotations, particularly to describe the data model.

3.1.1. Ruby on Rails
As a typical example of how the dynamic programming approach of Ruby interacts

with how failure manifests itself, consider a one-to-many relationship declaration in an
entity:

has_many :comments

This declaration implies there is a Comment entity defined elsewhere. When the property
is used, the Rails framework simply takes the comments symbol, strips off the s and
capitalizes the first character. If no such entity is defined, the developer will receive a
“constant not defined” error related to Comment, while the application code does not
contain any reference to this entity anywhere directly. These indirect error messages can
be confusing to the user of the framework. If entity declarations were instead verified
directly when the entity was declared, the error could be detected earlier, and would
be more easily traced back to the source. The dynamic programming approach taken
by Ruby on Rails involves a trade-off between the performance of not checking such
properties and ease of use.

Many features of the Rails framework make use of methods which are passed a map
with named arguments. This way, arbitrary key/value pairs can be used as arguments for
these methods. When a key is mistyped or there is no definition for such a key (as seen
with :confirmation in Section A.2.4), such faults remain undetected unless the contents
of the map is explicitly verified by the framework. In the current implementation of Rails,
this is often not the case.

3.1.2. JBoss Seam
After a JBoss seam application is compiled, framework-specific tools are used to de-

ploy it onto a server environment. Typically, application servers enable web application
verification code to be invoked while the application is being deployed. This provides
frameworks with the opportunity to perform additional checks that were not already
performed by the compiler.

An example of a post-compilation time consistency check is Seam’s verification of en-
tity classes and their annotations and embedded regular expressions. Any faults detected
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in the data model are reported by throwing exceptions. Unfortunately, in practice this
seems to cause a domino effect of exceptions being thrown by various components of the
application server. This causes enormous stack traces to be recorded in the server logs,
in which it is very hard to find the originating error message. Still, by performing these
checks while the application is being deployed, Seam avoids run-time failures resulting
from certain classes of faults in the data model.

3.2. Linguistic Separation

The three frameworks each employ one base language: Java, Ruby, or Scala. They
also employ a number of other languages, such as XHTML, regular expressions, or query
languages. These languages are linguistically separated in the sense that the compiler
for the base language is not aware of the definitions made in the other languages and
whether or not they are consistent and correct. Because the compiler cannot pick up
these inconsistencies, they can lead to failures as an application is running.

Conceptually, it is appealing to use different languages that each address different
technical concerns: each language can be more or less suited for that particular domain.
Unfortunately, as these languages have been designed and have evolved separately, there
can be redundancy and inconsistency among them. The EL expression language used in
JBoss Seam, for example, does not support all features of standard Java expressions, yet
it adds some features of its own.

Separate languages also introduce a problem for programming tools, as tools that
support one language lack awareness of other languages that are used in a web appli-
cation. Editors and compilers generally only have a limited “view” of a web applica-
tion, constrained by the boundaries of a particular language. They do not check in-
side strings, determine the meaning of annotations, or analyze accompanying XML or
XHTML files. Consistency checking for concerns that cross the boundaries of a language
– understanding-in-the-large of a web application – is very hard when different languages
are used. Only tools that are specialized to work with a particular set of languages and
frameworks (such as IntelliJ IDEA, discussed in Section 6.2) can check for some of these
consistency issues. However, as the different languages, frameworks, and tools involved
are developed by different groups of people, such a solution is very hard to maintain and
even harder to make complete.

Links and redirects in the three frameworks are constructed as simple URL strings.
Only in Rails, where links can be constructed using helper methods, are internal links
checked for correctness at run-time. The other frameworks do not support any form of
consistency checking: bad links only manifest themselves when the user tries to follow
them.

3.3. Limited Static Type Checking

Faults manifest themselves at a variety of different stages: at compile time, deployment
time, run time, or sometimes only in the browser. Failures early in the development cycle
typically require less effort to resolve. Faults that are detected directly at compile time
do not require failure-to-fault tracing or running the application to be detected.

Seam and Lift benefit from their statically typed base languages with respect to
compile-time detection of faults, while Rails can only provide developers with feedback
about faults at runtime. In our study we found that there are a number of negative per-
formance trade-offs when delaying checks until run-time, and that accurately discovering

10

Static Consistency Checking of Web Applications with WebDSL SERG

10 TUD-SERG-2010-034



and reporting the origin of errors can be difficult. Still, there were many cases where the
Seam and Lift frameworks did not score much better at providing early feedback.

Since Rails is based on Ruby, there is no compilation step, and consistency errors that
are reported are always detected at run time. Still, we can distinguish between errors
reported when a definition is interpreted and when the definition is used. In many cases,
errors are only reported when definitions are used. In our experience, the framework
performs very few checks when definitions are made, before they are used elsewhere.
When errors are reported, the messages are usually generic Ruby messages (typically, a
NoMethodError).

Based on compiled, statically typed languages, Lift and Seam can report many errors
before an application is deployed. Errors detected by the Java and Scala compiler always
clearly indicate their origin. Using an IDE such as Eclipse, compile-time errors can be
conveniently marked in the source code using a marker in the editor. Still, the reported
error messages are always generic Java or Scala error messages, as the compiler and IDE
only follow the static semantics of the host language. Because of this limitation, any
language features encoded in strings, such as embedded queries or regular expressions,
cannot be checked. Likewise, any references to other elements of an application in the
form of strings (such as in the Seam @OneToMany annotation) cannot be statically checked.
The Java and Scala host languages also do not offer a way to statically constrain the
placement of annotations on the right elements of an application, or to avoid conflicting
annotations.

A problem with relying on the static type system of the base language is that the
errors reported are not specific to the domain of web programming. For instance, instead
of reporting an error about an entity property, reported errors may complain about the
field of a class. Since Seam and Lift are frameworks and not true languages on their own
right, reporting domain-specific error messages is very difficult. Only by the construction
of extensions to the already elaborate Java or Scala compilers would it be possible to check
such frameworks. Building such extensions is generally a difficult, laborious undertaking,
especially for frameworks that rely on reflection techniques and linguistic separation. In
Section 6.2 we discuss tools that follow this approach in more detail.

3.4. Run-time consistency checking

Most faults not detected by the compiler or at deployment time are reported at run-
time. Some errors are reported directly when a definition is processed by the runtime,
others only in particular use cases of the application, manifesting themselves only when
a particular action is performed by the user. Such delays in detection are detrimental for
developer productivity and, as regressions may go undetected when not covered by the
test suite, the maintainability of an application.

From a framework implementation point of view, runtime consistency checks – at least
in principle – make it easy to report accurate, highly specific error messages. However,
in practice, traceability of these errors is often lacking, as source location information at
run time is scarce, usually limited to the point in the application where the check was
performed. There are often many framework calls in between the location of the error and
the point where the error is detected, resulting in runtime traces that can be misleading
or confusing. Our survey in Section 2 showed that the quality of runtime error messages
and their traceability varies widely and is typically worse than for compile-time reported
errors.
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Seam and Lift perform static checks at compile-time using the standard Java and
Scala compilers and perform a limited set of consistency checks at deployment time.
This leaves it up to the runtime to perform the remainder of the checks. Thorough, often
domain-specific checks that are not performed earlier are performed at run time. These
checks guarantee the correctness of any strings in annotations and of string-embedded
languages. Both frameworks run on the Java Virtual Machine and use the Java exception
tracing mechanism for reporting the origin of such errors. For run-time checks, some of
these reported origins relate to the usage sites of inconsistent definitions, but as a last
resort they are still helpful in determining the root cause of an error.

Location information provided by exceptions is ineffective for checks that are not
performed at the definition site where an error is triggered. This makes it particularly
difficult to report accurate location information for errors in annotations, which are
heavily used especially in Seam. The Java language provides few means to provide exact
location information when the annotations are reflected over at runtime. At most, a class
and method name can be provided in any annotation errors that are reported.

3.5. Summary

Providing accurate, static checks at compile-time avoids failures at deployment-time
or at run-time. Statically detected faults do not require failure-to-fault tracing and can
be reported directly inside an IDE. Still, there are many classes of faults that are not
statically detected by the frameworks in our survey. Reasons for this include that they use
reflection and run-time code manipulation techniques, linguistically separated languages,
and can only use static typing provided in the base language compiler. Instead, many
faults are reported at run time, introducing a (small) performance penalty and often
resulting in errors that are vague or hard to trace back to their originating fault.

4. Designing for Static Verifiability

In the previous sections we demonstrated the problems of weak static verification of
web applications. We concluded that the cause of this weakness is in the design of the
programming languages and frameworks. Static verifiability is an afterthought, delegated
to third party tool developers or coped with by test-driven design methodologies. Because
static verifiability is not a criterion during design, the resulting language will end up
being hard to verify. Our solution is designing a web programming language with static
verifiability in mind as exemplified in WebDSL.

WebDSL embraces the notion of having different, specialized languages to address
separate concerns. WebDSL provides specialized languages for data modeling, user in-
terface design, and basic data operations. However, through linguistic integration, these
different languages are combined into one large integrated language. Fig. 3 illustrates the
key domain-specific languages that together form WebDSL. The languages are seamlessly
integrated, follow the same style of syntax and share common elements, and can be used
together in one module, if required.

WebDSL and its sublanguages have been designed as statically checked languages: the
moment of detection of all consistency checks is at compile time. In fact, using the new
WebDSL Eclipse plug-in, errors are detected as the developer writes his code. As the
checks are performed directly on the source code, rather than on a deployed application,
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UI Language for defining HTML user interfaces

Data models Language to define persistent data models

Action Simple language for defining application logic

Access control Access control rules for specifying the access control policy

Validation Data validation language

HQL Database query language

Workflow Language for defining workflows

Fig. 3. WebDSL sublanguages

any reported errors directly relate to the source code, ensuring proper retraceability.
Finally, since errors relate to the domain-specific WebDSL language – and not a general-
purpose language with a web framework on top – all errors are domain-specific and are
explained in terms of the web application domain rather than in terms of the underlying
implementation.

For a general description of WebDSL, we refer the reader to our previous work [Visser
(2008); Hemel et al. (2009); Groenewegen and Visser (2008); Hemel et al. (2008); Groe-
newegen and Visser (2009)]. This section will highlight design decisions where static
verifiability was taken into account, in particular the categories from Fig. 2 will be ad-
dressed.

4.1. Data Model

Data model entities are first-class language elements in WebDSL. They are defined as
uniquely named top-level elements. The properties of data model entities are statically
typed, they can refer to built-in simple types or to defined entities. A shared, static type
system across WebDSL sub-languages enables static verification of the use of existing
types and properties. Designing the language with entities as first-class language elements
enables reporting of domain-specific error messages.

Fig. 4 illustrates the editor feedback when a non-existing type is referenced in a prop-
erty in WebDSL. Similarly, Fig. 5 shows that this check also holds for inverse relations.
Fig. 6 shows checking of references to entity properties from validation rules.

Fig. 4. Property type consistency

Fig. 5. Inverse annotation
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Fig. 6. Data validation

4.2. User interface

User interfaces in WebDSL are defined using page template definitions. Like data
model entities, these are declarative first-class language elements in WebDSL. Templates
can call other built-in or user-defined templates. Navigation between pages is expressed
using navigate elements which create links to other pages within the application. Rather
than constructing links through string concatenation, links are defined as typed page
calls, for which can be verified that they exist and that the number and type of their
arguments are correct. Fig. 7 shows how mistakes in template calls and navigates are
reported. Output elements form references to the data model for displaying data (the
output template name is overloaded for each type). Fig. 8 illustrates that such references
are checked as well.

Fig. 7. Template call and navigation

Fig. 8. Template reference to data model

4.3. Application Logic

While the model-view-controller pattern is generally considered good style, WebDSL
does not impose the use of this pattern in the language. Instead, WebDSL applications
typically encapsulate small snippets of application logic directly in user interface code as
page actions. Larger pieces of logic can be defined separately in functions. The sublan-
guage used in these page actions and functions is a Java-like imperative language with
a simple API, fully checked by the WebDSL typechecker. Fig. 9 shows a small template
that will result in a form with two input fields. Data binding is automatic, any input in
the form will update the data model before the action is executed. Redirecting the user

14

Static Consistency Checking of Web Applications with WebDSL SERG

14 TUD-SERG-2010-034



to a different page after an action has succeeded is done using the built-in return con-
struct. A return construct, similar to a navigate in the user interface language, takes
a page call as its argument.

The incorrect action reference sav is reported, as is the page reference showUserTsks

inside the action.

Fig. 9. Action logic

4.4. Access Control

The access control policy of a WebDSL application is defined in access control rules.
The access control language reuses the expression language (and its checks) also used
in the user interface and application logic. In addition, the page signature syntax is the
same as for defining pages, enabling the verification that a rule in fact matches an existing
page with correct signature.

Fig. 10 shows how a missing property of the data model is reported.

Fig. 10. Access control

4.5. Verifiability versus Flexibility

Designing for verifiability requires a trade-off with flexibility. Verifiability should be
part of the language design considerations, but may impede coverage, i.e. the range of
programs that can be expressed. As an example, consider verification of navigation in
WebDSL. The interaction between page definitions and navigate statements is verified
by controlling the URLs that are generated for pages, and thus required for links to
those pages. That is, a URL for a page consists of the name of the page followed by
the (identities) of the arguments separated by slashes. For most applications that results
in nice readable URLs. If a developer wants to implement a more dynamic scheme this
can be realized by creating a single page definition that interprets the URL parameters
and dispatches to some appropriate template definitions. However, this results in a loss
in the effectiveness of static verification; navigates become calls to the generic dispatch
page, rather than to a specific page, which requires the developer to deal with parameter
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encoding/decoding and verifying consistency. For applications where such flexibility is a
requirement, the current WebDSL design is not optimal; it would be better to generalize
the current page/navigate paradigm to declaratively specify dispatch schemes that are
verifiable.

In practice, WebDSL’s verifiability does not impede coverage. The language is used for
several web applications that are in production. The largest and most complex WebDSL
application to date is researchr 4 . Researchr is a digital library with over a million publi-
cation records, including BibTeX import and export, bibliographies, reviewing, tagging,
a reputation system, groups, and a messaging system. Researchr’s data model consists of
over a hundred entities (represented by 140 database tables) and the complete application
consists of about 18,000 lines of WebDSL code. The static consistency checking scales
to the size of the application, and is even a pre-condition for its maintainability; making
changes is not scary since consistency faults introduced are detected at compile-time.

YellowGrass 5 is a free web-based issue tracker. Internally we use it to track WebDSL
bugs and other projects within our group use it as well. The official WebDSL website 6

has been built using WebDSL. It features an editable manual with revision control.
TweetView 7 is a twitter archival and search tool that archives tweets about certain
topics and attempts to reconstruct conversations around them.

5. Rule-Based Consistency Checking

In the previous sections we have argued that static consistency checks for a linguis-
tically integrated web programming language provide better and earlier feedback to de-
velopers. In this section we show that this can be realized using a high-level rule-based
specification. We give a formal definition of automatic consistency checking for a sub-
set of WebDSL using rewrite rules in Stratego [Bravenboer et al. (2008)] following the
style developed for type checking by Hemel et al. (2009). We give a brief introduction
to Stratego and the style of consistency checking employed in the paper. The concrete
syntax of WebDSL is defined using SDF grammars [Visser (1997)], but in this paper we
focus only on the abstract syntax and semantics of the language.

5.1. Language Definition

We illustrate static consistency checking in WebDSL using a subset of the full lan-
guage focusing on the two examples from Section 2: references to the data model in user
interface templates, and consistency of references to user interface templates and pages.
Fig. 11 defines the abstract syntax of the subset of WebDSL we are considering using an
algebraic signature, which consists of typed term constructors corresponding to language
constructs. Fig. 12 illustrates the definition with the concrete and abstract syntax of a
fragment of a WebDSL program.

The data model of a WebDSL program is defined using entity declarations (Entity),
which consist of a name and a list of properties (Property), each having a name and a

4 http://researchr.org
5 http://yellowgrass.org
6 http://webdsl.org
7 http://tweetview.net
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signature

constructors

Module : ID * List(Definition) -> Module

// data model

: Entity -> Definition

Entity : ID * List(Property) -> Entity

Property : ID * Type -> Property

SimpleType : ID -> Type

StringLit : STRING -> Exp

Var : ID -> Exp

PropertyAccess : Exp * ID -> Exp

// user interface templates

: Template -> Definition

TemplateDef : List(Mod) * ID * List(Param) * List(Element) -> Template

Page : Mod

Param : ID * Type -> Param

String : STRING -> Element

Navigate : PageRef * List(Element) -> Element

Call : TemplateRef * List(Element) -> Element

TemplateRef : ID * List(Exp) -> TemplateRef

PageRef : TemplateRef -> PageRef

Fig. 11. Signature for NWL, a subset of WebDSL

module blogpost

entity Post {

title : String

text : WikiText

author : User

}

define page post(p : Post) {

header{ output(p.title) }

output(p.text)

navigate editpost(p) { "Edit" }

}

Module("blogpost",[

Entity("Post",

[Property("title", SimpleType("String")),

Property("text", SimpleType("WikiText")),

Property("author", SimpleType("User"))]

),

TemplateDef([Page()], "post", [Param("p", SimpleType("Post"))],

[Call(TemplateRef("header"),

[Call(TemplateRef("output", [PropertyAccess(Var("p"), "title")]))]),

Call(TemplateRef("output", [PropertyAccess(Var("p"), "text")])),

Navigate(PageRef(TemplateRef("editpost", [Var("p")])),[String(""Edit"")])]

)

]

Fig. 12. Concrete and abstract syntax for fragment of a WebDSL program.
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type. Expressions are constants (StringLit), variables (Var), or access to the values of

properties of objects (PropertyAccess).

The user interface of a WebDSL program consists of template definitions (TemplateDef),

which have a name, list of parameters, and list of template elements. The elements com-

pose the output of the template from the objects passed as parameters. This is mostly

achieved by reference to other templates. Some of these templates are primitives. For

example, the output template presents the value of an object, and the input template

is used to create input form elements.

Template page definitions have the Page modifier and produce a complete web page.

Non-page template definitions define partial pages that are used to compose pages. There

are two ways in which template definitions refer to other template definitions. A template

call (Call) inlines the body of a referenced template in the calling template. A page

reference (PageRef) is used to produce a link to navigate to the corresponding template

(which must be a page definition).

5.2. Static Consistency Checking

The language is designed to support static consistency checking. References to other

elements of a program are explicitly encoded in the syntax of the language. For example,

instead of encoding an expression retrieving the value of a property of an object as a

string literal, the user interface language can use expressions to produce such values.

The identifiers used in these expressions are typed and property accesses can be checked

against the data model. Similarly, references to user interface templates are explicit calls

that can be checked for existence of the called template and the proper typing of the

arguments passed; in contrast to the composition of URLs from strings (which is akin to

pointer manipulation in C).

The WebDSL compiler translates WebDSL programs to Java programs. Before code

generation, the source code is statically checked for consistency violations. WebDSL is

also supported by an Eclipse editor plugin, which displays error messages and warnings

in the editor, providing immediate feedback about consistency errors to the developer

(see previous section). Code generation and static checking in the compiler and in the

Eclipse plugin are implemented in the Stratego transformation language.

Static checking is divided into three parts. Name resolution determines which identifier

uses refer to which declarations. Type analysis computes types (and other properties) of

composite expressions. Consistency checking applies constraints to sub-terms, producing

error messages when violations are encountered. In the next subsection we give a brief

introduction to Stratego. In the following subsections, we discuss the definition of name

resolution, type analysis, and consistency checking.

5.3. Stratego

Stratego is a language for program transformation based on the paradigm of term

rewriting with programmable rewriting strategies introduced by Visser et al. (1998).
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Stratego transformations operate on first-order terms of the form

t ::= x // variables

| "..." // string literals

| i // integer constants

| c(t1,...,tn) // constructor applications

| [t1,...,tn] // lists of terms

| (t1,...,tn) // tuples of terms

Basic transformations are defined by means of conditional term rewrite rules of the form

r : t1 -> t2 where s

with r the name of the rule, t1 and t2 first-order terms, and s a strategy expression. A

rule applies to a term when its left-hand side t1 matches the term, and the condition s

succeeds, resulting in the instantiation of the right-hand side pattern t2. Otherwise the

application fails.

In addition to checking applicability constraints, the condition of a rule can perform

computations the results of which are used in the right-hand side of the rule. For example,

in the rule schema

r : t1 -> t2 where t3 := <s> t4

the term t4 possibly containing variables from t1 is transformed by the application of a

strategy s and the result is matched against the pattern t3, possibly binding variables,

which may be used in the right-hand side t2.

More complex transformations can be created by composing rules using strategies. A

strategy is essentially a partial function from terms to terms. If a strategy is not defined on

a term it is said to fail. Failure arises from the failure of rewrite rules to apply to terms.

Strategies are composed from basic combinators such as the identity transformation

id, sequential composition s1; s2 and deterministic choice s1 <+ s2. From these basic

combinators new combinators can be defined using (parametric) strategy definitions. For

example, the definitions

try(s) = s <+ id

repeat(s) = try(s <+ repeat(s))

define the combinator try(s) that attempts to apply a strategy s to a term, and restore

the term if s fails, and repeat(s) that applies a transformation s as often as possible

to a term. While the strategies above apply a transformation to the root of a term,

term traversal strategies apply transformations to sub-terms. The basis of term traversal

strategies are one-level traversal operators such as all(s), which applies a strategy s to

each direct sub-term of a term. For example, the definitions

bottomup(s) = all(bottomup(s)); s

alltd(s) = s <+ all(alltd(s))

introduce the bottomup(s) strategy that applies s to each sub-term in a bottom-up

(post-order) fashion, while alltd(s) applies s to an outermost frontier for which s

succeeds.

Context-sensitive transformations can be expressed by means of dynamic rewrite rules

[Bravenboer et al. (2006)], which are instantiated at run-time, as illustrated by the fol-
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strategies

declare-all = alltd(declare-def); rename-all

rules

declare-def:

ent@Entity(x, prop*) -> Entity(x, prop*)

with rules( EntityDeclaration : x -> ent )

declaration-of :

SimpleType(x) -> <EntityDeclaration> x

declare-def :

def@TemplateDef(mod*, x, param*, elem*) -> TemplateDef(mod*, x, param*, elem*)

with sig := <signature-of> def;

rules(

Template : x -> def

Template : sig -> def

)

signature-of :

TemplateDef(mod*, x, param*, elem*) -> (x, <param-types>param*)

param-types :

TemplateDef(mod*, x, param*, elem*) -> <param-types> param*

signature-of :

TemplateRef(x, e*) -> (x, t*)

where t* := <map(type-of)> e*

declaration-of :

ref@TemplateRef(x, e*) -> def

where def := <signature-of; Template> ref

Fig. 13. Name resolution for top-level declarations

lowing schema:

r : t1 -> t2

where rules( dr : t3 -> t4 )

The dynamic rule dr is defined when r is applied to a term matching t1. Any variables
that t3 and t4 share with t1 are then inherited by the instantiation of dr (concrete
examples follow below).

5.4. Name Resolution

In textual software languages, program units are identified by name — hence, names
are known as identifiers. Declarations introduce names and definitions bind names to
meanings — often declarations and definitions are combined in one construct. Defini-
tions are applied by invoking their name. In the language of Fig. 11 there are four kinds
of identifiers. Entity declarations introduce named entities. Properties identify the at-
tributes of entities. Template definitions identify user interface components. Template
parameter names identify their arguments. Corresponding to these declarations, we have
the following uses of identifiers. Type expressions are references to entities (and primitive
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strategies

rename-all = alltd(rename)

rules

rename :

Param(x, t) -> Param(y, t)

with y := <rename-var>(x, t)

rename-var :

(x, t) -> y

with y := x{<new>}

with rules(

RenameId : x -> y

TypeOf : y -> t

)

rename :

Var(x) -> Var(y)

where y := <RenameId> x

rename :

TemplateDef(mod*, x, param1*, elem1*) -> <declare-def>

TemplateDef(mod*, x, param2*, elem2*)

with {| RenameId:

param2* := <rename-all> param1*;

elem2* := <rename-all> elem1* |}

Fig. 14. Name resolution for local identifiers

types). Variables are references to entity objects (or primitive values). Property access
expressions retrieve the value of a property of an object. Template references invoke a
template.

An important source of inconsistencies is the use of names that do not correspond
to definitions, or the use of names of existing definitions in the wrong place or in the
wrong way. Thus, the first task of a consistency checker is to resolve the use of names,
identifying for each application which declaration it invokes. We distinghuish two types
of identifiers, i.e. identifers with global scope and identifiers with local scope. We can
distinghuish further layers, associating name spaces with modules, but we will ignore
such layers here, but note that they can be expressed with the same approach.

The rules in Fig. 13 define name resolution for the top-level definitions in our language,
that is entity declarations and template definitions. The declare-def rules introduce the
dynamic rules EntityDeclaration and Template, mapping identifiers to definitions. The
EntityDeclaration rule maps the name of an entity to the complete abstract syntax rep-
resentation of the corresponding entity declaration. Note that x@t denotes a simultaneous
match to a variable (x) and a term pattern (t). The declaration-of rule maps a type
expression to the corresponding entity declaration, provided the EntityDeclaration rule
is defined for the type name. If not, the declaration-of rule simply fails.

Similarly, the Template dynamic rule maps the name of a template definition to its
complete AST representation. Since non-page template definitions can be overloaded
there is also a mapping from the signature of a template to its definition. The signa-
ture of a template definition is a pair of its name and the list of its parameter types.
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rules

type-of :

StringLit(x) -> SimpleType("String")

type-of :

Var(x) -> t

where t := <TypeOf> x

type-of :

PropertyAccess(e, f) -> t2

where t1 := <type-of> e

where ent := <declaration-of> t1

where Property(f, t2) := <lookup-property(|f)> ent

lookup-property(|f) :

Entity(x, prop*) -> <fetch-elem(?Property(f,_))> prop*

Fig. 15. Type analysis

The declaration-of rule produces the template definition corresponding to a template
reference by computing its signature. Computing the signature of a template reference
requires type analysis (type-of) to determine the type of the argument expressions. The
declare-all strategy applies the declare-def rules to all top-level definitions, using
the alltd strategy, thus creating dynamic rule mappings for each.

For the identifiers with global scope we have assumed that for each identifier (or sig-
nature) there is a single declaration that corresponds to it. Identifiers with local scope
are different in that an identifier can be used in multiple scopes, corresponding to differ-
ent declarations. In the language of Fig. 11, the only local identifiers are the names of
template parameters. The same parameter name can be used in multiple template def-
initions. To distinghuish multiple uses of the same identifier, name resolution of locally
scoped identifiers is implemented as a transformation that renames these identifiers to a
unique name.

Fig. 14 defines the rename-all strategy defining renaming for our web language, ap-
plying a top-down traversal looking for terms that it can apply the rename transformation
to. The rename rules transform identifier declarations and uses to use unique names. The
rule for Param renames a template parameter to a unique name using the rename-var

rule, which given an identifier x and a type t, creates a unique new name y, which is x

with as annotation a freshly created string. Thus, we create a new unique term, but retain
the original name of the identifier for use in error messages. Furthermore, rename-var
defines dynamic rule RenameId to rename the original identifier to its new name, and
TypeOf that maps the new identifier to its type t. The rename rule for variables (Var)
uses the RenameId rule to replace a variable x with the corresponding unique name y.

To actually distinghuish identifiers defined in different scopes, the rename rule for
TemplateDef uses a dynamic rule scope ({|R:s|}) to limit the bindings of the RenameId

dynamic rule to the traversal of the template elements in the body of the definition.

5.5. Type Analysis

After name resolution we can map identifiers to their declarations (or types). Ex-
pressions compose new things (values, templates) from basic things (constants) and the
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things represented by identifiers using composition operators. Type analysis computes
the type of such expressions so that we can determine if these compositions are consis-
tent with the internal or user-provided definition of operators. The language of Fig. 11
has only simple expressions, consisting of string literals, variables, and property access.
The other kind of expressions are the template Elements. Their composition is checked
directly by consistency checking rules below.

Fig. 15 defines the type-of rule, which computes the types of expressions. The type
of a string literal is String; other constants are treated similarly. The type of a variable
is the type from its declaration, which we obtain using the TypeOf rule. The type of a
property access e.f is determined by first computing the type t1 of e. The declaration
of that type is some entity ent, which should have a property f with type t2, which is
the type of e.f. Any of the steps in this computation may fail; e itself may not have
a type, the type t1 may not be declared, or the corresponding entity may not have a
property named f. In all these cases the application of type-of fails.

5.6. Consistency Checking

Name resolution and type analysis set the stage for definition of consistency checking
rules. The check rules in Fig. 16 define the main constraints for our language, and
produce an error message explaining the failure to comply to a constraint. For brevity
we have omitted rules that check unique definitions, e.g. that a name can be used for at
most entity, or that an entity may not have two properties with the same name.

A constraint checking rule is a regular Stratego rule of the following general form:
check :

context -> (target, message)

where assumption

where assumption

where require(constraint)

The rule applies to some context, i.e. a subterm of the program we are checking. The
where clauses first test some (zero or more) assumptions about the context. If these
assumptions hold, the constraint is tested. If the constraint fails, the check rule suc-
ceeds, i.e. an error has been detected — require is an alias for not. If an error is found,
the rule returns a pair of the target, a subterm of context, and an appropriate er-
ror message. The analysis strategy in Fig. 16 defines the static consistency checking
for our language. It first applies the declare-all name resolution strategy to the pro-
gram, and then collects all consistency violations by applying the check rules using the
collect-all strategy. Note that check rules can be defined without dependency on a
particular traversal or order of application; all context information needed to check the
assumptions and constraint are provided by name resolution and type analysis rules.

Rules 1–4 define definedness of types, variables, property access, and template refer-
ences. The remaining rules check further consistency properties of template references.
Rules 5–7 check the types and arity of the arguments of template references. Rule 8
checks that links (PageRef) are to page definitions and not to internal templates. Rule 9
gives a warning if a template inlines a page definition. Rule 10 checks that the parameter
of a call to the primitive input template is an l-value, i.e. an assignable expression.

Note that checking of terms is context-free, i.e. all occurrences are checked irrespective
of their context. For instance, the use of expressions as arguments of template calls is
covered by rules for expressions. It is not necessary to define a rule checking that argu-
ments to a template reference are well-typed expressions; only the interaction between
the expression and the template reference needs to be checked.
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strategies

analysis = declare-all; collect-all(check)

rules

check : // 1

t@SimpleType(x) -> (x, $[Type ’[x]’ is not defined])

where require(<is-simple-type> t)

check : // 2

e@Var(x) -> (<id>, $[Variable ’[x]’ not declared])

where require(<type-of>e)

check : // 3

e1@PropertyAccess(e2, f) -> (f, $[[<pp>t] has no property ’[f]])

where t := <type-of> e2

where require(<type-of>e1)

check : // 4

TemplateRef(x, e*) -> (x, $[Reference to undefined template ’[x]’])

where not(<is-primitive-template> x)

where require(<Template> x)

check : // 5

ref@TemplateRef(x, e*) -> errors

where not(<declaration-of>ref)

where def := <Template> x

where errors := <zip; filter(check-arg); not(?[])> (e*, <param-types> def)

check-arg : // 6

(e, t) -> (e, $[Argument of type ’[<pp>t]’ expected (not of type ’[<pp>t2]’)])

where t2 := <type-of> e

where require(<eq>(t, t2))

check : // 7

ref@TemplateRef(x, e*) -> [(x, $[’[x]’ expects [l] arguments; [k] provided])]

where not(<declaration-of>ref)

where def := <Template> x

with k := <length>e*

with l := <param-types; length> def

where require(<eq>(k, l))

check : // 8

PageRef(ref@TemplateRef(x, e*)) -> [(x, $[Navigation to template (not a page)])]

where def := <declaration-of> ref

where require(<is-page-def> def)

constraint-warning : // 9

Call(ref@TemplateRef(x, e*), elem*) -> [(x, $[Page definition is used as template])]

where def := <declaration-of> ref

where require(not(<is-page-def> def))

check : // 10

Call(TemplateRef("input", [e]), []) ->

(e, $[Argument of input should be variable or property access])

where require(<is-lvalue> e)

is-lvalue = ?Var(_) <+ ?PropertyAccess(_,_)

Fig. 16. Consistency checking rules.
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5.7. Summary

We have illustrated how a language design that integrates sub-languages covering
different (technical) domains allows checking of their consistent use. A key property of the
language design is to choose explicit representations of elements, instead of programmatic
encodings; e.g. explicit page references instead of string manipulation to construct URLs
make it possible to check that only links to existing page definitions are created.

Given such a language design, the verification of the consistency of a web applica-
tion can be expressed using declarative consistency checking rules comprising of name
resolution, type analysis, and check rules composed by strategies.

6. Discussion and Related Work

6.1. Consistency Checking Capabilities Integrated Into Languages and Frameworks

Cooper et al. (2006) describe Links, another domain-specific language for the web.
Similar to WebDSL, it consists of a number of sublanguages that are linguistically in-
tegrated and are compiled to a combination of server and client-side code. Although
the language is statically typed, the paper does not describe static verification of Links
applications.

Meijer et al. (2006) developed LINQ for the .NET platform. Language INtegrated
Query is an extension of C# and VB.NET that provide a generic query syntax that aims
to replace string-encoded SQL queries and other types of query languages such as XPath
for XML. LINQ queries are statically verified by the compiler. While LINQ is a good
first step, other string encoded languages remain on the .NET platform, such as regular
expressions. Other general purpose languages with powerful type systems are powerful
enough to add database query support as an internal DSL, type-checked by the host
language. Spiewak and Zhao (2009) demonstrate how this can be achieved with Scala
and Bringert et al. (2004) how it can be done with Haskell. However, error messages of
the latter two frameworks are be expressed in terms of Scala and Haskell type errors,
rather than domain domain concepts.

Brabrand et al. (2002) introduced Bigwig, a domain-specific language for developing
interactive web applications, which they call web services. One of the core ideas of Bigwig
is that its services are session based. The services are not viewed as a collection of pages
but as sequences of interactions between client and server. Such an abstraction avoids
the broken page link issue discussed in Section 2, while limiting URL flexibility. The
Bigwig compiler provides a number of static guarantees. Particularly interesting are the
guarantees about dynamically created documents. The compiler checks that input fields
always match the code that receives the input, i.e. each name property of an <input>

tag should be handled by server-side code [Sandholm and Schwartzbach (2000)]. This
particular problem does not apply to WebDSL, because such input names are generated
by the compiler. Besides guarantees for form inputs, Bigwig also guarantees that all
documents being generated dynamically are valid XHTML 1.0, as described by Brabrand
et al. (2001). WebDSL enforces consistency checks for many HTML elements, but not
a strict XHTML compliance, which is future work (see Section 6.5). The successor to
Bigwig, JWIG [Møller and Schwarz (2009)], does not add additional types of analysis.
The difference is that the analysis is applied in the context of a Java embedding instead
of an external DSL.
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Thiemann (2002) describes WASH/CGI, a Haskell library to build web applications.
The Haskell type system is used to statically verify certain application properties, such
as navigation links. This is easy to do, because pages in WASH are just functions, and
navigation links are function calls. We downloaded WASH, but were not able to compile
and test it. However, we suspect that not all application code is checked statically. For
instance, callback attributes contain Haskell expressions embedded in strings. In addition,
because the Haskell compiler does not know about domain-specific concepts such as pages,
the error messages will not be expressed in domain terminology, but rather in terms of
the Haskell type system.

In 1996 already Atkins et al. (1999) discussed the advantage of domain-specific lan-
guages in terms of static verification of web applications. The language they proposed,
MAWL, enables the definition of form-based applications and performs static checks be-
tween the definition of views and the application’s logic. However, Mawl is very limited
in the aspects it covers, it only covers logic and user interface definitions. It does not
cover aspects such as access control, data modeling, data validation and workflows with
multiple participants.

The WebDSL language we described is designed to generate full-featured web applica-
tions from a single, high-level specification. In contrast, several model-driven method-
ologies for creating web applications have been proposed in recent years, including
OOHDM [Schwabe et al. (1996)], SHDM [Lima and Schwabe (2003)], WebML [Ceri
et al. (2000)], UWE [Koch et al. (2001)], OOWS [Pastor et al. (2003)], and Hera [Vdov-
jak et al. (2003)]. Many of these model-driven methodologies have evolved into tools that
provide partial code generation, for example UWE4JSF [Kroiss et al. (2009)] for UWE,
HyperDe [Nunes and Schwabe (2006)] for SHDM, WebRatio [Brambilla et al. (2007)] for
WebML, OOWS [Valderas et al. (2007)], and Hera-S [van der Sluijs et al. (2006)] for
Hera. These solutions generate only a skeleton application that targets a conventional
web application platform. Developers can edit these, relying on these frameworks (as dis-
cussed in Section 2) to perform consistency checking for the application as a whole. The
model-driven solutions used to design the skeletal application can only perform partial
consistency checking, and are oblivious of any handwritten code added to it.

Comai et al. (2002) describe a tool for statically verifying consistency properties on
XML-based WebML models. Although WebML is a visual language, the models are stored
in an XML-based textual representation. The tool can be used to report erroneous pat-
terns in those XML-based models. To verify correctness of an application, syntactic and
semantic checks are performed. As WebML is a graph-based language, certain consis-
tency properties are a natural part of the syntax: for example, links to other pages in
the application can be checked by checking the syntax. The semantic checks discussed in
the paper are addressing issues specific to the WebML language. Like many other model-
driven approaches, WebML generates only skeletal applications, and cannot perform full
consistency checking once custom code is added to an application.

In previous work Bravenboer et al. (2007) described StringBorg, a generic approach to
embedding a DSL in a host language, for instance by adding SQL and regular expression
support to Java. The host and embedded language become linguistically integrated and
therefore static verification can be performed on the newly created combination of the
languages. StringBorg is a specialization of the MetaBorg approach of Bravenboer and
Visser (2004) for embedding languages using SDF grammars [Visser (1997)], which has
also been used for the construction of WebDSL, as described by Visser (2007).
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6.2. External Consistency Checkers

For many frameworks, it is technically feasible to provide better consistency checks
and better feedback to developers than provided by the reference implementations, as
observed in Section 3. External third-party tools can sometimes improve consistency
checking and feedback, often integrating into IDEs and providing cross-language consis-
tency checks not performed by the reference implementation.

JetBrains develops IDEs for a number of different languages. With IntelliJ IDEA,
they support the Java language, but also provide specialized support for frameworks
such as the JBoss Seam framework, Struts, and GWT [JetBrains (2009a)]. The IDE
provides features such as content completion and error checking in JSP definitions and
provides consistency checks and feedback not available with the reference implementation.
Another JetBrains IDE is the Web IDE [JetBrains (2009b)], which provides support for
a variety of languages that are commonly used together, including PHP, HTML, CSS,
JavaScript, and SQL. While it provides only limited static checking for these languages,
it provides an integrated environment for all these languages together, even though they
are independently developed and maintained.

Tatlock et al. (2008) describe Quail, a tool for deep type checking of queries embedded
in strings. The tool specializes on the Java language and performs safety checks of queries
embedded in string literals, rather than introducing an embedded language. The authors
showed that their tool can check most types of queries constructed as strings, but a
small category of runtime-constructed (concatenated) strings remains unchecked. The
embedded language approach applied for WebDSL and StringBorg does not have this
limitation, but cannot be used with the embedded strings in the standard Java language
as it was not designed for those checks.

External consistency checker tools can improve consistency checks of frameworks, and
have one major advantage over the integrated consistency checkers discussed in Sec-
tion 6.1 as well as those of WebDSL: they can be used with existing, industry-accepted
frameworks. However, as these checkers are developed independently from the frame-
work they analyze, they do have a number of disadvantages in terms of completeness and
correctness:

• Uncoordinated development by independent teams can lead to inconsistencies. In ad-
dition to keeping up with the latest versions, maintaining correctness and providing
complete support is increasingly difficult as more components developed by indepen-
dent teams come into play.

• Thorough framework-level consistency checking is never complete. Whereas our ap-
proach checks a single language, these tools check frameworks. Frameworks can inter-
act with other frameworks of external parties (e.g., a unit testing framework), new
language features, and data types. The tool vendor cannot anticipate all these inter-
actions. As a result, some of the more sophisticated consistency checks can only be
implemented as heuristics.

Furthermore, these independently developed checkers pose a number of challenges to
their developers, requiring significantly more effort to develop and maintain than built-
in consistency checkers:

• The language and frameworks are complex. The complexity of the language and frame-
works make their analysis very complex. Domain specific languages are typically much
smaller and simpler and consequently easier to analyze.
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• The source source language and framework are not designed to enable checking. This
makes it considerably harder to implement many classes of consistency checks. An
example of this is the string-embedded queries of Java, checked by Quail: only by a
sophisticated data-flow analysis can these queries be checked, and completeness cannot
be guaranteed.

• Supporting and keeping up with multiple versions of languages and tools requires con-
siderable effort. These tools must support different, independently developed versions
of languages and frameworks, and combinations thereof. This places a large burden
with the tooling developers, even if the goal is only to support the most recent versions.

• Reuse of the reference compilers and interpreters is very hard. It takes a lot of effort
to effectively reuse the reference compiler and interpreter implementations (say, the
Java compiler and JSF/XML processors). These tools already implement components
required for consistency checks, but they have not been designed for reuse by external
consistency checkers.

6.3. Finding Faults by Unit Testing

To manage the lack of static checking in web applications, unit testing is often proposed
as a way to check different consistency properties in web applications. However, while unit
tests are a highly effective, indispensable way of identifying regressions in an application,
they do not provide the same level of accuracy, completeness, and the swiftness of static
consistency checks. There are two approaches to unit testing: either strictly testing a
single unit of code, making heavy use of mock objects; or writing tests that cross more
than one unit of code (sometimes called cross-tests or integration tests). Strict unit tests
implicate one unit of code: if a test fails, the offending code is easily identified. Writing
strict, explicit unit tests for basic consistency properties is laborious and impractical.
Only cross-tests, testing more than one unit, are effective at checking consistency between
different modules. Still, these tests are typically not complete in testing all consistency
properties. They also do not clearly implicate a particular piece of source code, like static
checks or even strict unit tests can do. By applying strict test-driven development it is
possible to implicate the most recent edit of an application as the cause of the failure of
a test, but not a particular line or statement.

Static consistency checks, more so than unit tests or other runtime checks, excel at
rapid and accurate error reporting. Found inconsistencies can be reported before deploy-
ing or running an application, and are always associated with a particular location in the
source code. When used with an integrated development environment (IDE), any con-
straint violations can be reported by displaying error markers in the source code editor.
This allows developers to quickly adapt their code to fix mistakes, or can guide them
through the process of making larger changes, when the application may be in a state
where it cannot be deployed or executed.

6.4. Previous Work

Key abstractions provided by the WebDSL language are in the areas of data modeling,
user interface specification, and data operations. For a detailed overview of higher-level
abstractions, built on top of these core concepts, we refer the reader to earlier papers:
Visser (2007) and Hemel et al. (2009) gave an overview of the basic design and im-
plementation of WebDSL, Groenewegen and Visser (2008) described the access control
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language, Groenewegen and Visser (2009) described data validation, and Hemel et al.
(2008) described the workflow language. In contrast to these earlier papers, the present
paper focuses on consistency checking, showing how it compares to consistency checking
in other languages, and describing how consistency checking is implemented.

Static consistency checking and IDE integration are a powerful combination: an IDE
that supports a statically checked language can report any errors directly in the edi-
tor. In previous work, Kats et al. (2009) and Kats and Visser (2010) reported on the
construction of IDE plugins for the Eclipse environment using SDF [Visser (1997)] and
Stratego [Bravenboer et al. (2008)], particularly focusing on the constructing of an IDE
for WebDSL. In the present paper, we focus on the semantic checks of the WebDSL
language and the underlying semantic (Stratego) rules.

6.5. Future work

While the WebDSL compiler checks a lot of properties, it is not yet complete. WebDSL
applications are not currently guaranteed to produce validating HTML, for instance.
This is something we intend to investigate. Also, declarative rules could describe nesting
restrictions of user-defined templates.

WebDSL is optimized for the construction of form-based interactive web information
systems. It is currently not very well suited for building applications that mainly rely
on heavy client-side JavaScript work. Improving support in this area will provide an
opportunity for verification of Rich Internet Applications.

We also intend to investigate how we can further simplify the definition of compilers
with static verification in Stratego, e.g. by even more declaratively defining scoping rules.

7. Conclusion

In this paper we demonstrated that timely, accurate and adequate error reporting
is problematic in current state-of-practice web frameworks, such as Ruby on Rails, Lift
and Seam. While certain frameworks report some application inconsistencies at compile-
time, many are only discovered later, at deployment or run time. The lack of consistency
checking in otherwise statically checked languages can be contributed to the linguistic
separation of these frameworks. Aspects of the applications are defined in separate DSLs
whose consistency is not checked with the rest of the application.

In this paper we argued that DSLs should be designed from the ground up to enable
static verification by linguistically integrating its sublanguages. Based on static verifica-
tion and linguistic integration, the WebDSL language provides consistency checks that
are reported at compile-time, can directly be traced back to their source, and provide
clear, domain-specific error messages. We showed examples of error messages given by
the WebDSL compiler. Subsequently we detailed the architecture and implementation of
a consistency checker for a simplified version of the WebDSL language.
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A. Consistency Checking in Web Application Frameworks

A.1. Data Model Consistency Checking

Web applications typically store data in a database. To simplify data persistence, the
three frameworks abstract over database architectures, allowing developers to define a
data model consisting of entities with properties and relationships between these entities.
These can be one-to-one, one-to-many, or many-to-many relationships. In this subsection
we study consistency checks of entity types, relations, and data validation constraints
that may be specified for the data model.

A.1.1. Consistency of Property Types M R C

Rails Runtime − −
Seam Compile + +

Lift Compile + +

All three frameworks map their data models to relational
databases by default. In relational databases, for each col-
umn in a table (i.e., each entity property) an existing type
(i.e., a primitive type or the type of another entity) has to
be specified.

In Ruby on Rails, entities, their properties, and types are defined in database migration
scripts. Database migrations create the initial database and apply data migrations as the
application evolves. In the following example, we define an migration that creates a posts

table with three properties: name of type string, title of type string, and content of
type text:

create_table :posts do |t|

t.string :name

t.string :title

t.text :content

end

When a migration creates a property with an undefined type, (e.g. t.strin), no column
is generated in the table for the property, nor is an error reported during the migration.
The error is only detected when the property in question is used somewhere else in the
application. Depending on the use of the property this may result in a range of errors, e.g.
a NoMethodError is thrown when rendering an input control for the :name property. The
error in does not lead back to the migration script in which this mistake was originally
made, the error is therefore not only unclear, it is also not easily retraceable to the source
of the problem.

In Seam and Lift, data models are defined as annotated Java/Scala classes, where
entity properties are defined as fields. Consequently, when undefined property types are
referenced, a compile-time error is reported by the Java or Scala compiler. The exact
location of the error is clearly marked, and the error message – while not using the terms
“entity” or “property” – is clear.

A.1.2. Consistency of Entity Relationships M R C

Rails Runtime − +/−
Seam Deploy + +

Lift Compile + +

To define relationships between two entities A and B,
the data model must specify a property of type B in
A and an inverse property that links entity B back to
A. For instance, in the context of an online discussion
board, a topic has many messages. A Topic entity would
therefore define a messages property, and a Message entity a topic property, modeling
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the inverse of the relationship. This inverse property must explicitly specify the nature

of this relationship (one-to-one, etc.).

In Rails, inverse properties are declared using belongs_to, has_one, has_many and

has_and_belongs_to_many calls:

class Topic < ActiveRecord::Base

has_many :messages

end

This example defines a one-to-many relationship from topics to messages. It implies there

must be a Message entity, which has a field named topic_id, referring back to this topic.

Rails enforces the convention of naming inverse properties by pluralizing the entity

they refer to: i.e., Message becomes :messages. When this convention is not followed,

or when an entity is referred to that does not exist, no error is reported when the

database is initialized or migrated. However, when the property is used, a NoMethodError

is reported, tracing back the error to wherever the property was used rather than the

entity declaration that was inconsistent.

In Seam, inverse columns are defined using the @OneToMany annotation (in case of a

one-to-many relationship) specifying the inverse property with the mappedBy attribute:

@OneToMany(mappedBy="auction")

public Set<Bid> getAllBids() {

return allBids;

}

If the mappedBy property does not exist or is misspelled (e.g. as aauction instead of

auction), an exception occurs when the application is deployed. While the actual error

message tends to “drown” in an enormous stack trace, the actual message reported is

accurate and specific:

mappedBy reference an unknown target entity property:

org.jboss.seam.example.seambay.Bid.aauction in

org.jboss.seam.example.seambay.Auction.allBids

While no line number or filename is supplied, a class name and property is supplied,

which makes it relatively easy to find.

Lift has no support for persistent inverse properties. Instead, it allows inverse proper-

ties to be defined using a query:

def entries = Expense.findAll(By(Expense.account, this.id))

Any errors in the inverse property name (Expense.account in this case) are found at

compile time are easy to trace back to the origin of the problem. The error message is

generic, but clear.

A.1.3. Consistency of Data Validation M R C

Rails Runtime − −
Seam Compile/Deploy +/− +

Lift Compile/Deploy +/− +

Most web frameworks allow developers to spec-

ify data validation constraints to validate user in-

put. Examples of such constraints are constraints

on the length of the input, or requiring a particular

property to be set.
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Fig. A.1. Ruby on Rails validation error

In Rails, validation constraints can be defined in entity classes. An example is the

validates_presence_of construct, which defines that a field must be set:

class Post < ActiveRecord::Base

validates_presence_of :name

end

Constraint rules are not checked for validity but are still used in the user interface of

an edit form in the application and when the application attempts to save an input.

For example, if a presence constraint is specified for a non-existent property nam, Rails

simply reports that property has not been set (see Fig. A.1). As Rails fails to report

an error directed to the developer about this problem, the message does not provide

location information of the source of the problem and does not clearly state the underlying

problem.

In Lift and Seam, property validation is defined using validator annotations that are

mostly checked at compile time. However, certain types of validators, such as regular-

expression validators require a regular expression to be encoded as a string. The following

Seam example demonstrates this:

@Pattern(regex="^\\w*$", message="not a valid username")

public String getUsername() {

return username;

}

A syntactically incorrect regular expression such as ^[\\w*$ is not detected at compile

time. Instead, it is detected when the application is deployed, printing a long stack

trace in which a PatternSyntaxException is reported. While the regular expression in

question is printed, no indication is given about the location of the error.
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A.2. User Interface Consistency Checking

The user interface of web applications is generally implemented using a combination
of HTML and CSS. All three frameworks leverage HTML directly to create the user
interface. They do extend HTML with additional tags or escapes to the framework lan-
guage. Proper (X)HTML has a strict syntax and clearly defines how page elements (tags)
can be nested. However, browsers are very liberal when it comes to the interpretation of
HTML. Therefore, faulty HTML code can result in surprising interpretations. By check-
ing the validity of page elements and element nesting before a page is sent to a browser,
interpretation problems can be avoided.

A.2.1. Usage of Valid Page Elements M R C

Rails Runtime + −
Seam Runtime + +

Lift Runtime − −

While none of the frameworks check if used HTML tags
are valid, they typically do perform checks on their own
framework-specific extensions to HTML. This subsection fo-
cuses on these special page elements.

Rails’ default template language ERB does not use stan-
dard XML-style tags for defining dynamic page elements, but instead uses escapes to
Ruby code. The following code generates a link to another page:

<%= link_to "My Blog", posts_path %>

Using an undefined linkto page construct (instead of link_to) results in an undefined
method error, instead of reporting an invalid page element. As Ruby simply checks for
general errors instead of a domain-specific ones, a conceptual mismatch arises when
reporting such errors. Still, the error does pinpoint exactly the line where the error
occurs.

Seam uses XML tags to render controls and realize control flow within the user inter-
face. The following code renders a label.

<h:outputLabel id="UsernameLabel" for="username">Login Name</h:outputLabel>

When using an undefined page element, say h:outputLabe instead of h:outputLabel,
the following error is reported when the user interface is loaded:

/home.xhtml @23,54 <h:outputLabe> Tag Library supports namespace:

http://java.sun.com/jsf/html, but no tag was defined for name: outputLabe

While it is reported at run-time, the error provides a clear domain-specific error message
and clear location of source of the error.

Lift, like Seam, uses XML tags to define dynamic page elements and page flow:

<lift:surround with="default" at="content">

<h2>Welcome to your project!</h2>

<p><lift:helloWorld.howdy /></p>

</lift:surround>

Using an undefined element lift:surrond instead of lift:surround can result in con-
fusing errors as illustrated in Fig. A.2. The error appears when the user interface is
loaded, and cannot be traced back to its origin.

A.2.2. User Interface Element Nesting
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Fig. A.2. Lift exception when opening invalid tag M R C

Rails Browser − −
Seam Browser − −
Lift Browser − −

While all three frameworks base their user interface spec-

ifications on HTML, they do not check HTML validity,

i.e. the correctness of tags and their nesting. For instance,

when a <td> tag is used outside a <table> tag, none of the

frameworks report an error. When the page is loaded in the

browsers, the invalid tag is simply ignored, a silent error. Unlike Rails, Lift and Seam do

check whether the defined user interface is a well-formed XML document.

A.2.3. Consistency of References to the Data Model and to Pages

We discuss consistency of references to data model entities and to other pages in

Section 2.4.

A.2.4. Consistency of Action and Controller Binding M R C

Rails Runtime − +

Seam Runtime + −
Lift Runtime − −

To submit information in a form, a target controller

or action has to be specified to handle the action. The

three frameworks handle this in different ways.

Rails provides a convenient way to generate a form

at run-time that can be used to create or edit entities,

using the form_for construct:

<% form_for(@post) do |f| %>

...

<%= f.submit ’Update post’ %>

<% end %>

This construct does not explicitly specify an action that should be used when the form is

submitted. Instead, it follows the convention that entity controllers should have a create

action for creating an entity, and an update action to edit it in case it already existed. An

error is reported when submitting the form for an object for which the controller defines

no update action (perhaps it provides a modify action instead). Rails then reports an

unknown action error: “No action responded to update. Actions: create, destroy, edit,

index, new, show, and modify.” Although no file or line number is provided, the error

message is domain-specific and helpful.

Rails provides additional options when binding a form to an action. One option is the

ability to let the user confirm the invocation of an action, e.g. when clicking a “Destroy”

link. To this end, the :confirm keyword is used. However, when the :confirm keyword
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is mistyped (e.g., as :confirmation), Rails does not detect this in any way. The keyword
is simply ignored, resulting in immediate deletion of the entry, without any confirmation:

<%= link_to ’Destroy’, post, :confirmation => ’Are you sure?’,

:method => :delete %>

In Seam, the commandButton element links a form to controller actions:

<h:commandButton id="change" value="Change"

action="#{changePassword.changePassword}"/>
As these elements are part of view templates, they are not checked at compile-time.
Possible errors, such as links to undefined actions, are only detected at runtime, once the
button is used. Using an undefined controller in the action attribute results in a Seam
Debug screen; when scrolling down the actual exception can be seen:

Exception during request processing:

Caused by javax.servlet.ServletException with message:

"#{changePassword.changePasswor}:

javax.el.MethodNotFoundException:

/password.xhtml @37,91 action="#{changePassword.changePasswor}":

Method not found: Proxy to jboss.j2ee:ear=jboss-seam-booking.ear,

jar=jboss-seam-booking.jar,name=ChangePasswordAction,service=EJB3

implementing [interface org.jboss.seam.example.booking.ChangePassword]

.changePasswor()"

The supplied MethodNotFoundException is hardly descriptive or domain-specific, but
the error be traced back to its origin as the filename and line and column numbers are
provided.

A.3. Logic, Action, and Controller Consistency Checking

The logic of a web application is typically defined in controllers, sometimes subdivided
into actions. Like the user interface part of the web applications, controllers contain
references to other parts of the applications, such as the user interface and data model.
Consistency checking can ensure that these references are valid and remain valid as an
application is changed.

A.3.1. Consistency of Data Model References M R C

Rails Runtime + −
Seam Compile + +

Lift Compile + +

Controllers use references to the data model to persists
data to the database, to read or write properties, or to per-
form queries.

In Rails, references to undefined entity types are reported
as “uninitialized constant” errors when the code is invoked
at runtime. The error exposes implementation details of the framework and can be con-
fusing to developers, especially since the framework internally prefixes the entity name
with the controller name. For instance, when an undefined entity E is referenced from
controller C, the following error is reported: “uninitialized constant C::E”. Still, the ac-
companying stack trace refers back to the code in which the error occurred, so the error
can be traced back to its source. Nonexistent properties are reported in a similar fashion,
but identified as an “undefined method”.

In Seam and Lift, controllers are written in Java and Scala, which are statically checked
at compile time. References to undefined entity types are reported as “X cannot be
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resolved to a type”. And non-existing properties in Scala are reported as “not a member

of type X”.

A.3.2. Consistency of Redirects to Pages M R C

Rails Runtime − −
Seam Runtime − −
Lift Runtime − −

Similar to links in views, it is also common for controller

code to redirect the user to a different page or controller.

In Rails, redirecting the user to different controllers and

actions is done using redirect_to:

redirect_to :action => "index"

When an incorrect action name is used, for example by using "home" instead of "index",

an unexpected error occurs when the controller is invoked: “RecordNotFound” error:

“Couldn’t find Post with ID=home.” Apparently, when an action is not defined, the

action name is interpreted as an entity identifier in some cases. The error is reported as

part of the show action of the controller, but there is no reference to the location of the

actual error.

In Seam, redirects to pages are performed by returning the URL as the return value

of an action:

return "/index.xhtml";

Lift has a redirectTo method for this purpose:

redirectTo("/index.html")

Similar to links in views, these redirects are not checked and specifying a redirect to an

undefined page simply result in “404 not found” errors for the end-user.

A.3.3. Consistency of Data Binding M R C

Rails Runtime − −
Seam N/A N/A N/A

Lift N/A N/A N/A

Forms can be used to create or modify entities in

the data base. By specifying a data binding between

form elements and entity properties, frameworks can

directly interpret the results of a submitted form, cre-

ating or updating an entity.

In Rails, data can be bound to entities by passing the map containing the HTTP

(POST/GET/PUT) request values to the constructor of a new object:

@post = Post.new(params[:post])

However, if a mistake is made in the expression, e.g. by inappropriately using :get when

the form was changed to use a POST request or simply mistyping submit method, no

error is reported. The result is that no data is bound to the properties of @post at all,

often resulting in a validation error and empty input fields as can be seen in Fig. A.3.

In Seam and Lift, controls are attached to an entity property and perform data binding

themselves, they retrieve the value from the property and write back the value when a

new value is entered. Therefore no data binding faults are possible, other than referring

to non-existing properties and entities (discussed in Section A.3.1).
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Fig. A.3. Rails reports validation errors when making errors in data binding

A.4. Access Control Consistency Checking

Access control can be used to restrict parts of web application to authenticated users.

Access control rules that depend on the database (as they typically do) contain data

model references that should be checked for consistency. Some frameworks allow access

control rules to be defined separately from the user interface and controllers. Any bindings

to pages and actions should also be checked for consistency. (We will not discuss these

bindings here since they are treated in very similar to bindings from other parts of the

application.)

A.4.1. Consistency of Data Model References

M R C

Rails Runtime + −
Seam Runtime - −
Lift Compile + +

Rails uses the before_filter construct to invoke a

method before actions within a controller are invoked:

before_filter :authorize

def authorize

auth_user = User.find_by_id(session[:user_id])

unless auth_user && auth_user.age > 10

redirect_to(:controller => "accessDenied", :action => "accessDenied")

end

end

Errors are found when the authorization method is invoked,

and are reported with clear indication of the source of the error.
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In Seam, access control rules can be defined in a separate rule language:

rule CreateBlog

no-loop

activation-group "permissions"

when

mbr: Member()

acct: MemberAccount(member.memberId == mbr.memberId)

check: PermissionCheck(target.memberId == mbr.memberId,

action == "createBlog", granted == false)

then

check.grant();

end

This DSL is not verified at compile-time. When a property is referred to that does
not exist, e.g. target.memberid instead of target.memberId, the error is reported at
the level of the page, instead of in the rule file: “RuntimeDroolsException: Exception
executing predicate target.memberid == mbr.memberId.” A location in the source code
is supplied, but this refers to the location where the problem occurred, not the actual
origin of the error: the rule file.

In Lift, access control rules are expressed using Scala expressions, in which invalid
references to the data model are detected at compile time.
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