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A B S T R A C T

Fibre bridging is an important phenomenon influencing the mode I delamination growth behaviour in composite
materials. Accurate modelling of this phenomenon is required in order to be able to account for its effects in
damage tolerance evaluation of composite structures. Therefore, this study introduces a novel physical model to
isolate and quantify the contribution of fibre bridging to Mode I fatigue delamination. The model distinguishes
between monotonic and cyclic components of fibre bridging stress, capturing their individual effects on the strain
energy release rate (SERR) in the Paris curve. The monotonic component, based on the Sørensen model, accounts
for pre-cracking effects, while the cyclic component is derived by integrating a bridging stress function over the
end-opening displacement, with both components modelled by empirical exponential relationships. The model
has been validated against established methods such as the Yao model and specific extrapolation techniques,
demonstrating improved accuracy in fitting the Paris curve, particularly in accounting for the monotonic in-
fluence in the shift of the SERR and the cyclic contribution to the curve slope. Importantly, the model requires
only one quasi-static and one fatigue test, reducing the experimental workload. In conclusion, this method
provides a more accurate characterisation of fibre bridging effects, making it a robust tool for fatigue delami-
nation analysis.

1. Introduction

Delamination is a damage phenomenon that affects laminated
composites and is capable to degrade their structural integrity and
reliability [1]. It follows that the accurate prediction and mitigation of
delamination are essential in the optimized design of composite struc-
tures [2]. Detailed characterisation of delamination, including physical
interpretation at the coupon level, can provide reliable parameters for
simulating the structural behaviour of composite components and
full-scale structures [3,4]. Improved delamination modelling capabil-
ities will allow engineers to predict failure modes and service life with
greater accuracy, thereby improving the overall efficiency and safety
margins for the design [5].

One key phenomenon affecting Mode I delamination growth is the
fibre bridging effect (FB), meaning fibres bridging across the two faces of
the delaminated interface spanning the delamination crack plane, which

has the main effect of increasing the resistance to the crack growth [6].
This phenomenon introduces additional complexity into the delamina-
tion process as bridging fibres can lead to non-linear fracture mechanics
behaviour [6]. Various experimental techniques have been employed to
gain a better insight into the mechanisms involved in fibre bridging. Yao
et al. [7] used in-situ scanning electron microscopy to open the delam-
ination and observe the fracture and bridge formation process. Alter-
natively, X-ray microtomography has been used to provide an internal
view of the fracture aspects and fibre bridges [8–10]. Acoustic emission
(AE) has also been used to identify the type of fracture, with signal filters
allowing the fracture signals to be distinguished from adhesive/cohesive
and fibre breaks, which produce a higher signal [11,12].

Although a proper understanding and quantification of fibre bridging
would improve the precision of delamination fatigue growth estimations
by refining the current analytical and numerical models [13], measuring
the effects of fibre bridging presents significant challenges. Fundamental
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difficulties include accurately quantifying the contribution of bridging
during crack propagation and accounting for the variability in
fibre-matrix interactions [14,15]. In addition, standard test methods
may not fully capture the complexities introduced by fibre bridging
[16], requiring the development of advanced experimental techniques
and computational models.

Fibre bridging is observed both after quasi-static and cyclic loading
application. Under quasi-static loading, bridging fibres cause an increase
in the fracture toughness value (Gc), visible in the crack growth resis-
tance curve (R-curve) [17]. In the cyclic regime, the effect of the fibre
bridge is similar to quasi-static, increasing the resistance to crack
opening and causing a shift in the Paris curve to higher strain energy
release rate (SERR) values [18]. As a result, in both cases the fibre bridge
creates a higher resistance to propagation compared to what would
happen in a theoretical ‘clean’ crack tip, i.e., without the bridging effect.
Given the change in interlaminar fracture behaviour caused by the fibre
bridge effect, an important question arises: what is the actual influence
of the fibre bridge on fatigue crack propagation? Specifically, how
would the crack behave in the absence of the fibre bridge and howwould
the resulting Paris curve be affected? These questions are particularly
relevant because although fibre bridging is usually seen in coupon-scale
laboratory tests, it is unclear to what extent it occurs in full-scale
structures. To answer these questions, different methods have been
used to isolate the fibre-bridging toughening effect.

First, methods have been developed to numerically/analytically
quantify the bridging effect. Tian et al. [19] proposed three phenome-
nological methods (bilinear cohesive zone model, virtual crack closure
technique and extended finite element method) and cohesive zone
model (CZM) with multi-linear constitutive relation to represent the
R-curve and bridging traction effect. The results were validated against
experimental data and showed that the multi-linear CZM provides a
better fit to the R-curve as it better expresses the constitutive relation-
ships by taking into account the initiation, propagation and bridging
stress parameters. Yao et al. [7] applied opening delamination in situ in
an SEM and used a bilinear cohesive zone formulation through an
ABAQUS subroutine to estimate the bridging behaviour. Although in
this approach the bridging effect was not modelled, the results
emphasised the importance of proper correction of the cohesive law,
considering the fibre bridging contribution to the delamination growth.

A physical modelling of the bridging contribution is provided by the
bridging laws methods. Fibre bridging provides resistance to opening
delamination due to the induced closure stress. Consequently, the effect
of fibre bridging is described by bridging laws, which express the rela-
tionship between the bridging stress and the crack opening displace-
ment. A bridging law defines how the fibre bridging stress correlates
with the crack opening displacement [6,20]. This approach has been
widely developed using the J-integral based on phenomenological or
analytical approaches. Sørensen et al. [21] applied the bridging law
experimentally and captured the resistance to crack propagation as a
parameter equal to the strain energy, by integrating the stress through
the end-opening of the bridging zone using the J-integral equation. They
found no dependence on specimen geometry. Kaute et al. [22] presented
a model by analysing the micro-mechanisms contributing to fibre bridge
failure, considering only the fibre pull-out mechanism. Later, Sørensen
et al. [23] developed a similar micromechanical model to predict the
fibre bridging law, considering normal tension for mode I and tangential
tension for mode II. A similar approach has also been developed to
capture mixed-modes [24], and the effect of a hybrid composite with
two types of fibres (carbon and glass) at the delamination interface
under cyclic loading [25].

Joosten et al. [26] investigated the interlaminar properties with fibre
bridging and demonstrated an overlap between experimental curves and
finite element (FE) model predictions under cyclic loading. Their work
also highlighted a shift in the Paris curve for larger crack openings due to
increased pre-crack length and fibre density. In addition, they observed
that mode I is more affected by fibre bridging than mixed mode

conditions. Similarly, Dávila et al. [27] performed a numerical analysis
of the effect of fibre bridging on the cohesive law with fatigue damage,
revealing a shift in the Paris curve when comparing cases with and
without fibre bridging. The application of models based on
traction-separation behaviour or the bridging law has been implemented
for both quasi-static and cyclic loading through cohesive zone FE
modelling, demonstrating that fibre bridging plays a crucial role in the
observed increase in toughness [28,29].

In contrast, other methods have been developed to remove the
bridging effect directly from the Paris curve in a coupon level test. One
method was the step sawing of the fibres, which can be used to remove
the bridging fibres and estimate the properties of an ‘unbridged’ crack
[30,31]. However, the small crack opening makes cutting the entire
fibre bridge region impossible, especially near the crack tip. This forces
the use of interpolation to capture the zero-bridging effect. To overcome
the interruption and manual removal of fibres, several numerical and
analytical models are available in the literature [19,32,33].

Focusing on removing the fibre bridging effect for fatigue curves, Yao
et al. [34,35] proposed an empirical model based on the
Hartman-Schijve equation to determine the linear region and remove
the fibre bridging impact by reducing the values of fracture toughness
(GIC) and Gthr as a function of crack size. This is performed by assuming
the absence of fibre bridging as the crack size approaches zero.

On the other hand, Alderliesten [36] proposed a three-dimensional
planar interpolation of the Paris curve and the pre-crack length. The
concept is similar to that proposed by Yao, where the reduction to zero
pre-crack length removes the effect of fibre bridging. However, both
methods require many tests to derive the Paris curves to fibre bridge
saturation. The interpolation approach to be adopted is also not
uniquely defined in these methods and is open to interpretation. In
addition, while the literature addresses the physical aspects of the fibre
bridging contribution to the Paris curve, to the best of our knowledge no
studies have specifically analysed the monotonic and cyclic contribu-
tions of the bridging effect in terms of changes in opening stress and
fracture toughness properties, shifting the Paris curve. This gap defines
the primary objective of this work.

In order to overcome the aforementioned limitation in the literature,
this work aims to present the development, application and validation of
an analytical model to characterise the fibre bridge effect in mode I fa-
tigue delamination. As a result, the proposed model aims to explicitly
provide the contribution of the monotonic and cyclic components of the
fibre bridge phenomenon based on physical aspects. In addition, the
proposed methodology can potentially reduce the number of experi-
ments for removing the bridging effect or simulating the fibre bridge
saturation on the Paris curve, thus reducing the cost and time of fatigue
characterisation.

2. Materials and methods

Pre-impregnated unidirectional (UD) carbon fibre IM7/8552 from
Hexcel® was used to produce composite laminates. The laminates were
lay-up with 24 layers according to the stacking sequence [0]24. Curing
was performed in an autoclave using the manufacturer’s recommended
curing parameters of 120 ◦C for 2 h and 180 ◦C for 4 h, with a vacuum of
0.2 bar and a pressure of 7 bar throughout the process.

The specimens were cut on a diamond disc according to the stand-
ardised dimensions of ASTM D5528 [37], i.e. 160 x 25 × 3 mm3, with a
PTFE insert to give a length of a0 = 50 mm, measuring from the load
application line to the tip of the insert. Aluminium loading blocks with
dimensions of 20 x 25 × 10 mm were used to mount the samples to the
test rig. Mode I fatigue tests were carried out following ASTM D6115
[38]. A universal servo-hydraulic machine (MTS) with a 500 N load cell
was used. The tests were performed under displacement-controlled
conditions at a frequency of 2.5 Hz, with a load ratio of 0.1 and con-
stant amplitude. In this study, all parameters influencing crack propa-
gation behaviour - such as frequency, loading ratio, amplitude and
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lay-up - were carefully controlled and held constant. This approach
allowed us to isolate the effect of pre-crack variation, focusing specif-
ically on the characterisation of fibre bridging. The maximum strain
energy release rate (Gmax) was calculated following the compliance
calibration (CC) method from ASTM D5528 [37].

The increase in crack size was observed by taking images every
100–1000 cycles and post-processing using the ImageJ software. Addi-
tionally, the end-opening growth (δ*) - the opening in the region of the
fibre bridge - was measured manually by post-processing the images
obtained during the test, ensuring measurement in the region where the
fibre bridge is initiated (Fig. 1a), using opening measurement parallel to
the load application.

3. Model development

Sørensen et al. [39] developed a relation to measure the fibre
bridging stress in mode I intralaminar damage progression in
quasi-static loading regime. The formulation follows the J-integral rela-
tion and considers the equality with strain energy (GI). The fracture
toughness as a material property is generally considered to be constant
for homogeneous materials. However, in the context of composites,
several damage mechanisms, such as fibre bridging during crack growth,
result in a variation in apparent fracture toughness. This variation
manifests itself as a non-constant resistance versus crack length,
commonly observed in R-curves [40,41]. The difference between the
energy at steady-state (GS) and at the start of propagation (G0) is directly
related to the elastic energy stored in the fibre bridges (Equation (1)).
When evaluating different thicknesses, the stiffness of the material in-
creases, and fibre bridge saturation starts to occur at larger crack sizes
[39]. However, Sørensen [39] observed that the fibre bridge saturation
has the same value of maximum end-opening (δ*) even when the stiff-
ness of the composite changes due to the different thickness applied,
where δ* is the opening displacement in the region of the fibre bridge
zone (Fig. 1a). The fibres begin to break when the critical opening
displacement is reached [23], which makes the approach more wider for
different configurations of composite materials. At the same time, new
fibre bridges are formed at the crack tip and the length of the bridge
region stays constant, as the bridging region moves forward with the
growth of the delamination [21]. Therefore, the integral across the
end-opening of the fibre bridging stresses equals to the difference

between the initiation and saturation of strain energy (G) of the R-curve
[21,39,42].

Gr =G0+
∫ δ*

0
σ(δ*)dδ*, σ(δ*)= ∂Gr

∂δ*
(1)

where, Gr is the fracture toughness, G0 is the energy release rate at the
crack tip (zero-bridging), δ* is the end-opening in the fibre bridging
opening, δ*sat is the end-opening at saturation of the fibre bridging level
(which changes Gr by Gs), and σ(δ*) is the fibre bridging stress at the
given end-opening.

From the fitting of the R-curve based on end-opening (Gr–δ*),
Sørensen et al. [39] defined Equation (2) to model the growth of relative
fracture toughness considering the bridging law in the quasi-static
regime. By combining Equation (1) and Equation (2) and considering
that G0 andΔGs (strain energy at saturation region minus G0) are con-
stant with respect to δ*, we obtain equation (3). As the R-curve reaches
its steady state value GS when δ* is equal to δ*sat (δ

*
min < δ* < δ*sat), the

bridging zone maintains a constant length and a self-similar opening
profile [39]. Based on this, the fibre bridging stress is given by Equation
(3) and results in the fibre bridging stress along the end-opening, which
represents the bridging stress along the fibre bridging zone (Fig. 2b).

Gr =G0 + ΔGs

(
δ*

δ*sat

)1/2

(2)

σ(δ*)= ΔGs

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

δ* • δ*sat
√ , for δ* > δ*min (3)

Where, σ is the fibre bridging stress, δ* is the end-opening at the bridging
zone, ΔGs is the difference between minimal and maximal strain energy
in the R-curveΔGs =Gs − G0, andGS is the strain energy at the saturated
fibre bridging region (steady-state region).

Equation (3) provides a stress tending to infinity for zero opening
and does not explicitly impose a limit on the maximum end-opening. To
overcome these limitations, the following boundary conditions were
applied: i) a linear interpolation was used between the maximum and
zero stress to simplify the representation of bridging formation, from
zero-bridging to the onset, σ(δ*) = m • δ*, for δ* < δ*min, where m =

Fig. 1. a) Definition of open delamination δ (load region) and end-opening δ* (fibre bridging region), and b) illustration of incremental end-opening during fatigue
delamination as a function of compliance change.
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σ
(
δ*min

)
/δ*min; and ii) The stress is set to drop to zero after the maximum

end-opening (δ*sat) to ensure that no additional energy is introduced
beyond the point of fibre bridge saturation, σ(δ*) = 0, for δ* > δ*sat.

This formulation of the bridging stress was previously developed for
the quasi-static regime but could also be used to explain the shift of the
Paris curve at higher strain energy values due to the increase in fibre
bridge stress. On the other hand, a shift in the Paris curve towards lower
SERR values can be obtained if the energy associated with the fibre
bridge stress is removed. This would provide the zero-bridge curve
reflecting the inherent fracture toughness without fibre bridge effects
[43]. According to Yao et al. [34], the R-curve in fatigue is not the same
as in quasi-static loading. This highlights the importance of not using a
simplified normalisation of the similitude parameter in Paris equation
(Gmax/GIC, taking GIC from QS), as the cyclic contribution generates an
important contribution to the fibre bridge densification. However, the
fibre bridging stress curve remains unchanged because the stress
transfer mechanisms governing fibre bridging are primarily determined
by the fibre-matrix interaction and the intrinsic properties of the fibre.

Starting from this, the first consideration is that the end-opening is
not constant during the fatigue regime, and thus becomes a function of
cycle: δ*(N). This behaviour was experimentally observed in this work
during crack growth under cyclic loading. There is a change in
compliance due to the crack propagation, and consequently in the end-
opening region. The compliance changes the beam bending and

increases the end-opening along the cycles δ*(N0) < δ*(N1) < δ*(N2),
which has the effect of increasing the fibre bridge density and the cor-
responding stress (Fig. 1b) – even considering that displacement control
was used during cyclic loading (i.e. dmax = d0 = d1 = d2). The end-
opening increment as a function of cycle number can be modelled by
the power law in Equation (4), in which the initial end-opening δ*QS is
defined during the pre-crack testing, following the standard.

δ*(N)= δ*QS • N
m1 (4)

where, δ*QS is the initial end-opening at the quasi-static level of the pre-
cracking definition, N is the number of cycles, and m1 is a fitting
constant.

Based on this principle, there is then an additional dependency of the
fibre bridge stress as a function of cycles σ*(N) to be included in the
model. The fibre bridge (FB) stress is modelled with the Basquin-law
[44], Equation (5). It is assumed that the gradual increase of (δ*)
values as well as the progressive reduction in bridging stresses can be
interpolated via an exponential relationship.

σ*(N)= σ*QS • Nm2 (5)

where, σ*(N) is the FB stress σ*(δ*) as a function of number of cycles,
σ*QS is the initial stress (from the quasi-static relation) and m2 is a fitting
constant.

Fig. 2. Illustration of: a) open displacement (d) at the load region and end-opening (δ*) at fibre bridging region; b) fibre bridging stress from the quasi-static test and
illustration of bridging in pre-cracking and fatigue loading through fibre bridging stress curve, c) end-opening (δ*) along the cycles, and d) Fibre bridging stress along
the cycles.
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Fig. 2a shows the results of the displacement (d) controlled fatigue
loading in the loading region, indicating that end-opening increase is
governed by the crack growth relation and the change in bending of the
beam (illustrated in Fig. 1b). This change of end-opening is related to the
generation of bridging fibres. During a quasi-static test, the influence of
fibre bridging can be observed by the change in Gr (R-curve). In a fatigue
test, it can also be observed by the shift of the Paris curve to higher SERR
values as longer pre-crack lengths are used [45–47], but also by the
change in compliance of the beam during the fatigue delamination
growth, increasing the fibre bridging density and, consequently,
providing an increment on the stress resisting to the crack opening.
Fig. 2b provides the stress of bridging at the quasi-static level, calculated
from Equation (3), which represents the stress distribution along the
bridging region, and the area under the graph is associated with the
crack growth resistance energy. The initial linear region represents the
part of the curve where the fibre bridge begins to form and adds
contribution to the crack opening resistance, with the maximum stress
occurring at the minimum opening value. Whilst extending the curve to
zero end-opening would theoretically lead to infinity, there is a finite
region at the crack tip where starts the bridge formation. Fibre bridging
occurs progressively within the damage zone rather than instanta-
neously, avoiding singularities in the stress distribution. In addition, an
infinite bridging stress is not physically possible as the material has a
finite strength and the fibre bridging mechanism is inherently limited by
the mechanical properties of the fibres and matrix [48]. To overcome
that, a linear fit was applied (following boundary condition i, defined
above) between the maximum stress and zero to represent the growth of
the fibre bridge from zero to its onset [7,19,49].

The fibre bridge zone moves with the crack propagation and the
energy under the stress curves remains constant throughout the propa-
gation, keeping the Gr curve constant at bridge saturation. The fibre
bridging stress curve region grows from the initial quasi-static contri-
bution (blue region and the FB stress – Fig. 2b). Applying the cyclic
loading under displacement control, crack propagation causes a change
in the compliance of the material, increasing the end-opening values and
shifting the stress curve forward (red region under FB stress – Fig. 2b).

Considering the crack propagation and the increasing end-opening
(δ*) values during cyclic loading, the power law-based Equation (5) is
applied for a specimen with a–a0 = 4.98 mm. δ* is measured in the re-
gion shown in Fig. 1a. Additionally, Fig. 2d shows the fibre bridge stress
relation over the cycles of the same specimen, i.e., a–a0 = 4.98 mm,
considering a displacement-controlled fatigue test. The curve in Fig. 2d
is calculated for each group of cycles using Equation (3), applying the
end-opening values based on the cycle-dependent function, as shown in
Fig. 2c. The end-opening (δ*) changes over the cycles, following the
variation of the bending of the specimen arms as the delamination
extended. This indicates an increase of bridging area until the crack
stopped growing; the crack arrest being a consequence of the test being
conducted under displacement control.

The choice of the power law to model the end-opening displacement
and fibre bridging stress evolution over cycles is based on the observed
behaviour of the experimental data (Fig. 2). In particular, the growth of
end-opening values is influenced by the compliance associated with
crack growth, resulting in an exponential-like relationship. The power
law provides a good fit for both cases (R2 > 0.99). Although this
approach simplifies some of the variability observed in the experiments,
it effectively captures the overall exponential behaviour of the data. The
power law function combines simplicity and representativeness. Once
the FB stress function is plotted as a function of the number of cycles, the
model can be adapted to ensure measurement of the strain energy
associated with crack growth during cyclic loading.

Considering that the pre-cracking produces an initial bridging stress
and the propagation during the fatigue provides a fluctuation of stress
over cycles, the energy associated with crack growth resistance from
fibre bridging can be divided into a monotonic (Equation (6)) and cyclic
(Equation (7)) component. Equation (6) is the result of the monotonic

contribution considering the end-opening δ* > δ*min which is summed to
the first part of fibre bridge formation adding the equation σ(δ*) =
[
σ
(
δ*min

)
/δ*min

]
• δ*, for δ* < δ*min. Both equations represents a constant

value throughout the fatigue test.

(GFBZ)monotonic =

∫ δ*QS

δ*min

σ(δ*)dδ*, for δ* > δ*min (6)

Equation (7) shows the crack growth resistance (associated with
SERR) as a function of the number of cycles. There is a difference be-
tween the end-opening from the quasi-static test δ*QS and from fatigue
test δ*(N) – related to the cycle number. By isolating the common
parameter (cycles N) of Equation (4), we developed Equation (8). In the
case of the initial end-opening application, the values of σQS are the
initial stress value of the fibre bridge and δ*QS is the end-opening
generated according to each pre-crack length. Applying Equation (8)
to Equation (5), replacing the new values of N, we obtain Equation (9)
which can be simplified into Equation (10).

(GFBZ)cyclic =

∫ δ*(N)

δ*QS

σ(δ*,N)dδ* (7)

N=

(
δ*(N)

δ*0

)1/m1

(8)

σ(δ*)= σQS

[(
δ*(N)

δ*QS

)1
/m1

]m2

(9)

σ(δ*)= σQs • δ*QS
(− m2/m1)

• [δ*(N)](m2/m1) (10)

where, δ*QS represents the end-opening for pre-crack formation (quasi-
static) and the δ*(N) is the values represent the end-opening for cycle
(N).

By collecting the constant parameters in the form of k = σQs •

δ*QS
(− m2/m1) we can compress Equation (7) into Equation (11). The inte-

gral solution is given in Equation (12). After streamlining the integral
and again expanding k, Equation (13) is obtained, representing the
empirical model of the cyclic contribution of the fibre bridge to the
strain energy values (GFBZ)cyclic.

(GFBZ)cyclic =

∫ δ*(N)

δ*QS

k•δ*(m2/m1)dδ* (11)

(GFBZ)cyclic = k

⎡

⎢
⎣
(δ*)((m2/m1)+1)

m2
m1

+ 1

⎤

⎥
⎦

δ*Nmax

δ*QS

(12)

(GFBZ)cyclic =
σQs • δ*QS

(− m2/m1)

m2
m1

+ 1

⎧
⎨

⎩
[δ*(N)]

(
m2
m1

+1

)

−

⎡

⎣
(

δ*QS
)

(
m2
m1

+1

)
⎤

⎦

⎫
⎬

⎭
(13)

The constants m1 and m2 were calculated by exponential fitting
Equations (4) and (5) using OriginLab® software. The model shows that
a relationship of m2 = − 0.5m1 governs, taking into account an energy
balance condition and an empirical dependence of the system on the
relationship between the slope of end-opening growth δ*(N) and the
resulting stress σ*(N). This statement can be validated by comparing the
slopes in Fig. 2d (corresponding to m2) and Fig. 2c (corresponding to
m1), where the ratio m2/m1 = − 0.5 (− 0.0545/0.1089). Equation (13)
can therefore be simplified to Equation (14). Finally, the contribution of
the fibre bridge to the total SERR values is represented by the sum of the
monotonic and cyclic contributions based on superposition principle
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(Equation (15)).

(GFBZ)cyclic =
(
2σQs •

̅̅̅̅̅̅̅

δ*QS
√ )( ̅̅̅̅̅̅̅̅̅̅̅̅

δ*(N)
√

−

̅̅̅̅̅̅̅

δ*QS
√ )

(14)

(GFBZ)total =(GFBZ)monotonic + (GFBZ)cyclic (15)

where, GFBZ,i represents the strain energy related to the fibre bridging
zone for initial quasi-static monotonic loading and for cyclic loading.

The use of the superposition principle (Eq. (15)) in the proposed
model is justified by the need to distinguish and quantify the monotonic
and cyclic contributions of the energy stored in the fibre bridge zone,
which provides resistance to crack propagation. As can be seen in the
literature [31,43], the increase of the pre-crack length produces a
densification of fibre bridging, which causes the shift of the curve to-
wards higher SERR values, keeping the slope of the curves very close to
each other. This principle is applicable because themonotonic and cyclic
components are associated with different physical phenomena that
occur at different stages during the fatigue test:

• Monotonic component (GFBZ)mono: Represents the energy storage
during pre-crack initiation under quasi-static loading. It can be
considered constant throughout the test as it provides the initial in-
crease in strain energy from which the crack then develops further
during cyclic loading. This contribution is therefore directly related
to the initial resistance of the fibre bridge zone before the cyclic
variation.

• Cyclic component (GFBZ)cyclic: It is associated with the incremental
change in end-opening (δ*) and fibre bridge density during cyclic
loading due to the change in compliance during crack growth. The
cyclic energy is modelled as a function of the number of cycles and
reflects the progressive behaviour of saturation and stress redistri-
bution in the fibre bridge zone.

The mathematical model developed is based on the separation of
these contributions. The sum of these components (Eq. (15)) allows the
description of the global behaviour of the crack propagation resistance
(GFBZ)total, respecting the boundary conditions and the physical phe-
nomena observed experimentally. The fit of the experimental data to the
model (which will be shown below) confirms the validity of the
approach, while the application of the superposition principle simplifies
the interpretation of the results, and the quantification of the energy
associated with the fibre bridging zone.

Furthermore, the superposition principle is consistent with the J-
integral based formulation, which considers the total energy as the sum
of local contributions associated with different regions of the crack. This
approach allows, for example, the derivation of adjusted Paris curves
(with and without the effect of fibre bridges). In other words, it is
possible to subtract the fibre bridge stress directly from the experimental
Gmax values to generate the zero-bridging Paris curve. Similarly, this
work proposes to add the fibre bridge stress to estimate the Paris curve
with fibre bridge saturation. This reduces the number of experiments
required for such characterisation.

Fig. 3a shows the evolution of the crack-opening resistance due to

Fig. 3. a) Illustration of monotonic and cyclic strain energy, b) SERR versus cycles, and c) effect of fibre bridging in Paris curve.
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fibre bridging. The lower part of the curve (blue region) is associated
with the monotonic resistance energy that comes from quasi-static pre-
cracking developed prior to the fatigue test to determine the values of
a–a0. The result above the monotonic region represents the non-constant
cyclic contribution. The trend of the cycle-varying contribution to SERR
is monotonically growing as fibre bridge density increases during the
cycles.

By considering the energy associated with bridging that has just been
derived, it is possible, for instance, to remove the bridging effect of the
experimental SERR G-N curve. In Fig. 3b, the Gmax curve (black square –
standard measurement of SERR) shows the experimental behaviour of
the strain energy decay over the cycles as the test is performed with
displacement control [50]. This curve is for the sample with a pre-crack
(a–a0) = 4.98 mm, which provides an initial bridging formation asso-
ciated with a monotonic contribution of fibre bridging stress that can be
associated with resistance to crack growth (GFBZ,mono). This fibre density
increases during the cycle propagation in a less extensive way than the
monotonic part, giving the strain energy growth curve during the cycles
(GFBZ,cyclic) according to Equation (14). The sum of both parameters
represents the superposition principle model (Eq. (15)). The red circles
in Fig. 3b are the same curve as in Fig. 3a, and both represent the (GFBZ,

total). Subtracting (GFBZ,total) from Gmax results in the removal of the en-
ergy storage associated with the fibre bridging stresses, giving the
intrinsic SERR curve without the effect of bridging Gmax,0 (blue triangles
– zero-bridging SERR).

Applying the same analysis to the Paris curve (Fig. 3c), we observe
the experimental curve Gmax (a–a0 = 4.98 mm), which generates the
Paris constants according to the relation in Equation (16) [51]. Applying
Equation (6), we have the GFBZ,mono curve, which represents the constant
resistance to the crack growth associated fibre bridge formation for the
4.98 mm pre-crack. In other words, the monotonic part is responsible for
the shift in the curve at higher values, as the GFBZmono values are con-
stant throughout the da/dN curve.

By adding the effect of the change in beam compliance in the fibre
bridging region due to cyclic loading, the impact of the bridge becomes
variable and increases with crack growth, as observed in the GFBZ,total
curve shown in Fig. 3c, which considers the monotonic + cyclic
contribution. This function is obtained by Equation (15), where the
monotonic contribution (Eq. (6)) is added to the cyclic contribution (Eq.
(14)) to give the total strain energy value associated with the fibre
bridge stress. By subtracting the GFBZtotal curve from the experimentally
measured curve (labelled Gmax in Fig. 3c), we obtain the zero bridging
curve, labelled Gmax,0 in Fig. 3c. As the monotonic bridging remains
constant, while the cyclic bridging contribution increases towards
longer crack lengths (corresponding to lower da/dN for displacement
control), the slope of the Gmax,0 curve is shifted compared to the Gmax
curve.

Equation (17) shows the relationship between the Paris curve (Eq.
(16)), which could provide the zero-bridging effect (intrinsic SERR) by
removing the energy storage from FB stress or adding the saturation of
the bridging effect for different pre-crack lengths (estimation of the Paris
curve with bridge saturation). Therefore, from the generic model, it is
possible to remove the effect of the fibre bridge or to estimate the fibre
bridge saturation of the Paris curve using at least a single static test to
provide the bridging stress curve and a fatigue test as a reference curve,
as shown in Fig. 3c through the Gmax,0 (zero-bridging) curve.

da
dN

= α
(
Gmax,i

)β (16)

da
dN

= α
(
Gmax,0

)β
= α
(
Gmax,i ± GFBZ,total

)β (17)

where, α and β represent Paris constants, and i represents the different
crack length index (i.e., i = a – a0).

While it is true that the Paris equation is a phenomenological model
rather than a fundamental law, it can still be used to make accurate

predictions when supplied with appropriate experimental data to cali-
brate the models, which provides a feasible engineering approach in
structural design [43,51,52]. To avoid unconservative crack growth
predictions, it is important to be able to correct for the effect of fibre
bridging during material characterisation experiments, as fibre bridging
may not occur in operational structures. On the other hand, if it can be
assured that fibre bridging will occur, then if designers wish to exploit
the toughening effect of the bridging, they need a tool that enables
quantification of this effect on crack growth. Therefore, the proposed
model focuses on clarifying the relationship between the physical
mechanisms of fibre bridging driving delamination growth and the
resulting macroscopic behaviour (Gmax), demonstrating its practical
utility.

4. Model application

4.1. Model application to quasi-static regime

In order to apply the fatigue modelling of the bridging effect, it is first
necessary to performmode I delamination under a quasi-static regime to
develop the stress curve of the fibre bridge, capturing the saturation of
the fibre bridge in terms of crack size and end-opening displacement
(δ*). Fig. 4a shows the results of the R-curve where the propagation
relation (a–a0) and fracture toughness values are established. It is
possible to observe the increase in GI values at the start of propagation
until the steady state is reached, i.e., GS – fracture toughness at saturated
FB. The determination of fibre bridge saturation, as reflected in the R-
curve, can vary from specimen to specimen as it is not a trivial task to
determine the exact moment when saturation begins. To ensure con-
sistency, we have defined crack growth saturation (as) by combining
both the R-curve and visual analysis of the specimen, as shown in
Fig. 1a.

The application of Equation (2) gives propagation resistances in the
initial propagation region and GS; an increase in strain energy is asso-
ciated with fibre bridge development. Fig. 4b shows the Gr curve as a
function of the opening in the fibre bridge region (end-opening δ*), with
the points representing the experiments and the curves in the solid and
dashed lines fitting Equation (2). To ensure higher reliability of the re-
sults and to account for material variability, three curves were gener-
ated, one from the average of the experimental results (solid lines) and
one each from the minimum and maximum regions of the experimental
points (dashed lines). The three curves represent the relative increase in
crack opening resistance work due to the presence of the fibre bridge
over the entire experimental range.

Following Equation (3), it is possible to generate the curve repre-
senting the stress distribution of the fibre bridge between the start of
propagation and the steady state region (Fig. 4c). This curve is plotted as
a function of the end-opening. After reaching the maximum end-
opening, the values drop to zero as the fibres break at the critical
opening. The maximum stress values σ0 are 112.25, 132.82 and 101.51
kPa for the average, maximum and minimum curves, respectively. The
maximum end-opening values were δ*sat = 1.42 mm for all cases. δ*sat
represents the maximum fibre elongation before rupture, which is
determined by the tensile strength of the fibre. Any value above this
threshold will inevitably lead to fibre breakage, as confirmed by
experimental observations in both quasi-static and fatigue tests. The
relation between the stress and resistance curves of the fibre bridge is
given by Equation (6), where the integral of the curve in Fig. 4c provides
the work of stress resistance associated with the G values in Fig. 4b [39,
53].

4.2. Model application to fatigue regime

Fatigue tests were carried out with different initial pre-crack values.
A larger pre-crack size favours an increase in the density of fibre bridges

F.M. Monticeli et al.



Composites Part B 297 (2025) 112319

8

and causes a shift in the Paris curve to higher values of Gmax experi-
mental. This happens since the higher density of the fibre bridge in-
creases the resistance to mode I delamination which now requires more
energy to propagate [31,43]. Similar to the literature, the experimental
curves of mode I fatigue crack propagation can be observed in Fig. 5. The
dots represent the experimental results, and the line are the Paris fitting
(Eq. (16)). In this figure, all curves include the effect of crack tip

propagation in addition to the resistance created by the fibre bridge,
which is directly associated with a distinct pre-crack length, i.e.,
2.35–31.80 mm.

The application of the proposed model (Equation (17) - reducing
bridging effect) to each curve in Fig. 5 yields the intrinsic Paris curves
without the influence of bridging effects, as shown in Fig. 6. The dots
represent the prediction curves based on zero-bridging, using Eq. (17),

Fig. 4. Quasi-static results: a) R-curve, b) The crack growth resistance as a function of end-opening, and c) e local bridging stress as a function of the local crack
end-opening.

Fig. 5. Experimental Paris curve relation with different initial crack lengths (a–a0).
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and the lines represents the Paris fitting. This reduction has been made
considering the maximum, minimum and average distribution of the
fibre bridging stress, as illustrated in Fig. 4c, following the description in
Section 3. In this way, the approach provides a good fit, considering that
all predicted curves with different pre-crack lengths fit in the same range
for each case of calculated bridging stress, i.e. average (Fig. 6a),
maximum (Fig. 6b) and minimum FB stress (Fig. 6c). The variability of
the experimental points remains when using the proposed model, as can
be seen in each curve.

The monotonic contribution is fatigue independent, as it results from
the removal of the fibre bridging stress during pre-crack formation,
which is constant at the start of the test. This constant bridging effect is
excluded from the similitude parameter Gmax in the Paris equation,
leading to a pronounced change in the constant alpha (α). On the other
hand, there is an increase in the contribution of the FB stress as a
function of the number of cycles as the end-opening increases during
fatigue propagation, which we denote as the cyclic component of the
bridging effect. In this way, the total integration of the stresses in both
the mono and cyclic tests gives GFBZ,total (mono + cyclic) and promotes
the reduction of the strain energy region and thus also changes the slope
of the Paris curve, which represents the zero-bridging Paris curve (Gmax,0
zero-bridging).

Fig. 7a shows the removal of the FB stress on the Paris curve
compared to experimental curves with different pre-crack lengths. The
caption identifies the experimental, the Paris fitting and the simulated
data (predicted based on the proposed model). From the experimental
data, it is possible to fit the new Paris parameters (α and β). The
reduction in the slope of the curve (β) was≈34%, changing from a range
of 15.23–17.14 (depending on the value of a–a0) to the range of

10.53–10.84. Similarly, a shift in the curve towards lower SERR values
can be observed as the stress generated by the fibre bridge is removed.

The range of possible fibre bridge stress values based on the vari-
ability in the quasi-static curve (Fig. 4c) can be analysed based on min,
max and average FB stress curves. In Fig. 7a, the minimum FB stress was
not able to guarantee the complete removal of the fibre bridge effect,
since the region of the intrinsic Gmax,0 (zero-bridging - minimum FB
stress) is in the same region as the one with the lowest fibre bridge
density in the experimental data (a–a0 = 2.35 mm). This suggests that
the minimum FB stress based on the model shown in Fig. 4c un-
derestimates the actual fibre-bridging stress. The new value of SERR
with zero-bridging (Gmax,0 zero-bridging) based on the average and
maximum effect of the FB stress show the biggest reduction, suggesting
an appropriate removal of the bridging effect.

The change in slope and decrease in SERR values for a given da/dN
compared to the standard Paris curve are the main parameters affected
by excluding the bridging effect (Fig. 7a). After the fibre bridging effect
is removed, the intrinsic SERR shown is dissipated only at the crack tip,
essentially by adhesive and cohesive failure. This damage mechanism
favours the toughness behaviour, compared to the curves that have the
bridging effect, evidenced by a decrease in the slope of the Paris curve.

It can therefore be empirically concluded that the removal of the
monotonic FB stress is mainly responsible for the reduction in opening
stress (shift to lower SERR). When the cyclic contribution is added, the
change in slope of the Paris curve is more pronounced, associated with
more fibre bridge formation in the final cycles (long crack length) than
in the early cycles. The range between Gmax,0 (zero-bridging), based on
either the maximum or the average FB stress, is recommended to ensure
a more conservative analysis of what can be considered in terms of

Fig. 6. Predicted zero-bridging Paris curve for: a) average FB stress b) maximal FB stress and c) minimal FB stress.
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complete removal of the fibre bridging effect.
The limitation of the model is the challenge of measuring the crack

opening in the fibre bridging zone, considering a region of small opening
(smaller than the loading region). To achieve this, it is necessary to use
methods with a measuring range of 0.03–1.42 mm, guaranteeing a
sensitivity of 10 μm. Errors in interpreting visual measurements from
image processing lead to a greater deviation in the Paris curves (Fig. 6).

Equation (17) can be adjusted to add, rather than remove, the fibre
bridge effect from an initial curve, giving Equation (18), where, i rep-
resents the average, maximal or minimal stress of FB,

da
dN

=αi
[

(Gmax)exp+
(∫ δ*sat

0
σ(δ*)dδ*

)

total FB stress
−

(∫ δ*QS

0
σ(δ*)dδ*

)

Pre− crack

]βi

(18)

With Equation (18), it is possible to predict the fibre bridge saturation
behaviour in the Paris curve without performing the full test (Fig. 7b).
Equation (18) represents the experimental Gmax values added to the
entire integral of the fibre bridge stress curve (Fig. 4c). It is important to
remove the fibre bridge stress already present in the experimental Gmax
curve so that the value associated with the FB stress from pre-crack
formation is not doubled. The experimental curve a–a0 = 4.98 mm
was used as a reference curve to simulate the Paris curve at fibre bridge
saturation and compared with the experimental results in the saturation
region a–a0 = 20.07 mm. The prediction curves were developed by
taking into account the range of maximum, minimum, and average
stress effects on the fibre bridge. In this case, it can be observed that the

predicted curve based on the average FB stress values overlaps the
experimental value, providing a better fit.

The variability between the proposed prediction model and the
experimental data (a–a0 = 4.98 mm) showed an average error of 4.62 %
in curve slope (β) for the model considering maximum, average and
minimum fibre bridge stress. On the other hand, it is possible to observe
a greater variability in the estimated SERR region (red area), where the
error between the simulated and experimental model was 7.38 % and
12.22 % for the minimum and maximum FB stress curves, respectively.
For the curve considering the average FB stress, the average error of
Gmax is 1.09 %, representing a very close fit to the experiments. This
indicates the feasibility of using average values to predict the effect of
fibre bridging to obtain the Paris curve in the steady-state region (fibre
bridge saturation).

To conclude, the advantage of the present model is the ability to
correct the slope and shift of the SERR from the integration of the fibre
bridge stress curve. Additionally, because the fibre bridging effect is
added to, or subtracted from, each datapoint individually (see Equations
(17) and (18)), the inherent variability of the material (i.e. the variation
around the log-linear fit of the Paris curve), is preserved, which is
desirable [36].

The minimum requirement for applying the proposed model is one
quasi-static test to measure the stress distribution of the fibre bridge and
a single fatigue curve. These two tests are sufficient to remove the effect
of the fibre bridge or to predict the behaviour of the curve at the steady-
state level of fibre bridge saturation. Fig. 3c illustrates the derivation of
the zero-bridging curve based a single fatigue curve with the quasi-static

Fig. 7. Paris curve: a) zero-bridging modelling and b) prediction fibre bridging saturation.
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test used to generate the average FB stress curve. Also, Fig. 7b shows the
estimation of the Paris curve with bridge saturation using a single
experimental curve (a-a0) = 4.98 mm, providing a validation with
experimental results. Therefore, the present model can potentially
reduce the number of experiments required to characterise mode I fa-
tigue delamination tests and explicitly incorporate the monotonic and
cyclic contribution of fibre bridging.

5. Validation and comparison to existing models

In order to validate the proposed model, a comparative analysis
between the experimental and other methods presented in the literature
is carried out in this section. First, the specimen specific extrapolation
method [36] is applied, where a second-order planar relation is applied
to the Log (Gmax), Log (da/dN) and pre-crack length (a–a0) data ac-
cording to Equation (19) [36].

Log(Gmax)=C0+C1(a − a0)+C2 log
(
da
dN

)

+C3(a − a0)2

+ C4
[

log
(
da
dN

)]2

(19)

where, C coefficients represent the fitting constants for each relation.
Changing the pre-crack level to zero (a–a0 = 0) assumes no fibre

bridging occurs [46]. This interpolation makes it possible to generate
the curve that removes the effect of fibre bridging. More information on
the method can be found in Refs. [36,46,54].

The second model adopted for comparative analysis is the method
proposed by Yao et al. [34,35], where the Hartman-Schijve [55] and
Jones et al. [56] equation (Equation (20)) is applied.

da
dN

= α
[

Δ
̅̅̅̅
G

√
− Δ

̅̅̅̅̅̅̅̅
Gthr

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
̅̅̅̅̅̅̅̅̅̅
Gmax

√ / ̅̅̅̅̅̅̅
GIC

√√

]β

(20)

where, Δ
̅̅̅̅
G

√
=
( ̅̅̅̅̅̅̅̅̅̅

Gmax
√

−
̅̅̅̅̅̅̅̅̅
Gmin

√ )
.

The upper (GIC) and lower (Gthr) values of the Paris curve are
reduced, considering the elimination of the bridging effect. The linear
portion of the Paris curve is then fitted to the new range, assuming no
fibre bridge effect. More specifically, to estimate an upper and lower
limit for the fatigue curve, √GIC,0 (fracture toughness at zero-bridging)
and √Gthr,0 (threshold SERR at zero-bridging) are obtained by plotting
the experimental values of both parameters (GIC and Gthr) against the
corresponding pre-crack extension lengths, a–a0. By fitting a second-

order polynomial curve to these data points, √GIC,0 and √Gthr,0 can
be extrapolated by setting the pre-crack extension length to zero [34,
35]. Applying these new values to the Hartman-Schijve equation gives a
curve with zero-bridging effect.

The two described models, i.e. the Yao method and specific extrap-
olation, were used to generate the zero-bridging curve and compared
with the curves previously derived with the model proposed in the
present paper. Fig. 8 shows the comparative results of an experimental
Paris curve (a–a0 = 2.35 mm) and the zero-bridging curves for each
model, highlighting only the Paris fitting. As mentioned above, using
minimum fibre bridging effect values cannot guarantee a significant
removal of the bridging effect, considering the overlap with the exper-
imental curve. The effect of the maximum FB stress provides the most
conservative region of the Paris curve. However, considering that the
proposed model is based on an estimate of the energy contribution of the
fibre bridge based on an analytical model from the quasi-static FB stress
curve, the average region can be considered the most realistic. In fact,
the average stress result in a Paris curve shifts similar to the other
models available in the literature. This can also be confirmed as a better
fit with the literature methods.

Removing the effect of the fibre bridge results in twomain changes to
the Paris curve. The first is to shift the curve towards lower strain energy
values due to the reduction in opening stress. The second is to change the
slope of the curve to account for the reduction in stiffness of the material
present in the fibre bridge. The proposed method using the average FB
stress gives a slope closer to the specific extrapolation model, i.e. a
difference of 4.53 %. On the other hand, the proposed model slope
shows a difference of 15.63 % with Yao’s method. The difference is
related to the challenge of determining a specific change in the slope of
the curve based on the upper and lower limits in terms of mathematical
regression fitting to determine the zero bridge in GIC and Gthr.

Table 1 shows the strain energy reduction factors and the difference
in the curve slope for each model used in Fig. 8, taking the experimental
curve a–a0 = 2.34 mm as the reference. The fractional reduction in Gmax
values was taken from the average percentage reduction of the entire
point-to-point curve. Looking at the effect of the decrease in Gmax values,
the greatest reduction is in the max FB stress, followed by the specific
extrapolation method, the Yao method, the average FB stress and,
finally, the min FB stress. However, considering that the slope of the
curve is modified, this difference in the reduction of Gmax values be-
comes dependent on β. This implies a second analysis, which is the effect
of changing the slope of the Paris curve. This means a reduction in the
material stiffness and the representation of a toughness behaviour of the

Fig. 8. Comparison analysis of zero-bridging Paris curve.
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delamination.
The proposed model shows a higher reduction in the slope of the

curve, followed by the specific extrapolation method and with a minor
change for the Yao method. The proposed model explicitly measures the
cyclic contribution of the FB stress (which is mainly responsible for the
change in the slope), whereas the other models make this reduction
empirically. This indicates that the proposed model is more sensitive to
characterising the effect of reducing the SERR and changing the
toughness behaviour to remove the fibre bridging effect. The proposed
model can be considered valid for characterising the effect of fibre
bridging on the Paris curves.

6. Conclusions

In this study, a novel physical model has been developed and vali-
dated to isolate and quantify the contribution of fibre bridging to fatigue
strength to fracture. The superposition principle model distinguishes
between two components of the SERR contribution of the bridging law
on the Paris curve: the monotonic component, which accounts for FB
stress from bridging developed during pre-cracking, and a cyclic
component, which captures variations during fatigue delamination. The
monotonic component is calculated using the Sørensen model, while the
cyclic component is derived by integrating a bridging stress function
over the end-opening displacement. These functions are interpolated
with exponential curves to establish empirical relationships.

The predictions of the model are consistent with the physical
behaviour of the double cantilever beam specimen during opening
delamination, where removal of the monotonic bridging component
from the test mainly contribute to a shift of the Paris curve towards
lower SERR values. Removing the cyclic components results also in a
reduction in the slope of the Paris curve. The model can also be adapted
to estimate the saturation SERR in the Paris curve based on the FB stress
from the quasi-static test. This ability of the model was validated
experimentally, by predicting the Paris curve for saturated fibre
bridging, based on the FB stress curve and a Paris curve with a short pre-
crack (lower amount of fibre-bridging). A close match between model
prediction and experimental results was observed.

A further validation of the model was carried out in a comparative
analysis with existing methods, including the Yao model and the specific
extrapolation method. The proposed model showed a greater reduction
in the slope of the Paris curve compared to the Yao method, with only
minor discrepancies observed when compared to the specific extrapo-
lation method. Unlike these other models, which empirically determine
changes in slope, the proposed model explicitly measures the cyclic
contribution of fibre bridging stress, making it more sensitive to changes
in SERR due to removal of bridging fibres.

In addition, the proposed model only requires a quasi-static test to
measure the stress distribution of the fibre bridge and a single fatigue
curve. This efficiency suggests that the model can significantly reduce
the number of experiments required to characterise mode I fatigue
delamination, while providing a detailed account of both the monotonic
and cyclic contributions of fibre bridging.
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