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Summary

Critically ill patients in the Intensive Care Unit (ICU) are often comatose and thoroughly monitored. Neu-
rological complications occur in up to 20% of these patients. Therefore, monitoring of the brain, which
can be performed using electroencephalography (EEG), has the potential to significantly impact the out-
comes of patients at the ICU. Despite the potential of EEG as a noninvasive method for monitoring the
neurological status of critically ill patients, the labor-intensive and complex nature of its application and
assessment has hindered widespread implementation. Therefore, the aim of this thesis was to identify
the logistical and technical prerequisites for efficient and effective neuromonitoring using EEG in the
ICU.

Chapter 1 provides an overview of neuromonitoring techniques in the critically ill patient. It delves into
the neurophysiological background of the EEG, the techniques used for applying the EEG electrodes,
and the EEG assessment.

In Chapter 2 we present a qualitative study on the optimal conditions for EEG monitoring in the ICU.
Through 12 individual and 2 focus group interviews with employees from different departments within
and outside of the hospital, the current workflow regarding neuromonitoring in the ICU is identified.
Additionally, we evaluate the barriers and facilitators for change in this monitoring process through the
Consolidated Framework for Implementation Research (CFIR). Factors such as motivation and willing-
ness to change serve as facilitators, while a lack of interdepartmental communication and the high
workload for various healthcare professionals involved can be significant barriers.

The qualitative research reveals that the largest group monitored using EEG in the ICU consists of
patients suffering from postanoxic encephalopathy, which can be a complication of a cardiac arrest.
Therefore, in Chapter 3, we examine the technical requirements for optimal EEG monitoring. Specifi-
cally, we focus on the necessary number of EEG electrodes for reliable automatic classification of the
EEG background pattern in postanoxic encephalopathy. By training an Random Forest (RF) classifier
with input from 12, 10, 8, 6, and 4 EEG electrodes, we develop a model with a micro-averaged One-
vs-Rest (OvR) Area Under the Curve - Receiver Operating Characteristics (AUC-ROC) value of 0.923,
0.924, 0.924, 0.925, and 0.923 (p-value: 0.279) for the different numbers of electrodes respectively. The
constant performance of the model suggests that a reduced number of electrodes may be sufficient for
monitoring this patient group, potentially reducing the workload for EEG technicians. Automatic assess-
ment of the EEG can also contribute to a decreased workload for clinical neurophysiologists.

In Chapter 4 we provide the conclusions and future perspectives of this thesis. We have demonstrated
the potential for change in the EEG monitoring workflow at the ICU of the Erasmus MC, indicating that
there is an opportunity to work towards more effective and efficient neuromonitoring. Future research
should focus on a broader range of logistical and technical prerequisites - including effective interde-
partmental collaboration and which EEG equipment to use - thereby creating opportunities to improve
treatment and outcomes of critically ill patients.
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1
BACKGROUND



1.1 Neuromonitoring in the Intensive Care Unit
In the Intensive Care Unit (ICU), most patients are comatose. The organs of critically ill patients are
susceptible to damage and deterioration, and are therefore thoroughly monitored. [1] Part of the pa-
tients admitted to the ICU suffer from primary brain injury, while all patients face the potential risk of
experiencing acute or secondary brain injury during their admission, as neurological complications oc-
cur in up to 20% of critically ill patients. [2, 3] Hence, it is imperative to thoroughly monitor the brain
alongside the monitoring of all other organs.

1.1.1 Acute brain injury

Acute brain injury can arise from various causes in the critically ill patient. Strokes caused by disrupted
blood flow to the brain, Traumatic Brain Injury (TBI) resulting from head trauma, and hypoxic-ischemic in-
jury due to oxygen deprivation are common culprits. Additionally, infections like meningitis or encephali-
tis, Intracerebral Hemorrhage (ICH) and Subarachnoid Hemorrhage (SAH) from ruptured aneurysms or
head trauma, metabolic disturbances, and seizures can all contribute to acute brain injury in the ICU. [4,
5] The cascade of events triggered by a primary brain injury, either upon admission or as a neurological
complication, can result in the occurrence of secondary brain injury. If not treated in a timely manner,
this secondary injury can escalate and contribute to the progression of neurodegeneration (Figure 1.1).
[6, 7] Adequate neuromonitoring is of great importance in this process, as it could facilitate the timely
detection and intervention of critical changes in cerebral physiology. Early recognition and targeted
interventions can help mitigate the secondary cerebral complications that may benefit from treatment,
thereby reducing the progression towards neurodegeneration. Therefore, integrating comprehensive
neuromonitoring into the management of critically ill patients is essential to optimise patient outcomes
and minimise long-term neurological consequences. [4, 7]

Figure 1.1: Part of neuropathological cascades after acute brain injury. The primary brain damage occurs within brief
time intervals after the initial brain injury. This initial damage triggers a series of chemical cascades that ultimately lead
to the onset of secondary damage (which can in turn increase the susceptibility to primary brain injury). Although the
secondary damage extends over hours to days, it can contribute, in conjunction with repeated exposure to traumatic
events, to the initiation of various neurodegenerative processes associated with cognitive and behavioral impairments.
Parts of the figure were drawn by using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed
under a Creative Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).
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1.1.2 Neurological examination

Bedside neurological exam, including the is the most important assessment to evaluate the level of
consciousness and neurological functioning in the ICU. The GCS is used to evaluate three key com-
ponents: eye-opening (E), motor- (M), and verbal- (V) response. [8] After assessing each of these
components, the scores for E, M and V are added together to obtain the overall GCS score, which
ranges from 3 to 15. A higher score indicates a higher level of consciousness and neurological function.
All ICU patients are examined using the GCS several times a day. However, the score does not allow for
continuous monitoring and relies on the interpretation of the examiner, introducing subjectivity. [9] Fur-
thermore, it assesses only a limited set of parameters and may not capture all aspects of neurological
function, sedation can interfere with accurate scoring, and subtle changes in neurological function may
go undetected. Despite these limitations, the GCS remains widely used as a standardised tool for initial
neurological assessment in the ICU. Augmenting the GCS with additional diagnostic modalities could
overcome its limitations and obtain a more accurate assessment of the patient’s neurological status.

1.1.3 Monitoring modalities

A wide array of invasive and noninvasive methods exist for neuromonitoring in critical ill patients (Table
1.1). These modalities offer potential targets for therapeutic interventions, allowing for the prevention
and treatment of secondary brain injury. [10] Among the most commonly used modalities in the ICU are
Computed Tomography (CT)/Magnetic Resonance Imaging (MRI), Intracranial Pressure (ICP) cathether
and electroencephalography (EEG). [5, 10, 11] CT and MRI provide valuable structural imaging to
identify brain lesions, hemorrhages, and masses. Their main advantage lies in their ability to visualise
detailed anatomical information. However, these modalities are not suitable for continuous monitoring
and may require patient transportation, limiting their use in unstable patients. Another type of monitoring
that is regularly used in the ICU is ICP monitoring using an intracranial catheter, to manage cerebral
perfusion. [12] Nonetheless, invasive ICP monitoring carries risks such as infection and hemorrhage.
Lastly, EEG can be used to record the electrical activity of the brain, aiding in the detection of seizures
and assessing the overall brain function and is recommended in a variety of ICU patients. [13]

Table 1.1: Frequently used neuromonitoring modalities in the Intensive Care Unit (ICU) and their (dis)advantages (pre-
sented in alphabetical order). [7] CT: Computed Tomography. BIS: Bisprectral index. EEG: Electroencephalography.
ICP: IntraCranial Pressure. MRI: Magnetic Resonance Imaging. NIRS: Near-Infrared Spectroscopy. TCD: TransCranial
Doppler. CBF: Cerebral Blood Flow.

Modality Advantages Disadvantages

CT Strucutral evaluation of brain injury Non-continuous
Radiation load
Limited availability

BIS Non-invasive
Continuous
Easy to interpret

Limited spatial resolution
No raw data available

EEG Non-invasive
Continuous
Overal brain functioning

Complex interpretation
Complex attachment

ICP Direct ICP measurement
Continuous

Invasive
Not sensitive for compensatory mecha-
nisms
Risk of hemorrhage, infection

MRI High spatial resolution
Non-invasive

Non-continuous
ICU equipment non-compatible
Not directly available at ICU

NIRS Non-invasive
Continuous

Limited accuracy

TCD Bedside
Non-invasive assessment of CBF

Complex interpretation
Correct measurement requires training
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1.2 Electroencephalography
The EEG is a non-invasive tool, which involves the application of electrodes to the scalp of a patient
to measure electrical activity, and allows for continuous monitoring of the brain. The American Clinical
Neurophysiology Society (ACNS) recommends continuous electroencephalography (cEEG) in the ICU
for several indications, namely the diagnosis of Non Convulsive Seizures (NCSz) and Status Epilepticus
(SE), the assessment of efficacy of therapy for seizures and SE, monitoring of sedation and high-dose
suppressive therapy, the identification of cerebral ischemia, and the neurological prognosis in several
diseases. [14]

1.2.1 Neurophysiology and the EEG signal

To comprehend the signals captured by EEG, it is crucial to have a fundamental grasp of neurophysiol-
ogy. The function of the brain depends of the interaction of single cells (neurons) in complex networks.
Information is passed through these networks using electrical signals, generated by neurons. At the
synapses, the contact points between neurons, these electrical action potentials are “translated” into
chemical signals, the neurotransmitters. Among the most prominent neurotransmitters that play a role
in the transmission of the electrical activity of the brain are the excitatory neurotransmitter glutamate,
and the inhibitory neurotransmitter Gamma-Aminobutyric Acid (GABA). [15] Glutamate causes an Exci-
tatory Postsynaptic Potential (EPSP). Subsequently the cell will depolarise: the Na+/K+ channels open,
Na+ flushes into the cell, and the membrane potential (with a resting stage of approximately -70mV) will
turn positive (around +20mV). Outside of the cell however, the depolarisation of the neuron will lead to
a relatively negative charge. In contrast, GABA causes an Inhibitory Postsynaptic Potential (IPSP) that
will lead to hyperpolarisation of the cell. K+ moves out of the cell and the membrane potential of the cell
will turn more negative (approximately -100mV). Therefore, outside of the cell there will be a relatively
positive charge.

Using EEG, it is possible to directly measure the electrical activity of the brain. The signals that are
measured by EEG electrodes reflect the postsynaptic extracellular potentials of neurons in the cortex
of the brain (Figure 1.2). The electrical activity of a single neuron is far too small to be detected on a
scalp EEG. Thus, what is reflected on the EEG is a summation of synchronised activity of a group of

Figure 1.2: Electrophysiology of the electroencephalography (EEG) signal. Illustration depicting the generation of EEG
signals through the interaction of neurons (pyramidal cells) in the cortex, glutamate, and GABA. Excitatory glutamate
(Glut) causes the outside of pyramidal cells to become negative, while inhibitory GABA leads to a positive charge. These
cellular dynamics result in a measured EEG signal, where positive activity induces downward waves on the EEG trace.
As the EEG electrodes move further away from the source of neural activity, the amplitude of the EEG signal decreases.
Adapted from Mecarelli (2019) [16].
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Figure 1.3: The international 10-20 system for EEG electrode placement. This standardised system divides the scalp
into distinct regions, with electrodes positioned at percentages of 10-20% the distance between anatomical landmarks.
F: frontal (pink). T: temporal (green). P: parietal (blue). O: Occipital (yellow). C: central. Adapted from Shriram et al.
(2012) [19]

neurons. [17] EEG electrodes measure the extracellular potentials at the surface of the cortex, which
are then translated into the waveforms displayed on the EEG as voltages by calculating the charge
differences between two electrodes. Counter-intuitively, positive values are displayed as downward
waves, and negative values are displayed as upward waves. Charge differences are calculated between
two electrodes in a montage. A montage is the specific arrangement of different channels, where a
channel is the difference between a pair of electrodes. Different montages can be used for e.g. the
localisation of the maximal electrical activity. Montages that are used most frequently for clinical EEG
recordings are bipolar and referential montages. [18] Bipolar montages display channels with electrode
pairs, whereas referential montages consists of e.g. one common reference electrode or the average of
all electrodes as reference electrode.

1.2.2 Electrode application

The process of the application of EEG electrodes can be time-consuming, as an EEG technicians should
carefully preprare the scalp of the patient, apply conductive gel/paste and attach the electrodes one by
one at exact locations. The goal of this approach is to minimise the impedance of the electrodes to
increase the Signal to Noise Ratio (SNR). The application process, typically performed using the 10-20
system, may take up to 60 minutes depending on factors such as the number of electrodes used, hair
type, skin condition, and sweat on the patient’s scalp.

The international 10-20 system provides a systematic approach to accurately and consistently apply
EEG electrodes on the scalp and is based on the relative distances between anatomical landmarks
on the head. The landmarks that are typically used include the nasion (the bridge of the nose), the
inion (the bony prominence at the base of the skull), and the preaurical point of both ears. [20, 21]
Using this system, the skull is split into segments of 10% or 20% of the total circumference of the
skull and electrodes are attached accordingly (Figure 1.3). EEG electrodes are denoted by a letter
and a number. Every letter corresponds to the region of the brain where the electrode is placed (F:
frontal, C: central, P: parietal, O: occipital), and the numbers correspond to the side of the head. The
odd-numbered electrodes are located on the left side of the head, while the even-numbered electrodes
are on the right side. Central midline electrodes are denoted by a "z". By using this system, it is
ensured that the electrode placements are proportional to the shape and size of the skull. Therefore
it allows for a replicable and reliable EEG recording. Due to the development of digital-EEG and the
introduction of high-density EEG and source localisation methods, an expansion of electrode arrays
was required. As a result, a modification involving the use of the 10-10 system was proposed, which
ensures greater electrode coverage and allows for more accurate localisation of brain activity. Although
the 10-10 combinatorial nomenclature is not extensively employed in ICU settings at present, there can
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be occasional confusion with its terminology. Specifically, certain electrode definitions at equivalent
positions might get mixed up. Examples of such common mix-ups include T3 being equivalent to T7,
T4 to T8, T5 to P7, and T6 to P8. [22]

1.2.3 EEG assessment

The analysis of EEG recordings traditionally is performed during a time- and labour-intensive process
by a trained clinical neurophysiologist. The ACNS has established a guideline for characterising EEG
findings in critical care settings. Adhering to this standardised terminology enhances communication
among healthcare professionals and aids in the identification of specific EEG patterns associated with
various neurological conditions or abnormalities. [23] Over the recent years, the computational analysis
of EEG signals (also known as quantitative electroencephalography (qEEG)) has gained interest. [24]
The quantitative analysis of EEG allows for quick analysis of large amounts of data, reducing the time-
and labour-intensive process of EEG assessment. Using mathematical algorithms, EEG features like
the amplitude and frequencies can be calculated. Although several commercially available packages
are on the market, they usually are not specifically designed for usage at the ICU, and therefore are not
widely used in clinical practice yet. [25]

Artefacts

EEG signals are extremely sensitive to artefacts. Every phenomenon on the EEG that is not gener-
ated by the brain itself, can be considered an artefact. Awareness of possible artefacts is of great
importance when analysing the EEG. For the visual assessment, this means that the assessor should
be trained and able to recognise all artefacts. Although video-EEG helps to distinguish artefacts from
neurophysiological signals, this remains a challenge. EEG artefacts can be of exogenous (outside of
the body, caused by the acquisition system or external equipment) and endogenous (within the body,
physiological) origin. [16] In the ICU environment, the presence of various equipment often leads to the
occurrence of exogenous artefacts. The most frequent exogenous artefact is the power supply compo-
nent of 50 Hz, caused by the excessive amount of electronic equipment in the ICU. This is followed by
artefacts of poor electrode contact to the scalp due to poor attachment and movement of patients during
patient care. Additionally, sweatbridges can be formed when sweat of the patient connects two elec-
trodes causing direct electrical conduction, which can influence signal quality. Endogenous artefacts
include eye movement, the electrocardiogram (ECG), Electromyogram (EMG), body movement due to
respiration, tremor or myoclonus.

1.3 Thesis objective
Despite the potential of EEG as a noninvasive method for monitoring the neurological status of critically
ill patients, its labor-intensive nature in application and assessment has hindered widespread imple-
mentation. While our hospital, the Erasmus Medical Center Rotterdam (EMC), primarily utilises EEG
monitoring at the ICU for the prognostication in postanoxic encephalopathy, and the diagnosis and mon-
itoring of Non Convulsive Status Epilepticus (NCSE), recent studies suggest broader applications. [26]
Thus, the objective of this thesis is to identify the optimal conditions for efficient and effective neuromon-
itoring using EEG in the ICU. What are the minimal logistical requirements? What resources can we
count on in our hospital, and what aspects require additional attention? What is minimally needed for
technically accurate EEG signals with preserved SNR and sufficient information? To address part of
these questions, subgoals are:

1. To evaluate the current workflow and identify pitfalls, wishes and opportunities for improvement in
the current neuromonitoring workflow at the ICU of the EMC using EEG (Chapter 2)

2. To determine the minimum amount of required EEG electrodes for automatic EEG background
pattern scoring in postanoxic encephalopathy using a Machine Learning approach (Chapter 3)

The findings of this thesis could be used for future implementation of new EEG equipment at the ICU
to reduce labour intensiveness, provide better patient specific healthcare and lay a basis for future
research at the neurological ICU.
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2
OPTIMISING NEUROMONITORING AT THE ICU

 INVESTIGATING CURRENT WORKFLOW AND

IDENTIFYING BARRIERS & FACILITATORS FOR CHANGE



Abstract
Background: The interest in continuous electroencephalography (cEEG) monitoring in critically ill pa-
tients is increasing, but practical challenges hinder widespread implementation. In this qualitative study,
we evaluated the current EEG monitoring workflow at the ICU and aimed to identify potential barriers
and facilitators for effective implementation of EEG monitoring at the Intensive Care Unit (ICU) of the
Erasmus Medical Centre (EMC) in the Netherlands.
Methods: Semi-structured interviews were conducted with healthcare-, and research professionals
from different departments, including EEG technicians, nurses, neurologists, and (neuro)scientists in
both individual as well as focus group interviews. The Consolidated Framework for Implementation
Research (CFIR) was used to guide the development of interview guides, coding manuals and a ques-
tionnaire.
Results: A total of 12 individuals, and two focus groups (n=4, and n=9) participated in the interviews
conducted between January and March of 2023. The data were analysed using 23 of the CFIR con-
structs. Overall, the respondents described the current EEG monitoring workflow in positive terms.
They described their willingness to adapt the workflow to be able to increase the effectiveness of EEG
monitoring. However, the lack of interdepartmental communication, the high workload of EEG monitor-
ing for many individuals involved, and the potential of overdiagnosis were identified as some of the most
important barriers for the implementation of a new EEG monitoring workflow at the ICU.
Conclusion: This study identified several challenges for the implementation of a new EEG monitoring
workflow at the ICU of the Erasmus MC. EEG monitoring at the ICU in general was perceived as having
high potential in influencing clinical management and improving healthcare. However, several potential
barriers were identified. The assessment of the current situation and the identification of perceived
barriers and facilitators should be used for the development of an implementation plan.
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2.1 Introduction
The interest in monitoring in critically ill patients is increasing, since it is currently the only clinically
available diagnostic tool for the continuous monitoring of cerebral functioning. [1] Although the use
of electroencephalography (EEG) in critically ill patients provides insightful information on the patients
cerebral functioning, the practical use of EEG remains a challenge, which hinders widespread clinical
implementation. [2] EEG recording in the Intensive Care Unit (ICU) is highly labour intensive, as a
trained EEG technician should be available 24 hours a day to connect and maintain the EEG electrodes.
Additionally, visual EEG interpretation should be performed by a trained clinical neurophysiologist at
least twice a day, and is often performed every one to two hours. [1, 3] Furthermore, ICU patients are
often repositioned and transported, which complicates the quality of electrode placement. Lastly, in
patients with head trauma, placement of electrodes on the skin might not always be possible due to for
example wounds or when part of the skull is removed. Due to these difficulties, EEG is not used in a
broad variety of critically ill patients yet.

The current golden standard to assess the neurological status of these patients is the Glasgow Coma
Scale (GCS), a tool to evaluate a patient’s level of consciousness and neurological functioning based
on their eye, motor, and verbal responses. [4] To reliably perform this assessment, sedatives need to
be withheld. This potentially leads to an uncomfortable situation for the patients, and is not contributing
to the patient care. Therefore, a non-invasive, real-time neuromonitoring tool like the EEG is desired.
In 2018, Hilkman et al. performed a national survey on the use of cEEG in the ICU in the Netherlands.
[5] They showed that cEEG is increasingly used in Dutch hospitals, however some barriers for a more
widespread implementation were identified. The authors concluded that future research should focus
on lowering cEEG workload and improving (quantitative) assessment, interpretation, and reporting to
be able to increase research possibilities, and most importantly improve patient healthcare. The current
study was performed in preparation of the implementation of new EEG equipment at the ICU of the
Erasmus Medical Center Rotterdam (EMC), with the aim to decrease the current workload, increase
research possibilities and improve patient healthcare.

2.1.1 Objectives

The main goal of this study was to identify pitfalls, wishes and opportunities for improvement in the
current EEG neuromonitoring workflow at the ICU of the EMC. To obtain a better understanding of
how to implement new EEG equipment at the ICU, a qualitative study among health care professionals
of different departments, involved with EEG monitoring at the ICU, was performed. The aims of this
qualitative study were:

1. To evaluate the current workflow regarding EEG monitoring at the ICU

2. To identify the wishes, opportunities and general view of EEG monitoring in critically ill patients

3. To identify potential barriers and facilitators for the implementation of new EEG equipment and/or
change in the current workflow at the ICU

2.2 Methods
2.2.1 Study design and participants

A qualitative study among health care professionals from different departments of the EMC was con-
ducted. Health care professionals that were interviewed included three staff-members of the Clinical
Neurophysiology (CN) department, the Physician Assistant (PA) of the CN department, and a neuro-
intensivist and two nurses (neural practitioners) of the ICU. Additionally, we conducted two focus group
interviews. The first group consisted of EEG technicians of the CN department, and the second group
consisted of CN residents (Arts (niet) In Opleiding tot Specialist (A(N)IOS)). Healthcare professionals
with different functions were interviewed individually, to limit the influence of social desirability (where
responders answer in a way they think will make them look good). [6] Additionally, we interviewed a
neurologist with regular ICU shifts, a neuroscientist with a focus on research involving neuromonitor-
ing techniques, and a pediatric neurologist responsible for the implementation of amplitude-integrated
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electroencephalography (aEEG) at the Pediatric Intensive Care Unit (PICU) of the EMC. Finally, we
interviewed a scientist of the Delft Laboratory for NeuroMuscular Control (NMC Lab) on aims for future
research, and requirements for EEG equipment for neuromonitoring at the ICU.

2.2.2 The Consolidated Framework for Implementation Research

The Consolidated Framework for Implementation Research (CFIR) was first published in 2009, [7] and
updated in 2022. [8] In the CFIR, five implementation domains are defined: characteristics of innova-
tion, outer setting, inner setting, characteristics of individuals involved, and the implementation process.
These five domains contain a total of 39 constructs that are related to different aspects of implemen-
tation. These constructs can be used to identify potential barriers and facilitators for effective imple-
mentation and are often used in the healthcare setting. Damschroder et al. (2022) recommend that
researchers may select the most relevant constructs for their specific study setting. [8] In this study, we
considered 23 constructs relevant for the interviews (Table 2.2). These constructs were used to develop
the interview guide and coding manual that was used for the analysis of the data.

2.2.3 Interview guide development

Interview guides were developed based on the three main objectives described in Section 2.1.1. We
mainly used the CFIR to guide questions with the aim of identifying the potential barriers and facilitators
for implementation. The interview guide was developed in the Dutch language and adapted based on
the different groups of healthcare professionals that were interviewed to account for relevant discrepan-
cies between roles and tasks of participants (Supplementary Material A). Furthermore, we performed
a pilot interview with a clinical neurophysiologist (and supervisor of this project). The goal of this pilot
interview was to be able to add, remove, or alter questions and their order, before starting interviews
with respondents as described in Section 2.2.1. Interviews were first conducted with respondents that
were not directly involved with the current EEG monitoring workflow at the ICU, before interviews with
employees that were involved with the workflow took place. This way, the suggestions provided during
the former interviews could be tested during the latter.

2.2.4 Data storage & privacy

Before each interview took place, we provided participants with general background information through
an information letter, and they were given the opportunity to ask questions before written informed con-
sent was obtained. Recordings were removed after transcription, and the transcriptions were anony-
mously stored. Data was available to the interviewer only, and supervisors were provided with the
results as described in this chapter only. To comply with privacy laws, transcripts of the interviews were
deleted at the time of the completion of the study.

2.2.5 Interview procedure

Data was gathered through semi-structured in-depth interviews. The interviews were conversational,
meaning that the different topics were discussed in an order that could vary per interview, but we
planned the key-questions. The interview guide consisted of three different parts. In the first part,
the general concept and goals of the implementation project were introduced and participants were
asked to describe their function, their part in the current EEG workflow (if applicable), and their expe-
rience with EEG at the ICU of the EMC. Secondly, the participants view on the opportunities of EEG
monitoring were discussed. The final part consisted of questions relevant for the specific function of
the interviewee. Instead of questioning participants directly about the CFIR constructs, we aimed the
questions more at the five domains of the CFIR. This way, interviewees were able to emphasise topics
that they considered important, and initial wording bias was reduced. [6]

All interviews were conducted in the Dutch language, and aimed to last for 30-45 minutes. We
recorded the interviews using a voice recorder on an iPhone 11 and manually transcribed them after-
wards. Quotes used in Section 2.3 were translated into English.
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Table 2.2: The selected 23 constructs used in this study, spread out over the five domains as defined by Damschroder
et al. (2022) in the Consolidated Framework for Implementation Research (CFIR). [8]

Innovation Characteristics

Relative Advantage The innovation is better than other available innovations or current practice
Triability The innovation can be tested or piloted on a small scale and undone
Complexity The innovation is complicated, which may be reflected by its scope and/or the nature

and number of connections and steps

Outer Setting

External Pressure
Performance
Measurement

Quality or benchmarking metrics or established service goals drive implementation
and/or delivery of the innovation

Local Attitudes Sociocultural values (e.g., shared responsibility in helping recipients) and beliefs
(e.g., convictions about the worthiness or recipients) encourage the Outer Setting
to support implemenation and/or delivery of the innovation

Inner Setting

Access to Knowledge
& Information

Guidance and/or training is accessible to implement and deliver the innovation

Available Resources Resources are available to implement and deliver the innovation
Space Physical space is available to implement and deliver the innovation
Mission Alignment Implementing and delivering the innovation is in line with the overarching commit-

ment, purpose, or goals in the Inner Setting
Relative Priority Implementating and delivering the innovation is important compared to other initia-

tives
Compatibility The innovation fits with workflows, systems, and processes
Tension for Change The current situation is intolerable and needs to change
Culture There are shared values, beliefs, and norms
Human-Equality ... about the inherent equal worth and value of all human beings
Recipient-Centeredness ... around caring, supporting, and addressing the needs and welfare of recipients
Deliverer-Centeredness ... around caring, supporting, and addressing the needs and welfare of deliverers
Learning-Centeredness ... around psychological safety, continual improvement, and using data to inform

practice
Communications There are high quality formal and informal information sharing practices within and

across Inner Setting boundaries (e.g., structural, professional)
Structural Characteristics Infrastructure components support functional performance of the Inner Setting
Physical Infrastructure Layout and configuration of space and other tangible material features support func-

tional performance of the Inner Setting
Information Technology In-
frastructure

Technological systems for tele-communication, electronic documentation, and data
storage, management, reporting, and analysis support functional performance of the
Inner Setting

Work infrastructure Organisation of tasks and responsibilities within and between individuals and teams,
and general staffing levels, support functional performance of the Inner Setting

Individual Characteristics

Motivation The individual(s) is committed to fulfilling the Role
Capability The individual(s) has interpersonal competence, knowledge and skills to fulfill Role
Need The individual(s) has deficits related to survival, well-being, or personal fulfillment,

which will be addressed by implementation and/or delivery of the innovation

2.2.6 Questionnaire

In addition to the semi-structured interviews, we developed a questionnaire for EEG technicians with
questions of a quantitative nature. Participants were asked to rank multiple quotes on a scale from
strongly disagree to strongly agree. Additionally, we asked them to rank several of their regular tasks
in order of personal priority, and in order of the most to least time consuming tasks. The author was
present during the time in which the EEG technicians participated in the questionnaire to be able to
provide extra information on the questions when needed. Data was collected using Google Forms. The
questionnaire can be found in Supplementary Material D.
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2.2.7 Analysis

For the analysis of the data, two different coding manuals were developed using a thematic approach.
[9] To address the first two aims of this study (Section 2.1.1), we developed a coding manual using an
inductive approach. To address the third aim, a second coding manual was developed. For the second
coding manual, we used a combination of a deductive and inductive approach. The basis of the coding
manual was theory-driven, based on the 23 constructs of the CFIR framework as described in Table
2.2. The constructs of the CFIR framework were used at the aspect level. Based on the transcripts,
we selected statements of one or few sentences as fragments and coded them using the open source
qualitative data analysis application QualCoder. [10] For every new issue that was discussed, a new
fragment was started. During this process, we used an inductive approach to create new codes for fur-
ther refinement at the level of aspects. Additionally, codes that were used ≤ 1 times were reconsidered
and pooled with other codes if applicable. All fragments that were coded, were additionally coded with
a positive (+) or negative (-) association. Positive associations were interpreted as facilitators, whereas
negative associations were interpreted as barriers. The complete coding manuals that we used for the
data analysis in this study can be found in Supplementary Material B. To enhance trustworthiness, the
results were analysed in a stepwise manner. [11] This started with the interview guide development in
collaboration with the supervisor of this project. Additionally, two interviews were coded by a fellow stu-
dent to be able to establish inter-rater reliability (automatically calculated in QualCoder using Cohen’s
kappa (κ) statistics) and therefore increase the objectivity of the analysis. [6]

2.3 Results
2.3.1 Interview characteristics

Two focus groups and 12 individual interviews were conducted between January and March 2023. The
focus groups of the residents, and EEG technicians consisted of four and nine respondents respectively.
Respondent characteristics can be found in Table 2.3. The mean duration of the individual interviews
was 36 minutes and 52 seconds (range: 25m38s - 42m18s), and the two focus group interviews lasted
for 32m31s and 32m45s. For the coding manuals on the current workflow and barriers and facilitators,
a κ of 0.816 and 0.732 was achieved respectively.

2.3.2 EEG monitoring at the Intensive Care Adults of the Erasmus MC

Aspects of the current workflow of EEG monitoring at the ICU Adults were discussed in 13 out of 15
interviews. In the remaining two interviews (both scientists, respondent 3 & 4) we did not discuss this
subject as the respondents were not directly involved in the monitoring workflow. The main categories
that we discussed were the logistics of the current workflow, the (possible) indications for EEG moni-
toring at the ICU, and the technical requirements for optimal EEG monitoring. The results presented in
this section are grouped based on these categories.

Logistics

Providing high-quality healthcare in the intensive care unit (ICU) starts with a collaborative effort be-
tween various healthcare professionals, including the ICU nurse, ICU resident, and intensivist. The
ICU nurse is present in the patient’s room for the majority of the time and is responsible for providing
hands-on care to the patient, including the administration of medications, monitoring of vital signs, and
ensuring that the patient is comfortable. The ICU resident, together with the ICU staff, is responsible
for overseeing the patient’s care plan and deciding on monitoring- and treatment. The full ICU team en-
sures that the patient’s medical needs are being met and that care is delivered in a timely and effective
manner.

In case of a neurological patient, the ICU team usually decides to consult the department of neurology.
The neurology resident tends to be consulted by the ICU resident for the treatment of patients with
neurological disorders such as a stroke, seizures, loss of consciousness, and brain infections. The neu-
rology resident then physically visits the ICU patient to evaluate the patient’s neurological status, and
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Table 2.3: Respondent characteristics. a: Face-to-face interview. b: Microsoft Teams interview. *: pilot interview. BmE:
Biomechanical Engineering. TUD: Delft University of Technology. AIOS: Arts In Opleiding tot Specialist. NP: neural
practitioner.

N Function Department Type

1a Neurologist - CN Clinical Neurophysiology Individual*
2a Neurologist (Pediatric) Pediatric Intensive Care Unit Individual
3b Scientist BmE, 3mE, TUD Individual
4a Scientist Neuroscience Individual
5a Physician Assistant Clinical Neurophysiology Individual
6a Neurologist - CN Clinical Neurophysiology Individual
7b Intensivist Intensive Care Unit Individual
8a - a Resident (AIOS) Clinical Neurophysiology Focusgroup
8a - b Resident (AIOS) Clinical Neurophysiology Focusgroup
8a - c Resident (AIOS) Clinical Neurophysiology Focusgroup
8a - d Resident (AIOS) Clinical Neurophysiology Focusgroup
9a Neurologist - CN Clinical Neurophysiology Individual
10a Neurologist - CN Clinical Neurophysiology Individual
11a Senior nurse - NP Intensive Care Unit Individual
12a - a EEG technician Clinical Neuropohysiology Focusgroup
12a - b EEG technician Clinical Neuropohysiology Focusgroup
12a - c EEG technician Clinical Neuropohysiology Focusgroup
12a - d EEG technician Clinical Neuropohysiology Focusgroup
12a - e EEG technician Clinical Neuropohysiology Focusgroup
12a - f EEG technician Clinical Neuropohysiology Focusgroup
12a - g EEG technician Clinical Neuropohysiology Focusgroup
12a - h EEG technician Clinical Neuropohysiology Focusgroup
12a - i EEG technician Clinical Neuropohysiology Focusgroup
13a Nurse - NP Intensive Care Unit Individual
14a Neurologist Neurology Individual

to advise about the adjustments of treatment plans as needed. Subsequently, the neurology resident
and staff-members discuss the patient and can provide expertise in additional monitoring techniques
like the EEG, which can provide valuable information about the functioning of the brain and the patient’s
prognosis.

Not all neurological patients in the ICU are monitored using EEG. In case of an indication for EEG mon-
itoring, the CN resident is consulted by the neurology resident. Together with the CN staff, it is decided
whether the ICU patient needs EEG monitoring. Subsequently, the EEG technician is asked to attach
the EEG electrodes to the patient’s scalp. Depending on the indication for EEG monitroing, this usually
means either the attachment of 21 or 13 electrodes (Figure 2.5). Furthermore, the EEG technician is
responsible for troubleshooting any technical issues that arise during the test and for ensuring that the
equipment is properly maintained. After attaching the EEG electrodes, several tests can be performed
depending on the indication for EEG monitoring. The CN resident and staff then assess the EEG at
specified intervals and refer results back to the neurology resident, who after discussion with his/her
supervisor refers back to the ICU team to provide them with advice regarding optimal treatment of the
patient. Figure 2.4 provides an overview of the workflow described above.

Logistic wishes

Interviewees were asked to describe their thoughts on the possible improvement of the current work-
flow. A summary of all suggestions can be found in Supplementary Material E, Table E.3. Among other
things, it was mentioned how shifting tasks within the CN department, implementing automatic assess-
ment of the EEG, and defining responsible employees per involved department would lead to a better
workflow.

“You could think of appointing an employee, like a neural practitioner or a physician assistant, or no wait a
technical physician to the task of daily checkups on the EEG attachment or detachment of electrodes etcetera,
who shows his or her face at the ICU every day or so.” - respondent 8c
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Figure 2.4: Overview of current workflow regarding electroencephalography (EEG) monitoring at the Intensive Care Unit
(ICU) of the Erasmus Medical Center, Rotterdam. Three main departments are involved: the ICU, the department of
neurology and the sector clinical neurophysiology (CN) as part of the department of neurology. Numbers 1-8 reflect
the order of communication between different healthcare workers, starting with an ICU patient and ending with the
EEG technician attaching the EEG electrodes. Physical locations of healthcare workers are represented by the circles
surrounding them. The teal arrows represent the method of communication between all individuals involved. Parts of the
figure were drawn by using pictures from Servier Medical Art. Servier Medical Art by Servier is licensed under a Creative
Commons Attribution 3.0 Unported License (https://creativecommons.org/licenses/by/3.0/).

Efficiency

When we asked respondents about the efficiency of the above described workflow, they mentioned that
the constant discussion between different departments and within departments regularly causes signif-
icant delay in optimal treatment and/or feedback from one department to the other.

“What we often notice is that the neurology resident has visited the patient, but then continues to visit several
other patients before contacting his or her supervisor. And then at our section (CN) this happens again and
eventually without noticing, it takes hours before the EEG gets attached.” - respondent 9

Although the current workflow is not experienced as efficient, respondents described the structure of
an academic teaching hospital, where such a workflow is standard practice and neither residents nor
staff members can or should be bypassed. In peripheral hospitals in the Netherlands, there often are
less people involved in the entire workflow. However, implementing a similar workflow in the EMC would
take away the learning opportunity of residents. When asked about the possibility of bypassing the
neurologist for some of the indications, most respondents indicated that they see no advantage in this,
since the current workflow ensures the efficient triage of indications.

“This way, we have a good triage. If you remove the neurologist from this workflow, you take the risk that there
will be a way too high demand on EEG monitoring without a good indication. At the ICU, they often find it hard
to make the correct assessment. Not surprising, as they know a lot of other things.” - respondent 6

Indications

Respondents agreed on four indications when we discussed indications for EEG monitoring at the
ICU, namely: monitoring in postanoxic encephalopathy, monitoring treatment effect of treatment in Non
Convulsive Status Epilepticus (NCSE)/Status Epilepticus (SE), rule out NCSE, and monitoring a burst-
suppression pattern in patients with elevated Intracranial Pressure (ICP) or NCSE, who are kept in a
barbiturates coma (Table 2.4). In some cases, debates among clinical neurophysiologists, neurologists,
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Table 2.4: Indications for electroencephalography (EEG) monitoring at the intensive care unit (ICU) of the Erasmus MC
(n. of respondents = 12). The current monitoring indications are described under clinical practice. Research indications
are described in the second half of the table. cEEG: continuous EEG. NCSE: non convulsive status epilepticus. LOC:
loss of consciousness. CABG: Coronary Artery Bypass Grafting. VA-ECMO: VenoArterial ExtraCorpeal Membrane Oxy-
genation. ICH: Intracerebral Hemorrhage. SAH: Subarachnoid Hemorrhage. ICP: Intracranial Pressure. TBI: Traumatic
Brain Injury.

Clinical Practice

Indication Protocol Goals
01 Postanoxic coma National guideline, cEEG 12h and

24h post cardiac arrest
Providing neurological prognosis

02 Refractory NCSE cEEG Monitoring treatment effect
03 Unexplained LOC standard EEG Rule out NCSE
04 Pentobarbital coma cEEG Monitoring sedation depth

Research

Indication
01 Early ischemia detection

High stroke risk: coagulation dissorder, embolism, risk on embolism after surgery, CABG, VA-ECMO
Bleeding: ICH, SAH

02 Tracking changes in ICP in patients with TBI
03 Using the EEG for the neurological prognosis of ICU patients, especially in TBI
04 Monitoring more frequently without a direct question relevant to the clinic or research
05 All patients with a medical history of epilepsy, due to a higher risk of recurrent epileptic abnormalities
06 Early detection of delirium
07 Meningitis detection and prognosis
08 Prognosis in autoimmune encephalitis
09 Differentation in causes of metabolic encephalitis

and the ICU about the indication and added clinical value for EEG monitoring were described.

“Every now and then there is some discussion about the indication. There are requests when the initial sus-
picion of epilepsy is relatively low quite regularly. And in most cases, there are no epileptiform discharges.
However in the current practice, the EEG is attached anyway. This is to prove that there is no NCSE and
immediately afterwards the EEG can be detached. At least, that is what you hope for.” - respondent 8b

It was highlighted how it is important for all specialists to work together to determine the appropriate
indications for EEG monitoring in the ICU, and to keep discussing those indications over the coming
years. This involves careful evaluation of the patient’s medical history, clinical symptoms, and other
diagnostic tests, as well as consideration of the potential clinical consequences of EEG monitoring.
A large variety of indications was mentioned when we asked respondents about the potential added
value of EEG monitoring in the critically ill. These indications are summarised in Table 2.4. The indi-
cations that were mentioned can be roughly divided in monitoring to detect neurological complications
early on, to diagnose patients, and to provide a prognosis. Furthermore, some respondents explained
their interest in the monitoring of the brain as a vital organ, without feeling the need to have a clear
question and/or proven added value.

“Sometimes I think you do not need the added value, but it should be enough that you can just monitor the
brain. For your understanding of the patients condition, what is really happening?” - respondent 11

Research wishes & requirements

Interviewees explained different interests and goals when it comes to exploring EEG monitoring pos-
sibilities at the ICU. A common theme was that research on the use of EEG at the ICU should focus
on the impact on clinical decision making and patient outcome. Clinicians were primarily interested in
using EEG monitoring to improve patient outcomes, support treatment decisions, and monitor alteration
of EEG patterns over time,

“Because you have a problem of the brain. And you wish to monitor how this problem evolves. What are the
changes over time, if any? The specific question would be: what can the EEG add to that? Actually, we do not
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know that, but that would be the added value of EEG monitoring in my opinion.” - respondent 7

while scientists for example were more interested in exploring new EEG monitoring techniques, such
as high-density EEG, that can potentially provide more detailed information about brain function and
help diagnose neurological conditions more accurately. When we asked questions about research pos-
sibilities, respondents described their interest in using EEG monitoring to gain a better understanding
of the brain’s response to critical illness or injury, and to identify new biomarkers or treatment targets.
Additionally, interest in developing new analytical tools or algorithms that can process large amounts of
EEG data and extract meaningful insights were described, mainly in order to reduce the workload that
currently comes with assessing EEG recordings and at the same time increase the monitoring effec-
tiveness.

“I can imagine that the current digitalisation and Artificial Intelligence (AI) could reduce the labour intensive-
ness of EEG assessment. If this is doable anywhere in neurology, I believe it is within the CN department.” -
respondent 14

“Algorithms of EEG signals would make EEG monitoring applicable and understandable for non-expert users.
I believe that Machine Learning and other AI would be especially suitable for implementation of the EEG. Not
only to be used by everyone who likes, but especially for the ICU nurses who are at the patients bedside 24
hours a day. And in addition to that, it could help with questions like: what does this signal mean and when do
we need to intervene?” - respondent 7

However, not all respondents had full trust in the possibilities of AI. It was often mentioned how AI could
be helpful in reducing the workload of visual assessment of the EEG, but how current algorithms have
failed to accurately handle the several artefacts that the EEG is prone to. A summary of all discussed
research possibilities can be found in Supplementary Materials E, Table E.5.

Technical requirements

The majority of respondents mentioned they could not give input on the technical requirements for EEG
equipment. However, the input that was received is summarised in Supplementary Materials E, Table
E.4. Mainly, thoughts on the amount of necessary electrodes were shared. For three out of four indica-
tions in clinical practice, an EEG montage with 21 electrodes is used (Figure 2.5a). When the national
protocol for the EEG monitoring of postanoxic patients came into effect in 2019, this montage was used
as well. However, by the end of 2021, through trial and error it was found that using a reduced mon-
tage was sufficient for determining the EEG background pattern. To reduce the labour intensiveness, it
therefore was decided to only attach the 13 electrodes as shown in Figure 2.5b. Respondents shared
the belief that the amount of electrodes required depends on the indication for EEG monitoring. The
general opinion was that in case of epilepsy, localisation of the measured electrical potentials is impor-
tant and therefore at least 21 electrodes are needed.

“But we should not get too worked up about that, it is not like we know the exact location right now. Maybe we
even need more electrodes, and exact localisation is not even possible using EEG anyways.” - respondent 6

However, in case of diffuse diseases like ischemia after Out of Hospital Cardiac Arrest (OHCA) or to
detect asymmetry, respondents believed a reduced montage would suffice. In case of research on the
other hand, it was noted that high-density EEG could pave the way for new opportunities in the calcula-
tion of EEG features such as functional connectivity.

“All of our research is performed with at least 64 electrodes. Actually, 128 most of the time. However, that
is time consuming. I think that we need at least 32 electrodes to calculate measures like the functional
connectivity, but it would be better to have at least 64.” - respondent 3

In the current workflow, EEG technicians manually attach each electrode one by one. We discussed
several other EEG monitoring techniques, including the use of EEG caps (with all electrodes already
attached according tot the 10-20 or 10-10 system) instead of single electrodes or using less electrodes
if possible. Views on the usage of caps varied: in general, it was mentioned how caps could not be used
in case of epilepsy, because little movement of the caps and thus electrodes would disturb localisation.
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(a) Regular 10-20 montage with 21 electrodes (b) Montage with 13 electrodes, used for
prognosis in postanoxic encephalopathy

Figure 2.5: Electroencephalography (EEG) electrode locations and montages used for different indications at the Inten-
sive Care Unit Adults of the Erasmus Medical Center.

However, for usage with different indications and in particular for research purposes, respondents saw
more benefit in using EEG caps. Not only was it mentioned how caps would allow for high-density
EEG recordings, respondents also thought caps would potentially allow for attachment by ICU nurses
instead of EEG technicians for some indications. Concerns about using caps were mainly regarding
signal quality, especially the reduction of quality over time.

“I do think we could use caps. However, in case of continuous long-term monitoring, we know that the signal
quality reduces.” - respondent 9

The opinions of EEG technicians on the usage of EEG caps were divided. Technicians with experience
using caps were mainly positive, while technicians without experience mentioned all disadvantages and
were doubtful about the time that would be gained using the caps instead of individual electrodes.

“Yes but the hair. We recently had someone who had been lying in the mud for 12 hours, that would not work
using a cap. And more often we have people with head trauma and drains. At this moment that does not
even work. And I think I would prefer, I would be just as fast attaching single electrodes as using a cap.” -
respondent 12f

2.3.3 Barriers & Facilitators

In total, 59 barriers and 49 facilitators for the implementation of a new EEG monitoring workflow were
identified (Supplementary Material F). The barriers and facilitators that captured the common thread
are summarised per domain of the CFIR below.

Innovation characteristics

Respondents noted that EEG monitoring could significantly influence clinical decision making. However,
the majority had trouble with the fact that for most indications, no strong evidence is available yet. Al-
though EEG monitoring at the ICU was perceived as a useful tool to monitor the patients brain function
in a non-invasive matter, the relative advantage was questioned as well.

“I think there is an enormous effect of confounders that you cannot always correct for. I believe part of the
prognostic value of EEG lies within factors that can be observed from the outside as well. So the fact that you
can identify biomarkers is not the same as ‘The EEG has prognostic value’.” - respondent 14
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When asked about the complexity of EEG monitoring, respondents mostly saw this as a barrier. Ex-
amples of high complexity as a barrier were the complicated placement of EEG electrodes, as well as
the interpretation of EEG recordings that requires trained experts. Furthermore, it was described how
the EEG is prone to several artefacts like movement, sweat and other signals at the ICU. Respondents
were concerned about how to interpret the EEG when it would be used for new indications.

“To what kind of EEG abnormality would lead those [other indications]? Especially with less electrodes it is
important to have that clear, otherwise this will lead to a lot of noise and overdiagnosis.” - respondent 8a

However, the complexity of EEG measurements was noted as a facilitator as well.

“Therefore [the complex nature of the EEG] I think this could potentially lead to a significant increase in
knowledge.” - respondent 5

Outer setting

Barriers in the outer setting were barely described, and facilitators were not described at all by intervie-
wees. Barriers that were mentioned regarded the general resistance against change within a hospital,
and the fact that the costs of healthcare in general cannot increase further. Additionally, attitudes to-
wards implementing AI on neurophysiological signals in the acute setting might vary.

“There is a lot of collaboration between the department of neurology and radiology in the acute setting. I cannot
imagine the department of clinical neurophysiology being involved in the acute setting, that won’t happen.” -
respondent 14

Inner Setting

In the current work infrastructure in the inner setting (i.e. all involved departments) some barriers as
well as facilitators were identified. One of the barriers regarding equipment availability that was noted by
respondents was that the hardware of the EEG monitors is not always available, even within the current
practice. There are currently 5 monitors available, that are shared with the PICU, and these are also
used during regular planned EEG recordings outside of the ICU.

“So when every monitor is being used, that sometimes might be a problem. In the morning, right at the start
of our shift, we have to kind of conjure up the equipment. No, but it can be a logistic nightmare.” - respondent
10

Some facilitators mentioned were the configuration of ICU patient rooms that are designed with a consid-
erable amount of space for monitoring equipment, the possibility of detaching electrodes from hardware
in some indications to pause the recording and continue when the hardware is available again, and the
tension for change regarding the possibilities of monitoring the brain at the ICU.

Respondents discussed that there is room for emergency EEG monitoring within the planning of EEG
technicians, and that the planning can be easily adapted. Furthermore, the current infrastructure allows
for precise triaging of patients. However, the current workflow is not always efficient and there is a
shortage of EEG technicians.

“There are not enough EEG technicians. When the technician gets called during their shift and has to come
to the hospital during the night, they will not be here the following day and then the schedule of the next day
sometimes has to be cancelled, because there are no technicians that can cover.”- respondent 8c

Another important potential barriers could be a new law, stipulating recovery time after an on-call shift if
residents are contacted at least twice during the night.

“One bottle-neck would be that we will not be able to work during the day after a night shift. The law is to
protect us, but it actually bothers the workflow. That way, we will not be able to increase the EEG monitoring.”
- respondent 8d
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When we discussed the collaboration between the different departments involved, interviewees noted
that they barely knew anyone outside of their own department. Explanations that were suggested were
the size of the departments (e.g. 40 neurologists), and the size of the hospital in general.

“I know only one person at the ICU, they are too far away. The hospital is too big for efficient collaboration. If
you want this project to succeed, you have to arrange a meeting with all people involved. That would be a lot.”
- respondent 9

However, communication within departments was experienced as efficient and pleasant. CN staff, CN
residents and EEG technicians all work on the same corridor, supporting accessibility of all employees.
Interviewees discussed how at the CN department, everyone is open to discuss about almost everything
and how there are clear rules and procedures. Furthermore, communication between the department
of neurology and CN were mentioned as being pleasant. Even though specialists do not always agree,
communication supports the decision making process.

“Almost all the time it is not a yes or a no, it is about the indication and how quick do we need the EEG? We
almost always talk it through and find a solution, come to a middle ground.” - respondent 10

When inquired about the possibility of increasing the number of patients monitored at the ICU, the CN
staff and residents considered the current workflow and concluded that some additional EEG monitor-
ing could be accommodated within limits. The indication (and thus amount of time spent on reviewing
the EEG) and the timing of visual assessment were noted as important factors when deciding whether
extra monitoring would be possible.

“That really depends on the amount of monitoring. In the current workflow where everyone reviews the entire
EEG, I don’t think this would be a good idea. However, one extra EEG monitoring per week would not be
a problem, if we don’t have to review during the night. It all depends on what we impose on ourselves.” -
respondent 6

Interviewees mentioned how the use of AI would significantly increase the possibilities of both the
amount of EEG monitoring that would be possible as well as the yield that would be achieved by EEG
monitoring.

Furthermore, an aspect that the entire CN staff, CN residents, and neurologists referred to and kept
bringing up was the availability and experienced workload of EEG technicians.

“I think the biggest and actually only real problem would be the EEG technicians, they will not be able to
increase their work.”- respondent 8a

However, when we asked the EEG technicians themselves about the experienced workload, they men-
tioned that due to the involvement of the CN staff, the workload they experienced was not that high and
that they did in fact see ways to create room for an increased demand on their activities.

“The staff actually really makes their way to ensure that our tasks remain doable, I really appreciate that. I do
think there is room for increased EEG monitoring within our planning, but until a certain amount. We would
just have to try and evaluate.”- respondent 12g

Although both ICU nurses did not think the workload on a regular day at the ICU was that high, they
mentioned the high workload of the “wake-up call” they perform daily in patients with a (potential) high
ICP. During the wake-up call, sedatives are withheld for approximately 30 minutes and the patients has
to be neurologically scored after these 30 minutes.

“Some patients can get really wild, and then it has a really high workload for us, since it is our task to contain
the patient. Some patients react with a sky-high blood pressure and then you have to get that under control
before you can continue on. Yes, but some patients do not respond.” - respondent 13
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Individual characteristics

First, the motivation to change and/or add to the tasks of the interviewees was discussed. All inter-
viewees from the ICU were enthusiastic and motivated to change the current workflow. Especially the
neural practitioners were willing to invest time into training colleagues in using EEG equipment, with the
biggest driving force being their curiosity. Additionally, it was mentioned how many ICU nurses have
affinity with neurological patients, and that motivation would be high among most of them, influencing
the enthusiasm of the other ICU nurses.

“I think that if there are some superusers with a lot of knowledge and motivation, and we teach the remaining
nurses at the bed-side and provide regular training and mention the potential added value, people are willing
to learn.” - respondent 11

Furthermore, all respondents were curious to see what a more extensive EEG monitoring workflow
would add in terms of new insights and possible influence on treatment plans, which was described as
a key factor in the motivation of the interviewees. Although motivation amongst interviewees was high,
some potential barriers were described as well.

“Left or right, this means extra work. You need the commitment of all involved people, and as long as the
added value has not been proven yet, they may lack motivation.” - respondent 10

When discussing the capabilities of the individuals involved, opinions varied. Some facilitators that were
mentioned were that the EEG technicians are well trained, in general there is a lot of shared knowledge
at the CN department, and the employees of the ICU are familiar with change and technical equipment
and implementations. However, it was often mentioned how, based on experience at the PICU, ICU
nurses often do not know how to attach EEG electrodes the right way, even after training.

“With aEEG at the PICU we have seen that the electrodes aren’t attached the right way at all times. Even
though there are protocols available to them [the ICU nurses].” - respondent 5

Furthermore, the EEG signals are often misinterpreted at the ICU, due to the high complexity of the
signals.

“Intensivists know a little about a lot, that’s how I see it. And sometimes they cross their own borders. They
think they see something relevant, but they actually do not know how to interpret the EEG. Some do, but most
of them do not.” - respondent 8a

2.3.4 Questionnaire

A total of 9 out of 12 EEG technicians participated in the questionnaire right after the focus group
interview was performed. Contrary to the viewpoint of a significant portion of the other respondents,
EEG technicians expressed disagreement with the statement that work pressure was too high and
stated that there was room for additional EEG monitoring within the current workflow. Furthermore,
EEG technicians tend to spend more time than preferred on waiting, and less time than what would be
preferred on participating in discussions. Results from the quote agreement tested in the questionnaire
are visualised in Figure 2.6. Distribution of these votes can be found in Figure D.1 of the Supplementary
Material D. Additionally, the ratio between time spent and priorities of specific tasks of EEG technicians
can be found in Figure D.2 of Supplementary Material D.
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Figure 2.6: Electroencephalography (EEG) technician quote agreement (n=9). Teal triangles represent the mean vote,
horizontal lines represent the standard deviation of the mean. ICU: Intensive Care Unit.

2.4 Discussion
In this study, we assessed the perspectives of several healthcare workers of the departments of neurol-
ogy, clinical neurophysiology and the ICU of the Erasmus MC on EEG monitoring in critically ill patients.
Additionally, views on clinical EEG research at the ICU were discussed. The interviews revealed several
suggestions regarding the improvement of the current workflow and research, accompanied by factors
that may facilitate or hinder the implementation of a new EEG monitoring workflow at the ICU.

2.4.1 Workflow and indications

The first two objectives of this study were to outline the current EEG monitoring workflow and to identify
the wishes, opportunities, and general perspective regarding EEG monitoring in critically ill patients.

Current workflow and possible improvements

Overall, the EEG monitoring process in the ICU was positively experienced by the respondents. They
concurred on the key indications for EEG monitoring and acknowledged their knowledge of when and
whom to approach for assistance, which is considered one of the key factors for effective EEG monitor-
ing as described by Alkhachroum et al. (2022). [2] The primary aspect for improvement in the current
workflow that was identified was the interdepartmental communication. As research suggests that col-
laborative practice among interprofessional healthcare teams can result in improved patient outcomes
and healthcare systems, all involved departments should strive to improve interprofessional collabora-
tion. [12] Interviewees expressed a keen interest in improving and extending EEG monitoring to other
indications in critically ill patients, particularly in the ICU, where there is a desire to monitor neurological
patients without daily wake-up calls. Almost all respondents agreed that the primary objective of efforts
to improve EEG monitoring should be to enhance brain monitoring efficacy in critically ill patients. To
accommodate this interest, it is necessary to adjust the existing workflow to integrate monitoring for new
indications, ultimately enhancing healthcare while considering everyone’s preferences.

EEG monitoring at the ICU of the Erasmus MC

Currently, there are four indications for EEG monitoring at the ICU: monitoring in postanoxic encephalopa-
thy, monitoring treatment effect NCSE/SE, rule out NCSE, and monitoring a burst suppression pattern in
patients with a barbiturates coma. The indication with the most patients a year is the prognostication in
postanoxic encephalopathy. A national protocol on this prognostication was implemented in the Nether-
lands in 2019. [13] The Erasmus MC ICU has monitored around 500 patients using EEG since the
protocol’s inception, making it the primary contributor. However, the impact on clinical decision-making
remains unstudied, and some interviewees are skeptical about the added value of monitoring all these
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patients. Evaluating the added value of monitoring all postanoxic encephalopathy patients and identify-
ing specific subgroups that may or may not benefit from such monitoring is therefore recommended.

A second large contributor is the monitoring of NCSE and Non Convulsive Seizures (NCSz). It is
strongly recommended to use EEG monitoring to monitor NCSE and to detect NCSz in patients with
primary brain injury like Traumatic Brain Injury (TBI), Subarachnoid Hemorrhage (SAH), Intracerebral
Hemorrhage (ICH), and encephalitis. [1, 14] However, for patients without primary brain injury and
unexplained lowered consciousness, there is a low level of evidence on the use of EEG to detect NCSE.
[14] Despite the European Society of Intensive Care Medicine (ESICM)’s recommendations to use EEG
monitoring to detect seizures in various diseases, the efficacy of such monitoring has not consistently
yielded positive results on patient outcomes. [15–18] Lastly, according to a systematic review in 2017,
there is currently insufficient evidence to determine the effectiveness of burst suppression therapy. While
some literature suggests that it may be beneficial in reducing ICP and treating SE in specific cases, the
circumstances under which it would be helpful remain unclear. Additionally, the impact of this therapy
on a patient’s functional outcome is not well established. [19]

Additional indications for EEG monitoring at the ICU

In addition to the current indications of EEG monitoring at the ICU, respondents suggested several addi-
tional indications. One of the frequently mentioned indications for EEG monitoring that could be further
explored was the detection of brain ischemia in several diseases and/or treatments (SAH, ICH, stroke,
and Veno-Arterial ExtraCorporeal Membrane Oxygenation (VA-ECMO)). The ESICM recommends us-
ing EEG to detect Delayed Cerebral Ischemia (DCI) in SAH patients, but the evidence on detecting
ischemia in other diseases is lacking. [14] Ischemia caused by vasospasm after SAH can be treated if
detected immediately. [20] Therefore, several attempts have been made to detect DCI in SAH early on,
with promising results. [21] Furthermore, VA-ECMO increases the risk on neurological complications to
up to 15% of the cases, and these complications are independently associated with a poor outcome.
[22] Although treatment of these neurological complications could potentially lead to improved outcome,
detection of these complications is often delayed. EEG has shown potential in identifying adult patients
undergoing VA-ECMO who are at high risk of poor outcomes. Specifically, a suppressed background on
the EEG and a lack of EEG reactivity have been found to be independently associated with unfavourable
neurological outcomes. [23, 24] However, EEG studies in VA-ECMO patients are limited and caution
should be taken when interpreting EEG recordings in these patients. [25] Another frequently mentioned
aim of EEG monitoring was the non-invasive monitoring of ICP levels. Although only few case studies
have explored this idea, some potentially helpful EEG features for monitoring elevated ICP have been
identified. [26–28] Furthermore, non-invasive automatic prediction of ICP levels might be possible in the
future, as was shown in a porcine model. [29] However, it is crucial to pay great caution when interpret-
ing EEG recordings of patients who may be at risk of brain herniation. More research is necessary to
fully understand any distinct EEG markers for these patients. [30]

2.4.2 Barriers & Facilitators

The third aim of this study was to identify barriers and facilitators for change in the current EEG monitor-
ing workflow at the ICU. Barriers and facilitators were identified using 4 domains of the CFIR framework,
of which 3 were extensively discussed: innovation characteristics, inner setting, and individual charac-
teristics.

Innovation Characteristics

Although interviewees were positive about the exploration and implementation of EEG monitoring at the
ICU and the EEG was acknowledged as the desired non-invasive neuromonitoring tool, we identified
barriers as well. An important perceived barrier was that due to the complexity of the EEG, it requires
specialised technical expertise to set up, calibrate, and interpret the results. This identified barrier has
been widely acknowledged, [5, 31, 32] and therefore several EEG systems have been developed in
order to reduce the complexity of application. [33–35] Furthermore, there is an increasing effort in the
development of algorithms for the automatic assessment of EEG signals. [30]
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Inner Setting

The inner setting refers to the internal context wherein the EEG is implemented, including the organisa-
tional culture, leadership, and available resources. [8] In this study, we defined the inner setting as the
ICU and the CN department. Several factors that aid the inner setting include the abundance of knowl-
edge and expertise within the concerned departments, the presence of multiple neurology-specialised
healthcare professionals (both ICU nurses and intensivists), and the ICU’s familiarity with technical im-
plementation. To ensure efficient implementation and workflow, it is crucial to leverage these facilitating
factors. Nonetheless, to achieve effective implementation, considerable attention must be paid to the
workload of all healthcare workers involved. A significant point of disagreement which stood out was
related to the workload of EEG technicians. Clinical neurophysiology staff and residents unanimously
noted that the workload of EEG technicians would be a major impediment to increasing the amount
of EEG monitoring. However, in the questionnaire, all EEG technicians reported being neutral or not
experiencing a heavy workload and agreed that within the current workflow, EEG monitoring could be
expanded. One possible explanation for this is that EEG technicians reported that the clinical staff takes
measures to prevent an increase in their workload. Additionally, it is plausible that those EEG techni-
cians who do experience a heavy workload did not show up to the focus group or may have resigned
from their positions over the last few years. Nevertheless, the scarcity of available EEG technicians in
the Netherlands remains a challenge, [36] and reducing the workload of EEG technicians should be a
key priority in order to create space for additional and/or other tasks and ensure that EEG technicians
do not become overwhelmed with work. Therefore, it is recommended to regularly assess and con-
sider the preferences of EEG technicians. In addition to EEG technicians’ workload, it is essential not
to overlook clinical neurophysiologists and residents. While a few additional cases of EEG monitoring
each month were deemed manageable, an extensive rise in EEG assessment could overwhelm their
workload. Concerning the workload of ICU nurses, they stated that they would be willing to make some
concessions, such as attaching EEG caps, if that meant that their workload could be alleviated in the
future by potentially reducing wake-up calls, which should be further explored.

Individual Characteristics

The characteristics of the individuals involved in the implementation process, such as their knowledge,
beliefs, and attitudes, can influence their acceptance and use of the intervention. [8] There was a
significant variation in attitudes towards changing the current workflow, with varying reasons related to
the barriers and facilitators mentioned earlier. Since the motivation of the individuals involved is crucial
for successful implementation, recurring feedback sessions, clinical lessons, evaluations, etc. must be
prioritised. Given the abundance of individuals involved who possess the suitable capabilities (like the
physician assistant, neural practitioners and technical physician), their expertise should be utilised to
organise these sessions and teachings to enhance and maintain the motivation of all participants.

2.4.3 Study strengths & limitations

One strength of this study lies in its recruitment of a diverse range of respondents, enabling the explo-
ration of multiple perspectives. As a result, we achieved saturation of results for the first two objectives,
indicating that additional data would not lead to any new themes. [37] To limit the influence of the ex-
tensive nature of the CFIR,[38] we excluded a selection of constructs that were deemed less relevant at
the start of the study. However, some identified barriers and facilitators still warrant further investigation
as saturation may not have been reached, and we advise to incorporate recurring evaluation meetings
during the implementation phase to pinpoint any newly emerging barriers and facilitators. Furthermore,
it is possible that a few barriers and facilitators were overlooked due to the absence of a definite im-
plementation plan at the start of this study, a factor that was cited by some respondents as hindering
appropriate feedback. Additionally, despite recruiting a diverse range of healthcare workers, some criti-
cal roles were excluded. Firstly, we recommended to involve the neurosurgery department, as they are
usually consulted in TBI patients instead of the neurology department. Moreover, since the Erasmus
MC ICU has two distinct sections, and all interviewees were from a single section (the general & trauma
ICU), it is recommended to involve participants from the other section as well (cardio-thoracic ICU).

Another strength of this study was that during the data analysis, we incorporated additional codes into
the coding manual using inductive analysis. However, the coding manual was not revised after coding
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all interviews, leading to some codes appearing only once. This happened particularly in the coding
manual for the identification of barriers and facilitators. Nonetheless, we found that these codes did not
overlap with different domains of the CFIR, and therefore the overall conclusions would not have been
altered. Additionally, we believe that the merging of codes would not have impacted the identification of
barriers and facilitators in the final analysis.

A final limitation of this study is that we did not discuss the cost-effectiveness of EEG monitoring at
the ICU with any of the interviewees. Although a few participants did touch upon the significance of
cost-effectiveness, the interview guideline was not tailored to elicit in-depth insights into this domain. As
the cost-effectiveness has not been proven yet, further research on this topic is needed and should be
a priority when elaborating an implementation plan. [39–41]

2.4.4 Future directions & recommendations

EEG equipment requirements

While certain critical factors concerning the necessary specifications of new EEG equipment have been
established, a comprehensive overview remains elusive due to the limited input on this topic received
thus far. It is therefore recommended to involve employees with exact knowledge on the monitoring
equipment used in clinical practice, like the clinical physicist of the CN department. Once the most
crucial requirements have been identified, all scenarios involving EEG measurements in the ICU setting
ought to be documented. This approach will facilitate the evaluation of demo-models of new equipment
in collaboration with vendors, enabling the selection of the most appropriate equipment for the given
scenarios.

Furthermore, more research is necessary regarding the optimal number of electrodes to be used. While
there is a desire in clinical settings to reduce the number of electrodes to decrease workload of EEG
technicians and/or ICU nurses, the impact of this reduction on EEG assessment has yet to be inves-
tigated. On the other hand, from a research perspective, increasing the number of electrodes would
be preferable. Ideally, a system capable of adjusting the number of electrodes as necessary would be
implemented.

A final aspect regarding EEG equipment is the usage of AI and the development of algorithms to be
able to automatically monitor the brain function. Using quantitative electroencephalography (qEEG), the
numerical analysis of raw EEG signals, could reduce some of the workload of clinical neurophysiolo-
gists and thereby acknowledging an important barrier identified in this study. This area of both research
and clinical application has experienced rapid advancement over the recent years. Hwang et al. (2022)
concluded that with the ongoing advancement of qEEG techniques, which now incorporate machine
learning, the utilisation of algorithms optimised for ICU settings holds the potential to significantly en-
hance quantitative scoring, and detect EEG patterns of interest with greater accuracy. [30] Utilisation
of qEEG would also allow for future development of a dashboard with neurological parameters of the
critically ill patients, a wish emphasised by all interviewees from the ICU.

Implementation process

The fifth domain of the CFIR, the implementation process itself, was not explored in this study, because
of the early stage of orientation. The implementation process itself, including planning, engaging stake-
holders, monitoring progress, and adapting to changing circumstances, is critical to the success of the
intervention. [8] The most important factors that should be further explored for an effective implementa-
tion that we identified in this qualitative study were:

• Focusing on reducing the current workload first, to be able to increase the effectiveness of future
EEG monitoring

– It is important to closely consider the preferences of various healthcare professionals, as this
study has revealed discrepancies in the perspectives of different interviewees

– Regular assessment and feedback sessions should be implemented to encourage all individ-
uals involved and to address any challenges that arise
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• Improving the interdepartmental collaboration

– Assigning a key-figure that stays in contact with all involved employees and has the final
responsibility for the implementation process and regular evaluations

– Assigning a responsible persons per department involved to create an implementation team

• Deciding on the most promising indications for EEG monitoring

– Emphasis should be laid on the effectiveness of EEG monitoring, i.e. the influence on clinical
management and patient outcome

– Do not only consider new indications, but pay attention to the effectiveness of EEG monitoring
in the current indications

• Exploring how to deal with the different ICU sections (general versus cardio-thoracic)

• Deciding on who and how to train for the application of new EEG equipment

Based on these identified factors, we considered different scenarios for the first phase of implementa-
tion. These scenarios, including pros and cons, are summarised in Supplementary Materials G. They
can be combined to develop an implementation plan. However, after defining the first steps, there is still
a need to develop a step by step guide on how to carry out each phase of the implementation.

Taking advantage of the diverse set of facilitators presented in this study, and considering the potential
challenges, we believe that a successful implementation can be accomplished. As the goal of this study
was to identify all relevant factors for an effective implementation, no definitive recommendations on the
implementation itself can be provided yet. In 2022, Mosch et al. developed a framework for the im-
plementation of health technology in the ICU setting and defined strategies for the pre-implementation
phase including: identifying local needs, barriers and facilitators, selecting motivated staff from all in-
volved departments, testing of usability, visiting other sites, and organising team meetings,[42] of which
the latter four should be further elaborated upon. The subsequent phase involves devising an implemen-
tation plan, but prior to commencing this process, the considered (and possible additional) scenarios
must be deliberated with personnel from all departments involved. The key to ensuring a successful im-
plementation of EEG monitoring at the ICU of the Erasmus MC lies within fostering a interdepartmental
team effort.
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3
OPTIMISING NEUROMONITORING AT THE ICU

 CLASSIFICATION OF BACKGROUND PATTERNS IN 

POSTANOXIC ENCEPHALOPATHY USING A 

REDUCED NUMBER OF ELECTRODES



Abstract
Background: Since 2019, a national guideline on prognostication after postanoxic encephalopathy
is in place, describing several electroencephalography (EEG) background patterns associated with a
poor or good neurological outcome. To reduce the labour-intensiveness and subjectiveness of visual
EEG interpretation, in this study we developed a Machine Learning (ML) model for the automatic EEG
background pattern classification in postanoxic encephalopathy. Additionally the effect of reducing the
number of EEG channels used on model performance was evaluated.
Methods: EEG recordings with nine different background patterns of 327 patients with postanoxic en-
cephalopathy were included in this study. For the automatic classification of EEG background pattern,
a Random Forest (RF) classifier was developed based on a total of 26 quantitative electroencephalog-
raphy (qEEG) features - averaged per epoch - per one of twelve EEG channels, initially. This was
gradually reduced to 10, 8, 6, and 4 EEG channels. A stratified 5-fold cross-validation approach was
employed to maintain the distribution of the different classes in both the training and test sets. Model
performance was evaluated using a One-vs-Rest (OvR) approach to compute the Area Under the Curve
- Receiver Operating Characteristics (AUC-ROC) for the primary outcome measure and the F1-score
as the secondary outcome measure.
Results: RF classifiers were trained on eight background pattern categories. The micro-averaged AUC
of the baseline model with a montage of 12 channels was 0.923 (95% CI: 0.918-0.928). The secondary
outcome measure, the F1-score, was 0.608 (95% CI: 0.586-0.630) for the 12-channel montage. The
overall performance of the RF models developed with a gradually reduced number of electrodes was
not significantly different for any of the electrode combinations. The most contributing qEEG features for
the model development were the regularity, amplitude (minimal, maximal) and the EEG Silence Ratio
(ESR). All developed models struggled with distinguishing the degree of signal continuity and were
unable to differentiate between identical and non-identical bursts in a burst suppression pattern.
Conclusion: The findings of this study demonstrate that the performance of a RF model remains unaf-
fected by the utilisation of different montages with less EEG electrodes. These findings suggest that the
evaluation of the EEG background pattern predominantly depends on the uniform and widespread man-
ifestation of postanoxic encephalopathy. Future research should primarily focus on incorporating qEEG
features that can further enhance the differentiation between the different categories and decreasing
bias in the ground truth. Eventually, less electrodes may be used for the EEG assessment after CA.
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3.1 Introduction
Accurately predicting neurological outcome following Cardiac Arrest (CA) holds significant importance
in clinical practice. Not only to provide precise information to the patient’s relatives, but also to prevent
excessive treatment in patients suffering from severe and irreversible hypoxic ischemic brain injury, who
are unlikely to achieve meaningful neurological recovery. A CA happens when all heart activity is sud-
denly lost, usually due to an irregular hearth rhythm, and can happen in two settings: Out of Hospital
Cardiac Arrest (OHCA) and In Hospital Cardiac Arrest (IHCA). In OHCA, survival rates are often low,
with a 1-year survival rate of about only 8%. [1] Survival rates for IHCA are generally slightly higher
and have been increasing over the years, with reported 1-year survival rates of 13%. [2–4] If a patient
reaches return of spontaneous circulation after cardiopulmonary resuscitation, patients are usually ad-
mitted to the Intensive Care Unit (ICU). Here they often suffer from postanoxic encephalopathy due to
insufficient bloodflow and oxygen supply to the brain. Regarding the neurological prognosis of these pa-
tients, multiple modalities are being investigated or are already used, with the EEG being an important
one. [5–7] In the Netherlands, a national guideline on prognostication in postanoxic encephalopathy
came into effect in 2019, which describes several EEG background patterns associated with a poor- or
good neurological outcome that should be used to guide clinical treatment. [8]

As most of the ICU staff has not been trained in the assessment of EEG signals, prognostication in
postanoxic encephalopathy is a multidisciplinary effort. A trained EEG technician should be available
to connect and maintain the EEG electrodes, which is a time consuming and labour intensive process.
Furthermore, interpretation requires a trained clinical neurophysiologist. [9, 10] After CA, a clinical
neurophysiologist usually assesses the EEG visually at 12 and 24 hours after CA, as the background
patterns at these time points are validated for the neurological prognostication. [8]

One possible approach to alleviate the workload of the EEG technician involves minimising the num-
ber of electrodes used for EEG monitoring. This reduction could directly lead to a decrease in the time
required for electrode attachment, as in our experience each additional electrode takes approximately
an additional minute to attach. The American Clinical Neurophysiology Society (ACNS) recommends
that in usual clinical recordings of EEG at least sixteen channels should be used to show the areas
of the brain producing most (ab)normal electrical activity. [9, 11] Although some studies have investi-
gated the effect of reducing the amount of electrodes on e.g. seizures and rhythmic pattern detection
with promising results, [12, 13] the effect of reducing EEG electrodes at the ICU on pattern detection,
interrater agreement, and intermontage agreement varies. [14–17] In postanoxic coma, there typically
is a widespread diffuse cortical distribution, which might still be captured with a reduced number of
EEG electrodes. Tjepkema-Cloostermans et al. (2017) showed that the reduction from 21 to 10 EEG
electrodes did not affect visual EEG background pattern classification in postanoxic encephalopathy.
[18] Additionally, small studies show a reduction to 8/6 electrodes may be feasible as well. [19, 20] The
current relevance of this research question is evident, as demonstrated by a study published during the
execution of the current study that examined visual classification based 4 electrodes. [21]

To reduce the labour-intensiveness and subjectiveness of EEG interpretation, the amount of re-
search done on the quantitative analysis of the EEG using Artificial Intelligence (AI) techniques like ML
is increasing. Recent studies are mostly aimed at automatically predicting the outcome in postanoxic
coma. [22–25] Although the use of qEEG could decrease subjectivity and workload regarding the EEG
reviewing process, the need for further research and standardisation of review methods before clinical
implementation is evident. [26] To benefit from the possibilities of quantitative assessment while ad-
hering to the agreed-upon definitions of the ACNS and national guidelines, it would be interesting to
automatically classify the background pattern of the EEG using qEEG. Attempts to achieve this goal
have not yet been made.

3.1.1 Objectives

In this retrospective study, we aimed to optimise EEG analysis and application methods to reduce the
labour intensiveness of EEG monitoring in patients after CA. The main objectives of this study were:

• To develop a ML model for EEG background pattern classification in postanoxic encephalopathy

• To evaluate the effect of the reduction of the amount of EEG electrodes used for automatic EEG
background classification in postanoxic encephalopathy on the model performance compared to
a full montage with 13 EEG electrodes
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3.2 Methods
3.2.1 Study population

All consecutive postanoxic comatose patients admitted to the ICU of the Erasmus MC, Rotterdam,
between October 5th 2019 and April 25th 2023 were screened for inclusion in this study. Continuous
electroencephalography (cEEG) was part of standard clinical practice and used to guide neurological
prognostication. Patients were considered eligible for inclusion in this retrospective study if cEEG was
initiated within 24 hours of CA and visual assessment at 24 hours after CA was available. The Medical
Ethical Committee Rotterdam approved the study protocol (MEC-2021-0145).

3.2.2 EEG data acquisition and standard care

EEG data was recorded using an OSG BrainRT system (Rumst, Belgium) at a sample rate of 256 Hz.
The data was recorded using Cz as a recording reference, and an analog high-pass filter at 0.1 Hz. From
October 5th 2019 until December 22th 2021, 21 electrodes were used. From then on, 13 electrodes
(Fp1, Fp2, F7, F8, T3, T4, T5, T6, O1, O2, C3, C4, Cz) were used after successful local evaluation of
background pattern assessment with the use of fewer electrodes. Electrodes were placed according to
the international 10-20 system, and efforts were made to maintain electrode impedance below 5kΩ. As
per the local and national protocol, EEG recordings were started as soon as possible after admission to
the ICU and continued for a minimum of 24 hours after CA. In case the patient regained consciousness
or it was determined that life-supporting treatment should be discontinued, the EEG recordings were
terminated earlier. As part of the standard clinical practice and neuroprotective strategy, all patients
received Targeted Temperature Management (TTM) at 36 °C during the first 24 hours of ICU admission.

3.2.3 Ground truth

EEG background pattern was described as part of standard clinical care and prognostication after CA
at the time of the EEG recording. The original visual assessment, as described by an experienced
clinical neurophysiologist, was used as the ground truth in this study. In case of missing descriptions,
we excluded data from this study. Based on the background pattern descriptions, we defined 9 different
categories (Table 3.5). The EEG background patterns were defined based on the ACNS criteria and
the national protocol for the prognosis of postanoxic coma, and some of these categories have proven
to have prognostic power at either 12 or 24 hours after CA. [8, 10]

3.2.4 EEG data preprocessing

The raw EEG data as recorded in BrainRTTM at 256 Hz was converted to an EDF+ file, and an addi-
tional event-file (.tsv) with the descriptions of the visual assessment during the time of EEG recording
was generated. We used the latter file to deduce any input mentioning “24” to obtain the written visual
assessment of the background pattern at 24 hours after cardiac arrest (T24). Next, we extracted the
onset time, which is the duration from the beginning of the EEG recording to the T24 point in seconds.
The data was validated by visually inspecting the extracted event entries.

Utilising the onset points, we selected a 30-minute epoch from -15 to +15 minutes surrounding T24 for
each patient. The selected epochs consisted of the 13 electrodes that were present in all recordings
(Subsection 3.2.2). Subsequently, all epochs were subjected to visual analysis to identify any bad chan-
nels or major artefactual fragments. We removed epochs containing bad channels from the analysis
completely. Next, a notch filter at 50 Hz and a non-causal finite impulse response (FIR) bandpass filter
with a low-pass of 0.5 Hz and a high-pass of 35 Hz were used to filter all epochs. Moreover, we imple-
mented Independent Component Analysis (ICA) analysis to remove ECG artefacts. The filtered EEG
fragments were rereferenced through common referencing with Cz set as the common reference elec-
trode, resulting in 12 EEG channels. Before the data was split into consecutive epochs of 20 seconds
with 5 seconds of overlap, we downsampled the data to 128 Hz for computational purposes. When cre-
ating the 20-second epochs, we removed all epochs that partially or fully overlapped with an annotated
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bad fragment from the data. The described workflow is further elaborated upon in Supplementary Mate-
rial J. In addition to the visual inspection of artefacts, remaining artefactual epochs were removed based
on amplitude and the total power of the Power Spectral Density (PSD) from 0.5 to 35 Hz. The maximum
amplitude of all 20-second epochs was calculated, and we set a threshold at 300 µV, as physiological
brain activity will not exceed this voltage. Subsequently, the threshold for the total power was set at
2000 W/Hz. All epochs exceeding these threshold were removed from further analysis. The described
preprocessing steps were performed using the MNE toolbox (version 1.4.0) in Python (version 3.8). [27]

3.2.5 EEG feature analysis

For each included patient in this study, we calculated a total of 26 qEEG features. These features
were first computed per epoch for each individual EEG channel. Channel values were then averaged
to generate a single value per feature per epoch, which subsequently was averaged to result in a final
feature value per patient. We included features from the time-, frequency-, complexity-, and connectivity
domain in this study that were based on previous studies on the prognostic value of EEG in postanoxic
coma in both adults as well as the pediatric population. All of the features included in the analysis are
presented in Table 3.6, and a detailed description of the features is provided in Supplementary Material
K.

3.2.6 Model development

For the automatic classification of EEG background pattern, we developed a RF classifier. A RF clas-
sifier is a supervised ML method that combines multiple decision trees to make a final prediction. The
development of the RF model followed a systematic procedure (Figure ??). To ensure reliable model
performance, we employed a 5-fold cross-validation approach, wherein the data was stratified to main-
tain the distribution of the different classes in both the training and test sets. The training set consisted
of 80% of the data. The optimal hyperparameters for the model were selected in a randomised search
with 30 iterations for every fold in a 5-fold cross-validation of the training set (Supplementary Material
L). For every optimised RF classifier, the 20% test set was used for model performance evaluation. To
further evaluate the performance of this selected RF model, we repeated the the 5-fold cross-validation
20 times. The RF model development and -evaluation were performed using the Scikit-learn toolbox.
[37]

Table 3.5: Electroencephalography (EEG) background patterns in postanoxic encephalopathy, used in clinical practice for
the prognosis at either 12 or 24 hours after cardiac arrest. [8] Definitions based on the EEG critical care guideline of the
American Clinical Neurophysiology Society (ACNS). [10] BS: Burst Suppression. GPD: Generalised Periodic Discharges.

Background pattern Definition Prognosis Hours
post-CA

1 Continuous background pat-
tern with normal amplitudes

>99% activity, amplitudes >20 µV Good (12)
Uncertain (24)

12/24

2 Continuous but suppressed
background pattern

>99% activity, amplitudes <20 µV Poor 24

3 Nearly continuous 1%-9% amplitudes < 10 µV Uncertain Uncertain
4 Discontinuous 10-49 % suppression (<10 µV) without BS

and/or GPD
Uncertain 24

5 No cerebral activity, iso-
electric

> 99% suppression Poor 12/24

6 BS with non-identical bursts Any at least four-phasic pattern (>20 µV) with
a duration of ≥0.5 sec. alternated with peri-
ods of low (<10 µV) EEG activity of at least 1
sec.

Uncertain 24

7 BS with identical bursts BS with first 500 ms identical on the eye, irre-
spective of amplitude or subsequent duration
of bursts or inter-burst intervals

Poor 24

8 GPD on a flat background Bilateral synchronous and symmetric periodic
discharges <0.5 sec. with periods of no cere-
bral activity

Poor 24

9 GPD on a continuous back-
ground

Bilateral synchronous and symmetric periodic
discharges <0.5 sec.

Uncertain 24
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Table 3.6: Quantitative electroencephalography (EEG) features included in this study. BSR: Burst Suppression Ratio.
ESR: EEG Silence Ratio. PSD: Power Spectral Density. ApEn: Approximate Entropy. TsEn: Tsallis Entropy. SpEn:
Spectral Entropy. BCorrD: Bivariate Correlation. PLI: Phase Lage Index.

EEG feature Feature description

Amplitude The minimal, maximal and mean amplitude of the EEG signal
BSR The fraction in which the amplitude of the EEG signal is <5 µV
ESR [28] Intervals of suppression of >240 msecs during which the EEG signal is <5 µV
Spikes [29] Waves with a high amplitude (>2.5*std of the signal amplitude) and maximum

width of 70 ms
Regularity [30] The regularity of the amplitude of the signal
Frequency bandpower PSD in different frequency bands

Absolute & Relative Delta: 0.5-4 Hz
Theta: 4-8 Hz
Alpha: 8-12 Hz
Beta: 12-30 Hz

Hjorth parameters [31]
Activity The variance of a time-signal
Mobility The standard deviation of the power spectrum
Complexity The change in frequency and similarity to a sine wave

Entropy
ApEn [32] Quantification of the unpredictability of fluctuations in a time series
TsEn [33] Quantification of the uncertainty of stochastic signals in the frequency domain,

with non-extensive statistics
SpEn [34] Quantification of the uncertainty of stochastic signals in the frequency domain

BCorrD [35] Bivariate correlation between two signals
Coherence Measure of the similarity between the PSD of two signals
PLI [36] Measure for the asymmetry of the distribution of phase differences

3.2.7 Evaluation of model performance

The performance of the RF was evaluated using different performance metrics. For the primary outcome
measure, we used a OvR approach to compute the AUC-ROC. The OvR approach involves treating
each of the EEG background classes as a binary classification problem, where one class is considered
as "positive" and the rest of the classes as "negative", and calculating the AUC-ROC score for each
individual class. A ROC curve for each of the EEG background categories was generated within each
fold, and the average over the five folds was calculated. Additionally, the micro-averaged AUC-ROC
was calculated to be able to evaluate the overall performance of the classifier over all categories. As
secondary outcome, the F1-score was calculated for each of the 5 folds. The F1-score is the harmonic
mean of precision (the accuracy of positive predictions) and recall (the ability to identify all positive
samples). We used these metrics to evaluate the performance of the model as they are less sensitive
to imbalanced EEG background classes.

To further evaluate the performance of the model, we generated a confusion matrix of the classi-
fication of EEG background category of all patients to compare the predictions of the algorithm with
the label assigned through visual analysis. Finally, we evaluated the importance of the included fea-
tures with a permutation approach to calculate the mean decrease in accuracy of the classifier after the
permutation of a single feature compared to the baseline model with all features.

3.2.8 Reduction of electrodes

In this study, we calculated the EEG features used as input for the RF in different ways. Initially, the
EEG features were computed based on a 12-channel montage, which was gradually reduced to 10,
8, 6, and 4 EEG channels. For the 10-channel montage, we removed C3 & C4. Subsequently, P7 &
P8, F7 & F8, and O1 & O2 were removed for the 8-, 6-, and 4-channel montages respectively (Figure
L.20). This enabled the computation of five unique sets of features, leading to the subsequent training
of five distinct RF models, each based on a different feature input. The aim of this approach was
to determine the minimum number of electrodes necessary for calculating qEEG features, while still
achieving a reliable classifier. We assessed the impact of electrode reduction by utilising Analysis of
Variance (ANOVA) statistics to compare the average outcome metrics across the 20 iterations of model
development.
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3.3 Results
3.3.1 Patient- and EEG characteristics

A total of 542 EEG recordings of postanoxic encephalopathy patients were collected in the study period,
of which 358 had an EEG recording with clear description at 24 hours after CA (Supplementary Material
H). After bad channel- and artefact detection, 323 patients could be included in this study (Figure H.3).
Table 3.7 shows the patient- and EEG characteristics of all included patients in this study. The back-
ground pattern that was most often present based on the visual assessment was a continuous normal
amplitude, followed by a discontinuous background pattern at T24. As the EEG background category
“Generalised Periodic Discharges (GPD) on a flat background” was only present in 2 patients, it was
decided to merge this category with “GPD on a continuous background” to a general “GPD” category.
This way, the multi-class classification was based on 8 categories. There were no significant differences
in patient age or -sex between the different groups.

Table 3.7: Patient- and EEG characteristics of the included patients in this study. *Groups were compared for mean age
using ANalysis Of VAriance (ANOVA), and sex using a chi-squared test. No significant differences were found between
groups (significance level p<0.05). BS: burst suppression. GPD: generalised periodic discharges.

Patient characteristics N. (%) Mean age (±std) Sex: females (%)

323 59.45 (±14.86) 72 (22.3%)

EEG background pattern

Continuous normal amplitude 126 (%) 56.4 (±15.7) 29 (23.0%)
Nearly continuous 41 (%) 64.2 (±13.5) 5 (12.2%)
Discontinuous 33 (%) 65.1 (±14.1) 11 (33.3%)
BS non-identical 55 (%) 60.7 (±13.6) 11 (20.0%)
Iso-electric 24 (%) 54.8 (±16.5) 6 (25%)
BS identical 17 (%) 62.9 (±15.9) 5 (29.4%)
Low voltage 15 (%) 59.3 (±11.8) 3 (20%)
GPD 12 (%) 58.4 (±6.8) 2 (16.7%)
p-value* 0.115 0.563

3.3.2 Model performance

The OvR Receiver Operating Characteristic (ROC) curves of the five-fold cross-validation are shown
in Figure 3.7. The micro-averaged AUC of the baseline model with a montage of 12 channels was
0.923 (95% CI: 0.918-0.928). The AUC of the different OvR curves varied for each category that was
predicted, ranging from 0.751 (95% CI: 0.565-0.937) to 0.974 (95% CI: 0.946-1.00), with the lowest AUC
for the prediction of a nearly continuous background pattern, and the highest AUC for the prediction of
an isoelectric EEG background. The secondary outcome measure, the F1-score, was 0.608 (95% CI:
0.586-0.630) for the 12-channel montage. The confusion matrix of the baseline-model is shown in
Figure 3.8.

3.3.3 Reduction of electrodes

The overall performance of the different RF models developed with different electrode montages was
not significantly different for any of the montages, and thus the reduction of electrodes used for model
development did not impact discriminating abilities (Figure 3.9 & Table 3.8).

3.3.4 Feature importance

The mean decrease of the model performance of the 12-electrode baseline model by the permutation
of all included features is shown in Figure 3.10. The most contributing qEEG features for the model de-
velopment were the regularity, amplitude (minimal, maximal) and the ESR. The least important features
included the delta- and theta coherence, and Spectral Edge Frequency at 90% of the power spectrum
(SEF90).
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Figure 3.7: One-vs-Rest (OvR) Receiver Operating Characteristic (ROC) curves per EEG background category of a
Random Forest classifier developed with input from 12 EEG electrodes. Plots were generated in a 5-fold cross-validation.
The curves for all 5 folds and the mean and standard over these folds deviation are visualised.
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Figure 3.8: Confusion matrix of the true background pattern versus the predicted background pattern of all included
patient in this study. The confusion matrix was generated in a 5-fold cross-validation approach using a Random Forest
classifier based on a 12-electrode montage. BS: burst suppression. GPD: Generalised Periodic Discharges

Figure 3.9: Comparison of micro-averaged Area Under the Curve (AUC) values over 20 repeats of a 5-fold cross-
validated Random Forest classifier for the prediction of EEG background pattern using 12, 10, 8, 6, and 4 EEG electrodes.
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Table 3.8: Comparison of outcome measures for 12-, 10-, 8-, 6-, and 4-channel mongtages used EEG background
pattern prediction. The mean values over 20 folds of model development are presented. *p-value significance level of
ANalysis Of VAriance (ANOVA) statistics: <0.05 AUC: Area Under the Curve. BS: Burst suppression. GPD: generalised
periodic discharges.

Outcome measures Number of EEG channels p-value*
12 10 8 6 4

Micro-averaged AUC 0.923 0.924 0.924 0.925 0.923 0.279
Continuous 0.928 0.930 0.931 0.933 0.928 0.502
Nearly continuous 0.746 0.757 0.755 0.760 0.779 0.986
Discontinuous 0.884 0.888 0.891 0.891 0.893 0.497
BS non-identical 0.888 0.889 0.888 0.892 0.867 0.983
Iso-electric 0.976 0.974 0.976 0.975 0.978 0.112
BS identical 0.944 0.946 0.951 0.938 0.944 0.391
Low voltage 0.915 0.906 0.909 0.906 0.912 0.328
GPD 0.826 0.838 0.835 0.848 0.861 0.948

F1-score 0.608 0.606 0.609 0.608 0.628 0.652

Figure 3.10: Feature importance of the Random Forest classifier developed with input from 12-channel EEG. Feature
importances were generated using a permutation approach on the developed model and evaluating the loss in accuracy
after removing each of the features.

3.4 Discussion
The aims of this study were to develop a ML model for the automatic EEG background pattern clas-
sification in postanoxic encephalopathy and additionally evaluate the effect of reducing the number
of EEG channels used for feature calculation on model performance. For this purpose, we included
EEG recordings of 327 patients with postanoxic encephalopathy in this study. The baseline model with
12 EEG channels exhibited good performance (AUC: 0.923). Furthermore, the findings of this study
demonstrate that regardless of the specific EEG electrodes employed, a well-performing random forest
(RF) model can be developed.
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A reduced number of EEG electrodes

In this study, we showed that the performance of the developed models remains unaffected by the util-
isation of a varying number of electrodes. Although this was the first study to evaluate the effect of a
reduced number of electrodes on automatic EEG background pattern classification, results are in ac-
cordance with similar studies on the visual assessment of EEG background pattern. [18–21, 38] These
findings suggest that the evaluation of the EEG background pattern predominantly depends on the
uniform and widespread manifestation of postanoxic encephalopathy. Consequently, for neuroprognos-
tication purposes in this particular disease, a reduced channel montage appears to be a viable option.
However, when it comes to neuromonitoring where localised brain activity holds greater significance,
specifically in cases involving epileptic abnormalities, it is still advised to use a complete montage. [11]

Overall model performance

While the developed models exhibited satisfactory performance overall, they encountered difficulty in
distinguishing between the EEG background categories continuous, nearly continuous, and discontinu-
ous. Some of this difficulty can be attributed to interrater variability. Although the background categories
in this study were defined based on the ACNS criteria, it appears that these definitions are not always
strictly adhered to in clinical practice. Therefore, it is likely that part of the ground truth in this study was
not accurate, which could have affected the model’s ability to correctly identify these patterns.

Two other categories that were often misclassified were Burst Suppression (BS) with- and without iden-
tical bursts. In clinical practice, there is often disagreement on the degree of similarity of bursts, so again
the ground truth might not always be “correct”, as only one clinical neurophysiologist visually assessed
the EEG recordings. However, a more probable explanation for this misclassification is the absence
of any features in the study that capture the degree of signal similarity. Furthermore, we computed
the features per 20-second epoch, but the mean value of these epochs was employed during the final
model development. Additional features isolating bursts in a BS pattern and comparing the properties
of multiple bursts within the same recording could increase the discriminative ability of ML models. It is
desirable to establish a quantitative definition for identical bursts as this would mitigate interrater vari-
ability and could assist in the visual assessment of the EEG background pattern. Furthermore, this
could enhance the accuracy of the automatic classification process.

A last category that was often misclassified was the GPD. The classification of GPDs presented the
highest number of errors in the developed baseline model. One possible explanation for this observation
is that GPDs can manifest on either a continuous or a flat background. However, due to their low
incidence within the study sample, we combined these distinct categories. As a result, the merged
category possesses a challenge for accurate classification. Furthermore, barely any of the included
features capture epileptic activity, rather they are aimed more at differences in signal amplitude and
frequency characteristics. Another aspect to consider is the difference between non-identical bursts
and GPDs. Although the definitions of these two patterns differ, there is gray area where discharges
within the same EEG sometimes classify as GPDs and other times as non-identical bursts. Due to this
ambiguity, there is a potential occurrence of misclassifications in the visual EEG assessment.

Quantitative EEG features

The most important features for all developed models included the ESR, Burst Suppression Ratio (BSR),
regularity and amplitude of the signal. The ESR quantifies the ratio of suppression in EEG activity. This
feature is close to 0 in a continuous signal and close to 1 in a highly suppressed EEG, explaining
why this feature was important in the model. Similarly, the regularity feature of EEG was developed
specifically to distinguish between a continuous or BS pattern. A signal with a constant amplitude has
a regularity of 1, whereas a highly suppressed signal with high-amplitude bursts has a value close to 0.
The shorter the period of suppression, the higher the regularity. [30] Despite the plausible explanations
for the emergence of the most important features, there is a possibility of bias in their importance.
This arises from the fact that features distinguishing the largest groups also tend to exhibit the largest
decrease in accuracy. In the case of equal distribution among different categories, it is conceivable that
other features could emerge as more effective in distinguishing between all EEG background categories.
Such features would hold greater value and applicability in clinical practice.
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3.4.1 Study strengths & limitations

One strength of this study was the inclusion of a large patient group and the minimal exclusion crite-
ria, as this provides a comprehensive representation of clinical practice. One observation we noted is
the infrequency of certain EEG background categories, which posed challenges in developing a robust
model. However, to limit the influence of this background pattern imbalance, we set a “balanced” pa-
rameter in the RF classifier and the metrics used to evaluate model performance (AUC-ROC, F1-score)
are known to handle imbalances in data well. Furthermore, alongside the imbalance in background cat-
egories, there is a possibility of bias in the definitions itself. It is well-established that there is substantial
interrater variability when it comes to assessing EEG recordings, [39] and that the variability can be
reduced by using the ACNS criteria. [40] In this study, we determined the ground truth based on the
assessment of a resident with supervision of an experienced clinical neurophysiologist. However, we
observed that the ACNS criteria were not always strictly followed. Hence, it is important to acknowledge
that certain misclassifications made by the model could potentially be attributed to inherent variability in
the assessment process rather than being definitive “incorrect” classifications.

Given that the primary objective of this study was to assess the impact of electrode reduction, efforts
were made to minimise the influence of other factors. Therefore, we selected a re-referencing method
that would not change for the different number of electrodes. The Cz electrode, which captures brain
activity, was used as a reference. The choice of the reference method employed in this study may have
exerted a significant influence on the results. It is generally preferred to utilise a reference electrode that
is as electrically neutral as possible, which was not possible in this retrospective study. A common way
to limit the influence of noise is by using an average reference. However, the average reference would
change for every new montage with reduced electrodes and might not have had its desired effect when
using only a limited set of electrodes. Future analyses could provide valuable insights by exploring
different reference methods (e.g., average referencing, bipolar referencing) and their effect on model
performance, rather than solely focusing on the number of electrodes utilised.

Another strength of this study lies in the deliberate choice to prioritise the transparency and comprehen-
sibility of the results, and thus developing a RF model instead of opting for different ML models. While
this decision may introduce certain limitations, such as the potential impact of artefacts on the predic-
tive capabilities of RF models, [41] we aimed to maintain the explainability of the developed models,
enabling healthcare professionals to effectively understand and utilise the outcomes of the models in
the future.

An important limitation of this study was the lack of an external validation set to independently test the
model’s performance. If the model were to be further developed for automated assessment of back-
ground patterns, it is necessary to validate the results on an external dataset. However, we expect that
the effects of the reduction of electrodes on model performance as presented in this study are gener-
alisable, irrespective of the dataset used, as they are in line with the current literature on visual EEG
assessment.

Furthermore, the precise timing of the extraction of 30-minute epochs remains uncertain, thereby raising
concerns regarding their accuracy. The selection of epochs was based on the visual description of the
background pattern, specifically referring to T24. However, it is plausible that this moment does not align
precisely with the actual occurrence of T24. Particularly when the T24 moment occurred during the
night, it might be possible the descriptions were placed the following morning. In an attempt to minimise
errors, we visually evaluated the extracted descriptions. Nonetheless, as the EEG background pattern
in postanoxic encephalopathy can evolve over time, it might be possible some of the fragments had a
description not matching the background pattern of the extracted 30-minute epoch.

3.4.2 Future research

Future research should primarily focus on incorporating additional EEG features that can further en-
hance the differentiation between the different categories. This could include measures such as cross-
correlation to distinguish between identical and non-identical bursts. [42] Furthermore, as we currently
only present the effect of the reduction to specific EEG montages, no definitive conclusions on the rel-
evance of specific electrodes can be drawn yet. In addition, it is advised to apply stricter adherence to
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the ACNS criteria when labeling the ground truth, so that the model can learn more effectively. [10]

In future research, it would be interesting to explore the systematic removal of electrodes using a per-
mutation analysis, similar to the analysis of feature importances conducted in this study. Furthermore,
the RF ideally has even better discriminative power before making any assertions regarding the impact
of electrode reduction. It is possible that any additional features are dependent on the number of elec-
trodes utilised. Therefore, it is crucial to improve the model further, potentially by incorporating more
features, before evaluating the true effect of electrode reduction. Additionally, the number of electrodes
used for EEG assessment is not the only relevant technical consideration. Methods for preprocessing,
sampling frequency, duration of the epoch around T24 used for assessment, rereferencing methods,
and filtering steps are all factors that should be investigated in future research to potentially improve the
labour-intensive aspects of applying, maintaining, and evaluating EEG. Moreover, some of these factors
could potentially contribute to more efficient data storage, computational speed, and energy consump-
tion.

A significant part of the patients, nearly half of them, had to be excluded from the analysis due to the
inability to extract the T24 moment from the event entries. The original database indicated that there
should be at least 462 EEG recordings available at T24. Consequently, there remains a substantial
amount of data from which a ML model could potentially learn. In future studies, incorporating these
additional patients into the analysis could augment the sample size across all categories and potentially
enhance the overall performance of the developed models.

Potential confounders that were not accounted for in the analysis include age, gender, medication,
and underlying organ failure, such as renal and hepatic failure. While these variables may not have a
direct impact on the classification of background patterns, it is important to acknowledge their potential
influence on (measurable) brain activity. Ideally, the model should be capable of considering these
factors and adjusting feature thresholds accordingly. By incorporating this information, the model could
further enhance its performance and provide a more comprehensive assessment of the EEG recordings.

3.4.3 Clinical relevance

In order to successfully implement algorithms like the one developed in this study, it is imperative to
assess the level of trust that clinical neurophysiologists and intensivists have in AI-driven healthcare,
as well as in the utilisation of a reduced number of EEG electrodes. In clinical practice, even with
a full electrode montage, determining the prognosis of a patient with postanoxic encephalopathy can
be challenging, sometimes even lacking a definitive conclusion. Consequently, we believe that the
option to review raw EEG recordings and to increase the number of electrodes used should always be
available in cases of uncertainty. Nevertheless, with the suggested model refinement, we believe that AI
has the potential to assist intensivists and clinical neurophysiologists in neuroprognostication following
CA, thereby reducing the burden of EEG assessment. Furthermore, utilising a reduced number of
electrodes, even with potentially less precise localisation, can still yield sufficiently accurate recordings,
leading to a less labour-intensive application process for EEG technicians. This, in turn, has the potential
to streamline workflow and improve efficiency in EEG analysis.

3.4.4 Conclusions

In this study, we showed that a feasible RF classifier for the automatic EEG background pattern assess-
ment can be developed, independent of the amount of EEG electrodes used. However, not all patterns
can be correctly identified yet, and future research should primarily focus on incorporating EEG features
that can further enhance the differentiation between the different categories. Eventually, less electrodes
may be used for the EEG assessment after CA, reducing the workload for both EEG technicians and
clinical neurophysiologists.
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4
FUTURE PERSPECTIVES AND CONCLUSIONS



A considerable number of critically ill patients suffer from primary or secondary brain injury, requir-
ing monitoring of this vital organ. However, continuous neuromonitoring in the Intensive Care Unit
(ICU) is not yet common clinical practice. Nevertheless, one frequently used technique for continuous
neuromonitoring, which has the potential to enhance the diagnosis, prognosis, and understanding of
the brain’s condition in critically ill patients is the electroencephalography (EEG). However, the labour-
intensive nature of applying, maintaining, and interpreting EEG hinders its optimal utilisation. In prepa-
ration of a project aimed at improving the EEG monitoring workflow at the Erasmus MC, the objective of
this thesis was to identify both the logistical and technical requirements for optimal monitoring, specif-
ically exploring strategies to reduce the labour-intensive nature of EEG application and interpretation,
thereby enhancing overall efficiency.

In Chapter 2 of this thesis, we conducted a qualitative study to map out the current workflow and iden-
tify barriers and facilitators for change in the EEG monitoring workflow at the ICU. For this purpose, we
interviewed several healthcare- and research professionals to gather their preferences regarding EEG
monitoring in critically ill patients. Two significant findings emerged from these conversations: the desire
to simplify the application process for the EEG technician, and the need for automated tools to assist in
EEG interpretation, potentially benefiting the clinical neurophysiologist as well as the intensivist. There-
fore, in Chapter 3, we explored the development of a Machine Learning (ML) model for automated
assessment of the EEG background pattern in postanoxic encephalopathy; the most common indica-
tion for EEG monitoring in current clinical practice. Furthermore, we evaluated the feasibility of using
a reduced number of EEG electrodes for this analysis to determine if it could still yield a robust model.
Hence, this thesis examined the prerequisites for EEG monitoring in the ICU, encompassing logistical
considerations, as well as technical requirements.

4.1 Future perspectives
The main logistical requirements have been identified, and we have demonstrated that the automated
assessment of the EEG background pattern is not affected by the number of electrodes used as input.
This indicates that in the future, fewer electrodes could be used. Does this mean that the implemen-
tation of a new workflow for EEG monitoring in the ICU at Erasmus MC can start immediately? The
short answer, as is often the case in scientific research, is no, not yet. There is still much more that
can and should be explored. Alkhachroum et al. (2022) suggest that the following key factors should
be considered when developing an institutional protocol for the EEG monitoring at the ICU: i) what ICU
EEG indications can the centre support; ii) what patient population is and should be monitored, and, iii)
what is the local context (number of available technicians, available EEG reviewers, review frequency,
and other workflow-related factors). [1] While we considered all these factors, and the presented find-
ings provide valuable insights and pave the way for potential improvements in EEG monitoring, further
investigation and validation is necessary before implementing a new workflow.

Although the point where automated tools can fully replace the assessment of the EEG background
pattern has not been reached yet, the results presented in Chapter 3 demonstrate the potential to
monitor brain activity with fewer electrodes in the most commonly monitored indication; postanoxic en-
cephalopathy. This finding is supported by literature on the visual assessment of EEG background
pattern with a reduced electrode-set. [2–6] The presented results imply that fully accurate placement of
electrodes may not be necessary for assessment in postanoxic encephalopathy, which could potentially
relieve EEG technicians from some of their labour. In the near future, it may even be possible to train
nurses in this specific indication to apply the EEG with a limited number of electrodes in these indica-
tions. [7] This would resemble the situation in the Pediatric Intensive Care Unit (PICU) at Erasmus MC,
where nurses themselves apply the amplitude-integrated electroencephalography (aEEG), for which 4
EEG electrodes are used. Although experience shows that the quality of the EEG may potentially be
slightly compromised in such cases, in postanoxic encephalopathy this may be less critical. In the event
that this approach is implemented, an EEG technician could always add additional electrodes to a full
montage if the limited montage does not provide sufficient information or if there are concerns about
the presence of epileptiform abnormalities in the EEG, as recommended by the ACNS. [8, 9]
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In a hypothetical scenario, it would be ideal if there was no need for individual electrode placement
and instead, an EEG cap or a system specifically designed for the ICU (such as the Brainstatus [10]
or CerebAir [11, 12]) could be utilised by ICU nurses at 24 hours after Cardiac Arrest (CA). In this sce-
nario, the need for the involvement of an EEG technician would be omitted. With an integrated tool,
the background pattern could be automatically assessed, accompanied by a certainty score. In cases
where the score is low, a clinical neurophysiologist would review the EEG background pattern. If there is
uncertainty regarding the background pattern, an EEG technician could apply more precise electrodes,
allowing for more accurate monitoring of the patient. The described workflow would reduce the labour
intensity involved in applying EEG and potentially create availability for EEG technicians to monitor other
critically ill patients who currently receive limited to no monitoring of the brain.

When considering which patients to prioritise for EEG monitoring, careful thought is necessary. It would
be essential to identify patient populations where EEG monitoring can provide valuable insights and
impact clinical decision-making. A major concern raised by healthcare professionals during the qual-
itative study (Chapter 2) was the added value of EEG monitoring. Apart from the existing benefits,
what additional insights can be gained from EEG? Does extra monitoring lead to overdiagnosis? Can
EEG monitoring lead to better patient outcomes? To answer these questions, conducting one or more
prospective studies with well-defined patient groups and clear research questions is necessary. One
indication that gathered significant interest was the early detection of ischemia in cases of hemorrhage,
infarction, and/or during Veno-Arterial ExtraCorporeal Membrane Oxygenation (VA-ECMO) treatment.
By defining a specific patient population and randomising into a controlled trial where some patients re-
ceive EEG monitoring while others do not, it can be determined whether monitoring these patients leads
to earlier detection of ischemia and improved outcomes. Another group of interest was patients with ele-
vated Intracranial Pressure (ICP). In a clinical study, EEG could be simultaneously applied alongside an
ICP monitor to investigate whether changes in the EEG correlate with changes in invasively measured
ICP, a theory supported by some case studies. [13–16]

However, before these scenarios can be implemented, we believe there are some technical and logisti-
cal requirements that need further consideration. This study primarily focused on one important aspect
of the technical considerations, namely the number of electrodes used. Nonetheless, other technical
factors such as referencing techniques, sample frequency, duration of EEG epochs, and filtering set-
tings are also crucial to investigate. Furthermore, the qualitative research performed as part of this
thesis revealed that interdepartmental collaboration is one of the key factors to success. In line with
this, exchanging knowledge between different hospitals is deemed highly valuable. Therefore, it is rec-
ommended to conduct visits to the CN departments and ICUs of other (academic) hospitals to assess
the local workflow and equipment arrangements. These visits will contribute to the optimal development
of an implementation plan.

By exploring the minimum technical requirements, the impact of the increasing use of AI in healthcare,
and more broadly, can be mitigated. It is becoming increasingly evident that data gathering, data stor-
age and the development and training of Artificial Intelligence (AI) models consumes substantial energy
and impacts the environment. [17, 18] Therefore, it is important to optimise and streamline the technical
aspects of EEG monitoring to minimise unnecessary resource utilisation.

Furthermore, with healthcare costs continuing to rise, it is crucial to be mindful of avoiding further es-
calation in expenditure. Automation of certain aspects of healthcare could play a significant role in
addressing this concern. [19] However, increasing the number of patients monitored has the poten-
tial to increase costs, while the effect on patient outcomes has not been established yet. Therefore,
it is essential to consider the cost-effectiveness of EEG monitoring in the critically ill in future studies.
Conducting health economic analyses can provide valuable insights into the economic implications of
expanding EEG monitoring in the ICU.

Nonetheless, by implementing the findings of these studies into practice, it becomes possible to at-
tain overall health benefits for critically ill patients and improve cost-effectiveness. Improved prognostic
abilities for critically ill patients enable more informed decisions about the appropriate care to be ad-
ministered to each patient. The availability of additional monitoring capacity due to the use of fewer
electrodes allows for the optimisation of treatment plans for these patients, ultimately leading to im-
proved overall healthcare.
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4.2 Conclusions
In this thesis, we have demonstrated the potential for change in the EEG monitoring workflow at the ICU
of the Erasmus MC, indicating that there is an opportunity to work towards more effective and efficient
neuromonitoring. We should take into consideration:

• EEG monitoring at the ICU in general was perceived as having high potential in influencing clinical
management and improving healthcare.

• Significant attention should be directed towards reducing the workload of healthcare providers
involved before the current workflow can be expanded.

• Reducing the number of EEG electrodes for the prognosis in postanoxic encephalopathy and au-
tomating the assessment of EEG background patterns have the potential to alleviate the workload
for EEG technicians and clinical neurophysiologists, while retaining important information in the
EEG.

• Effective interdepartmental collaboration between the department of clinical neurophysiology, the
department of neurology, and the ICU will make a difference in improving the ability to monitor the
brain of critically ill patients, thereby creating opportunities to improve patient outcomes.
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SUPPLEMENTARY MATERIALS



A Interview guide
Interviews were conducted in the Dutch language.

Introductie

In dit interview bespreken we het proces omtrent neuromonitoring middels EEG op de IC volwassenen
binnen het Erasmus MC. Waarom graag deze persoon/groep interviewen? Met sleutelpersoon eerst de
vragen ‘oefenen’, daarna nog stilstaan bij eventuele aanvullende vragen. Het gaat om een vrijwillige
deelname, er wordt gevraagd om toestemming voor opname van het interview. Na transcriptie worden
de audiofragmenten verwijderd en naam van de respondent wordt nergens genoemd. Het interview
zal 30 tot 45 minuten duren. Het interview bestaat uit drie onderdelen, namelijk: een algemeen deel
over de omtrent neuromonitoring op de IC en een tweede deel over de implementatie van nieuwe EEG
monitoring op de IC.

Deel 1: Algemeen

• Wat is je functie en hoe lang oefen je deze functie al uit? [loopbaan/ambities, motivatie]

• Als er een EEG op de IC nodig is, wat is jouw rol dan? [waar in de keten, hoe lang bezig,
frequentie, met welke andere betrokkenen in direct contact? Werkbelasting?]

• Vanuit jouw perspectief: wie zijn er betrokken bij het gehele proces? [belang van deze personen]

• Hoe ervaar je de huidige workflow omtrent monitoring? [aanvragen, efficiëntie, haalbaarheid]

• Is er volgens jou toegevoegde waarde van EEG monitoring op de IC en wat is die waarde dan?
[motivatie, functie, potentie]

• Welke indicaties komen nu door de triage heen? [weigeringen, welke vraagstellingen zou je eigen-
lijk wel willen monitoren?]

• Welke patiëntgroepen zouden we idealiter allemaal monitoren middels EEG op de IC? [motivatie,
indicatie]

• Gebruiken jullie kwantitatieve analyse van het EEG?

Deel 2: implementatie van nieuwe EEG monitoring

Verdere uitleg over doel van mijn project: in kaart brengen van de huidige workflow, EEG technische
voorwaarden en bevorderende en belemmerende factoren met het doel om de huidige workflow te ver-
beteren indien dit nodig blijkt en in de toekomst bij meer patiëntgroepen op de IC te kunnen monitoren.

• “Er is een plan om met nieuwe apparatuur en in de toekomst wellicht meer te gaan monitoren
middels EEG op de IC, met als doel uiteindelijk effectiever te kunnen monitoren” Wat zijn je eerste
gedachten hierbij? [toegevoegde waarde, motivatie, verandering, bereidheid]

• Zou een dergelijke verandering passen in de huidige workflow? [Hoe zie je je eigen rol wanneer
we dit in praktijk willen brengen? Wat zou moeten veranderen?]

• Je noemde net al een aantal van je eerste gedachtes. . . Aanvullend hierop, wat zie je als
bevorderende en belemmerende factoren? [waarom, frequentie, oplossing]

• Als er nieuwe apparatuur komt om meer te gaan monitoren, waar moet deze apparatuur volgens
jou dan aan voldoen? [werkbaarheid, specificaties, kosten]

• Wat zie je als belangrijkste punten waarop we moeten focussen voor een geslaagde implemen-
tatie?

• Wie zou er getraind moeten worden en wie zou er moeten trainen om de implementatie te laten
slagen? [capaciteit]
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Controleren of alle constructen van het CFIR model voldoende zijn nagelopen.

• Innovation Characteristics

– In hoeverre zou je ervaring op willen doen met nieuwe apparatuur voordat je het vertrouwt?
[pilot, mogelijkheden]

– EEG vergeleken met andere neuromonitoring methodes [EEG of andere optie?]

• Outer Setting

– Hoe schat je de slagingskans van deze implementatie? [Binnen EMC, IC, KNF, financieel,
politiek]

– Zijn er bepaalde speerpunten binnen de afdeling en sluit dit hier bij aan? [prioriteit, andere
projecten]

• Inner Setting

– Hoe zie je de cultuur en de samenwerking tussen we verschillende afdelingen?

– Hoe is de infrastructuur geregeld? Zouden er grote dingen moeten veranderen voor deze
implementatie? [communicatie, protocol, ruimte]

• Individual Characteristics

– Als het goed is besproken bij eerdere vragen, eventueel nog verder uitvragen.

Hiermee is een einde gekomen aan het interview. Ik kijk nog even of ik iets vergeten ben te vragen. Zijn
er nog dingen die je zelf graag zou bespreken? Terugkoppeling over de resultaten volgt in de loop van
mijn project.
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B Codebook
In this supplementary material, the codebooks that were used for the analysis of the data of the quali-
tative study in Chapter 2 are provided. We developed these codebooks based on 23 of the constructs
of the Consolidated Framework for Implementation Research (CFIR) in the Dutch language.

Table B.1: Codebook of workflow

Dimensies Aspect: definitie
Code: subaspect (deductief/inductief)
- Voorbeeld

1. Workflow A. Logistics
Logistics: De logistieke aspecten die van belang zijn bij een potentiële indicatie voor
neuromonitoring (deductief)
- De neuroloog komt in consult om de patient te beoordelen
- De KNF wordt gebeld voor een aanvraag voor een LEM op de IC
Efficiency: Hoe efficient de huidige workflow verloopt (deductief)
- Er wordt dubbel werk gedaan
Logistic wishes: de ideeen en wensen die er zijn als het gaat om logistiek (inductief)

B. Responsibilities
Patient visit: de verantwoordelijkheden per functie als het gaat om het fysiek beoordelen
van een patiënt (deductief)
- De neuroloog doet neurologisch onderzoek op de IC
Online: de verantwoordelijkheden per functie als het gaat om het online beoordelen van
het EEG van een patiënt (deductief)
- De KNF AIOS beoordeelt eens per uur de EEG registratie op de computer
Administration: wie moet wat rapporteren in het elektronisch patiëntendossier (deductief)
- De IC arts rapporteert de algemene indruk van de patient in het elektronisch patienten-
dossier

C. Workload
Pressure: De werkdruk die wordt ervaren door het betrokken personeel(deductief)
- De KNF artsen hebben het erg druk en hebben weinig ruimte voor extra taken
Working hours: De uren die besteed worden aan bepaalde taken(deductief)
- De laborant spendeert ongeveer 1 uur aan het proces dat komt kijken bij een LEM op de
IC

2. Collaboration D. Communication
Communication: Hoe de verschillende betrokken afdelingen en functies onderling met
elkaar communiceren (deductief)
- de KNF en IC communiceren niet direct met elkaar, alleen indirect via de neurologie

E. Efficiency
Efficiency: Hoe efficiënt de samenwerking tussen de betrokken afdelingen en functies
gaat (deductief)
- Door alle overlegmomenten kan het soms meerdere uren duren voordat een advies ook
echt uitgevoerd wordt

3. Indications F. Clinical practice
Clinical practice: voor welke indicaties wordt er in de huidige situatie een EEG aanges-
loten op de IC? (deductief)
- patiënten na een OHCA in een postanoxisch coma krijgen standaard een EEG voor de
eerste 24 uur na hartstilstand

G. Research
Research: bij welke patiënten/voor welke indicaties zou een EEG gemaakt kunnen worden
in onderzoeksverband? (deductief)
- Het EEG zou gebruikt kunnen worden om een hersenbloeding tijdig te detecteren door
asymmetrie tussen de linker- en rechterhersenhelft te detecteren op het EEG
Research wishes: de manier waarop wetenschappelijk onderzoek uitgevoerd zou kunnen
worden (inductief)
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4. Requirements H. Current practice
Current practice: Welke apparatuur wordt op dit moment gebruikt voor EEG monitoring
op de IC? (deductief)
- OSG BrainRT wordt gebruikt om de EEG registratie te beoordelen

I. New equipment
New equipment: Waar zou nieuwe EEG apparatuur aan moeten voldoen? (deductief)
- De aan te schaffen EEG caps moeten aangesloten kunnen worden op de huidige hard-
ware

J. Research
Research: Waar zou EEG apparatuur aan moeten voldoen om relevante onderzoeksvra-
gen te kunnen beantwoorden? (deductief)
- Om onderzoek te doen naar functionele connectiviteit zou je idealiter high-density EEG
gebruiken

5. Modalities K. Neuromonitoring modalities
Evidence based modalities: Welke apparatuur wordt naast EEG nog meer gebruikt voor
neuromonitoring en wat zijn de verschillen met het EEG? (deductief)
- Bij patiënten met (risico op) hoge druk na een neurotrauma wordt een ICP meter gebruikt
om de hersendruk te monitoren
Research modalities: Welke modaliteiten zouden in onderzoeksverband gebruikt kunnen
worden om de hersenfunctie te monitoren? (deductief)
- met functional Ultrasound kun je de bloedflow in de hersenen visualiseren

L. Out-of-the-box
Out-of-the-box: welke modaliteiten zou je kunnen ontwikkelen of gebruiken om de hersen-
functie te monitoren? (deductief)
- Met een camera op de pupillen zou je links-rechtsverschil potentieel kunnen detecteren
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Table B.2: Codebook barriers & facilitators

Dimensies Aspect: definitie
Code: subaspect (deductief/inductief)
+/- Voorbeeld facilitator/barrier

1. Innovation
characteristics

A. Relative Advantage

Relative Advantage: EEG is beter dan andere beschikbare methodes die momenteel
beschikbaar zijn om de hersenfunctie te monitoren óf dan geen methode (deductief)
+ Het EEG geeft een real-time weergave van de hersenactiviteit, wat andere neuro-
monitoring modaliteiten niet kunnen
- Het EEG zit relatief meer in de weg tijdens de verzorging van de patient dan een ICP
meter
Clinical Practice: EEG monitoring kan effect hebben op de klinische besluitvorming en
behandelmogelijkheden, heeft directe consequenties in de klinische praktijk (inductief)
+ Het EEG bij pentobarbitalcoma wordt gebruikt om sedatiediepte in te stellen
- Als we gaan monitoren bij hersenbloedingen, worden er in eerste instantie geen klinische
consequenties aan verbonden en zal dit voornamelijk in het verband van onderzoek zijn

B. Triability
Triability: De nieuwe EEG caps kunnen getest worden in de vorm van een pilot-studie
op een kleine schaal en de gevolgen van eerste implementatiestappen zijn niet blijvend
(deductief)
+ Voor de implementatie kunnen eerst demomodellen van de apparatuur aangevraagd
worden bij de fabrikant
- Een pilot kan in eerste instantie alleen bij gezonde vrijwilligers worden uitgevoerd

C. Complexity
Complexity: Het EEG is complex, hetgeen kan worden weerspiegeld in de omvang en/of
de aard en het aantal verbindingen en stappen (deductief)
+ Het EEG kan complexe netwerken binnen het brein identificeren
- De interpretatie van het EEG vergt getraind en ervaren personeel
Practical: Het EEG is aan te brengen bij IC patiënten en verstoort niet bij de verzorging
van patiënten (inductief)
+ EEG caps zijn niet zwaar en belemmeren de bewegingsvrijheid van de patiënt niet
- Patiënten met een EEG cap kunnen niet op hun hoofd gewassen worden

2. Outer setting D. External pressure
Performance Measurement Pressure: kwaliteit- en benchmarking van het Erasmus MC
zijn de drijfveer voor de implementatie van de EEG caps (deductief)
+ Door de speerpunten van het Erasmus MC wordt ver digitalisering van de IC gestimuleerd
- Door de vereisten en richtlijnen binnen het Erasmus MC is er minder vrijheid in de imple-
mentatie van nieuwe technieken

I. Local attitudes
Local Attitudes: Sociaal-culturele waarden (bijv. gedeelde verantwoordelijkheid) en over-
tuigingen (bijv. overtuigingen over de waardigheid van medewerkers) binnen het Erasmus
MC moedigen aan om de implementatie en/of de levering van de EEG caps te onderste-
unen (deductief)

3. Inner setting F. Access to knowledge & information
Access to Knowledge & Information: training/richtlijnen zijn beschikbaar voor de imple-
mentatie van de innovatie (deductief)
+ Er zijn gedocumenteerde afspraken over de indicaties voor monitoring
- De implementatie van nieuwe EEG caps vergt nieuwe scholing en training van personeel

G. Culture
Deliverer-Centeredness: Er zijn gedeelde normen en waarden over het waarborgen van
de wensen van de medewerkers van de KNF (deductief)
+ Er wordt onderling gesproken over zaken als werkdruk bij de KNF
- Communicatie tussen verschillende functies over wensen vindt niet plaats
Recipient-Centeredness: Er zijn gedeelde normen en waarden over het waarborgen van
de wensen van de medewerkers van de IC (deductief)
+ Er wordt onderling gesproken over zaken als werkdruk op de IC
- Intensivisten hebben andere wensen dan verpleegkundigen
Judgement: De mate waarin er dezelfde mening heerst over de indicaties voor neuromon-
itoring middels EEG op de IC (inductief)
+ aanvragende en uitvoerende (IC, neurologie, KNF) afdelingen hebben dezelfde inschat-
ting en zien bij dezelfde indicaties de noodzaak van EEG monitoring
- De IC wil een sepsis patient monitoren, terwijl de KNF daar geen indicatie voor ziet
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H. Structural characteristics
Work infrastructure: De organisatie van taken en verantwoordelijkheden binnen en
tussen de KNF staf, assistenten, laboranten en IC staf en verpleegkundigen en de al-
gemene personeelsbezetting ondersteunen de implementatie (deductief)
+ Iedereen weet wat zijn/haar taak en die van de andere betrokken is en waar de grenzen
liggen
- De artsen koppelen zaken omtrent het EEG vaak niet terug aan verpleegkundigen
Information Technology Infrastructure: De technologische systemen voor telecommu-
nicatie, elektronische documentatie, gegevensopslag, beheer, rapportage en analyse on-
dersteunen de implementatie (deductief)
+ EEG registraties zijn direct online beschikbaar en te beoordelen, er is een mogelijkheid
tot real-time telemonitoring
- Niet alle elektronische systemen voor een efficiënte workflow zijn compatibel (BrainRT is
niet gekoppeld aan HiX)
Physical Infrastructure: Lay-out en configuratie van ruimte en andere tastbare materiële
kenmerken ondersteunen de implementatie (deductief)
+ De IC is met uitstek geschikt voor technische apparatuur voor het monitoren van patiën-
ten
- Door de overvloed aan signalen op IC kamers is een draadloze verbinding ruisgevoelig
Workload: de werkdruk/belasting die personeel ervaart en de ruimte die er ligt om meer
tijd te besteden aan EEG monitoring op de IC (deductief)
+ De IC is met uitstek geschikt voor technische apparatuur voor het monitoren van patiën-
ten
+ Er is ruimte om de huidige workflow uit te breiden
- KNF laboranten ervaren een hoge werkdruk door tekorten

I. Available resources
Physical space: Er is fysieke ruimte beschikbaar op de patiëntkamer op de IC om EEG
caps en apparatuur kwijt te kunnen (deductief)
+ Elke IC patiënt heeft een eigen kamer met veel ruimte voor apparatuur
- Bij een patiënt met multi-orgaan falen zijn soms meerdere monitorings- en onderste-
unende apparaten in gebruik, waardoor er amper meer om te patiënt heen gelopen kan
worden
Personal space: Er is ruimte voor de EEG caps om aangebracht te worden op het hoofd
van de patiënt (inductief)
+ EEG caps bestaan in het format dat deze makkelijk om andere attributen heen geplaatst
kunnen worden
- Door beademingsapparatuur en centrale lijnen is een cap op het hoofd van de patiënt
soms moeilijk te plaatsen
Equipment availability: de mate waarin onderdelen die nodig zijn voor EEG monitoring
op de IC beschikbaar zijn (inductief)
+ altijd voldoende apparatuur beschikbaar
- De apparaten zijn niet altijd voldoende beschikbaar

J. Mission alignment
Mission alignment: De implementatie van nieuwe EEG monitoring is in overeenstemming
met de speerpunten van de KNF/IC (deductief)
+ Op de IC wil men graag meer monitoren van de hersenfunctie
- De speerpunten van de KNF richten zich meer op het diagnosticeren van epilepsie en
slaapstoornissen dan op langdurige EEG monitoring op de IC

K. Relative priority
Relative Priority: De implementatie van EEG op de IC heeft prioriteit ten opzichte van
andere initiatieven die lopen (deductief)
+ Binnen de KNF is de implementatie van EEG op de IC een speerpunt en topprioriteit
- Op de IC zijn continu implementaties en er is geen duidelijke implementatie met prioriteit
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L. Compatability
Compatibility: De EEG caps kunnen makkelijk ingebed worden en samenwerken met de
huidige workflow, systemen en processen (deductief)
+ De nieuwe EEG caps kunnen op de huidige apparatuur aangesloten worden en gelinkt
worden aan de gebruikte informatiesystemen
- Wanneer er meer gemonitord gaat worden met nieuwe caps en deze moeten aangesloten
worden op de huidige apparatuur, kan er een tekort ontstaan aan apparatuur

M. Tension for change
Tension for change: De huidige situatie is ontolereerbaar en verandering is noodzakelijk
(deductief)
+ De werkdruk op de KNF laboranten is te hoog en het plakken van EEG elektrodes is te
arbeidsintensief
- De huidige workflow werkt voorspoedig

O. Communications
Communications: Er zijn formele en informele praktijken van hoge kwaliteit voor het delen
van informatie binnen en over de grenzen van de KNF, neurologie en IC (deductief)
+ In HiX wordt de uitslag van het EEG teruggekoppeld en telefonisch doorgebeld
- Directe terugkoppeling naar de IC vindt nauwelijks plaats
Collaboration: Hoe de betrokken individu(en) met elkaar samenwerken (inductief)
+ Er wordt samen naar een doel toegewerkt
- Taken worden opgelegd door een persoon

4. Individual char-
acteristics

P. Motivation

Motivation: De individu(en) is toegewijd om zijn/haar rol bij de nieuwe manier van EEG
monitoring te vervullen (deductief)
+ De respondent is gemotiveerd om prioriteiten in werkzaamheden te verschuiven om de
implementatie te laten slagen
- De respondent is niet gemotiveerd om de workflow aan te passen of meer te gaan werken
om de implementatie te laten slagen

Q. Capability
Capability: De individu(en) heeft de kennis, skills en competenties om zijn/haar rol te
vervullen (deductief)
+ De betrokken werknemers zijn goed geschoold en kunnen makkelijk schakelen naar
nieuwe EEG caps
- De betrokken werknemers (verpleegkundigen, intensivisten) hebben nog geen ervaring
met EEG monitoring en moeten eerst bijgeschoold worden

R. Need
Need: De individu(en) heeft moeite met welzijn en/of persoonlijke voldoening, die zullen
worden aangepakt door de implementatie (deductief)
+ De respondent heeft baat bij de implementatie omdat daardoor wetenschappelijk onder-
zoek uitgebreid kan worden
- De betrokken persoon heeft zelf geen directe connectie met EEG monitoring en helpt
degene niet verder in het dagelijks leven

T. Trust
Trust: De individu(en) heeft vertrouwen in de capaciteiten van het EEG en de anal-
ysemethodes
+ De arts ziet de toegevoegde waarde van het EEG en snapt wat het monitort
- Automatische analyse van het EEG wordt niet vertrouwd totdat de arts zelf snapt wat het
algoritme doet
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C Questionnaire EEG technicians
Questionnaires were conducted in the Dutch language.

Algemeen

Tijdens dit onderzoek worden de huidige workflow, de knelpunten en den wensen omtrent neuromoni-
toring middels EEG op de volwassen Intensive Care van het Erasmus MC in kaart gebracht. Daarnaast
wordt onderzocht wat de potentiële belemmerende en bevorderende factoren zijn voor de implementatie
van nieuwe EEG apparatuur op de volwassen IC. In deze vragenlijst wordt u gevraagd om uw mening
te geven over een aantal stellingen over EEG monitoring op de IC.

• Hoe lang bent u werkzaam in uw huidige functie als laborant binnen de KNF van het Erasmus MC
(in jaren)?

Stellingen

Er volgen nu een aantal stellingen waarbij u kunt aangeven in welke mate u het (on)eens bent met de
stelling. 1: helemaal oneens, 2: oneens, 3: neutraal, 4: eens, 5: helemaal eens.

• Ik vind dat ik genoeg tijd heb voor de werkzaamheden die komen kijken bij EEG monitoring op de
volwassen IC.

• Ik ben op de hoogte van de indicaties voor EEG monitoring op de IC volwassenen.

• Ik heb plezier in de werkzaamheden die komen kijken bij EEG monitoring op de IC volwassenen.

• Ik denk dat er in de huidige logistiek ruimte is om meer te monitoren middels EEG op de IC.

• Ik ervaar een hoge werkdruk als laborant.

• Ik denk dat er bij bepaalde indicaties (zoals bij post-anoxie) ook met een ander systeem (zoals
een cap in plaats van losse elektrodes) gemonitord zou kunnen worden.

• Ik denk dat het toegevoegde waarde kan hebben om meer IC patiënten te gaan monitoren middels
EEG.

• Ik ben geïnteresseerd in wat extra EEG monitoring op de IC ons voor nieuwe inzichten kan geven.

Werkzaamheden

• Waar besteedt u als laborant het meeste tijd aan (1 = meeste tijd, 9 = minste tijd)

• Waar zou u het liefst het meeste tijd aan besteden? (1 = meeste tijd, 9 = minste tijd)

– Poliklinische werkzaamheden praktisch

– Klinische werkzaamheden praktisch

– Poliklinische werkzaamheden (SPOED)

– Klinische werkzaamheden (SPOED)

– Beoordelen van EEG registraties

– Administratieve werkzaamheden

– Overleg

– Onderwijs

– IONM

U wordt gevraagd om een spoed EEG op de IC aan te brengen.

• Welke werkzaamheden kosten u het meeste tijd (1 = meeste tijd, 7 = minste tijd)
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• Aan welke werkzaamheden zou u graag het meeste tijd besteden? (1 = meeste tijd, 7 = minste
tijd)

– Overleggen

– Benodigde apparatuur verzamelen

– Communiceren op/met de IC

– Aanbrengen van de EEG elektrodes

– Alles juist aansluiten

– Opruimen

– Wachten

Afsluiting

• Heeft u aanvullende suggesties om de huidige workflow rondom EEG monitoring op de IC vol-
wassenen te verbeteren die nog niet in het interview besproken zijn?

• Wilt u na het interview en het invullen van deze vragenlijst nog iets kwijt?

Bedankt voor uw deelname!
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D Questionnaire responses

Figure D.1: Distribution of responses to the quotes in the questionnaire of electroencephalography (EEG) technicians
(n=9). ICU: Intensive Care Unit. 0: fully disagree, 1: disagree, 2: neutral, 3: agree, 4: fully agree.
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Figure D.2: Quadrant plot of usage of time versus priorities of tasks of electroencephalography (EEG) technicians (n=9)
regarding EEG monitoring at the Intensive Care Unit (ICU). y-axis: the priority EEG technicians want to give to specific
tasks. x-axis: the time EEG technicians usually spend on specific tasks.
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E Suggestions
In this supplementary material, all suggestions provided during the interviews are summarised. Table
E.3, E.4, and E.5 summarise all the suggestions made with regard to logistics, equipment requirements,
and research opportunities.

Table E.3: Logistic wishes regarding electroencephalography (EEG) monitoring at the Intensive Care Unit (ICU) dis-
cussed during 12- individual and 2 focus group interviews with respondents from different departments within and out-
side of the hospital. EEG: electroencephalography. ICU: Intensive Care Unit. CN: clinical neurophysiology. PA: Physician
Assistant. LEM: Long EEG Monitoring. OHCA: Out-of-Hospital Cardiac Arrest.

Subject Suggestions

EEG attachment Training ICU nurses to attach EEG caps for specific indications
Develop a decision tree on which indications have the highest priority
Only during regular working hours for new indications in a research setting (in case of attachment by
EEG technicians)
To appoint a neural practitioner or technical physician to daily checkup on the EEG electrode placement,
detachment, etc. during implementation phase

Planning Create room within current planning by adding a technician responsible for EEG at the ICU
Assessment of several CN exams can be performed by the PA instead of resident, to increase EEG
monitoring possibilities

ICU Create dashboard with alarm to inform physicians when to contact the neurologist and/or clinical neuro-
physiologist
Replace wake-up calls with EEG monitoring
Neural practitioners as contact person at the ICU, connecting factor between ICU and neurology

Assessment Create AI algorithm to detect all continuous normal EEG patterns, residents and staff can assess the
remaining parts
Do not perform continuous monitoring (LEM) in post-OHCA patients, but rather at 24 hours after OHCA.
Developing strict protocols on which indications should and should not be monitored during the night.

Table E.4: Electroencephalography (EEG) equipment suggestions and requirements regarding EEG monitoring at the
Intensive Care Unit (ICU) discussed during 12- individual and 2 focus group interviews with respondents from different
departments within and outside of the hospital. AI: Artificial Intelligence.

Subject Suggestions & concerns

Hardware Take into consideration the ICU environment: what kind of signals and noise are already present?
Define different ICU scenarios and test the equipment accordingly
Are the current hardware systems necessary or is it possible to communicate through Bluetooth?
Integration of button to indicate patient care by ICU nurses possible to automatically mark as artefact?

Software There should be a way to automatically alarm when the EEG needs to be assessed in case of extra
monitoring
In case of AI, it should be possible manually view at least a few pages of EEG recording
A EEG viewing station in case of extra monitoring

Applicability The system should be easy to clean
general It should be possible to place electrodes close and tight to the scalp

It should be possible to attacht the electrodes or cap without disturbing central catheters, breathing
tubes, etc.
Using stickers instead of glue
The equipment should be applicable/adaptable to patients with decompressive craniectomy

Applicability The electrode placement should go automatically, i.e. no measurement per electrode
ICU nurses The electrodes and hardware should be easy to connect

The systems should have a check: is everything well connected?
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Table E.5: Suggestions & Research possibilities (n. of respondents = 10) for a more effective monitoring strategy.
Respondents were asked to describe any interests and/or concerns for future research. EEG: electroencephalography.
ICU: Intensive Care Unit. AI: Artificial Intelligence. OHCA: Out-of-Hospital Cardiac Arrest. TBI: Traumatic Brain Injury.
RCT: Randomised Controlled Trial. NCSE: Non-Convulsive Status Epilepticus.

Subject Suggestions
Monitoring Monitoring all ICU patients to evaluate whether treating epileptic EEG features would improve

outcome.
Monitoring all ICU patients to quantify the percentage of patients with epileptic EEG features

Artificial Intelligence Automatic classification of EEG background pattern
Outcome prediction using AI
Using AI to define EEG features correlated to the clinical status of the patient
Using AI to detect changes in EEG recordings over time (asymmetry, amplitude, frequencies)
Beware of overfitting based on an imbalance in input from EEG data compared to the clinical
parameters

At the bedside Providing one simple measure as an indicator and/or alarm

Study type Retrospective analysis of OHCA, TBI data
RCT: treat patients with evident NCSE, do not treat in case of evidence of no abnormal EEG
activity, randomise treatment for the group in between
RCT: EEG caps without wake-up-call versus wake-up-call
Start with patients where a good neurological scoring is performed, to be able couple the EEG to
outcome or a clinical parameter

Confounders Correction in statistical models based on medication used, treatment plans, age, days at the ICU

Law To clarify whether EEG recordings should always be visually analysed in real-time in case of
research
To clarify whether EEG recordings should always be visually analysed in case of clinical practice,
or whether selecting several epochs would be allowed as well
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F Barriers & Facilitators
In this supplementary material, all of the mentioned potential facilitators and barriers for the implemen-
tation of a new EEG monitoring workflow at the ICU of the Erasmus MC are summarised per domain of
the CFIR (Innovation Characteristics (Table F.6), Inner Setting (Table F.7 and F.8), Outer Setting (Table
F.9) & Individual Characteristics (Table F.10)).

Table F.6: Barriers & facilitators regarding changes for electroencephalography (EEG) monitoring at the Intensive Care
Unit (ICU) discussed during 12- individual and 2 focus group interviews with respondents from different departments
within and outside of the hospital in the CFIR domain: Innovation Characteristics. n. Number of times statements were
mentioned. OHCA: Out-of-Hospital Cardiac Arrest.

Facilitators n. Barriers n.

Clinical Practice

The EEG could influence clinical decision making 2 For most indications, the impact on clinical practice is not
known yet

14

The EEG is used to guide clinical management for some
indications (like post-OHCA)

2

In neurological/neurosurgical patients, a neurological ex-
amination is performed and can be coupled to EEG

1

Practical complexity

The EEG does not bother ICU nurses 2 The signal quality of EEG caps decreases over time 3
EEG caps would reduce the complexity of the attach-
ment

2 A lot of steps are required to ensure a good signal quality 2

EEG caps move quite easily 2
EEG caps are harder to attach in case of thick hair 1
EEG caps cannot be used in patients with an ICP
catheter

1

The configuration of wires etc. can be uncomfortable for
the patient

1

The attachment of EEG electrodes for good signal quality
is challenging

1

Complexity

Due to the complex nature of the EEG, it has high poten-
tial in detecting relevant brain activity

1 The interpretation of the EEG is very complex 6

EEG caps and/or less electrodes can be attached by
anyone

1 The EEG is prone to artefacts 6

The EEG is often misinterpreted by non-trained employ-
ees

3

Thresholds for “normal” EEG activity are hard to define 1
EEG analysis (features) are prone to confounders 1

Relative advantage

In potential, the EEG can be used to detect deterioration
of brain functioning early on and influence clinical man-
agement

4 Detection of bleeding, epilepsy or strokes often will not
change clinical management

2

The EEG is able to reflect brain activity that we cannot
see from the outside of the patient

2 The EEG often identifies biomarkers that are caused by
confounders

2

The EEG could potentially reduce the amount of CT/MRI
scans

1 Extra monitoring will only lead to a few % detection of
cases

1

Triability

Signal quality can be easily tested on healthy volunteers 2 The EEG has to be visually analysed when it is recorded
(law?)

2

The EEG can be used in a research setting without hav-
ing to visually analyse all signals

2
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Table F.7: Barriers & facilitators regarding changes for electroencephalography (EEG) monitoring at the Intensive Care
Unit (ICU) discussed during 12- individual and 2 focus group interviews with respondents from different departments
within and outside of the hospital in the CFIR domain: Inner Setting I. n. Number of times statements were mentioned.
OHCA: Out-of-Hospital Cardiac Arrest. CN: clinical neurophysiology.

Facilitators n. Barriers n.

Access to knowledge & information

The EEG is included in protocols on the clinical manage-
ment of some indications

2 At the ICU, there are no protocols and/or way to access
information on EEG monitoring

3

EEG equipment availability

For some indications, it is possible to pause the EEG
recording to use the hardware for another patient before
returning to the original patient

1 Hardware is not always available at the time of desired
EEG monitoring

4

Personal space

EEG caps might be hard to attach on a patient with a
breathing tube, central catheters, etc.

1

Physical space

ICU patient rooms are designed to store a lot of technical
equipment

2 There is a lot of signal noise present in ICU rooms 1

Collaboration

Clinical neurophysiologists, residents and EEG techni-
cians often communicate and efficiently work together

2 There is no direct collaboration between the ICU and the
clinical neurophysiology

3

Since the OHCA protocol, ICU nurses are familiar with
EEG technicians

1 Collaboration between the departments often is not effi-
cient

3

Communication

Monitoring guided guided clinical management is fre-
quently discussed at the ICU, making direct feedback
possible

1 Nurses often are not ready when the EEG technician ap-
pears, due to a lack in communication

2

Communication between EEG technicians and nurses is
often satisfactory

1 Physicians often interpret someone else’s words inaccu-
rately

1

The ICU staff sometimes forgets to consult the clinical
neurophysiologist in case of postanoxia

1

Compatibility

There are many simple EEG systems available, specifi-
cally developed for ICU use

1 Not all EEG caps/electrodes are compatible with the cur-
rent hardware

1

Deliverer-Centeredness

Clinical neurophysiologists pay attention to the workload
of EEG technicians

3

Judgement

There are protocols for certain indications, making judge-
ment of indiciations easier

2 EEG is often requested without a relevant indication (ac-
cording to clinical neurophysiology)

10

Mission alignment

EEG monitoring at the ICU is one of the priori-
ties/spearheads of the CN department

1
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Table F.8: Barriers & facilitators regarding changes for electroencephalography (EEG) monitoring at the Intensive Care
Unit (ICU) discussed during 12- individual and 2 focus group interviews with respondents from different departments
within and outside of the hospital in the CFIR domain: Inner Setting II. n. Number of times statements were mentioned.
OHCA: Out-of-Hospital Cardiac Arrest. CN: clinical neurophysiology.

Facilitators n. Barriers n.

Relative priority

EEG monitoring at the ICU is a priority within the clinical
neurophysiology department

1 ICU EEG monitoring might not give significant overall
health benefit

1

Work infrastructure

The current infrastructure allows for precise triaging 2 There is a shortage in EEG technician availability 3
There is room for urgency within the planning of EEG
technicians, and planning can be easily adapted

2 If an EEG technician or resident has to work for 2 hours
during the night, they cannot work the following day

The clinical neurophysiology has an on-call service and
often prioritises ICU EEG monitoring

1 Increased monitoring and application by ICU nurses
asks for availability of equipment at the ICU, which is not
possible in the current workflow

2

There are no strict rules for when to or when not to per-
form EEG recording

1

The current workflow is not efficient and therefore equip-
ment is often not available for patient B, when patient A
does not need the monitoring any longer or EEG techni-
cians cannot attach the electrodes within working hours

1

It is not possible to increase the amount of EEG record-
ings that should be visually assessed significantly

1

The EEG is often requested on time 1 There is a lack of equipment 1

Workload

The workload of clinical neurophysiologists and resi-
dents is okay

5 There is no room for increased EEG electrode attach-
ment by EEG technicians within the current workflow

6

EEG assessment of post-anoxia patients does not have
high workload

1 There is no room for continuous visual assessment of
EEG recordings

3

There is room for an increased amount of EEG electrode
attachment at the ICU by EEG technicians

1 ICU nurses experience a high workload 2

LEM (cEEG) monitoring has lower workload than stan-
dard EEG monitoring for EEG technicians

1 Clinical neurophysiologists and residents often have on-
call service

2

EEG monitoring could potentially lead to a decreased
workload for ICU nurses (less wake-up calls)

1 Monitoring deterioration of brain functioning asks for a
significant increase in EEG assessment

2

Attachment of EEG electrodes has a high workload
(hours, physical)

2

Physical infrastructure

Almost all post-anoxia monitoring happens at IC6, while
the motivated neural practitioners work at IC4

1

Tension for change

At the ICU, they miss the opportunity to monitoring the
functioning of the brain in real time

2

Table F.9: Barriers & facilitators regarding changes for electroencephalography (EEG) monitoring at the Intensive Care
Unit (ICU) discussed during 12- individual and 2 focus group interviews with respondents from different departments
within and outside of the hospital in the CFIR domain: Outer Setting. n. Number of times statements were mentioned.

Facilitators n. Barriers n.

Local Attitudes

The costs of hospital care are not allowed to increase 2
In general, change is difficult in every hospital 1
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Table F.10: Barriers & facilitators regarding changes for electroencephalography (EEG) monitoring at the Intensive Care
Unit (ICU) discussed during 12- individual and 2 focus group interviews with respondents from different departments
within and outside of the hospital in the CFIR domain: Individual Characteristics. n. Number of times statements were
mentioned. OHCA: Out-of-Hospital Cardiac Arrest. CN: clinical neurophysiology.

Facilitators n. Barriers n.

Capability

EEG technicians have expertise in high quality EEG
electrode attachment

6 ICU nurses and staff do not have experience with the
interpretation of EEG signals and often misinterpret the
signals

5

Neural practitioners are specialised ICU nurses with
loads of neurology knowledge

4 ICU nurses are not capable to attach EEG electrodes in
a full montage (without at least 1 year of training)

1

There are four certified clinical neurophysiologists with
ICU experience that work at the neurology department

4 ICU physicians are not familiar with the brain as a vital
organ

1

The ICU is a technical space and nurses and physicians
are used to new equipment being implemented

3

At ICU4, there are many nurses that used to work at the
neurological ICU

1

Motivation

Many ICU nurses are interested in neuro-patients (used
to work at the neurological ICU)

4 A potential initial increase in workload and change in cur-
rent workflow scares most employees

2

Clinical neurophysiology staff and residents are inter-
ested in the potential benefit of EEG monitoring at the
ICU

2 Without clear benefit and direct influence on clinical de-
cision making, motivation of some employees is lacking

2

Neural practitioners are excited to work with new neu-
romonitoring equipment and teach colleagues

2 Some ICU nurses think the EEG is too complex and are
not motivated to put work into the implementation

2

EEG technicians enjoy EEG electrode attachment 1 Some employees do not like research, since they find
that there often is no feedback on results of the study

2

Not all clinical neurophysiologist are motivated to put ex-
tra work into ICU EEG monitoring

1

Need

There is no way to evaluate the functioning of the brain
in real-time

2 EEG technicians have no trouble with the time it takes to
attach EEG electrodes

2

Trust

Clinical neurophysiologists, residents and ICU staff see
and trust the potential of ICU EEG monitoring

4 Clinical neurophysiologists and residents wonder what
the potential benefit of ICU EEG monitoring will be

4

Clinical neurophysiologists and residents have a lot of
trust in the capability of EEG technicians

3 People are sceptical/careful in their nature 3

EEG technicians and staff are able to quickly adapt to
new EEG equipment and trust it

2 It can take up to a few years to gain every physicians
trust at the ICU

2

Employees see increased continuous EEG monitoring at
the ICU as the future

2 EEG technicians do not think EEG caps will work in the
ICU environment

2

Employees trust that AI can significantly increase the
value of EEG measurements

1 There is doubt in the added value of the standardised
monitoring of OHCA patients at the ICU

2
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G Implementation phase
Based on the identified barriers and facilitators for an effective implementation in a qualitative study
on electroencephalography (EEG) monitoring at the Intensive Care Unit (ICU) of the Erasmus Medical
Center Rotterdam (EMC), we identified the most important factors for the following implementation
phase. Different scenarios for the reduction of workload and implementation of a new EEG worfklow at
the ICU based on these factors, are discussed below.

• With a focus on reducing the current workload first, to be able to increase the effectiveness of
future EEG monitoring

– It is important to closely consider the preferences of various healthcare professionals, as this
study has revealed discrepancies in the perspectives of different interviewees

– Regular assessment and feedback sessions should be implemented to encourage all individ-
uals involved and to address any challenges that arise

• Improving the interdepartmental collaboration

– Assigning a key-figure that stays in contact with all involved employees and has the final
responsibility for the implementation process and regular evaluations

– Assigning a responsible persons per department involved to create an implementation team

• Deciding on the most promising indications for EEG monitoring

– Emphasis should be layed on the effectiveness of EEG monitoring, i.e. the influence on
clinical management and patient outcome

– Do not only consider new indications, but pay attention to the effectiveness of EEG monitoring
in the current indications

• Exploring how to deal with the different ICU sections (general versus cardio-thoracic)

• Deciding on who and how to train for the application of new EEG equipment

Workload

Reducing the workload of EEG technicians and ICU nurses should be a top priority. However, this
should be tackled in different ways as the ICU nurses experience a high workload in so called wake-
up calls, while the workload of EEG technicians has more to do with the EEG electrode attachment.
Scenarios are described in Table G.11.

Interdepartmental collaboration

To ensure effective implementation, a key figure with final responsibility should be assigned (Table
G.12). Additionally, a responsible representative per (sub)department should be appointed, to form an
implementation team. These representatives could be:

• Clinical neurophysiology: keyfigure (Table G.12), additionally the two persons who end up not
being the key figure

• ICU: neuro-intensivist and all three neural practitioners

• Neurosurgery: neurosurgeon with regular ICU supervision

• Neurology: neurologist with regular ICU supervision

• If possible: a neurology and neurosurgery resident

Approach for change

In Table G.13, some suggestions regarding the start of the implementation phase are provided.

70



Table G.11: Different scenarios and their (dis)advantages to reduce the workload of electroencephalography (EEG)
technicians and Intensive Care Unit (ICU) nurses.

Scenario Advantages Disadvantages

Reducing the workload of EEG
technicians by implementing new
EEG equipment, facilitating easier
attachment of electrodes

Quick
EEG technicians have a lot of knowl-
edge
Creating space for monitoring of
new indications, possibly leading to
reduced amount of wake-up calls

EEG technicians are skeptical about
other equipment
In the end, the workload for EEG
technicians might not be reduced

Reducing the workload of EEG
technicians by reducing the amount
of electrodes that should be at-
tached in certain indications, facil-
itating easier attachment of elec-
trodes

Quick
EEG technicians have a lot of knowl-
edge
Creating space for monitoring of
new indications, possibly leading to
reduced amount of wake-up calls

In the end, the workload for EEG
technicians might not be reduced

Reducing the workload of EEG
technicians by teaching ICU nurses
how to apply EEG caps

Quick
ICU nurses are generally motivated
Neural practitioners can be super-
users

Implementation may take a longer
time
Exact localisation of electrodes may
be limited
Signal quality may be reduced

Table G.12: Possiblities of a responsible key figure to improve interdepartmental collaboration and the (dis)advantages.
EEG: electroencephalography. ICU: Intensive Care Unit.

Scenario Advantages Disadvantages

Technical physician Knowlegde of clinical and technical
relevance
Trained in interdisciplinary commu-
nication

Might lack knowledge on EEG
equipment
Not embedded in current workflow

Physician assistant Knowledge of clinical and technical
relevance
Experience with EEG equipment
and assessment

Lot of other responsibilities
Does not have time to visit ICU on a
daily basis

Clinical neurophysiologist Knowledge of clinical and technical
relevance
High in hierarchy, personally knows
most people involved

Lot of other responsibilities
Does not have time to visit ICU on a
daily basis

Table G.13: Options for the approach of change in the current workflow and their (dis)advantages. EEG: electroen-
cephalography. ICU: Intensive Care Unit. CA: Cardiac Arrest.

Scenario Advantages Disadvantages

Using different equipment or amount
of electrodes in the biggest group
(postanoxic encephalopathy)

Potentially large effect
possible to compare to the current
standard

Most post-CA patients at cardiotho-
racic ICU, while neural practitioners
only work at the general ICU

Introducing new EEG equipment for
new research applications without
altering the current workflow.

Reduction of workload of ICU
nurses might be realised sooner
Possible to focus on step by step im-
plementation

Might not reduce workload of EEG
technicians
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H Description of dataset
All consecutive postanoxic comatose patients admitted to the ICU of the Erasmus MC, Rotterdam, be-
tween October 5th 2019 and April 25th 2023 were included in this study. continuous electroencephalog-
raphy (cEEG) was part of standard clinical practice and used to guide neurological prognostication.
Eventually, 327 patients with 38873 20-second EEG epochs were used for the analyses (Figure H.3).
The distribution of different background patterns at 24 hours after Cardiac Arrest (CA) (the moment of
neuroprognostication according to the national guidelines [1]) of the included patients in this study is
visualised in Figure H.4. The most common background patterns at 24 hours after cardiac arrest (T24)
were a continuous background pattern, Burst Suppression (BS) with non-identical bursts.

Figure H.3: Flowchart of patient- and epoch inclusion. Out of 542 electroencephalography (EEG) recordings at 24 hours
after cardiac arrest, 323 were included in the study.

Figure H.4: The distribution of EEG background patterns at 24 hours after cardiac arrest in the included patients in
this study (n=323) based on the visual assessment of the EEG. BS: Burst Suppression, GPD: Generalised Periodic
Discharges.
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I EEG background patterns
In this supplementary material, examples of the 8 different categories of EEG background patterns that
were classified in this study are provided. 15 seconds of EEG background patterns surrounding the T24
moment are displayed in Figure I.5, I.6, I.7, I.8, I.9, I.10, I.11, and I.12.

Figure I.5: Continuous background pattern. Cz-referenced, displayed at 120 µV, 15 seconds (sub-0118).

Figure I.6: Nearly continuous background pattern. Cz-referenced, displayed at 80 µV, 15 seconds (sub-0020).

73



Figure I.7: Discontinuous background pattern. Cz-referenced, displayed at 70 µV, 15 seconds (sub-0074).

Figure I.8: Isoelectric background pattern. Cz-referenced, displayed at 10 µV, 15 seconds (sub-0015).

Figure I.9: Low voltage background pattern. Cz-referenced, displayed at 20 µV, 15 seconds (sub-0010).
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Figure I.10: Burst-suppression with identical bursts. Cz-referenced, displayed at 240 µV, 15 seconds (sub-0220).

Figure I.11: Burst-suppression with non-identical bursts. Cz-referenced, displayed at 300 µV, 15 seconds (sub-0139).

Figure I.12: Generalised Periodic Discharges. Cz-referenced, displayed at 50 µV, 15 seconds (sub-0303)
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J Preprocessing
In this supplementary material, the preprocessing steps of the EEG data are further elaborated upon. All data
was stored following the international Brain Imaging Data Structure for EEG (BIDS-EEG) structure to facilitate
organisation and sharing possibilities of data. [2]

Bad channels and artefacts
30-minute epochs surrounding the T24 moment were visually inspected to identify loose EEG channels and ma-
jor artefacts. Since it was assumed that there would be minimal artefacts in this patient population (partly due
to patients being sedated and not moving), extensive artefact detection was not performed. Significant artefacts
caused by activities such as patient care by nurses were manually removed from the data, but artefacts result-
ing from electrode pops, for example, were not thoroughly examined. Bad segments and loose channels were
marked in the MNE toolbox and subsequently excluded from further analyses. Datasets with loose channels were
excluded entirely from the analyses to ensure that the baseline group did not include any patients with fewer than
12 electrodes. This approach allowed for an unbiased evaluation of the effect of removing a specific number of
electrodes. In addition to the visual inspection of artefacts, remaining artefactual epochs were removed based on
amplitude and total Power Spectral Density (PSD). The amplitude of all 20-second epochs was calculated, and a
threshold was set at 300 µV, as physiological brain activity will not exceed this voltage. Subsequently, the threshold
for the total power was set at 2000 W/Hz. All epochs exceeding these threshold were removed from further analysis.

The presence of the ECG artefact, caused by the electrical activity of the heart, is a common issue in EEG record-
ings. To mitigate this artefact, a widely employed approach is performing Independent Component Analysis (ICA)
analysis. In this study, the MNE toolbox’s automatic ECG removal using ICA analysis (Reparing artefacts with
ICA) was utilised. Using this method, the first 10 ICA components were selected. A threshold was set at 0.9 for
the Pearson correlation value between the ICA component and the electrocardiogram (ECG) signal. Components
above this threshold were removed from the data. However, it is important to note that complete removal of ECG
artefacts was not achieved, which warrants attention in future studies.

Filtering
EEG signals are prone to noise and artefacts, which can distort the data and hinder the identification of meaningful
patterns. Applying appropriate filters helps eliminate unwanted components and emphasise the underlying brain
activity of interest. This preprocessing step enhances the quality of the EEG data, enabling more accurate quan-
titative analysis and interpretation. Filters can have significant effect on EEG analysis, especially in the case of
Evoked Response Potentials (ERP). However, since this analysis primarily focused on the overall EEG background
pattern and not the precise timing of specific patterns, it was determined that the default settings of the MNE filters
would be sufficient. The default settings of the MNE notch-filter to remove power-line noise at 50 Hz were used.
Additionally, a bandpass filter from 0.5 to 35 Hz was used. Both filters were designed as non-causal Finite Impulse
Response (FIR), meaning that the data was first filtered forward and then again backward to limit the introduction
of phase delays in the signal.

Notch filter

• Windowed time-domain design (firwin) method

• Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation

• Lower passband edge: 49.38

• Lower transition bandwidth: 0.50 Hz (-6 dB cutoff frequency: 49.12 Hz)

• Upper passband edge: 50.62 Hz

• Upper transition bandwidth: 0.50 Hz (-6 dB cutoff frequency: 50.88 Hz)

• Filter length: 1691 samples (6.605 sec)

Bandpass filter

• Windowed time-domain design (firwin) method

• Hamming window with 0.0194 passband ripple and 53 dB stopband attenuation

• Lower passband edge: 0.50

• Lower transition bandwidth: 0.50 Hz (-6 dB cutoff frequency: 0.25 Hz)

76

https://mne.tools/stable/auto_tutorials/preprocessing/20_rejecting_bad_data.html
https://mne.tools/stable/auto_tutorials/preprocessing/15_handling_bad_channels.html
https://mne.tools/stable/auto_tutorials/preprocessing/40_artifact_correction_ica.html#sphx-glr-auto-tutorials-preprocessing-40-artifact-correction-ica-py
https://mne.tools/stable/auto_tutorials/preprocessing/40_artifact_correction_ica.html#sphx-glr-auto-tutorials-preprocessing-40-artifact-correction-ica-py
https://mne.tools/stable/generated/mne.filter.notch_filter.html
https://mne.tools/stable/generated/mne.filter.filter_data.html


• Upper passband edge: 35.00 Hz

• Upper transition bandwidth: 8.75 Hz (-6 dB cutoff frequency: 39.38 Hz)

• Filter length: 1691 samples (6.605 sec)

Rereferencing
Two commonly used rereferencing methods are average rereferencing or the use of a reference electrode that is
physically distant from the scalp and has minimal cerebral activity, such as the mastoid or ear electrode. However,
such an electrode is usually not attached in postanoxic ICU patients and could not be used in this retrospective
study. Furthermore, average referencing, which is commonly used in quantitative EEG analysis, was deemed
unsuitable due to the changing average with each new electrode configuration. Furthermore, an average reference
based on only 4 electrodes might not be ben Since neutral electrodes were not utilised during EEG recording, it was
decided to adopt Cz as a common reference for all analyses (Figure J.13). However, it is important to acknowledge
that focal abnormalities at the Cz location could have influenced the study’s outcomes. Moreover, amplitudes at
the C3 and C4 electrodes would appear lower compared to more distant electrodes, as greater inter-electrode
distances tend to increase signal amplitudes. Additionally, the choice of Cz reference could potentially impact
several features. For instance, when calculating electrode coherence, if the activity measured at Cz dominates
over other electrodes, the coherence measurement may mainly reflect the coherence between Cz activity and
itself.

Figure J.13: Cz common reference used as rereferencing method in this study. The traces that are visualised represent
the voltage differences between the electrical charge at that electrode and the Cz electrode.

Epoch length
To determine the optimal length of epochs for EEG feature calculation, the mean, minimal, and maximum amplitude
distributions per epoch were compared across different lengths (Figure J.14). Epochs of 10, 20, and 30 seconds
were created for this analysis. The comparison was based on EEG data from 10 patients (sub-0000 to sub-0010),
of which 7 had usable data at T24. The analysis of the feature distributions revealed that the length of an epoch
did not significantly impact the amplitude values. As expected, the computational time was influenced by the epoch
length, with shorter epochs requiring less computation time. Considering that some EEG background patterns
after cardiac arrest may persist for periods longer than 10 seconds (like a burst-suppression pattern that can have
periods of suppression of more than 10 seconds), a decision was made to select epochs of 20 seconds for further
analysis. After the decision of the epoch length was made, a comparable analysis was performed to determine
the optimal length of overlap in the epochs (0, 5, and 10 seconds). This analysis revealed that the inclusion or
exclusion of overlap in epochs has minimal impact on the majority of features, except for measures such as entropy
(Figure J.15). The difference between 5 and 10 seconds of overlap is negligible, while a noticeable distinction
exists between 0 and 5/10 seconds. Given the emphasis on capturing overall EEG characteristics and anticipating
limited variability within the 30-minute epochs, opting for overlapping epochs was deemed to be the most suitable
approach. To enhance computational efficiency, a 5-second overlap was selected, resulting in an epoch length of
20 seconds with 5 seconds of overlap.
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Figure J.14: Distribution of mean, maximum, minimum, and range of amplitudes in electroencephalograph (EEG) epochs
of 10 versus 20 versus 30 seconds.

Figure J.15: Distribution of entropy and Hjorth features in electroencephalography (EEG) epochs of 20 seconds with 0
versus 5 versus 10 seconds of overlap. TsEn: Tsallis Entropy. SpEn: Spectral Entropy.
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Description of preprocessing code
The source code for the preprocessing steps used in this study can be found at github and is visualised in Figure
J.16.

Figure J.16: Code flowchart of all steps that were taken in the electroencephalography (EEG) data preprocessing before
EEG feature calculation.
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K Features
In this supplementary material, a description of all included quantitative electroencephalography (qEEG) features
is provided in alphabetical order. Feature calculation was performed in MATLAB, and the source code can be found
through github. The workflow for the feature calculation is visualised in Figure K.17. For each included patient
in this study, we calculated a total of 26 qEEG features. These features were first computed per epoch for each
individual EEG channel. These channel values were then averaged to generate a single value per feature per
epoch, which subsequently was averaged to result in a final feature value per patient.

Amplitude
The amplitude (in µV) of the EEG signal was calculated for every channel. A moving-average filter was applied to
the absolute values of the EEG epoch. The moving-average filter had a window of 0.25 times the sample frequency.
The average, minimum, maximum, and range of the amplitudes per epoch were calculated as features.

Bivariate Correlation Directed (BCorrD)
The Bivariate Correlation Directed (BCorrD) is a feature based on the Pearson correlation coefficient, [3] and first
described by Wang et al. (2014). [4] The prefix B indicates bivariate methods using pair-wise calculations, and D
indicated direct connectivity. Thus, BCorrD is a bivariate correlation method for measuring directed connectivity.
The Pearson correlation coefficient has a value between -1 and 1 and reflects a linear correlation of variables. The
BCorrD in this study was used to calculate the correlation between a channel, and a delayed version of itself using
the Matlab function xcov.

Burst Suppression Ratio
The Burst Suppression Ratio (BSR) is defined as the percentage of time in which the EEG shows a suppression
pattern, where high voltage burst activity alternates with periods of little or no activity (<5 µV). The BSR is calculated
by dividing the total time that the EEG shows a suppression pattern by the total recording time.

BSR =
Tsup

Ttotal
· 100% (1)

where:

Tsup : Duration of segments with amplitude <5 µV
Ttotal : Total duration of the EEG signal

The BSR varies between 0 and 1, where a BSR closer to 1 indicates a higher ratio of suppression of electrical brain
activity.

Coherence
Coherence is an EEG feature that reflects the functional connectivity between different brain regions. It is a measure
of the degree of synchrony between two EEG signals recorded from different scalp locations, and is thought to
reflect the strength of the underlying neural connections. [5] In this study, the magnitude-squared coherence was
calculated using the Matlab function mscohere. [6] The coherence value ranges from 0 to 1, with a value of 1
indicating perfect coherence, or complete synchronisation between the two EEG signals at frequency f, and a value
of 0 indicating no coherence, or complete desynchronisation between the two EEG signals at frequency f.

EEG Silence Ratio (ESR)
The EEG Silence Ratio (ESR) is quite similar to the BSR and was calculated following the definition provided by
Theilen et al. (2000). [7] The ESR is the fraction of total EEG length of which the EEG voltage remains below 5 µV
for a duration of at least 240 milliseconds.

ESR =
Tsup

Ttotal
· 100% (2)

where:

Tsup : Duration of segments with amplitude <5 µV for >240 ms
Ttotal : Total duration of the EEG signal
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An ESR close to 0 indicates that there are (almost) no silent periods within the EEG, whereas a higher ESR value
indicates more discontinuity.

Entropy
In this study, three different types of entropy were calculated.

Approximate Entropy

The Approximate Entropy (ApEn) is a measure of regularity that quantifies the unpredictability of fluctuations in a
nonlinear time series, with a relatively higher value indicating a lower likelihood of similar patterns being followed by
additional similar observations. [8] In the context of EEG, the ApEn calculates the predictability of future amplitude
values in the EEG by considering the knowledge of the preceding amplitude values. The ApEn was calculated
using the Matlab function approximateEntropy.

Tsallis Entropy

The Tsallis Entropy (TsEn) is an entropy measure that captures the complexity and regularity of a signal by
analysing the different frequency components of the signal. [9] It not only takes into account the spectral prop-
erties of a signal, but introduces an additional parameter that results in non-extensive statistics (independent of
initial conditions). The Tsallis Entropy was calculated using the weentropy function of Matlab.

Spectral Entropy

The Spectral Entropy (SpEn) is a measure of the uniformity of the spectral power distribution of a signal. [10] For a
more uniform distribution, the spectral entropy is larger. In this study, the SpEn was calculated with the use of the
pentropy function of Matlab In this function, the Shannon entropy of the normalised energy is calculated.

Hjorth parameters
Hjorth parameters are a set of three descriptors used to characterise the characteristics of a time series in the
time- and frequency domain. [11] The activity represents the overall magnitude of the signal and is calculated by
measuring the variance of the signal. Activity increases for a signal with higher frequencies. Mobility is a measure
of the standard deviation of the power spectrum and complexity compares the similarity of the signal to a sine wave
(a value of 1 means that the signal is more similar to a sine wave).

activity = var(y(t)) (3)

mobility =

√
var(y′(t))

var(y(t))
(4)

complexity =
mobility(y′(t))

mobility(y(t))
(5)

where:

y(t) : The time-series signal

Phase Lag Index
The Phase Lag Index (PLI) is a measure of functional connectivity and is used to calculate the asymmetry of the
phase lags between two EEG channels by estimating the proportion of time in which the phase difference between
them remains consistently in the positive or negative direction. [12] The PLI ranges from 0 to 1 and a higher PLI
indicates stronger phase synchronisation between brain regions.

81



Power Spectrum
The power spectrum, the power in frequency components of the signal, was calculated using the Matlab function
bandpower. This function calculates the power spectrum with a Fast Fourier Transform (FFT) with a Hamming
window. Using this function, the absolute power per frequency band and the relative power (the fraction of the
power in a specific frequency band compared to the total power) were calculated.

• total: 0.5 - 25 Hz

• delta: 0.5 - 4 Hz

• theta: 4 - 8 Hz

• alpha: 8 - 13 Hz

• beta: 13 - 25 Hz

Regularity
The regularity was first described by Tjepkema-Cloostermans et al. (2013) to evaluate the regularity of the am-
plitude of a signal. [13] The EEG signals were squared, and subsequently the values of the signal were sorted
in descending order. Finally, the normalised standard deviation was calculated. A signal with low amplitudes and
bursts has a regularity value close to zero, whereas signals with constant amplitudes have a value close to 1.

Reg =

√ ∑N

i=1
i2q(i)

1
3
N2

∑N

i=1
q(i)

(6)

where:

N : length of the signal
q : sorted signal

Spectral Edge Frequency
The Spectral Edge Frequency (SEF) is defined as the frequency below which a specified percentage of the total
power of the signal is contained. In this study, the SEF at 95% was calculated, which represents the frequency
below which 95% of the total power of the signal is concentrated. The SEF at 95% is often calculated in EEG
analysis, especially to assess the depth of sedation. [14]

Spikes
Epileptic spikes were defined as waves with a high amplitude and maximum duration of 70 milliseconds. In this
study, spikes were calculated with a threshold for the amplitude of at least 2.5 times the standard deviation from
the mean signal. [15]
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Figure K.17: Code flowchart of the electroencephalography (EEG) feature calculation in this study. For nearly all features,
feature values per channel were calculate and based on the number of EEG electrodes used as input, the mean feature
value was calculated. The coherence was separately calculated for each combination of electrodes included in this study.
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Feature distribution per EEG background category

Figure K.18: Feature distribution per electroencephalography (EEG) background category. (n=323)
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Feature correlation

Figure K.19: Correlation heatmap of the different features included in this study. This heatmap illustrates the positive
and negative correlations between different electroencephalography (EEG) features. The darker the colour, the stronger
the correlation between the features. A teal colour indicates a positive correlation, whereas a blue colour indicates a
negative correlation.

88



L Model development and -evaluation
A common step in the development of machine learning models involves scaling and selecting relevant features.
However, in this study, these steps were not undertaken as the Random Forest (RF) algorithm is not sensitive to
feature scaling and is less prone to overfitting than other ML models as they consist of multiple decision trees that
are trained independently om subsets of the training data. Therefore, the models were developed and trained using
the full EEG feature set and the first step in the development of the RF model was hyperparameter tuning. The full
model development and -evaluation process is visualised in Figure L.21.

Hyperparameter tuning
Hyperparameters are parameters that are not learned by the model itself but are set prior to training. Tuning hy-
perparameters involves finding the best combination of values for these parameters to improve the performance
of the model. To tune the hyperparameters of the RF classifier, a randomised search with 5-fold cross-validation
was performed. Instead of trying all possible combinations of hyperparameter values, which can be computation-
ally expensive, a randomised search randomly samples a subset of hyperparameter configurations for evaluation.
Hyperparameters that were used for tuning were:

• Number of estimators: integers from 10-300

• Minimum samples in split: 2, 5, 10, 15, 20 or 30

• Minimum samples per leaf: 1, 2, 3 or 4

• Criterion: gini or entropy

• Bootstrapping: True or False

• Max depth of trees: 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 100

Hyperparameters were tuned based on the 80% traindata of the 5-fold stratified cross-validation on the entire
dataset. The best model was used to predict the EEG background category on the 20% set. Eventually leading to
a prediction per patient (as all patients are in the test set once).

Reduction of electrodes
The before described approach for model development was repeated for each new EEG montage, meaning that
for the all of 5 models that were developed, based on a EEG montage with either 12-, 10-, 8-, 6- or 4- electrodes
(Figure L.20) hyperparameter tuning was performed.

Figure L.20: Electroencephalography (EEG) electrodes used in this study and the reduction of electrodes for the de-
velopment of different Random Forest classifiers based on input with less electrodes. All filled electrodes were used for
the development of the baseline model with 12 electrodes. The colours indicate the stepwise removal of electrodes for
montages with 10-, 8-, 6-, and 4 electrodes.
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Figure L.21: Code flowchart Random Forest (RF) model development and -evaluation. AUC: Area Under the Curve.
ANOVA: ANalysis Of VAriance
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