
Testing of Modern Semiconductor
Memory Structures

Georgi Nedeltchev Gaydadjiev

Stellingen behorende bij het proefschrift

Testing of Modern Semiconductor
Memory Structures

van

G. N. Gaydadjiev

Delft, 25 September 2007

1. Both memory testing and university education focus on preventing poorly
functioning units from entering industry. The only difference is in the rate of
success.

2. In contrast to what many believe, no single memory test exists that is able to
detect all possible circuit defects.

3. It is impossible to test asynchronous VLSI circuits using the methods employed
for synchronous designs.

4. Moore’s law has been a best friend to circuit designers but always the worst
enemy of test designers.

5. By using reconfigurable computing as a Trojan horse, software unreliability is
infiltrating the hardware domain.

6. In science, the true achievers never fathom their true success.

7. Creating computer architectures is like making music: everybody can make
sounds but only few can organize them like Mozart and Beethoven.

8. The day that computers begin to understand and even make jokes will be the
day that they are officially declared “intelligent”.

9. Nature does not make mistakes, a fact that the human race is continuously
trying to disprove.

10. God does not play dice (Albert Einstein): He knows that the devil is in the
details.

11. Knowledge brings power (Stamatis Vassiliadis). Power by itself does not
create knowledge.

These propositions are considered defendable and opposable and as such have
been approved by the supervisor Prof. dr. C.I.M. Beenakker

1. Zowel het testen van geheugens als universitair onderwijs richten zich op het
voorkomen van het feit dat slecht functionerende elementen de industrie in gaan.
Het enige verschil zit in het slagingspercentage.

2. In tegenstelling tot wat velen geloven is er geen enkele geheugentest die alle
mogelijke circuitdefecten kan detecteren.

3. Het is onmogelijk asynchrone VLSI circuits te testen met de methoden die
gebruikt worden voor synchrone ontwerpen.

4. De wet van Moore is altijd de beste vriend van circuit ontwerpers geweest,
maar altijd de grootste vijand van test ontwerpers.

5. Door gebruik te maken van “reconfigurable computing” als het paard van
Troje, infiltreert de onbetrouwbaarheid van software in het hardware domein.

6. De geslaagde wetenschappers zijn zich nooit van eigen succes bewust.

7. Het creëren van computer architecturen lijkt op het schrijven van muziek:
iedereen kan geluiden produceren maar weinigen kunnen dit organiseren zoals
Mozart en Beethoven.

8. De dag dat computers beginnen te begrijpen en zelfs grappen te maken, zal de
dag zijn wanneer zij officieel “intelligent” verklaard zullen worden.

9. De natuur maakt geen fouten, een feit dat de mensheid steeds probeert te
weerleggen.

10. God gooit niet met dobbelstenen (Albert Einstein): Hij weet dat “the devil is
in the details”.

11. Kennis brengt kracht (Stamatis Vassiliadis). Kracht op zichzelf kan nooit
kennis creëren.

Deze stellingen worden verdedigbaar en opponeerbaar geacht en zijn zodanig
goedgekeurd door de promotor Prof.dr. C.I.M. Beenakker

Testing of Modern

Semiconductor Memory Structures

Testing of Modern

Semiconductor Memory Structures

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen

op dinsdag 25 september 2007 om 10:00 uur

door

Georgi Nedeltchev GAYDADJIEV

elektrotechnisch ingenieur
geboren te Plovdiv, Bulgarije

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. C.I.M. Beenakker

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter Technische Universiteit Delft
Prof. dr. C.I.M. Beenakker, promotor Technische Universiteit Delft
Prof. dr. A. Orailoglu University of California San Diego

USA
Prof. dr. L. Carro Universidade Federal do Rio Grande

do Sul, Brazil
Prof. dr. L.K. Nanver Technische Universiteit Delft
Prof. dr. John Long Technische Universiteit Delft
Dr. K.L.M. Bertels Technische Universiteit Delft
Dr. ir. N.P. van de Meijs Technische Universiteit Delft

This thesis would never be completed without the scientific guidance and in-
spiration of Stamatis Vassiliadis.

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Gaydadjiev, Georgi Nedeltchev

Testing of Modern Semiconductor Memory Structures/Georgi Nedeltchev
Gaydadjiev. –
Delft: TU Delft, Faculty of Elektrotechniek, Wiskunde en Informatica – Ill
Thesis Technische Universiteit Delft. – With ref. –
Met samenvatting in het Nederlands.

ISBN 978-90-9022223-3

Subject headings: memory testing, march tests, fault models, realistic faults,
linked faults.

Copyright c© 2007 Georgi Nedeltchev Gaydadjiev
All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without permission of the
author.

Printed in The Netherlands

To everybody that understands what science is all about.

Testing of Modern

Semiconductor Memory

Structures

Georgi Nedeltchev Gaydadjiev

Abstract

n this thesis, we study the problem of faults in modern semiconductor mem-
ory structures and their tests. According to the 2005 ITRS, the systems
on chip (SoCs) are moving from logic and memory balanced chips to more

memory dominated devices in order to cope with the increasing application
requirements. The embedded memories are expected to utilize more than 60%
of the chip area after 2009. In addition, future SoCs are believed to embed
memories of increasing capacities. As a result, the overall SoC yield will be
dominated by the memory yield. This trend may make the overall yield unac-
ceptable, unless special measures have been taken.

In this thesis we propose and classify DRAM specific fault models relevant
for the state-of-the-art semiconductor technologies. We also define and validate
a set of DRAM targeted march tests. In addition, we propose a methodology for
deriving conditions and tests for linked memory faults. We also investigate the
detection conditions for linked memory faults when one of the faults involved
is an address decoder fault. Finally, we propose various optimizations for test
time reduction and/or increased fault coverage.

We aimed at high relevancy of the ideas proposed in this thesis. For as far as
possible the fault models and the tests presented here are validated using real
industrial products. Some of the concepts originally proposed by the author
more than 10 years ago are still being widely used by the industry and referred
to by the academia. For example, many industrial products did use or are
still using March LR, one of the tests derived in this thesis, for testing their
(embedded) memories.

i

Acknowledgements

The work presented in this dissertation was performed in somehow non ortho-
dox way: in small chunks and always in my spare time (for as far as I could
have such time). All this started in 1995 when I being enroled as a graduate
student in Electrical Engineering in Delft entered prof.dr. Ad van de Goor’s
office to ask him about master thesis work possibilities. I was looking for a
topic in computer architecture but was offered a memory testing one instead.
I decided to try this and am grateful to Ad for introducing me to this rather
specific but far from boring field. We had a very fruitful collaboration that
resulted in several referred publications and a journal paper. The proposed
tests and the methodology are still being used by the industry and cited by
the academia, a fact that shows the high relevance of what we did back then.
Around 1998, two years after my graduation we published the last paper and
I decided that my memory testing adventure is finished at that time but as it
turned out I was wrong.

In 2002 I got a ”conditional” assistant professor position at the Computer
Engineering laboratory, TU Delft. The ”condition” was indeed completing this
PhD thesis, a task that I heavily underestimated back then. At that time, the
laboratory was chaired by prof.dr. Stamatis Vassiliadis whom I got to know
several years before and who impressed me not only as a scientist but also as
a warm hearted human being. Working with Stamatis was always a challenge
but challenge I knew about at front. In the five years we worked together,
Stamatis and me had many discussions on different topics, a lot of fun, many
successes and some disappointments but never had enough time to proceed
with all of the ideas and intentions we had in mind. As it turned out, we
had much less time than we originally counted on. Exactly at the moment,
we had most of the things ”under control”, e.g. many good quality students,
smoothly running master degree program in computer engineering, sufficient
financing etc., Stamatis got sick and passed away in a very short period of
time. A big loss for the laboratory, the faculty, our university and the scientific
community in general. It was an unique experience to work with a person
that can understand me from half spoken word and whom I could understand
equally easy. I never expected to find someone that had so similar vision about
life, work, professional and personal responsibilities. Not surprisingly, in the

iii

last couple of years, we became more than just good colleagues we were also
friends. A fact I can be only proud of.

I want to specially thank dr.ir. Said Hamdioui and dr.ir. Zaid Al-Ars who
helped me getting back into the field of memory testing after a five years break.
They both are formal CE PhD students that became world-class experts in the
field of memory testing. So my task seemed not very difficult having Said and
Zaid close by. The problem was again in the 24 hours we all have to spend
every single day.

Very special thanks to my promotor, prof.dr. Kees Beenakker for giving
me the opportunity to officially complete this work. Although memory testing
is not exactly his main field of expertise, he significantly contributed to the
quality of this thesis and the propositions that accompany it. In addition,
Kees made sure that I dedicated adequate amount of time and concentrated
on finalizing the thesis.

Special thanks to all my students, graduate and PhD, for their understand-
ing and patience during the last unusually hectic year. I was unable to spend
all the time I would like with you. Nevertheless, we succeed to proceed with
our valuable work together and publish many good papers.

My immediate thanks go to all my colleagues from the Computer Engi-
neering (CE) laboratory, the ME&CE department, the EWI faculty and the
HiPEAC network of excellence. Too many to list here, I would like to specially
mention the three famous professors in computer architecture: Mateo Valero,
Manolis Katevenis and Per Stenström for the fruitful discussions we had, the
inspiration and their continuous support.

Finally, my deepest love and gratitude for my family: my wife Anna my
son Alexander, my mother Atanaska and my sister Vesela. I know I have not
always been the best husband, father, son and brother one can hope for. You
all, however, always believed in me, something I am grateful.

Georgi Delft, The Netherlands, 2007

iv

Contents

Abstract i

Acknowledgments iii

List of Acronyms viii

1 Introduction 1
1.1 Fault Modeling . 3

1.1.1 Dynamic Fault Models 4
1.1.2 Other Fault Modeling Aspects 5

1.2 Test Algorithm Design . 6
1.3 Conclusions . 7

1.3.1 Objectives . 7
1.3.2 Thesis Organization . 8

2 Deep Sub-Micron testing 9
2.1 Trends in IC production . 10

2.1.1 Fragmentation of IC production 10
2.1.2 Value-added testing . 11

2.2 Trends in IC design . 12
2.2.1 System-on-chip integration 12
2.2.2 System-in-package integration 13
2.2.3 Using multiple clock domains 13
2.2.4 Fast interconnect busses and networks 14

2.3 Trends in manufacturing . 14
2.3.1 Signal integrity . 15
2.3.2 Process variations . 15
2.3.3 Soft errors . 16

2.4 Trends in testing . 17
2.4.1 Test generation . 18
2.4.2 Test application . 18

2.5 Conclusions . 20

v

3 Memory fault modeling and tests 21
3.1 Properties of memory fault models 21

3.1.1 Representing operation sequences 22
3.1.2 Describing faulty behavior 23

3.2 Space of all memory FPs . 23
3.3 Static fault space . 25
3.4 Dynamic fault space . 29
3.5 Simple and linked faults . 31
3.6 Address decoder faults . 32
3.7 March tests . 33

3.7.1 March notation . 33
3.7.2 March tests generation 34

3.8 Conclusions . 34

4 Single-Cell Dynamic Faults 35
4.1 Validation of dynamic faults . 36
4.2 Effectiveness of the traditional tests 36
4.3 Test primitives for dynamic faults 37
4.4 Industrial evaluation . 38

4.4.1 Coverage results . 39
4.4.2 Comparison of dynamic tests 41

4.5 Conclusions . 42

5 DRAM specific space of memory tests 43
5.1 DRAM-specific faults . 44

5.1.1 Time dependent faults 44
5.1.2 Voltage dependent faults 45
5.1.3 Realistic space of DRAM faults 46

5.2 Fault model validation using Spice 47
5.2.1 Memory simulation model 47
5.2.2 Classification of defects 47

5.3 Simulation results . 54
5.4 Space of DRAM tests . 55

5.4.1 Detecting hard faults . 55
5.4.2 Detecting transient faults 57
5.4.3 Detecting soft faults . 59

5.5 Industrial support . 61
5.6 Conclusions . 62

6 DRAM tests optimizations 63
6.1 Optimizing transient faults tests 64
6.2 Optimizing test length of soft faults tests 66

6.2.1 Memory design consideration 67
6.2.2 Memory layout consideration 68

vi

6.3 Conclusions . 70

7 Realistic linked memory faults 71
7.1 Fault coverage of march tests 71

7.1.1 Fault coverage of simple faults 73
7.1.2 Fault coverage of linked faults 74
7.1.3 Reducing the universe of linked faults to realistic linked

faults . 76
7.2 March LR: a test for realistic linked faults 77

7.2.1 Establishing sets of linked faults 78
7.2.2 Conditions for march tests to detect linked faults consist-

ing of two simple faults 79
7.2.3 March LR . 83
7.2.4 Comparison of March LR with other tests 85

7.3 Conclusions . 88

8 Linked Address Decoder Faults 89
8.1 Conditions for detecting unlinked address decoder faults . . . 90
8.2 Conditions for detecting linked address decoder faults 92

8.2.1 AF # one fault . 93
8.2.2 AF # more than one coupling fault 96

8.3 March test coverage for linked address decoder faults 97
8.4 Conclusions . 102

9 Conclusions 103
9.1 Major Contributions . 103
9.2 Open issues . 104

Bibliography 111

Samenvatting 113

Bibliography of the author 115

Short biography of the author 121

vii

List of Acronyms

a aggressor memory cell
AF address decoder faults
ATE automated test equipment
BIST built in self test
BISR built in self repair
BL bit line
CF coupling fault
CFdr deceptive read destructive coupling fault
CFds disturb coupling fault
CFir incorrect read coupling fault
CFst state coupling fault
CFtr transition coupling fault
CFwd write destructive coupling fault
CMOS complimentary metal oxide semiconductor
Del delay time
DRAM dynamic random access memory
FFM functional fault model
FP fault primitive
GND ground signal line
IFA inductive fault analysis
IP intellectual property
ITRS International Technology Roadmap for Semiconductors
MOS metal oxide semiconductor
ppm parts per million
RAM random access memory
SA sense amplifier
SAF stuck at fault
SF state fault
SoC system on chip
SRAM static random access memory
TF transition fault
v victim cell
WDF write destructive fault
WL word line
Y yield

viii

Chapter 1

Introduction

he systems on chip (SoC) as known in 2007 are turning into memory
hungry devices in order to cope with the continuously increasing ap-
plication requirements. Another important driver behind this trend is

in the significant increase in number of transistors with each technology node
and the forthcoming impatience among SoC designers to utilize those resources
as on-chip memory. Figure 1.1 shows how embedded memory is expected to
dominate the chip area (growing from about 48% in 2004 to more than 60%
expected after 2009) according to the 2005 ITRS [1]. In addition, future SoCs
are expected to embed memories of increasing sizes, e.g. 256Mbits and more.
As a result, the overall SoC yield will be dominated by the memory yield. Due
to the fact that memory yield decreases with the increasing memory sizes, the
overall yield may become unacceptable, unless special measures are taken. The
bottom curve in Figure 1.2 shows the impact increasing memory sizes can have
on the yield. For instance, the yield of 24Mbits embedded memory is about
20%; the example assumes a 0.13 micron 12x12mm chip, with a memory defect

Figure 1.1: The future of embedded memory (ITRS 2005 [1])

1

100

90

80

70

60

50

40

30

20

10

0

M
em

or
y

yi
el

d
(%

)

3 5 11 22 43 65 86
Memory on die (%)

1 Mbit 2 Mbits 4 Mbits 8 Mbits 16 Mbits 24 Mbits 32 Mbits

Memory yield with repair
(optimized solution)
Limited yield improvement
Memory yield without repair

Figure 1.2: Memory sizes versus yield

density of 0.8/square-inch and logic defect density of 0.4/square-inch [2]. To
ensure feasible yield levels (the upper curve in Figure 1.2), embedded memories
must have repair capabilities; hence ”repair” capabilities are considered essen-
tial for memory structures as known in 2007 and in future technologies. In
complex SoCs; diagnosis and repair algorithms are often required to cope with
this. The latter form a challenge since it has been shown to be an NP hard
problem [3]. A repair algorithm uses a binary failure bit-map as its input. Such
a bit-map is produced by the tests that catch and locate the defective memory
cells. For embedded memories, test pattern(s) is generally programmed in a
Built In Self Test (BIST) engine. This to cope with the restricted controlla-
bility and observability of their inputs and outputs respectively. The memory
tests have to guarantee a very high defect coverage, in order to ensure a very
low escape rate. The quality of the tests, in terms of the defect coverage and
test length, strongly depends on the used fault models. New memory scaling
technologies and processes are introducing new defects that were unknown in
the past, and therefore novel fault models are emerging.

This all clarifies that the challenges in embedded SoC memory testing will
be driven by the following items:

• Fault modeling: Novel fault models should be established in order
to deal with the new defects introduced by current and future (deep-
submicron) technologies. Also the applicability of previously abandoned
fault models should be sometimes re-evaluated;

• Test algorithm design: Test/diagnosis algorithms that guarantee high
defect coverage for the new memory technologies and reduce the DPM
level. In addition, those tests should be optimized to allow for low-cost
built in implementation;

2

• BIST: Being the only solution allowing at-speed testing for embedded
memories BIST engines have to closely follow the trends of complex
SoCs. BIST for complex memory structures, e.g. multi-port and content-
addressable memories need be addressed. Also issues like power consump-
tion reduction during BIST test and efficient BIST for multiple memories
need proper solutions;

• Built in Self Repair (BISR): Combining BIST with efficient and low
cost repair schemes in order to improve the yield and system reliability
is a widely recognized direction to follow. There are, however, challenges
related to the optimal (on chip) redundancy calculation and methods to
deal with defective redundant memory elements.

In this thesis, only the first two topics will be addressed; the state of art of the
fault modeling and the test algorithm design for modern embedded memories.
These two problems are generally not considered as the most challenging out of
the four above, however they are envisioned to form the sound basis needed to
reduce complexity in the latter two. To be more precise, without representative
fault models and a simple test set neither BIST or BISR can be efficiently
implemented in hardware.

1.1 Fault Modeling

The cost of memory testing keeps increasing with the sizes for every new gen-
eration of memory chips as indicated in the past [4]. Precise fault modeling
to design efficient tests, in order to keep the test cost and test time within
economically acceptable boundaries, is therefore essential. The test quality,
in terms of defect coverage, is strongly dependent on the used fault models.
Therefore, fault models reflecting the real defects of new memory technologies
are essential for developing high defect coverage test algorithms and therefore
providing products with low DPM levels.

During the early 1980’s many functional fault models for memories have
been introduced, allowing the fault coverage of a certain test to be provable
while the test time is usually of order O(n); i.e., linear with the size of the
memory. Some important fault models introduced in that time are [5]: Stuck-
at-Faults and Address-Decoder-Faults. These are abstract fault models and are
not based on any real memory design and/or real defects. To reflect the faulty
behavior of the real defects in real designs, Inductive Fault Analysis (IFA) was
proposed [6]. IFA allows for the establishment of the fault models based on
simulated defects at the physical layout level of the design. In addition, IFA is
capable of determining the occurrence probability and the importance of each
fault model. As a result new fault models were introduced [6]: State-Coupling
Fault and Data-Retention Fault. In the late 1990’s, experimental results based
on DPM screening of a large number of tests applied to a significant population

3

of memory chips indicated that many detected faults cannot be explained with
the well known fault models [7, 8], which suggested the existence of additional
faults. This stimulated the introduction of new fault models, based on defect
injection and SPICE simulation [9, 10, 11]: Read Destructive Fault, Write
Disturb Fault, Transition Coupling Fault, Read Destructive Coupling Fault,
and many others.

The published work on memory fault modeling described above focuses
on faults sensitized by performing at most one operation. For instance, Read
Destructive Coupling Fault is sensitized by applying a read operation to the
victim cell, while the aggressor cell is put in a certain state (i.e., the required
number of operations is one). Memory faults sensitized by performing at most
one operation are referred as static faults [12].

1.1.1 Dynamic Fault Models

Recent publications reveal the existence and the importance of another class
of faults in the new memory technologies. It was shown that another kind of
faulty behavior can take place in the absence of static faults [13, 14, 15]. This
faulty behavior has been attributed to dynamic faults; which require more than
one operation to be performed sequentially in time in order for the fault to be
sensitized. For example, a write 1 operation followed immediately by a read
1 operation may cause a cell to flip (invert its value) from 1 to 0; however, if
only a single write 1 or a single read 1, or a read 1 which is not immediately
applied after write 1 operation is performed, then the cell will not flip. In [13]
the existence of dynamic faults in the new embedded DRAMs based on defect
injection and SPICE simulation was observed. In [14] the presence of dynamic
faults was shown in embedded caches of Pentium processors during a detailed
analysis of the DPM screening results of a large number of tests. [15] showed the
importance of dynamic faults for new SRAM technologies by analyzing DPM
screening results of Intel and STMicroelectronics products, and concluded that
current and future SRAMs tests need to consider dynamic faults or accept poor
DPM numbers.

The majority of the tests currently used in the industry have been de-
signed to target static faults and therefore may not detect dynamic faults.
This indicates the importance of dynamic faults for current and future mem-
ory technologies. The dynamic fault class, which has been ignored in the past,
is now becoming important and has to be taken into consideration. This sets
a new direction for further research on memory fault modeling. Items like the
following need to be investigated:

• Establishing the complete fault space, the fault framework (based on
technology, design and time constraints) and the fault models for dynamic
faults;

• Validation based on defect injection and SPICE simulation;

4

• IFA in order to determine the occurrence probabilities and the importance
of each introduced fault model, and provide better understanding of the
underlying defects causing dynamic faults.

1.1.2 Other Fault Modeling Aspects

Another special property of memories is that they have signal lines with a
very high fan out. Examples of such signals are bit lines, word lines and
address decoder pre-select lines. As the memories grow in size and speeds, the
lines carrying those signals will have, in addition to a higher load, also higher
parasitic capacitance. This increases their sensitivity for delay and timing
related faults. Moreover, the significance of the resistive opens is considered to
increase in current and future technologies; not only due to the copper wiring
but also due to the presence of many, long interconnections and the increasing
number of metal layers and vias. Since the partial resistive opens behave as
delay and time related faults, these faults will become more important in deep-
submicron technologies.

Another aspect that has to be taken into consideration for the deep submi-
cron technologies are the soft errors. The increased operation speed and noise
margin reduction that accompany technological scaling, are reducing continu-
ously the reliability of new memories. This process in now approaching a point
where it will be infeasible to produce memories that are free of these effects.
Contrary to some previous claims that all nanometer memories are becoming
so sensitive that even sea level radiation will introduce unacceptable soft er-
rors [16], in [17] it was proven that only SRAM (and peripheral logic) show
increasing soft error rates (SER) with each technology node. DRAM system
reliability remains constant due to the rapidly decreasing bit SER (1000 times
improvement over 7 technology generations) [17]. Designing SRAM soft error
tolerant structures is the only way to follow the technological scaling. Among
the most efficient techniques are error detecting and error correcting codes,
which will not only detect and correct soft errors, but also will compensate for
the possible incomplete test/diagnosis coverage. DRAMs, on the other hand,
seem to be one of the most robust devices in terms of soft error immunity [17].
This is somehow ironic if we recall that this problem was first discovered in
DRAMs.

Other considerations for fault modeling for new technologies are (but not
limited to):

• Transistor Short channel effect: lowering the threshold voltage may make
the drain leakage contribution significant;

• Cross talk effect and noise from power lines;

• The impact of process variation on the speed failures.

Research on the above topics will be a source of new fault models. This will
enable dealing with new defects; hence the development of new, optimal, high

5

coverage tests and diagnostic algorithms. They will reduce the DPM level and
enhance repair capabilities. The greater the fault detection and localization
coverage, the higher the repair efficiency; hence the higher the obtained yield.

1.2 Test Algorithm Design

Memory tests and fault detection have experienced a long evolutionary process.
The early tests (typically before the 1980’s) can be classified as Ad-Hoc tests
because of the absence of formal fault models and proofs. Tests as Scan, Galpat
and Walking 1/0 [18] belong to this class. They have further the property that
for a given fault coverage, the test time was excessively long (except for Scan),
typically of order of O(n2), which made them very uneconomical for larger
memories.

After the introduction of fault models during the early 1980’s, march tests
became the dominant type of tests. The advantages of march tests lay in
two facts. First, the fault coverage of the considered/known models could
be mathematically proven, although one could not have any idea about the
correlation between the models and the defects in the real chips. Second, the
test time for march tests was linear with the size of the memory, which made
them acceptable from an industrial point of view. Some well known march
tests, that have been shown to be efficient, are: Mats+ [19], March C- [20],
PMOVI [21], IFA 13n [6]. As new fault models have been introduced in the
late 1990’s, based on defect injection and SPICE simulation, other new march
tests have been developed to deal with them. Examples of such tests are March
SR [11] and March SS [22].

Conventional memory test algorithms are basically designed to detect static
functional faults (that are most likely to occur) in order to determine if the chip
is defective or not; in other words, they are pass/fail tests for static faults. As
shown in the previous section, the importance of developing new fault models
increases with the new memory technologies. In addition, the shrinking tech-
nology will be a source of previously unknown defects/faults. The traditional
tests are thus becoming insufficient/ inadequate for the today’s and the future
high speed memories. Therefore, new appropriate test algorithms have to be
developed. On the other hand, as the memories occupy a significant part of the
SoC, they dominate the overall yield; hence memory fault diagnosis becomes
very important. Diagnosis techniques play a key role during the rapid devel-
opment of semiconductor memories for catching design and/or manufacturing
errors and failures; hence improving the yield. Although diagnosis has been
widely used for memories, it is considered an expensive process due to long
test times and complex fault/failure analysis procedure. Efficient diagnosis al-
gorithms will benefit the industry and will play a more important role in the
future as the SoC market grows.

Considering the current situation in test algorithm design and today’s in-

6

dustry needs, it can be concluded that new test/diagnosis algorithms still need
to be developed; such algorithms have to take into consideration the following
practical issues:

• Optimality in terms of time complexity in order to reduce the overall test
time;

• Regularity and symmetry, such that the self-test circuit implementation
in silicon can be minimized;

• High defect coverage and diagnosis capability in order to increase the
repair capabilities and the overall yield;

• Appropriate stress combinations (voltage, temperature, timing and more)
that facilitate the detection of marginal faults.

1.3 Conclusions

To generate a high quality test strategy for new (embedded) memory technolo-
gies, a thorough procedure must be pursued. First the memory design, e.g.
its cells, pre-charge circuit, sense amplifier, has to be well understood. The
circuits need to be investigated not only in the way they are expected to oper-
ate, but also in the way each of the circuits behaves in the presence of various
defects. These defective and faulty operations need to be mapped into fault
models. Once the memory design is understood and the proper fault models
are generated, the best test patterns can be developed. Since no single test
can achieve an acceptable DPM level, a suite of test patterns is often required.
Understanding the design, fault models and tests are required in order to pre-
vent shipping defective parts. Redundancy and repair goes beyond that and
are required to guarantee adequate yield on the vast majority of memories.
The memory design, fault modeling and test development have to be revisited
in the light of redundancy. Redundancy algorithms need to be generated to
allocate each redundancy dimension to the appropriate fails, thereby maximiz-
ing the yield. Finally, the correct built-in-self testing scheme can be designed
(using e.g., a micro-code) while achieving a very low DPM level and boosting
the overall yield.

1.3.1 Objectives

This thesis has the following main objectives:

1. Propose and classify DRAM specific fault models relevant for state-of-
the-art semiconductor technologies (anno 2007);

2. Define and validate a set of DRAM specific march tests;

3. Propose a methodology for deriving conditions and tests for linked mem-
ory faults;

7

4. Investigate the detection conditions of linked memory faults when one of
the linked faults is in the address decoder;

5. Propose various optimizations for test time reduction and/or increased
fault coverage.

1.3.2 Thesis Organization

This thesis is organized as follows. Chapter 2 introduces the overall test chal-
lenge of modern integrated circuits. In Chapter 3 the theoretical foundation
on fault modeling, fault primitives, functional fault models and march tests is
given. Chapter 4 deals with single cell dynamic fault tests. Both validation
of the fault model and analytical / industrial evaluation of the proposed tests
is presented. In Chapter 5 a set of DRAM specific new fault models is intro-
duced. Chapter 6 presents specific test optimizations for transient and soft
faults. A methodology to cope with static linked faults is described in Chap-
ter 7. Chapter 8 deals with the linked faults in presence of the address decoder
faults. Finally, Chapter 9 concludes the thesis. The main contributions are
summarized and a set of direction for future work is listed.

8

Chapter 2

Deep Sub-Micron testing

s silicon integration continues its relentless pace according to the premise
of Moore’s law, and as we get ever closer to the nanoscale fabrication
domain, new and previously unknown failure mechanisms are being ob-

served that need special analysis and modeling techniques. At the same time,
the quality requirements on integrated circuits (ICs) have risen significantly
in the past few decades to levels approaching zero DPM (defect per million)
for special mission critical applications, such as those in the aerospace and the
automotive industries. As a result, close attention should be given to follow
the trends of new failure mechanisms in order to prevent them from becoming
the show stoppers for tomorrow’s ICs.

In this chapter we identify some of the latest trends observed in the semi-
conductor industry in terms of testing and failure mechanisms as a result of
sensitivities in the manufacturing process. We also analyze these trends and
propose ways to deal with them, along with proper methods to address the
latest challenges.

The chapter is organized as follows. Section 2.1 starts with a classification
of the latest trends in testing and failure mechanisms, and discusses the test-
ing trends developing in the IC production process as a whole. Section 2.2
identifies the testing and failure trends resulting from new directions in IC de-
sign. Then, Section 2.3 evaluates how testing is impacted and what new failure
mechanisms are expected to result from the latest manufacturing techniques.
Section 2.4 shows how the testing practice itself is changing as a result of re-
cent IC developments and requirements. Finally, Section 2.5 ends with the
conclusions.

9

2.1 Trends in IC production

In order to successfully bring an IC to the market, production has to go through
a number of important stages that ensure the functionality and quality of the
product. Figure 2.1 gives a simplified description of the typical production
stages of an IC today.

IC manufacturing
stagestage

IC design IC testing
stage

Figure 2.1: Simplified flow of IC production process

The figure shows three main stages: the IC design stage, the IC manufac-
turing stage and the IC testing stage. As scaling continues and new issues arise
in the production process, the challenges for all stages in this figure change,
both within each of the three individual blocks, and for the integrated IC pro-
duction process as a whole. In the following, we describe a couple of trends
that involve the production process in general.

2.1.1 Fragmentation of IC production

One of the trends observed for the integrated circuits production process is the
gradual fragmentation of the different stages across multiple companies, rather
than being carried out by a single semiconductor factory as in the past. This
makes it possible to have smaller, specialized and rather flexible companies
that closely focus on only one aspect of the semiconductor industrial process.

Many fabless design companies are being established, which sell their circuit
designs in the form of intellectual property (IP) components to other parties,
that would in turn integrate them into their complex designs. In addition, so-
called foundries (such as the Taiwanese Semiconductor Manufacturing Com-
pany or shorthand TSMC) are replacing expensive company-owned manufac-
turing fabs. Also, dedicated test houses are fulfilling the task of ensuring the
functionality and quality of the manufactured ICs, thereby allowing in-house
testing facilities replacement.

This trend helps companies to cope with the huge investments needed to
produce today’s top-end semiconductor products. As the cost of the produc-
tion process continues to increase, this trend is expected to accelerate in two
different ways:

• New, more specialized IC production stages will be realized that handle
every aspect of the industry from technology research to product specifi-
cation, design, manufacturing, testing, marketing and sales [23];

10

• Bigger semiconductor companies will increasingly partner with others in
specific fields (research, fabrication, etc.) to muster the heavy investments
inherent to future technologies [24].

This trend makes it necessary to have industry-wide standards between the
different production stages in order for the different companies to exchange
information. In term of testing, standardized test description languages and
specialized test data management protocols are needed to facilitate upstream
and downstream communication in the IC production flow. In [25] similar
observations have been reported.

2.1.2 Value-added testing

The second trend is the usage of testing information not only to screen defective
products from reaching the customer, but also to provide feedback to the man-
ufacturing process and/or design process in order to prevent the defects from
occurring in the first place (see Figure 2.2). This approach is called value-added
testing since it provides a way to increase the value of the performed testing by
improving manufacturing yield levels and increasing profitability. This, how-
ever, comes at an increased price for testing, since test feedback is only possible
with the application of more complex diagnostic testing rather than the simpler
pass/fail detection testing.

IC manufacturing
stagestage

IC design IC testing
stage

Diagnostic feedback

Figure 2.2: Using diagnostic feedback information from the test stage

Value-added testing techniques have been in use by leading silicon manu-
facturers for a long time [26], where cutting-edge fabrication processes start
off with relatively low yields and with many systematic defects. These pro-
cesses are gradually modified to increase yield (in a procedure referred to as
yield learning) using diagnostic information from test application [27]. This
yield learning process is expected to be increasingly used even in older, well-
established manufacturing processes to push yield levels even higher.

In addition to the above mentioned trends that impact the IC production
process as a whole, each of the three stages in Figure 2.1 has its own trends,
as discussed in the text hereafter.

11

2.2 Trends in IC design

Market demands coupled with the yet growing number of transistors available
for designers today have tilted the design process to adopt novel, challenging
design techniques that increase the complexity of both the designs themselves
as well as their testing process. In the following text, a number of such new
design-related trends are discussed and their impact on testing is identified.
Figure 2.3 shows a classification of these trends.

Integration−related issues Speed−related issues

System−on−chip

System−in−package

Multiple clock domains

Fast interconnect
busses and networks

Figure 2.3: Classification of design-related trends

There are two main sub-classes that are driven by the following two factors:
the growing device integration and the increasing clock speeds.

2.2.1 System-on-chip integration

The concept of systems-on-chip (SOCs) has developed as a result of the need
for higher processing power and for hardware integration levels much greater
than what could be offered by integrating discrete components on a printed
circuit board (PCB) [28]. The SOC market is expected to grow significantly in
the coming years fueled by the boom of various Internet aware applications in
the home and office wireless environments. In general, main circuit types can
be distinguished on a typical SOC: logic (e.g., for control and data process-
ing), memory (e.g., for data storage), and analog (e.g., for digital-analog and
analog-digital conversions). Each of these components have their own testing
requirements, and have dedicated types of automated test equipment (ATE)
that cater to these requirements. This means that SOCs cannot rely on using
a specific kind of ATE optimized to test only one particular type of circuit.
There are two different possible solutions: either using design-for-testability
(DFT) techniques to enable a single tester of testing different core types, or
using multiple ATE benches to perform the necessary testing. The first solu-
tion costs additional on-chip silicon area, while the second needs investment in

12

multiple specialized ATE machinery. Depending on the relative cost of each
solution and the expected production volume, the most cost effective alterna-
tive is chosen. Besides the ATE issue, there is the problem of electromagnetic
compatibility (EMC) where components should be used that do not electrically
interfere with each other. This is one additional side effect of integration that
should also be considered in the testing practice.

2.2.2 System-in-package integration

When the manufacturing technology of the different components to be inte-
grated on an SOC are incompatible with each other (e.g. Bipolar and CMOS),
the concept of systems-in-package (SIPs) offers an attractive alternative. SIPs
are made by stacking a number of different chips on top of each other and
bonding them into one single package in a technique called stacked-die pack-
aging. One famous application for SIPs is stacking a chip manufactured in a
technology optimized for logic along with a chip manufactured in a memory
tuned (particularly DRAM) technology. These two technologies require incom-
patible process steps and optimizations, that makes the manufacturing of both
circuit types on the same chip a tradeoff between performance and silicon area.
The SIPs was successfully used to cope with the above problem as reported for
a product targeting the cellphone handset market [29].

The main test challenges faced by SIPs are similar in nature to those faced
by SOCs. The integration of components with different test requirements into
a single package, means that a number of specialized test techniques have to be
used. In addition, SIPs are especially sensitive to edge bonding problems, which
require special testing of the behavior at the die interface that goes beyond the
simple electrical continuity test. Apart from that, SIPs suffer from a number
of unique problems, which require careful attention to power dissipation from
multiple chips, capacitive coupling between adjacent dies and incompatible die
sizes.

2.2.3 Using multiple clock domains

Due to the hard to deal clock skew and jitter along with the yet increasing power
dissipation of the clock tree in modern digital ICs, novel clock-distribution tech-
niques emerge. A number of complex ICs, e.g. in telecommunication products,
use several clock signals for functional or performance reasons. Such devices
often incorporate many complex clock structures and various clock domain
transitions. In these cases, the internal circuitry of the IC is divided into a
number of domains, each synchronized by a different clock signal. Testing for
such multi-clock circuits can be very challenging due to the ”asynchronous”
nature of the overall circuit. This also complicates the design of appropriate
DFT solutions, which are needed since such devices usually use very high (lo-
cal) clock frequencies that go beyond the capabilities of the ATE. Special DFT

13

solutions are needed to overcome the need for a large number of test vectors,
which in turn leads to longer test pattern generation and testing times [30].

2.2.4 Fast interconnect busses and networks

There is a growing tendency today toward incorporating fast functional com-
munication interfaces on a chip. These interfaces implement specialized bus
protocols with high data communication bandwidth both within the chip and
on the interface connecting different chips. Today, speeds for such interfaces
range from 1.5 to 3.3 Gbps (giga bits per second), with an expected future
increase in bandwidth that may reach 6.4 Gbps and beyond. Testing circuits
with fast interfaces involves more than using a test pattern to validate cor-
rect functionality. For testing circuits that use wired interfaces, measurements
should be made of both voltage and timing, while for testing those using wire-
less interfaces frequency and power measurements are needed. In addition,
ATE-based testing has some limitations when it comes to fast interfaces, and
therefore specialized DFT techniques need to be implemented as well [31].

In addition to the above, the aforementioned communication interfaces can
be used for transporting test data to the parts of the circuit under test and
carry back the test responses. In such a way the traditional test access mecha-
nism hardware overhead (e.g. IEEE1500 test wires) can be avoided [32]. Next
generation ATEs are expected to support some of the most widely used com-
munication interfaces.

2.3 Trends in manufacturing

The ever changing nature of the manufacturing process and the on-going re-
search into advanced materials and manufacturing techniques, creates trends
that have significant impact on IC testing. Below, we discuss a number of those
important trends shown in Figure 2.4. More precisely they are the issues re-

Trends in the manufacturing process

Signal integrity
issues

Process variation
issues

Soft error
issues

Figure 2.4: List of manufacturing-related trends

lated to the signal integrity, the worsening process variation and the increased
contribution of soft errors in modern integrated circuits.

14

2.3.1 Signal integrity

Signal integrity refers to the general issue of ensuring that the analog voltage
present on a given wire correctly reflects the digital signal it represents. Several
parasitic effects resulting from the continued scaling down of feature sizes may
jeopardize the integrity of digital signals. Problems with signal integrity can
be divided into three different types, as indicated in [33]:

• Propagation delay—this refers to the time needed for a signal to prop-
agate through a signal line. This delay increases with shrinking line
dimensions as a result of the grown in line resistances.

• Signal interference (crosstalk)—this refers to the noise introduced on
a signal line as a result of a change in the voltage on a neighboring line.
This noise increases with decreasing feature sizes as result of the bigger
parasitic capacitance between adjacent lines.

• Crosstalk delay—this refers to the signal delay induced on a signal line
as a result of the simultaneous switching of a neighboring line. This delay
is positive when the two lines switch in the opposite directions, while it
is negative when they switch in the same direction.

The first effect is inherent to the technology, and should be taken care of during
the design stage. The other two effects are design related, and must be tested
for to ensure proper functionality. A number of techniques have been proposed
to deal with the signal integrity issues in current and future technologies. One
of those is the generation of special test patterns that ensure the worst case
crosstalk scenarios. This solution, however, requires using a large number of
test vectors, which results in a longer test application time. Another solution
is to use on-chip noise detection circuitry that signals the development of high
noise levels on specific critical signal lines [34].

2.3.2 Process variations

To keep the cost of the manufacturing process low, variations in a number of
device parameters are usually tolerated. However, the continued technology
scaling has introduced additional variation sources and made process control
more difficult. As a result, future technology nodes are expected to suffer from
increased process variations and decreased predictability [1]. Process variations
can be divided in two main groups, as shown in [35]:

• Intrinsic (or process) variations—These variations are always present
during circuit operation. They can either be systematic variations (i.e.,
due to known and predictable phenomena) such as changes in transis-
tor channel length, or random variations (i.e., due to the inherent un-
predictability of the manufacturing process) such as changes in channel
doping and gate oxide thickness;

15

• Dynamic (or environmental) variations—These variations only de-
velop temporarily during chip operation. Examples of such variations are
temperature distribution or voltage levels on the chip during its normal
operation.

The above variations take effect between different chips (inter-die variations),
and increasingly within a single chip (intra-die variations) [36]. Solutions to
process variations include on-chip sensors that can detect changes in chip be-
havior and compensate accordingly during chip operation. In addition, sta-
tistical timing analysis is becoming an important design tool to model and
successfully design high speed circuits in the context of increasing intra-chip
process variations [37].

2.3.3 Soft errors

Soft errors are intermittent faults that take place as a result of radiation particle
strikes on the chip silicon. This causes a temporary change in the voltage (the
local electrical charge) of the effected area. The impact of soft errors becomes
increasingly significant with device scaling, as a result of the decreasing node
capacitances and reduced supply voltages. Soft error rate (SER) values are
typically expressed in FIT (Failure in Time), which signifies one error in a
billion hours. A FIT rate of 1000 is equivalent to a mean time to failure of
114 years. Currently, the FIT of an SRAM cell is estimated to be around
10−4, while that of logic is estimated to be an order of magnitude lower at
10−5. However, as depicted in Figure 2.5, soft error rate models predict that,
by 2011, the contribution of soft errors in the logic will surpass that of SRAM
soft errors [38].

There are a number of solutions suggested to reduce SER levels, which can
be classified into three different classes [39]:

• Process technology solutions—Silicon-on-insulator (SOI) is a pro-
cess technology that uses a much thinner silicon layer than in case of
bulk CMOS devices. Therefore, SOI devices collect less charge from an
alpha or neutron particle strike compared to their bulk CMOS counter-
parts. IBM reports a 5x reduction in SER of SRAM devices when SOI
technology is used. However, it is unclear whether similar reductions in
SER from SOI logic can be achieved.

• Circuit Solutions—It is possible to use design techniques to tune the
device parameters and create radiation-hardened cells. Examples of such
tuning could involve increasing the capacitance and/or supply voltage of
a device. It is also possible to design circuits containing redundant states
that can recover from a particle strike. However, these designs come with
significant area and performance penalties.

16

 1e-12

 1e-11

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 1995 2000 2005 2010

S
of

t e
rr

or
 r

at
e

[F
IT

]

Year

SRAM
Logic

Figure 2.5: Trend in soft error rate for SRAMs and logic

• Architectural Solutions—These involve adding specialized components
to analyze circuit behavior and detect/compensate for potential failures.
Using error-correction-code (ECC) circuits is one such example. ECC
circuits typically have lower overhead than radiation-hardened cells.1 To-
day, ECC circuits are considered by the industry to be the most optimal
solution for the soft error problem.

2.4 Trends in testing

As the complexity of the IC test process continues to increase, companies are
looking for solutions that reduce the overall cost of manufacturing testing. In
the following text, we discuss the current trends in IC testing and the future
challenges introduced by the nano-scale technologies.

1In a particular example ECC circuits add an overhead of 8 bits per 64 bits of data (i.e.,
13%), whereas radiation hardened-cells can have an area penalty of 30− 100% depending on
the aggressiveness.

17

2.4.1 Test generation

In order to generate the high-quality tests needed for today’s circuits, a number
of approaches are being explored and adopted by the industry.

• Extending the existing fault models—The fault models mainly used
to generate test vectors are single stuck-at faults, delay faults and IDDQ
faults. Stuck-at faults are mainly caused by bridges as in the example
shown in Figure 2.6. In order to increase the effectiveness of stuck-at
fault testing, multiple stuck-at faults are being considered, where many
faults (not only one) are considered to be present at the same time. Delay
faults, on the other hand, are being refined in order to detect small timing
deviations that may not always result in an actual failure. IDDQ and
�IDDQ faults are gradually becoming more analog, where not only a
distinction is made between failing and passing devices, but also the
exact value of the failing current should be measured [23]. New fault
models are also being developed for analog and memory circuits [40].

• Augmenting the test set—Test sets (i.e., sequence of test vectors)
generated according to the fault coverage requirements of a given fault
model are becoming gradually less effective in detecting the faulty be-
havior observed in modern ICs. One way to overcome this shortcoming
of fault models is to augment the model-based test set with a number of
hand-picked test vectors, known to detect specific types of faulty behav-
ior. It is rather challenging to come up with a proper augmented test set,
as such a set is based more on the understanding of the behavior rather
than a specific fault modeling approach.

• Using specialized tests—Since SOCs contain memory and analog de-
vices along with logic circuits, it is crucial to include not only logic ori-
ented tests but also specialized tests for the memory as well as the analog
parts. Such specialized tests are based on their own set of fault models
for each circuit type. Here, there are two challenges to be reckoned with:
first is to come up with effective specialized test sets, and second is to
apply this test set properly to each circuit despite the restrictions one has
with accessing the embedded devices [41].

2.4.2 Test application

In addition to the challenges that stem from generating an effective test set,
there is a growing number of limitations on the way these tests are applied to
the IC. Below are the main trends with this regard.

• Tester related challenges—As the complexity and speed of ICs in-
crease, the complexity and speed of the testers required to test them

18

Figure 2.6: Example of a bridge causing stuck-at faults

increase accordingly. The main cause for concern is the overall tester
timing accuracy, where rising and falling signal edges must be controlled
with continuously decreasing time intervals. With tester accuracy levels
as high as tenths of pico seconds, it is unclear how this could be further
increased as ICs go to higher frequencies. An accompanying problem is
the increasing cost of these specialized high-end testers. The cost aspect
has gradually resulted in a move toward so-called structural testers, where
high accuracy and speed are achieved by embedded DFT circuits, thereby
reducing the demands on the external tester [42]. Apart from this, very
effective tester-related test approaches widely used in the past, such as
using high voltage and high temperature (so-called burn-in) are becom-
ing increasingly difficult to apply since they may now cause a failure in
the device under test more easily.

• Challenges with Design for Testability (DFT)—As the designers
are using more and more on-chip resources to facilitate testing (DFT),
more implementation related problems appear. Scan chains and built-in
self-test (BIST) engines are becoming increasingly difficult to implement
on modern ICs. Scan chains face a number of problems, ranging from
managing heat emitted by dissipated power during test to increasing time
needed to perform a scan test with the increasing number of scan flipflops.
One solution to this problem is to increase the number of chains, thus
decreasing the length of each chain. BIST engines face the problem of
performing the correct test set on the device under test. The whole
test set is too large to be stored on-chip, while externally loading the
test set is difficult due to power, speed and storage related issues. One
solution to this problem is using a hybrid of pseudo-random BIST vectors
with externally-applied tester seeds. This way, internal tests are partly
controlled (or otherwise stated directed) by the tester and driven in the
right direction. In this case, it is important to choose effective tester
seeds to ensure a high-quality test set [43].

19

2.5 Conclusions

This chapter presented the trends and challenges of testing and failure mecha-
nisms in deep sub-micron integrated circuits. A classification has been made,
based on the flow of the production process of these devices, which results in
four different classes of trends: those related to the production process as a
whole, those related to design, those in manufacturing and finally those in test-
ing itself. The general trend is toward reducing the cost of the test process by
putting as much test circuitry on-chip as possible, rather than focusing on spe-
cialized external test equipment. This brings around its own set of challenges
that need to be dealt with in the next silicon generations. In this text we will
be focusing only on several specific examples of the technology aware memory
testing. This considering the fact that each of the challenges presented in this
chapter is rather complex to address.

20

Chapter 3

Memory fault modeling

and tests

onsidering the fact that memories dominate the SoC area in 2007 and
will grow in size in the future, special attention should be paid on their
testing challenges. The memory structures’ fault behavior is expected to

change for new technology nodes and memory BISR is becoming an industrial
standard. This argues for the importance of simple but comprehensive fault
models; short and efficient memory tests stronger than ever before. In this
chapter we will present our memory fault model taxonomy and introduce the
concept of march tests.

3.1 Properties of memory fault models

Many functional fault models (FFMs) for memories have been introduced in the
past; some well known FFMs, which date back to before 1980, are [5]: address
decoder faults, stuck-at faults, inversion and idempotent coupling faults, and
neighborhood pattern sensitive faults. The following FFMs were introduced
later: data retention faults [6], stuck-open faults [6], state coupling faults [6],
read disturb faults [44], deceptive read disturb faults [44], and disturb coupling
faults [45]. The process of detecting new FFMs has been very ad-hoc and,
therefore, slow. Experimental results of applying a large number of tests to
a large number of chips [46, 7] indicate that many functional tests do detect
faults in memories, which cannot be explained using the current set of known
FFMs. This means that additional FFMs do exist.

The fact that many faults in memories do exist for which no FFM has been
established yet, together with the fact that the FFMs to be anticipated have to
be known in advance, calls for a systematic way to construct potential FFMs
and explore the space of all potential FFMs.

21

Functional faults can be defined as the deviation of the observed memory
behavior from the functionally specified one under a set of performed opera-
tions. Therefore, two basic ingredients can be identified to any FFM: (1) a list
of performed memory operations, and (2) a list of corresponding deviations in
the observed behavior from the expected one. Any list of performed operations
on the memory is called an operation sequence. An operation sequence that
results in a difference between the observed and the expected memory behavior
is called a sensitizing operation sequence (S)1. The observed memory behavior
that deviates from the expected one is called a faulty behavior. A general no-
tation to represent operation sequences is given first, followed by a notation of
the faulty behavior.

3.1.1 Representing operation sequences

Any sequence of performed operations on the memory is called an operation se-
quence. An operation sequence that results in a difference between the observed
and the expected memory behavior is called a sensitizing operation sequence
(S). For example, consider the following operation sequence in a cell S = 0w1.
It requires the cell to be initialized to 0, followed by an attempt to write a 1
into the cell (this is the operation sequence needed for an up transition fault
(TF1) as will be explained next). The observed memory behavior that deviates
from the expected one is called a faulty behavior or simply a fault. For TF1,
the faulty behavior is the inability of the write 1 operation to replace the 0
stored in the cell by a 1.

In order to describe any faulty behavior in the memory, it is important
to support any possible operation sequence performed on the memory in the
description. A sensitizing operation sequence must list the initial data in the
accessed cells and the operations performed on them in order to sensitize the
fault. The initial data represents the data in the memory cells prior to the start
of a test; this may be random (due to power-on, for example) or deterministic
(due to a previously applied test). The operations, on other hand, represent
operations performed to sensitize the faulty behavior; these can either be writes
w or reads r. Therefore, any operation sequence, expected to result in a faulty
behavior, can be represented by the following notation:

dc1 ... dci ... dcm Odc1 ... Odcj ... Odcn

where cx: is the cell address used,
O: type of operation on c, O ∈ {w, r},
d: data to be written into c, d ∈ {0, 1},
m: the number of initializations, and

1In the literature, some authors make a distinction between operations that sensitize
the fault internally and those that result in detecting the fault on the output lines. Since,
we are mainly concerned with the internal memory behavior, this distinction is considered
unnecessary.

22

n: the number of operations.

The initial data is described for m cells (denoted as ci), while the operations
are applied to n cells (denoted as cj). Note that the value of d in a read
operation of the form rdcj represents the expected value of the read operation.
This value may be different from the actual read value detected on the output
in case of a faulty memory. As an example of the notation, if an operation
sequence is denoted by 0cw1cr1c then the sequence starts by accessing cell
c (which contains a 0) and writing a 1 into it, then reading the written 1.
Sometimes, a fault is sensitized because a cell spontaneously loses its stored
state, without the need to perform any operation on the memory. Hence, simply
setting the cell into a known initial state is enough to sensitize the fault. This
situation can also be described using the operation sequence notation above
by limiting S to the initial data and eliminating any performed operation. For
example, observing the state of cell c which contains a 0 without accessing it
can be denoted by 0c.

3.1.2 Describing faulty behavior

Throughout the 1980s and during the first half of the 1990s, the only functional
parameter considered relevant to the faulty behavior was the stored logic state
in the memory cell [5]. Recently, another functional parameter, the output
value of a read operation, has also been considered relevant [47]. Therefore,
any difference between the observed and expected memory behavior can be
denoted by the following notation <S/F/R> (instead of <S/F> used in the
past). S describes the sensitizing operation, F describes the state stored in the
faulty cell, F ∈ {0, 1}, and R describes the logic output of a read operation,
R ∈ {0, 1,−}. R = − is used in cases when a write operation, and not a
read, is sensitizing the fault. The difference between the observed and expected
memory behavior denoted by <S/F/R> is referred to as a fault primitive (FP).
The notion of FPs makes it possible to give a precise definition of an FFM as
understood for memory devices. This definition is presented next.

A functional fault model is a non-empty set of fault primitives.

The above FFM definition still depends on the selected functional param-
eters to be observed in the FPs. Yet, this dependence is now precisely known
once the FPs are defined. Moreover, it is now possible to distinguish between
a specific faulty behavior sensitized by a specific operation sequence and the
faulty behavior of the memory sensitized by a number of operation sequences.

3.2 Space of all memory FPs

FPs can be classified according to #C, the number of different cells accessed
during an S, according to #O, the number of different operations performed

23

in an S, and the number of FPs involved in the fault model (see Figure 3.1).
For example, if S = 0c1 0c2 w1c1 then #C = 2, since two different cells (c1 and
c2) are accessed by this sequence. On the other hand, #O = 1 for this S since
only a single (write 1) operation is performed to c1.

Depending on #C, FPs can be divided into the following classes:

• If #C = 1 then the FP sensitized by the corresponding SOS is called a
single-cell FP.

• If #C > 1 then the FP sensitized by the corresponding SOS is called a
coupling FP. If #C = 2 then it is described as two-coupling FP or two-cell
FP. If #C = 3 then it is described as 3-coupling FP, etc.

Depending on #O, FPs can be divided into the following classes:

• If #O ≤ 1 then the FP sensitized by the corresponding SOS is called a
static FP.

• If #O > 1 then the FP sensitized by the corresponding SOS is called a
dynamic FP. If #O = 2 then it is described as 2-operation dynamic FP.
If #O = 3 then it is described as 3-operation dynamic FP, etc.

In respect to #FP involved, FPs can be divided into the following classes:

• If #FP = 1 then the FP is called a simple FP.

• If #FP > 1 then the FP is called a linked FP. If #FP = 2 then it is
described as 2-fault linked FP, etc.

Linked faults, can be identified by inspecting the memory cells associated
with the FPs of a given FFM. The linked FFMs are constructed by several FPs
and are usually denoted by {<S1/F1/R1>} # {<S2/F2/R2>} #

Figure 3.1 shows a taxonomy of the space of FPs. It is important to note
that the three ways to classify FPs are independent, since their definitions are
based on independent factors. As a result, a single-cell FP can be static, or
dynamic with any number of operations. The same applies to coupling FPs.

Since an FFM is defined as a set of FPs, it is expected that FFMs will inherit
the properties of FPs. For example, if an FFM is defined as a collection of
single-cell FPs, then the FFM is a single-cell fault model. If an FFM consists of
FPs classified into inconsistent classes, single-cell and two-cell FPs for example,
it is described as a single-cell and a two-cell fault model.

The taxonomy above does not include such faulty effects as data retention
faults and address decoder faults. Considering data retention faults, it is pos-
sible to take the retention effects into consideration by introducing a delayed
version of an FFM as in T {<S/F/R>}, where T is the time period we need
to wait after performing S to observe the faulty behavior on F and/or R. The
address decoder fault are not memory cell array faults and are considered as
orthogonal to our taxonomy.

24

Functional

Fault Models
#C

#O

#FP

(#C=1)

Single-cell

(#C>1)

Coupling

(#FP=1)

Simple

(#FP>1)

Linked

(#O=<1)

Static

(#O>1)

Dynamic

(#O=2)

2-operation

(#O=3)

3-operation
…

(#C=2)

2-coupling

…

(#C=3)

3-coupling

(#FP=2)

2-linked

…

(#FP=3)

3-linked

Figure 3.1: Taxonomy of fault primitives.

3.3 Static fault space

Single-cell static FFMs consist of FPs sensitized by performing at most one
operation on a faulty cell (i.e., #O ≤ 1). As mentioned earlier, a particular
FP is denoted by <S/F/R>. S ∈ {0, 1, 0w0, 0w1, 1w0, 1w1, 0r0, 1r1} for static
FPs, F ∈ {0, 1} while R ∈ {0, 1,−}. Table 3.1 lists all single-cell static FFMs
and their corresponding FPs using this notation. In total, there are 6 different
types of FFMs: state fault (SF), transition fault (TF), write destructive fault
(WDF), read destructive fault (RDF), incorrect read fault (IRF), deceptive
read destructive fault (DRDF) [44]. The remaining combinations of the S, F
and R values do not represent a faulty behavior. For example, <0w0/0/−>
corresponds to a fault-free w0 operation after which the cell contains a 0, as
expected.

Table 3.1: Single-cell static FFMs and their corresponding FPs.

Fault FP Name

1 SF <0/1/−>, <1/0/−> State fault

2 TF <0w1/0/−>, <1w0/1/−> Transition fault

3 WDF <0w0/1/−>, <1w1/0/−> Write destructive fault

4 RDF <0r0/1/1>, <1r1/0/0> Read destructive fault

5 IRF <0r0/0/1>, <1r1/1/0> Incorrect read fault

6 DRDF <0r0/1/0>, <1r1/0/1> Deceptive RDF

Below, a short explanation of a number of well known and new single-cell
static FFMs, described in terms of non-empty sets of FPs is provided.

25

1. State faults (SFx)—A cell is said to have an SF if the logic value of
the cell flips before it is accessed, even if no operation is performed on
it2. Two types of SF exist: SF0 = {<0/1/−>}, with FP #1, and SF1 =
{<1/0/−>}, with FP #2.

2. Transition faults (TFx)—A cell is said to have a TF if it fails to
undergo a transition (0 → 1 or 1 → 0) when it is written.

3. Read disturb faults (RDFx) [44]—A cell is said to have an RDF if
a read operation performed on the cell changes the data in the cell and
returns an incorrect value on the output.

4. Write disturb faults (WDFx)—A cell is said to have a WDF if a
non-transition write operation (0w0 or 1w1) causes a transition in the
cell.

5. Incorrect read faults (IRFx)—A cell is said to have an IRF if a read
operation performed on the cell returns the incorrect logic value, while
keeping the correct stored value in the cell.

6. Deceptive read disturb faults (DRDFx) [44]—A cell is said to have
a DRDF if a read operation performed on the cell returns the correct
logic value, while it results in changing the contents of the cell.

7. Stuck-at faults (SAFx)—A cell is said to have a SAF if it remains
always stuck at a given value for all performed operations. Two types of
SAF exist: SAF0 = {<∀/0/−>}, and SAF1 = {<∀/1/−>}.

∀ symbolizes the idea that for all operations the same value remains in
the cell. Therefore, S = ∀ can be replaced by only those operations that
sensitize the fault. This leads to the following equivalent SAF definitions.
SAF0 = {<1/0/−>, <0w1/0/−>, <1w1/0/−>} = SF1 ∪ TF↑ ∪ WDF1,
and SAF1 = {<0/1/−>, <1w0/1/−>, <0w0/1/−>} = SF0 ∪ TF↓ ∪
WDF0. The ∪ sign is the usual mathematical union sign. In terms of
FPs, a ∪ connecting a number of sets with FPs means that the FPs are
all present in the faulty behavior simultaneously. That is, performing
each SOS results in sensitizing the corresponding FP3.

Two-cell static FFMs (also known as coupling faults consist of FPs sensitized
by performing at most one operation while considering the faulty effect of
two cells. Such FPs can be represented as <Sa; Sv/F/R>, where Sa is the
sequence performed on the aggressor (a) and Sv is the sequence performed on
the victim (v). Table 3.2 lists all two-cell static FFMs and their corresponding

2It should be emphasized here that the state fault should be understood in the static
sense. That is, the cell should flip in the short time period after initialization and before
accessing the cell.

3To be precise, stuck-at faults are not strictly static FFMs. SAFs are very general FFMs
that describe general dynamic faulty behavior and, therefore, can include many (static and
dynamic) single-cell FPs.

26

FPs. In total, there are 7 different types of two-cell static FFMs: state coupling
fault (CFst), disturb coupling fault (CFds), transition coupling fault (CFtr),
write destructive coupling fault (CFwd), read destructive coupling fault (CFrd),
incorrect read coupling fault (CFir), and deceptive read destructive coupling
fault (CFdrd).

Table 3.2: Two-cell static FFMs and their FPs (x, y ∈ {0, 1}).

Fault FP Name

1 CFst <0; 0/1/−>, <0; 1/0/−> State coupling

<1; 1/0/−>, <1; 0/1/−> fault

2 CFds <xwy; 0/1/−>, <xwy; 1/0/−> Disturb coupling

<xrx; 0/1/−>, <xrx; 1/0/−> fault

3 CFtr <0; 0w1/0/−>, <0; 1w0/1/−> Transition coupling

<1; 0w1/0/−>, <1; 1w0/1/−> fault

4 CFwd <0; 0w0/1/−>, <0; 1w1/0/−> Write destructive

<1; 0w0/1/−>, <1; 1w1/0/−> coupling fault

5 CFrd <0; 0r0/1/1>, <0; 1r1/0/0> Read destructive

<1; 0r0/1/1>, <1; 1r1/0/0> coupling fault

6 CFir <0; 0r0/0/1>, <0; 1r1/1/0> Incorrect read

<1; 0r0/0/1>, <1; 1r1/1/0> coupling fault

7 CFdrd <0; 0r0/1/0>, <0; 1r1/0/1> Deceptive read

<1; 0r0/1/0>, <1; 1r1/0/1> destructive CF

Below, a list of FFMs, some well known and some new, is constructed from
the FPs presented in Table 3.2. The new FFMs below are defined in such a
way that all FPs are covered by at least one FFM.

1. State coupling fault (CFst)—Two cells are said to have a CFst if
the victim is forced into a given logic state only if the aggressor is in a
given state, without performing any operation on the victim. This fault
is special in the sense that no operation is needed to sensitize it and,
therefore, it only depends on the initial stored values in the cells. Four
types of CFst exist which can be summed up as: CFstx;y = {<x; y/y/−>
}, where x, y ∈ {0, 1}.

2. Idempotent coupling fault (CFid)—Two cells are said to have an
CFid if a transition write operation (0w1 and 1w0) on the aggressor forces
the victim into a given state. This fault is sensitized by a transition write
operation performed on the aggressor. Four types of CFid exist which can
be summed up as: CFidxwx;y = {<xwx; y/y/−>}, where x, y ∈ {0, 1}.

3. Inversion coupling fault (CFin)—Two cells are said to have an CFin if
the logic value of the victim is inverted in case a transition write operation
is performed on the aggressor. Two types of CFin exist which can be

27

summed up as: CFinxwx = {<xwx; y/y/−>, <xwx; y/y/−>}, where x,
y ∈ {0, 1}.

4. Non-transition coupling fault (CFnt)—Two cells are said to suffer
from a CFnt if a non-transition write operation (0w0 and 1w1) performed
on the aggressor forces the victim into a given state. Four types of CFnt
exist which can summed up as: CFntxwx;y = {<xwx; y/y/−>}, where x,
y ∈ {0, 1}.

5. Disturb coupling fault (CFds)—Two cells are said to have a CFds
if an operation (write or read) performed on the aggressor forces the
victim into a given logic state. Here, any operation performed on the
aggressor is accepted as a sensitizing operation for the fault, be it a read,
a transition write or a non-transition write operation. Twelve types of
CFds exist which can be summed up as: CFdsxwy;z = {<xwy; z/z/−>}
and CFdsxrx;y = {<xrx; y/y/−>}, where x, y, z ∈ {0, 1}.

6. Transition coupling fault (CFtr)—Two cells are said to have a CFtr
if a given logic value in the aggressor results in the failure of a transi-
tion write operation performed on the victim. This fault is sensitized by
a write operation on the victim and setting the aggressor into a given
state. Four types of CFtr exist which can be summed up as: CFtrx;↑ =
{<x; 0w1/0/−>} and CFtrx;↓ = {<x; 1w0/1/−>}, where x ∈ {0, 1}.

7. Write disturb coupling fault (CFwd)—A cell is said to have a CFwd
if a non-transition write operation performed on the victim results in a
transition when the aggressor is set into a given logic state. Four types
of CFwd exist: CFwdx;y = {<x; ywy/y/−>}, where x, y ∈ {0, 1}.

8. Read disturb coupling fault (CFrd)—Two cells are said to have a
CFrd if a read operation performed on the victim destroys the data stored
in the victim if a given state is present in the aggressor. Four types of
CFrd exist: CFrdx;y = {<x; yry/y/y>}, where x, y ∈ {0, 1}.

9. Incorrect read coupling fault (CFir)—Two cells are said to have an
CFir if a read operation performed on the victim returns the incorrect
logic value when the aggressor is set into a given state. Four types of
CFir exist: CFirx;y = {<x; yry/y/y>}, where x, y ∈ {0, 1}.

10. Deceptive read disturb coupling fault (CFdr)—A cell is said to
have a CFdr if a read operation performed on the victim returns the
correct logic value and changes the contents of the victim, when the
aggressor is set into a given logic state. Four types of CFdr exist: CFdrx;y

= {<x; yry/y/y>}, where x, y ∈ {0, 1}.

There is a need to select a collection of the FFMs defined above that would
cover all FPs listed in Table 3.2. An analysis of the defined FFMs shows that
the FFMs CFst, CFds, CFtr, CFrd, CFir, CFdr and CFwd are necessary and
sufficient to cover all two-cell static FPs. Moreover, no other combination of

28

FFMs may be constructed with this property. Any two-cell static FFM can
be represented as the union of two or more of these FFMs. For example, if
a defect results in a faulty behavior represented by an incorrect read coupling
fault {<1; 0r0/0/1>} and a read disturb coupling fault {<1; 1r1/0/0>}, then
the corresponding behavior is presented as: {<1; 0r0/0/1>} ∪ {<1; 1r1/0/0>}
= {<1; 0r0/0/1>, <1; 1r1/0/0>}.

3.4 Dynamic fault space

Dynamic faults can be divided into FPs describing single-cell faults (involving a
single-cell), and FPs describing multi-cell faults (involving more than one cell).
In this section, we will restrict our analysis to single-cell faults only, because:
(a) this is the first attempt for systematic analysis of dynamic faults, and (b)
single-cell faults are more dominant than multi-cell faults (as in the case with
the well known single stuck-at fault models).

Single-cell dynamic faults consist of FPs sensitized by applying more than
one operation to a single cell sequentially. We will restrict our analysis to 2-
operation dynamic faults because (a) they already have been shown to exist
[13, 48, 14], and (b) the probability of dynamic faults decreases as the number of
operations increases [49]. As mentioned earlier, a particular FP can be denoted
as < S/F/R >.

S describes the sensitizing operation sequence, which sensitizes a fault F in
the cell. Since two operations are considered, there are 18 possible Ss given
below; x, y, z ∈ {0, 1} and ‘r’ denotes a read operation and ‘w’ denotes a write
operation.

• eight Ss have the form ’xwywz’; e.g., ‘0w1w0’ denotes a write 1 operation
applied to a cell whose initial state is 0; the write is followed immediately
by another write 0 operation.

• two Ss have the form ‘xrxrx’; e.g., ‘0r0r0’ denotes two successive read 0
operations applied to a cell whose initial state is 0.

• four Ss have the form ‘xrxwy’; e.g., ‘0r0w1’ denotes a read 0 followed
immediately by write 1 applied to a cell whose initial state is 0.

• four Ss have the form ‘xwyry’; e.g., ‘1w1r1 denotes a write 1 followed
immediately by read 1 applied to a cell whose initial state is 1.

F describes the value of the faulty (i.e., victim) cell (v-cell); F ∈ {0, 1}. R
describes the logical value which appears at the output of the memory if the
sensitizing operation applied to the v-cell is a read operation: R ∈ {0, 1,−}.
A ’−’ in R means that the output data is not applicable. For example, <
0w0w1/0/− >; S = 0w0w1 cause a failing up transition write operation (F =
0), no data will appear at the memory output, and therefore R is denoted by
’−’. Please note that FP shows only the final state/value or the memory cell,

29

Table 3.3: List of single-cell dynamic FFMs
FFM FPs

dRDF < 0r0r0/1/1 >, < 1r1r1/0/0 >,
< 0w0r0/1/1 >, < 0w1r1/0/0 >,
< 1w0r0/1/1 >, < 1w1r1/0/0 >

dDRDF < 0r0r0/1/0 >, < 1r1r1/0/1 >,
< 0w0r0/1/0 >, < 0w1r1/0/1 >,
< 1w0r0/1/0 >, < 1w1r1/0/1 >

dIRF < 0r0r0/0/1 >, < 1r1r1/1/0 >,
< 0w0r0/0/1 >, < 0w1r1/1/0 >,
< 1w0r0/0/1 >, < 1w1r1/1/0 >

dTF < 0r0w1/0/− >, < 1r1w0/1/− >,
< 0w0w1/0/− >, < 1w1w0/1/− >,
< 1w0w1/0/− >, < 0w1w0/1/− >

dWDF < 0r0w0/1/− >, < 1r1w1/0/− >,
< 0w0w0/1/− >, < 1w1w1/0/− >,
< 1w0w0/1/− >, < 0w1w1/0/− >

e.g. the value of the last read operation, all intermediate states or values are
not available.

Based on the values of S, F , and R, all detectable single-cell FPs can be
enumerated. They consist of a total of 30 FPs. The 30 FPs are compiled into
a set of 5 functional fault models (FFMs), and are listed in Table 3.3. The
names of the FFMs are chosen in such a way that they represent an extension
of the traditional static fault models.

1. Dynamic Read Destructive Fault (dRDF): an operation (i.e., read or
write) followed immediately by a read operation performed on a single
cell changes the data in that cell, and returns an incorrect value on the
output. The dRDF consists of six FPs; e.g., < 0w1r1/0/0 >: applying
a ‘r1’ operation immediately after ‘w1’ operation to a cell whose initial
content was 0, will cause the cell to flip to 0 and the read operation will
return a wrong 0 value instead of the expected 1. The first operation in-
volved in the sensitizing operation sequence of dRDF can be a transition
write (e.g., write 1 in a cell containing 0), a non-transition write, or a
read operation.

2. Dynamic Deceptive Read Destructive Fault (dDRDF): an operation fol-
lowed immediately by a read operation performed on a single cell changes
the data in that cell, and returns the correct value on the output. The
dDRDF consists of six FPs. Here, the operation performed before the
read can be a transition write, a non-transition write, or a read operation
as in the case of dRDF.

3. Dynamic Incorrect Read Fault (dIRF): a read operation performed im-
mediately after another operation (i.e., read, transition, or non-transition

30

write) on a single cell returns an incorrect value on the output, while that
cell remains in its correct state. The dIRF consists of six different FPs.

4. Dynamic Transition Fault (dTF): a transition write operation performed
immediately after an operation (i.e., read, transition, or non-transition
write) fails. The dTF consists of six FPs.

5. Dynamic Write Destructive Fault (dWDF): a non-transition write op-
eration applied immediately after an operation (i.e., read, transition, or
non-transition write) causes that cell to flip. The dWDF consists of six
different FPs.

3.5 Simple and linked faults

Simple faults are restricted to one isolated effect per faulty memory cell. On a
particular (victim) cell only one S is allowed. Such faults can be a single cell
of multiple cells as well as static or dynamic.
A linked fault involves two or more simple faults effecting the same (victim) cell.
For example, a CF is linked with another CF when both CFs have the same
coupled cell (please note that this may cause fault masking). When a static TF
is linked with a static CF, and the TF is in the coupling cell, the CF may not
be sensitisable; for example, the TF < 0w1/0/− > (or <↑ /0 > according to
the classic notation) in cell j linked with the CFid < 0w1; 0/1/− > (<↑; ↑>)
whereby cell j is the coupling cell (notation: < 0w1/0/− >#< 0w1; 0/1/− >).
When the TF is in the coupled cell, the TF fault effect may be masked by the
CF.

Figure 3.2 shows the general form of linked CFs; cell i is coupled to a number
a of aggressor cells j all with addresses lower than i, and b aggressor cells k all
with addresses higher than i. Masking, e.g., may occur in case of the following
two CFids <0w1; 0/1/−>j1i (old notation <↑; ↑>j1i) and <0w1; 1/0/−>j2i

(<↑; ↓>j2i) because the first CFid causes the cell to be set, which is thereafter
reset by the second CFid, assuming linear test following the address order and
cell j1 having lower address than j2.

Consider the linked fault of Figure 3.2, where the v cell is located at address i.
The simple CFs involved in the linked fault can be divided into two parts:

• Low part: the simple CFs < x; y/Fp/Rp > jpi (where jp < i)

• High part: the simple CFs < x; y/Fq/Rq > ikq (where kq > i)

Linked faults have a growing importance role in memory testing due to
decreasing feature sizes. They can reduce the fault coverage of test due to

31

Address order

k k k.j j j
1 2 a 1 2 b

v

Figure 3.2: General form of linked CFs

masking effects in the victim cell for tests designed with only simple faults in
mind. In addition, it is envisioned that the percentage of linked faults will grow
when the density of technology nodes increases. Because of their complexity,
tests for linked faults require a systematic methodology. Such a methodology
will be presented in this thesis based on a set of classical faults without loss of
generality.

3.6 Address decoder faults

An address decoder fault (AF) can only be present in the address decoder.
Address decoder faults are not related to the memory cell array, but can be
linked with other simple faults in the latter. Of this fault type the following
four different subtypes exist [50];

• Fault 1: with a certain address no cell will be accessed;

• Fault 2: there is no address with which a particular cell can be accessed;

• Fault 3: with a certain address, multiple cells are accessed simultaneously;
and

• Fault 4: a certain cell can be accessed with multiple addresses.

A particular subtype cannot occur alone, but only in combination with at least
one other subtype, see faults A, B, C and D in Figure 3.3.
The notation used to describe AFs is the following: < . . . > denotes a particular
fault and ‘. . . ’ describes the fault. The capital letters of the alphabet (i.e., A
through Z) denote memory addresses and the lower case letters of the alphabet
(i.e., a through z) denote memory cells. In a memory consisting of, e.g., 3 cells,
and not containing any AFs the following applies: Aa, Bb, Cc; i.e., address A
is connected with cell a, etc.

Fault A of Figure 3.3 is represented as < I−,−i >i. Fault B is represented
as < Ji, Jj >ij , where ij represents the address order of the cells i and j. Fault
C is represented as < Ii, Ji >ij and fault D as < Ii, Ji, Jj >ij .

32

�Ax �Cx
�Ax

�Ay

�Cx

�Cy��
�

�
���

�Ax

�Ay

�Cx

�Cy

�

�
�

�
���

�Ax

�Ay

�Cx

�Cy

�

��
�

�
���

fault A (1+2) fault B (1+3) fault C (2+4) fault D (3+4)

Figure 3.3: Combinations of address decoder faults

3.7 March tests

March tests consist of a family of tests which all have the same structure; they
have proven to be superior in terms of short test times, simplicity and high
fault coverage.

First we introduce the notation used to describe march tests. Similar to
mathematics, a good notation allows for a compact, concise description of the
subject matter. Thereafter the relationship between the fault primitives and
the march tests to detect them will be briefly described.

3.7.1 March notation

A march test consists of a sequence of march elements; a march element con-
sists of a sequence of operations which are all applied to a given cell, before
proceeding to the next cell. The way one proceeds to the next cell is determined
by the address order which can be an increasing address order (increasing ad-
dresses from cell 0 to cell n − 1)4, denoted by the ‘⇑’ symbol, or a decreasing
address order, denoted by the ‘⇓’ symbol. The ⇓ address order has to be the
exact inverse of the ⇑ address order [5]. For some march elements the address
order can be chosen arbitrarily, this will be indicated by the ‘
’ symbol. An
operation, applied to a cell, can be a ‘w0’ (write ‘0’), a ‘w1’, a ‘r0’ (read ‘0’),
or a ‘r1’ operation. A complete march test is delimited by the ‘{. . .}’ bracket
pair; while a march element is delimited by the ‘(. . .)’ bracket pair.

The following march test {
 (w0),⇑ (r0, w1);⇓ (r1, w0)} is known as
MATS+ [19]. It consists of three march elements, M0, M1 and M2. M2
performs a read one (r1) operation, followed by a write zero (w0) operation on
the same cell, after which these two operations are applied to the next cell (in
decreasing order). M0 is used to initialize the memory array (all cells set to
zero), hence the order of its application is not important.

4Any address sequence may be used for the ⇑ address order; e.g. from 0 to n−1, but also
a pseudo-randomly determined address sequence; n denotes the total number of addresses.

33

3.7.2 March tests generation

The FPs are used to identify so-called detection conditions, which describe an
incomplete set of march elements specifying the minimum requirements a march
test has to fulfill in order to detect the faulty behavior. Detection conditions can
easily be used to generate the necessary memory tests to detect the observed
faulty behavior. As an example, assume that the fault analysis of a given
memory indicates that the memory suffers from an up transition fault dTF =
< 0r0w1/0/− >. The FP gives a precise description of the way the observed
fault can be sensitized. In order to detect this fault, a march test needs to
fulfill the detection condition
 (..., w0, ...)
 (..., r0, w1, ...)
 (..., r1, ...), which
states that the test has to initialize all cells to 0, then perform an up transition
write after read operation on each cell, and finally it has to read the expected
(written) 1 from all cells. It is possible to generate many different march tests
that satisfy this detection condition. Here are some examples:

• {
 (w0, r0, w1, r1)}

• {
 (w0)
 (r0, w1, r1)}

• {
 (w0)
 (r0, w1)
 (r1)}

• {⇑ (w0, r0, w1, r1)}

• {⇑ (w0) ⇓ (r0, w1, r1)}

• etc.

In practice, multiple detection conditions for the targeted FPs are used
to generate a single march test that can recognize any of the possible fault
behaviors.

3.8 Conclusions

This chapter presented the notations needed for the rest of this thesis. A
taxonomy of the functional fault models was presented in respect to the number
of cells involved, the number of operations needed to sensitize the fault and the
number of faults effecting the same faulty cell. The three fault spaces were
briefly described. Lastly the march tests and the notation used this work were
presented.

34

Chapter 4

Single-Cell Dynamic Faults

he continued decrease of feature sizes in deep-submicron technology is
the source of new defects and faults that strongly depend on stresses
and operation sequences for their detection; issues like process variation

causing threshold voltage deviation, the increasing influence of parasitics, cross
talk, propagation delays, the relative increase in power supply noise and the
reduction in the noise margin are just some examples. In this chapter one
of the important fault classes for deep-submicron memory technology will be
addressed, the dynamic faults [13, 48, 14].

Dynamic faults require the application of more than one operation sequen-
tially for their sensitization. For example, a write 1 operation followed immedi-
ately by a read operation causes the cell to flip (change its state to the opposite
value) to 0; however, if only a single write or a single read, or a read which
does not immediately follow the write is performed, the cell will not flip. The
industrial march tests have been mainly designed with static faults (faults that
are sensitized by a single operation) in mind, and therefore are expected to
perform poorly in devices with dynamic faults. The subject of dynamic faults
is only briefly discussed in the literature. In [13] the existence of dynamic faults
has been shown for embedded Dynamic Random Access Memories (DRAMs)
based on defect injection and SPICE simulation. In [48, 14], the existence of
dynamic faults for static RAMs has been proven and a test targeting dynamic
faults caused by “read-after-write” has been proposed. This test, however,
covers just a very small subset of all possible ”two-operation” dynamic faults.

This chapter deals with single-cell dynamic faults. It uses a systematic
way to model them, and shows the existence of other dynamic faults that
have not been addressed in [13, 48, 14]. In addition, it introduces a complete
set of dynamic fault models based on ‘two operations’ involving a single cell.
The chapter shows the shortcomings in the fault coverage of the traditional
tests (originally designed for static faults), and thereafter introduces new test
primitives for the targeted dynamic faults. The introduced tests are evalu-

35

ated together with some widely used traditional tests, and the test results are
reported.

This chapter is organized as follows. Section 4.1 discusses the validation of
dynamic faults for both static and dynamic RAMs. Section 4.2 describes the
shortcoming in the fault coverage of traditional tests with respect to dynamic
faults. Section 4.3 establishes new test primitives targeting the introduced
dynamic faults. Section 4.4 gives the industrial evaluation and discusses the
results. Section 4.5 ends with the conclusions.

4.1 Validation of dynamic faults

Currently published work shows the existence of dynamic faulty behavior in the
absence of the traditional static faults. The validation of such faults for DRAMs
has been shown, based on defect injection and SPICE simulation [13, 14]. For
example, the presence of an extra unwanted resistance between the bit line and
the memory cell can cause the dynamic faults dRDF, dDRDF and dIRF in the
absence of any static faults. That means that the defect can only be detected
if the dynamic analysis is considered.

Dynamic faults have also been observed in embedded SRAMs [48]. Further,
the wide use of ‘hammer tests’ (i.e., repeated read or write operations on the
same memory cells) in the industry may indicate the existence of the dynamic
faults. Furthermore, the ’Holey Shmoo problem’ [51] in which the L1 cache of
IBM System/390 G6 microprocessor fails to pass consecutive write patterns also
indicates that dynamic faults can be caused by ‘a write followed immediately
by another write’ (i.e., dTF or dWDF). It is clear from the above, that this set
of fault models for dynamic faults has to be explored, and that the appropriate
test algorithms have to be established.

4.2 Effectiveness of the traditional tests

Table 4.1 summarizes the fault coverage of the most well-known memory tests
(determined analytically); the test length of each test is also included; n denotes
the size of the memory, R denotes the number of rows, and C denotes the
number of columns.

In Table 4.1, “a/b” denotes that the test detects ‘a’ of the ‘b’ FPs of the
corresponding FFM. E.g., March C- detects none of the FPs of the six dRDF,
while March SS detects four of them. The last column in the table (i.e., ‘FC’)
gives the total detected FPs for the corresponding test. E.g., March RAW
detects 18/30 of single-cell dynamic faults. It is clear from the table that the
traditional tests designed with static faults in mind do not detect all targeted
dynamic faults. This shows the necessity for new tests targeting dynamic faults
specifically.

36

Table 4.1: DS fault coverage for known tests

Tests Test length dRDF dDRDF dIRF dTF dWDF Total FC

1 SCAN [52] 4n 0/6 0/6 0/6 0/6 0/6 0/30
2 MATS+ [19] 5n 0/6 0/6 0/6 1/6 0/6 1/30
3 MATS++ [18] 6n 1/6 0/6 1/6 2/6 0/6 4/30
4 March A [53] 15n 0/6 0/6 0/6 2/6 0/6 2/30
5 March B [53] 17n 2/6 0/6 2/6 4/6 0/6 8/30
6 March C- [20, 5] 10n 0/6 0/6 0/6 2/6 0/6 2/30
7 March G [53] 23n 2/6 1/6 2/6 4/6 0/6 9/30
8 March LR [54] 14n 2/6 0/6 2/6 2/6 0/6 6/30
9 March RAW [14] 26n 6/6 4/6 6/6 2/6 2/6 20/30
10 March SS [22] 22n 4/6 0/6 4/6 2/6 2/6 12/30
11 PMOVI [21] 13n 2/6 2/6 2/6 2/6 0/6 8/30
12 Galpat [18] 6n+4nRC 0/6 0/6 0/6 2/6 0/6 2/30
13 Walking 1/0 [5] 8n+2nRC 0/6 0/6 0/6 2/6 0/6 2/30

4.3 Test primitives for dynamic faults

This section proposes tests for the introduced single-cell dynamic faults. For
each FFM, two tests will be introduced. One is written to facilitate the diag-
nosis of the FPs during DPM (defect per million) screening, while the other
version is optimized in terms of test length. During the industrial evaluation,
all test patterns are implemented; this gives more detailed information that
can be used in order to establish the importance of each FFM as well as FPs.

Table 4.2 lists the tests designed for each dynamic fault model. The first
column gives the name of the test and its test length (n denotes the memory
size in cells); e.g., Test dRDF-Diag is the test designed for dRDF for diagnosis
purpose, while Test dRDF-Opt is the optimized test for the same fault. The
second column of the table gives the description of the test. It can be verified
easily that each FP of each FFM is detected with its proposed test. E.g., The
Test dRDF-Diag detects all dRDF FPs:

1. FP=< 0r0r0/1/1 > is detected by M2=
 (r0, r0) (i.e., the second march
element) of the test.

2. FP=< 1r1r1/0/0 > is detected by M5 of the test.

3. FP=< 0w0r0/1/1 > is detected by M1 of the test.

4. FP=< 0w1r1/0/0 > is detected by M3 of the test.

5. FP=< 1w0r0/1/1 > is detected by M6 of the test.

6. FP=< 1w1r1/0/0 > is detected by M4 of the test.

The last test included in Table 4.2 and referred to as March DS1 is designed
to cover all single-cell dynamic faults; this test has a test length of 43n and is
a superset of all of the above march tests.

37

Table 4.2: Tests for dynamic single-cell faults
Name Test description
(test length)

dRDF-Diag {� (w0) ; � (w0, r0) ; � (r0, r0) ; � (w1, r1); � (w1, r1) ; � (r1, r1) ;
(13n) � (w0, r0)}
dRDF-Opt {� (w0) ; � (w0, r0, r0) ; � (w1, r1) ; � (w1, r1, r1) ; � (w0, r0)}
(11n)

dDRDF-Diag {� (w0) ; � (w0, r0, r0) ; � (r0, r0, r0) ; � (w1, r1, r1) ; � (w1, r1, r1) ;
(19n) � (r1, r1, r1) ; � (w0, r0, r0)}
dDRDF-Opt {� (w0); � (w0, r0, r0, r0) ; � (w1, r1, r1) ; � (w1, r1, r1, r1) ; � (w0, r0, r0)}
(15n)

dTF-Diag {� (w0) ; � (w0, w1, r1) ; � (r1, w0, r0) ; � (w1, w0, r0) ; � (r0, w1, r1) ;
(19n) � (w0, w1, r1) ; � (w1, w0, r0)}
dTF-Opt {� (w0) ; � (w0, w1, r1, w0, r0) ; � (w1, w0, r0, w1, r1) ; � (w0, w1, r1) ;
(17n) � (w1, w0, r0)}

dWDF-Diag {� (w0) ; � (w0, w0, r0) ; � (r0, w0, r0) ; � (w1, w1, r1) ; � (w1, w1, r1) ;
(19n) � (r1, w1, r1) ; � (w0, w0, r0)}
dWDF-Opt {� (w0) ; � (w0, w0, r0, w0, r0) ; � (w1, w1, r1) ; � (w1, w1, r1, w1, r1) ;
(17n) � (w0, w0, r0)}

March DS1 {� (w0) ;� (w0, w0, r0, r0, r0, w0, r0) ; � (w1, r1, r1, w0, w0, r0, w1, r1) ;
(43n) � (w1, w1, r1, r1, r1, w1, r1) ; � (w0, r0, r0, w1, w1, r1, w0, r0) ;

� (w0, w1, r1, w0, w1, r1) ; � (w1, w0, r0, w1, w0, r0)}

It should be noted that no test is included in the table for dIRF; this is
because dIRF and dRDF require the same sensitizing/detection operations.
Therefore dIRF can be detected with the same tests as those established for
dRDF; i.e., any test detecting dRDF also detects dIRF. Outside of the memory,
one cannot distinguish between the two faults since the only difference is that
for dIRF the state of the cell is not changed while for dRDF it is changed.
Since in this attempt of studying dynamic faults, the diagnosis of the faults
will be based on the output signature, it is not possible to distinguish between
the two faults.
Table 4.3 summarizes the introduced tests in this section, together with their
fault coverage. It can be concluded that dTF and dWDF can be detected only
by the tests designed to cope with these specific fault models.

4.4 Industrial evaluation

This section focuses on the industrial evaluation of the traditional tests as well
as the tests targeting single-cell dynamic faults. The memory chips considered
are 65nm technology 131 Kbytes embedded SRAMs. For all tests used in
this experiment (performed at wafer level), the same algorithmic and non-
algorithmic stresses have been used.

The non-algorithmic stresses consist of the environmental conditions, exter-

38

Table 4.3: Summary of single-cell dynamic tests

Test Fault coverage
dRDF dDRDF dIRF dTF dWDF Total

dRDF-Diag 6/6 3/6 6/6 0/6 0/6 15/30
dRDF-Opt 6/6 3/6 6/6 0/6 0/6 15/30
dDRDF-Diag 6/6 6/6 6/6 0/6 0/6 18/30
dDRDF-Opt 6/6 6/6 6/6 0/6 0/6 18/30
dTF-Diag 2/6 2/6 2/6 6/6 0/6 12/30
dTF-Opt 2/6 0/6 2/6 6/6 0/6 10/30
dWDF-Diag 2/6 2/6 2/6 0/6 6/6 12/30
dWDF-Opt 2/6 0/6 2/6 0/6 6/6 10/30
March DS1 6/6 6/6 6/6 6/6 6/6 30/30

nally applied to the wafer under test. They do not impact the sequence and/or
the type of the memory operations. However, they may have a great impact on
the fault coverage. The used non-algorithmic stresses in this experiment consist
of: (a) high voltage (1.24V), (b) high speed (2Ghz), and (c) low temperature
(-25 C).

The algorithmic stresses specify the way an algorithm is performed, and
therefore they influence the sequence and/or the type of the memory operations.
All tests have been implemented using similar algorithmic stresses consisting
of ’Fast X’ address sequence and a ’solid data-background’. Fast X addressing
increments or decrements the address in such a way that each step goes to the
next memory cells row; while solid data-background means that the initial data
used consist of all 0s (i.e., 0000.../0000...) or all 1s for the memory array.

4.4.1 Coverage results

All tests listed in Table 4.1 and in Table 4.2 have been implemented and applied
to few millions embedded SRAM chips. To reduce the large data-base for
analysis purposes, four classes of tests are defined and presented in Table 4.4.

1. Static Tests (S-Tests). They consist of four tests that mainly target static
faults.

2. Diagnosis Dynamic Tests (DiagD-Tests). They consist of four dynamic
tests (see Table 4.2) designed for diagnosis purpose to target the single-
cell dynamic faults of Table 3.3.

3. Optimal Dynamic Tests (OptD-Tests). They consist of four optimized
dynamic tests (see Table 4.2) designed to target the single-cell dynamic
faults of Table 3.3.

4. Static and Dynamic Tests (SD-Tests). These are tests which were orig-
inally designed to cover static faults; however, due to their structure,
they also detect some of the dynamic faults. The four tests with the

39

most promising fault coverage for single-cell dynamic faults have been
selected; see table 4.1.

Table 4.4: Classification of the tests

Static Diag. Dynamic Opt. Dynamic Static & dynamic
(S-Tests) (DiagD-Tests) (OptD-Tests) (SD-Tests)
Scan dRDF-Diag dRDF-Opt March RAW
MATS+ dDRDF-Diag dDRDF-Op March SS
MATS++ dTF-Diag dTF-Opt March G
March C- dWDF-Diag dWDF-Opt PMOVI

Figure 4.1 shows the Venn-diagrams of the failing devices for different test
classes, where DiagD-Tests and OptD-Tests are compared with S-Tests and
SD-Tests. The fault coverage (FC) of S-Tests is FC=335, of DiagD-Tests is
FC=392, of OptD-Tests is FC=247 and that of SD-Tests is FC=484. Inter-
estingly the DiagD-Tests and OptD-Tests detect respectively 121 and 96 faults
that are not detected with S-Tests. In addition, they detect respectively 18
and 13 faults that are not detected with SD-Tests. Moreover, they are able to
detect 15 and 11 faults not detected by either S-Tests or SD-Tests. It should
be noted that an analysis done on all test classes showed that the total faults
detected with all test classes is 514, from which 16 faults are detected only with
DiagD-Tests and/or OptD-Tests; i.e., 3.1% of the total faults are uniquely de-
tected with DiagD-Tests and/or OptD-Tests. The above clearly indicates the
importance of considering dynamic faults in order to achieve high fault cover-
age and higher product quality. Not considering dynamic faults will translate
in unwanted escapes and therefore increase in DPM (Defect-per-Million) level.

11

3

10

173 77

148
86

OptD−Tests

S−Tests SD−Tests

11

3

15

106
268

5753

DiagD−Tests

S−Tests SD−Tests

Figure 4.1: Venn-diagram of failing chips

40

4.4.2 Comparison of dynamic tests

Figure 4.2 shows a comparison of the two test classes targeting dynamic faults
(DiagD-Tests and OptD-Tests) and March DS1, which is a test designed to
target all single-cell dynamic faults of Table 3.3; see also Table 4.2. It is
important to note that the intersection of all dynamic tests is 218 faults; these
faults consist of the easy to detect static faults (e.g., stuck-at-fault) and also
of the single-cell dynamic faults targeted in this chapter. Moreover, Figure
4.2 shows that DiagD-Tests have the highest FC and detect 128 faults that
cannot be detected with OptD-Tests neither with March DS1; and therefore
they are not single-cell dynamic faults. This indicates that DiagD-Tests have
the capability to detect other faults that are not considered in the fault model
presented here (e.g., dynamic coupling faults, delay faults, ...).

OptD−Tests DiagD−Tests

March DS1

5
20

218
4

9

128

26

Figure 4.2: Comparison of the dynamic tests

Table 4.5 shows the union and the intersections of all dynamic tests devel-
oped in this chapter; see Table 4.2. A die belongs to the union of two tests if
at least one of the two tests detects the fault, and belongs to the intersection
if both tests detect the faulty die. The first column in each table gives the test
number; the second column the name of the test. The column ‘FC’ lists the
fault coverage of the corresponding test; the column ‘UFs’ gives the number of
unique faults (UFs) each test detects. Unique faults are faults that are only
detected once by a single test; e.g., March DS1 detects 9 UFs that are not
detected with any other dynamic test of Table 4.2.

The union and the intersection of each pair of tests is shown in the rest of
the table. The numbers in bold (the ”main diagonal”) give FC of the tests,
which are also listed in the column ‘FC’. The part above the main diagonal
shows the intersection for each test pair, while the part under the diagonal
lists the union of each test pair. For example, the union of March SD1 and
dTF-Diag Test is 394 while their intersection 198. Based on the table and the
Venn-diagram of Figure 4.2, one can conclude the following:

• The total number of faulty chips detected with all dynamic tests is 410.

• The best test, in terms of FC, is dTF-Diag with FC=394, followed by
March SD1 with FC=257.

41

Table 4.5: Intersections and unions of dynamic tests

Test FC U.F. 1 2 3 4 5 6 9 8 9
1 March DS1 257 9 257 166 163 149 157 198 172 119 106
2 dDRDF-Diag 178 2 269 178 158 150 152 131 120 116 104
3 dDRDF-Opt 173 2 267 193 173 149 154 131 124 113 102
4 dRDF-Diag 161 1 269 181 185 161 150 125 115 113 101
5 dRDF-Opt 169 0 269 195 188 180 169 137 124 117 109
6 dTF-Diag 335 118 394 382 377 371 367 335 172 94 84
7 dTF-Opt 182 2 267 240 231 228 227 345 182 85 78
8 dWDF-Diag 134 2 272 196 194 182 186 375 231 134 107
9 dWDF-Opt 115 1 266 189 186 175 175 366 239 142 115

• The best test, in terms of detecting unique faults which are only detected
by a single dynamic test, is dTF-Diag with FC=394 and #UF=118.

• The best union pair in terms of the FC is 394 achieved with dTF-Diag
and March DS1.

It is interesting to note that the FC achieved by dTF-Diag test is exception-
ally high as compared with the other dynamic tests. Inspecting the nature and
the structures of dTF-Diag Test and other dynamic tests (see Table 4.2) reveals
that the main property that the dTF-Diag test has is that it consists of back-
to-back operations with complementary data values. E.g., the second march
element of dTF-Test
 (w0, w1, r1) consist of write 0 after read 1 back-to-back.
Using back-to-back operations along the bit lines (i.e, Fast X addressing) is very
powerful in detecting address decoder delay faults, and dynamic/time-related
faults in the peripheral circuits of the memory [55]. They are also powerful
in detecting dynamic coupling faults since they address two different locations
with successive operations.

4.5 Conclusions

In this chapter, a systematic approach to analyze dynamic faults has been de-
scribed. A complete set of two-operation, single-cell dynamic faults has been
developed, and appropriate tests have been introduced. The tests have been
industrially evaluated together with traditional tests by applying them to real
products (Embedded SRAMs) implemented in advanced deep-submicron tech-
nology. The results indicated the importance of dynamic faults, their tests, and
the exceptional effectiveness of using back-to-back operations during memory
testing. The effect of these operations can be increased by using complemen-
tary data values. This property makes the newly proposed dTF-Diag test
exceptionally effective in achieving very high fault coverage.

42

Chapter 5

DRAM specific space of

memory tests

RAMs have traditionally played an important role as the main mem-
ory of microprocessors, but they gradually find themselves serving in a
continuously growing list of applications, in fields ranging from high per-

formance to low power and from networking to graphics [56]. DRAM testing is
considered a complex and overly costly activity, requiring a time consuming test
development cycle that should be repeated for every new DRAM technology
[57, 58]. In order to reduce the cost of DRAM testing, memory tests should
be developed specifically for DRAMs to target the specific faults commonly
observed in these memories.

In this chapter, we describe a new space of memory tests specifically de-
veloped for DRAMs, based on a long term analysis of their faulty behavior in
the industry [59]. The tests target all DRAM-specific faults identified to be
realistic for their behavior. Three different sets of tests are given: one for hard
faults, one for transient faults and one for soft faults. In each set, two tests
are given (one for single-cell and one for two-cell faults), making a total of 6
DRAM-specific tests. Some of the tests are also shown to correspond closely
to some of the most effective DRAM tests used in practice [60].

The chapter starts with the definition of the different DRAM-specific fault
models in Section 5.1. Section 5.2 shows the simulation model used to validate
the fault space. The results of the simulation study are discussed in Section 5.3.
Section 5.4 derives the space of memory tests suitable to detect the DRAM-
specific faulty behavior, while Section 5.5 identifies the similarities these tests
have with DRAM tests known to be effective in practice. Section 5.6 ends with
the conclusions.

43

5.1 DRAM-specific faults

DRAM faults in modern CMOS technology can either be attributed to leakage
currents (resulting in time dependent faults), or to improperly set voltages
(resulting in voltage dependent faults) [61]. Figure 5.1 shows a summary of
DRAM-specific faults.

Time dependent DRAM faults

"Soft" "Transient"

No dependence

"Hard"
or "−"

Voltage dependent DRAM faults

"Partial" "Dirty"

No dependence

"−"

de
pe

nd
en

ce
V

ol
ta

ge
T

im
e

de
pe

nd
en

ce

Figure 5.1: Summary of the space of DRAM-specific faults.

5.1.1 Time dependent faults

Time dependent faults are caused by leakage currents in the faulty cells [62].
Time dependence divides all faults into three classes: soft, transient and hard.

Soft faults—Soft faults (denoted by s) are detectable only after some time
from their sensitization. These faults can be detected by adding a delay within
the test, as it is the case for the data retention fault , for example [6]. Soft faults
are caused by writing weak voltages into memory cells, that soon get depleted
by naturally occurring leakage currents. Soft faults are represented as sFP
=<ST /F/R>, where S has an added time parameter T to indicate that some
time should elapse before full sensitization. The open defect in Figure 5.2(a)
shows an open that may cause soft faults in a DRAM cell. If the open defect has
an intermediate resistance value that is not too high (to cause hard faults) and
not too low (to result in no fault at all) write operations store a weak voltage
into the cell. If leakage opposes the weak voltage, the stored information gets
lost over an unexpectedly short period of time (e.g. shorter than the DRAM
refresh rate).

Transient faults—Transient faults (denoted by t) are memory faults that
do not remain sensitized indefinitely, but tend to correct themselves after a pe-
riod of time. Transient faults are tested for by performing all the operations in
the fault in back-to-back fashion directly after each other, and directly following
them by a detecting read operation. The DRAM open in Figure 5.2(a) may

44

To precharge
circuits

RopBL

drivers
To write

and SAs

WL

Rop

BL

WL

Rbr

BL

WL WL

(b) paFP (c) dFP(a) s, t & piFP

Figure 5.2: Defects causing (a) s, t, pi, (b) pa, and (c) causing dirty faults.

cause transient faults. For a specific range of Rop values, write operations set
a faulty voltage within the cell that is not strong enough to qualify as a hard
fault. If leakage tends to correct the weak faulty voltage, the stored voltage
gets corrected over time. Transient faults are represented as tFP =<S/FL/R>,
where the underscore below S means that the operations in S should be per-
formed in back-to-back mode. Furthermore, F has an added time parameter
L (life time) to indicate that these faults are time bounded. An underscore
below operations implies that the operations have to be performed after each
other within one march element. For example, if S = w1w0 then the sensitizing
condition should be
(..., w1, w0, ...).

Hard faults—Identifying a fault as being hard (“h” or “-”) indicates that
it is neither soft nor transient (i.e., it is insensitive to time). All the generic
faults already described in Chapter 3 belong to this class (hard faults).

5.1.2 Voltage dependent faults

Operations performed on a defective DRAM may set improper voltage levels
on memory nodes, thereby causing two types of DRAM faults: partial faults
and dirty faults.

Partial faults—Partial faults (denoted with p) are faults that can only be
sensitized when a specific memory operation is successively repeated a num-
ber of times, either to properly initialize the faulty cell (partial faults during
initialization pi), or to properly sensitize the fault in the cell (partial faults
during fault sensitization or activation pa). Figure 5.2(a) shows an example
of an open (Rop) in the cell, causing pi. Rop prevents fully initializing the
cell to the required voltage with only a single operation, which means that full
initialization requires repeating the operation a number of times. Figure 5.2(b)
shows an example of a bridge (Rbr) between two cells, a causing different type
of pa. These faults are modeled by performing an operation Ox an h (or ham-
mer) number of times. For example, if <xOy/F/R> becomes partial during

45

initialization pi, it should be modeled as piFP =<xhOy/F/R>.
Dirty faults—Dirty faults (d) assume that after proper initialization or

sensitization, the state of the memory (voltages on the bit lines (BLs), the word
lines (WLs), or in data buffers) is corrupted, such that subsequent detection
is prevented. In order to ensure detectability, additional operations (so called
completing operations) must be performed to correct the corrupted state of the
memory. Figure 5.2(c) shows an example of an open defect (Rop) on the BL
that causes dirty faults. This defect disconnects memory cells from the write
drivers, which prevents the memory controller from writing the cells. This
defect also prevents properly precharging the BL. As a result, a w0 operation
that fails to write 0 in the cell ends up preconditioning the BL to properly
sense a 0, thereby causing a dirty fault. These faults are modeled by adding
completing operations in square brackets to the FP ([Ox]). Detectability of all
known dirty faults can be ensured using a completing write operation with data
opposite to the data in the victim cell ([wy]), performed on a cell (b) different
from the victim (v) but positioned on the same BL pair. This can be denoted
as dFP =<xOvy [wby]/y/−>b,v∈BL.

5.1.3 Realistic space of DRAM faults

Any generic memory fault, described in Chapter 3, can represent a DRAM-
specific fault by adding DRAM-specific fault attributes to it. First, there
are voltage dependent attributes: partial (p), dirty (d), or neither (-). Sec-
ond, there are time dependent attributes: hard (h), soft (s) and transient (t).
Furthermore, the partial attribute can either be initialization related (pi), or
activation (or sensitization) related (pa).

Based on a detailed analysis of the characteristics of these faults, they rep-
resent the full realistic space of DRAM faults that can be constructed for
singe-cell faults, as well as two-cell faults [59].

Single-cell
fault

=

⎧⎨
⎩

-
pi

d
pid

⎫⎬
⎭

{
h
s
t

}
FP (5.1)

Two-cell
fault

=

{
-
p

}{
h
s
t

}
FP (5.2)

These expressions indicate that any generic single-cell fault can either be
regular (-), initialization partial (pi), dirty (d) or partial dirty (pid), while
being hard (h), soft (s) or transient (t) at the same time. Two-cell faults can
be only regular (-) or partial (p), while being hard, soft or transient. Note that
some faults classes are considered unrealistic, such as activation partial (pa)
single-cell faults, and therefore they are excluded from the space. More info
about these unrealistic faults and their analysis can be found in the literature
[59, 61].

46

For example, a transition 0 fault can be hard (hTF0), which is the same as
the generic TF0. It can also be partial hard (pihTF0), dirty hard (dhTF0) and
partial dirty hard fault (pidhTF0). The same combinations apply for soft TF0

and transient TF0.

5.2 Fault model validation using Spice

In order to validate the theoretical framework of DRAM faults discussed in
Section 5.1, an elaborate spice model based study has been performed based
on real industrial memory simulation models, manufactured in a number of dif-
ferent technologies, ranging from 0.35 μm to 0.11 μm feature sizes. This section
shows the simulation results performed on a memory model targeting 0.2 μm
technology, by injecting resistive defects into the model and subsequently sim-
ulating them. This approach has been successfully used in the past to analyze
the faulty behavior of both digital and analog devices [63, 64].

5.2.1 Memory simulation model

The model used here is based on a design validation Spice model. The model
has been reduced in size to limit simulation time. Figure 5.3 shows the different
parts of the memory model. The model has 3 BL pairs1, one at the top (BTt
and BCt), one in the middle (BTm and BCm), and one at the bottom (BTb
and BCb). Each BL pair contains 2 functional memory cells, while the rest of
the cells are replaced by capacitive and resistive loads. This gives a total of
6 memory cells, three of which are connected to a true BL and controlled by
the word line WLt, while the other three are connected to the complement BL
and controlled by WLc. The model also contains 3 sense amplifiers (SAs), 3
precharge circuits, access devices, one read buffer (to inspect the output of a
read operation), and one write buffer (to enable writing the cells).

This is a representative scenario very close to the real memory devices that
allows us to investigate the different layout level defects.

5.2.2 Classification of defects

Depending on the signal lines (where the injected defects are connected to) the
defects may be classified into the following three main categories:

• Open—Opens represent unwanted resistances on a signal line that is
supposed to conduct perfectly.

• Short—Shorts are undesired resistive paths between a signal line and
power supply (Vdd or GND).

1Three BL pairs are used to simulate BL coupling effects, but these effects are not dis-
cussed further in this text [59].

47

Read
buffer

Write
buffer

Access
devices

SAt

SAm

SAb

Precharge
circuits

Precharge
circuits

Precharge
circuits

Cell

Cell

Cell

WLc

Cell

Cell

Cell

WLt
BTt

BCt

BTm

BCm

BTb

BCb

Figure 5.3: Reduced memory simulation model used for fault analysis.

• Bridge—Bridges are unwanted resistive paths between two signal lines.

The faulty behavior resulting from many defects can be deduced using sym-
metrical relationships with other defects. Therefore only symmetrically unre-
lated defects are simulated. Figure 5.4 shows an overview of the locations of
the defects to be simulated. The defects are classified into opens, shorts and
bridges. The opens and shorts are divided into defects in the memory cells, on
BLs or on WLs, while bridges are divided into defects involving no cells, one
cell and two different cells. Table 5.1 gives a summary of the simulated defects
and the simulation results. In the following text we will focus on the physical
location of opens, shorts and bridges.

Location of opens

At the layout level, opens are usually caused by broken lines, not properly con-
nected vias, or particle contamination that results in increasing line resistivity
at the open position. Figure 5.5 shows a layout level example of a BL open
caused by particle contamination, resulting in an increase in the BL resistance
and inducing some kind of faulty behavior in the memory.

Opens in the memory cell array can be either opens within cells (OC), opens
on BLs (OB) or opens on WLs (OW). Figure 5.6 shows all possible electrical
positions of these three different types of opens. In addition, there are three
classes of OC, on top (t), in the middle (m) and at the bottom (b), all of
which (partially) disconnect the cell from the BL and limit the ability of the

48

Simulated defects

Opens Shorts Bridges

In cells (OC)

On BLs (OB)

Two cells (BW)

One cell (BO)

No cells (BZ)

On WLs (OW)

In cells (SC)

On BLs (SB)

On WLs (SW)

Figure 5.4: Overview of simulated defect locations.

Figure 5.5: Layout level example of a BL open.

memory to write and read the voltage within the cell. There are two types
of OB, disconnecting the cell from circuitry on the top of the BL (t), and
disconnecting the cell from circuitry at the bottom of a the BL (b). There is
only one word line open called OW, which limits the ability of the memory
controller to properly access the cell under consideration.

Location of shorts

At the layout level, shorts can be caused by a number of physical failures, such
as extra metal deposition or isolation breakdown. This may result in faulty
connections between power supply lines and other signal lines in the memory.
Figure 5.7 shows a layout example of a power supply short caused by extra
metal deposition, resulting in a faulty new connection being formed between

49

BL WL

OBb

OBt

OCt OCm

OCb
OW

Figure 5.6: Location of opens in the cell array.

two otherwise disconnected lines.

Vdd GND

Figure 5.7: Physical example of power supply shorts.

Shorts, similar to opens, can be either within cells (SC), on bit lines (SB),
or on word lines (SW). Figure 5.8 shows the short positions of these three
different types of shorts. At each position indicated in the figure, a short may
connect the line either to Vdd or GND. Shorts to Vdd are indicated by the letter
(v) as in SCv and SBv, while shorts to GND are indicated by the letter (g) as
in SCg and SBg. BL in the figure can either be the true bit line (BT), or the
complementary bit line (BC).

Location of bridges

At the layout level, bridges can be the result of isolation layer misalignment
or mask contamination, resulting in faulty connections between different lines

50

WLBL

SB

SC

SW

Figure 5.8: Positions of shorts in the cell array.

in the memory. Figure 5.9 shows a layout example of a bridge between the
WL and the BL contacts caused by a misalignment in the isolation layer. The
small black structure in the middle of the figure represents the WL contact,
which is sandwiched between two relatively larger BL contacts. The WL and
BL contacts are separated from each other by a thin isolation layer, that is
difficult to manufacture. The figure shows that the isolation layer is not created
properly, leaving a small space on top, through which the BL contact stretches
and connects to the WL.

BLWLBL

Bridges

Figure 5.9: Physical example of a BL-WL bridge.

At the electrical level, bridges are resistive connections between two signal
lines in the memory. In order to take all cell array bridges into consideration,

51

we need to consider bridges between any two nodes in the cell array. Since the
cell array has a repetitive structure, it is possible to consider only the region
surrounding a single cell in the array as a representative of the whole. Such a
representative case is shown in Figure 5.10, where all nodes are given different
names for later reference.

CTbCCb

CCm CTm

CTtCCt

WLc WLt

SAb

SAm

SAt

BCb

BTb

BCm

BTm

BCt

BTt

Figure 5.10: Nodes where bridges can take place.

The figure shows three BL pairs, at the top (BTt and BCt), in the middle
(BTm and BCm), and at the bottom (BTb and BCb). Each BL pair has two
memory cells connected to it, giving a total of six cells, three on BT (with nodes
CTt, CTm and CTb) and three on BC (with nodes CCt, CCm and CCb). The
cells connected to BT are controlled by the true WL (WLt), while the cells
connected to BC are controlled by the complement WL (WLc). The BL lines
are terminated by the inputs of the three sense amplifiers (SAt,SAm and SAb).

We can classify bridges into those involving zero cells (BZ), one cell (BO)
and two cells (BW). BZ are bridges that connect signal lines outside memory
cells, rather than connecting lines within memory cells. BO are bridges that
connect nodes within a single memory cell. BW are bridges that connect nodes
belonging to two different memory cells. A summary of the simulated defects
is given in Table 5.1.

52

Table 5.1: Definitions of injected defects and the simulation results of the faulty
behavior.
Defect FP h ph dh pdh s ps ds pds t pt dt pdt Rc
(definition)

OCt <w13w0/1/−> − + − − − + − − − + − − 331 kΩ
(Pass transistor
disconnected from BL)

OCm <w13w0/1/−> − + − − − + − − − + − − 323 kΩ
(Pass transistor
disconnected from C)

OCb <w13w0/1/−> − + − − − + − − − + − − 323 kΩ
(Cell disconnected
from GND)

OBt <w02w1/0/−> − + − − − + − − − + − − 50 kΩ
(Cell disconnected
from read/write circuits)

OBb∗ <0wv12[wb0]/0/−> − + + + − + + + − + + + 8.5 kΩ
(Cell disconnected
from precharge devices∗)

OW <w0/1/−> + − − − + − − − + − − − 24.6 MΩ
(WL disconnected
from cell)

SCv <0/1/−> + − − − + − − − − − − − 896 kΩ
(Cell capacitor
shorted to Vdd)

SCg <1/0/−> + − − − + − − − − − − − 693 kΩ
(Cell capacitor
shorted to GND)

SBv <w12w0/1/−> − + − − − + − − − + − − 250 kΩ
(BL shorted to
Vdd)

SBg <0w1/0/−> + − − − + − − − + − − − 190 kΩ
(BL shorted
to GND)

SWv <0/1/−> + − − − + − − − − − − − 0.34 kΩ
(WL shorted
to Vdd)

SWg <w13w0/1/−> − + − − − + − − − + − − 8.29 kΩ
(WL shorted
to GND)

BO1 <w12w0/1/−> − + − − − − − − − + − − 357 kΩ
(Cell bridged
to own WL)

BO2 <1/0/−> + − − − + − − − − − − − 693 kΩ
(Cell bridged
to idle WL)

BO3 <0/1/−> + − − − + − − − − − − − 150 kΩ
(Cell bridged
to own BL)

BO4 <0/1/−> + − − − + − − − − − − − 400 kΩ
(Cell bridged
to own comp. BL)

BO5 <0/1/−> + − − − + − − − − − − − 300 kΩ
(Cell bridged to
another comp. BL)

BZ1 <w0/1/−> + − − − + − − − + − − − 1.71 kΩ
(Bridge between
BTm and BCm)

BZ2 <0w1/0/−> + − − − + − − − + − − − 4 kΩ
(Bridge between
BTm and BCt)

BZ3 <0w1/0/−> + − − − + − − − + − − − 0.6 kΩ
(Bridge between
BCm and BTb)

BZ4 <1w0/1/−> + − − − + − − − + − − − 270 kΩ
(Bridge between
BTm and WLt)

BZ5 <0w1/0/−> + − − − + − − − + − − − 250 kΩ
(Bridge between
BCm and WLt)

BZ6 <0w1/0/−> + − − − + − − − + − − − 0.15 kΩ
(Bridge between
WLt and WLc)

BW1 <w12; 0/1/−> − + − − − + − − − + − − 3 MΩ
(Bridge between
CTm and CCm)

BW2 <w02w1/0/−> − + − − − + − − − + − − 460 kΩ
(Bridge between
CTm and CTb)
∗This defect is injected and simulated in a memory model different from that shown in Figure 5.3. The model used
here is shown in Figure 5.2(c), where the precharge circuits are located on one end of the BL, while read/write
circuits are located on the other end. This BL design was common in older DRAM technologies [65].

53

5.3 Simulation results

The simulation and analysis of the faulty behavior of the DRAM has been done
using the concept of result planes, as described in the literature [59, 49]. The
simulation results for each defect are listed in Table 5.1. The first column in
this table lists the name of the simulated defect, followed by the FP notation
to describe the resulting faulty behavior in the third column. The following 12
columns indicate the type of the DRAM-specific fault being modeled by the
FP. There are five basic types of faults: hard (h), soft (s), transient (t), partial
(p) and dirty (d). Together, they combine to make up 12 meaningful fault
combinations [see Section 5.1]. For example, (pt) stands for partial-transient
fault type. Obviously, some combinations, e.g. (sh) (soft-hard), (ht) and (st),
are not realistic. The Rc column depicts the value of the critical resistance of
the fault, which is the defect resistance at which the fault begins to take effect.
The second row of the first column provides a short description of the defect
being simulated.

The table shows that all the DRAM-specific fault models defined in Sec-
tion 5.1 do actually represent one defect or another. This indicates that DRAM-
specific fault models are realistic and do take place in practice. The table also
indicates that, in general, if a defect causes a hard fault to take place, then
it might also cause a corresponding soft and transient fault depending on the
direction and the strength of the leakage current flowing into the cell. This
is however not always true, especially when the defect itself forces current to
leak into the cell in a specific direction. This is the case, for example, with cell
shorts and cell bridges to BLs and WLs.

Note that the least represented DRAM-specific faults in the table are the
dirty (d) and the partial dirty (pd) faults. This is true because in order for
these faults to take place, the BLs should be designed in the way shown in
Figure 5.2(c), where the precharge circuits are located on one end of the BL,
while the read/write circuits are located on the other end. This BL design
was common in older DRAM technologies [65]. The simulation results for the
defect OBb listed in Table 5.1 correspond to a simulation performed on such
an old model that belongs to a 0.35 μm technology. The simulation results of
the OBb defect injected into the 0.2 μm memory model used for the rest of
table has not resulted in any faulty behavior.

The results in the table make it possible to optimize the test strategy of
the memory depending on the DRAM design and the defects that take place
there. If, for example, the structure of the BL is known to have both precharge
circuits and read/write circuits located on the same side of the BL, then it is
not needed to test for dirty faults in the memory at all.

54

5.4 Space of DRAM tests

In this section, we derive the space of DRAM tests for (single-cell as well as
two-cell) hard, then transient, and finally soft faults. The tests are presented
in their general form, without any optimization or reduction in test time.

5.4.1 Detecting hard faults

Hard faults are time-independent faults that get sensitized once their sensitizing
operation sequence is performed, and they remain sensitized afterwards until
they get overwritten (masked) or otherwise detected. Next, we discuss the
detection conditions needed, followed by the corresponding tests.

Detection conditions for hard faults

A single-cell hard fault can either be partial with respect to initialization (pih),
dirty (dh), or both (pidh). The fault pih is modeled by multiple initializing
operations, while the fault dh is modeled by performing a write or read opera-
tion on a cell along the same BL as the faulty cell, but with opposite data to
the sensitization.

Table 5.2 lists all single-cell hard faults, along with the detection conditions
needed to detect them [compare with Table 3.1]. The table considers the general
form of single-cell hard faults, where both partial, as well as dirty faults take
place. For example, the (partial, dirty and hard) transition 0 fault (pidh TF0),
must first be initialized a multiple number of times (w1h

v). Then, it should be
sensitized by w0, before a completing operation with data 1 (a value opposite
to that of the sensitizing value) must be applied to a different cell along the
same BL ([O1b]). The only requirement the completing write operation has
to fulfill is to change the state of the BLs connected to the victim cell. The
exact written cell address is therefore unimportant, only the fact that it lies
along the same BL matters. The detection condition starts with multiple w1
operations to initialize the cell, followed by the sensitizing w0 operation on the
victim. Then, the operation O1b ensures that the opposite data is present in a
cell along the same BL just before the fault is detected by the read operation.

In a similar way, one can derive the detection conditions needed to detect
all two-cell, hard faults presented in Table

Tests for hard faults

Based on the detection conditions of single-cell and two-cell hard faults , it
is possible to derive memory tests that detect all single-cell and two-cell hard
faults. March H1C (for hard, 1-cell) below detects all single-cell hard faults.

55

Table 5.2: Single-cell, hard FPs and their detection conditions. Oxb is per-
formed with a value (x) opposite to that in the sensitizing operation and to a
cell (b) different from v, but along the same BL as v.

Fault FP (b on same BL as v) Detection cond., O ∈ {w, r}

1 dh SF0 <0v[O1b]/1/−> �(..w0, ..O1b, ..r0..)

2 dh SF1 <1v[O0b]/0/−> �(..w1, ..O0b, ..r1..)

3 pidh WDF0 <w0h
v [O1b]/1/−> �(..w0h, ..O1b, ..r0..)

4 pidh WDF1 <w1h
v [O0b]/0/−> �(..w1h, ..O0b, ..r1..)

5 pidh TF1 <w0h
vw1v[O0b]/0/−> �(..w0h, ..w1, ..O0b, ..r1..)

6 pidh TF0 <w1h
vw0v[O1b]/1/−> �(..w1h, ..w0, ..O1b, ..r0..)

7 pidh IRF0 <w0h
v [O1b]r0v/0/1> �(..w0h, ..O1b, ..r0..)

8 pidh IRF1 <w1h
v [O0b]r1v/1/0> �(..w1h, ..O0b, ..r1..)

9 pidh DRDF0 <w0h
vr0v [O1b]/1/0> �(..w0h, ..r0, ..O1b, ..r0..)

10 pidh DRDF1 <w1h
vr1v [O0b]/0/1> �(..w1h, ..r1, ..O0b, ..r1..)

11 pidh RDF0 <w0h
v [O1b]r0v/1/1> �(..w0h, ..O1b, ..r0..)

12 pidh RDF1 <w1h
v [O0b]r1v/0/0> �(..w1h, ..O0b, ..r1..)

March H1C = {
�(w0h, r0, w1b, r0); �(w1h, r1, w0b, r1);
M0 M1
�(w0h, w1, w0b, r1); �(w1h, w0, w1b, r0)}
M2 M3

This march test has four march elements (M0 through M3), each of which
begins with a hammer write operation and ends with a detecting read operation.
Each two consecutive march elements represent the exact complement of each
other, as they are generated to target complementary FPs. The test substitutes
the dirty operation (O) in the detection conditions of Table 5.2 by a write
operation, since this choice reduces the length of the test when the completing
operation needs to change the data present in b. Note that the test uses a
special kind of march operations (Oxb), where an operation is performed to
a different cell within a given march element. The test has a relatively high
complexity of (12 · n + 4 · h · n) compared to other single-cell march tests, as a
result of the partial and the dirty DRAM-specific faults. In addition, the test
requires some knowledge about the exact memory layout needed for the Oxb

operations.
A march test that detects all two-cell hard faults can be represented by

March H2C below.

March H2C = {
�(w0h); ⇑(r0h, w1h); ⇑(r1h, w0h);
M0 M1 M2
⇓(r0h, w1h); ⇓(r1h, w0h); �(r0)}
M3 M4 M5

56

This march test has 6 march elements (M0 through M5), many of which
begin with a hammer read operation and end with a hammer write operation.
These sequences are characteristic for march tests that aim to detect two-cell
faults [66]. The march element M1 is the exact complementary of M2, while M3
is the exact complementary of M4. This results from the fact that these march
elements are constructed to detect complementary FPs. The sole purpose of
M0 is to initialize the memory to a known state before the rest of the operations
can be performed. This test has a complexity of (n + 9 · h · n).

5.4.2 Detecting transient faults

Transient FPs mean that, after a fault is sensitized, leakage can result in cor-
recting the fault before it gets detected. Hereafter we derive the tests needed
to detect single-cell and two-cell transient faults.

Detection conditions for transient faults

An FP has two components to describe a fault: F (the value of the faulty
cell) and R (the output on a read operation). Only F can be transient (get
corrected by leakage), whereas R cannot, since it gets sensitized and detected
on the output at the same time.

Table 5.3: List of single-cell, transient FPs and their detection conditions. The
underlined operations must be performed back-to-back.
Fault <S/FL/R>, O ∈ {w, r} Detection cond., O ∈ {w, r}

1 dt SF0 <0v[O1b]/1L/−> �(..., w0, O1b, r0, ...)

2 dt SF1 <1v[O0b]/0L/−> �(..., w1, O0b, r1, ...)

3 pidt WDF0 <w0h
v [O1b]/1L/−> �(..., w0h, O1b, r0, ...)

4 pidt WDF1 <w1h
v [O0b]/0L/−> �(..., w1h, O0b, r1, ...)

5 pidt TF1 <w0h
vw1v[O0b]/0L/−> �(..., w0h, w1, O0b, r1, ...)

6 pidt TF0 <w1h
vw0v[O1b]/1L/−> �(..., w1h, w0, O1b, r0, ...)

7 pidt IRF0 <w0h
v [O1b]r0v/0L/1> �(..., w0h, O1b, r0, ...)

8 pidt IRF1 <w1h
v [O0b]r1v/1L/0> �(..., w1h, O0b, r1, ...)

9 pidt DRDF0 <w0h
vr0v[O1b]/1L/0> �(..., w0h, r0, O1b, r0, ...)

10 pidt DRDF1 <w1h
vr1v[O0b]/0L/1> �(..., w1h, r1, O0b, r1, ...)

11 pidt RDF0 <w0h
v [O1b]r0v/1L/1> �(..., w0h, O1b, r0, ...)

12 pidt RDF1 <w1h
v [O0b]r1v/0L/0> �(..., w1h, O0b, r1, ...)

Table 5.3 lists all single-cell transient faults, along with their detection con-
ditions [compare with Table 5.2]. For example, the (partial, dirty and transient)
transition 0 fault (pidt TF0), must first be initialized by multiple number of op-
erations (w1h). Then, the sensitizing write 0 operation can be performed (w0),
before a completing operation with data 1 must be applied to a different cell

57

along the same BL as v ([O1b]). The detection condition starts with multiple
w1 operations to initialize the cell to 1, directly followed by the sensitizing w0,
the completing O1b, and a detecting r0. Note that this detection condition is
not a regular one, since it requires operations to be performed on two different
cells (b and v) within a single march element. The fact that the operations in
these detection conditions need to be performed back-to-back is indicated by
the underline below the corresponding operations.

In a similar way as above, one may derive the detection conditions corre-
sponding to all two-cell, hard faults.

Tests for transient faults

Based on the detection conditions of single-cell and two-cell transient faults, it
is possible to derive memory tests that detect all these faults. A march test
that detects all single-cell transient faults is March T1C (for transient, 1-cell)
as presented below.

March T1C = {
�(w0h, w1b, r0); �(w1h, w0b, r1);
M0 M1
�(w0h, w1, w0b, r1); �(w1h, w0, w1b, r0);
M2 M3
�(w0h, r0, w1b, r0); �(w1h, r1, w0b, r1)}
M4 M5

This march test has six march elements (M0 through M5), each of then
begins with a hammer write operation and ends with a detecting read operation.
This test has a complexity of (16 ·n+6 ·h ·n). The march elements have special
operations (such as w1b) that are performed on a different cell along the same
BL as the current cell under test of the march element. The operations in
each march element must be performed back-to-back directly after each other
(denoted by the underline below the operations in the test).

A march test that detects all two-cell, transient faults is March T2C pre-
sented hereafter.

58

March T2C = {
�i(�j(w0i, w0h

j , r0i, r0i)); �i(�j(w0i, w1h
j , r0i, r0i));

M0 M1
�i(�j(w1i, w0h

j
, r1i, r1i)); �i(�j(w1i, w1h

j
, r1i, r1i));

M2 M3
�i(�j(w0i, w0j , w1h

j
, r0i)); �i(�j(w1i, w0j , w1h

j
, r1i));

M4 M5
�i(�j(w0i, w1j , w0h

j
, r0i)); �i(�j(w1i, w1j , w0h

j
, r1i));

M6 M7
�i(�j(w0i, w0j , r0h

j
, r0i)); �i(�j(w1i, w0j , r0h

j
, r1i));

M8 M9
�i(�j(w0i, w1j , r1h

j
, r0i)); �i(�j(w1i, w1j , r1h

j
, r1i));

M10 M11
�i(�j(w0i, w0h

j
, w0i, r0i)); �i(�j(w0i, w1h

j
, w0i, r0i));

M12 M13
�i(�j(w1i, w0h

j , w1i, r1i)); �i(�j(w1i, w1h
j , w1i, r1i));

M14 M15
�i(�j(w1h

i
, w0h

j
, w0i, r0i)); �i(�j(w1h

i
, w1h

j
, w0i, r0i));

M16 M17
�i(�j(w0h

i
, w1h

j
, w1i, r1i)); �i(�j(w0h

i
, w0h

j
, w1i, r1i))}

M18 M19

This test has 20 march elements (M0 through M19), each of them contain-
ing a nested march element . This test has a complexity of (56 ·n2 +24 ·h ·n2).
The reason behind the high computational complexity is the assumption that
an aggressor can cause a fault in any victim anywhere in the memory. This as-
sumption is, however, unrealistic. The impact of an aggressor is almost always
limited to the adjacent neighboring cells for transient faults. This observation
can significantly simplify March T2C, by limiting the value of j to a limited
number of adjacent cells. This will reduce the complexity of the test from
quadratic to linear with the number of cells.

5.4.3 Detecting soft faults

Soft FPs mean that a correct (but weak) voltage in the cell can gradually be
depleted and cause a detectable fault in the cell only after some period of time.
In this section, we start by discussing the detection conditions needed to detect
all soft faults, and then we generate memory tests for these soft faults.

Detection conditions for soft faults

An FP has two components to describe a fault: F and R. Only F can cause
soft faults (fail after some time), whereas R cannot be soft, since its value is
read at moment read operation is performed.

Table 5.4 lists all single-cell soft faults, along with the detection conditions
needed to detect them. This table is easy to construct based on the detection
conditions in Table 5.2, by introducing a delay time T after every sensitizing

59

Table 5.4: List of single-cell, soft FPs and their detection conditions. Oxb is
performed with a value (x) opposite to that in the sensitizing operation and to
a cell (b) different from v, but along the same BL as v.

#Fault FP (b belongs to BL of v)Detection cond., O ∈ {w, r}

1 ds SF0 <0v [O1b]T /1/−> �(..w0, ..O1b, ..T, ..r0..)

2 ds SF1 <1v [O0b]T /0/−> �(..w1, ..O0b, ..T, ..r1..)

3 pids WDF0 <w0h
v [O1b]T /1/−> �(..w0h, ..O1b, ..T, ..r0..)

4 pids WDF1 <w1h
v [O0b]T /0/−> �(..w1h, ..O0b, ..T, ..r1..)

5 pids TF1 <w0h
vw1v[O0b]T /0/−> �(..w0h, ..w1, ..O0b, ..T, ..r1..)

6 pids TF0 <w1h
vw0v[O1b]T /1/−> �(..w1h, ..w0, ..O1b, ..T, ..r0..)

7 pids IRF0 <w0h
v [O1b]r0v/0/1> �(..w0h, ..O1b, ..r0..)

8 pids IRF1 <w1h
v [O0b]r1v/1/0> �(..w1h, ..O0b, ..r1..)

9 pids DRDF0<w0h
vr0v[O1b]T /1/0> �(..w0h, ..r0, ..O1b, ..T, ..r0..)

10pids DRDF1<w1h
vr1v[O0b]T /0/1> �(..w1h, ..r1, ..O0b, ..T, ..r1..)

11pids RDF0 <w0h
v [O1b]r0v/1/1> �(..w0h, ..O1b, ..r0..)

12pids RDF1 <w1h
v [O0b]r1v/0/0> �(..w1h, ..O0b, ..r1..)

operation. Note that the detection conditions for soft IRF and RDF do not
include the T , since these faults are detected as soon as they get sensitized.
As an example, the (partial, dirty and soft) transition 0 fault (pids TF0), must
first be initialized a multiple number of times (w1h). Then, the sensitizing
write 0 operation can be performed (w0), before a completing operation with
data 1 is applied to a different cell along the same BL ([O1b]). To ensure
the detection of this soft fault, a delay time T must be introduced after the
completing operation to allow for sensitization to take place.

In the same way, one can derive the detection conditions corresponding to
all two-cell, soft faults.

Tests for soft faults

Based on the detection conditions of single and two-cell soft faults, it is possible
to derive memory tests that detect all these faults. A march test that detects
all single-cell soft faults can have the form of March S1C below (for all soft,
single-cell faults).

March S1C = {
�(w0h, r0, w1b, T, r0); �(w1h, r1, w0b, T, r1);
M0 M1
�(w0h, w1, w0b, T, r1); �(w1h, w0, w1b, T, r0)}
M2 M3

This march test has 4 march elements (M0 through M3). This test is
similar to the test for hard single-cell DRAM faults (March H1C), which is

60

expected since the space of soft faults is derived from the space of hard faults.
The test uses special nonstandard march elements, where one operation should
be performed on a cell b different from the current cell the march element is
accessing. This ensures that the BL has the opposite state as compared to
the sensitized cell. The test has a complexity of (12 · n+ 4 · h · n+ 4 · T · n),
which is higher than H1C by (4 · T · n). If retention time of T > 64 ms
and memory size of 1 MBits are assumed, the total idle test time is considered
impractical. It is possible to reduce the idle time to as low as 4 ·T using specific
read/write sequences and data backgrounds (such as the checkerboard). It is
also important to implement design-for-testability (DFT) techniques, or use
test stresses that force soft faults to become directly detectable hard faults,
which in turn do not require any delay time to detect [59, 67].

A march test that detects all two-cell soft faults can be represented by
March S2C below.

March S2C = {
�(w0h); ⇑(r0h, T, r0, w1h);
M0 M1
⇑(r1h, T, r1, w0h); ⇓(r0h, T, r0, w1h);
M2 M3
⇓(r1h, T, r1, w0h); T ; �(r0)}
M4 M5 M6

This march test has 7 march elements (M0 through M6). It is based on
March H2C for hard faults, with a number of added delays T to a number of
march elements in the test (sometimes separating one read operation from a
hammer read sequence). Note that M5 is simply a single delay T added to
sensitize the faults before the final detecting read operations are performed
in M6. This test has a time complexity of [5 · n + 9 · h · n + (4 · n + 1)T],
which is prohibitively expensive due to the (4 · n + 1)T term. Restricting the
impact of every aggressor to a limited number of adjacent victim cells reduces
the complexity of this term to (4 · j + 1)T , where j is the number of adjacent
victims (typically 3 ≤ j ≤ 8). Even with this optimization, this test remains
very costly, and a number of additional test time reduction methods need to be
implemented, such as test stresses, which force soft faults to become directly
detectable hard faults [59, 67].

5.5 Industrial support

The tests presented in this chapter are being industrially evaluated at the
moment. In the mean time, it is possible to use previously published work to
illustrate the practical strength of our tests. One of the rather effective DRAM
tests investigated in the literature is the Gal9R = {⇑(w0); ⇑i(w1i, ⇑j(r0j , r1i),
w0i); ⇑(w1); ⇑i(w0i, ⇑j(r1j , r0i), w1i)}. In an experiment of 5952 different

61

tests performed on 800 DRAMs, this tests proved to be far better than any
other memory test known in the literature [60].

According to the DRAM test theory presented in this chapter, Gal9R
can simply be considered as a reduced form of march elements M9 and M10
of March T2C. More precisely, M9 =
i(
j(w1i, w0j , r0h

j , r1i)) detects pat

CFds0r0 ;1 =<0r0h; 1/0L/−>, where the initialization of the victim to 1 (w1i)
and the aggressor to 0 (w0j) are considered to be transient and have to be
performed back-to-back directly before any other operations. If we assume this
not to be necessary, and only the final detecting read operation (r1i) has to be
performed directly after the sensitizing read (r0h

j), then M9 can be rewritten

as follows
(w0);
i(w1i,
j(r0
h
j , r1i), w0i). This form of M9 is equal to the

first half of Gal9R (taking h = 1). The same transformation is also true for
M10, which yields the second half of Gal9R.

In other words, the new DRAM test space can theoretically explain the
underlying strength of Gal9R, by indicating that it is nothing more than a test
that targets a simplified form of the following two partial transient coupling
faults: pat CFds0r0;1 =<0r0h; 1/0L/−> and pat CFds1r1;0 =<1r1h; 0/1L/−>.

5.6 Conclusions

This chapter presented the first DRAM-specific test space needed to test for
all DRAM-specific fault models. Six different tests have been derived for (both
single as well as two-cell) hard, transient and soft DRAM faults. It was also
shown how the new DRAM test space can be used to explain the strength of
some well-known effective DRAM tests in practice. The chapter also discussed
the results of an elaborate simulation-based fault analysis experiment to vali-
date the new memory faults. The results show that all newly proposed DRAM
faults are realistic. The results also indicate that dirty faults are only possible
in older DRAM designs.

62

Chapter 6

DRAM tests optimizations

est development for DRAM has commonly been an ad hoc activity,
where large numbers of tests are performed on a representative sample
and the best performing (in terms of fault coverage) tests are chosen

[60]. This approach results in a long and costly test development time, and
eventually leads to a non-optimal test flow [58]. The theoretical framework
of DRAM tests was proposed in Chapter 5 (see also [68]), based on Spice
simulations of DRAM models, that is able to detect all possible DRAM faults
[61]. Some of the proposed tests, however, are rather complex, such that they
scale super-linearly with the number of cells in the memory under test.

Transient faults are DRAM faults that get temporarily sensitized, and sub-
sequently correct themselves after a limited amount of time [69]. In order to
detect these faults properly, the detecting operations should follow the sensi-
tizing operations directly without any delay, before the fault gets corrected.
This detection requirement results in a quadratic O(n2) dependency of test
complexity on the number of memory cells. Such test complexity requires a
extremely long test application time on current day high-density DRAMs, that
render them impractical for a high-volume manufacturing test environment.

This chapter tackles the high complexity issue of DRAM tests generated
to detect transient faults. The chapter suggests a number of optimization
techniques to reduce test complexity and limit test application time. The
concept of physical locality of defects is used, which states that a given defect
can only cause a fault in a number of adjacent cells, rather than cells located
far apart. The used optimization techniques reduce the test complexity from
quadratic to linear, making it suitable for industrial application.

In addition to the above, this chapter discusses a number of methods to
optimize the test length of soft fault tests to make them more applicable in
practice. Design based optimizations can reduce the length of single-cell tests
from linear to constant with respect to the retention time in the memory. The
same is true for two-cell tests, where the topological location of the cells with

63

respect to each other on the layout is used to reduce the test length.
This chapter is organized as follows. Section 6.1 provides test time optimiza-

tions for transient faults tests. In Section 6.2 the test length of tests targeting
soft faults is evaluated. Finally, Section 6.3 ends with the conclusions.

6.1 Optimizing transient faults tests

Assuming that a test designer has no knowledge of the internal structure of the
memory under test, then the most general form of the tests is needed to be able
to detect every possible fault that may take place in the memory. It is possible,
however, to reduce the test time of the memory by restricting the complexity of
memory tests based on information from the design and the layout, as discussed
in this section.

The high time complexity of the two-cell march test (March T2C) for tran-
sient faults presented in Chapter 5 stems from the assumption that each cell can
be coupled to all other cells in the memory. This assumption is unnecessary,
since practically a cell can only be coupled to the closest physically neighboring
cells on the layout. Once the layout of the memory is known, it is possible to
significantly reduce the time complexity of these tests.

The most widely used DRAM layout today is shown in Figure 6.1 [70]. In
this figure, the circles represent memory cells, the horizontal lines represent
word lines (WLs), while the vertical lines represent bit lines (BLs). BLs are
organized in pairs of true (BT) and complementary (BC) bit lines. Note that
the order of the WLs is scrambled (so-called reflected WL organization), such
that WL3 follows WL1 instead of WL2.

BT0 BC0 BT1 BC1 BT2 BC2

WL0

WL1

WL4

WL3

WL2

WL0

WL1

WL4

WL3

WL2

BL pair 0 BL pair 1 BL pair 2

(a) Separated BLs (b) Combined BLs

Combine
BLs

C0,0

C1,0

C4,0

C0,1

C1,1

C4,1

C0,2

C1,2

C4,2

C2,0

C3,0

C2,1

C3,1

C2,2

C3,2

C0,0

C4,0

C0,1

C4,1

C0,2

C4,2

C2,0 C2,1 C2,2

C3,0

C1,0

C3,1

C1,1 C1,2

C3,2

Figure 6.1: Physically neighboring cells (a) on the layout, and (b) with com-
bined BLs (i.e., by combining BT and BC into a single BL pair).

Each memory cell in the figure is indicated by the letter C and a couple of
numbers that refer to the WL and BL the cell is connected to. For example, the

64

cell C3,2 is the memory cell connected to WL3 and BL2. All even numbered
WLs (such as WL0, WL2, etc.) access cells connected to BT, while all odd
numbered WLs access cells connected to BC. Considering C1,1, for example,
the three closest neighboring cells on the layout are C0,1, C0,2 and C3,1.

According to this layout, each cell has three closest physical neighbors. This
situation is shown in Figure 6.1(a), where the closest neighbors are highlighted
by arrows that connect between them.

When march tests are applied to the memory under test, memory cells
are accessed in an increasing, or a decreasing logical address order. In the
memory shown in Figure 6.1(a), an increasing logical cell address corresponds
for example to the following cell sequence C0,0, C1,0, C2,0, C3,0, C4,0, (then
the rest of WLs are accessed), then C1,0, C1,1, etc. In this example, a march
test accesses a cell on BT first, then a cell on BC, then again on BT, then
BC, etc., according to their logical address and not to their physical position.
From a march test point of view (i.e., using logical addressing), there is no
difference between a cell connected to BT or to BC. Therefore, it is possible to
combine each BT and BC of a given BL pair to inspect the way cell neighbors
are organized from a march test point of view. This is done in Figure 6.1(b),
which combines each BTx and BCx in Figure 6.1(a) into a single BL pair x
line.

In order to identify all logically neighboring cells from Figure 6.1(b), it
is only necessary to swap WL2 and WL3, so that a logically ordered WL
sequence can be obtained. This is done in Figure 6.2. This figure shows clearly
each cell and its closest neighbors, derived from the physical cell proximity in
Figure 6.1(a).

WL3

WL2

WL0

WL1

WL4

BL pair 0 BL pair 1 BL pair 2

C3,0 C3,1 C3,2

C2,0 C2,1 C2,2

C0,0

C4,0

C0,1

C4,1

C0,2

C4,2

C1,0 C1,1 C1,2

Figure 6.2: Logically neighboring cells.

Based on the information presented in Figure 6.2, it is possible to introduce
realistic localized versions of a number of march tests discussed in Chapter 5.

Using this layout information, it is possible to reduce the complexity of
March T2C to a more optimized test (called March T2Clayout), which has a

65

linear complexity rather than quadratic, by limiting the possible cells that could
act as aggressors to only the three cells connected by an arrow in Figure 6.2.
The localized version of the test is given below.

March T2Clayout = {
�i(�j=Δi

(w0i, w0h
j
, r0

i
, r0

i
)); �i(�j=Δi

(w0i, w1h
j

, r0
i
, r0

i
));

M0 M1

�i(�j=Δi
(w1i, w0h

j
, r1

i
, r1

i
)); �i(�j=Δi

(w1i, w1h
j

, r1
i
, r1

i
));

M2 M3

�i(�j=Δi
(w0i, w0

j
, w1h

j
, r0

i
)); �i(�j=Δi

(w1i, w0
j
, w1h

j
, r1

i
));

M4 M5

�i(�j=Δi
(w0i, w1

j
, w0h

j
, r0

i
)); �i(�j=Δi

(w1i, w1
j
, w0h

j
, r1

i
));

M6 M7

�i(�j=Δi
(w0i, w0j , r0h

j , r0i)); �i(�j=Δi
(w1i, w0j , r0h

j , r1i));

M8 M9

�i(�j=Δi
(w0i, w1j , r1h

j , r0i)); �i(�j=Δi
(w1i, w1j , r1h

j , r1i));

M10 M11

�i(�j=Δi
(w0i, w0h

j
, w0

i
, r0

i
)); �i(�j=Δi

(w0i, w1h
j

, w0
i
, r0

i
));

M12 M13

�i(�j=Δi
(w1i, w0h

j
, w1

i
, r1

i
)); �i(�j=Δi

(w1i, w1h
j

, w1
i
, r1

i
));

M14 M15

�i(�j=Δi
(w1h

i
, w0h

j
, w0

i
, r0

i
)); �i(�j=Δi

(w1h
i

, w1h
j
, w0

i
, r0

i
));

M16 M17

�i(�j=Δi
(w0h

i
, w1h

j
, w1

i
, r1

i
)); �i(�j=Δi

(w0h
i

, w0h
j
, w1

i
, r1

i
))}

M18 M19

The Δi in the test refers to the three cells in the neighborhood of the cell
i, as shown by the cells connected with an arrow in Figure 6.1(a). This test is
similar to March T2C, with the exception that the parameter j does not run
through all memory cells, but only the neighboring cells to i. As an example
of the test, march element M0 can be understood as follows.

• For every the cell i in the memory start by initializing the cell to 0.

• Directly afterwards, write 0 an h number of times into every cell in the
neighborhood of i.

• Directly afterwards, read 0 twice from cell i.

This test has 20 march elements, each of which has a nested march element.
This test has a complexity of (168 ·n+72 ·h ·n), which is of the order O(n). As
an example, the complexity of M0 can be calculated as follows: 3 ·n(3 + h), or
of cells × # of neighbors per cell × (# of single operations + # of h repeated
operations). Comparing this test with March T2C shows that the complexity
of the test was significantly reduced, which makes the test much more suitable
for industrial application.

6.2 Optimizing test length of soft faults tests

The tests derived in Section 5.4.3 assume the worst case faulty behavior possible
in the memory. In such a situation, the test engineer has no knowledge of

66

the internal structure, the design or the layout of the memory under test.
Therefore, all possible faults should be tested for in order to ensure the best
fault coverage. When the internal structure is known, this information can be
used to reduce the complexity of the used tests. In this section, we first discuss
using electrical design information, then layout information to reduce the tests.

6.2.1 Memory design consideration

The example of dirty faults discussed in Section 5.1.2 shows that, in order for
dirty faults to take place, the precharge circuitry should be located on one
side of the BL pair, while the sense amplifiers located on the other side [see
Figure 5.2(c)]. The memory can, however, be designed in two different ways.

Table 6.1: Different positions of the SA and PR on either side of a BL pair.
Upside Downside Description

SA PR SA PR

1 t t b b SA and PR on same side of BL
2 t b b t SA on one side, PR on other

Table 6.1 lists the 4 different combinations of positions for the sense am-
plifiers (SA) and the precharge circuit (PR) on either side of a BL pair. An
entry “t” means that the corresponding circuitry is located at the top of the
BL pair, while an entry “b” means that the corresponding circuitry is located
at the bottom of the BL pair. Since the top and the bottom of a BL pair are
symmetrical, only 2 combinations in Table 6.1 are unique, while the other 2
combinations can be derived by viewing the BL pair from the upside or from
the downside.

For example, Figure 6.3 shows one possible position allocation of the SA
and PR circuitry. In this configuration, the SA is located on one side of the
BL pair and the PR is located on the other side. Considering the upside of the
BL pair, the SA is located at the top while the PR is located at the bottom.
Considering the downside of the BL pair, the PR is located at the top while
the SA is located at the bottom. Obviously, both of these BL organizations
are identical.

Figure 6.3: Upside and downside symmetry of BL pairs.

67

Dirty faults only take place when SA and PR are located on different ends
of the BL, which is combination #2 in Table 6.1. However, most DRAMs today
are designed with SA and PR located on the same side of the BL (combination
#1 in Table 6.1), in which case dirty faults are not possible [59]. In other words,
this organization reduces the space of single-cell memory faults exhibited as a
result of all possible defects from the one described in Expression 5.1 to the
following one.

Single-cell fault =

{
-
pi

}⎧⎨
⎩

h
s
t

⎫⎬
⎭ FP (6.1)

The reduction in the space of single-cell faults implies a corresponding sim-
plification in the tests for these faults, since dirty faults need not be tested
for. March S1Cpart (“part” for “only partial”) below detects all single-cell soft
faults for this special case.

March S1Cpart = {
�(w0h, r0); T ; �(r0); �(w1h, r1); T ; �(r1);
M0 M1 M2 M3 M4 M5
�(w0h, w1); T ; �(r1); �(w1h, w0); T ; �(r0)}
M6 M7 M8 M9 M10 M11

This march test has twelve march elements (M0 through M11). The test can
be derived from March S1C by eliminating the operations with the subscript b
(meant to detect dirty faults) and separating the delay time T from the march
element. Each three consecutive march elements in this test correspond to a
single march element in March S1C (for example, M0 in March S1C corresponds
to M0, M1 & M2 in March S1Cpart . The test has a complexity of (8 · n+
4 · h · n+ 4 · T). When compared to March S1C this test replaces the highly
expensive term (4 · T · n) with the term (4 · T), which is constant with respect
to the number of cells in the memory. This makes this test more suitable for
industrial applications.

6.2.2 Memory layout consideration

March S2C is designed to detect two-cell soft faults. The high complexity of
S2C, represented by the term (4·n+1)T , is caused by the assumption that each
cell in the memory can be influenced by every other cell in the whole array.
This assumption is not realistic. Cells are mainly influenced by their closest
neighbors according to the layout of the memory.

The most widely used DRAM layout today is shown in Figure 6.4. The
circles represent the cells in the memory, the horizontal lines represent the
word lines, while the vertical lines represent the bit lines. According to this
layout, each cell has three closest physical neighbors [70]. This situation is
shown in the figure, where the closest neighbors of each cell are highlighted by
arrows that connect between them.

68

WL7

WL5

WL4

WL2

WL3

WL1

WL0

WL7

WL5

WL4

WL2

WL3

WL1

WL0

WL7

WL5

WL4

WL2

WL3

WL1

WL0

WL7

WL5

WL4

WL2

WL3

WL1

WL0

0 0 1 1 2 2 3BLs

(b) Base cell set 2

0 0 1 1 2 2 3BLs

(d) Base cell set 4

0 0 1 1 2 2 3

0 1 2 2 30BLs

BLs

1

(a) Base cell set 1

(c) Base cell set 3

Figure 6.4: Sets of base cells used to accelerate soft fault testing.

Figure 6.4 shows how layout information can be used to accelerate soft fault
testing. First, we need to select a set of memory cells that do not influence each
other and consider them as base cells (each of which is referred to as b) for the
test. The base cells are shown in Figure 6.4(a) as black circles. The memory
cells that each base cell can influence is called its neighborhood, which can
be denoted as (�b). Then the memory test can be performed as follows:

1. Select the first set of base cells as indicated by black dots in Figure 6.4(a)

(a) Initialize base cells to a specific value.

(b) Access each base cell and its neighborhood to sensitize the fault.

(c) Wait for idle time T .

(d) Detect the sensitized faults.

2. Repeat the operations in item 1 for each cell in the neighborhood by
considering it as a base cell in itself (as shown in Figures 6.4(b), (c) and
(d))

In the memory organization shown in Figure 6.4, there are four possible
sets of base cells, which means that the idle time T needed for the test can be

69

reduced from (4 · n + 1)T to a constant idle time, which is independent of the
number of cells in the memory. An optimized test that can detect two-cell soft
faults is March C2Slayout, as shown below.

March S2Clayout = {
�i(�bi

(w1h, w0),�bi
(��b

(w1, w0h, r0h)),�bi
(r0), T,�bi

(r0));
M0
�i(�bi

(w1h, w0),�bi
(��b

(w1h, r1h)), �bi
(r0), T,�bi

(r0));
M1
�i(�bi

(w0h, w1),�bi
(��b

(w0, w1h, r1h)),�bi
(r1), T,�bi

(r1));
M2
�i(�bi

(w0h, w1),�bi
(��b

(w0h, r0h)), �bi
(r1), T,�bi

(r1))}
M3

This test has four march elements divided into two complementary parts:
M0 and M1 versus M2 and M3. The test divides the memory into sets of base
cells, and runs through them one by one using the parameter i = 0, 1, In the
memory example of Figure 6.4, there are four sets of base cells, which means
that i runs from 0 to 3. M0 in the test goes through each set of base cells using
(
i) and starts by initializing all base cells (
bi) to 0 using w1h, w0. Then, M0
goes through every aggressor (
�b

) of each base cell (
bi) and sensitizes the
fault in the base cell by performing (w1, w0h, r0h). Then, a sensitizing read
operation is performed on every base cell to sensitize all deceptive read disturb
coupling faults (
bi(r0)), followed by idle time and a detecting read operation.
M1 has the same structure, while M2 and M3 are the complementary of M0
and M1.

The complexity of this test can be calculated as follows (4 · n(1 + h) +
2 · 3n(1 + 2h) + 2 · 3n(2h) + 4 · n + 4 · (4T) + 4 · n), which is equal to (18 · n
+ 28h · n + 16T). This test, though very costly, has a constant idle time that
is independent of the number of cells in the memory (16T). This test replaces
March S2C derived in Section 5.4.3 to detect all soft coupling faults.

6.3 Conclusions

This chapter discussed two optimization approaches to reduce the test length
of tests detecting transient and soft faults in DRAM devices. We showed how
to use topological layout information to limit the length of these tests, reducing
their complexity from quadratic O(n2) to linear O(n). This makes them more
practical candidates for implementation in the industry. Two new tests for soft
faults have been discussed, one that represents an optimized version for single-
cell soft faults and another for two-cell faults. The complexity of both tests has
been reduced in such a way that delay time does not scale with the number
of cells in the memory, making them more suitable for industrial application.
Specific optimization examples have been shown that enable test designers to
modify the tests according to their own memory design or layout.

70

Chapter 7

Realistic linked memory

faults

emory devices follow very tightly technology developments and as such
are the most vulnerable to new types of defects. This trend requires
adequate adjustments in the fault models in order to keep the devices

dpm level very low. An interesting fault class is the linked faults, that is
envisioned to grow in importance when feature sizes shrink to deep sub-micron
dimensions. In this Chapter, we propose a systematic approach of how to deal
with static linked faults involving both single-cell and two-cell fault primitive
types. Our study is based on a rather classical and well-proven set of simple
static faults, however, without loss of generality the same methodology can be
applied to any other static simple faults set.

We start our analysis by looking at the conditions required for march tests
to detect simple static faults in isolation. Thereafter, we investigate the march
test fault coverage for the linked fault models based on the used set of fault
primitives. Next, we reduce the universe of linked faults to a realistic sub-set
by looking at the internal structure of memory cells and derive a march test
(March LR) for it. Two additional March LR variants, March LRD and March
LRDD are described to deal with simple and double data retention faults,
possibly linked with other faults. Last, theoretical comparison and industrial
evaluation of March LR, LRD and LRDD fault coverage is presented.

7.1 Fault coverage of march tests

Depending on the way faults manifest themselves, faults can be classified as
simple faults (a simple fault is a fault which does not influence the behavior of
other faults), and linked faults, which do influence the behavior of other faults
such that masking may occur as introduced in Section 3.7 and in [71, 5]. In

71

this chapter the term fault type denotes a particular class of faults, while fault
subtype denotes one of the ways a fault type can manifest itself; e.g., a SAF
is a fault type, while the SA0 and SA1 faults are subtypes. The term fault is
used to denote either a fault type or a subtype. As mentioned earlier we use
a rather classical set of fault primitives for our study. More precisely we used
the following fault models in our study:

• Address decoder faults (AF);

• Single-cell faults:

– Stuck-at-faults (SAF);

– Stuck-open faults (SOF);

– Transition faults (TF);

– Data retention faults (DRF).

• Two-cell faults:

– Coupling faults (CF);

– Inversion Coupling faults (CFin);

– Idempotent Coupling faults (CFid);

– State Coupling faults (CFst);

– Disturb Coupling faults (CFdst).

Please note that both notations, the one introduced in Section 3.7 and the
classical one proposed in [5], are used interchangeably.

Both SAF and SOF can be considered as composite functional fault models.
The SAF, denoted as < ∀/0/− > and < ∀/0/− > (classical notation < ∀/x >,
x ∈ {0, 1}), with ∀ representing all possible sensitizing operations. Therefore,
S = ∀ can be replaced by any operation or sequence that sensitizes the fault.
This leads to the following two SAF FPs:

1. < ∀/0/− > = {< 1/0/− >, < 0w1/0/− >};

2. < ∀/1/− > = {< 0/1/− >, < 1w0/0/− >}.

More precisely, when the faulty behavior of a cell is said to resemble < ∀/0/− >,
then the cell exibits the faulty behavior of each of the two FPs: {< 1/0/− >
, < 0w1/0/− >}.

The SOF is defined as the faulty behavior due to an open word line in the
memory [5]. An open line is assumed to result in failing 0w1 and/or 1w0 op-
erations. Furthermore, it may and may not, depending on the implementation
of the sense amplifier, result in an incorrect read value (or repeat the last read
operation value). Using the FPs introduced in Chapter 3, the SOF can be
defined as follows:
SOF = {< 0w1/0/− >, < 1w0/1/− >,< 0r0/0/1 >, < 1w1/1/0 >} =
TF ∪ IRF.

72

7.1.1 Fault coverage of simple faults

In this section, conditions for the march tests to detect different faults are pre-
sented. A specific condition should be satisfied by a given march test in order
to detect the faults of a particular type.

AFsr Condition 1sr 1: in [72] it has been shown that AFs in SRAMs (AFsrs)
are more difficult to detect than AFs in DRAMs. Any AFsr is detectable by
a march test which satisfies Condition 1tr and, additionally, contains a march
element of the form (which may be one of the march elements of Condition
1tr):
 (rx, . . . , rx̄, . . .)
Condition 1tr (for traditional RAMs) is as follows [50]: a march test has to
contain the following march elements: ⇑ (rx, . . . , wx̄) and ⇓ (rx̄, . . . , wx)

SOFs Condition 2: any SOF is detectable by a march test which contains the
following march element: (. . . , rx, . . . , rx̄, . . .).

SAFs and TFs Condition 3: SAFs and TFs (even when linked with other
faults) can be detected by a march test which contains the following two march
elements (or a single march element containing both elements):

1. (. . . , w0, r0, . . .) to detect SA1 faults and <↓ /1 > TFs
2. (. . . , w1, r1, . . .) to detect SA0 faults and <↑ /0 > TFs

When SAFs and unlinked TFs are considered, Condition 3 can be simplified to
Condition 3U (U stands for unlinked).
Condition 3U: SAF and TFs will be detected by a march test which contains
the following operations (which can be distributed over march elements in an
arbitrary way): wx, wx̄, rx̄, wx, rx.

DRFs Condition 4: any march test can be extended to detect DRFs [73].
The detection of each of the two DRF subtypes requires that a memory cell
be brought into the corresponding logic states; thereafter, certain amount of
time must elapse for the DRF to develop (for SRAMs, empirical results show
that a wait time of approximately 100ms is sufficient [6]). If we are interested
in detecting simple DRFs only, the delay elements can be placed between any
two pairs of march elements as follows :
 (. . . , wx); Del;
 (rx, . . . , wx̄); Del;

(rx̄, . . .) with x = ‘0’ or ‘1’.

CFs Condition 5 : a march test which contains one of the two pairs of march
elements of Case A and a pair of march elements of Case B (see below) can
detect all simple CFs (i.e., all CFins, CFids, CFsts, and all CFdsts). Case A

1In this manuscript the following shorthand notations are used: sr or S for SRAM, dr for
DRAM and tr for traditional RAM. A precise definition of the above three address decoder
fault sets and their relationships is presented in Chapter 8.

73

will detect all < y; x̄ > and Case B all < y; x > CFs, with x the expected state
of the coupled cell and y ε {r0, r1, w0, w1} (This set contains all sensitizing
operations for CFs considered in this chapter). Note that ↑ operation is the
same as a w1 after the memory is in state ‘0’ (otherwise stated 0w1).

Condition 5 can be explained as follows: The operations (rx, . . . wx, rx, . . . ,
wx) in the first march element of Case A.1 will sensitize the CFs, because that
march element contains all sensitizing operations; i.e., both states are entered
(for CFsts), both transitions write operations take place (for CFins and CFids)
and it contains all sensitizing operations for CFdsts. Case A.1 will detect the
fault, when the value of the fault effect is x, by the ‘rx’ operation of the first
march element when the coupled cell has a higher address than the coupling
cell, and by the ‘rx’ operation of the second march element when the coupled
cell has a lower address than the coupling cell. Case A.2 has similar capabilities
as Case A.1, except that the fault will be detected by the ‘rx’ operation of the
first march element if the coupled cell has a lower address than the coupling
cell, etc. Case B is required to sensitize and detect the CFs < y; x >.

Case A: 1. ⇑ (rx, . . . , wx̄, rx̄, . . . , wx);
 (rx, . . .)
2. ⇓ (rx, . . . , wx̄, rx̄, . . . , wx);
 (rx, . . .)

Case B: 1. ⇑ (rx̄, . . . , wx, rx, . . . , wx̄);
 (rx̄, . . .)
2. ⇓ (rx̄, . . . , wx, rx, . . . , wx̄);
 (rx̄, . . .)

In case of SRAM memory tests the simpler CFdst-w fault type (only write
operations can cause the fault effect) can be used instead of the CFdst fault
type. This allows Condition 5 to be simplified to Condition 5S (for SRAMs).

Condition 5S : any march test which contains one of the two pairs of march
elements of Case A and one pair of march elements of Case B can detect all
simple CFs (i.e., all CFins, CFids, CFsts, and CFdst-ws).

Case A: 1. ⇑ (rx, . . . , wx̄, . . . , wx);
 (rx, . . .)
2. ⇓ (rx, . . . , wx̄, . . . , wx);
 (rx, . . .)

Case B: 1. ⇑ (rx̄, . . . , wx, . . . , wx̄);
 (rx̄, . . .)
2. ⇓ (rx̄, . . . , wx, . . . , wx̄);
 (rx̄, . . .)

7.1.2 Fault coverage of linked faults

Below, a set of propositions is given for those linked faults that the march tests
are not able to detect or for fault models with special properties.

Proposition 1: A CFin linked with one or more other CFins (CFin#CFins) is
not detectable by any march test if the linked fault does not contain an odd
number of CFins of the same subtype (i.e., an even number of <↑; �> CFins or

74

an even number of <↓; �> CFins) all with addresses of the coupling cell lower
(higher) than the coupled cell “i”, while no other types of CFs are present
with addresses of the coupling cell lower (higher) than the coupled cell “i”. For
example, Figure 7.1 depicts two different linked CFins with an even number
of faults of the same subtype on one side of the coupled cell; both, the faults
of Figure 7.1(a) and 7.1(b) satisfy Proposition 1 and hence are not detectable
by any march test with linear address order, because the faults involved mask
each other.

(b)

< ; >

< ; >

< ; >

< ; >

j j i
1 2a

k ki 1 2b

(a)

Figure 7.1: Linked CFins which satisfy Proposition 1.

Proposition 2 : CFsts dominate CFins, CFids and CFdsts. Note that in case of
CFsts a fault is sensitized by the state of the coupling cell, whereas in case of
CFids, CFins or CFdsts the fault is sensitized by operations on the coupling cell.
Therefore, the CFst fault dominates the fault types CFid, CFin and CFdst;
i.e., the fault effect of the CFst is not caused by a write or a read operation, it
is caused by the state of the coupling cell such that it will be present as long as
the coupling cell contains the sensitizing value, regardless of the fact whether
the coupled cell is influenced by CFins, CFids or CFdsts.

Proposition 3 : The fault effect of a CFst linked with one or more other CFsts
(notation: CFst # CFsts) can be as follows:

a. The result of the CFst # CFsts is a function independent of the previous
operations (deterministic); i.e. given the set ‘S’ of m linked CFsts; i.e.
S = {< p; e1 >, < q; e2 >, · · · , < z; em >}, whereby p, q, z ∈ {0, 1}, then
the resulting fault effect er = F (e1, e2, · · · , em). This simplifies the set of
linked CFsts to a single CFst which is detectable by march tests.

b. The result of reading CFst # CFsts depends on the result of the opera-
tion performed before the detect operation (a ”random” function). The
following three cases can be distinguished:

1. The number of CFsts with the coupling cell on one side of the cou-
pled cell is 1; i.e., a = 1 or b = 1 (see Figure 7.2). These faults are

75

detectable by march tests because one of the linked CFsts can be
sensitized and detected in isolation of the rest;

2. The case a > 1 (see Figure 7.2) but the CFsts < >j1i · · · < >jai

all have the same fault effect; and/or, similarly for the case b > 1.
These faults are detectable by march tests because the faults on one
side of the coupled cell cannot cause a random read result;

3. The case a > 1 and b > 1, whereby the fault effect of the a CFsts,
and of the b CFsts is not the same. These faults are not detectable
by march tests; a test of O(n2) is required.

. . . .j j j
y1 x1

y
a

j
x

j
x

j
xap q

j j
xaya

v v

Figure 7.2: Class 2 CFs

7.1.3 Reducing the universe of linked faults to realistic

linked faults

Next we will enumerate the set of all linked faults to a smaller set referred to
as realistic linked faults that consist of all linked faults, excluding the following
subclasses:

a. Linked faults which include CFins will not be considered of practical in-
terest because Dekker et al [74] has shown that the empirical evidence
does not support the occurrence of simple CFins; linked CFins are there-
fore even less likely. This subclass will therefore not be considered any
further in this chapter.

b. Linked faults which include the following two linked CFids: <↑; ↑>ji #
<↓; ↓>ji or <↑; ↑>ik # <↓; ↓>ik are not considered realistic (see Figure
7.3(a)). This is because CFids are caused by capacitive coupling between
bitlines, and the above two linked faults can only occur between cells in
the same row (because only then the coupling effect on a bitline is passed
to the coupled cell). Before a read or a write operation takes place, the
bitlines are precharged such that the CFid only can be sensitized when
the bitline BL or BL of the coupling cell makes a ↓ transition. Because
of the way memories are built, see Figure 7.3(b), cells i and j (i and k
respectively) can only be coupled in one of the following ways (for a given
word line, and hence for a given cell i): BLj −→ BLi (i.e.,BLi is coupled
to BLj), BLj −→ BLi, BLj −→ BLi or BLj −→ BLi (see Figure 7.3).

76

When an ↑ transition write operation (0w1) takes place, first BL and BL
are precharged, thereafter BL makes a ↓ transition (similar arguments
hold for ↓ transition write operations). The CFid <↑; ↑> ji can only
exist when BLj → BLi; while the CFid <↓; ↓> ji can only exist when
BLj → BLi; this implies that the linked faults <↑; ↑>ji # <↓; ↓>ji
or <↑; ↑>ik # <↓; ↓>ik cannot occur in practice simultaneously. This
observation applies to SRAMs as well as to DRAMs.

c. Linked faults which include two linked CFdsts with opposite fault ef-
fects: < x; ↓>ji # < y; ↑>ji or < x; ↓>ik # < y; ↑>ik, where x, y
ε{r0, r1, w0, w1}, are not considered realistic for the same reasons as the
CFids above.

2

Vdd

BL BL

BLBLBLBL

WORD

BL BL

j

j j

ij i

i i

(b)(a)

j i

i k

< ; >

< ; >

< ; >

< ; > WORD

1

Figure 7.3: CFids between neighboring cells

7.2 March LR: a test for realistic linked faults

The ultimate wish of any test algorithm designer is to get maximum fault cover-
age with minimal test time. We will try to satisfy these two conflicting goals by
designing new tests for realistic linked faults. The design methodology is based
on deriving conditions march tests have to satisfy in order to detect faults of
certain fault types and subtypes; thereafter these requirements are assembled
resulting in the new march test: March LR. March LR detects all simple faults
used in this chapter as well as all realistic linked faults (see Section 7.1.3); ex-
cluding those CFins which satisfy Proposition 1 and those CFsts which satisfy
Proposition 3(b.3).

This section consists of the following parts: first the universe of linked faults

77

consisting of two simple faults (excluding CFdsts, and linked CFsts which do
not satisfy Proposition 3(b.3)) is divided into sets; thereafter, in Section 7.2.2,
the conditions for march tests to detect linked faults, consisting of two simple
memory cell array faults, are derived. Section 7.2.3 describes March LR to-
gether with other derived tests. Section 7.2.4 shows that March LR is able to
detect all realistic linked faults.

7.2.1 Establishing sets of linked faults

First we divide all simple CFs (except CFdsts) into the following sets:

Set B: All subtypes which set the coupled cell to 1
B = {<↑; ↑>,<↓; ↑>,< 0; 1 >,< 1; 1 >,<↑; �>,<↓; �>}
Note : in case of CFins, the expected value has to be “0”.

Set B*: All subtypes which set the coupled cell to 0
B* = {<↑; ↓>,<↓; ↓>,< 0; 0 >,< 1; 0 >,<↑; �>,<↓; �>}
Note : in case of CFins, the expected value has to be “1”.

Figure 7.4 shows the set of all possible simple CFins, CFids and CFsts,
consisting of respectively 2 + 4 + 4 = 10 faults. It is easy to verify that the
universe of all simple CFs (excluding CFdsts) consists of the B and B*. Note:
Because of the alternated expected value of the coupled cell of a CFin, the
CFins belong to set B as well as B*.

< 1 ; 1 >

< 0 ; 1 >

< 1 ; 0 >

< 0 ; 0 >

< ; >

< ; > < ; >

< ; >

B B*

Figure 7.4: Subsets of CFs

The universe of all linked faults consisting of two simple faults (of type CFin,
CFid or CFst) can be divided into the following three collections:

78

1. The collection B # B*. This collection consists of linked faults whereby
one of the faults is from set B and the other fault is from set B* (see
Figure 7.4); this collection therefore consists of 5 ∗ 5 = 25 linked faults.
Taking into account the relative address positions of the involved cells
(expressed in the three address order classes introduced in the next sec-
tion), this results into 25 ∗ 6 = 150 different linked faults;

2. The collection B # B; and

3. The collection B* # B*.

7.2.2 Conditions for march tests to detect linked faults

consisting of two simple faults

In addition to the conditions derived in Section 7.1 (these are the Conditions 1
through 5), the following conditions have to be satisfied in order to detect linked
faults consisting of two simple faults. Table 7.1 summarizes the conditions
derived in this section as a function of the collections of linked faults and of the
address order classes. The address orders of all linked faults consisting of two
CFs, or an AF and a CF, can be split into the following address order classes:

• Middle class: < x; y >ji #< x; y >ik The coupled cell address lies be-
tween the two coupling addresses;

• High class: < x; y >jpi#< x; y >jqi The coupled cell has the highest
address, and involves two simple faults;

• Low class: < x; y >ikp #< x; y >ikq The coupled cell has the lowest
address, and involves two simple faults.

Table 7.1: Conditions for two linked faults

Address Linked fault collection

order class B # B B # B* B* # B*

Low Condition 6 Condition 6S Condition 6

Middle Condition 6 Condition 6 Condition 6

High Condition 6 Condition 6S Condition 6

Condition 6 : All linked CFs consisting of two simple CFs (excluding CFdsts,
and excluding linked CFsts which do not satisfy Proposition 3(b.3)) of the
Middle class will be sensitized and detected by the same march element if the
march test contains the march element of Case A.1 (in case the expected value

79

Table 7.2: Requirements for detecting linked CFs

Value of z < p; z > ji < q; z > ik

detected detected

z = x B.1 B.2

z = x̄ A.1 A.2

is x), and the march element of Case B.1 (in case the expected value is x̄); or
the march element of Case A.2 and the march element of B.2:

Case A: 1. ⇑ (rx, wx̄, . . . , wx)
2. ⇓ (rx, wx̄, . . . , wx)

Case B: 1. ⇑ (rx̄, wx, . . . , wx̄)
2. ⇓ (rx̄, wx, . . . , wx̄)

The two write operations wx̄ and wx will sensitize all possible CFs (exclud-
ing CFdsts because a second sensitizing read operation is needed); and because
no masking is possible (the Middle class ensures that the second fault lies at
the other side of the coupled cell) the ‘rx’ operation of Case A will detect the
fault when the expected value is x, and the ‘rx’ operation of Case B when the
expected value is x̄.

The correct combination of Cases A and B has to be taken as follows: A.1
and B.1, or A.2 and B.2. This can be shown using Figure 7.5 which contains
the linked CFs < p; z > jv # < q; z > vk; z ε {x, x̄} and v the victim cell
shared by both CFs (also noted as i in this text). The four detection cases
are presented in Table 7.2. The result is that in order to always detect fault
< p; z > ji march elements B.1 and A.1 are required; for fault < q; z > ik
march elements A.2 and B.2 are required. Therefore, in order to detect the
fault of Figure 7.5, march elements A.1 and B.1, or A.2 and B.2 are required.

< p ; z > < q ; z >

j v k

Figure 7.5: Subsets of CFs

Note, one march element of Case A and one of Case B will also sensitize
and detect all linked faults of collection B#B and of collection B*#B*, re-

80

< ; >

j j
21

v

< ; >

Figure 7.6: The linked fault <↑; �> # <↑; ↓>

gardless of the address order class, because the fault effects of the linking faults
are the same; hence, no masking is possible (the first and the third columns of
Table 7.1).

For faults of collection B#B*, regardless of the address order class, we need
to make Condition 6 stronger because of the possibility of fault effect masking,
hence Condition 6S is required.

Condition 6S : All linked CFs consisting of two simple CFs (excluding CFdsts,
and linked CFsts which do not satisfy Proposition 3(b.3)) of collection B#B*,
regardless of the address order class, will be sensitized and detected if the test
contains a pair of march elements of Case A.1 and a pair of march elements of
Case B.1, or Cases A.2 and B.2 respectively.

Case A: 1. ⇑ (rx, wx̄, . . . , wx); ⇑ (rx, . . .)
2. ⇓ (rx, wx̄, . . . , wx); ⇓ (rx, . . .)

Case B : 1. ⇑ (rx̄, wx, . . . , wx̄); ⇑ (rx̄, . . .)
2. ⇓ (rx̄, wx, . . . , wx̄); ⇓ (rx̄, . . .)

All faults of the High class will be sensitized and detected by the first march
element of Case A.1 or Case B.1. This is because these two march elements
each contain a wx and a wx operation, which implies that they sensitize all
considered CFs, while the CF with the coupling cell closest to the coupled cell
will be detected by the rx or the rx operation of the same march element. For
example, consider the linked fault of Figure 7.6. Assume the initial state of
memory to be ‘0’, then the pair of march elements of Case A.1 or A.2 will not
detect that fault; however the pair of Case B.1 or B.2 will.

In case of CFs of the Low class and march elements of Case A.1 and B.1,
the read operation of the second march element of each pair is required for
detecting the fault (in this case the fault with the larger distance to the cou-
pled cell); in order to prevent masking, the address order of the second march
element of each pair has to be identical to that of the first march element of
each pair. The first march elements of Cases A.2 and B.2 will detect all faults
of the low class, and also sensitize all faults of the high class which will be
detected by the second march element of each pair.

81

(a) (b)

>

B B*

<r0 ; >

< r1;

;

>

< >

< ;

w0

w1

< ; >

< ; >

< ; >

< ; >

r0

r1

w0

w1

Figure 7.7: Subsets of CFdsts

If, in addition, the detection of CFdsts is required, Condition 6S should be
modified into Condition 6SD. The set of CFdsts can be divided into the sets B
and B* (see Figure 7.7), similar to the other CFs, and detection is possible if
a march test satisfies Condition 6SD.

Condition 6SD: All linked CFs consisting of two simple CFs, including CFdsts
(excluding linked CFsts which do not satisfy Proposition 3(b.3)) of collection
B#B*, regardless of the address order class, will be sensitized and detected
if the test contains a pair of march elements of Case A.1 and a pair of march
elements of Case B.1, or of Case A.2 and B.2:

Case A: 1. ⇑ (rx, wx̄, rx̄, . . . , wx); ⇑ (rx, . . .)
2. ⇓ (rx, wx̄, rx̄, . . . , wx); ⇓ (rx, . . .)

Case B : 1. ⇑ (rx̄, wx, rx, . . . , wx̄); ⇑ (rx̄, . . .)
2. ⇓ (rx̄, wx, rx, . . . , wx̄); ⇓ (rx̄, . . .)

The proof of Condition 6SD is similar to that of Condition 6S. Note that the
first march element of each pair sensitizes all CFs, including all CFdsts; in ad-
dition Condition 6SD is a superset of Condition 5, Condition 6 and Condition
6S. Condition 6SD guarantees detection of the collections B#B and B*#B*
because all simple CFdsts are sensitized, while masking of CFs # CFdsts is
not possible because all faults of each collection have the same fault effect.

When one of the two linked faults is an address decoder fault, an additional
condition is required. As will be shown in Chapter 8, concerned with linked
address decoder faults, any march test will detect an AFsr # CF if the march
test satisfies the following condition:
Condition 1L [72]: a march test has to detect SOFs (Condition 2), all simple
CFs (Condition 5), and also all simple AFs (Condition 1sr).

In cases when one of the two linked faults is a data retention fault the
following conditions hold.
Condition 4LS: Any march test will additionally detect the presence of a ‘DRF
other (linked) fault(s)’ when :

82

1. that march test is able to detect the other (linked) fault(s) involved in
the absence of the DRF;

2. that march test is extended with the following sequence of march elements
(Note: the state of the cells upon completion of the non extended test is
assumed to be x): Del;
 (rx, wx̄); Del;
 (rx̄).

Condition 4LD: Any march test will additionally detect the presence of both
DRF subtypes (i.e. a double DRF) in a single SRAM cell (i.e., this will be the
case when both pull-up devices are broken), also when linked with any other
fault(s), when:

1. that march test detects those other (linked) fault(s) in the absence of
double DRFs;

2. that march test is extended with the following sequence of march elements
(Note: the state of the cells upon completion of the non-extended test is
assumed to be x): Del;
 (rx, wx̄, rx̄).

The presence of double DRFs in a single SRAM cell cause that cell to behave
as if it contains a SOF after some time (the time of the ‘Del’ operation).

Condition 4LSD: Any march will additionally detect the presence of simple
and double DRFs, possibly linked with other (linked) fault(s), when:

1. that march test detects those other (linked) fault(s) in the absence of
double DRFs;

2. that march test is extended with the following sequence of march elements
(Note: the state of the cells upon completion of the non-extended test is
assumed to be x): Del;
 (rx, wx̄, rx̄); Del;
 (rx̄).

7.2.3 March LR

Using the conditions described in the previous section a new march test can be
constructed. The test March LR, depicted in Figure 7.8, is able to detect the
following faults:

March LR = {
� (w0); ⇓ (r0, w1); ⇑ (r1, w0, r0, w1);
M0 M1 M2
⇑ (r1, w0); ⇑ (r0, w1, r1, w0); ⇑ (r0)}
M3 M4 M5

Figure 7.8: March LR

83

1. SOFs: Condition 2 is satisfied by M2 and also by M4;

2. SAFs and (linked) TFs: Condition 3 is satisfied by M2 and also by M4;

3. CFs: Condition 5 is satisfied by M2 through M5;

4. Linked CFs consisting of two simple CFs: Condition 6SD is satisfied by
M2 together with M3 (Case B.1), and by M4 together with M5 (Case
A.1);

5. AFs : Condition 1sr is satisfied by M1 together with M2 and M3;

6. AF # TF: Condition 1sr is satisfied (see above);

7. AF # CF: Condition 1L is satisfied as follows: Condition 2 (satisfied by
M2), Condition 5 (because Condition 6SD is satisfied), and Condition 1sr
is satisfied.

Figure 7.9 shows the way March LR of Figure 7.8 is modified in order to addi-
tionally detect linked DRFs. The linked DRFs are detected because Condition
4LS(1) is satisfied by M0 through M5; and Condition 4LS(2) by M6 through
M9.

March LRD = {
� (w0); ⇓ (r0, w1); ⇑ (r1, w0, r0, w1); ⇑ (r1, w0); ⇑ (r0, w1, r1, w0);
M0 M1 M2 M3 M4
⇑ (r0); Del � (r0, w1); Del � (r1)}
M5 M6 M7 M8 M9

Figure 7.9: March LRD

The March LR extension for detection of single DRFs and double DRFs
in a cell linked with any other fault is depicted in Figure 7.10. DRFs (single
and double) linked or unlinked with other faults will be detected because March
LRDD satisfies Condition 4LSD(1) by M0 through M5, and Condition 4LSD(2)
by M6 through M9.

March LRDD = {
� (w0); ⇓ (r0, w1); ⇑ (r1, w0, r0, w1); ⇑ (r1, w0); ⇑ (r0, w1, r1, w0);
M0 M1 M2 M3 M4
⇑ (r0); Del � (r0, w1, r1); Del � (r1)}
M5 M6 M7 M8 M9

Figure 7.10: March LRDD

84

7.2.4 Comparison of March LR with other tests

This section shows the ability of March LR to detect all realistic linked
faults, consisting of the linked faults introduced earlier in this chapter. First,
a careful theoretical analysis will be presented. Next, the additional fault cov-
erage for specific pattern sensitive faults of March LR will be indicated. And
last, an experimental evaluation of March LR fault coverage will be discussed.

Comparison based on theoretical analysis
Because M2 and M4 of March LR contain all sensitizing operations (i.e.,

r0, r1, w0, w1) they are able to sensitize all CFs. Hence, all simple faults in-
volved in the linked fault will be sensitized in an ⇑ address order (first will be
sensitized the simple fault < . . . > j1i, and last the simple fault < . . . > ikb).

March elements M2 and M4 will sensitize and detect the Low part of the
fault, because M2 and M4 sensitize all CFs involved in the Low part and both
have an ⇑ address order. The fault < . . . > jai will be sensitized as last before
the r0i or r1i operation on cell ‘i’ of march element M2 or M4 respectively.
Hence, the fault effect of < . . . > jai will differ from the expected value of
cell ‘i’ for march element M2 or M4 and will be detected by the same march
element.
If M2 does not detect any faults, one of two alternatives exist:

1. Alt.1 The fault has no Low part. Then M3 or M5 will detect the fault
< . . . > ikb which is sensitized last by M2 and M4, and because no Low
part exists the read operation of M3 or M5 will detect the fault;

2. Alt.2 The fault effect of the Low part fault < . . . > jai is a ‘1’ (masking
all previous faults).
In that case the same fault will be detected by M4 (note that CFins are
not considered, hence the fault effect of the < . . . > jai is always a ‘0’ or
a ‘1’).

Hence, if M2 through M5 do not detect any faults there are no CFs of the
considered types (linked or simple).

Table 7.3 shows the fault coverage of March LR and its derivatives (March
LRD and LRDD) and the existing march tests shown below, for the realistic
linked faults considered in this chapter. The columns ‘TF involved’ through
‘CFdsts involved’ together form all the possible faults. The second column ‘TF
involved’ specifies realistic linked faults whereby one of the linked faults is a
TF. The linked faults which include CFdsts are not detected by the existing
tests because CFdsts are sensitized by read as well as by write operations,
which makes it more difficult to avoid masking.

85

March C [20]=
{� (w0);⇑ (r0, w1);⇑ (r1, w0);� (r0);⇓ (r0, w1);⇓ (r1, w0);� (r0)}

March C− [5]=
{� (w0);⇑ (r0, w1);⇑ (r1, w0);⇓ (r0, w1);⇓ (r1, w0);� (r0)}

March A [53]=
{� (w0);⇑ (r0, w1, w0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0)}

March B [53]=
{� (w0);⇑ (r0, w1, r1, w0, r0, w1);⇑ (r1, w0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, w0)}

Algorithm B [20]=
{� (w0);⇑ (r0, w1, w0, w1);⇑ (r1, w0, r0, w1);⇓ (r1, w0, w1, w0);⇓ (r0, w1, r1, w0)}

MOVI [21]=
{⇓ (w0);⇑ (r0, w1, r1);⇑ (r1, w0, r0);⇓ (r0, w1, r1);⇓ (r1, w0, r0)}

March M [75]=

{� (w0);⇑ (r0, w1, r1, w0);� (r0); ⇑ (r0, w1);� (r1);⇑ (r1, w0, r0, w1);� (r1); ⇓ (r1, w0)}

Table 7.3: Fault coverage of March LR and traditional march tests

TF CFid CFids CFstsa CFdst CFdsts DRF
March test # #

involved CFids involved involved CFdsts involved involved

March C- 10n - - - + - - -
March B 17n + + - + - - -
Algorithm B 17n + + - + - - -
MOVI 13n + - - + - - -
March M 16n + + + + - - -
March LR 14n + + + + + + -
March LRD 17n+2D + + + + + + +
March LRDD 18n+2D + + + + + + +

aonly those linked CFsts which do not satisfy Proposition 3(b.3)

Additional March LR fault coverage
Existing march tests, such as March A, March B and Algorithm B are designed
to detect linked faults consisting of an arbitrary number of simple faults of the
same type; in this case of type CFin or CFid. March M, in addition, is able
to detect linked faults consisting of an arbitrary number of simple faults which
may be of type CFin or CFid, except for the CFins of Proposition 1 and ex-
cept for the following (complex) linked fault: <↓; ↑> ik1# <↑; ↓> ik2# <↑; ↑>
& <↓; ↓> ik3.

86

Below, a list of linked faults is given which will be detected by March LR
but not by either March A, and/or March B, and/or March C. In addition,
March LR detects any NPSF ‘Neighborhood Pattern Sensitive Fault’ (ANPSF,
PNPSF, or SNPSF [5]) assuming a homogeneous neighborhood: this is a neigh-
borhood whereby all cells, except the base cell, have the same value. This is
because of the fact that M2 and M4 do not change the state of the neighbor-
hood while all possible CFs are sensitized for each of the cells, hence the state
of the neighborhood does not change (remains activated).

• <↓ /1 >i#<↑; �>ik - not detected by March A;

• <↓; �>ik1#<↓; 1 >ik2 - not detected by March A or March B;

• <↑; ↓>j1i # <↑; �>j2i - not detected by March A or March B;

• <↑; ↑>j1i # <↑; �>j2i # <↓; �>j2i # <↑; �>ik - not detected by March
A or March B;

• <↑; ↓>j1i # <↓; �>j2i # <↓; �>j3i # <↑; �>j3i - not detected by March
A or March B;

• ANPSF 〈0, 0, 0, ↑, 0, 0, 0, 0; 1〉 - not detected by March A, March B or
March C;

• PNPSF 〈0, 0, 0, 0, 0, 0, 0, 0; ↑ /0〉 - not detected by March A, March B or
March C;

• SNPSF 〈1, 1, 1, 1, 1, 1, 1, 1; ∀/1〉 - not detected by March A, March B or
March C.

Industrial evaluation of March LR

In [46] an experiment has been performed whereby 1896 1Mx4, DRAM chips
have been tested at room temperature (Tr = 25oC). In this situation 731 of
the chips failed. The passing chips (except for 25 which were mechanically
damaged) were subsequently tested at high temperature (Th = 70oC). In this
case only 471 failed. A total of 44 test algorithms were used in this experiment,
and the tests were applied with up to 96 different stress conditions (Vcc voltage
levels, data backgrounds, timing variations, and addressing variations).

Table 7.4 shows some of the test results for comparison purposes. It consists
of two 5×5 sub-matrices; one for test results at Tr = 25oC and one for test
results at Th = 70oC. The diagonal entries of each sub-matrix show the fault
coverage (FC) of the corresponding tests; e.g., for Tr and matrix element [5,5]
FC = 235 means that March LR detects 235 faults when performed at 25oC
(room temperature). The non-diagonal elements represent the intersection of

87

Table 7.4: DRAM fault coverage

Tr = 25oC Th = 70oC
Test Length 1 2 3 4 5 1 2 3 4 5

1 March C- 10n 234 212 216 144 218 163 148 148 70 150
2 March A 15n 212 222 217 146 210 148 157 153 67 145
3 March B 17n 216 217 232 147 213 148 153 157 68 144
4 MOVI 13n 144 146 147 201 144 70 67 68 144 70
5 March LR 14n 218 210 213 144 235 150 145 144 70 173

the corresponding tests: e.g., for Th and matrix element[5,3] the FC = 144,
which means that of the total number of faults detected by March B (157
faults), 144 are also detected by March LR.

From the results presented in Table 7.4 we can conclude that March LR
outperforms the other tests. It performs much better than the even longer
tests March A (15n) and March B (17n).

7.3 Conclusions

Many existing march tests have been designed to detect simple as well as linked
faults. Linked faults were considered to consist of simple faults of the same type
only. This fact is considered invalid in case of modern memory structures. In
this chapter a thorough analysis of linked faults was presented resulting in
the subclass of realistic linked faults. It has been shown that existing march
tests (such as March A and March B) do not detect all linked faults which are
considered realistic.

A set of conditions the march tests have to satisfy was derived in order
to detect all realistic linked faults. These conditions were used to design the
new tests March LR, March LRD and March LRDD; they have the property
to detect all realistic faults and have a shorter test length than comparable
industry adopted tests. In addition, they can detect NPSFs with a homogenous
neighborhood. Industrial results support our claim about the superiority of
March LR fault coverage compared to other widely used tests.

88

Chapter 8

Linked Address Decoder

Faults

any march tests have been designed in the past with the emphasis on
faults in the memory cell array; while address decoder faults (AFs)
have not been analyzed very thoroughly. Only very simple AFs are

shown to be detectable by most of the existing memory tests.

Linked faults complicate test design because of the possibility of masking.
As indicated earlier, it is expected that their importance will grow when deep
sub-micron technologies are used for the implementation of memory structures.
Although the statistical significance of this class of faults has not been estab-
lished yet, one needs industrial (and therefore usually confidential) data for
this; the industrial emphasis on low defect levels and utmost fault coverage
motivates this study. Many march tests have been designed [5] to detect linked
faults in the memory cell array; ignoring the extra conditions a march test has
to satisfy in order to detect an AF linked with other AFs, and AFs linked with
faults in the memory cell array. This will be the subject of this chapter; it
will present a systematic set of conditions for detecting linked faults involving
AFs. In addition, the results show that tests can easily be modified to detect
this class of faults without any increase, or with only a small increase, in test
time. The subject is therefore highly relevant to test designers interested in
high fault coverage; in addition, it is of academic interest because the difficult
and until now largely neglected problem of linked AFs has been analyzed and
solutions are presented.

Section 8.1 gives the analysis of unlinked address decoder faults (AFs) and
gives the conditions march tests have to satisfy in order to detect unlinked
AFs. Section 8.2 derives conditions march tests have to satisfy in order to
detect an AF linked with memory cell array faults (MCAFs) and an AF linked

89

with other AFs. Section 8.3 analyzes the detection capabilities of a set of well-
known march tests for (linked) AFs. Many tests are shown not to be able to
detect all (linked) AFs. Finally, Section 8.4 ends with the conclusions.

8.1 Conditions for detecting unlinked address

decoder faults

For the sake of convenience we reintroduce the four fault combinations in the
address decoder presented earlier in Chapter 3. They are depicted in Figure 8.1
below.

�Ax �Cx
�Ax

�Ay

�Cx

�Cy��
�

�
���

�Ax

�Ay

�Cx

�Cy

�

�
�

�
���

�Ax

�Ay

�Cx

�Cy

�

��
�

�
���

fault A (1+2) fault B (1+3) fault C (2+4) fault D (3+4)

Figure 8.1: Combinations of address decoder faults

Depending on the memory technology, the effect of AFs on memory read op-
erations can be according to the following cases:

Case A: When no cell will be accessed with a certain address (Figure 8.1,
fault A and B) the effect of a read operation can be that:

1. the cell behavior is that of a SAF. This applies to DRAMs, and to
SRAMs which use a single bitline per column.

2. the cell behavior is that of a SOF. This applies to SRAMs which use
differential sense amplifiers.

Case B : When multiple cells, whereby at least one cell contains a ‘0’ and
at least one other cell contains a ‘1’ value, are read with a certain address
(Figure 8.1, fault D) the result of the read operation can be:

1. deterministic. This will be the case for DRAMs; they produce the
AND or the OR of the two read values. This case also applies to
SRAMs which use a single bitline per column.

2. not deterministic (random). This applies to SRAMs which use a
differential sense amplifier. The detection of this fault cannot be
done based on the read result of the multiple cell access; it should
be based on reading other cells involved in the fault [5].

90

Table 8.1 shows the memory types for which the four combinations of the Cases
A and B apply; note that the combinations A.1 - B.2 and A.2 - B.1 do not
occur in real memories.

For testing AFs for DRAMs Case A.1 and Case B.1 apply, this AF will
therefore be called AFdr. For testing SRAMs Case A.2 and Case B.2 apply,
this AF will be called AFsr. The AFs used traditionally in literature, and until
this section in this thesis, do not distinguish between SRAM and DRAM and
consist of Case A.1 and B.2. This type of traditional AF will be referred to as
AFtr from hence for. In summary, this means that the fault type AF consists
of three subtypes: AFsr, AFdr, and the AFtr; whereby the fault subtype AFdr
consists of the following sub-subtypes (as shown below): AFdr-and, AFdr-or,
and AFdr-ao.

Table 8.1: Memory types for which Cases A and B apply
Read not Read Memory type
connected cell multiple cells

A.1: SAF B.1: Deterministic AFdr: DRAM
(SRAM with 1 bitline)

A.1: SAF B.2: Random AFtr: traditional AF
(non existing)

A.2: SOF B.1: Deterministic (non existing)
A.2: SOF B.2: Random AFsr: SRAM

In order for a march test to detect all unlinked address decoder faults, it has
to satisfy the following conditions:

AFdr Three cases can be distinguished, depending on the result of reading
multiple cells which do not all have the same value.
Condition 1dr-and: The read result is the boolean AND function of the read
values. In order to detect unlinked AFdrs of this subsubtype (which are called
AFdr-and), the march test has to contain the following two pairs of march el-
ements [5]:

1.
 (. . . , w0);
 (r0, . . .)

2.
 (. . . , w1);
 (r1, . . . , w0)

Condition 1dr-or: The read result is the OR function of the read values. In
order to detect unlinked AFdrs of this sub-subtype (which are called AFdr-or),
the march test has to contain the following two pairs of march elements [5]:

1.
 (. . . , w0);
 (r0, . . . , w1)

91

2.
 (. . . , w1);
 (r1, . . .)

Condition 1dr-ao: The read result is the AND or OR of the read values (the
memory technology is not known to the test designer). The march test has to
contain the following three march elements to detect the AFdrs of the subsub-
type AFdr-ao:

 (. . . , wx);
 (rx, . . . , wx̄);
 (rx̄, . . . , wx)

AFtr Condition 1tr: any AFtr is detectable by a march test which contains
the following two march elements [50]:
⇑ (rx, . . . , wx̄) and ⇓ (rx̄, . . . , wx).

AFsr Condition 1sr: any AFsr is detectable by a march test which satisfies
Condition 1tr and, additionally, contains a march element of the form (which
may be one of the march elements of Condition 1tr):

 (rx, . . . , rx̄, . . .)
From the above conditions one can determine the following hierarchy (1 is the
strongest condition) in conditions a march test has to satisfy in order to detect
unlinked AFs. If Condition 1sr, for detecting AFsrs, is satisfied, all other AFs
(AFtrs, AFdrs, AFdr-ands, AFdr-ors, and AFdr-aos) will be detected; this is
the main reason why we used Condition 1sr in Chapter 7.

1. Condition 1sr for AFsrs;

2. Condition 1tr for AFtrs;

3. Condition 1dr-ao for AFdrs, when the memory technology is not known;

4. Condition 1dr-and or Condition 1dr-or for AFdrs, when the memory tech-
nology is known at advance.

8.2 Conditions for detecting linked address de-

coder faults

This section establishes the conditions a march test has to satisfy in order to
detect ‘ AF # faults’; these faults may be AFs or MCAFs. The conditions for
detecting simple MCAFs derived in Chapter 7 will be used in this section. A
special role is dedicated to Conditions 2 and 5 for detecting simple SOFs and
CFs respectively. Section 8.2.1 gives the conditions for march tests to detect
‘AF # one fault’; Section 8.2.2 addresses the conditions for ‘AF # more than
one fault’. The starting point is the AF subtype AFsr, and if a condition can
be weaker due to the AFdr fault subtype (in case of DRAM memories), this
will be explained additionally.

92

8.2.1 AF # one fault

The conditions march tests have to satisfy in order to detect an ‘AF # one
fault’ (an AF linked with one fault) are derived below for each of the faults.

AF # AF This combination is very realistic (e.g. short between two word
lines) (see Figure 8.2). Each of the two march elements of Condition 1tr will
detect the fault, due to the its symmetric structure. In case of DRAMs, only
Condition 1dr has to be satisfied.

�Ax

�
Ay

�Cx

�
Cy

�

��
�

�
����

�
�

���

Figure 8.2: AF linked with AF combination

Proposition 4: The AFs A and B of Figure 8.1 dominate any other MCAFs
(arbitrary number) because the cell will not be accessed; therefore any other
fault in the same cell, in addition to AFs A and B of Figure 8.1, is irrelevant.
The combination with other faults will be detected by any march test which
detects SOFs (see Condition 2). Therefore, regardless of the conditions for
detecting faults C and D of Figure 8.1, the condition for detecting SOFs has
to be satisfied.

In the remainder of this section the AFsr C and AFsr D (multiple cell
access) of Figure 8.1 will be considered.

AF#SAF This combination can always be detected by a test for AFs,
because those tests will also detect the SAFs.

AF#TF This linked fault can be detected by any march test for AFs which
in addition satisfies Condition 1T.
Condition 1T: Any march test will detect an AF # TF if it detects the AF and
contains a march element of the form:
(. . . , wx, rx) [50, 5].

AF#DRF The AF linked with a DRF will be detected by a march test
which detects the AF (DRF development time is irrelevant in the case that AF
is detected). Hence only the detection of the AF is required; for SRAMs this
will be Condition 1sr, for DRAMs Condition 1dr.

AF#CF Two alternatives are possible:

1. The AF is linked with the coupling cell of the CF, see Figure 8.3. Figure
8.3(a) shows the case whereby the coupled cell of the CF is not involved
in the AF, while the coupled cell of the CF of Figure 8.3(b) is involved in
the AF. The fault AF # CF of Figure 8.3(a) can be represented as the

93

linked CF of Figure 8.3(c) whereby the number of linking faults is equal
to the number of addresses connected to cell i and the subtype of each of
the linking faults is the same. This means that, according to Proposition
1 derived in Chapter 7, the fault of Figure 8.3(a) is not detectable by any
march test when the CF is of type CFin and the number of addresses
connected to cell i is even. In all other cases, this fault is detectable by
a test for CFs or for AFs. The fault of Figure 8.3(b) is always detectable
by a test for CFs or for AFs; this is because when a write operation takes
place via Aj2 the effect of the CF will be overruled by the effect of this
write operation such that only the AF remains, while in case of writing
to address Ai only the CF remains.

2. The AF is linked with the coupled cell of the CF. This alternative will be
analyzed in the remainder of this section.

(b)

j
1

j
2 i

A A Aj j i1 2

< ; >x y

(a) (c)

j ij1 2

< ; >

< ; >

x

x

y

y

j
1

j
2 i

A A Aj j i1 2

< ; >x y

Figure 8.3: AF # CF with the AF in the coupling cell

As already introduced in Chapter 7, the address orders of all linked faults
consisting of an AF and a CF (or two CFs) can be split into three address
order classes:

• Low class: < x; y >ikp #< x; y >ikq The coupled cell has the lowest
address, and involves two simple faults (Figure 8.4(a & b));

• Middle class: < x; y >ji #< x; y >ik The coupled cell lies between the
two coupling addresses (Figure 8.4(c & d));

• High class: < x; y >jpi #< x; y >jqi The coupled cell has the highest
address, and involves two simple faults (Figure 8.4(e & f)).

All AF # CF of the Middle class, see Figure 8.4(c & d), will be detected by a
march test which can detect AFs or CFs as simple faults, because in this case
masking is not possible and one of the faults can be detected before the other
will be sensitized.
Condition 1L : Any march test will detect an ‘AFsr # CF’; i.e., an AFsr linked

with a single CF, if this march test satisfies the following three subconditions:

94

22

A

< ; >

A A A A A

x y

j
1

j
2 i j j i

1 2

A

< ; >

A A A A Aj j j ji i1 12 2

x y < ; >x y

j i kkij

A A A AA Aj ji ik k

< ; >x y < ; >x y

(a) (b)

(c)

(f)

(d)

(e)

i

i

< ; >x y

k
1i

i k kkk1 2 1 2

k

Figure 8.4: AF # CF with the AF in the coupled cell

1. the march test detects SOFs. This is required for faults A and B of Figure
8.1 (see Condition 2);

2. the march test detects all simple CFs (Condition 5);
Please note that in case the simple CF is a CFin, the linked fault will be
detected if and only if (iff) the CFin is sensitized and detected by a single
march element (in order to avoid masking by the AF). This is important
for the linked faults of Figure 8.4(b & f) because the CFin and AF may
mask each other. The fault of Figure 8.4(b) will be detected by the first
march element of Case A.2, in case of the fault < y; x̄ >; or Case B.2, in
case of the fault < y; x > of Condition 5. Only Case A.2 or Case B.2 is
required because a CFin behaves as a < y; x >, when the expected value
of the coupled cell is x̄, and also as < y; x̄ >. Similarly the fault of Figure
8.4(f) will be detected by the first march element of Case A.1 or B.1 of
Condition 5;

95

3. the march test detects all simple AFs (Condition 1sr).

The faults of Figure 8.4(b & f) will be detected because of Condition 1L(2);
this is due to the fact that the CF will be detected because the address of the
coupling cell of the CF is closer to the address Ai (of the coupled cell) than
the address Aj2 or Ak2 of the AF. The faults of Figure 8.4(a & e) will be de-
tected because of Condition 1L(3); and the faults of Figure 8.4(c & d) will be
detected by any march test which satisfies Condition 1L(2) or Condition 1L(3).

When the particular case of AF linked with CFin is considered a special condi-
tion can be defined. We would like to comment on the feasibility of such faults
considering the concerns related to the validity of the CFin fault model [74].
Condition 5I: A march test which has to detect a CFin # AF has to satisfy
Condition 5 in one of the two following ways: Case A.1 together with Case B.2
or Case A.2 together with Case B.1 (i.e., both address orders are required; see
Condition 1L(2)).

Table 8.2 summarizes the conditions a march test must satisfy in order to
detect a certain combination of ‘AF # other fault’ (C. is a shorthand for Con-
dition). As mentioned earlier the CFin combinations are not considered of
practical interest and are not presented in the table. The interested reader can
expand the table using the Condition 5I introduced above.

Table 8.2: Conditions for ‘AF # one fault’

Type ‘Other fault’
address AF SAF SOF TF DRF CF
fault

AFsr C.1tr C.1sr C.1sr C.1sr C.1sr C.1L
AF C.1tr C.1tr C.2 C.1sr C.1tr C.1L

AFdr C.1dr C.1dr C.2 C.1sr C.1dr C.1L

8.2.2 AF # more than one coupling fault

A special case of interest is when more than one CF is involved in the fault
(‘AF # more than one fault’). For this case the following observations hold:

1. An AFsr dominates any MCAFs if the AFsr is of subtype A or B of Figure
8.1 (Proposition 4);

2. For the subtypes C and D of Figure 8.1 it is important that the march test
be able of detecting the simple AF and each of the subtypes of the simple

96

CFs involved in the linked fault with a single march element. Assume
the fault of Figure 8.5(a), involving simple faults of the Low part (i.e.,
all faults with cell addresses which are less than or equal to the coupled
cell address). Note that if a march test can detect the AF involved in
this fault (thus the test has to have a march element: ⇑ (rx, . . . , wx̄) in
order to detect the AF) the detection of the entire fault is ensured. In
case of the fault of Figure 8.5(b), the detection of the last (< x; y > jai)
CF ensures the detection of the entire fault iff the fault is detectable by a
single march element such that masking cannot occur. Similar arguments
apply to the simple faults of the High part of the ‘AF # more than one
fault’.

(b)

i

A

< ; >

A Aj j i

x y

j
1 ja-1 ja

a-1 a

(a)

i

A A Aj j i

< ; >x y

j1

aa-1

ja-1 aj

Figure 8.5: AF # (more than one) CFs

Condition 1LA: Any march test will detect ‘AF # CFs’; i.e., an AF linked with
any number of CFs, if the test satisfies the following two subconditions (see
above):

1. the march test detects all simple CFs in such a way that faults of each
subtype are sensitized and detected by a single march element;

2. the march test detects all simple AFs.

8.3 March test coverage for linked address de-

coder faults

Hereafter we propose a test for all simple faults as well as all linked faults
involving an arbitrary number of simple faults.
Theorem 1: Assume a multiple linked fault, let S= {f1, f2, ...} be the set of
involved simple coupling faults. If a particular march test M guarantees the
detection of each of the faults < y; x > jai and < y; x > ik1 (ja and k1 are the
coupling cells with the closest addresses to the coupled cell) of S with a single
march element, then that march test can detect linked faults consisting of any

97

number of faults of S. Exceptions consist of some faults that are not detectable
by linear tests [72].
Proof: If a march element of M can sensitize and detect the simple fault in
position jai (which means the march element has to have an ⇑ address order)
all faults with lower addresses are irrelevant because the fault in jai will always
be detected by this march element. If a march element of M can sensitize and
detect the fault in position ik1 (which implies that the march element has a ⇓
address order) all faults with higher addresses are irrelevant because the fault
in ik1 will always be detected by this march element.
Below the test March LA will be derived, using MOVI as a starting point. It
will be shown that March LA can detect all simple faults as well as all linked
faults. More precisely, all linked CFdsts, CFins, CFids, CFsts and TFs as well
as all linked faults involving AFs; the main focus of this chapter.

Suppose S = { < r0; ↑>, < r0; ↓>, < r1; ↑>, < r1; ↓>, < w0; ↑>, < w0; ↓>,
< w1; ↑> and < w1; ↓> }, which is the set of all CFdsts. Now we will start
with the test MOVI [21, 5] as a starting point, and modify it such that it
conforms to Theorem 1 for S (the result will be March LA, which detects all
linked CFdsts, see Figure 8.7). By inspecting MOVI, see Figure 8.6, it is not

MOVI = {
⇓ (w0); ⇑ (r0, w1, r1); ⇑ (r1, w0, r0);
M0 M1 M2
⇓ (r0, w1, r1); ⇓ (r1, w0, r0)}
M3 M4

Figure 8.6: MOVI

difficult to see that some operations required to sensitize all CFdsts subtypes
are missing. If M1, in addition, contains the w0 operation, then all CFdsts of
type < p; ↑> jai, p ε {r0, r1, w0, w1}, will be sensitized and detected by M1
(see Figure 8.7). The same applies to M2: if M2 in addition contains the w1
operation, all faults of type < p; ↓> jai will be sensitized and detected. M3 and
M4 are required to allow sensitization and detection of the faults < p; ↑> ik1

and < p; ↓> ik1, respectively. From the above discussion it should be obvious
that M1 can detect all CFdsts of subtype < p; ↑> jai, M2 can detect all CFdsts
of subtype < p; ↓> jai, M3 can detect all CFdsts of subtype < p; ↑> ik1, and
M4 can detect all CFdsts of subtype < p; ↓> ik1, p ε {r0, r1, w0, w1}. Because
March LA satisfies Theorem 1, all linked CFdsts (involving an arbitrary num-
ber of CFdsts) will be detected. Below it will be shown that March LA also
detects: linked CFins, CFids and CFsts, linked faults whereby the coupling cell
influences the coupled cell in more than one way, and AFs linked with AFs or
MCAFs.
AFs # AFs (or MCAFs except for DRF) detection: March LA detects

98

March LA = {
⇓ (w0); ⇑ (r0, w1, w0, w1, r1); ⇑ (r1, w0, w1, w0, r0);
M0 M1 M2
⇓ (r0, w1, w0, w1, r1); ⇓ (r1, w0, w1, w0, r0) ⇓ (r0)}
M3 M4 M5

Figure 8.7: March LA

all AFs linked with AFs or MCAFs because March LA detects SOFs and sat-
isfies Condition 1LA as follows:
Condition 1LA(1) is satisfied by March LA via march elements M1 through
M4 and Condition 1LA(2) is satisfied via march elements M1 and M4 or via
M2 and M3.

Linked CFins, CFids and CFsts detection: In addition to linked CFdsts
(involving any number of CFdsts) and linked AFs, March LA (which has a test
length of 22n) also detects linked CFins, CFids, and CFsts, as shown below (a
TF involved in a linked fault will be detected because Condition 2 is satisfied
by M1, M2, M3 and M4).

Linked CFins which do not satisfy Proposition 1 will be detected : assume
the CFin <↑; �> jai. The fault will be sensitized twice by M1 (because M1
contains two w1 operations) such that the fault effect is canceled and therefore
cannot be detected (the fault in position ja−1i can be considered as the last
fault in this case and is easily detected because it is not another CFin due to
Proposition 1); however this fault will be sensitized and detected by M2. The
CFin <↓; �> jai will, similarly, be detected by M1 (and not by M2); the CFin
<↑; �> ik1 will be detected by M4, and the CFin <↓; �> ik1 by M3.

Each of the march elements M1 through M4 sensitizes all CFids. The
CFid < q; ↑> jai, q ε {↑, ↓}, will be sensitized and detected by M1; the CFid
< q; ↓> jai, will be sensitized and detected by M2, etc.

CFsts dominate other faults (see Proposition 2). First assume a ‘CFst #
any other CFs’; the CFst may have its coupling cell in position jx, where x ε
{1 . . . a} (lower address); or ky where y ε {1 . . . b} (higher address). Because
CFsts cannot be masked (because of the dominance property); they will be
detected by March LA if all CFst subtypes are sensitized and detected, for
both cases: the coupling cell in position jx and in position ky. For example the
CFst < 1; 1 > jxi will be sensitized and detected by M1 (because the coupling
cell is left in the sensitized state “1” by the last “w1” operation of M1, and
thereafter detected by the first “r0” operation of M1). The CFst < 0; 1 > jxi
will be sensitized by M1 and detected by M2. Because of the symmetry of the
faults and the march elements, all CFsts will be detected; however the CFst
< 0; 1 > iky requires the extra march element M5: ⇓ (r0). Linked faults con-
sisting of more than two CFsts will be detected by March LA, iff those linked

99

faults do not satisfy Proposition 3(b.3).

< ; >x y

(a) (c)(b)

< ; >x y

1

2
-

j
1

i
j
2 i

< ; >x y

< ; >x y

j
1

j
2 i

< ; >x2 y-
< ; >x1 y 2

1

-

j

Figure 8.8: Multiple linked fault with single coupling cell

Linked faults whereby the coupling cell influences the coupled cell
in more than one way: The linked fault of Figure 8.8(a), i.e. linked faults
whereby a single coupling cell influences the coupled cell in more than one way,
will also be detected by March LA. In order to show this the address orders of
all linked faults consisting of two CFs, or an AF and a CF, can be split into
the three already introduced address order classes; Middle, High and Low.

Now, consider the linked fault of Figure 8.8(a) which consists of the fault
< x1; y > (with sensitizing condition x1 and fault effect y) linked with the fault
< x2; ȳ >. Because the fault of Figure 8.8(a) is of the High class, it has to be
detected by M1 or M2. Assume that when M1 is applied the fault behaves as
shown in Figure 8.8(b); i.e., the fault < x1; y > is sensitized first and thereafter
the fault < x2; ȳ >. Then, when M2 is applied, the fault will behave according
to Figure 8.8(c) because the sequence of sensitizing operations of M2 is the
exact inverse of those of M1.

If masking occurs when M1 is applied, this means that the fault effect of
< x2; ȳ > = < x2; 0 > (i.e., ȳ = 0) in case Figure 8.8(b) applies, the same
linked fault will also be masked when M2 is applied because the last sensitized
fault < x1; y > = < x1; 1 >; i.e., y = 1 which is the expected value in cell ‘i’.
However, the linked fault < x1; 1 >#< x2; 0 > will be sensitized by M3 and
detected by M4; because the sensitizing operations of M3 are identical of those
of M1, but the expected values are different. Hence, the fault effect < x2; 0 >
will be sensitized by M3 and detected by M4.

Faults of the Low class which are not detected by M3 and M4, similarly,
will be sensitized by M1 and detected by M2.

March LA [77] was derived to deal with all linked faults based on the fault
primitives as known at that time. In respect to linked and unlinked AFs, this
march test is compared with a list of well-known memory tests in Table 8.3.
This table describes the result of applying the conditions for detecting AFs to

100

Table 8.3: Test length and fault coverage of (linked) address decoder faults

March test Length Unlinked AFs Linked AFs
C 1tr C 1dr C 1sr C 2 C 1T C 1L C 1LA

MATS [19] 4n - - - - - - -
MATS+ [19] 5n + + - - - - -
MATS++ [5] 6n + + - - - - -
Marching 1/0 [18] 14n + + - - - - -
March X [5] 6n + + - - - - -
March C [20] 11n + + - - - - -
March C- [5] 10n + + - - - - -
March A [53] 15n + + - - - - -
March Y [5] 8n + + - - - - -
March B [53] 17n + + + + + + -
Algorithm B [20] 17n + + + + + + -
MOVI [21] 13n + + + + + - -
IFA-6 [6] 6n + + - - - - -
IFA-9 [6] 12n + 2D + + - - - - -
IFA-13 [6] 16n + 2D + + + + + - -
March G [73] 23n + 2D + + + + + + -
March GS [73] 24n + 2D + + + + + + -
March M [75] 16n + + + + + + -
March U [76] 13n + + + + + + -
March U- [76] 12n + + - - + + -
March UD [76] 13n + 2D + + + + + + -
March UD- [76] 12n + 2D + + - - + + -
March LR [45] 14n + + + + + + -
March LRD [45] 15n + 2D + + + + + + -
March LRDD [45] 18n + 2D + + + + + + -
March LA [77] 22n + + + + + + +

the list of well-known memory tests. The majority of the existing tests are
unable to detect simple AFsrs; i.e., they do not satisfy Condition 1sr. Only a
few tests are able to detect an AFsr # CF (i.e., they satisfy Condition 1L);
while only March LA, can detect all linked AFs (AFs linked with another AF or
with any number of faults of any type). This is because only March LA satisfies
Condition 1LA and complies to Theorem 1. In [72] a more elaborate study of
the fault coverage of March LA for different MCAF combinations is presented.
In addition, three derivatives of it; March LA-, March LAD and March LADD-
, are carefully investigated. Those optimizations fall out of the scope of this
chapter since they are concerned with specific CF cases and not focusing on
the AFs. The results shown in Table 8.3 confirm our claim that when linked
AF are targeted only March LA can provide sufficient fault coverage for the
cost of increased test length (22n).

101

8.4 Conclusions

A new classification of the AF fault model has been introduced. It has been
shown, that when the memory technology is taken into consideration, differ-
ent requirements exist in order to detect all AFs. The traditionally used AF
model (AFtr) has been considered as unrealistic due to the internal structure
of SRAMs and DRAMs.

The set of conditions march tests have to satisfy in order to detect AFs
was derived for all simple and all linked AFs. Also the list of propositions was
augmented to set the margins of abilities of the march tests, in cases when AFs
are involved in the linked fault. March LA was derived and its superiority in
detecting linked faults when one of the faults is AF was shown.

102

Chapter 9

Conclusions

n this thesis we proposed and classified DRAM specific fault models relevant
for state-of-the-art semiconductor technologies as available in 2007. We
defined and validated a set of DRAM specific march tests to cope with the

detection of the above models. We also proposed various optimizations for test
time reduction and/or increased fault coverage for DRAM. In respect to linked
faults, that are increasing in importance with the deep sub-micron technologies,
we proposed a systematic methodology for deriving conditions and tests. We
also carefully investigated the detection conditions of linked memory faults
when one of the faults is an address decoder fault. For both cases appropriate
march tests March LR (and its derivatives) and March LA were introduced.
The fault coverage of these tests was compared to classic march test widely
used by the industry. March LR has been widely adopted by the industry, i.e.
HP used it in their Built in Self Test (BIST) engine used to test the cache
memory of the PA8500 processor. In addition, Synopsis offers a commercial
BIST IP-module that utilizes March LR.

9.1 Major Contributions

The major contributions of this thesis are:

• The definition of extended space of memory faults including linked faults.
It is a general taxonomy that describes any possible faulty behavior in
modern memories. Three distinct classes are defined with respect to the
number of cells, operations and respectively fault primitives involved.
This general space is defined in Chapter 3.

• The establishment of DRAM specific fault models and corresponding
march tests to detect them. The complete set of two-operation, single-
cell dynamic faults has been first evaluated using real industrial products

103

(Chapter 4). In Chapter 5 the proposed fault models were first evaluated
using SPICE simulation. Thereafter six different march tests, March
H1C, March H2C, March T1C, March T2C, March S1C and March S2C,
were proposed for single and two-cell hard, transient and soft faults re-
spectively. The tests for transient and soft faults were additionally opti-
mized for cases when the memory layout is known in Chapter 6.

• The concept of linked memory faults was thoroughly studied. The huge
space of all theoretically possible linked faults was reduced to a much
smaller sub set of manageable size, very likely to occur (realistic) linked
faults. A set of conditions march tests have to satisfy in order to detect
all realistic faults were proposed. March LR and its derivatives were
proposed to detect this fault class. Industrial evaluation supported our
theoretical claim on this issue. This was the topic of Chapter 7.

• The careful investigation of address decoder faults unlinked and linked
with other simple faults. In respect to the unlinked AF faults the precise
implementation technology was taken in consideration. A set of condi-
tions to detect all AFs was presented. In addition, the set of conditions
was extended with the case when one of the faults involved in a linked
fault is AF. March LA was proposed to deal with all linked address de-
coder faults. The linked address decoder faults were dealt with in Chap-
ter 8.

9.2 Open issues

The following open issues can be considered for future work on the topic:

• Investigation of the case when multiple address decoder faults are involved
in a linked fault. With the future decrease of the feature sizes the chance
to have memory circuits with more then one AF operating on the same
victim cell is expected to grow. This is why it is worth proceeding in this
direction.

• Design of a BIST circuits that would generate the tests presented in this
thesis. Especially the more recent DRAM specific march tests need more
attention. March LR was already implemented and commercialized as a
BIST engine by Synopsis.

• Investigation of built in self repair (BISR) algorithms that closely collab-
orate with the proposed march tests. It is envisioned that using only fault
bit map as interface between the test and the repair algorithm, some of
the information available while testing is lost. Novel ways for suck close
collaboration are expected to increase the quality of the repair action.

104

Bibliography

[1] “International Technology Roadmap for Semiconductors (ITRS),” 2005.
[Online]. Available: http://public.itrs.net

[2] Y. Zorian and S. Shoukourian, “Embedded-memory test and repair: in-
frastructure IP for SoC yield,” in Design & Test of Computers, vol. 20,
no. 3. IEEE, May-June 2003, pp. 58–66.

[3] S. Kuo and W. Fuchs, “Efficient spare allocation for reconfigurable arrays,”
in IEEE Design & Test of Computers, vol. 4, no. 1, February 1987, pp.
24–31.

[4] M. Inoue, T. Yamada, and A. Fujiwara, “A New Testing Acceleration
Chip for Low-Cost Memory Tests,” in IEEE Design & Test of Computers,
vol. 1, 1993, pp. 15–19.

[5] A. van de Goor, Testing Semiconductor Memories, Theory and Practice.
Gouda, The Netherlands: ComTex Publishing, 1998.

[6] R. Dekker, F. Beenker, and L. Thijssen, “A Realistic Fault Model and Test
Algorithms for Static Random Access Memories,” in IEEE Transactions
on Computer-Aided Design, vol. C9, no. 6, June 1990, pp. 567–572.

[7] I. Schanstra and A. van de Goor, “Industrial evaluation of Stress Combi-
nations for March Tests Applied to SRAMs,” in IEEE International Test
Conference, 1999, pp. 983–992.

[8] A. van de Goor and J. de Neef, “Industrial Evaluation of DRAMs Tests,”
in Design Automation and Test in Europe, March 1999, pp. 623–630.

[9] D. Adams and E. Cooley, “Analysis of Deceptive Read Destructive Mem-
ory Fault Model and Recommended Testing,” in IEEE North Atlantic Test
Workshop, May 1996.

[10] Z. Al-Ars and A. van de Goor, “Impact of Memory Cell Array Bridges on
the Faulty Behavior in Embedded DRAMs,” in Asian Test Symposium,
2000, pp. 282–289.

105

[11] S. Hamdioui and A. van de Goor, “Experimental Analysis of Spot De-
fects in SRAMs: Realistic Fault Models and Tests,” in Ninth Asian Test
Symposium, 2000, pp. 131–138.

[12] A. van de Goor and Z. Al-Ars, “Functional Fault Models: A Formal Nota-
tion and Taxonomy,” in Proceedings of the IEEE VLSI Test Symposium,
2000, pp. 281–289.

[13] Z. Al-Ars and A. J. van de Goor, “Static and Dynamic Behavior of Memory
Cell Array Opens and Shorts in Embedded DRAMs,” in Proceedings of
Design Automation and Test in Europe, 2001, pp. 496–503.

[14] S. Hamdioui, Z. Al-ars, and A. van de Goor, “Testing Static and Dynamic
Faults in Random Access Memories,” in Proceedings of the IEEE VLSI
Test Symposium, 2002, pp. 395–400.

[15] S. Hamdioui, R. Wadsworth, J. D. Reyes, and A. J. van de Goor, “Impor-
tance of Dynamic Faults for New SRAM Technologies,” in European Test
Workshop, 2003, pp. 29–34.

[16] M. Nicolaidis, “Design for Soft Error Robustness To Rescue Deep Submi-
cron Scaling,” in Proceedings of ITC, 1998, p. 1140.

[17] R. C. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” in Device and Materials Reliability, IEEE Transactions on,
vol. 5, no. 3, Sept 2005, pp. 305–316.

[18] M. Breuer and A. Friedman, Diagnosis and Reliable Design of Digital
Systems. Woodland Hills, CA, USA: Computer Science Press, 1976.

[19] R. Nair, “An Optimal Algorithm for Testing Stuck-at Faults Random Ac-
cess Memories,” in IEEE Transactions on Computers, vol. C-28, no. 3,
1979, pp. 258–261.

[20] M. Marinescu, “Simple and Efficient Algorithms for Functional RAM Test-
ing,” in Proceedings of the IEEE International Test Conference, 1982, pp.
236–239.

[21] J. D. Jonge and A. Smeulders, “Moving Inversions Test Pattern is Thor-
ough, Yet Speedy,” in Computer Design, 1976, pp. 169–173.

[22] S. Hamdioui, A. van de Goor, and M. Rodgers, “March SS: A Test for
All Static Simple RAM Faults,” in Proceedings of the IEEE International
Workshop on Memory Technology, Design and Test, 2002, pp. 95–100.

[23] B. Vermeulen, C. Hora, B. Kruseman, E. Marinissen, and R. van Rijsinge,
“Trends in testing integrated circuits,” in Proceedings of the IEEE Inter-
national Test Conference, Oct 2004, pp. 688–697.

106

[24] S. McGregor, “The Eye of The Storm in Focus,” in EE Times, 2003.
[Online]. Available: http://www.eet.com/story/OEG20030701S0040

[25] B. S. Meyerson, “42nd DAC keynote: How Does One Define ”Technology”
Now That Classical Scaling Is Dead (and Has Been for Years)?” 2005.

[26] Z. Al-Ars, S. Hamdioui, G. Mueller, and A. van de Goor, “Framework for
Fault Analysis and Test Generation in DRAMs,” in Proceedings of Design,
Automation and Test in Europe, 2005, pp. 1020–1021.

[27] J. Jahangiri and D. Abercrombie, “Value-Added Defect Testing Tech-
niques,” in IEEE Design & Test of Computers, vol. 22, no. 3, May 2005,
pp. 224–231.

[28] R. Bergamaschi and J. Cohn, “The A to Z of SoCs,” in Proceedings of
IEEE/ACM International Conference CAD, November 2002, pp. 791–798.

[29] R. Wilson, “Deck stacked against SoC,” in
EE Times, March 2003. [Online]. Available:
http://www.eetimes.com/op/showArticle.jhtml?articleID=18308205

[30] J. Schmid and J. Knablein, “Advanced synchronous scan test methodology
for multi clock domain ASICs,” in Proceedings of the IEEE VLSI Test
Symposium, April 1999, pp. 106–113.

[31] S. Abdennadher and S. Shaikh, “Challenges in High Speed Interface Test-
ing,” in Proceedings of the Asian Test Symposium, 2005, pp. 468–468.

[32] A. Amory, K. Goossens, E. J. Marinissen, M. Lubaszewski, and F. Moraes,
“Wrapper design for the reuse of networks-on-chip as test access mecha-
nism,” in Proc. European Test Symposium (ETS), May 2006, pp. 213–218.

[33] F. Caignet, S. Delmas-Bendhia, and E. Sicard, “The Challenge of Signal
Integrity in Deep-Submicrometer CMOS Technology,” in Proceedings of
the IEEE, vol. 89, no. 4, April 2001, pp. 556–573.

[34] M. Nourani and A. Attarha, “Built-In Self-Test for Signal Integrity,” in
Proceedings of Design Automation Conference, 2001, pp. 792–797.

[35] Y. Cao, P. Gupta, A. Kahng, D. Sylvester, and J. Yang, “Design Sensitiv-
ities to Variability: Extrapolations and Assessments in Nanometer VLSI,”
in Proceedings of the 15-th IEEE International ASIC/SOC Conference,
September 2002, pp. 411–415.

[36] S. Kundu, S. Sengupta, and R. Galivanche, “Test challenges in nanometer
technologies,” in Proceedings of the IEEE European Test Workshop, May
2000, pp. 83–90.

107

[37] A. Agarwal, V. Zolotov, and D. Blaauw, “Statistical Timing Analysis Us-
ing Bounds and Selective Enumeration,” in IEEE Transactions on CAD,
vol. 22, no. 9, September 2003, pp. 1243–1260.

[38] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Mod-
eling the effect of technology trends on the soft error rate of combinational
logic,” in Proceedings of the International Conference Dependable Systems
and Networks, June 2002, pp. 389–398.

[39] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an
architectural perspective,” in Proceedings of the 11-th International Sym-
posium on High-Performance Computer Architecture, February 2005, pp.
243–247.

[40] S. Hamdioui, G. Gaydadjiev, and A. van de Goor, “The State-of-art and
Future Trends in Testing Embedded Memories,” in Proceedings of IEEE
International Workshop on Memory Technology, Design and Testing, Au-
gust 2004, pp. 54–59.

[41] S. Kundu, T. Mak, and R. Galivanche, “Trends in Manufacturing Test
Methods and Their Implications,” in Proceedings of the IEEE Interna-
tional Test Conference, October 2004, pp. 679–688.

[42] A. Crouch, “Future Trends in Test: The Adoption and Use of Low Cost
Structural Testers,” in Proceedings of IEEE International Test Conference,
2004, pp. 698–703.

[43] D. Das and N. Touba, “Reducing Test Data Volume Using Exter-
nal/LBIST Hybrid Test Patterns,” in Proceedings of IEEE International
Test Conference, October 2000, pp. 115–122.

[44] R. Adams and E. Cooley, “Analysis of a Deceptive Destructive Read Mem-
ory Fault Model and Recommended Testing,” in Proceedings of IEEE
North Atlantic Test Workshop, Hanover, NH, June 1996.

[45] A. van de Goor, G. Gaydadjiev, V. Jarmolik, and V. Mikitjuk, “March LR:
A Test for Realistic Linked Faults,” in 14-th IEEE VLSI Test Symposium,
1996, pp. 272–280.

[46] A. van de Goor and J. de Neef, “Industrial Evaluation of DRAM Tests,”
in Proceedings of the Design, Automation and Test in Europe (DATe ’99),
1999, pp. 623–630.

[47] A. J. van de Goor and J. Simonse, “Defining sram resistive defects and
their simulation stimuli,” in Eighth Asian Test Symposium: proceedings.
ATS ’99, November 1999, pp. 33–40.

108

[48] S. Borri, M. Hage-Hassan, P. Girard, S. Pravossoudovitch, and A. Vi-
razel, “Defect Oriented Dynamic Fault Models for Embedded SRAMs,” in
Proceedings of the European Test Symposium, 2003, pp. 23–28.

[49] Z. Al-Ars and A. van de Goor, “Approximating Infinite Dynamic Behavior
for DRAM Cell Defects,” in Proceedings of the IEEE VLSI Test Sympo-
sium, 2002, pp. 401–406.

[50] A. van de Goor and C. Verruijt, “An Overview of Deterministic Functional
RAM Chip Testing,” in ACM Computing Surveys, vol. 22, no. 1, 1995, pp.
5–33.

[51] W. Huott, M. McManus, D. Knebel, S. Steen, D. Manzer, P. Sanda, S. Wil-
son, Y. Chan, A. Pelella, and S. Polonsky, “The Attack of the ‘Holey
Shmoos’: A Case of the Advanced DFD and Picosecond Imaging Circuit
Analysis (PICA),” in Proceedings of the IEEE International Test Confer-
ence, 1999, pp. 883–891.

[52] M. Abadir and J. Reghbati, “Functional Testing of Semiconductor Ran-
dom Access Memories,” in ACM Computer Surveys, vol. 15, no. 3, 1983,
pp. 175–198.

[53] D. Suk and S. Reddy, “A March Test for Functional Faults in Semicon-
ductor Random-Access Memories,” in IEEE Transactions on Computers,
vol. C-30, no. 12, 1981, pp. 982–985.

[54] A. van de Goor and G. Gaydadjiev, “March LR: A Memory Test for Re-
alistic Linked Faults,” in Proceedings of the IEEE VLSI Test Symposium,
1996, pp. 272–280.

[55] A. van de Goor and S. Hamdioui, “Detecting Faults in Peripheral Circuits
and an Evaluation of SRAM Tests,” in Proceedings of the IEEE Interna-
tional Test Conference, USA, October 2004, pp. 114–134.

[56] B. Prince, “Application Specific DRAMs Today,” in Proceedings of the
IEEE International Workshop Memory Technology, Design and Testing,
2003, pp. 7–13.

[57] T. Falter and D. Richter, “Overview of Status and Challenges of Sys-
tem Testing on Chip with Embedded DRAMs,” in Solid-State Electronics,
no. 44, 2000, pp. 761–766.

[58] G. Antonin, H.-D. Oberle, and J. Kolzer, “Electrical Characterization of
Megabit DRAMs, 1. External Testing,” in IEEE Design & Test of Com-
puters, vol. 8, 1991, pp. 36–43.

[59] Z. Al-Ars, “DRAM Fault Analysis and Test Generation,” Ph.D. disserta-
tion, Delft University of Technology, Delft, the Netherlands, 2005.

109

[60] A. van de Goor and A. Paalvast, “Industrial Evaluation of DRAM SIMM
Tests,” in Proceedings of the IEEE International Test Conference, 2000,
pp. 426–435.

[61] Z. Al-Ars, A. van de Goor, and S. Hamdioui, “Space of DRAM Fault
Models and Corresponding Testing,” in Proceedings of Design, Automation
and Test in Europe, 2006, pp. 1–6.

[62] A. Keshavarzi, K. Roy, and C. Hawkins, “Intrinsic Leakage in Low Power
Deep Submicron CMOS ICs,” in Proceedings of the IEEE International
Test Conference, 1997, pp. 146–155.

[63] S. Naik, F. Agricola, and W. Maly, “Failure Analysis of High Density
CMOS SRAMs,” in IEEE Design and Test of Computers, vol. 10, no. 2,
1993, pp. 13–23.

[64] N. Nagi and J. Abraham, “Hierarchical Fault Modeling for Linear Analog
Circuits,” in Analog Integrated Circuits and Signal Processing, vol. 10, no.
1–2, 1996, pp. 89–99.

[65] B. Prince, Semiconductor Memories: A Handbook of Design Manufactur-
ing and Application, 2nd ed. West Sussex, UK: John Wiley & Sons,
1991.

[66] G. Harutunyan, V. Vardanian, and Y. Zorian, “Minimal March Tests for
Unlinked Static Faults in Random Access Memories,” in Proceedings IEEE
VLSI Test Symposium, 2005, pp. 53–59.

[67] M.-J. Wang, R.-L. Jiang, J.-W. Hsia, C.-H. Wang, and J. E. Chen, “Guard-
band determination for the detection of off-state and junction leakages
in dram testing,” in Proceedingsof the Asian Test Symposium, November
2001, pp. 151–156.

[68] Z. Al-Ars, S. Hamdioui, A. J. van de Goor, G. N. Gaydadjiev, and J. Voll-
rath, “Dram-specific space of memory tests,” in Proc. IEEE International
Test Conf., October 2006.

[69] Z. Al-Ars and A. van de Goor, “Transient Faults in DRAMs: Concept,
Analysis and Impact on Tests,” in Proceedings of IEEE International
Workshop on Memory Technology, Design and Testing, 2001, pp. 59–64.

[70] H.-D. Oberle and P. Muhmenthaler, “Test Pattern Development and Eval-
uation for DRAMs with Fault Simulator RAMSIM,” in Proceedings of the
IEEE International Test Conference, October 1991, pp. 548–555.

[71] C. A. Papachristou and N. Sahgal, “An Improved Method for Detecting
Functional Faults in Random-Access Memories,” in IEEE Transactions on
Computers, vol. C-34, no. 2, 1985, pp. 110–116.

110

[72] G. N. Gaydadjiev and A. van de Goor, “An Analysis of Linked Faults,”
Delft University of Technology, Tech. Rep. 1- 68340-44(1995)08, 1995.

[73] A. J. van de Goor, “Using March Tests to Test SRAMs,” in IEEE Design
& Test of Computers, March 1993, pp. 8–14.

[74] R. Dekker, F. Beenker, and L. Thijssen, “Fault Modeling and Test Algo-
rithm Development for Static Random Access Memories,” in IEEE Inter-
national Test Conference, Washington D.C., 1988, pp. 343–352.

[75] V. Mikitjuk, V. Yarmolik, and A. van de Goor, “RAM Testing Algorithms
for Detection Multiple Linked Faults,” in Proceedings of the European Test
Conference, 1996, pp. 435–439.

[76] A. J. van de Goor and G. N. Gaydadjiev, “March U: A Test for Unlinked
Memory Faults,” IEEE Proceedings on Circuits, Devices and Systems, pp.
155–160, June 1997.

[77] A. J. van de Goor, G. N. Gaydadjiev, V. N. Yarmolik, and V. Mikitjuk,
“March LA: A Test for All Linked Memory Faults,” in Seventh Asian Test
Symposium, December 1998, pp. 1–8.

111

Testen van Moderne

Halfgeleider Geheugenstructuren

Georgi Nedeltchev Gaydadjiev

Samenvatting

In dit proefschrift bestuderen wij het probleem van fouten in moderne
geheugenstructuren. Zoals vermeld in de ITRS 2005, de systemen op chip (SoC)
zijn aan het veranderen van systemen die gebalanceerd zijn met betrekking tot
logica en geheugen naar systemen die door het geheugen gedomineerd worden.
Het ingebedde geheugen zal naar verwachting in 2009 meer dan 60 procent van
het totale chipoppervlak in beslag nemen. Verder zullen de capaciteiten van de
ingebedde geheugens blijven groeien. Als resultaat zou de productieopbrengst
van SoC systemen door de opbrengst van het geheugen gedomineerd raken.
Deze trend kan ervoor zorgen dat de algemene opbrengst onacceptabel laag
wordt, tenzij bepaalde maatregelen worden genomen.

In dit proefschrift stellen wij DRAM specifieke foutmodellen voor ten be-
hoeve van de recente halfgeleidertechnologieën. Ook definiëren en valideren wij
alle DRAM specifieke march testen. Verder introduceren wij een methodiek
voor het afleiden van condities en testen gericht op verbonden geheugenfouten.
Wij onderzoeken de detectiecondities van verbonden fouten wanneer een van
de fouten in de adres decodeerder zit. Uiteindelijk stellen wij meerdere opti-
malisaties voor die de testtijd reduceren en/of de foutdekking verbeteren.

Ons doel in dit proefschrift is om ideeën met hoge relevantie aan te dra-
gen. Voor zover mogelijk zijn onze foutmodellen en testen met behulp van
reeële industriële producten gevalideerd. Sommige concepten die meer dan 10
jaar geleden zijn gepresenteerd, worden nog steeds gebruikt in de industrie en
geciteerd in de academische wereld. Bijvoorbeeld, veel industriële producten
hebben gebruik gemaakt of maken gebruik van March LR, een van de testen
afgeleid in dit proefschrift, voor het testen van hun (ingebedde) geheugens.

113

114

Bibliography of the author

Journal Publications

1. L. Mhamdi, G. N. Gaydadjiev, S. Vassiliadis, Efficient Multicast Support
in High-Speed Packet Switches, Journal of Networks, Vol. 2 No. 3, pp.
28-35, June 2007

2. G.K. Kuzmanov, G. N. Gaydadjiev, S. Vassiliadis, Multimedia Rectangu-
larly Addressable Memory, IEEE Transactions on Multimedia, pp. 315–
322, April 2006

3. S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, G.K. Kuzmanov, E.
Moscu Panainte, The Molen Polymorphic Processor, IEEE Transactions
on Computers, pp. 1363- 1375, November 2004, Volume 53, Issue 11

4. A. J. van de Goor, G. N. Gaydadjiev, March U: A Test for Unlinked
Memory Faults, Circuits, Devices and Systems, IEEE Proceedings, pp.
155-160, June 1997, vol. 144, no. 3

Conference Publications

1. Z Chang, G. N. Gaydadjiev, S. Vassiliadis, Infrastructure for Cross-Layer
Designs Interaction, In Proceedings of the 16th IEEE International Con-
ference on Computer Communications and Networks (IC3N), Honolulu,
Hawaii USA, August 2007

2. R. J. Meeuws, Y. D. Yankova, K.L.M. Bertels, G. N. Gaydadjiev, S. Vas-
siliadis, A Quantitative Prediction Model for Hardware/Software Parti-
tioning, In Proceedings of the 17th International Conference on Field Pro-
grammable Logic and Applications (FPL07), Amsterdam, The Nether-
lands, August 2007

3. Y. D. Yankova, G.K. Kuzmanov, K.L.M. Bertels, G. N. Gaydadjiev, J.
Lu, S. Vassiliadis, DWARV: DelftWorkbench Automated Reconfigurable
VHDL Generator, In Proceedings of the 17th International Conference

115

on Field Programmable Logic and Applications (FPL07), Amsterdam,
The Netherlands, August 2007

4. D.R.H. Calderon, G. N. Gaydadjiev, S. Vassiliadis, Reconfigurable Uni-
versal Adder, In Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures, and Processors (ASAP 07),
Montreal, Quebec, Canada, July 2007

5. D.R.H. Calderon, C Galuzzi, G. N. Gaydadjiev, S. Vassiliadis, High-
Bandwidth Address Generation Unit, to appear in Proceedings of the
Systems Architectures Modeling and Simulation (SAMOS VII) workshop,
July 2007

6. N.T. Quach, B. Zafarifar, G. N. Gaydadjiev, Real-time FPGA implemen-
tation for blue-sky Detection, (to appear in) Proceedings of the IEEE
International conference on Application-Specific Systems, Architectures
and Processors (ASAP07), Montreal, Canada, July 2007

7. D. Vermoen, M. Witteman, G. N. Gaydadjiev, Reverse engineering Java
Card applets using power analysis, Workshop in Information Security
Theory and Practices 2007, pp. 138-149, Heraklion, Crete, Greece, May
2007, LNCS 4462, Best student paper award

8. Z. Al-Ars, S. Hamdioui, G. N. Gaydadjiev, Optimizing Test Length for
Soft Faults in DRAM Devices, proceedings IEEE VLSI Test Symposium,
pp. 59-66, Berkeley, CA, USA, May 2007

9. K.L.M. Bertels, G.K. Kuzmanov, E. Moscu Panainte, G. N. Gaydad-
jiev, Y. D. Yankova, V.M. Sima, K Sigdel, R. J. Meeuws, S. Vassiliadis,
Profiling, Compilation, and HDL Generation within the hArtes Project,
FPGAs and Reconfigurable Systems: Adaptive Heterogeneous Systems-
on-Chip and European Dimensions (DATE 07 Workshop), pp. 53-62,
Nice, France, April 2007

10. P. Ren, A.M. Amory, E. J. Marinissen, K.G.W. Goossens, S.K. Goel, G.
N. Gaydadjiev, M. Lubaszewski, F. Moraes, Test wrapper design that
allows a core to be tested via a network-on-chip or other functional in-
terconnect, In Diagnostic Services in Networks-on-Chips workshop at De-
sign, Automation and Test in Europe Conference and Exhibition (DATE),
April 2007

11. Z. Al-Ars, S. Hamdioui, G. N. Gaydadjiev, Manifestation of Precharge
Faults in High Speed DRAM Devices, Proc. IEEE Workshop on Design
and Diagnostics of Electronic Circuits and Systems, April 2007

116

12. F. J. Bouwens, M. Berekovic, A. Kanstein, G. N. Gaydadjiev, Archi-
tectural Exploration of the ADRES Coarse-Grained Reconfigurable Ar-
ray, proceedings of Int. Workshop on Applied Reconfigurable Computing
(ARC 2007), pp. 1-13, Rio de Janiero, Brazil, March 2007, LNCS 4419

13. M. Rieback, G. N. Gaydadjiev, B. Crispo, R. Hofman, A. Tanenbaum,
A Platform for RFID Security and Privacy Administration, Proceedings
of 20-th USENIX/SAGE Large Installation System Administration con-
ference (LISA 2006), pp. 89-102, Washington DC, USA, December 2006,
Best paper award

14. Z. Al-Ars, S. Hamdioui, G. N. Gaydadjiev, Using Linear Tests for Tran-
sient Faults in DRAMs, Proc. IEEE International Design and Test Work-
shop, November 2006

15. S. Hamdioui, Z. Al-Ars, G. N. Gaydadjiev, J.D Reyes, Comparison of
Static and Dynamic Faults in 65nm Memory Technology, Proc. IEEE
International Design and Test Workshop, November 2006

16. B.G.C. de Ruijsscher, G. N. Gaydadjiev, J. Lichtenauer, E. A. Hendriks,
FPGA accelerator for real-time skin segmentation, Proceedings of IEEE
ESTIMedia 2006. Embedded Systems for Real Time Multimedia, pp.
93-97, Seoul, Korea, October 2006, ISBN 0-7803-9783-5

17. S. Hamdioui, Z. Al-Ars, L. Mhamdi, G. N. Gaydadjiev, S. Vassiliadis,
Trends in Tests and Failure Mechanisms in Deep Sub-micron Technolo-
gies,, IEEE proceesings of Int. Conference on Design and Test of Inte-
grated Systems in Nanoscale Technology, pp. 216-221, Tunis, September
2006

18. G. N. Gaydadjiev, S. Vassiliadis, SAD Prefetching for MPEG4 Using Flux
Caches, Proceedings of the 6th International Workshop on Computer
Systems: Architectures, Modelling, and Simulation (SAMOS 2006), pp.
248-258, Samos, Greece, July 2006, LNCS 4017

19. S. Hamdioui, Z. Al-Ars, G. N. Gaydadjiev, J.D Reyes, Investigation of
Single-Cell Dynamic Faults in Deep-Submicron Memory Technologies,
IEEE Proc. European Test Symposium Digest of Papers, May 2006

20. S. Vassiliadis, G.K. Kuzmanov, S. Wong, E. Moscu Panainte, G. N. Gay-
dadjiev, K.L.M. Bertels, D. Cheresiz, PISC: Polymorphic Instruction Set
Computers, Proceedings of the International Workshop on Applied Re-
configurable Computing (ARC 2006), pp. 274-286, Delft, The Nether-
lands, March 2006, LNCS 3985

21. B. Donchev, G.K. Kuzmanov, G. N. Gaydadjiev, External Memory Con-
troller for Virtex II Pro, in Proceedings of International Symposium on
System-on-Chip 2006, pp. 37–40, November 2006

117

22. Z. Al-Ars, S. Hamdioui, A. J. van de Goor, G. N. Gaydadjiev, J Vollrath,
DRAM-Specific Space of Memory Tests, Proc. IEEE International Test
Conf., October 2006

23. G.K. Kuzmanov, G. N. Gaydadjiev, S. Vassiliadis, The Molen Media Pro-
cessor: Design and Evaluation, Proceedings of the International Work-
shop on Application Specific Processors, WASP 2005, pp. 26–33, New
York Metropolitan Area, USA, September 2005

24. G. N. Gaydadjiev, S. Vassiliadis, Flux Caches: What Are They and Are
They Useful?, Proceedings of the 5th International Workshop on Com-
puter Systems: Architectures, Modelling, and Simulation (SAMOS 2005),
pp. 93-102, Samos, Greece, July 2005, LNCS 3553

25. S. Vassiliadis, L. A. Sousa, G. N. Gaydadjiev, The Midlifekicker Mi-
croarchitecture Evaluation Metric, Proceedings of the IEEE International
conference on Application-Specific Systems, Architectures and Processors
(ASAP05), pp. 92-97, Samos, Greece, July 2005

26. Y. Dou, S. Vassiliadis, G.K. Kuzmanov, G. N. Gaydadjiev, 64-bit Floating-
Point FPGA Matrix Multiplication, ACM/SIGDA Thirteenth Interna-
tional Symposium on Field Programmable Gate Arrays (FPGA 2005),
pp. 86–95, Monterey, CA, USA, February 2005

27. G.K. Kuzmanov, G. N. Gaydadjiev, S. Vassiliadis, Visual Data Rectangu-
lar Memory, Proceedings of the 10th International Euro-Par Conference
(Euro-Par 2004), pp. 760–767, Pisa, Italy, September 2004, LNCS 3149

28. G. N. Gaydadjiev, S. Vassiliadis, SCISM versus IA-64 Tagging: Differ-
ences and Code Density Effects, Proceedings of 10th International Euro-
Par Conference, pp. 571-577, Pisa, Italy, August 2004, Springer-Verlag
Lecture Notes in Computer Science (LNCS), vol. 3149

29. S. Hamdioui, G. N. Gaydadjiev, A. J. van de Goor, The State-of-the-
art and Future Trends in Testing Embedded Memories, Records IEEE
International Workshop on Memory Technology, Design, and Testing,
pp. 54-59, San Jose, CA, August 2004

30. G.K. Kuzmanov, G. N. Gaydadjiev, S. Vassiliadis, The Virtex II Pro
MOLEN Processor, Proceedings of the 4th International Workshop on
Computer Systems: Architectures, Modelling, and Simulation (SAMOS
2004), pp. 192-202, Samos, Greece, July 2004, LNCS 3133

31. G.K. Kuzmanov, G. N. Gaydadjiev, S. Vassiliadis, The MOLEN Proces-
sor Prototype, Proceedings of the IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM 2004), pp. 296–299, Napa, CA,
USA, April 2004

118

32. G.K. Kuzmanov, G. N. Gaydadjiev, S. Vassiliadis, Loading rm-code: De-
sign Considerations, Proceedings of the Third International Workshop on
Computer Systems: Architectures, Modeling, and Simulation, pp. 11–19,
Samos, Greece, July 2003, LNCS 3133

33. S. Vassiliadis, G. N. Gaydadjiev, K. Bertels, E. Moscu Panainte, The
Molen Programming Paradigm, Proceedings of the Third International
Workshop on Systems, Architectures, Modeling, and Simulation, pp. 1-
10, Samos, Greece, July 2003, Springer-Verlag Lecture Notes in Computer
Science (LNCS), vol. 3133

34. A. J. van de Goor, G. N. Gaydadjiev, V. N. Yarmolik, V.G. Mikitjuk,
March LA: A Test for All Linked Memory Faults, Seventh Asian Test
Symposium, pp. 1-8, Singapore, December 1998, ISBN: 0-8186-8277-9

35. A. J. van de Goor, G. N. Gaydadjiev, An Analysis of (Linked) Address
Decoder Faults, IEEE MTDT’97, pp. 13-20, San Jose, California, August
1997

36. A. J. van de Goor, G. N. Gaydadjiev, V. N. Yarmolik, V.G. Mikitjuk,
March LA: A Test for Linked Memory Faults, Proc. European Design &
Test Conference, pp. 627-627, Paris, March 1997

37. A. J. van de Goor, G. N. Gaydadjiev, V. N. Yarmolik, V.G. Mikitjuk,
March LR: A Test for Realistic Linked Faults, Proceedings of the 14th
IEEE VLSI Test Symposium, pp. 272-280, New Jersey, April 1996

38. A. J. van de Goor, G. N. Gaydadjiev, Realistic Linked Memory Cell
Array Faults, Proceedings of the Fifth Asian Test Symposium, pp. 183-
188, Taiwan, November 1996

Invited Talks

1. S. Vassiliadis, G.N. Gaydadjiev, SARC: Systematic scalable approach to
systems design: From small energy critical embedded systems to large
scale networked data servers, Workshop on Directions in FPGAs and Re-
configurable Systems: Design, Programming and Technologies for adap-
tive heterogeneous Systems-on-Chip and their European Dimensions, DATE
Conference 2007, Nice, France, April 2007

2. G.N.Gaydadjiev, Polymorphic Processors: How to Expose Arbitrary Hard-
ware Functionality to Programmers, Guest lecture, Department of Elec-
tronic systems, Aalborg Universiteit, Denmark, April 2007

3. S. Vassiliadis, G.N. Gaydadjiev, SARC overview, Computing Architec-
tures and Software Tools for Numerical Embedded Scalable Systems work-
shop and school, CASTNESS , Rome, Italy, January 2007

119

4. G.N. Gaydadjiev, Reconfigurable processors and programming paradigms,
guest lecture, Technical University of Sofia, Bulgaria, May 2005

5. G.N.Gaydadjiev,Trusted Computing Platform, a quick look under the
hood, AEGEE Symposium ”What they don’t tell us; privacy and security
on the computer”, Utrecht, Netherlands, April 2004

6. S. Vassiliadis, S. Wong, G. N. Gaydadjiev, K. Bertels, Polymorphic Pro-
cessors: How to Expose Arbitrary Hardware Functionality to Program-
mers, IEE FPGA Developer’s Forum, London, United Kingdom, October
2003

Editor

1. G. N. Gaydadjiev, C. J. Glossner, J. Takala, S. Vassiliadis, 2006 Interna-
tional Conference on Embedded Systems: Embedded Computer Systems:
Architectures, Modeling and Simulation, Proceedings of 2006 Interna-
tional Conference on Embedded Systems: Embedded Computer Systems:
Architectures, Modeling and Simulation, pp. 203, Piscataway, NJ, July
2006, ISBN: 1-4244-0155-0, IEEE Catalog Number: 06EX1297

120

Short biography of the

author

Georgi Gaydadjiev was born in Plovdiv, Bulgaria, in
1964. He is currently assistant professor at the Com-
puter Engineering Laboratory, Delft University of Tech-
nology, The Netherlands. His research and develop-
ment industrial experience includes more than 15 years
in hardware and software design at System Engineering
Ltd. in Pravetz Bulgaria and Pijnenburg Microelectron-
ics and Software B.V. in Vught, the Netherlands. His
research interests include: embedded systems design, ad-
vanced computer architectures, hardware/software co-

design, VLSI design, cryptographic systems and computer systems testing.
Georgi has been a member of many conference program committees at dif-
ferent levels, e.g. ISC, ICS, Computing Frontiers, ICCD, HiPC and more. He
was program chair of SAMOS in 2006 and is a general chair in 2007. Georgi re-
ceived the best paper awards at Usenix/SAGE LISA 2006 and WiSTP 2007. He
is IEEE and ACM member and a member of the HiPEAC steering committee.

121

ISBN: 978-90-9022223-3

In this thesis we propose and classify DRAM specific fault models relevant
for the state-of-the-art semiconductor technologies. We also define and
validate a set of DRAM targeted march tests. In addition, we propose a
methodology for deriving conditions and tests for linked memory faults.
We also investigate the detection conditions for linked memory faults
when one of the faults involved is an address decoder fault. Finally, we
propose various optimizations for test time reduction and/or increased
fault coverage.

	Front_cover.pdf
	Propositions.pdf
	GG_thesis240x165.pdf
	Back_cover.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

