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Abstract

The Gene-pool Optimal Mixing EA (GOMEA) family of EAs offers a
specific means to exploit problem-specific knowledge through link-
age learning, i.e., inter-variable dependency detection, expressed
using subsets of variables, that should undergo joint variation. Such
knowledge can be exploited if faster fitness evaluations are possi-
ble when only a few variables are changed in a solution, enabling
large speed-ups. The recent-most version of Real-Valued GOMEA
(RV-GOMEA) can learn a conditional linkage model during opti-
mization using fitness-based linkage learning, enabling fine-grained
dependency exploitation in learning and sampling a Gaussian distri-
bution. However, while the most efficient Gaussian-based EAs, like
NES and CMA-ES, employ incremental learning of the Gaussian
distribution rather than performing full re-estimation every gener-
ation, the recent-most RV-GOMEA version does not employ such
incremental learning. In this paper, we therefore study whether
incremental distribution estimation can lead to efficiency enhance-
ments of RV-GOMEA. We consider various benchmark problems
with varying degrees of overlapping dependencies. We find that,
compared to RV-GOMEA and VKD-CMA-ES, the required number
of evaluations to reach high-quality solutions can be reduced by a
factor of up to 1.5 if population sizes are tuned problem-specifically,
while a reduction by a factor of 2-3 can be achieved with generic
population-sizing guidelines.

CCS Concepts

» Mathematics of computing — Evolutionary algorithms.

Keywords

Evolutionary Algorithms, Estimation of Distribution Algorithms,
Incremental Learning, Linkage Modeling

ACM Reference Format:

Renzo J. Scholman, Tanja Alderliesten, and Peter A.N. Bosman. 2025. More
Efficient Real-Valued Gray-Box Optimization through Incremental Distri-
bution Estimation in RV-GOMEA. In GECCO °25, July 14-18, 2025, Malaga,
Spain. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3712256.
3726418

90¢0

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License.

GECCO ’25, July 14-18, 2025, Malaga, Spain

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1465-8/2025/07

https://doi.org/10.1145/3712256.3726418

Tanja Alderliesten
t.alderliesten@lumc.nl
Leiden University Medical Center
Leiden, The Netherlands

755

Peter A.N. Bosman
peter.bosman@cwi.nl
Centrum Wiskunde & Informatica
Amsterdam, The Netherlands
Delft University of Technology
Delft, The Netherlands

1 Introduction

Taking a Gray-Box Optimization (GBO) approach to exploit problem-
specific knowledge, can substantially enhance the performance of
EAs. Examples include optimization of a billion-parameter prob-
lem using problem-specific recombination operators [10], adapted
crossover operators for satellite scheduling [18], and tailored muta-
tion operators for wireless communication networks [15].

Sometimes, a problem allows for efficient partial evaluations,
meaning that objective values can be efficiently recalculated when
only a few variables in a solution are modified, greatly reducing
total optimization time, see, e.g., [4, 7, 13].

EAs in the family of Gene-pool Optimal Mixing EAs (GOMEA)
are especially suited for exploiting partial evaluations due to the
use of optimal mixing [16]. In GOMEA, subsets of interdependent
variables are leveraged, called linkage sets, in the GOM variation op-
erator. By only changing the variables in a linkage set, and keeping
the change only if the solution did not get worse, partial evaluations
can be effectively exploited, which leads to performance benefits if
the linkage sets are well-aligned with problem structure.

State-of-the-art performance can be achieved on real-valued
problems using the Real-Valued GOMEA (RV-GOMEA), especially
in gray-box scenarios, in which Black-Box Optimization (BBO)
approaches can be vastly outperformed [7].

Recently, a new version of RV-GOMEA was introduced that
learns conditional linkage sets using fitness-based linkage learning
techniques during optimization [3]. The use of such linkage models
in RV-GOMEA has been essential to also have an performance
advantage over black-box methods on optimization problems with
overlapping dependencies. The Gaussian distributions pertaining
to each linkage set are however still estimated in each generation
using only the best-performing solutions in the current population.
Doing so discards information from the previous generation and,
therefore, typically results in requiring larger population sizes to
make reliable estimations of covariances.

The Gaussian sampling model in RV-GOMEA is based on AMaL-
GaM, a real-valued EDA [7]. It is known that the Gaussian in AMaL-
GaM can be learned incrementally across generations [5]. This can
typically reduce the required population size and often, the required
number of function evaluations.

Similar incremental mechanisms are included in the state-of-
the-art real-valued EAs CMA-ES [11] and NES [20]. A version of
RV-GOMEA, called RV-GOMEA(, exists that uses the CMA-ES sam-
pling model, but for decomposable problems with moderately sized
subfunctions, performance differences with RV-GOMEA are small,
with RV-GOMEA sometimes outperforming RV-GOMEA [7].
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Still, the parameter settings of the CMA-ES sampling model were
not reconsidered in the integration with RV-GOMEA. Proper cali-
bration of incremental learning may however still lead to achieving
even better results, since the incremental AMaLGaM was estab-
lished entirely through empirical optimization [5]. In this paper, we
therefore reconsider the incremental learning model for AMaLGaM,
but then within the recent-most version of RV-GOMEA, and revisit
optimizing the parameters of this model. We refer to the resulting
new EA as the incremental RV-GOMEA (iRV-GOMEA).

In the remainder of this paper, we first explain how incremental
learning is incorporated into RV-GOMEA in Section 3. The same
section describes how we tune iRV-GOMEA on various problems
and determine population-sizing guidelines. Then, in Section 4,
we describe the setup of our experiments, testing the resulting
iRV-GOMEA in various ways and comparing its performance with
that of RV-GOMEA, RV-GOMEA, and VKD-CMA-ES [1, 2]. The
results of the experiments are presented in Section 5. We present a
discussion in Section 6 and our final conclusions in Section 7.

2 Background
2.1 Incremental Distribution Estimation

Incremental learning typically takes the following form:

0(t) = (1-nO(t — 1) +nb(t). 1)

In our setting, 6(t) are the probability distribution parameters
as estimated from the population in generation ¢, and 0(t) are the
incrementally learned parameters with a learning rate 5 € [0, 1].

A general function class has been derived in literature to estimate
an effective learning rate for distribution parameters in an EDA in
which truncation selection is used and the distribution parameters
are estimated from the selected solutions [5]. The function class is
defined using the selection size |S|, problem dimensionality ¢, and
three function-class parameters @ = (g, a1, a2) as follows:

0!0|S|“1)

Z

n=f£(|8|,f)=1—exp( @)
This function class can be instantiated by fitting it to a dataset of
N samples {(n*, (|S|*, ¢"))},i € {0,1,..., N—1},ie., by performing
non-linear regression with a typical sum-of-squares loss function:
N-1 2
; i_ Qi g
min - .
in )" (o' - f(SIL6) ®)
i=0
Performing this non-linear optimization task can be done using,
e.g., an EA. To regress the @; parameters, a dataset is needed con-
sisting of the (near-)best values for the learning rate associated with
various selection sizes and problem dimensionalities. This can be
obtained through experimentation, i.e., by trying various values for,
or optimizing, the learning rate for different population sizes and
different problem dimensionalities. Such experimentation can be
done for a set of problems, resulting in a more general instantiation
of the function class that is well-suited for a class of problems.

2.2 Gray-box Optimization

Consider a problem where the objective function f(x) : R — Ris
to be minimized and a solution is denoted by x = (xo, ..., x7—1).
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An objective function f(x) permitting partial evaluations, is
composed of ¢ non-decomposable sub-functions fp, ..., fg—1. Now,
let I = {Io, . ..,Iq_l}, 7; €{0,1,...,£ — 1} denote the subsets of
indices that are involved with the g sub-functions. The variables
pertaining to the i~th subset and subfunction can be denoted as x 7,.
After a modification is made (i.e., during variation) to one or more
variables x, all sub-functions f;(xz,) are evaluated for which j € I;
and subsequently, the fitness of the solution can be recomputed
from the values of the subfunctions f;. For more details on this
formulation and its use to perform partial evaluations, see, e.g., [7].

In this work, we consider the cost of the partial evaluation of f;
as |Z;| / | Z|. The cost of changing one or more variables x; is then
computed as the accumulated cost of each affected sub-function f;.

Two variables x;, and x, are considered dependent if there exists
a sub-function f; for which {u,v} C 7; holds. A Variable Interaction
Graph (VIG) is an undirected graph G = (V, E) where each vertex
v € V corresponds to a variable x, and for each pair of dependent
variables there exists an edge (u,0) € E, see, e.g., [17, 19].

2.3 RV-GOMEA

RV-GOMEA [7] is a variant of GOMEA for solutions with real-
valued variables. In RV-GOMEA, a sampling model is used to gen-
erate new solutions that comes from the EDA called AMaLGaM [6].
From the population £, AMaLGaM selects the set S of | 7|P]],
7 € [1/]|P], 1] best-performing individuals and estimates a Gauss-
ian (normal) distribution PN (-) from S. Subsequently, variation is
performed by sampling new solutions from PV ().

RV-GOMEA uses the Family Of Subsets (FOS) linkage model
F = {FO, FL ..., FIF1-1 }, which comprises a set of FOS elements Fi,
also called linkage sets. Each linkage set is a set of variable indices
Fi C {0,1,..., £—1} that identify variables that are considered to be
interdependent and must be processed jointly during variation. For
each linkage set F/, RV-GOMEA estimates a multivariate Gaussian
distribution PN (-) using the same procedure as in AMaLGaM.

During variation with the GOM operator, all linkage sets F!
are considered in a random order and for each solution in the
population, new values are jointly sampled from PNI(-) for each
of the variables in the linkage set. Changes are in principle only
kept if the solution has not become worse. However, in the original,
non-conditional, formulation of RV-GOMEA, with a probability of
5%, changes were always accepted [7].

As in AMaLGaM [6], the techniques known as Anticipated Mean
Shift (AMS) and Adaptive Variance Scaling (AVS) are used in RV-
GOMEA. Through AMS, a part of the population is moved in the
direction in which the estimated distribution mean shifted in the
recent-most subsequent generations, enhancing optimization on
slope-like regions in the search space. AVS is used to counteract the
variance-diminishing effect of selection whenever improvements
are found far away from the mean. This is done through the use of
distribution multipliers c;ﬁ”“ for each linkage set F'. If the average

improvement along any of the principal axes of PA(-) is larger

mult

M is increased by 1/0.9. If no improve-

than 1 standard deviation, ¢
ments are found, the multiplier is decreased by 0.9. The multipliers
are prevented to become smaller than 1 for at least a predefined
number of generations, the so-called maximum No Improvement

Stretch NISMAX_ For more details, see, e.g., [7].
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2.4 Conditional Linkage Modeling

An approach to detecting pairwise dependencies between variables,
including a notion of dependency strength, that has proven to be
successful, is fitness-based dependency tests [14]. The Dependency
Strength Matrix (DSM) [12] is a square matrix D;; = d(i, j), where
i,j € {0,1,...,¢£ — 1} and d(i,j) € [0,1] indicates dependency
strength with 0 indicating no dependence. Construction of a com-
plete DSM requires %({’2 — ¢) fitness dependency tests, imposing a
quadratic number of function evaluations as overhead. However,
when partial evaluations can be performed, the overhead of these
tests may be reduced to a linear order, depending on the size of the
sub-functions. The DSM can be built incrementally during optimiza-
tion, which often leads to performing less dependency tests [3].

A VIG can be constructed based on the DSM by adding an edge
(u,v) whenever d(u,v) > d,;, holds. In the recent-most work on
RV-GOMEA, d,;, = 10~% was used and found to lead to good results
on a variety of problems [3].

In each generation, after an update of the DSM, the VIG must
be updated. The VIG can then be used to construct the linkage
model that is used in RV-GOMEA. In the recent-most version of
RV-GOMEA, a technique called clique seeding is used [3]. This
technique performs breadth-first searches of cliques in the VIG,
starting from each node in the VIG. For each search, the found max-
imal clique is stored in a set of candidate cliques, any duplicates are
discarded. Each clique is conditioned on any variables that are out-
side the clique but have an edge in the VIG to a variable inside the
clique. For each of the candidate cliques a conditional linkage set
F! is created, which now describes a conditional multivariate distri-
bution. Le., a conditional linkage set consists of two sets of variable
indices Il.o and Iil, describing the distribution PN (X 70| X 71).

While conditional linkage sets enable explicitly moldelinlg over-
lapping dependencies, linkages may still be broken when perform-
ing GOM, because acceptance selection is performed immediately
after partial variation. To repair potentially broken linkages, an
additional special GOM step is performed each generation in which
all variables are sampled without intermediate GOM acceptance,
i.e., following the conditionally factorized distribution defined by
all conditional linkage sets together. For details, see [3].

We store a covariance matrix for each linkage set. If a linkage
set is a conditional one, a covariance matrix is stored for all in-
volved variables (i.e., both those in Iio and in Iil) as the conditional
distribution is defined using all covariance values.

3 iRV-GOMEA
3.1 Incremental Distribution Estimation

We consider two scenarios to incorporate incremental learning into
RV-GOMEA: a static scenario where the linkage model is obtained
using clique seeding based on the true VIG, and an online scenario
where the VIG is obtained through incremental DSM updates using
fitness-based dependency tests. Incremental learning is considered
for each linkage set in the current generation, in turn, i.e., F;

3.1.1
matrices =¥ of distributions PN"I(-) are initialized with maximum-
likelihood estimates of variances from the selection in the first
generation on the diagonal and covariance values of 0 off-diagonal.

Covariance Matrices. In the static scenario, the covariance

In subsequent generations, Eq. 1 is applied to each sF
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Generation t—1

2(0|1) 2(3,4|5)

Generation t

3(0,1,2,3|4,5) incremental update step

-0.25

-0.50

-0.75

-1.00
0 1 2 3 4 5 0 1 2 3 4 5

Figure 1: Illustration of copying covariance information between
generations and performing a subsequent incremental update step.
Colors visualize correlation coefficients.

In the online scenario, the linkage model changes in each gener-
ation. Consequently, the size and involved variables of the covari-
ance matrices X associated with the linkage sets F' also change
in each generation. To incrementally update covariances, a method
is needed to transfer as much covariance information as possible.

When there exists a linkage set in the previous generation that
, = UE,
then the update step is the same as in the static scenario. Le., Eq. 1
can be used where =¥ is (1), ZF;‘l is used for (¢t — 1), and é(t)
are the maximum-likelihood estimates from the selection set Sy in

considers the same variables as used in Fé, ie., UF;_

generation g for all (co)variances pertaining to the variables in F;.
Otherwise, we proceed as follows:

(1) Initialize a matrix X of the same dimensions as ZF;" to a matrix
of zeros and let V = | F;.

(2) Find all possible linkage sets in the previous generation from
which information can be reused for the distribution parame-
ters pertaining to Fl ie, F= { F}l U F}l cV }

(3) Find the largest set in F (with ties being broken randomly),
1 . max _ . ]
ie,: F = arg maxF;_leF { ‘U F971 } .

(4) Copy variances and covariances from SF" o 3.

(5) Update V by setting it to V — | JF"* and F to F - F™4*,

(6) If either either |F| or |V]| is zero, then exit, otherwise, repeat
the process, starting at finding F (step 2).

S Fg—l

After this, 3% can be computed with Eq. 1 by using X for 6(t —
1) and the variances and covariances estimated using maximum-
likelihood estimates from the selection set S, in generation g for
6(t). However, for any indices v that remain in V, we estimate only
the maximum-likelihood variances. Any covariance associated with
remaining variables in V are kept at zero. This is similar to the
initialization of the covariance matrices in static linkage models.
See Figure 1 for a visual representation of the described approach.

3.1.2  Anticipated Mean Shift. In RV-GOMEA, the anticipated mean
shift (AMS), denoted p 4,5 is estimated once for the full set of
variables. For each linkage set F’, the pf\iMS that is used, is equal to
the subset of p 4,5 pertaining to the variables in F*. Of note, in case
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of conditional linkage sets, this pertains only to the conditioned
variables, not the ones they are conditioned on. As was the case
for the incremental AMaLGaM [5], we aim to apply incremental
learning also to the AMS. Ultimately, the applied AMS depends on
the size of the linkage set. However, Equation 2 is dependent on the
number of variables. By incrementally estimating the AMS only for
the full set of variables at once, the learning rate may not properly
reflect the fact that the AMS is in fact applied in GOM steps that
pertain to subsets of variables. We therefore change this such that
in iRV-GOMEA the AMS is also learned independently for each

linkage set F’ in the form of pgiMS(t).

3.2 Distribution Multipliers

Preliminary experiments with iRV-GOMEA indicated that the di-
rect implementation of incremental learning in RV-GOMEA led to
unexpected poor results for small population sizes. This is counter-
intuitive because the use of incremental learning has the potential
to reduce the minimally required population size. The number of
required generations will then typically go up. While this balance
ultimately is typically in favor of smaller population sizes, resulting
in fewer function evaluations required, the number of times the
distribution parameters are updated, also goes up. In RV-GOMEA,
different from CMA-ES or AMaLGaM, updates are performed for
each linkage set separately and there is a distribution multiplier
per linkage set. Without linkage sets, or for very large linkage sets,
multiple variables are changed at the same time and while some
changes separately would lead to worse fitness, the joint change
could still lead to an improvement. The smaller the linkage sets,
the stronger individual variable changes must be correlated with
making improvements. The use of linkage sets in RV-GOMEA may
therefore lead to less improvements per generation to be found and
the distribution multipliers converting back to the value of 1 quickly
after they were increased due to an improvement. Moreover, with
incremental learning, smaller population sizes are made possible,
necessitating however more generations before the covariances
become aligned with the (local) landscape of the problem being
solved and exacerbating the problem of finding improvements per
variation of single FOS elements. The increased number of gen-
erations also entails more updates to the distribution multipliers
being done in iRV-GOMEA (with a smaller population size) than in
RV-GOMEA. Altogether, the consequence is that the distribution
multipliers are reverted back to 1 too quickly, leading to limited
numbers of improvements and premature convergence taking place
if the population size becomes too small, which contradicts what we
are trying to achieve. For this reason, we changed the distribution
multiplier decrease factor to be asymmetrical to the distribution
multiplier increase factor, decreasing the value more slowly than
it is increased. Specifically, we set the decrease rate to half the
increase rate, i.e.,: 0.95 (and 1/0.9 for the increase rate).

3.3 Regressing the Learning Rates

To obtain learning rates for each linkage set F?, and for each of
the categories of distribution parameters (covariance matrices and
AMS), function f,} (Eq. 2) can be used where ¢ is replaced by the
number of variables in F?, which we will denote by « in the remain-
der of this paper. To determine proper values for the « parameters
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in £} for both the covariance matrix learning rate and the AMS
learning rate, a set of samples {((7%, nAMS) (|S], %))}, is required
to perform regression using Equation 3. These samples must span
a large variety of different selection sizes, linkage set sizes, and
benchmark problems to obtain a generically usable fi.

To create the samples, RV-GOMEA is used to optimize the learn-
ing rates n> and 7*MS for each problem in Table 1. This is done by
considering them as variables in a two-dimensional problem that in-
volves running iRV-GOMEA and minimizing the required number
of function evaluations to achieve the Value-To-Reach (VTR).

Learning rates are optimized for non-conditional linkage set sizes
k € {5, 10,15, ...,100} and population sizes || € {20, 40, 60, ..., 400},
with the selection percentile the same as in AMaLGaM and RV-
GOMEA, 7 = 0.35 (|S| = Lz|P]|]). Solutions in iRV-GOMEA are
initialized in [-10, 5], a range located asymmetrically around the
optimum (at 0). For each optimization problem and for each value
of k and |P|, iRV-GOMEA is given a budget of twice the num-
ber of evaluations that are required to reach the VTR using the
non-incremental RV-GOMEA with a full covariance matrix, for
which the guideline population size of 3k!-3 + 17 is used [5]. If iRV-
GOMEA exceeds that budget, the sample ((7%, p4M5), (|S|, x)) for
that problem is discarded.

(i) RV-GOMEA reverts to univariate sampling of the distribution
when the (incrementally) estimated covariance matrix is singular.
This can happen when the selection size |S| is simply too small
for a linkage set size k. Since the goal is to determine the learning
rates for the correct sampling of full covariance matrices, one of
the included optimization problems is the ill-conditioned rotated
ellipsoid problem. Reverting to univariate sampling will cause iRV-
GOMEA to no longer be able to solve this problem. Moreover, when
iRV-GOMEA fails to find the optimum for the rotated ellipsoid
problem of a certain linkage set size x and with a population size
|P], all samples for other problems with linkage set size x and
population size |P| are removed from the set of samples.

The resulting set of samples for both 7 and 7MS are used as
input for Equation 3. The problem defined by this equation is then
optimized using RV-GOMEA to instantiate f,) for both the AMS
and covariance matrix separately.

Table 1: Optimization problems used in the experiments.

Problem Function Definition VTR
Sphere Zf;ol x? 10710
i 5
Rotated Ellipsoid Z::OI 10°7-1 (x;)‘z, where x” = Rux for rotation matrix R | 10710
: 2 -1 106,.2 -10
Cigar Xg + 2o 10°x; 10
Tablet 108x% + i %2 10710
Cigar Tablet xg + LETE 1042 +108x2_ 10710
Le/2]=1 06,2 L ye-1 2 -10
Two Axes Zizo 10%x; +Zi:[l/2]*1xi 10
. -1 2+10 L= ~10
Different Powers | X7 |xi| -1 10
Rosenbrock Zf;oz (100(x? —xit1)% + (x — 1)2) 10710
Parabolic Ridge | —x1 +100 57! x? -10'°
Sharp Ridge —x1 + 1004 T} x2 -10°

The regressed o parameters, after performing the above for all
problems in Table 1 and merging all samples into one dataset, can be
found in Table 2. A visualization of the learning rates n”> and pAMS
can be found in Figure 2. Using the regressed learning rate formulas
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in the incremental distribution estimation procedure as outlined
above within RV-GOMEA, the final iRV-GOMEA is obtained. Next,
we turn to experimenting with the now fully defined iRV-GOMEA.

ni nAMS
TR
1 WW‘\ 1.0
Al (R :
AR 0.8
IR :
i N
IR 0.4
URIERS .
2 0.2
0.0
0 100
50 50
£ 100 0P W

Figure 2: Regressed f,. functions over all problems.

Table 2: Regressed « values over all problems.

(444} [24] (29}
7> |-1.01]1321.94
nAMS | 2,95 | 0.47 | 0.87

3.4 Determining Population Sizing Guidelines
for a Single Linkage Set in iRV-GOMEA

One of the main motivations for incremental distribution estima-
tion is the potential for requiring smaller population sizes to solve
problems. We determine the required population size for each prob-
lem in Table 1 for linkage set sizes up to x = 200. Note that in
iRV-GOMEA now a single linkage set is used, and as such, a full
covariance matrix is estimated over all involved problem variables,
regardless of whether the problem is actually decomposable. Begin-
ning at the default population size of RV-GOMEA, the population
size is halved as long as the required number of evaluations (aver-
aged over 100 runs) to achieve the VTR, reduces. Once the required
number of evaluations stops decreasing, binary search is performed
between the last two tried population sizes, until the best perform-
ing population size is found. The required number of evaluations is
divided by the success probability to account for failed runs with
very small population sizes.

The best performing population size for each problem and link-
age set size k can be seen in Figure 3. We want to use these results
to derive a population size guideline. Sharp Ridge results were
however ignored when determining the guideline, as deviating
behavior was observed. Specifically, the criterion to only accept im-
provements in GOM seems to prevent finding improvements over
multiple generations. The fraction of the population that improves
if the acceptance criterion in GOM is ignored with increasing prob-
ability (to the point where all samples are always accepted, which
corresponds to classical EDA configurations as used in AMaLGaM
and CMA-ES), can be seen in Figure 3 on Sharp Ridge with x = 100.
Clearly, when the acceptance selection in GOM is ignored more
frequently, the optimum is found in fewer generations. While this
can be considered a shortcoming, it is important to note that this
holds only when using the full covariance matrix on a (sub)function
of k variables with « fairly large. Arguably, oftentimes, problems
have subfunctions pertaining to smaller sets of fully dependent
variables that should be considered jointly. Moreover, the observed
limitation holds for a set of variables in the Sharp Ridge function,
the variables of which are actually not interdependent. As such,
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these variables in practice should be modeled as independent and
be in separate linkage sets of size k = 1. For similar reasons, we also
disregarded the results on Two Axes, for which similar behavior
was observed. Finally, for various problems, e.g., Cigar, a drop in
population size can clearly be identified in Figure 3 as k goes up.
This is because there is a large basin of approximately equally-well
performing population sizes (for an example, see supplementary
material A.2), but we have automated finding the best performing
population size. Ultimately, we therefore opted to fit a function to
the upper envelope of the problem that leads to the largest popula-
tion size without deviating behavior, which was Rotated Ellipsoid.
Based on that function, we determined guideline for the required
population size for linkage set sizes k in iRV-GOMEA to be:

10 + 3x. (4)

4 Experiments

In this section, we describe the various experiments that we per-
formed with the finally obtained iRV-GOMEA. First, we consider the
use of a single, static, non-conditional linkage set in iRV-GOMEA
and compare performance with the non-incremental RV-GOMEA
and RV-GOMEA, the CMA-ES variant of RV-GOMEA. This can
be considered a classical black-box evaluation setting. We subse-
quently evaluate the performance of iRV-GOMEA when the num-
ber of static non-conditional linkage sets is scaled up and partial
evaluations can be performed, i.e., a gray-box setting. We com-
pare again with RV-GOMEA and RV-GOMEA, but also with VkD-
CMA-ES [1, 2], a variant of CMA-ES that learns to decompose the
Gaussian model, however in a manner that cannot leverage partial
evaluations. Lastly, we consider again the gray-box setting, and
evaluate iRV-GOMEA with conditional linkage sets, defined both
statically and via online fitness-based linkage learning, on a vari-
ety of problems and we compare its performance to RV-GOMEA
and VKD-CMA-ES. Overview of algorithm hyperparameters can be
found in supplementary material A.1. Source code of iRV-GOMEA
is provided on Github!.

4.1 Single Non-Conditional Linkage Sets

We conducted experiments for a single linkage set of size k = ¢
up to 200 variables for each problem in Table 1. Such sizes likely
cover most real-world scenarios where the maximum number of
fully dependent variables is expected to be smaller [4, 8, 9, 13].
We consider iRV-GOMEA as defined in this paper, the non-
incremental RV-GOMEA and RV-GOMEA(, and VKD-CMA-ES.
The population sizes are set to their guideline values:
e For iRV-GOMEA we followed Equation 4 with ¢ = k.
e For RV-GOMEA we used 3¢ + 17 [5].
e For RV-GOMEA ¢ and VKD-CMA-ES we used 4 + |3 = In(?) |,
following guidelines for the CMA-ES sampling model [1, 11].

Solutions are uniformly randomly initialized in [-115, —100] and
the required number of evaluations to reach the VIR is averaged
over 100 runs.

4.2 Scaling Multiple Linkage Sets

All algorithms are tested using static non-conditional linkage mod-
els on the Sphere and Rosenbrock problem as well as on the SOREB

!https://github.com/renzoscholman/irv-gomea
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problem, which is derived from the Rotated Ellipsoid Blocks (REB), f REBSDisjointPairs (x)=f REB (x,6,45,5,s;)
that is defined as follows: fREBIONoOwerlap (yy — ¢REB(y ¢ 45 10, 0)
[\xl—x . fREBlOSmallOUerlap(X) — fREB (x,6,45,10,1)

fREBlOLargeOverlap (%) = fREB(X, 6, 45,10, 4)
fREBlOAlternatlng(X) — fREB (X, ci, 91‘, 10, 4)
[x]-1 . . . .
fellipsoid (x.¢) = Z 10° T 52 ‘ For the alternating problems, ¢; = 1 ;lin'd'Gi = 5 if i (block index)
_70 ! is even, else ¢; = 6 and 6; = 45. For the disjoint pair problems, s; = 4
= if i is even, else s; = 5.

Lastly, we use the OSoREB problem with two degrees of over-
lapping REB functions and the REBGrid problem. The REBGrid
problem arranges the ¢ variables as vertices v € V in a square

B 005 = > FUPO RO (i 1))
i=0

Here, c is the condition number of a subfunction, 6 the rotation
angle, x the block size, and s > 1 the block stride. The SoOREB
problem is now defined as fS"REB (%K) = fREB (x,6,45,K, k), 1.e., it
is a sum of k-dimensional consecutively encoded rotated ellipsoids.

Again, solutions are initialized in [—115, —100]. For SoREB, block
sizes k € {5,10, 15, 20, 25,30} are used for ¢ up to 2000. For RV-
GOMEA the population size guideline of 3x13+17 is used, i.e., based

grid of dimensions V¢ * V¥, and horizontally and vertically con-
nects neighboring vertices a € N(b) through an edge. These two
functions are defined as:

on the block size. Similarly for iRV-GOMEA and RV-GOMEA(, fOSoREB (x) = fREB(x, 6, 45,5, 4) +fREB (x[f:\x|—1]: 6,45,2,5)
the block size k is used instead of ¢ for the population guideline.
For VKD-CMA-ES, the population size is kept at 4 + |3 = In(¢)], fREBGrid(x) = Z fe”ips"id (R® (XoUN(0))> 6)
conforming with literature [1, 2]. For Rosenbrock, problem sizes %
uptof = 10%, and for Sphere up to £ = 10°, are tested. A univariate For each of the problems above, iRV-GOMEA, RV-GOMEA, and
linkage model is used for Sphere. For Rosenbrock, a linkage model VKD-CMA-ES are tested for £ € [10, 20, 40, 80, 160, 320]. Some of
with non-conditional, but overlapping blocks of 2 is used defined the REB problems are not defined for these dimensionalities. In
according to the additive composition of the problem definition. those cases, a proper value for £ was used that was as similar as
We investigate the average number of required evaluations to reach possible. All algorithms have an evaluation budget of 108 to reach
the VTR, which we set to 1071°, over 100 runs. the VTR of 10710,
Population sizes are optimized for each algorithm, problem in-

4.3 Gray-Box Optimization stance, and linkage model using bisection search up to £ = 80. The
For online Fitness-Based (FB) linkage learning, we employ the bisection search is performed similar to how the general popu-
method from [3]. We further consider static conditional linkage lation guideline was determined. Due to large computation time
models based on the true VIG. For both cases, we use the recently requirements for bisection on larger dimensionalities (160, 320), the
introduced Clique Seeding (CS) method [3] to maximize the size population size results are extrapolated for those. This allows test-
of the conditional linkage sets. These two cases are denoted as: ing whether incremental learning can still lead to improvements
"FB-CS-LM" and "Static-CS-LM". even when fully tuning the algorithms to a problem.

We consider various GBO problems, both separable and non- For iRV-GOMEA and RV-GOMEA both conditional linkage learn-
separable. Besides Sphere and Rosenbrock, as seen in Table 1, the ing models are compared. In the comparison of iRV-GOMEA to
remaining problems are defined as [3]: VKD-CMA-ES, only the FB linkage learning is used so that no infor-

mation is provided to the algorithm a priori and both algorithms

REB2W eak REB
= 1,521 - . S
f (0 =f 61521 learn the problem decomposition during optimization.

fREBZStrong(x) — fREB (x,6,5,2,1)
fREBZAlternatmg(X) _ fREB (X, i, 0;,2,1)

REBSNOOverlap(X) :fREB(X 6,45,5,0) 5 Results
REB5SmallOverlap () — fREB(y 6 45 5, 1) 5.1 Single Non-Conditional Linkage Sets
fREBSLargeOverlap(x) _ fREB (x, 6,45, 5,4) The results for varying the maximum linkage set size k can be
i . seen in Figure 4. We report the ratio of the required evaluations
fREBSAlternatmg(X) — fREB(X, ¢i, 0i,5,4) g P q
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Figure 4: Varying linkage set size results for iRV-GOMEA vs (respectively) RV-GOMEA, RV-GOMEA ¢, and VKkD-CMA-ES.

between iRV-GOMEA and the other two algorithms (< 1 indicates
iRV-GOMEA was better). In the supplementary material A.2 we
show the required evaluations to reach the VTR.

For most problems, the required number of evaluations is de-
creased notably when comparing iRV-GOMEA to RV-GOMEA.
However, for larger « the ratio deteriorates, especially for Sharp
Ridge. These results are in contrast to those found for iAMaLGAM
versus AMaLGaM [5], in which GOM is not used. For larger link-
age sets, the larger population size in the guideline of RV-GOMEA
works better with the GOM operator, as more opportunities arise
in each generation to find improvements. In practice, this will most
likely not have many implications since linkage sets larger than
several tens of parameters are not expected to typically be present.

The CMA-ES sampling model in RV-GOMEA ¢ leads to better per-
formance than iRV-GOMEA on various problems. This is expected,
as in this setting of a single linkage set we are essentially comparing
iAMaLGaM and CMA-ES in a black-box setting and CMA-ES is the
state-of-the-art in this case. For Sharp Ridge, GOM was already
shown to be a limiting factor that prevents improvements. This is
reflected again here in the results of all three RV-GOMEA variants.

5.2 Scaling Multiple Linkage Sets

RV-GOMEA is known to perform really well in GBO settings, even
outperforming RV-GOMEA( [7]. Adding incremental learning fol-
lowing the approach in this paper, can lead to even better results, as
can be seen in Figure 5. On the SOREB problem, iRV-GOMEA outper-
forms RV-GOMEA substantially by reaching the VIR two to three
times as fast (for problems with more than one block). Compared to
RV-GOMEA ¢ and VKD-CMA-ES, the improvements are even larger.
As ¢ is increased beyond a hundred variables, VKkD-CMA-ES starts
to give out compared to the scalability of the RV-GOMEA variants.
Even with its decomposition capabilities, it converged prematurely
above ¢ = 100 in our experiments. In the supplementary material
A.3 we show the required evaluations to reach the VTR.

5.3 Gray-Box Optimization

Figure 6 shows the resulting reduction in the required number of
evaluations for iRV-GOMEA versus RV-GOMEA for both linkage
models when solving every benchmark problem in a GBO setting
and additionally finding the optimally performing population size
for each problem dimensionality. On nearly all problems, the re-
quired number of evaluations is reduced. The optimized population
sizes and required evaluations can be found in the supplementary
material A.4.

The only case where iRV-GOMEA is clearly worse is the fully
separable Sphere problem. There, the use of the GOM operator with
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univariate linkage sets allows for very small population sizes to be
used also in RV-GOMEA, making incremental learning superfluous.

On average, iRV-GOMEA can be observed to achieve equal per-
formance compared to VKD-CMA-ES when problem dimensionali-
ties are small and there are few subfunctions. However, as problem
dimensionality increases and the relative utility of partial evalua-
tions grows, iRV-GOMEA demonstrates a substantial reduction in
the number of required evaluations.

6 Discussion

Many real-world problems require the exploitation of problem-
specific knowledge to reach good results within a reasonable amount
of time. Of particular value can be the ability to exploit problem
decomposition together with the ability to perform partial evalua-
tions. While RV-GOMEA is already state-of-the-art and capable of
outperforming traditional EAs and EDAs that cannot exploit partial
evaluations, the incremental learning of Gaussian distributions had
not yet been studied within the GOMEA framework, nor applied to
a GBO scenario where partial variation and evaluations are possible.
Therefore, in this paper we have investigated for the first time how
incremental learning can be incorporated in RV-GOMEA by em-
pirically discovering a formula for learning rates to be used when
incrementally learning covariances and the AMS in RV-GOMEA.

The use of incremental learning as proposed in this paper, im-
proves the performance of RV-GOMEA in many cases. However,
when linkage set sizes increase, the performance advantage of iRV-
GOMEA over RV-GOMEA and RV-GOMEA( decreases. Further
research would be required to determine the root cause of this how
and that could be tackled. Likely, the main reason is the fact that
solutions may not change during GOM (i.e., if changes are rejected)
and incremental learning then is poised to learn from the same
solutions, deteriorating the covariance learning process.

While the approach taken in this paper to arrive at learning rate
formulas for the covariance matrix and the AMS has proven mostly
successful, the approach does involve tailoring the learning rate
formulas to a set of benchmark problems. For a real-world problem,
especially if is a recurring one where instances need to be solved
repeatedly, it may work well to use the same setup but then for the
specific problem at hand. Additional performance improvements
could then well be obtained, which could have important real-world
implications. It would be interesting to explore this in future work.

7 Conclusion

In this paper, we have introduced iRV-GOMEA, a new variant of
RV-GOMEA that employs generation-wise incremental learning of
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the parameters of the sampling model. On several GBO problems learning were clear, both in case static linkage models are provided,
with varying dependency structures, iRV-GOMEA was shown to and when fitness-based linkage learning is employed.

be capable of outperforming RV-GOMEA, RV-GOMEA ¢, and VkD-

CMA-ES. When establishing and using general population-sizing Acknowledgments

guidelines, the required number of function evaluations could be
reduced by a factor of 2 to 3 times when using iRV-GOMEA instead
of RV-GOMEA. Even when tuning population sizes specifically for
a problem and dimensionality, the use of incremental learning in
RV-GOMEA could still lead to a reduction in the required number
of evaluations. While incremental learning was not found to im-
prove the performance of RV-GOMEA on fully decomposable (i.e.,
univariate) problems, when larger sets of interdependent variables
are present in a problem, the efficiency gains of using incremental

This work was supported by the Dutch Cancer Society [KWF
Kankerbestrijding; project number 12183] and by Elekta Brachyther-
apy, Veenendaal, The Netherlands. This work used the Dutch na-
tional e-infrastructure with the support of the SURF Cooperative
using grant no. EINF-12015.

References

[1] Axkimoro, Y., AND HANSEN, N. Online model selection for restricted covariance
matrix adaptation. In Parallel Problem Solving from Nature — PPSN XIV (2016),

762



=

=

flaa

=

Incremental Distribution Estimation in RV-GOMEA

J. Handl, E. Hart, P. R. Lewis, M. Lopez-Ibaiiez, G. Ochoa, and B. Paechter, Eds.,
Springer International Publishing, pp. 3-13.

AxIMOTO, Y., AND HANSEN, N. Projection-based restricted covariance matrix
adaptation for high dimension. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016 (2016), GECCO ’16, Association for Computing
Machinery, pp. 197-204.

ANDREADIS, G., ALDERLIESTEN, T., AND BosmaN, P. A. N. Fitness-based link-
age learning and maximum-clique conditional linkage modelling for gray-box
optimization with RV-GOMEA. In Proceedings of the Genetic and Evolutionary
Computation Conference 2024 (2024), GECCO ’24, Association for Computing
Machinery, pp. 647 - 655.

ANDREADIS, G., BOSMAN, P. A., AND ALDERLIESTEN, T. MOREA: a GPU-accelerated
evolutionary algorithm for multi-objective deformable registration of 3d medical
images. In Proceedings of the Genetic and Evolutionary Computation Conference
2023 (2023), GECCO 23, Association for Computing Machinery, pp. 1294-1302.
BosmaN, P. A. On empirical memory design, faster selection of bayesian factor-
izations and parameter-free gaussian EDAs. In Proceedings of the 11th Annual
Conference on Genetic and Evolutionary Computation (2009), GECCO 09, Associa-
tion for Computing Machinery, pp. 389-396.

Bosman, P. A. N., GRAHL, ]., AND THIERENS, D. Enhancing the performance of
maximum-likelihood gaussian EDAs using anticipated mean shift. In Parallel
Problem Solving from Nature — PPSN X (2008), G. Rudolph, T. Jansen, N. Beume,
S. Lucas, and C. Poloni, Eds., Springer, pp. 133-143.

BOUTER, A., ALDERLIESTEN, T., AND BosmAN, P. A. Achieving highly scalable evo-
lutionary real-valued optimization by exploiting partial evaluations. Evolutionary
Compututation 29, 1 (2021), 129-155.

Ca1, W, Hu, Y., FaNG, F., Yao, L., AND L1vu, J. Wind farm power production and
fatigue load optimization based on dynamic partitioning and wake redirection of
wind turbines. Applied Energy 339 (2023), 121000.

CHEN, W., WHITLEY, D., TINOs, R., AND CHICANO, F. Tunneling between plateaus:
improving on a state-of-the-art MAXSAT solver using partition crossover. In Pro-
ceedings of the Genetic and Evolutionary Computation Conference (2018), GECCO
’18, Association for Computing Machinery, pp. 921-928.

DEB, K., AND MYBURGH, C. Breaking the billion-variable barrier in real-world opti-
mization using a customized evolutionary algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference 2016 (2016), GECCO ’16, Association
for Computing Machinery, pp. 653-660.

GECCO ’25, July 14-18, 2025, Malaga, Spain

[11] HANSEN, N., AND OSTERMEIER, A. Completely derandomized self-adaptation in

evolution strategies. Evolutionary Compututation 9, 2 (2001), 159-195.

Hsu, S.-H., AND Yu, T.-L. Optimization by pairwise linkage detection, incremental
linkage set, and restricted / back mixing: DSMGA-IL In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation (2015), GECCO ’15,
Association for Computing Machinery, pp. 519-526.

Luong, N. H., ALDERLIESTEN, T., BEL, A., NIATSETSKI, Y., AND BosmaN, P. A.
Application and benchmarking of multi-objective evolutionary algorithms on
high-dose-rate brachytherapy planning for prostate cancer treatment. Swarm
and Evolutionary Computation 40 (2018), 37-52.

MuNETOMO, M., AND GOLDBERG, D. E. Linkage identification by non-monotonicity
detection for overlapping functions. Evolutionary Compututation 7, 4 (1999), 377-
398.

NEUMANN, A., GOUNDER, S., YAN, X., SHERMAN, G., CAMPBELL, B., GUuo, M., AND
NEeuMANN, F. Diversity optimization for the detection and concealment of spa-
tially defined communication networks. In Proceedings of the Genetic and Evolu-
tionary Computation Conference (2023), GECCO ’23, Association for Computing
Machinery, pp. 1436-1444.

THIERENS, D., AND BosMAN, P. A. Optimal mixing evolutionary algorithms. In Pro-
ceedings of the 13th Annual Conference on Genetic and Evolutionary Computation
- (2011), GECCO ’11, Association for Computing Machinery, pp. 617-624.
TiNGs, R., WHITLEY, D., CHICANO, F., AND OcHOA, G. Partition crossover for
continuous optimization: ePX. In Proceedings of the Genetic and Evolutionary
Computation Conference 2021 (2021), GECCO ’21, Association for Computing
Machinery, pp. 627-635.

WHITLEY, D., QUEVEDO DE CARVALHO, O., ROBERTS, M., SHETTY, V., AND JAM-
PATHOM, P. Scheduling multi-resource satellites using genetic algorithms and
permutation based representations. In Proceedings of the Genetic and Evolutionary
Computation Conference 2023 (2023), GECCO ’23, Association for Computing
Machinery, pp. 1473-1481.

WHITLEY, L. D., CHICANO, F., AND GoLDMAN, B. W. Gray box optimization for
Mk landscapes (NK landscapes and MAX-KSAT). Evolutionary Computation 24, 3
(2016), 491-519.

WIERSTRA, D., ScHAUL, T., PETERS, J., AND SCHMIDHUBER, J. Natural evolution
strategies. In 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence) (2008), pp. 3381-3387. ISSN: 1941-0026.



	Abstract
	1 Introduction
	2 Background
	2.1 Incremental Distribution Estimation
	2.2 Gray-box Optimization
	2.3 RV-GOMEA
	2.4 Conditional Linkage Modeling

	3 iRV-GOMEA
	3.1 Incremental Distribution Estimation
	3.2 Distribution Multipliers
	3.3 Regressing the Learning Rates
	3.4 Determining Population Sizing Guidelines for a Single Linkage Set in iRV-GOMEA

	4 Experiments
	4.1 Single Non-Conditional Linkage Sets
	4.2 Scaling Multiple Linkage Sets
	4.3 Gray-Box Optimization

	5 Results
	5.1 Single Non-Conditional Linkage Sets
	5.2 Scaling Multiple Linkage Sets
	5.3 Gray-Box Optimization

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

