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Abstract
The Gene-pool Optimal Mixing EA (GOMEA) family of EAs offers a

specific means to exploit problem-specific knowledge through link-

age learning, i.e., inter-variable dependency detection, expressed

using subsets of variables, that should undergo joint variation. Such

knowledge can be exploited if faster fitness evaluations are possi-

ble when only a few variables are changed in a solution, enabling

large speed-ups. The recent-most version of Real-Valued GOMEA

(RV-GOMEA) can learn a conditional linkage model during opti-

mization using fitness-based linkage learning, enabling fine-grained

dependency exploitation in learning and sampling a Gaussian distri-

bution. However, while the most efficient Gaussian-based EAs, like

NES and CMA-ES, employ incremental learning of the Gaussian

distribution rather than performing full re-estimation every gener-

ation, the recent-most RV-GOMEA version does not employ such

incremental learning. In this paper, we therefore study whether

incremental distribution estimation can lead to efficiency enhance-

ments of RV-GOMEA. We consider various benchmark problems

with varying degrees of overlapping dependencies. We find that,

compared to RV-GOMEA and VKD-CMA-ES, the required number

of evaluations to reach high-quality solutions can be reduced by a

factor of up to 1.5 if population sizes are tuned problem-specifically,

while a reduction by a factor of 2-3 can be achieved with generic

population-sizing guidelines.
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1 Introduction
Taking aGray-BoxOptimization (GBO) approach to exploit problem-

specific knowledge, can substantially enhance the performance of

EAs. Examples include optimization of a billion-parameter prob-

lem using problem-specific recombination operators [10], adapted

crossover operators for satellite scheduling [18], and tailored muta-

tion operators for wireless communication networks [15].

Sometimes, a problem allows for efficient partial evaluations,

meaning that objective values can be efficiently recalculated when

only a few variables in a solution are modified, greatly reducing

total optimization time, see, e.g., [4, 7, 13].

EAs in the family of Gene-pool Optimal Mixing EAs (GOMEA)

are especially suited for exploiting partial evaluations due to the

use of optimal mixing [16]. In GOMEA, subsets of interdependent

variables are leveraged, called linkage sets, in the GOM variation op-

erator. By only changing the variables in a linkage set, and keeping

the change only if the solution did not get worse, partial evaluations

can be effectively exploited, which leads to performance benefits if

the linkage sets are well-aligned with problem structure.

State-of-the-art performance can be achieved on real-valued

problems using the Real-Valued GOMEA (RV-GOMEA), especially

in gray-box scenarios, in which Black-Box Optimization (BBO)

approaches can be vastly outperformed [7].

Recently, a new version of RV-GOMEA was introduced that

learns conditional linkage sets using fitness-based linkage learning

techniques during optimization [3]. The use of such linkage models

in RV-GOMEA has been essential to also have an performance

advantage over black-box methods on optimization problems with

overlapping dependencies. The Gaussian distributions pertaining

to each linkage set are however still estimated in each generation

using only the best-performing solutions in the current population.

Doing so discards information from the previous generation and,

therefore, typically results in requiring larger population sizes to

make reliable estimations of covariances.

The Gaussian sampling model in RV-GOMEA is based on AMaL-

GaM, a real-valued EDA [7]. It is known that the Gaussian in AMaL-

GaM can be learned incrementally across generations [5]. This can

typically reduce the required population size and often, the required

number of function evaluations.

Similar incremental mechanisms are included in the state-of-

the-art real-valued EAs CMA-ES [11] and NES [20]. A version of

RV-GOMEA, called RV-GOMEA𝐶 , exists that uses the CMA-ES sam-

pling model, but for decomposable problems with moderately sized

subfunctions, performance differences with RV-GOMEA are small,

with RV-GOMEA sometimes outperforming RV-GOMEA𝐶 [7].
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Still, the parameter settings of the CMA-ES sampling model were

not reconsidered in the integration with RV-GOMEA. Proper cali-

bration of incremental learning may however still lead to achieving

even better results, since the incremental AMaLGaM was estab-

lished entirely through empirical optimization [5]. In this paper, we

therefore reconsider the incremental learning model for AMaLGaM,

but then within the recent-most version of RV-GOMEA, and revisit

optimizing the parameters of this model. We refer to the resulting

new EA as the incremental RV-GOMEA (iRV-GOMEA).

In the remainder of this paper, we first explain how incremental

learning is incorporated into RV-GOMEA in Section 3. The same

section describes how we tune iRV-GOMEA on various problems

and determine population-sizing guidelines. Then, in Section 4,

we describe the setup of our experiments, testing the resulting

iRV-GOMEA in various ways and comparing its performance with

that of RV-GOMEA, RV-GOMEA𝐶 , and VkD-CMA-ES [1, 2]. The

results of the experiments are presented in Section 5. We present a

discussion in Section 6 and our final conclusions in Section 7.

2 Background
2.1 Incremental Distribution Estimation
Incremental learning typically takes the following form:

𝜽 (𝑡) = (1 − 𝜂)𝜽 (𝑡 − 1) + 𝜂 ˆ𝜽 (𝑡). (1)

In our setting,
ˆ𝜽 (𝑡) are the probability distribution parameters

as estimated from the population in generation 𝑡 , and 𝜽 (𝑡) are the
incrementally learned parameters with a learning rate 𝜂 ∈ [0, 1].

A general function class has been derived in literature to estimate

an effective learning rate for distribution parameters in an EDA in

which truncation selection is used and the distribution parameters

are estimated from the selected solutions [5]. The function class is

defined using the selection size |S|, problem dimensionality ℓ , and

three function-class parameters 𝜶 = (𝛼0, 𝛼1, 𝛼2) as follows:

𝜂 = 𝑓
𝜂
𝜶 ( |S|, ℓ) = 1 − exp

(
𝛼0 |S|𝛼1

ℓ𝛼2

)
. (2)

This function class can be instantiated by fitting it to a dataset of

𝑁 samples {(𝜂𝑖 , ( |S|𝑖 , ℓ𝑖 ))}, 𝑖 ∈ {0, 1, . . . , 𝑁 −1}, i.e., by performing

non-linear regression with a typical sum-of-squares loss function:

min

𝜶

𝑁−1∑︁
𝑖=0

(
𝜂𝑖 − 𝑓

𝜂
𝜶 ( |S|𝑖 , ℓ𝑖 )

)
2

. (3)

Performing this non-linear optimization task can be done using,

e.g., an EA. To regress the 𝛼𝑖 parameters, a dataset is needed con-

sisting of the (near-)best values for the learning rate associated with

various selection sizes and problem dimensionalities. This can be

obtained through experimentation, i.e., by trying various values for,

or optimizing, the learning rate for different population sizes and

different problem dimensionalities. Such experimentation can be

done for a set of problems, resulting in a more general instantiation

of the function class that is well-suited for a class of problems.

2.2 Gray-box Optimization
Consider a problem where the objective function 𝑓 (x) : Rℓ → R is

to be minimized and a solution is denoted by x = (𝑥0, . . . , 𝑥ℓ−1).

An objective function 𝑓 (x) permitting partial evaluations, is

composed of 𝑞 non-decomposable sub-functions 𝑓0, . . . , 𝑓𝑞−1. Now,
let I =

{
I0, . . . ,I𝑞−1

}
, I𝑖 ⊆ {0, 1, . . . , ℓ − 1} denote the subsets of

indices that are involved with the 𝑞 sub-functions. The variables

pertaining to the 𝑖–th subset and subfunction can be denoted as xI𝑖 .
After a modification is made (i.e., during variation) to one or more

variables 𝑥 𝑗 , all sub-functions 𝑓𝑖 (xI𝑖 ) are evaluated for which 𝑗 ∈ I𝑖
and subsequently, the fitness of the solution can be recomputed

from the values of the subfunctions 𝑓𝑖 . For more details on this

formulation and its use to perform partial evaluations, see, e.g., [7].

In this work, we consider the cost of the partial evaluation of 𝑓𝑖
as |I𝑖 | / |I |. The cost of changing one or more variables 𝑥 𝑗 is then

computed as the accumulated cost of each affected sub-function 𝑓𝑖 .

Two variables 𝑥𝑢 and 𝑥𝑣 are considered dependent if there exists

a sub-function 𝑓𝑖 for which {𝑢, 𝑣} ⊆ I𝑖 holds. A Variable Interaction

Graph (VIG) is an undirected graph 𝐺 = (𝑉 , 𝐸) where each vertex

𝑣 ∈ 𝑉 corresponds to a variable 𝑥𝑣 and for each pair of dependent

variables there exists an edge (𝑢, 𝑣) ∈ 𝐸, see, e.g., [17, 19].

2.3 RV-GOMEA
RV-GOMEA [7] is a variant of GOMEA for solutions with real-

valued variables. In RV-GOMEA, a sampling model is used to gen-

erate new solutions that comes from the EDA called AMaLGaM [6].

From the population P, AMaLGaM selects the set S of ⌊𝜏 |P |⌋,
𝜏 ∈ [1/|P|, 1] best-performing individuals and estimates a Gauss-

ian (normal) distribution 𝑃N (·) from S. Subsequently, variation is

performed by sampling new solutions from 𝑃N (·).
RV-GOMEA uses the Family Of Subsets (FOS) linkage model

F = {F0, F1, . . . , F | F |−1}, which comprises a set of FOS elements F𝑖 ,
also called linkage sets. Each linkage set is a set of variable indices

F𝑖 ⊆ {0, 1, . . . , ℓ−1} that identify variables that are considered to be
interdependent and must be processed jointly during variation. For

each linkage set F𝑖 , RV-GOMEA estimates a multivariate Gaussian

distribution 𝑃N,𝑖 (·) using the same procedure as in AMaLGaM.

During variation with the GOM operator, all linkage sets F𝑖

are considered in a random order and for each solution in the

population, new values are jointly sampled from 𝑃N,𝑖 (·) for each
of the variables in the linkage set. Changes are in principle only

kept if the solution has not become worse. However, in the original,

non-conditional, formulation of RV-GOMEA, with a probability of

5%, changes were always accepted [7].

As in AMaLGaM [6], the techniques known as Anticipated Mean

Shift (AMS) and Adaptive Variance Scaling (AVS) are used in RV-

GOMEA. Through AMS, a part of the population is moved in the

direction in which the estimated distribution mean shifted in the

recent-most subsequent generations, enhancing optimization on

slope-like regions in the search space. AVS is used to counteract the

variance-diminishing effect of selection whenever improvements

are found far away from the mean. This is done through the use of

distribution multipliers 𝑐𝑚𝑢𝑙𝑡

F𝑖
for each linkage set F𝑖 . If the average

improvement along any of the principal axes of 𝑃N,𝑖 (·) is larger
than 1 standard deviation, 𝑐𝑚𝑢𝑙𝑡

F𝑖
is increased by 1/0.9. If no improve-

ments are found, the multiplier is decreased by 0.9. The multipliers

are prevented to become smaller than 1 for at least a predefined

number of generations, the so-called maximum No Improvement

Stretch NIS
MAX

. For more details, see, e.g., [7].
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2.4 Conditional Linkage Modeling
An approach to detecting pairwise dependencies between variables,

including a notion of dependency strength, that has proven to be

successful, is fitness-based dependency tests [14]. The Dependency

Strength Matrix (DSM) [12] is a square matrix D𝑖 𝑗 = 𝑑 (𝑖, 𝑗), where
𝑖, 𝑗 ∈ {0, 1, . . . , ℓ − 1} and 𝑑 (𝑖, 𝑗) ∈ [0, 1] indicates dependency
strength with 0 indicating no dependence. Construction of a com-

plete DSM requires
1

2
(ℓ2 − ℓ) fitness dependency tests, imposing a

quadratic number of function evaluations as overhead. However,

when partial evaluations can be performed, the overhead of these

tests may be reduced to a linear order, depending on the size of the

sub-functions. The DSM can be built incrementally during optimiza-

tion, which often leads to performing less dependency tests [3].

A VIG can be constructed based on the DSM by adding an edge

(𝑢, 𝑣) whenever 𝑑 (𝑢, 𝑣) > 𝑑min holds. In the recent-most work on

RV-GOMEA,𝑑min = 10
−6

was used and found to lead to good results

on a variety of problems [3].

In each generation, after an update of the DSM, the VIG must

be updated. The VIG can then be used to construct the linkage

model that is used in RV-GOMEA. In the recent-most version of

RV-GOMEA, a technique called clique seeding is used [3]. This

technique performs breadth-first searches of cliques in the VIG,

starting from each node in the VIG. For each search, the found max-

imal clique is stored in a set of candidate cliques, any duplicates are

discarded. Each clique is conditioned on any variables that are out-

side the clique but have an edge in the VIG to a variable inside the

clique. For each of the candidate cliques a conditional linkage set

F𝑖 is created, which now describes a conditional multivariate distri-

bution. I.e., a conditional linkage set consists of two sets of variable
indices I0

𝑖
and I1

𝑖
, describing the distribution 𝑃N (𝑿I0

𝑖
|𝑿I1

𝑖
).

While conditional linkage sets enable explicitly modeling over-

lapping dependencies, linkages may still be broken when perform-

ing GOM, because acceptance selection is performed immediately

after partial variation. To repair potentially broken linkages, an

additional special GOM step is performed each generation in which

all variables are sampled without intermediate GOM acceptance,

i.e., following the conditionally factorized distribution defined by

all conditional linkage sets together. For details, see [3].

We store a covariance matrix for each linkage set. If a linkage

set is a conditional one, a covariance matrix is stored for all in-

volved variables (i.e., both those in I0

𝑖
and in I1

𝑖
) as the conditional

distribution is defined using all covariance values.

3 iRV-GOMEA
3.1 Incremental Distribution Estimation
We consider two scenarios to incorporate incremental learning into

RV-GOMEA: a static scenario where the linkage model is obtained

using clique seeding based on the true VIG, and an online scenario

where the VIG is obtained through incremental DSM updates using

fitness-based dependency tests. Incremental learning is considered

for each linkage set in the current generation, in turn, i.e., F𝑖𝑔 .

3.1.1 Covariance Matrices. In the static scenario, the covariance

matrices 𝚺
F𝑖

of distributions 𝑃N,𝑖 (·) are initialized with maximum-

likelihood estimates of variances from the selection in the first

generation on the diagonal and covariance values of 0 off-diagonal.

In subsequent generations, Eq. 1 is applied to each 𝚺
F𝑖
.

Figure 1: Illustration of copying covariance information between
generations and performing a subsequent incremental update step.
Colors visualize correlation coefficients.

In the online scenario, the linkage model changes in each gener-

ation. Consequently, the size and involved variables of the covari-

ance matrices 𝚺
F𝑖

associated with the linkage sets F𝑖 also change

in each generation. To incrementally update covariances, a method

is needed to transfer as much covariance information as possible.

When there exists a linkage set in the previous generation that

considers the same variables as used in F𝑖𝑔 , i.e.,
⋃

F𝑗
𝑔−1 =

⋃
F𝑖𝑔 ,

then the update step is the same as in the static scenario. I.e., Eq. 1

can be used where 𝚺
F𝑖𝑔

is 𝜽 (𝑡), 𝚺F
𝑗

𝑔−1
is used for 𝜽 (𝑡 − 1), and ˆ𝜽 (𝑡)

are the maximum-likelihood estimates from the selection set S𝑔 in

generation 𝑔 for all (co)variances pertaining to the variables in F𝑖𝑔 .
Otherwise, we proceed as follows:

(1) Initialize amatrix 𝚺 of the same dimensions as 𝚺
F𝑖𝑔

to amatrix

of zeros and let V =
⋃

F𝑖𝑔 .
(2) Find all possible linkage sets in the previous generation from

which information can be reused for the distribution parame-

ters pertaining to F𝑖𝑔 , i.e., F =

{
F𝑗
𝑔−1 ∈ F𝑔−1

��� ⋃ F𝑗
𝑔−1 ⊂ V

}
.

(3) Find the largest set in F (with ties being broken randomly),

i.e.,: F𝑚𝑎𝑥 = argmaxF𝑗

𝑔−1∈F

{ ���⋃ F𝑗
𝑔−1

��� } .
(4) Copy variances and covariances from 𝚺

F𝑚𝑎𝑥

to 𝚺.

(5) Update V by setting it to V −⋃
F𝑚𝑎𝑥

and F to F - F𝑚𝑎𝑥
.

(6) If either either |F| or |V| is zero, then exit, otherwise, repeat

the process, starting at finding F (step 2).

After this, 𝚺
F𝑖𝑔

can be computed with Eq. 1 by using 𝚺 for 𝜽 (𝑡 −
1) and the variances and covariances estimated using maximum-

likelihood estimates from the selection set S𝑔 in generation 𝑔 for

ˆ𝜽 (𝑡). However, for any indices 𝑣 that remain in V, we estimate only

the maximum-likelihood variances. Any covariance associated with

remaining variables in V are kept at zero. This is similar to the

initialization of the covariance matrices in static linkage models.

See Figure 1 for a visual representation of the described approach.

3.1.2 Anticipated Mean Shift. In RV-GOMEA, the anticipated mean

shift (AMS), denoted 𝝁𝐴𝑀𝑆 is estimated once for the full set of

variables. For each linkage set F𝑖 , the 𝝁F
𝑖

𝐴𝑀𝑆
that is used, is equal to

the subset of 𝝁𝐴𝑀𝑆 pertaining to the variables in F𝑖 . Of note, in case
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of conditional linkage sets, this pertains only to the conditioned

variables, not the ones they are conditioned on. As was the case

for the incremental AMaLGaM [5], we aim to apply incremental

learning also to the AMS. Ultimately, the applied AMS depends on

the size of the linkage set. However, Equation 2 is dependent on the

number of variables. By incrementally estimating the AMS only for

the full set of variables at once, the learning rate may not properly

reflect the fact that the AMS is in fact applied in GOM steps that

pertain to subsets of variables. We therefore change this such that

in iRV-GOMEA the AMS is also learned independently for each

linkage set F𝑖 in the form of 𝝁F
𝑖

𝐴𝑀𝑆
(𝑡).

3.2 Distribution Multipliers
Preliminary experiments with iRV-GOMEA indicated that the di-

rect implementation of incremental learning in RV-GOMEA led to

unexpected poor results for small population sizes. This is counter-

intuitive because the use of incremental learning has the potential

to reduce the minimally required population size. The number of

required generations will then typically go up. While this balance

ultimately is typically in favor of smaller population sizes, resulting

in fewer function evaluations required, the number of times the

distribution parameters are updated, also goes up. In RV-GOMEA,

different from CMA-ES or AMaLGaM, updates are performed for

each linkage set separately and there is a distribution multiplier

per linkage set. Without linkage sets, or for very large linkage sets,

multiple variables are changed at the same time and while some

changes separately would lead to worse fitness, the joint change

could still lead to an improvement. The smaller the linkage sets,

the stronger individual variable changes must be correlated with

making improvements. The use of linkage sets in RV-GOMEA may

therefore lead to less improvements per generation to be found and

the distribution multipliers converting back to the value of 1 quickly

after they were increased due to an improvement. Moreover, with

incremental learning, smaller population sizes are made possible,

necessitating however more generations before the covariances

become aligned with the (local) landscape of the problem being

solved and exacerbating the problem of finding improvements per

variation of single FOS elements. The increased number of gen-

erations also entails more updates to the distribution multipliers

being done in iRV-GOMEA (with a smaller population size) than in

RV-GOMEA. Altogether, the consequence is that the distribution

multipliers are reverted back to 1 too quickly, leading to limited

numbers of improvements and premature convergence taking place

if the population size becomes too small, which contradicts what we

are trying to achieve. For this reason, we changed the distribution

multiplier decrease factor to be asymmetrical to the distribution

multiplier increase factor, decreasing the value more slowly than

it is increased. Specifically, we set the decrease rate to half the

increase rate, i.e.,: 0.95 (and 1/0.9 for the increase rate).

3.3 Regressing the Learning Rates
To obtain learning rates for each linkage set F𝑖 , and for each of

the categories of distribution parameters (covariance matrices and

AMS), function 𝑓
𝜂
𝜶 (Eq. 2) can be used where ℓ is replaced by the

number of variables in F𝑖 , which we will denote by 𝜅 in the remain-

der of this paper. To determine proper values for the 𝜶 parameters

in 𝑓
𝜂
𝜶 for both the covariance matrix learning rate and the AMS

learning rate, a set of samples {((𝜂Σ, 𝜂𝐴𝑀𝑆 ), ( |S|, 𝜅))}, is required
to perform regression using Equation 3. These samples must span

a large variety of different selection sizes, linkage set sizes, and

benchmark problems to obtain a generically usable 𝑓
𝜂
𝜶 .

To create the samples, RV-GOMEA is used to optimize the learn-

ing rates 𝜂Σ and 𝜂AMS
for each problem in Table 1. This is done by

considering them as variables in a two-dimensional problem that in-

volves running iRV-GOMEA and minimizing the required number

of function evaluations to achieve the Value-To-Reach (VTR).

Learning rates are optimized for non-conditional linkage set sizes

𝜅 ∈ {5, 10, 15, ..., 100} and population sizes |P | ∈ {20, 40, 60, ..., 400},
with the selection percentile the same as in AMaLGaM and RV-

GOMEA, 𝜏 = 0.35 (|S| = ⌊𝜏 |P |⌋). Solutions in iRV-GOMEA are

initialized in [−10, 5], a range located asymmetrically around the

optimum (at 0). For each optimization problem and for each value

of 𝜅 and |P |, iRV-GOMEA is given a budget of twice the num-

ber of evaluations that are required to reach the VTR using the

non-incremental RV-GOMEA with a full covariance matrix, for

which the guideline population size of 3𝜅1.5 + 17 is used [5]. If iRV-

GOMEA exceeds that budget, the sample ((𝜂Σ, 𝜂𝐴𝑀𝑆 ), ( |S|, 𝜅)) for
that problem is discarded.

(i)RV-GOMEA reverts to univariate sampling of the distribution

when the (incrementally) estimated covariance matrix is singular.

This can happen when the selection size |S| is simply too small

for a linkage set size 𝜅. Since the goal is to determine the learning

rates for the correct sampling of full covariance matrices, one of

the included optimization problems is the ill-conditioned rotated

ellipsoid problem. Reverting to univariate sampling will cause iRV-

GOMEA to no longer be able to solve this problem. Moreover, when

iRV-GOMEA fails to find the optimum for the rotated ellipsoid

problem of a certain linkage set size 𝜅 and with a population size

|P |, all samples for other problems with linkage set size 𝜅 and

population size |P | are removed from the set of samples.

The resulting set of samples for both 𝜂Σ and 𝜂AMS
are used as

input for Equation 3. The problem defined by this equation is then

optimized using RV-GOMEA to instantiate 𝑓
𝜂
𝜶 for both the AMS

and covariance matrix separately.

Table 1: Optimization problems used in the experiments.
Problem Function Definition VTR

Sphere

∑ℓ−1
𝑖=0

𝑥2
𝑖

10
−10

Rotated Ellipsoid

∑ℓ−1
𝑖=0

10
6

𝑖
ℓ−1 (𝑥𝑟

𝑖
)2 , where 𝒙𝒓 = 𝑹𝒙 for rotation matrix 𝑹 10

−10

Cigar 𝑥2
0
+∑ℓ−1

𝑖=1
10

6𝑥2
𝑖

10
−10

Tablet 10
6𝑥2

0
+∑ℓ−1

𝑖=1
𝑥2
𝑖

10
−10

Cigar Tablet 𝑥2
0
+∑ℓ−2

𝑖=1
10

4𝑥2
𝑖
+ 10

8𝑥2
ℓ−1 10

−10

Two Axes

∑⌊ℓ/2⌋−1
𝑖=0

10
6𝑥2

𝑖
+∑ℓ−1

𝑖=⌊ℓ/2⌋−1 𝑥
2

𝑖
10

−10

Different Powers

∑ℓ−1
𝑖=0

|𝑥𝑖 |2+10
𝑖

ℓ−1 10
−10

Rosenbrock

∑ℓ−2
𝑖=0

(
100(𝑥2

𝑖
− 𝑥𝑖+1 )2 + (𝑥𝑖 − 1)2

)
10

−10

Parabolic Ridge −𝑥1 + 100

∑ℓ−1
𝑖=0

𝑥2
𝑖

−1010

Sharp Ridge −𝑥1 + 100

√︃∑ℓ−1
𝑖=0

𝑥2
𝑖

−1010

The regressed 𝜶 parameters, after performing the above for all

problems in Table 1 andmerging all samples into one dataset, can be

found in Table 2. A visualization of the learning rates 𝜂Σ and 𝜂AMS

can be found in Figure 2. Using the regressed learning rate formulas
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in the incremental distribution estimation procedure as outlined

above within RV-GOMEA, the final iRV-GOMEA is obtained. Next,

we turn to experimenting with the now fully defined iRV-GOMEA.

Figure 2: Regressed 𝑓
𝜂
𝜶 functions over all problems.

Table 2: Regressed 𝜶 values over all problems.

𝛼0 𝛼1 𝛼2

𝜂Σ -1.01 1.32 1.94

𝜂𝐴𝑀𝑆
-2.95 0.47 0.87

3.4 Determining Population Sizing Guidelines
for a Single Linkage Set in iRV-GOMEA

One of the main motivations for incremental distribution estima-

tion is the potential for requiring smaller population sizes to solve

problems. We determine the required population size for each prob-

lem in Table 1 for linkage set sizes up to 𝜅 = 200. Note that in

iRV-GOMEA now a single linkage set is used, and as such, a full

covariance matrix is estimated over all involved problem variables,

regardless of whether the problem is actually decomposable. Begin-

ning at the default population size of RV-GOMEA, the population

size is halved as long as the required number of evaluations (aver-

aged over 100 runs) to achieve the VTR, reduces. Once the required

number of evaluations stops decreasing, binary search is performed

between the last two tried population sizes, until the best perform-

ing population size is found. The required number of evaluations is

divided by the success probability to account for failed runs with

very small population sizes.

The best performing population size for each problem and link-

age set size 𝜅 can be seen in Figure 3. We want to use these results

to derive a population size guideline. Sharp Ridge results were

however ignored when determining the guideline, as deviating

behavior was observed. Specifically, the criterion to only accept im-

provements in GOM seems to prevent finding improvements over

multiple generations. The fraction of the population that improves

if the acceptance criterion in GOM is ignored with increasing prob-

ability (to the point where all samples are always accepted, which

corresponds to classical EDA configurations as used in AMaLGaM

and CMA-ES), can be seen in Figure 3 on Sharp Ridge with 𝜅 = 100.

Clearly, when the acceptance selection in GOM is ignored more

frequently, the optimum is found in fewer generations. While this

can be considered a shortcoming, it is important to note that this

holds only when using the full covariance matrix on a (sub)function

of 𝜅 variables with 𝜅 fairly large. Arguably, oftentimes, problems

have subfunctions pertaining to smaller sets of fully dependent

variables that should be considered jointly. Moreover, the observed

limitation holds for a set of variables in the Sharp Ridge function,

the variables of which are actually not interdependent. As such,

these variables in practice should be modeled as independent and

be in separate linkage sets of size 𝜅 = 1. For similar reasons, we also

disregarded the results on Two Axes, for which similar behavior

was observed. Finally, for various problems, e.g., Cigar, a drop in

population size can clearly be identified in Figure 3 as 𝜅 goes up.

This is because there is a large basin of approximately equally-well

performing population sizes (for an example, see supplementary

material A.2), but we have automated finding the best performing

population size. Ultimately, we therefore opted to fit a function to

the upper envelope of the problem that leads to the largest popula-

tion size without deviating behavior, which was Rotated Ellipsoid.

Based on that function, we determined guideline for the required

population size for linkage set sizes 𝜅 in iRV-GOMEA to be:

10 + 3𝜅. (4)

4 Experiments
In this section, we describe the various experiments that we per-

formedwith the finally obtained iRV-GOMEA. First, we consider the

use of a single, static, non-conditional linkage set in iRV-GOMEA

and compare performance with the non-incremental RV-GOMEA

and RV-GOMEA𝐶 , the CMA-ES variant of RV-GOMEA. This can

be considered a classical black-box evaluation setting. We subse-

quently evaluate the performance of iRV-GOMEA when the num-

ber of static non-conditional linkage sets is scaled up and partial

evaluations can be performed, i.e., a gray-box setting. We com-

pare again with RV-GOMEA and RV-GOMEA𝐶 , but also with VkD-

CMA-ES [1, 2], a variant of CMA-ES that learns to decompose the

Gaussian model, however in a manner that cannot leverage partial

evaluations. Lastly, we consider again the gray-box setting, and

evaluate iRV-GOMEA with conditional linkage sets, defined both

statically and via online fitness-based linkage learning, on a vari-

ety of problems and we compare its performance to RV-GOMEA

and VkD-CMA-ES. Overview of algorithm hyperparameters can be

found in supplementary material A.1. Source code of iRV-GOMEA

is provided on Github
1
.

4.1 Single Non-Conditional Linkage Sets
We conducted experiments for a single linkage set of size 𝜅 = ℓ

up to 200 variables for each problem in Table 1. Such sizes likely

cover most real-world scenarios where the maximum number of

fully dependent variables is expected to be smaller [4, 8, 9, 13].

We consider iRV-GOMEA as defined in this paper, the non-

incremental RV-GOMEA and RV-GOMEA𝐶 , and VkD-CMA-ES.

The population sizes are set to their guideline values:

• For iRV-GOMEA we followed Equation 4 with ℓ = 𝜅.

• For RV-GOMEA we used 3ℓ1.5 + 17 [5].

• For RV-GOMEA𝐶 and VkD-CMA-ES we used 4 + ⌊3 ∗ ln(ℓ)⌋,
following guidelines for the CMA-ES sampling model [1, 11].

Solutions are uniformly randomly initialized in [−115,−100] and
the required number of evaluations to reach the VTR is averaged

over 100 runs.

4.2 Scaling Multiple Linkage Sets
All algorithms are tested using static non-conditional linkage mod-

els on the Sphere and Rosenbrock problem as well as on the SoREB

1
https://github.com/renzoscholman/irv-gomea
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Figure 3: Population size guideline results. Left: Best performing population size | P | per problem and linkage set size 𝜅 (symbols) and guidelines
(solid lines). Right: Observed probability of improvement when ignoring GOM on Sharp Ridge with different probabilities.

problem, which is derived from the Rotated Ellipsoid Blocks (REB),

that is defined as follows:

𝑓 𝑅𝐸𝐵 (x, 𝑐, 𝜃, 𝜅, 𝑠) =

⌈
|x|−𝜅
𝑠

⌉
−1∑︁

𝑖=0

𝑓 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 (𝑅𝜃 (𝑥 ⌈𝑖𝑠 :𝑖𝑠+𝜅−1⌉ ), 𝑐)

𝑓 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 (x, 𝑐) =
|x |−1∑︁
𝑖=0

10
𝑐 𝑖
|x|−1 𝑥2𝑖

Here, 𝑐 is the condition number of a subfunction, 𝜃 the rotation

angle, 𝜅 the block size, and 𝑠 ≥ 1 the block stride. The SoREB

problem is now defined as 𝑓 𝑆𝑜𝑅𝐸𝐵 (x, 𝜅) = 𝑓 𝑅𝐸𝐵 (x, 6, 45, 𝜅, 𝜅), i.e., it
is a sum of 𝜅-dimensional consecutively encoded rotated ellipsoids.

Again, solutions are initialized in [−115,−100]. For SoREB, block
sizes 𝜅 ∈ {5, 10, 15, 20, 25, 30} are used for ℓ up to 2000. For RV-

GOMEA the population size guideline of 3𝜅1.5+17 is used, i.e., based
on the block size. Similarly for iRV-GOMEA and RV-GOMEA𝐶 ,

the block size 𝜅 is used instead of ℓ for the population guideline.

For VkD-CMA-ES, the population size is kept at 4 + ⌊3 ∗ ln(ℓ)⌋,
conforming with literature [1, 2]. For Rosenbrock, problem sizes

up to ℓ = 10
4
, and for Sphere up to ℓ = 10

5
, are tested. A univariate

linkage model is used for Sphere. For Rosenbrock, a linkage model

with non-conditional, but overlapping blocks of 2 is used defined

according to the additive composition of the problem definition.

We investigate the average number of required evaluations to reach

the VTR, which we set to 10
−10

, over 100 runs.

4.3 Gray-Box Optimization
For online Fitness-Based (FB) linkage learning, we employ the

method from [3]. We further consider static conditional linkage

models based on the true VIG. For both cases, we use the recently

introduced Clique Seeding (CS) method [3] to maximize the size

of the conditional linkage sets. These two cases are denoted as:

"FB-CS-LM" and "Static-CS-LM".

We consider various GBO problems, both separable and non-

separable. Besides Sphere and Rosenbrock, as seen in Table 1, the

remaining problems are defined as [3]:

𝑓 𝑅𝐸𝐵2𝑊𝑒𝑎𝑘 (x) = 𝑓 𝑅𝐸𝐵 (x, 1, 5, 2, 1)
𝑓 𝑅𝐸𝐵2𝑆𝑡𝑟𝑜𝑛𝑔 (x) = 𝑓 𝑅𝐸𝐵 (x, 6, 5, 2, 1)

𝑓 𝑅𝐸𝐵2𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 (x) = 𝑓 𝑅𝐸𝐵 (x, 𝑐𝑖 , 𝜃𝑖 , 2, 1)
𝑓 𝑅𝐸𝐵5𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (x) = 𝑓 𝑅𝐸𝐵 (x, 6, 45, 5, 0)

𝑓 𝑅𝐸𝐵5𝑆𝑚𝑎𝑙𝑙𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (x) = 𝑓 𝑅𝐸𝐵 (x, 6, 45, 5, 1)
𝑓 𝑅𝐸𝐵5𝐿𝑎𝑟𝑔𝑒𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (x) = 𝑓 𝑅𝐸𝐵 (x, 6, 45, 5, 4)
𝑓 𝑅𝐸𝐵5𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 (x) = 𝑓 𝑅𝐸𝐵 (x, 𝑐𝑖 , 𝜃𝑖 , 5, 4)

𝑓 𝑅𝐸𝐵5𝐷𝑖𝑠 𝑗𝑜𝑖𝑛𝑡𝑃𝑎𝑖𝑟𝑠 (x) = 𝑓 𝑅𝐸𝐵 (x, 6, 45, 5, 𝑠𝑖 )
𝑓 𝑅𝐸𝐵10𝑁𝑜𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (x) = 𝑓 𝑅𝐸𝐵 (x, 6, 45, 10, 0)

𝑓 𝑅𝐸𝐵10𝑆𝑚𝑎𝑙𝑙𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (x) = 𝑓 𝑅𝐸𝐵 (x, 6, 45, 10, 1)
𝑓 𝑅𝐸𝐵10𝐿𝑎𝑟𝑔𝑒𝑂𝑣𝑒𝑟𝑙𝑎𝑝 (x) = 𝑓 𝑅𝐸𝐵 (x, 6, 45, 10, 4)
𝑓 𝑅𝐸𝐵10𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑛𝑔 (x) = 𝑓 𝑅𝐸𝐵 (x, 𝑐𝑖 , 𝜃𝑖 , 10, 4)

For the alternating problems, 𝑐𝑖 = 1 and 𝜃𝑖 = 5 if 𝑖 (block index)

is even, else 𝑐𝑖 = 6 and 𝜃𝑖 = 45. For the disjoint pair problems, 𝑠𝑖 = 4

if 𝑖 is even, else 𝑠𝑖 = 5.

Lastly, we use the OSoREB problem with two degrees of over-

lapping REB functions and the REBGrid problem. The REBGrid

problem arranges the ℓ variables as vertices 𝑣 ∈ 𝑉 in a square

grid of dimensions

√
ℓ ∗

√
ℓ , and horizontally and vertically con-

nects neighboring vertices 𝑎 ∈ 𝑁 (𝑏) through an edge. These two

functions are defined as:

𝑓𝑂𝑆𝑜𝑅𝐸𝐵 (x) = 𝑓 𝑅𝐸𝐵 (x, 6, 45, 5, 4) + 𝑓 𝑅𝐸𝐵 (𝑥 [ 𝑓 : |x |−1] , 6, 45, 2, 5)

𝑓 𝑅𝐸𝐵𝐺𝑟𝑖𝑑 (x) =
∑︁
𝑣∈𝑉

𝑓 𝑒𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 (𝑅45 (𝑥𝑣∪𝑁 (𝑣) ), 6)

For each of the problems above, iRV-GOMEA, RV-GOMEA, and

VkD-CMA-ES are tested for ℓ ∈ [10, 20, 40, 80, 160, 320]. Some of

the REB problems are not defined for these dimensionalities. In

those cases, a proper value for ℓ was used that was as similar as

possible. All algorithms have an evaluation budget of 10
8
to reach

the VTR of 10
−10

.

Population sizes are optimized for each algorithm, problem in-

stance, and linkage model using bisection search up to ℓ = 80. The

bisection search is performed similar to how the general popu-

lation guideline was determined. Due to large computation time

requirements for bisection on larger dimensionalities (160, 320), the

population size results are extrapolated for those. This allows test-

ing whether incremental learning can still lead to improvements

even when fully tuning the algorithms to a problem.

For iRV-GOMEA and RV-GOMEA both conditional linkage learn-

ing models are compared. In the comparison of iRV-GOMEA to

VkD-CMA-ES, only the FB linkage learning is used so that no infor-

mation is provided to the algorithm a priori and both algorithms

learn the problem decomposition during optimization.

5 Results
5.1 Single Non-Conditional Linkage Sets
The results for varying the maximum linkage set size 𝜅 can be

seen in Figure 4. We report the ratio of the required evaluations
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Figure 4: Varying linkage set size results for iRV-GOMEA vs (respectively) RV-GOMEA, RV-GOMEA𝐶 , and VkD-CMA-ES.

between iRV-GOMEA and the other two algorithms (< 1 indicates

iRV-GOMEA was better). In the supplementary material A.2 we

show the required evaluations to reach the VTR.

For most problems, the required number of evaluations is de-

creased notably when comparing iRV-GOMEA to RV-GOMEA.

However, for larger 𝜅 the ratio deteriorates, especially for Sharp

Ridge. These results are in contrast to those found for iAMaLGAM

versus AMaLGaM [5], in which GOM is not used. For larger link-

age sets, the larger population size in the guideline of RV-GOMEA

works better with the GOM operator, as more opportunities arise

in each generation to find improvements. In practice, this will most

likely not have many implications since linkage sets larger than

several tens of parameters are not expected to typically be present.

The CMA-ES samplingmodel in RV-GOMEA𝐶 leads to better per-

formance than iRV-GOMEA on various problems. This is expected,

as in this setting of a single linkage set we are essentially comparing

iAMaLGaM and CMA-ES in a black-box setting and CMA-ES is the

state-of-the-art in this case. For Sharp Ridge, GOM was already

shown to be a limiting factor that prevents improvements. This is

reflected again here in the results of all three RV-GOMEA variants.

5.2 Scaling Multiple Linkage Sets
RV-GOMEA is known to perform really well in GBO settings, even

outperforming RV-GOMEA𝐶 [7]. Adding incremental learning fol-

lowing the approach in this paper, can lead to even better results, as

can be seen in Figure 5. On the SoREB problem, iRV-GOMEA outper-

forms RV-GOMEA substantially by reaching the VTR two to three

times as fast (for problems with more than one block). Compared to

RV-GOMEA𝐶 and VkD-CMA-ES, the improvements are even larger.

As ℓ is increased beyond a hundred variables, VkD-CMA-ES starts

to give out compared to the scalability of the RV-GOMEA variants.

Even with its decomposition capabilities, it converged prematurely

above ℓ = 100 in our experiments. In the supplementary material

A.3 we show the required evaluations to reach the VTR.

5.3 Gray-Box Optimization
Figure 6 shows the resulting reduction in the required number of

evaluations for iRV-GOMEA versus RV-GOMEA for both linkage

models when solving every benchmark problem in a GBO setting

and additionally finding the optimally performing population size

for each problem dimensionality. On nearly all problems, the re-

quired number of evaluations is reduced. The optimized population

sizes and required evaluations can be found in the supplementary

material A.4.

The only case where iRV-GOMEA is clearly worse is the fully

separable Sphere problem. There, the use of the GOM operator with

univariate linkage sets allows for very small population sizes to be

used also in RV-GOMEA, making incremental learning superfluous.

On average, iRV-GOMEA can be observed to achieve equal per-

formance compared to VkD-CMA-ES when problem dimensionali-

ties are small and there are few subfunctions. However, as problem

dimensionality increases and the relative utility of partial evalua-

tions grows, iRV-GOMEA demonstrates a substantial reduction in

the number of required evaluations.

6 Discussion
Many real-world problems require the exploitation of problem-

specific knowledge to reach good results within a reasonable amount

of time. Of particular value can be the ability to exploit problem

decomposition together with the ability to perform partial evalua-

tions. While RV-GOMEA is already state-of-the-art and capable of

outperforming traditional EAs and EDAs that cannot exploit partial

evaluations, the incremental learning of Gaussian distributions had

not yet been studied within the GOMEA framework, nor applied to

a GBO scenario where partial variation and evaluations are possible.

Therefore, in this paper we have investigated for the first time how

incremental learning can be incorporated in RV-GOMEA by em-

pirically discovering a formula for learning rates to be used when

incrementally learning covariances and the AMS in RV-GOMEA.

The use of incremental learning as proposed in this paper, im-

proves the performance of RV-GOMEA in many cases. However,

when linkage set sizes increase, the performance advantage of iRV-

GOMEA over RV-GOMEA and RV-GOMEA𝐶 decreases. Further

research would be required to determine the root cause of this how

and that could be tackled. Likely, the main reason is the fact that

solutions may not change during GOM (i.e., if changes are rejected)

and incremental learning then is poised to learn from the same

solutions, deteriorating the covariance learning process.

While the approach taken in this paper to arrive at learning rate

formulas for the covariance matrix and the AMS has proven mostly

successful, the approach does involve tailoring the learning rate

formulas to a set of benchmark problems. For a real-world problem,

especially if is a recurring one where instances need to be solved

repeatedly, it may work well to use the same setup but then for the

specific problem at hand. Additional performance improvements

could then well be obtained, which could have important real-world

implications. It would be interesting to explore this in future work.

7 Conclusion
In this paper, we have introduced iRV-GOMEA, a new variant of

RV-GOMEA that employs generation-wise incremental learning of
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Figure 5: Gray-box SoREB results iRV-GOMEA vs (respectively) RV-GOMEA, RV-GOMEA𝐶 , and VkD-CMA-ES.

Figure 6: Ratio of required number of function evaluations to reach the VTR for iRV-GOMEA vs RV-GOMEA and for iRV-GOMEA vs VkD-
CMA-ES on all tested GBO benchmark problems. A ratio below 1.0 means that iRV-GOMEA has superior performance.

the parameters of the sampling model. On several GBO problems

with varying dependency structures, iRV-GOMEA was shown to

be capable of outperforming RV-GOMEA, RV-GOMEA𝐶 , and VkD-

CMA-ES. When establishing and using general population-sizing

guidelines, the required number of function evaluations could be

reduced by a factor of 2 to 3 times when using iRV-GOMEA instead

of RV-GOMEA. Even when tuning population sizes specifically for

a problem and dimensionality, the use of incremental learning in

RV-GOMEA could still lead to a reduction in the required number

of evaluations. While incremental learning was not found to im-

prove the performance of RV-GOMEA on fully decomposable (i.e.,

univariate) problems, when larger sets of interdependent variables

are present in a problem, the efficiency gains of using incremental

learning were clear, both in case static linkage models are provided,

and when fitness-based linkage learning is employed.
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