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Workload-Adaptive Configuration Tuning
for Hierarchical Cloud Schedulers

Rui Han , Chi Harold Liu , Senior Member, IEEE, Zan Zong, Lydia Y. Chen , Senior Member, IEEE,

Wending Liu, Siyi Wang, and Jianfeng Zhan

Abstract—Cluster schedulers provide flexible resource sharing mechanism for best-effort cloud jobs, which occupy a majority in

modern datacenters. Properly tuning a scheduler’s configurations is the key to these jobs’ performance because it decides how to

allocate resources among them. Today’s cloud scheduling systems usually rely on cluster operators to set the configuration and thus

overlook the potential performance improvement through optimally configuring the scheduler according to the heterogeneous and

dynamic cloud workloads. In this paper, we introduce AdaptiveConfig, a run-time configurator for cluster schedulers that automatically

adapts to the changing workload and resource status in two steps. First, a comparison approach estimates jobs’ performances under

different configurations and diverse scheduling scenarios. The key idea here is to transform a scheduler’s resource allocation

mechanism and their variable influence factors (configurations, scheduling constraints, available resources, and workload status) into

business rules and facts in a rule engine, thereby reasoning about these correlated factors in job performance comparison. Second, a

workload-adaptive optimizer transforms the cluster-level searching of huge configuration space into an equivalent dynamic

programming problem that can be efficiently solved at scale. We implement AdaptiveConfig on the popular YARN Capacity and Fair

schedulers and demonstrate its effectiveness using real-world Facebook and Google workloads, i.e., successfully finding best

configurations for most of scheduling scenarios and considerably reducing latencies by a factor of two with low optimization time.

Index Terms—Cloud datacenter, cluster scheduler, configuration, job latency, YARN

Ç

1 INTRODUCTION

TODAY’S cloud workloads are increasingly dominated by
a mix of long-running production/service jobs and

best-effort analysis/engineering jobs [50], [52]. The service
jobs, such as storage services and web search engines, have
strict latency deadlines and high priorities of using resour-
ces (usually by reservation [23]). The best-effort jobs, such as
batch data analytic and software development/test, have
different sensitivities to the latency according to their priori-
ties. This paper focuses the latter type, which forms most of
cloud jobs and tend to be short running [60]. For example,
in the Google [52] and Alibaba [22] datacenters, 66.7 and
75.3 percent of jobs run less than 5 minutes. When dealing
with massive jobs of diverse workload characteristics, most
production cloud providers, including Google, Facebook,
and Cloudera, employs hierarchical scheduling for resource

allocation [15], [54]. Specifically, they develop hierarchical
schedulers to divides users into different groups (depart-
ments) according to their organizational structure and allo-
cates resources within each group according to job
priorities. Such schedulers provide the flexibility of sharing
resources among jobs, but also causes additional manage-
ment complexity of the cluster [54].

Example. Fig. 1 shows a typical hierarchical scheduler,

which employs two-level queues to share available resources

among user groups (first-level queues) and jobs (second-level

queues) under scheduling constraints. Its configurable

parameters that are critical to job performance can be divided

into two parts [15]: cluster-level configuration that decides the

allocation of cluster resources to different groups; group-level

configuration that controls the resource allocation among

priority queues in a group and the job scheduling policy

within each queue. For example, in YARN Capacity and Fair

schedulers [59], the “ratio” parameters (cluster-level configu-

rations) decide the percentages of resources assigned to them

groups. For the group-level configurations, the “capacity”

and “weight” parameters control the resource sharing among

the second-level priority queues (e.g., q11 and q12); and the

”scheduling policy” parameter, such as FIFO, Fair and Domi-

nant Resource Fairness (DRF) [30], determines the resource

assignment among jobswithin the same queue.
Configuration-Sensitive Scheduler. Given a cluster sched-

uler, the choice of scheduling configurations leads to very
different performances of jobs, as minor tweaking on such
parameters can lead to changes in resource allocations and
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thus result in large discrepancies in job performance [13].
Our evaluations of Facebook and Google cloud jobs on the
YARN Capacity and Fair schedulers show that setting either
best group-level or cluster-level configurations outperforms
other ones by achieving more than 50 percent improvement
in job performance (Section 2.3). However, it is no mean feat
to gain potential performance improvement from setting the
best configuration because the performance impact of dif-
ferent configurations as well as the best one vary depending
on a wide range of variable factors. These factors include
the workload status (that is, the numbers of jobs in different
queues and their workload characteristics represented by
the job types and input data sizes [52]), the available resour-
ces, and the scheduling constraints (e.g., queue capacity and
machine placement [31]).

Challenges. Most cluster schedulers for modern cloud
datacenters, whether used in practice (e.g., Google Borg [60]
and Hadoop YARN [7]) or described in the literature [15],
[19], [47], rely on cluster administrators to manually set
scheduling configurations [13] in an off-line fashion. How-
ever, today’s cloud environments usually have to tackle
with varying workloads, which exhibit highly heteroge-
neous and dynamic runtime behaviors [52]. In such envi-
ronments, static configuration tuning approaches may
overlook the potential improvement through on-line config-
uration turning, because the optimal one is highly volatile.
Two major challenges in practice arise when adapting a
scheduler’s configuration to maximize the performance of
workloads.

First, given a configuration, a scheduler’s performance
impact (namely jobs’ performance under this configuration)
is determined by both the scheduler’s resource allocation
mechanism and a list of variable factors such as workloads,
available resources, and scheduling constraints. Hence the
proposed technique needs to be applicable to diverse sched-
uling scenarios in the cloud.

Second, the volatile workload dynamics of best-effort
jobs means the number and distribution of these jobs contin-
uously change in the cluster (e.g., most Google and Face-
book jobs complete within a few minutes), and the newly
submitted jobs may have different workload characteristics.
Meanwhile, today’s scheduler needs to manage a cluster
consisting of 10,000 and more machines, and a large number
of concurrent users and jobs [60]. This gives rise to another
major challenge about how to efficiently searching through
the large parameter space of scheduler configuration for
dynamically changing workloads at run-time.

This paper proposes a systematic approach to enable
workload-adaptive tuning of scheduler configuration for
large clusters. Our run-time configuration approach, called
AdaptiveConfig, is designed to find a scheduler’s best con-
figuration for the latest mix of jobs via online reasoning and
search according to workload and resource characteristics.
Note that AdaptiveConfig differs from traditional reconfig-
uration techniques for VM schedulers [17], which allocate
resources among VMs to improve the performance of long-
running and real-time service jobs [63]. In contrast, the cluster
schedulers studied in this work focus on best-effort jobs. In
detail, we make the following technical contributions:

Rule Engine Based Performance Comparator. Based on the
Drools rule engine [4], AdaptiveConfig formally describes
the scheduler’s resource allocation mechanisms using busi-
ness rules. Moreover, it performs fine-grained differentiation
of the factors that influence job scheduling and simulta-
neously processes these correlated factors as facts of Drools,
thus constructing an comparator of configurations’ perfor-
mance impacts under diverse scheduling scenarios.

Workload-Adaptive ConfigurationOptimizer. AdaptiveConfig
presents a run-time optimizer that turns configuration param-
eters automatically according to the changing workloads. To
achieve on-line tuning, the optimizer implements an efficient
searching method for best group-level configuration, and
transforms the cluster-level configuration searching problem
into an equivalent dynamic programming (DP) problem
whose structures of optimal actions can be explored for effi-
cient solutions at scale.

Evaluation Using Testbed and Simulation. To demonstrate the
effectiveness of our approach, we implemented it on two typi-
cal YARN schedulers, namely the Capacity and the Fair
schedulers, and evaluated it using real jobs derived from the
Facebook [21] and Google [52] production traces. The evalua-
tion results on a testbed (cluster) show: (i) AdaptiveConfig
correctly selects the best configurations for 87.26 percent of
the different mixes of jobs, while also selecting the next-best
ones for the remaining jobs; (ii) our approach responds to
changing workloads effectively by selecting the appropriate
scheduling configuration that achieves considerable perfor-
mance improvement: job latencies are reduced by an average
of 2.16 times compared to the configurations without our
approach. Moreover, we conducted simulations on the
YARN Scheduler Load Simulator (SLS) [12], YARN’s official
platform for large-scale cluster and load simulations. The sim-
ulation results on a 12k-machine cluster (a typical Google [52]
and Alibaba [22] cluster size) show AdaptiveConfig outper-
forms representative configurations by achieving 1.94 times
reductions in job latency with an optimization time of less
than 3 seconds.

The remainder of this paper is organized as follows:
Section 2 introduces the related work and motivation of this
work, Section 3 explains our approach, Section 4 evaluates it,
and finally, Sections 5 summarizes the work. Portions of
this work appear in a previous conference paper [36] and we
have largely extended the article, by demonstrating the key
challenges using concrete cases and measurement studies
(see Section 2.3), formulating the best configuration searching
problem (see Section 3.2) and method (Section 3.3), develop-
ing a new DP-based method to find the globally best configu-
rations for multiple user groups (see Section 3.4), and

Fig. 1. An example of YARN fair scheduler in a cluster.

2880 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019



extending the evaluations by adding Google workloads (see
Section 4.3) andmulti-group scenarios (see Section 4.5).

2 BACKGROUND AND MOTIVATION

To motivate our focus on optimizing scheduler config-
urations, this section first explains existing cluster schedu-
lers (Section 2.1) and the related techniques in the cloud
(Section 2.2). By testing concrete cases using jobs in real
cloud traces, it then illustrates the challenges of workload-
adaptive configurations for cloud scheduler (Section 2.3).

2.1 Cluster Schedulers in the Cloud

In traditional HPC supercomputing centers, cluster schedu-
lers (e.g., Maui [43]) typically use long waiting queues to
achieve high resource utilizations [60]. In contrast, the next
generation cluster management systems for cloud datacen-
ters need to address more challenging scheduling problems
such that most cloud jobs have heterogenous workload
characteristics, multi-dimensional resource demands, and
short durations [8]. Table 1 summarizes the representative
cluster scheduling techniques in the cloud.

2.1.1 Cluster Resource Management Systems in the

Cloud

Production Systems. Mainstream cloud service providers
usually develop their own cluster resource management
systems. Google Borg [60] is a pioneer system that divides
cloud jobs into high-priority service jobs and low-priority
batch jobs, and schedule these jobs with consideration of
multiple resource dimensionalities including CPU, mem-
ory, disk, and network. Many enterprisers develop similar
systems to Borg, such as are Microsoft Autopilot [42] and
Facebook Tupperware [5]. In recent years, Google launches
a new system (Kubernetes [6]) for the new generation con-
tainer technology (Docker [48]), and Microsoft’s Apollo [16]

reduces job scheduling latency using a distributed schedul-
ing framework.

Open Source Systems. Before Borg, Mesos [39] is the first
cluster resource management system released by UC Berke-
ley. Mesos increases the cluster resource utilization using a
two-level scheduler, which shares resources amongmultiple
computing frameworks (e.g., Hadoop, Spark and Storm) as
well as jobs within each framework. Mesos’s design philoso-
phy has a profound impact on the following systems:
YARN [59] employs hierarchal schedulers to share resources
amongmultiple organizations and users; Google Omega [55]
improves Mesos’s passive resource sharing mechanism and
proposes an active mechanism that allows jobs to autono-
mously compete for resources based on shared states; and
Swarm [3] is a specialized cluster management system
designed for Docker.

Existing cluster resource management systems usually
provide configuration parameters in their schedulers to con-
trol the resource allocation and job scheduling process [8],
and support run-time adjustment of these configurations [1],
[59]. However, to the best of our knowledge, existing sys-
tems only rely on cluster operators to manually set the con-
figuration and may loss the opportunities to improve jobs’
performance through dynamically configuring their sched-
ulers according to the changing workload and resource
status in the cluster. This work is built upon the above con-
figurable schedulers and it focuses on tuning their configu-
rations at run-time.

2.2 Related Work

2.2.1 Improvement Techniques for Cluster Schedulers

Many techniques have been proposed to improve cluster
schedulers from different aspects.

Distributed and Hybrid Schedulers. Traditional centralized
cluster schedulers such as Borg and YARN have the problem
of long scheduling latencies when handling high throughput
of jobs. To address this issue, Sparrow [49] proposes a

TABLE 1
Overview of Cluster Scheduling Techniques in the Cloud
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distributed framework for fast scheduling decisions of
100 millisecond jobs. However, distributed schedulers
have a limited visibility of the whole cluster status, thus
cannotmake optimal scheduling decisions or strictly guaran-
tee fairness constraints. Hence, hybrid schedulers (e.g.,
Mercury [45], Hawk [25], and Eagle [24]) make trade-off
between high quality in centralized schedulers and low
latency in distributed schedulers.

Extension of Resource Dimensionality. Many basic cluster
schedulers only allocate resources of processor cores and
memory, but ignore the constrained I/O resources such as
disk and network bandwidths. Hence, some work studies
the explicit allocation of network resources [34], [67]. In addi-
tion, alsched [58] maximizes the efficiency of job scheduling
by considering both CPU andGPU resource constraints.

Task-Level Optimization. These techniques optimize the
execution of jobs at the task level. Graphene scheduler [35]
is designed for directed acyclic graph (DAG) jobs with com-
plex task dependencies. It identifies straggling tasks and
schedules them first. Similarly, AutoPath scheduler [29]
adjusts resource allocation among parallel tasks to coordi-
nate their completion times. In addition, Yaq-c and Yaq-
d [51] focus on managing the task queue at each node such
as restricting the queue length or selecting scheduling algo-
rithms. BIG-G uses Docker to keep a task’s status when it is
preempted, thus decreasing its resumption overheads [20].

Our current approach is designed for standard hierar-
chial schedulers used by mainstream cloud providers [54],
and it is orthogonal to the above scheduling improvement
techniques.

2.2.2 Constraint-Based Job Scheduling

In the cloud, cluster schedulers usually have various con-
straints listed as follows.

MapReduce jobs are one major type of best-effort jobs in
the cloud. Early scheduling techniques usually concern two
constraints in these jobs: data locality (moving tasks and
their computations close to data) [62], [65] and task depen-
dance [66]. Some recent work considers the restrictions of
network traffic and deadlines [18], [47].

Resource Contention. In a resource-sharing cloud environ-
ment, the resource contention among co-located jobs consid-
erably degrade service jobs’ perfomance. Considering this
constraint, Paragon [27] utilizes collaborative filtering to
recommend suitable resources for jobs based on their run-
ning history. Similarly, Quasar [26] divides the contention
of resources into different patterns including memory,
cache, disk and network bandwidthes, and uses history logs
to construct classifiers that decide the optimal resource allo-
cation of jobs.

Task Placement. This determines the machine a task can
run. Choosy scheduler [31] and Firmament scheduler [32]
extend the max-min fairness algorithm and the min-cost
max-flow algorithm to support this constraint. It is also
studied within the context of geo-distributed datacenters
and data locality [19].

General Framework. Phoenix [57] is a generic constraint-
aware scheduling framework, which considers both heter-
ogenous resources (e.g., GPU, FPGA and different storage
devices such as solid-state drive (SSD) and hard disk drive

(HDD)) and other constraints (e.g., task placement and
deadlines).

The above constraints can be regarded as an influence
factor when estimating a scheduler configuration’s perfor-
mance in our approach.

2.2.3 Configuration Tuning for Individual Jobs

Some techniques are developed to automatically adjust con-
figurations that control the running of individual jobs.

Hadoop and Spark Jobs. On Hadoop, the running of a Map-
Reduce job is controlled by over 190 configuration parame-
ters [37], [38], such as the number of map and reduce tasks,
the memory allocation of each task, whether to compress
data in data shuffling. All these parameters influence the
job’s performance. To this end, Starfish [38], MRTuner [56],
FRESH [61], and RFHOC [14] profile the behaviors of jobs
and develop automatic configuration tuning methods on
Hadoop for optimized performance. On Spark, the memory
configuration parameters have a large impact on job perfor-
mance, and machine learning techniques are used to opti-
mize these configurations [40]. Some other algorithms are
developed to configuring dynamic partitioning of a Spark
job to minimize its resource consumption within a user-
defined latency [33].

Jobs on Cloud Server Systems. Similarity, some techniques
are developed for single applications in cloud serving sys-
tems. ReCA studies I/O workloads in storage systems and
develops a cache reconfiguration approach for a given
application [53]. A configuration optimization approach is
developed for a specified on Tomcat, database systems
(Cassandra, MySQL, and Hive) or Spark [68].

Existing configuration tuning techniques aim to mini-
mize the execution time of an individual job, usually relying
on profiling the running behaviour of the job. In contrast,
this work studies the scheduler configurations that decide
the resource allocation among multiple jobs and addresses
the challenge in searching the best setting to minimize these
jobs’ latencies, including both waiting times before execution
(depending on the resource allocation moments) and execu-
tion times (depending on the amount of allocated resources).

2.3 Challenges

This section motivates the challenges considered here by
testing YARN Capacity and Fair schedulers on traces of real
workloads.

2.3.1 Workloads and Schedulers

We analyzed traces from two production cloud systems,
namely a month-long trace from a 12K-machine Google clus-
ter [52] and a 7.5 month-long trace from a 3.6K-machine Face-
book cluster [21], to show the workload characteristics of
cloud best-effort jobs: (1)workload heterogeneity. These jobs are
submitted by users of various application domains and hence
have different application types. Each application type has a
wide range of input sizes ranging fromKB to TB. (2)Workload
dynamicity. In both traces, short and medium best-effort jobs
that complete within dozens of seconds or minutes account
for the majority. For example, 66.7 percent of Google jobs
complete less than 5 minutes, and their median duration is
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3 minutes; 47.07 and 98.79 percent of Facebook jobs complete
within in 32 seconds and 21minutes.

Benchmarks. In evaluation, the workload characteristics of
a job is represented by its submission time and the resource
usages of its tasks. The Facebook jobs are generated by the
Statistical Workload Injector for MapReduce (SWIM) bench-
mark [9], which emulates the operations of reading, writing,
shuffling and sorting data in MapReduce jobs. The Google
jobs are generated by the CloudMix benchmark [2].

YARN Scheduler Configurations. We evaluate both Google
and Facebook jobs using YARNCapacity and Fair schedulers.
Both schedulers have dozens of configurable parameters, in
which a few ones determine resource allocation within a user
group and hence they are critical to job performance [13].

� In the Capacity scheduler, the “capacity” parameter
controls the allocation of resource to different queues
(two queues, called qA and qB, are used in the exam-
ple). We set five configuration values of this parame-
ter in qAðqB): 16 (56), 13 (23), 12 (12), 23 (13), and 5

6 (
1
6).

� In the Fair scheduler, the “weight” parameters det-
ermines the resource sharing proportions between
queues and each queue has its “schedulingPolicy”
parameter. We set the same configuration values of
the “weight” parameters as the previous “capacity”
parameter, and 3 job scheduling policieswithin queues:
FIFO, Fair, and dominant resource fairness (DRF).

2.3.2 Challenge in Tuning Group-Level Configurations

Scheduling Scenarios. For the Facebook jobs, we generate 14
different mixes of jobs submitted to two cluster sizes: six
and eight containers (each container has 1 CPU core and 2
GB memory). For the Google jobs, we generate 18 different
mixes of jobs by considering six periods of a day (each
period corresponds to four hours) and three platforms (each
platform has its own machine types and resource capaci-
ties). The available resource to each mix of jobs is decided
by the actual nodes assigned to these jobs in the trace. Over-
all, we tested 640 different cases of job scheduling.

Evaluation of Group-Level Configurations. We term best con-
figuration as the one that results in the lowest job latency.
The evaluation results show: (i) the best configuration varies
when encountering either different mixes of jobs or avail-
able resources. It covers 100 and 86.67 percent of the
optional configurations in the Capacity and Fair schedulers,
respectively; (ii) each optional configuration experiences a
similar probability to be the best one. Fig. 2 further reports
the average percentage of increased latency when compar-
ing other configurations to the best one. One can observe
that these configurations considerably increase job latencies
by an average of 54.95 percent.

Challenge. There is no “one-size-fits-all” best configura-
tion in the above evaluations. The problem is compounded
when considering resource allocation mechanisms in differ-
ent schedulers and scheduling constraints. This gives rise to
the key challenge about how to efficiently reason about the
performance impact of different configurations under such
various influence factors and scheduling scenarios.

2.3.3 Challenge in Tuning Cluster-Level Configurations

Evaluation of Cluster-Level Configurations. We now discuss the
performance impact of the cluster-level configuration, i.e., the
“ratio” parameters that control the proportions of resources
assigned to different user groups. Taking three groups (group
1 to 3) and the Capacity scheduler as an example, we first test
how the different resource allocations affect the job perfor-
mance even given the best group-level configuration in the previ-
ous evaluation. Fig. 3a demonstrates the fluctuations of job
latencies under different numbers of containers. We can see
that the resource assignment considerably affects the job
latency in each group. In particular, group 2 has the highest
latency and it is 7.87 times larger than the lowest one. We fur-
ther consider a scenario of 144 containers that are shared across
three groups under three cluster-level configurations, as shown
in Fig. 3b. The evaluation result shows configuration 1 achieves
the lowest job latency (8.4 minutes), which is 59.35 percent
shorter than those of the other two configurations.

Challenge. We note that there are only three groups and
three configurations in this simple example. In real cloud
clusters, there exist thousands of users and dozens of
groups (e.g., 50) in a cluster [60] and each group may have a
list of “ratio” parameters that lead to different job perform-
ances (e.g., more than 30 in Fig. 3a’s three groups). Hence at
the datacenter scale, there exists a huge number (e.g., 5030)
of possible combination of cluster-level configurations and
how to efficiently search this configuration space for the
best setting is a major challenge to be addressed.

3 ADAPTIVECONFIG

In this section, we first describe the design overview of
AdaptiveConfig in Section 3.1 and formulate the best con-
figuration searching problem in Section 3.2, following by
explaining its specific modules in Sections 3.3 and 3.4.

3.1 Overview

AdaptiveConfig aims to automatically configure a cluster
scheduler according to the workload variation at run-time.
It applies a periodical configuration tuning mechanism for a
cluster scheduler using three steps, as shown in Fig. 4. At

Fig. 2. Percentages of job latency increase in other configurations
compared to the best ones.

Fig. 3. Evaluation of cluster-level configurations.
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each tuning interval (step 1), it monitors the changes in
workloads (that is, existing running and waiting jobs, and
newly submitted jobs) and available resources, and decides
which user groups of the cluster need reconfiguration. Spe-
cifically, a reconfiguration is triggered for a group if it has at
least one newly submitted job that requires resource alloca-
tion in the current tuning interval.

At step 2, AdaptiveConfig employs two modules that
work together to search the scheduler’s best configura-
tion. For each triggered group, the group-level configuration
optimizer finds its best group-level configurations under
different resource assignments, which are decided by
the group’s minimal and maximal resource capacities.
Afterwards, the search results of all m groups are for-
warded to the cluster-level configuration optimizer to search
the globally best cluster-level configuration. Finally, the
scheduler is re-configured according to the found best
configurations.

3.2 Problem Formulation

Consider a cloud cluster shared by m groups, oi, 1 � i � m,
and R denotes its available resource for best-effort jobs.
Note that the amount of resource is measured by the num-
ber of Linux containers, which are used in resource isolation
and usage accounting in many mainstream cloud platforms
such as Google and Alibaba. Each group oi has a set of n pri-
ority queues qj, 1 � j � n. The scheduling configurations for oi
are denoted by a triple Ci = (cRatio

i , CQueue
i , CSche

i ): cRatio
i is the

ratio of allocated cluster resource; CQueue
i is a set of parame-

ters that decide the allocation of resources among n queues;
and CSche

i is a set of parameters that decide the scheduling
policy at each queue. Suppose oi has a set Ji of jobs, its sched-
uling constraints are denoted by a pair Si = (SQueue

i , SJob
i ):

SQueue
i is the set of constraints for its queues such as their

minimum and maximum amounts of resources; and SJob
i is

the set of constraints for its jobs such as their task placement
constraints (the machines that a job’s tasks can run).

Best scheduler configuration is defined as: given available
resource R, jobs J = {Ji}

m
i¼1, scheduling configurations C=

{Ci}
m
i¼1, and constraints S = {Si}

m
i¼1, we aim to find the config-

uration parameters that achieve the best job performance, L,
over the full space C of parameter settings

C� ¼ argmin
C2C

LðR; J; C; SÞ: (1)

Here, we specifically consider L as the average job
latency and minimize L. This model can be directly

extended to a utility function that considers job latency, pri-
ority, and deadline [41]. We address the best configuration
searching problem by decomposing C� into group-level and
cluster-level best configurations.

Group-Level Configuration Optimizer. Given a resource
assignment R � cRatioi to a group oi (1 � i � m), this optimizer
searches the best configurations CQueue�

i and CSche�
i that result

in the lowest job latency for group i

L�ðoi;R � cRatioi Þ ¼ min
C
Queue
i

2CQueue
i

^CSche
i

2CSche
i

LðR � cRatioi ; Ji; Ci; SiÞ;
(2)

where CQueue
i and CSche

i denote the subspaces of C consisting
of only the parameters in CQueue

i and CSche
i .

Cluster-Level Configuration Optimizer. Based on the group-
level best configurations, this optimizer finds the globally
best setting of configurations cRatio�1 to cRatio�m (

Pm
i¼1 oi=1)

that results in the lowest job latency l� in the cluster

l� ¼ mincRatio
i

2CRatio
i

Xm

i¼1

L�ðoi; R � cRatioi Þ; (3)

where CRatio
i denotes the parameter space of cRatioi .

3.3 Group-Level Configuration Optimizer

This group-level configuration optimizer aims to efficiently
search the configuration space to find the best one that mini-
mizes the jobs’ latencies. For each candidate configuration
Ci, it employs function LðR � cRatioi ; Ji; Ci; SiÞ to compare the
job latencies with other configurations by taking the current
jobs Ji and the available resource R � cRatioi , and the schedul-
ing constraints Si as inputs.

3.3.1 Configuration-Sensitive Job Latency Comparison

Algorithm 1 details the steps of function LðR � cRatioi ; Ji; Ci; SiÞ
in Eqn. (2). Its latency comparison process has several itera-
tions. Each iteration corresponds to a resource allocation rA to
a set of k jobs in jJij (line 4). The allocation decision depends
on the scheduler’s resource allocation mechanism under con-
figuration Ci and scheduling constraints Si. Afterwards, the
latencies of these k jobs are estimated in turn (line 5 to 9). In
estimation, a job jv starts running after the resource allocation
and its waiting time wv is calculated by subtracting the sub-
mission time bv from the allocationmoment tM (line 6). Its exe-
cution time ev and latency lv are then calculated (lines 7 and 8),
and the job is added to set JRun of running jobs. After complet-
ing one resource allocation (line 4 to 11), the algorithm
removes the job j� that finishes first in Ji (line 12), resets
resource allocation moment tM and available resource rA
(lines 13 and 14), thereby starting the next iteration of resource
allocation. Finally, the algorithm returns the average latency
of all jobs (line 16).

We note here that estimating a pending job’s execution time
is a major building block of cluster schedulers in the
cloud [28], [44] and the estimation error is determined by
many factors such as the resource/machine type, the sched-
uler employed, and runtime uncertainties [50]. In contrast,
function L focuses on comparing job latencies across differ-
ent scheduler configurations and implicitly assumes that
the latencies are estimated under the same factors. Under this

Fig. 4. Overview of AdaptiveConfig.
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assumption, we develop function Eðjv; Rjob
v Þ to estimate for

a multi-task job jv’s execution time. The estimation is sensi-
tive to configuration Ci that decides the set Rjob

v of resource
allocation to the job. Specifically, Rjob

v corresponds to one or

multiple allocations and (r; tÞ 2 RJob
v is a pair denoting the

allocation time t of resource r.

Algorithm 1. Job Latency Comparison LðR � cRatioi ; Ji;
Ci; SiÞ
Require: tM : the resource allocation moment;

rA: the allocatable resources;

RJob: the set of resource allocations to a job;

JRun: (t; rÞ 2 JRun is a pair denoting a job’s completion time
t and released resource r;

e: A job’s estimated execution time;
1. rA ¼ R� cRatio

i ;
2. tM ¼ 0;
3. while (Ji 6¼ f) do
4. Allocate rA to the k jobs in Ji according to Ci and Si;
5. for (v = 1; v � k; v++) do
6. wv =maxftM � bv; 0g;
7. ev = Eðjv; RJob

v Þ;
8. lv = wv+ev;
9. JRun = JRun[ {(bv þ lv; R

Job
v )};

10. Ji = Jinfjvg;
11. end for
12. JRun = JRunn {(t�; r�)} where t� ¼ minðt;rÞ2JRun t;
13. tM = RJob�;
14. rA = r�;
15. end while
16. Return the average latency of all jobs.

The steps of function Eðjv; Rjob
v Þ are detailed in Algo-

rithm 2. Given the set Taskv of tasks in jv, the algorithm
simulates the assignment of these tasks to the containers
in Rjob

v and this process has jRjob
v j iterations (line 4 to 19).

Each iteration corresponds to a resource allocation of ri
containers (ri � 1), whose available moments are
recorded in array A as their allocation times (line 10 to
12). Suppose nC containers are allocated (line 13), the
algorithm iteratively assigns tasks to containers under
two conditions (line 14 to 18): (1) there exists a container
whose available moment is smaller than the next resource
allocation moment tM ; (2) there exists pending tasks. In
each assignment, a pending task is allocated to the con-
tainer with the earliest available moment A½i�	 (line 15)
and this container’s available moment is updated as the
time the task is completed (line 16). Finally, the algorithm
calculates job jv’s execution time as the interval between
the first container’s allocation moment and the last con-
tainer’s available moment (line 20). Similar to current
work on job performance model [28], [46], [50], our
approach estimates a task’s execution time eTask by con-
structing models (e.g., regression models) based on job
profiles or post running logs. The time model assumption
was a homogenous cluster, in which all containers have
the same instance type (represented by a container’s
machine type and resource capacity). This model can be
extended by taking containers’ instance type as input,
thus supporting a heterogeneous cluster with multiple
instance types.

Algorithm 2. Job Execution Time Calculation Eðjv; Rjob
v Þ

Require: tM : the next container’s allocation moment;

Taskv: the set of tasks in job jv;

A: An array of each container’s available moment;

eTask: a task’s execution time.
1. Rank all the tasks in Taskv according to their execution

orders;
2. nC = 0; //number of containers
3. k = 0; //number of assigned tasks
4. for (i = 1; i � jRjob

v j; i++) do
5. if (i < jRjob

v j) then
6. tM ¼ tiþ1;
7. else
8. tM ¼ þ1;
9. end if
10. for (j = 1; j � ri; j++) do
11. A½nC þ j	 = ti;
12. end for
13. nC = nC+ri;
14. while (max1�i�nCfA½i	g < tM and k � jTaskvj) do
15. i� ¼ argmin1�i�nCfA½i	g;
16. A½i�	 = A½i�	+eTaskk ;
17. k++;
18. end while
19. end for
20. Returnmax1�i�nCfA½i	g-t1.

Fig. 5 shows an example of estimating job jv’s execution
time using Algorithm 2. This job has seven tasks, in which
tasks 3 to 6 are parallel tasks with the same execution order.
That is, they have arbitrary assignment orders in Algorithm
2. Job jv obtains three resource allocations during its execu-
tion process and thus the estimation process consists of

Fig. 5. An example of estimating a job’s execution time and container
release time under multiple resource allocations.
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three iterations. At iteration 1, when r1 is allocated at time 0,
task 1 is assigned to container 1 and this container’s avail-
able moment is 6. At iteration 2, when r2 is allocated at time
3, only container 2 is available and task 2 is assigned to it.
At iteration 3, when r3 is allocated at time 7, tasks 2 and 3
are running in containers 2 and 1, so tasks 4 and 5 are
assigned to the two newly released containers. Finally, at
time 9, containers 1 and 2 are released and tasks 6 and 7 are
assigned to them. After all seven task assignments, jv’s exe-
cution time is calculated.

3.3.2 Rule Engine Based Implementation

To support different schedulers and diverse workload char-
acteristics, we implement the comparison function L based
on the Drools Expert rule engine [4] with two objectives. First,
it explicitly differentiates a schedulers resource allocation
mechanism under different configurations and formally
describes these mechanisms as business rules in Drools. Sec-
ond, it transforms the factors that influence the job schedul-
ing into facts of Drools, thus providing the ability to handle
variations in workloads and available resources. Drools is
used here because it provides highly efficient reasoning
algorithms that scale to a large number of business rules
and facts, while also offering conflict resolution strategies in
reasoning. We now introduce the details of business rules
and facts in the comparison function.

Business Rules. The Drools Expert allows convenient defi-
nition of a business rule as prerequisites (“When/If” state-
ment) and actions (“Then”) and manages different business
rules using activation groups (the rules in the same group
cannot be fired together). For example, a queue can only
apply one job scheduling algorithm (e.g., FIFO or DRF),
hence in Drools, each scheduling algorithm is defined as a
business rule and all the algorithms are in the same activa-
tion group.

Fig. 6 shows four activation groups of business rules: (1)
Resource allocation rules among priority queues. Example rules
are the static resource allocations in the YARN Capacity
scheduler and the dynamic resource sharing mechanisms in
the YARN Fair scheduler. (2) Job scheduling policies within
one queue. Example policies are FIFO, DRF, Earliest-dead-
line-first (EDF), and Least Remaining Time First (LRTF). (3)
Scheduling constraint checking rules. These rules define the
checking methods for scheduling constraints such as queue
capacity (the minimal and maximal amounts of resources
that can be allocated to a queue) and machine placement

(the machines that a job can run). (4) Job execution time esti-
mation rules. These rules estimate a job’s execution time
under a resource allocation.

Facts. For a user group oi, the comparison function L
comprehensively considers the factors (available resource
R � cRatioi , jobs Ji, configurations Ci, and constraints Si) that
influence job scheduling and simultaneously reasons about
these correlated factors as facts of the rule engine. The rule
engine then outputs resource allocation decision and tasks’
estimated execution times to the function (Algorithm 1).

Example. Fig. 7 shows an example of assigning five con-
tainers (available resources) to five waiting jobs (j1 to j5) on
the YARN Capacity and Fair schedulers. Either scheduler
has two queues and each queue has its capacity constraint.
The example has three configurations: C1 (Capacity sched-
uler with FIFO queue), C2 (Fair scheduler with FIFO queue),
and C3 (Fair scheduler with Fair queue). The resource
demand is one container for j1 and two containers for each
of the other four jobs. Under C1 (Fig. 7a), fixed amounts of
resource are allocated to the two queues (two containers to
q1 and three containers to q2). Two head-of-queue jobs, j2
and j3, receive the three containers in a FIFO manner. By
contrast, the Fair scheduler (Figs. 7b and 7c) is supposed to
allocate two (three) containers to q1 (q2); however j1 only
requests one container in q1 and thus the rest of four con-
tainers are assigned to q2. Under C2 (Fig. 7b), the FIFO
scheduling policy assigns the four containers of q2 to the
two first submitted jobs. Under c3 (Fig. 7c), the Fair schedul-
ing policy equally assigns the four containers to the four
waiting jobs in q2. Finally, the optimizer calculates all five
jobs’ execution times according to their resource assign-
ments using the job execution time estimation rules.

3.3.3 Searching the Best Group-Level Configuration

The optimizer searches within their domains of configura-
tions CQueue

i and CSche
i to find the best configuration parame-

ters that minimize the job latencies. It first utilizes the
quantization technique to generate a search space. Specifi-
cally, for a configuration parameter, its domain can either
be continuous (e.g., the “Capacity” parameter in the Capac-
ity scheduler) or discrete (e.g., the parameter to select the

Fig. 6. Group-level configuration optimization based on Drools.

Fig. 7. Performance estimation under three scheduling configurations.
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job scheduling algorithm can be FIFO, DRF, or EDF). Using
the quantization method, this domain is equally or ran-
domly discretized into d values. When considering all k
parameters in C

Queue
i and CSche

i , the space of possible settings
is constructed as a grid of size dk. For each setting (a point in
the grid), the optimizer uses the comparison function to cal-
culate the jobs’ latencies and thus selects the setting with
the lowest latency.

To search the parameter space efficiently, we develop an
approximate method based on Recursive Random Search
(RRS) [64]. RSS is a heuristic algorithm for black-box optimi-
zation problems and it provides probabilistic guarantees on
the distance between the found best setting and the actual
best one. The RSS-based method starts from the whole
parameter space and searches the best solutionwithmultiple
iterations. Each iteration consists of three steps: (1) given a
pre-specified confidence probability p, the method randomly
samples the current space to find the point (configuration
setting) with the lowest latency; (2) it then shrinks both the
parameter space and the search granularity according to a
scaling down factor g; and (3) it samples in the space with
the granularity. The methods terminates until the search
granularitymeets the required degree of accuracy.

Proposition 3.1. The time complexity of the RRS-based opti-
mizer is Oðlnð1�pÞ

lnð1�gÞ � log g
gt

g0
Þ, where p represents the probability

of find the best setting, g is the search granularity at one itera-
tion, g0 denotes the initial/coarsest search granularity, and gt

denotes the required/finest search granularity, and g denotes
the scaling down factor at each iteration.

Proof. At one iteration, let n be the number of samples
required to meet the confidence probability p, we have:
p ¼ 1� ð1� gÞn, where ð1� gÞ represents the probability
of finding a non-optimal setting in one sample. Hence n

can be calculated as: c ¼ lnð1�pÞ
lnð1�gÞ. Let x be the number of iter-

ations to meet the required search granularity gt, we have:

gt ¼ g0 � cx�1, and x can be calculated as: x ¼ logg
gt

g0
þ 1.

When considering all x iterations, the total time complex-

ity of the algorithm isOðlnð1�pÞ
lnð1�gÞ � log g

gt

g0
Þ. tu

Example. Suppose the Fair scheduler has two parameters
and the search granularity g ¼ 1

27 (that is, the “weight”
parameter and the “scheduling policy” parameters are dis-
cretized into nine and three values, respectively). The RRS-
based optimizer takes lnð1�0:99Þ

lnð1� 1
27Þ

= 122 samples to find the best

setting with confidence probability p = 0.99. Suppose the ini-
tial search granularity g0 ¼ 1

27, the required granularity
gt ¼ 1

270, and the scaling factor g = 0.5 (that is, the search
space and granularity is shrunk by half), the optimizer
needs four iterations to reach the required degree of accu-
racy. Overall, the optimizer takes 488 samples to complete.

3.4 Cluster-Level Configuration Optimizer

At the cluster scale, the parameters in the cluster-level con-
figurations have a large domain due to the large number of
groups. Directly applying the enumeration technique may
take prohibitively long time because the search time in Eqn.
(3) increases exponentially with the group number. We there-
fore transform this optimization problem into an equivalent
dynamic programming (DP) problem by: (i) defining the

value of an group’s resource allocation; (ii) characterizing
the optimal substructure of the DP problem; and (iii) devel-
oping an algorithm that computes the value of the optimal
resource allocation for all m groups and searches for their
best cluster-level configurations from the computed
information.

Value of Resource Allocation. The allocated resource to a
group o determines the latency of its jobs and this allocation
is restricted by lower and upper bounds in practice. First,
given a mix of jobs, the lower bound rLower denotes the mini-
mum amount of resources to support their executions. For
example, the YARN resource manager needs to launch an
application master (using one container) for each job before
allocating other containers to execute its tasks. Second, the
upper bound rUpper denotes the maximum amount of resour-
ces group o needs to run its jobs. That is, all jobs satisfy their
resource demands under rUpper and the allocation of extra
resources does not further decrease the job latency. Within
this context, we define the value LRðo; rÞ as the latency reduc-
tion through allocating extra resource r to group o in addi-
tion to its lower bound rLower

LRðo; rÞ ¼ L�ði; rLowerÞ � L�ði; rLower þ rÞ: (4)

Note that in Eqn. (4), the calculation is based on the assump-
tion that the best group-level configuration is applied in
group o.

Optimal Substructure. Given i groups (1 � i � m) in the
cluster, we define the optimal substructure as the maximum
latency reduction V ½i; r	 when allocating extra resource to
these groups in addition to their low bounds

V ½i; r	 ¼ maxfV ½i� 1; r	; LRðoi; r�i Þ þ V ½i� 1; r� r�i 	g: (5)

In Eqn. (5), the calculation of V ½i; r	 has the overlapping
subproblems property: it is based on the optimal substructure
of (i-1) groups and V ½i� 1; r	 is revisited over and over
again during the calculation of V ½i; r	 (V ½0; r	 ¼ 0). Hence
this calculation is a binary choice: V ½i; r	 either equals to
V ½i� 1; r	, indicating that no resource is allocated to the ith
group; or V ½i; r	 equals to (LRðoi; r�i Þ þ V ½i� 1; r� r�i 	) if this
value is larger than V ½i� 1; r	, indicating that allocating
resource r�i to the ith group and (r� r�i ) to the other (i� 1)
groups results in a larger latency reduction. In the second
choice, r�i = argmax1�ri�r{L

Rðoi; riÞ+ V ½i� 1; r� ri	} denotes
the optimal allocation of extra resources to the ith group.

Algorithm 3 details the steps of searching for the best clus-
ter-level configuration. Given the extra resource rAlloc in
addition to all m groups’ lower bounds (line 1), the algo-
rithm first computes the maximum latency reduction V ½i; r	
in a tabular, bottom-up manner (lines 2 to 12). Note that for
i groups, the summarized allocatable resources rsum is cal-
culated based on these groups’ lower and upper bounds,
and the algorithm only considers resource allocation within
rsum to reduce the search space (lines 6 to 11). Matrix R½i; r	
records the optimal solution given i and r, and it is used to
compute the best cluster-level configurations (lines 15 to 18).

Proposition 3.2. The time complexity of Algorithm 3 is
Oðm� r2sumÞ, where m is the number of groups and rsum is the
number of allocatable containers.
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Proof. The algorithm takes m loops to complete the search
of all m groups to find the best solution. In each loop
(lines 5 to 12), it takes rsum iterations (lines 7 and 11) to
search group i’s best resource allocation. At iteration r
(1 � r � rsum), it needs r operations to find the best solu-
tion (line 8) and other operations in the iteration can be
done in constant time (lines 9 and 10). Hence the algo-
rithm takes

Prsum
r¼1 r = rsum�ðrsumþ1Þ

2 = Oðr2sumÞ to complete
the search of one group. The total time complexity of
searchingm groups, therefore, is Oðm� r2sumÞ. tu

Algorithm 3. Searching the Best Cluster-Level
Configuration

Require: rLower/rUpper: the lower/upper bound of resource
allocation to a group;

V ½i; r	: the maximum latency reduction of the first i groups
when the extra resource allocation is r;

R½i; r	: the optimal allocation of extra resource to the ith
group when the extra resource allocation is r.

1. rAlloc = R�Pm
i¼1 r

Lower
i ;

2. Set V ½i; r	 = 0 for 0 � i � m and 0 � r � rAlloc;
3. Set R½i; r	 = 0 for 0 � i � m and 0 � r � rAlloc;
4. rsum = 0;
5. for (i = 1; i � m; i++) do
6. rsum =minfrsum þ rUpperi � rLoweri ; rAllocg;
7. for (r = 1; r � rsum; r++) do
8. r�i = argmax1�ri�r{L

Rðoi; riÞ+ V ½i� 1; r� ri	};
9. R½i; r	 = r�i ;
10. V ½i; r	 =max{V ½i� 1; r	, LRðoi; r�i Þ+ V ½i� 1; r� r�i 	};
11. end for
12. end for
13. i =m;
14. r = rsum;
15. for (i =m; i > 0; i = i-1) do
16. cRatio�i = (R½i; r	 þ rLoweri )/R;
17. r = r-R½i; r	;
18. end for
19. Return {cRatio�

1 ; . . . ; cRatio�
m }.

Example. Fig. 8 shows an example of searching three
groups’ best cluster-level configurations using Algorithm 3.
In the inputs, r represents the extra resources allocated to a
group in addition to its lower bound and LRðoi; rÞ represents
the value (reduced latency) when allocating r to group oi. The
total available resource R = 15 in cluster and thus the total
extra resource to all groups is: rAlloc = R�P3

i¼1 r
Lower
i = 7.

In the search process, the algorithm first constructs matrix
V ½i; r	 (0 � i � 3, 0 � r � 7) by sequentially computing the
maximum latency reductions when allocating resources to
three groups, and rsum represents the amount of allocatable
resources for these groups. Subsequently, the algorithm
searches the three groups’ best configurations by starting
from the bottom-right of the matrix V ½i; r	. Using three itera-
tions, it stepwise calculates the optimal extra resource alloca-
tion to each group according to matrix R½i; r	. We can see in
the best solution, group 2 is allocated the smallest ratio of
resources because it brings the smallest reduction of job
latency.

4 EVALUATION

Based on the implementation of AdaptiveConfig on the
YARN Capacity and Fair schedulers, our evaluation has
three objectives. First, we show AdaptiveConfig is able
to select best (next-best) group-level configurations for
scenarios with various mixes of jobs and YARN sched-
uler equipped with different queues and resources
(containers) (Section 4.3). Second, we present the run-
time results, further highlighting the effectiveness of
AdaptiveConfig in adapting to time-varying workloads
(Section 4.4). The first two evaluations are conducted on
real testbeds. Finally, using real-trace driven simulations,
we evaluate the effectiveness of our approach in improv-
ing job performance when dealing with large clusters
(Section 4.5).

4.1 Implementation on YARN Schedulers

AdaptiveConfig is implemented in Java and it is currently
targeted for cloud jobs running in the YARN platform. Its
group-level configuration optimizer is implemented based on
open source Drools rule engine (Section 3.3.2), and it is
incorporated with two typical YARN schedulers. Both ones
have dozens of configurable parameters, in which a few ones
determine the allocation of resources in job scheduling:

� Capacity scheduler [10] is designed to share resource
among users in order to maximize the resource utili-
zation. Users are allocated to different queues accord-
ing to their priorities. In job scheduling, each queue is
guaranteed a capacity of resources for its jobs, while
can also access idle resources from other queues
under the constraint ofmaximal capacity.

� Fair scheduler [11] also organizes users into different
queues and uses weights to determine the fractions of
resources used by different queues. For each queue,
this scheduler can be configured to use one of the
three scheduling policies: FIFO, Fair, and DRF [30].

AdaptiveConfig interactswithYARN to obtain theworkload
and cluster status: (i) it reads the “/history/done intermediate”
file in YARN’s job history server to obtain each waiting
or running job’s information, including its submission
time, resource requirement, and task information; (ii) it
reads the “yarn-site.xml” file to get the cluster resource
status, including the amount of available CPU cores and
memory, and the resource granularity of a single con-
tainer; (iii) after selecting the best configuration, it accesses

Fig. 8. An example of searching the best cluster-level configurations.
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the “capacity-scheduler.xml” or “fair-scheduler.xml” file
to re-configure the scheduler’s parameters.

To make the reactive configuration tuning applicable for
large clusters with massive nodes and jobs, one group-level
optimizer is implemented for each user group with two
objectives. First, an optimizer only needs to read the job and
node information from one group, thus the overheads from
the reading cause slight interruption to the system perfor-
mance. Second, multiple optimizers run in parallel and the
stall of reading information in one optimizer only influences
the tuning of group-level configuration in its own group. In
addition, the cluster-level optimizer can still use the previ-
ous job information in this group to search the globally best
configuration. This optimizer invokes the reconfiguration of
the scheduler periodically to update the scheduler’s config-
uration file. The reconfiguration takes effect within a few
seconds on YARN [59].

4.2 Experiment Settings

Experiment Platform. The testbed is a cluster of 20 nodes,
each node is equipped two 6-core Intel Xeon E5645 process-
ors and 32 GB of DRAM, and the operating system is Linux
CentOS 7 3.10.0. In the YARN distribution, the versions of
Hadoop and Spark are 2.7.2 and 2.0.2. The versions of JDK
and Python versions are 1.7.0 and 2.7.5. On a YARN sched-
uler, the resource is allocated at the granularity of contain-
ers, each one has 1 CPU core and 2 GB memory. The
simulation platform is YARN SLS [12].

Workloads. The Facebook and Google jobs are generated by
the SWIM [9] and CloudMix [2] benchmarks according to the
publicly available Facebook trace [21] and Google traces [52],
respectively. The workload characteristics of Facebook Map-
Reduce (Spark) jobs include submission times, job types, and
input data sizes, and these jobs run on the YARN cluster. The
workload characteristics of Google jobs include submission
times and task resource usages (CPU andmemory), and these
jobs run on both YARN andYARNSLS.

Scheduling Scenarios. The scenario of Google workload is
established according to the Google cluster trace [52], which
records complete information of machine, job, and tasks.
The cluster has 12.5k nodes of three heterogeneous plat-
forms (machine types) and 10 resource capacities. The trace
spans 29 days and includes about 1k user, 40k applications,
650k jobs, and 144 m tasks. Our scenario consists of four ele-
ments: (1) Job priority. Jobs of priorities 2 to 8 (best-effort
scheduling class) are used. (2) User group. We category users
into different groups according to the applications (denoted
by the logicaljobname in the trace) they run. (3) Available
resource. A cluster’s available resource to best-effort jobs is
calculated by summarizing the actual nodes assigned to
these jobs. (4) Scheduling constraints. We consider two types
of constraints: a priority queue’s capacity constraint is calcu-
lated according to the maximummemory usage of its jobs; a
job’s task placement constraint is directly derived from the
“Task constraints” table, which restricts the machines its
tasks can run.

The Facebook trace [21] lacks information of the above
scheduling scenario, so we only test the Facebook workload
in single-group cases, randomly assign priorities (2 to 8) to
jobs, set cluster sizes and queue capacity constraints: the

minimal and maximal amount of resources in each queue is
10 and 90 percent of the resource capacity.

Metric. When scheduling a mix of jobs on a cluster, the job
performance is measured by the average job latency.

4.3 Search of the Best Group-Level Configuration

The effectiveness of AdaptiveConfig is considerably impac-
ted by its ability to search the best group-level configura-
tions under diverse scheduling scenarios. We define the
search effectiveness metric as the percentage of increase in
the average latency of mixed jobs (that is, their performance
degradation), when comparing the evaluated configuration
against the actual best configuration.

Evaluation Settings. We test different cases of job schedul-
ing from three aspects: (1) Four scheduler settings, including
two schedulers (Capacity and Fair) and two settings of prior-
ity queue (2 or 4) for either scheduler. In the scheduler of two
queues, jobs of priorities 2
5 and 6
8 are submitted to the
two queues, respectively. In the case of four queues, jobs are
respectively submitted to these queues according to their pri-
orities: 2
3, 4
5, 6
7, and 8. (2) 32mixes of jobs, including 14
mixes of Facebook jobs generated for two cluster capacities
(six and eight containers); and 18 mixes of Google jobs
derived from three heterogeneous platforms and each plat-
form has six periods covering 24 hours a day (each period
denotes the workload of four hours); (3) 56 group-level config-
urations. Following the configuration parameter setting in
Section 2.3, the Capacity and Fair schedulers of two queues
have five and 15 configurations, respectively. When the
number of queues increases to 4, we halve the values of the
“capacity” and “weight” parameters in the previous setting
and double their combinations in four queues. Hence the
Capacity and Fair schedulers have nine and 27 configura-
tions, respectively. Overall, 7,168 scheduling cases are tested.

Evaluation Results. Fig. 9 shows the percentages of finding
the actual best configurations using AdaptiveConfig. We can
see that for the Capacity and Fair schedulers respectively,
the best configurations are found in 93.33 and 81.19 percent
of the test cases. When considering the Facebook and Google
jobs respectively, 91.07 and 84.72 percent of the best configu-
rations are found. The results indicate that our approach can
successfully compares the performance discrepancy of dif-
ferent configurations and identify the best ones in a majority
of cases. This percentage is lower in the Fair scheduler
because it has larger parameter space and hence the perfor-
mance discrepancies among different configurations are
smaller. Fig. 10 further shows in the remaining cases, Adapti-
veConfig still finds the next-best configurations with an

Fig. 9. The percentage of finding actual best configurations.
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average of 3.37 percent increases in job latency compared to
the actual best ones. In contrast, job latency is increased by
52.92 percent (15.71 times larger than our approach) when
considering all the configurations that are not best.

4.4 Run-Time Configuration Adaptation

This section demonstrates the effectiveness of Adaptive-
Config in dynamically tuning configurations to the time-
varying workloads within a user group. Following the
scheduler settings of two and four queues the previous sec-
tion, we test the Capacity and Fair schedulers using the
Facebook workload.

Comparison Settings. To the best of our knowledge, Adap-
tiveConfig is the first system that dynamically re-configures
the cluster scheduler according to the workload changes.
Hence we compare against baselines with representative con-
figurations that lead to differential resource allocations in the con-
figuration space. Specifically, in the case of two priority
queues, the Capacity scheduler has seven configurations,
where configuration ci (1 � i � 7) assigns i and (8-i) con-
tainers to the two queues, respectively and the FIFO sched-
uling policy is applied in both queues. The Fair scheduler
has nine configurations, where either queue has three

choices (25, 50, 75) of the “weight” parameter and three
optional algorithms (FIFO, Fair and DRF) of the “job sched-
uling algorithm” parameter. In the case of four priority
queues, each queue of the Capacity scheduler can reserve a
capacity of one, three, or five containers, and there are 10
configurations when considering the different capacity com-
binations of these queues. The Fair scheduler has 18 repre-
sentative configurations as listed in Table 2. In comparison,
AdaptiveConfig’s search space of configurations is set in a
similar way: in the Capacity scheduler, the domain of the
“capacity” parameter is equally discretized 7 values in each
queue; in the Fair scheduler, the domain of the “weight”
parameter contains three values (25, 50 and 75) and the
domain of the “job scheduling algorithm” parameter also
has three values: FIFO, Fair and DRF.

Evaluation Result. Fig. 11 shows the job latencies between
the representative configurations and the dynamic Adaptive-
Config choices during a period of 20 minutes, and we report
the average job latency of the mix of jobs every 2 minutes. We
can see that AdaptiveConfig consistently provides lower
latencies because it performs online search of the best or next-
best configuration for the current mix of jobs. Along the test-
ing time, the average job latencies of all configurations
increase because jobs’ queueing times become longer and lon-
ger. AdaptiveConfig suffers less from such queueing delays
because it provides the lowest job latencies (that is, the best
configurations) in most of the cases, thereby incurring much
shorter job waiting times. In contrast, a static configuration
maybe the best configuration for one interval, but causes
much longer delays than those of the other configurations in
the next interval, thus seriously delaying the subsequent jobs.

We further extend the above evaluation by testing four
different configuration tuning intervals (1, 2, 4, and 8
minutes) in AdaptiveConfig. A shorter interval mean a finer
granularity of adapting configurations to the waiting jobs in
the system. The results in Fig. 12 show that in both schedu-
lers, the 8-minute interval results in the highest job latency
because this configuration tuning cannot provide timely
responses to the quickly changing workload. In addition,
we can observe that the 1-minute interval leads to the lowest
job latency and the 2-minute interval leads to a similar
latency, which indicates that 2-minute tuning interval can
provide sufficiently quick responses to workload changes.

Results. When considering different scheduling settings,
AdaptiveConfig reduces Facebook job latencies by an average of
2.16 times compared to the representative settings in the configu-
ration space, and the latency reductions are 2.22 times and 2.40
times when the tuning intervals are 2 and 1 minutes, respectively.

Fig. 10. Comparison of latency increase (%) in Adaptive’s next-best con-
figurations and all the configurations that are not best.

TABLE 2
18 Representative Scheduling Configurations in

the Fair Scheduler of Four Priority Queues

Configuration c1 to c3 c4 to c6 c7 to c9 c10 to c12 c13 to c15 c16 to c18

q1’s weight 25 50 75 25 50 75
q2’s weight 75 50 25 75 50 25
q3’s weight 25 50 75 25 50 75
q4’s weight 75 50 25 75 50 25

Job
scheduling
policy

Configurations ci, ciþ1, ciþ2 (i=1, 4, 7, 10, 13, 16)
correspond to FIFO, Fair, and DRF job scheduling

algorithms within queues, respectively

Fig. 11. Time-varying workload mixes: Comparing the average job latency of AdaptiveConfig and the representative configurations on a user group
with six/eight containers.

2890 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 30, NO. 12, DECEMBER 2019



4.5 Search the Best Cluster-Scale Configurations

This section evaluates the overheads and effectiveness of
AdaptiveConfig in searching large clusters to find the glob-
ally best configuration.

4.5.1 Overheads of Searching Best Configurations

This section’s evaluation tests AdaptiveConfig’s search over-
heads consisting of two parts: (1) in each group-level opti-
mizer, the major overhead comes from searching the group’s
configuration parameter space using the RRS approach,
which triggers the Drools rule engine to compare the perfor-
mance of different configurations; (2) based on the search
results of all group-level optimizers, the overhead of the
cluster-level optimizer comes from searching the whole
cluster’s large configuration parameter space using the DP
approach.

Evaluation Settings. Following the scheduler setting and
the group-level configurations of Section 4.3, we evaluated
both the Capacity and the Fair schedulers of two and four
queues. In the RSS approach of group-level optimizers, the
confidence probability p = 0.99, the initial search granularity
is 10 times larger than the required granularity, and the scal-
ing factor g = 0.5. In the DP approach of the cluster-level opti-
mizer, we tested 10 cluster sizes ranging from 300 nodes to
12k nodes (each node has four containers), and the corre-
sponding group numbers range from 10 to 500.We deployed
each group in a separate virtual machine (VM) of 2 CPU
cores and 1 GB memory, and the scheduling of jobs in the
group was conducted/simulated on a YARN SLS. Under
this evaluation setting, the scalability of the approach is
tested in an actual cluster environment of up to 500 VMs.
Each cluster size was tested 10 times and we report the
average.

Evaluation Results. Fig. 13 shows that the search time
gradually increases with the search scope and it is still
less than 4 seconds when the cluster size reaches 12k
nodes and the group number reaches 500. This time is
30 times shorter than the typical tuning interval (2
minutes) applied in our approach. This is because at the
group level, both schedulers have a small number of
configuration parameters and hence the RSS approach
can complete within hundreds of samples. Specifically,
the Capacity scheduler of two and four queues needs 83
and 175 iterations to complete respectively, and the Fair
scheduler of two and four queues needs 267 and 488
iterations to complete respectively. We can also observe
that although the DP approach has a polynomial time
complexity Oðm� r2sumÞ (Proposition 3.2), its actual time
consumption is linearly proportional to the group size
m. This is because when searching the best configuration
in i groups (1� i � m), the allocatable resource rsum is
restricted by these groups lower and upper bounds of
allocatable resources, and hence rsum is much smaller
than the total amount of resources in the cluster in most
of the cases.

Fig. 14 further shows the percentages computation time
of the two search parts under different evaluation settings.
In AdaptiveConfig, all group-level optimizers execute in
parallel and each optimizer’s search time is proportional to
the configuration space of the scheduler. The Fair scheduler
has more configuration parameters and hence it needs
higher percentages computation time than the Capacity
scheduler. In addition, the percentages computation time of
the cluster-level search part are proportional to the cluster

Fig. 12. Time-varying workload mixes: Comparing the average job latency of AdaptiveConfig and the representative configurations under different
tuning intervals.

Fig. 13. Scalability of the search approaches in AdaptiveConfig.
Fig. 14. Percentage computation time breakdown for group-level and
cluster-level optimizers.
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size, and they range from 17.69 to 87.08 percent and 6.22 to
66.84 percent in the Capacity scheduler and the Fair sched-
uler, respectively. That is, our approach spends more time
in searching the cluster-level best configuration as the clus-
ter size increases.

4.5.2 Comparison of Job Performance

Next, we extend the comparison evaluation in the previous
section to multiple groups in order to testing both group-
level and cluster-level configurations on a 12K-node SLS
cluster (a typical Google cluster size). In evaluation, the
group-level configurations follow the previous comparison
settings, and the cluster-level configurations, namely the
ratios of resources assigned to different groups, are derived
from the assigned resources to different groups in the Goo-
gle trace. In addition, we test the Google jobs whose submis-
sion times span six periods of 24 hours. Fig. 15 shows the
numbers of user group and submitted jobs at these periods.
We can see a larger group number usually means more jobs
being submitted. The period of hours 5
8 has the largest
job number because the users during this period have the
highest submission rate.

The comparison results in Fig. 16 shows that: (i) Adapti-
veConfig consistently provides lower latencies. (ii) When
the job number increases (e.g., in hours 5
8), the job laten-
cies have apparent increases under the representative con-
figurations, because the resources are saturated. In contrast,
the latency increases in AdaptiveConfig are much smaller,
which verify that our approach displays more advantages
under tenser loads. (iii) When only considering group-level
configurations, the average percentage of latency increase
in other configurations is about 37 percent when compared
to the best ones, as shown in previous evaluation (three
Google platforms in Fig. 10). When considering both group-
level and cluster-level configurations in this evaluation, the
latency increase becomes 93.78 percent.

Results. When testing different platforms and periods of Goo-
gle jobs in a 12K-node cluster, AdaptiveConfig reduce job latencies
by an average of 1.94 times compared to the representative
configurations

5 CONCLUSION

In this paper,wepresentedAdaptiveConfig, a run-time config-
uration tuning framework for cluster schedulers in the cloud.
AdaptiveConfig supports diverse scheduling scenarios by
comprehensively handling different factors (e.g., schedulers,
workload and resource status, and scheduling constraints)

based on the Drools rule engine, thus effectively comparing
the performance discrepancies of different configurations. It
then proposes a DP-based approach to efficiently search the
best configuration adapting to the changing workload in large
clusters. Our approach is implemented on two representative
YARN schedulers (Capacity and Fair) and its effectiveness in
significantly reducing job latencies is demonstrated using
workloads in real applications.

We are currently investigating the development of a
more general framework to support workload-adaptive
configuration tuning for a wider class of scheduling scenar-
ios and platforms. Developing such a framework requires
investigating the different dimensions that affect job sched-
uling: including the available resources, the used configuration
optimizers, and the underlying resource management platforms.
Specifically, the available resources in a large cluster
depends the failure probability of its nodes. The framework
can mitigate the resource variance (due to failures) by
means of considering such probabilities in job latency esti-
mation and preferentially allocating newly-available resour-
ces against the re-scheduled jobs on failure nodes. In
addition, this works optimizer was built upon the Drools
rule engine, which requires explicitly defining a schedulers
resource allocation mechanism as business rules. Our future
work will leverage the emerging deep reinforcement learn-
ing (DRL) techniques to learn this resource allocation mech-
anism and use deep neural networks to describe the linking
relationship between the scheduler’s configuration and a
variety of dynamics (workloads, resources and constraints)
in scheduling.

In the general framework under development, we are
investigating supporting reactive configuration tuning
for other types of resource management platforms, includ-
ing Mesos whose cluster-level scheduler shares resources
among different computing frameworks and its scheduler
configuration decides the orders of pushing resources to
these frameworks. In order to apply our cluster-level config-
uration optimizer on Mesos, we need to re-define the opti-
mal substructure of the DP problem, in which the optimal

Fig. 15. Characteristics of user groups and submitted job in the six peri-
ods of Google trace.

Fig. 16. Comparison of average job latency against the static configura-
tions across six periods of the Google cluster.
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substructure V ½j; i	 is the lowest job latency of the first j
frameworks when the resources are pushed to framework i
in the jth iteration.
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