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ABSTRACT

Nowadays, the aging problem is shaking the root of the healthcare system in many coun-
tries, an automatic human activity recognition (HAR) is seen as a promising solution to
that problem. In particular, radar-based HAR attracts people’s attention thanks to its
respect for privacy and functionality in poor lighting conditions. With a lot of research
paying attention to this topic, there is still a lack of conclusive and practical methods.
In particular, it is realized that dynamic motions at large aspect angles close to 90◦ or
static postures have not been investigated in-depth as a part of the radar-based HAR
problem. To extensively investigate this type of problem, we propose to use mm-wave
FMCW MIMO radar to obtain accurate information of the human subject.

This thesis work aims to fully exploit the six dimensions of information provided by
an imaging radar: range, azimuth, elevation, velocity, power and time. Two complemen-
tary data representations- point cloud and spectrogram- are utilized to represent these
dimensions of information. A signal processing flow is implemented to generate the
desired data representations. A hierarchical pipeline consisting of three cascaded deep
learning-based classification modules is proposed to process the input data. Particu-
larly, human orientation classification is achieved through the so-called "T-Net" network
learning the geometric distribution of point clouds. The positive contribution of each
module in the proposed pipeline is validated via an ablation study. The superior per-
formances of the proposed pipeline are also established by comparing with those of the
state-of-the-art baselines. The robustness of the proposed pipeline concerning a noisy
environment is also discussed. It is also presented that the size of the aperture of imaging
radar plays an important role in such HAR problems.
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1
INTRODUCTION

This chapter describes the background on the radar-based Human Activity Recognition
(HAR) in section 1.1, problem formulation according to the gaps of existing research stud-
ies in section 1.2, the contribution of this work and finally the structure of this report in
sections 1.3 and 1.4 respectively.

1.1. BACKGROUND
There have been substantial changes in the population’s age composition. Latest statis-
tics show that in 2020, more than one fifth (20.6%) of the EU population was aged 65 and
over [4], causing a severe shortage of health care professionals (e.g. 22 EU countries re-
port a shortage of doctors, nurses and health care assistants) and shaking the roots of the
health service system [5]. This sheds the importance of indoor HAR since it enables au-
tomatic monitoring systems that can improve life quality, reduce health costs, and most
importantly provide timely medical help to emergencies, such as in case of a bad fall or
stroke event [6].

From a technical perspective, HAR was mostly based on visual aids [7] or wearable
sensors [8]. However, both types of sensors- camera and inertial measurement units-
exhibit inherent limitations, such as disrespect to privacy as well as poor functionality
in darkness or intense light conditions for camera, and in-life inconvenience for wear-
able sensors. Radar, on the other hand, is gaining attention on civil usage for the exact
contrary reasons, i.e. radar collects no visual information on human subjects, provides
consistent sensing quality regardless of the light conditions, and is absolutely contact-
less causing no uncomfortable feelings to human subjects. A more thorough comparison
between radar, camera and the wearable sensor is given in Table 1.1.

Theoretical groundwork in the micro-Doppler phenomena for human movements
[9] and the pioneering experimental results such as [10] have validated the possibility of
using radar to achieve HAR (more details in Chapter 2). The basic philosophy of radar-
based HAR is that each human activity has unique kinematic patterns by nature, and
such patterns can be represented by intrinsic kinematic features, e.g. the velocity of

1
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Table 1.1: Pros and cons of three common types of sensors for indoor HAR [2].

Sensor Type Advantage Limitation

Wearable sensors
a) High velocity accuracy

b) Respect to privacy
a) Expensive

b) Inconvenience to users

Visual sensors
a) Maintain record

b) Functionality under
c) changeable conditions

a) Disrespect to privacy
b) No functionality without light

c) High computational cost

Radar
a) Respect to privacy

b) Accurate range measurements
c) Functionality in darkness

a) Directional functionality
b) Sensitivity to temperature

and direction of arrival
c) Required installation and calibration

different human body parts along with the physical extent of their movements. To be
more specific, radar actively transmits and receives electromagnetic waves to determine
the range to object(s) by computing the delay time and radial velocity of the object(s) by
Doppler shift. Figure 1.1 is a visualization of the two main blocks of radar-based HAR,
and the description is as follows:

1. Data generation (as the dashed-line boxed in Figure 1.1) includes experiments,
simulations, and/or transfer learning (more in-depth explanation is given in sec-
tion 2.1.4).

• Signal processing refers to processing the generated raw radar data (e.g. I/Q
data) to more informative data representations such as spectrograms. Fea-
ture extraction may or may not be included in the overall pipeline depending
on the desired input format and the classifier.

2. Classification finally is achieved with the help of a classifier using the obtained
data representation(s). It could be conventional Machine Learning (ML) classifier,
such as K-Nearest Neighbor (KNN) and Support Vector Machine (SVM); or, Deep
Learning (DL) technologies such as neural networks, such as Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) [11].

In conclusion, despite radar-based HAR being investigated extensively in recent years,
outstanding challenges still remain to formulate and validate the best signal processing
and the best classifiers to achieve satisfactory performances in realistic situations.

1.2. PROBLEM FORMULATION
By reviewing the related work on radar-based HAR, it is realized that the majority of
the radar-based HAR approaches are primarily dependent on Doppler and/or micro-
Doppler information being presented in various representations. That is to say, these
algorithms are merely functional for kinematically dynamic human activities, e.g. walk-
ing, sitting down, standing up, and falling, amongst many others. Also, in the past litera-
ture, these activities are mostly performed in the line-of-sight direction to maximize the
Doppler shift captured by radar. Nevertheless, suppose in the following two scenarios
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Figure 1.1: General radar-based HAR pipeline using DL or ML techniques.

1. A human subject is feeling uncomfortable, so he or she chooses to statically hold
a posture to ease the pain [12];

2. A human subject sits onto a chair in the direction orthogonal to the line-of-sight
of radar.

Undeniably, both scenarios induce minimal radial velocity and thus Doppler, so these
activities are not clearly expressed by Doppler-dependent data representations. Guen-
del et al. [13] proposed to use a multistatic radar system to obtain the full Doppler in-
formation on human subjects, whereas, Yang et al. [1] proposed a so-called omnidirec-
tional classifier. As a result of these works, preliminary results are demonstrated to tackle
scenario-2. Despite the initial results in the literature, further improvements are still pos-
sible with respect to the 1) informativeness of the radar data representations, and, 2) the
complexity and performance of the proposed classifier.

Moreover, kinematically static activities- also referred to as ’postures’ or ’poses’- as in
scenario-1 remain unrecognizable using the existing methods. In other words, previous
radar-based HAR is confined to motions instead of postures, whereas in this thesis, the
radar-based HAR problem is expected to be more comprehensive by considering human
postures as well. This thus encourages us to explore novel radar data representations and
DL classifiers.

As a summary, the complete problem can be formulated as:

In more realistic radar-based HAR scenarios, in which human subjects perform
kinematically dynamic motions and static postures toward line-of-sight as well as non-
line-of-sight directions, how to use only radar and DL technology to achieve accurate
HAR?

1.3. THESIS CONTRIBUTION
The contributions of this thesis are mainly in the following aspects:

• This work, to the best of my knowledge, is the first investigation of radar based
HAR including motions as well as static postures together.
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• This work tested the developed pipeline with an experimental dataset collected
with different operational parameters, and demonstrated superior performance
with respect to state of art alternatives.

• Part of this thesis is being written up as a paper to be submitted to IEEE Sensors
Journal.

1.4. THESIS STRUCTURE
The following chapters of this thesis are structured as follows. Chapter 2 reviews previous
literature related to radar-based classification problems with a focus on HAR. Chapter 3
gives an in-depth and in-detail description of the radar parameters and radar features.
Chapter 4 firstly gives an overview of the proposed method and then describes the em-
ployed signal and data processing techniques. The laboratory measurement setup and
the construction of the dataset are described in Chapter 5. Chapter 6 shows the classifi-
cation results of the proposed method compared with certain baseline approaches, and
its robustness under varying environments. Chapter 7 concludes this thesis and outlines
potential future work.



2
LITERATURE REVIEW

This chapter describes the related work on the topic of radar-based classification tasks with
the focus put on HAR. For section 2.1, attention is on the conventional radar that has only
one transmitter-receiver pair and therefore provides only range resolution. It starts with
introducing the popular choices of data representations, then moves on to the categories of
human activities that have been investigated and what classifiers were employed, and fi-
nally depicts a dilemma on radar data generation. Section 2.2 discusses HAR based on the
emerging Multiple-Input and Multiple-Output (MIMO) radar that provides angular in-
formation. A pioneering study of MIMO radar-based HAR is investigated in detail. Other
existing techniques that may contribute to HAR are then present.

2.1. HAR USING CONVENTIONAL RADAR
conventional radar with simply one transmitter and one receiver is suitable for indoor
HAR thanks to its respect for human privacy and functionality in darkness. Related work
can be traced back to the year 2008 [14], and radar-based HAR is still attracting atten-
tion due to the emerging needs of automatic indoor human life assistance. This section
analyzes the problem of conventional radar-based HAR from four mutually dependent
perspectives, namely data representation, classifier, choice of analyzed activities, and
data generation.

2.1.1. RADAR DATA REPRESENTATIONS

Radar data representations play a crucial role in the performance of the deep neural
network-based HAR problem [15]. Radar data representations, according to their di-
mensionality and the way they are perceived by classifiers, can be divided into three
main categories:

1. 2D radar data representations that are treated as an image-alike input. Exam-
ples of 2D radar data representations include spectrogram [16] [17] [18], range-
Doppler [19], range map [20]. In particular, range-Doppler and range map are

5
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less popular than spectrogram for two reasons: (a) where human subjects per-
form activities is essentially arbitrary, and (b) range resolution for conventional
pulse radar is typically not sufficient for differentiating different human parts.

2. Representations that treat radar data as a temporal sequence. For instance, Li et
al. [21] employed a sequence of features extracted from spectrograms as the in-
put; Li et al. [22] directly used the range profile to represent the human activities;
Zheng et al. [23] utilized Kalman Filter to recursively track the subject (hand) and
generated the so-called range-Doppler-angle trajectory as the input to the classi-
fier.

3. Handcrafted features as a latent space-alike input, and typically these are ex-
tracted from the above two categories of data representations. For example, Princi-
ple Component Analysis is used to represent spectrograms in a high-dimensional
latent space [10]; and, Jia et al. [24] extracted various handcrafted features, such as
energy curve, skewness centroid and bandwidth, from spectrograms.

Apart from these three main categories of radar data representation, there is a very
rare usage of other data representations. For instance, Yang et al. [25] directly used raw
I/Q data as the input to the classifier; Hazra and Santra [26] adopts range-Doppler-time
radar cube as a 3D radar data representation; furthermore, Du et al. [27] generate a 3D
Point Cloud (PC) from the range-Doppler-time cube for classification; instead of taking
the absolute value of Short-Time Fourier Transform (STFT), Wang et al. [28] directly
use the complex matrix generated from STFT as the input to the classifier; He et al. [29]
constructs a so-called range-Doppler surface through detecting the extended target from
a sequence of range-Doppler images.

Previous work is constructed on an assumption that the kinematic characteristics
of human activities can be reflected in the radar data representations. Attained exper-
imental results [16]-[27] serve as the ground of this assumption, and therefore, build a
cornerstone for further research.

The remaining challenge is to look into new data representations that provide a new
aspect of the observed motion which is not readily discernible in existing data represen-
tations.

2.1.2. CLASSIFIERS
Both 2D or temporal sequence data representations are typically processed by neural
networks adapted from the field of Computer Vision or Natural Language Processing.
Conventional ML classifiers such as SVM, KNN, Random-Forest are contrarily used to
achieve classification through handcrafted features rather than directly on the radar data
representations.

1. HAR using 2D image-alike data representations is analog to the task of image clas-
sification in the field of computer vision. Deep CNN (including multiple convolu-
tion layers in cascade) is the primary architecture for classifying images and has
been employed in [16]. Other popular CNN architectures, such as ResNet [30], are
also adapted or directly re-used and lead to quite encouraging performance [31].
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Combinations of neural network blocks are also utilized, for instance, [32] com-
bines the structure of convolutional layer with autoencoder, thus their proposed
structure inherits the benefits of both blocks.

2. Regarding temporal sequence as the input, most HAR classifiers are inspired by
the work in the field of Natural Language Processing and speech recognition since
the inputs in both problems are inherently sequential. RNN and its variant Long-
Short Time Memory (LSTM) are a popular choice, and Gated Recurrent Unit (GRU)
is an alternative. For example, Bidirectional LSTM [21] and LSTM [22] [33] all ex-
hibit promising performance. Moreover, a sequence of 2D image-alike data rep-
resentations can be processed by CNN-RNN [34], where CNN extracts out high-
dimensional feature and RNN exploits the temporal relations amongst the images
within the sequence.

3. Supervised ML algorithms such as KNN [35], SVM [36], Random-Forest Bagging
Tree [37] and Naïve Bayes combiner [37], are compatible with handcrafted fea-
tures. These algorithms are relatively easy to train in comparison with neural net-
works (ResNet for instance) since the latter generally have more than tens of thou-
sands of trainable parameters. However, the curse of dimensionality constrains
these supervised ML algorithms to work with very high dimensionality. Therefore,
the information hidden in the radar data representations may not be fully rep-
resented by handcrafted features. This is why the current tendency is to use DL
technologies to approach radar-based HAR.

As can be seen, classifier and data representation are mutually dependent. In other
words, there is not an optimal data representation nor an optimal classifier, but only a
superior combination of them given a specific task.

This suggests that while exploiting new radar data representation, searching for the
complementary classifier is of great necessity. Only with a superior combination of the
input data representation and classifier, the classification performances can be opti-
mized.

2.1.3. ACTIVITIES
Choices of the human activities included in the custom datasets vary from work to work.
A list of the number of training samples per literature is given in Table 2.1. In summary,
for the the main works in literature [10], [13]-[17], [20]-[38],

• the number of activities ranges from 2 (fall detection) to 12 [39], with the majority
of studies involving 6 to 8 classes.

• the most common activity is walking which is seen in all the datasets.

– it is also noteworthy that walking is a general class with some variants, for
example walking with a stick and walking with one hand in pocket.

• Activities, such as sitting down, standing up and falling, are frequently present in
the constructed datasets.
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Table 2.1: Summary of the measurement datasets from the exemplary radar-based HAR
literature, where # Activities expresses the number of activities and # Sample represents
the number of training and validation/test samples per activity, regardless the variable
of different subjects or orientations.

Paper # Activities # Sample Paper # Activities # Sample
[1] 6 60 [10] 7 288

[14] 7 288 [15] 2 200
[20] 7 142 [27] 8 500
[24] 6 555 [25] 8 500
[35] 4 30 [39] 12 72

Activities such as sitting down, bending over, and standing up (from a chair or bend-
ing), are selected since they are widespread in indoor daily life and could be applied for
human life assistance. Therefore, the choice of activities essentially depends on the des-
ignated application. This thesis aims to contribute to daily life assistance, and therefore
common daily activities are of interest.

There are overall two realized limitations. First, the existing human activities are not
comprehensive enough to express kinematically static activities. To be more specific,
motionless activities are rarely recognized as output classes except for the activity of
sitting still [10] [14] and standing still [27], and even in these studies, only one of such
kinematically static activities are considered so that this ’Doppler-poor’ class is made
recognizable. That is to say, previous work has not investigated the problem of radar-
based human posture recognition, e.g., sitting still versus standing still. Second, since
most of the related work only adopts a monostatic radar, with an exception like Guendel
et al.’s [13], and is dependent on the Doppler feature, human activities are often arti-
ficially limited to the line-of-sight direction, i.e. walking back and forth in front of the
radar, which is an unrealistic constraint for true daily life assistance purpose.

2.1.4. DATA GENERATION

The emerging ML or DL technologies essentially are data-driven. That is to say, a clas-
sifier must be trained on a comprehensive and well-labeled dataset (only considering
applicable for supervised learning). From some of the aforementioned DL-assisted HAR
literature, the size of the datasets used to evaluate the classifier performance are listed
in Table 2.1 in terms of the number of samples in the recorded dataset (training plus
validation/test), showing the significance of promising data generation methods 1.

In the meantime, data generation is recognized as one of the most challenging tasks
for radar-based HAR [40]. Generally speaking, there are three methods to generate radar
data: experiment, simulation, and Transfer Learning (TL). These methods exhibit their
own pros and cons which will be discussed in this section.

Experimental results are regarded as the ground truth of data since realistic data col-

1Some studies in the literature did not explicitly show the number of training samples, so they are not included
in Table 2.1. The demonstrated numbers are experimental data-only, i.e., otherwise generated data is not
counted.
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lection due to hardware imperfections, clutter, multipath and noise are implicitly con-
sidered. All the radar-based HAR literature [10], [13]-[38] use experimental data to vali-
date their classification performance. However, radar experiments are typically (a) time-
consuming: tens of hours are spent in a laboratory to complete one dataset as in [13], (b)
expensive: experiments in realistic conditions imply the involvement of many human
subjects for a long time and investing the required hardware resources, (c) inflexible:
experiment setup cannot be freely adjusted due to the laboratory constraints.

Simulation is the second option for data generation, and can be further divided into
two categories according to the application of parametric or non-parametric computa-
tions:

1. Parametric computations: Kinematic models can be used to record the skeleton
human motions, such as Thalmann Model, motion capture and Kinect. These
skeleton human motions are transformed into radar data representations through
analysis of human body scattering behaviour and radar signal modelling [41] [42]
[43]. Thanks to the existence of open-source datasets of the kinematic motions,
such as the CMU MOCAP dataset, synthetic radar data of human activities can be
generated to improve the classification performance [44] [42].

2. Non-parametric computations: Generative Adversarial Network (GAN) is a spe-
cial type of neural network-based simulator that consists of a generator and a dis-
criminator. Through learning how to generate new data (for generator) and what
is the criteria of true data (for discriminator), GAN is able to generate unseen data
given sufficient training data. Examples of this type of work include [45] and [46],
which use GAN to produce spectrograms to improve classification accuracy. Addi-
tionally, Vishwakarma et al. [47] used GAN to learn the noise distributions in the
echos of electromagnetic waves to learn to generate realistic data 2.

Once a model that depicts radar echoes from human movement is completed, such sim-
ulation is an effective approach to generate a huge amount of data since it has very high
flexibility. However, three reasons are limiting the general application of synthetic data:
(a) there is no generally applicable criteria on the quality of the synthetic data, as a re-
sult, the robustness of classifiers purely trained with synthetic data is in doubt; (b) the
parametric model is not sufficiently specified to describe most of the aforementioned
activities; (c) the simulators fail to learn the variations in signal-to-noise ratio, clutter
and other artifacts. This is why simulated data is mostly employed to augment the ex-
perimental dataset, rather than as the direct source for learning on its own.

TL is a concept raised from DL referring to an approach that transfers data from a
source domain to a target domain. For radar-based HAR, the target domain must be one
of the radar data representations, while the source domain is different, such as optical
image [31], speech signal [40] and spectrogram images of human subjects not included
in the target domain [39]. TL is easy to implement since technically it is ’re-using the
pre-trained weights of the neural network in the training with new data, and more im-
portantly, TL leads to an improvement in classification accuracy as shown in [31] and

2They employed passive WiFi radar instead of the conventional active radar sensor. However, they are the
same in the principle of range, Doppler and cross-range information.
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[40]. However, the drawback of TL is so-called negative learning, which is typically trig-
gered by the dissimilarity between source and object domains and actually could be the
case for transferring from optical images to heatmap-alike spectrograms [48].

2.2. HAR USING IMAGING RADAR
Thanks to the rapid development in automotive radar, imaging radar 3 is seen as an alter-
native solution of LiDAR to provide reliable perception schemes, e.g., segmentation [49]
or classification [50]. Most imaging radar-related classification studies now pay atten-
tion to the field of automotive driving by fusing with other optical sensors for instance.
However, there are many significant differences between the principles of indoor HAR
and automotive driving. For example, the requirement of update rate for automotive
driving is much higher than that for HAR; the targets on road could be static rather than
in motion and/or of an arbitrary aspect angle, making the Doppler/micro-Doppler pat-
tern not particularly representative; and the fact that maximal detection range, as well
as Doppler ambiguity, must be higher than indoor conditions. These facts make the au-
tomotive driving literature, such as [51] [52], [53], [50] and [54], of minimal reference
value.

Therefore, this section still focuses on pioneering imaging radar-based HAR litera-
ture. Enabled by the additional angular information provided by imaging radar, static
posture recognition or large aspect angle motion recognition, which was impossible us-
ing conventional radar as discussed in section 2.1, now become possible.

To start with, Cui and Dahnoun’s work [55] proved that imaging radar is capable to ac-
quire sufficient data to represent the postures of human subjects despite lower body
parts such as feet are typically not identified. One step further, using the optical im-
ages as the ground truth of human skeletons for CNN-based supervised learning, Zheng
et al. [56] successfully reconstructed human skeletons with the help of an imaging radar
in through-the-wall conditions, where imaging radar effectively learns from the ground
truth optical images. Sengupta et al. [57] also presented a DL-based approach for skele-
tal estimation, where the results are remarkably comparable with the ground-truth. These
are encouraging work that suggests through DL technologies radar can learn from the
data representations of other sensors, and subsequently remedies the radar’s inherent
deficiencies, such as low angular resolutions. These works thus built a concrete basis for
high-accuracy posture recognition.

Kılıç et al. [58] achieved through-wall imaging of human subjects, and attained very
high accuracy in posture classification between standing and sitting using CNNs. The
input data representation to their proposed CNN architecture is a flattened range pro-
file, so the angular resolutions provided by imaging radar are not fully exploited. He et
al. [59] achieved over 80% of accuracy amongst four classes through background noise
elimination technique and parallel CNNs. Tiwari, Bajaj and Gupta [60] utilized an 8-
channel imaging radar to classify seven fitness-related classes through range-Doppler
image as the input to CNNs, giving an over 90% of accuracy. Nickalls, Wu and Dahnoun

3Imaging radar is referred to as a type of radars that is used to generate images of the illuminated field of view.
3D imaging radar provides three dimensions of data: range (depth), azimuth and Doppler, while 4D imaging
radar additionally provides elevation information.
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[61] mounted the radar on the ceiling to collect the PC representation of human subjects.
For the constructed PCs, both decision tree model and CNN lead to very high (more than
98%) accuracy amongst three kinematically static postures. Further, Sasakawa et al. [62]
proposed a simple but efficient posture recognition scheme using the estimated height
and radar cross-section of human subjects, and similarly, Honma et al. [63] used the es-
timated height and the intensity of the Doppler component as the handcrafted features
attaining extraordinary results. The final prediction accuracy achieved by KNN is out-
standing, averagely 95% for the former and 76% for the latter. Kim, Alnujaim and Oh’s
work [64] utilized 2D PC images generated by 4D imaging radar as the input to two clas-
sifiers, CNN and CNN-RNN. The recognition accuracy amongst the 7 motion classes is
extraordinarily high (over 94%).

Table 2.2: Summary of imaging radar-based classification works that considers human
posture recognition.

paper posture radar features classifier
[58] standing, sitting SFCW CNNs

[59]
punching, walking,

standing, siting down
FMCW

8 azimuthal channels
parallel
CNNs

[60]
dumbbell, shoulder press,
squat, lateral raise, boxing,
right triceps and left triceps

FMCW
8 azimuthal channels

CNNs

[63]
standing, sitting on chair,

sitting on ground, laying on ground
Bi-static MIMO

threshold
comparison

[62]
standing, sitting on chair,

sitting on ground, laying on ground
Bi-static MIMO KNN

[61] standing, sitting, laying on ground
FMCW

12 azimuthal channels
decision tree

[65]
bowing, kicking, marching,
punching, sitting, standing

FMCW 192 elevational
and azimuthal channels

CNN/
CNN+RNN

A summary of the aforementioned posture recognition work is listed in Table 2.2. All
these works establish a solid ground for imaging radar-based human posture recog-
nition. Generally speaking, this attributes to the spatially representative modality of
PC. Also, the works on PC construction furthermore proved imaging radar’s capabil-
ity to capture necessary representations on human subjects. It is also learned that for
high-dimensional data representations (PCs or snapshots of PC), DL techniques exhibit
promising performance. However, the difficulty of data collection remains a non-trivial
problem.

2.3. LIMITATIONS AND CHALLENGES
By reviewing the previous literature, several limitations of the existing work are found,
together with the thus raised challenges are listed as follows.

• It is not yet established what classifiers are most suitable to learn the important
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information from the new format of data representations enabled from millimeter
wave (mm-Wave) imaging radar.

– This encourages us to consider what new data representations are likely to
be representative for the human activities thanks to the additional angular
resolutions? Furthermore, what DL classifiers are compatible?

• Kinematically static postures and kinematically dynamic motions have not been
jointly examined. Moreover, human activities are deliberately constrained to be
performed in the line-of-sight orientation due to the excessive dependency on the
Doppler feature.

– How can motions and postures performed on the line-of-sight as well as
non-line-of-sight direction be recognized, i.e. omnidirectional classification
(as in [1]) of motions together with postures?

• Radar experiments are seen as time-consuming and expensive, while there is still
a lack of conclusive criteria on the quality of synthetic data for simulation.

– Given underlying new data representations, would it be possible to perform
certain augmentations of the dataset to be economical on time?

In this work of MSc thesis, the focus is put around the first two points. To be more
specific, two data representations- PC and spectrogram- are utilized to exploit the six in-
trinsic features enabled by mm-Wave radar. Correspondingly, modified T-Net and Point-
Net [66] and AlexNet [3] are the realized compatible classifiers. According to the spatial
information contained by two data representations, the final prediction is made in a suc-
cessive manner.
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RADAR PARAMETERS

In order to extend radar-based HAR to include kinematically static postures, the use of a
2D Frequency-Modulated Continuous-Wave (FMCW) MIMO radar is proposed. The used
radar is designed and manufactured by Texas Instrument. It provides considerable free-
dom to configure the radar parameters such as chiro ramp slope and ramp time interval,
and accordingly, radar features such as bandwidth. This chapter firstly discusses the em-
ployed 2D FMCW MIMO radar and presents its beam pattern (section 3.1), then explains
the chosen waveform parameters and shows the derived radar features (section 3.2).

3.1. 2D MIMO RADAR DESCRIPTION
The used radar board consists of four cascaded AWR2243 chips, where each AWR2243
chip has 4 Transmitter (TX)s and 3 Receiver (RX)s. With all RXs used simultaneously but
TXs enabled successively, in total 16 TXs and 12 RXs are obtained.

A picture of the board is given in Figure 3.1, and a sketch of the (not-to-scale) relative
antenna positions is given in 3.2. The corresponding virtual antenna positions are shown
in Figure 3.3. This virtual array is obtained by making spatial convolution of the TX array
and the RX array over the X and Z axis. As shown at the orange positions in Figure 3.3,
some of the antennas are virtually overlapped in space. The signal received by one of the
two overlapped antennas is discarded, so the resulting ’effective’ number of channels
(transmitter-receiver pair) is 134 rather than 192=16×12, and the ’effective’ virtual array
has a MIMO aperture of 86× 6λantenna . It is convinced that such imaging radar could
provide sufficient additional cross-range information for radar-based HAR as proved in
[64], therefore enable static human posture recognition or HAR with a large aspect angle.

The array factor of the total virtual array 1 is given in Figure 3.4, where AF is the
computed result of equation 3.1 with progressive phase shift βn set to 0 and a con-
stant antenna excitation An = 1. It is easily realized that array factor is maximized for

1The array factor discussed in this thesis are in far-field such that the transmitted electromagnetic waves can
be treated as plane waves and the virtual array is deterministic.

13
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Figure 3.1: Picture of four-device cascaded AWR2243 radar board.

exp(·) = 1. That is to say, the progressive phase shift (βn) and the phase shift due to scat-
tering (kchi r p d⃗n · êr ) should sum up to 0, i.e., the progressive phase shift is expected to
compensate the phase shift due to aspect angle.

AF (êr ) =∑
n

Anexp( j kchi r p d⃗n · êr + jβn)[68], (3.1)

where êr is the unit vector in spherical coordinate, exp(·) is exponential operator, j
is the imaginary unit, d⃗n is the vector pointing from coordinate origin to the geometric
position of the antenna, and kchi r p is the wavenumber of the center frequency of the
employed chirp (refer to Table 3.1).

The total beam pattern is the linear multiplication of array factor and antenna pat-
tern. The individual antenna pattern simulated by Texas Instrumentation is shown in
Figure 3.5, as can be seen, the field of view in azimuth is approximately -60 to +60 degree
and -20 to +20 degrees in elevation, for attenuation of less than 10dB. Outside this field
of view, the energy scattered by objects could be easily covered by clutters or multi-path
from the field of view.

In summary, the principles of imaging radar are presented, and it is also shown that
the used 2D MIMO imaging radar enables angular resolutions on both azimuth and ele-
vation. This additional spatial information will play a key role in this project to recognize
human postures and motions on multiple aspect angles.
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Figure 3.2: Antenna array positions (adapted from [67]).

3.2. DERIVED RADAR FEATURES AND WAVEFORM
For an FMCW radar, the constraint on the so-called BT (bandwidth time) product is no
longer valid. The maximum measurement range (Rmax ) 2, maximum velocity ambiguity
interval (vmax ), range resolution (∆R) and velocity resolution (∆v), respectively, can be
expressed in equations 3.2a-3.2d.

Rmax = c f ADC

2rchi r p
, (3.2a)

vmax =± λchi r p

4NT X Tchi r p,tot al
, (3.2b)

∆R = c

2B
= c

2Tchi r p rchi r p
, (3.2c)

∆v = λchi r p

2TC PI
, (3.2d)

where c is the speed of light, B is the valid sweep bandwidth (see red dashed line in
Figure 4.2) 3, Tchi r p = NADC / f ADC is the ADC-sampled chirp ramp interval, rchi r p is the
ramp slope of the chirp, TC PI is the coherent processing interval.

Unlike range resolution or Doppler resolution that only depends on the bandwidth
of the waveform or the coherent processing interval, angle resolution is approximately
equal to the proportion between the chirp center wavelength and the MIMO aperture
size, as in equation 3.3, where the impact of aspect angle is safely neglected since the
human subjects are genuinely on the broadside direction.

2Maximum measurement range differs from the maximum range ambiguity since it is essentially dependent
on ADC sampling

3The total sweep bandwidth is not necessarily equal to the valid sweep bandwidth because the ramp time may
not be completely sampled by the ADC.
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Figure 3.3: Synthetic 2D virtual array.

∆φ= λchi r p

Lφ
, (3.3a)

∆θ = λchi r p

Lθ
, (3.3b)

where ∆φ and ∆θ express the azimuth resolution and elevation resolution, respectively,
and Lφ and Lφ express the MIMO apertures in azimuth and elevation, respectively 4.

For a mm-Wave radar operating at 77GHz to 81GHz, the center wavelength is, as the
name suggests, of millimeters. This limits the maximum velocity ambiguity, whereas en-
ables better velocity resolutions. Other trade-offs are also quite self-explanatory, e.g. the
chirp interval simultaneously determines the maximum detection range and the maxi-
mum unambiguous velocity, the ADC sampling rate ( f ADC ) should be set to the largest
configuration value.

The ultimate goal of waveform design is to configure the radar parameters to the
most fitting combination that provides as good resolutions as possible. There are also a
few of rules of thumb to be considered:

• The typical indoor human activity velocity is less than 2.6m/s [69];

4The angular resolutions discussed here actually vary with respect to the aspect angle such that∆φ∝ cos phi .
However, since the human activities are performed in-place and in front of the radar, such variations are
assumed to be negligible and thus not considered in this thesis.
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(a) (b)

Figure 3.4: Array Factor (|AF (êr )|) of the total virtual array presented (a) in a 3D surface,
and (b) on the azimuth and elevation cut.

• The maximum measurement range should be sufficient to cover the possible po-
sitions of the human subject, i.e., fully cover the experiment environment.

• The coherent processing interval of human activities should be reasonably small
such that Fourier transform can be applied on the ground of coherent processing,
i.e., one body part remains in one range and cross-range bin within the coherent
processing interval;

• Hardware limitations, such as ADC sampling rate, ramp rate and data storage space,
should also be considered;

• The designed waveform should have similar performances as in [64] so that com-
parative study is enabled.

With all the aforementioned factors considered, the waveform for HAR is empirically
configured to have the performances as in Table 3.1.

Table 3.1: Waveform parameters and derived features of the radar. The definition of
parameter and feature is subject to whether it is directly configurable, the directly con-
figurable term is referred to as parameter, the other as derived feature.

Parameter Symbol Value
Antenna design wavelength λantenna 3.90mm
Number of TXs NT X 12
Number of RXs NR X 16
Total number of virtual channels Nchannel 192
MIMO aperture on azimuth Lφ 42.5λantenna

MIMO aperture on elevation Lθ 3λantenna

ADC Sampling Rate f ADC 2.7M H z
Chirp Ramp Interval Tchi r p 60µs
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Total Chirp Interval Tchi r p,tot al 63µs
Number of chirps per sub-frame Nchi r p 1536
Start Frequency fst ar t 77G H z
Chirp Ramp Slop rchi r p 60M H z/µs
Sub-frame Periodicity Tsub− f r ame 100ms
Field of view on azimuth FOVφ [−40deg ,40deg ]
Field of view on elevation FOVθ [−20deg ,20deg ]
Coherent processing interval TC PI 0.1s
Derived Features Symbol Value
Equivalent number of channels on x-axis Nφ 86
Equivalent number of channels on z-axis Nθ 7
Transmitted Chirp Bandwidth BT x 3.6G H z
Received Chirp Bandwidth BRx 2.84G H z
Valid chirp center wavelength λchi r p 3.82mm
Maximum Measurement Range Rmax 6.75m
Maximum Unambiguous Velocity vmax ±1.26m/s
Range Resolution ∆R 5.28cm
Velocity Resolution ∆v 0.0286m/s
Azimuth Angle Resolution (broadside) ∆φ 1.4deg
Elevation Angle Resolution (broadside) ∆θ 18deg

The generated raw data per sub-frame is a 3D cube in the format of fast-time, slow-
time, channel. Quantitatively, each 3D is made of NADC − (Nchi r p /NT X )− (NT X ·NR X ),
where the slow-time has the number chirps equal to Nchi r p /NT X is the result of time-
division multiplexing. By rearranging the structure of the cube and interpolating zeros
to the empty positions in the virtual array, the raw data becomes a 4D hypercube with
the dimensions of fast-time, slow-time, virtual elevation channel, and virtual azimuth
channel. Signal processing algorithms can be applied to this hypercube for further anal-
ysis.
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Figure 3.5: Radiation pattern of a single micro-strip antenna (simulated and provided by
Texas Instrument [67]).



4
PROPOSED HAR PIPELINE

The structure of this chapter is arranged as follows. First, an overview of the proposed
pipeline is given in section 4.1. The signal processing algorithms applied to obtain the
desired data representations are explained in section 4.2. Then, the DL classifiers and im-
plementation details are given in section 4.3. Last, section 4.4 presents two baselines that
could be used to comparatively evaluate the performance of the proposed method.

4.1. PIPELINE OVERVIEW
Conventional monostatic radar, by continuously transmitting and receiving electromag-
netic waves, generates four intrinsic features of the object: range, Doppler, received
power proportional to the Radar Cross Section (RCS), and temporal relations. The usage
of these dimensions has been thoroughly analyzed (chapter 2), and it appears that the
state-of-art works mostly depend on the intrinsic feature- Doppler. To achieve human
static activity (posture) recognition, additional dimensions of information must be in-
troduced assuming the micro-Doppler features introduced by respiration and heartbeat
are not sufficiently representative and often difficult to be reliably estimated in realistic
scenarios. The imaging radar which provides additional azimuth and elevation informa-
tion will be introduced in this interest.

The overview of the proposed method is given in Figure 4.1, definitions of Single An-
gle Classifier (SAC) and Multiple Angle Classifier (MAC) will be addressed in section 4.4.
To summarize, the proposed pipeline fully explores all six intrinsic features provided by
imaging radar and uses both PCs and spectrograms as the input data representations.
The hierarchical structure of the classification pipeline includes a module (namely ori-
entation classification) to classify to which orientation the human subject is facing to-
ward, e.g., a 0 degree aspect angle. Based on the prediction made by this module, PC
classification module predicts which posture or motion pair the input belongs to. For
those predicted as motion pairs (sitting/standing pair or bending/standing pair), the
spectrogram classification module is then utilized to classify to which specific motion

20
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the input sample belongse.g. bending over or standing up from bending, or, sitting down
or standing up from sitting.

Furthermore, the descriptions of the four main modules are as follows:

1. The data generation module starts with measuring experimental data via the imag-
ing radar. Given the measured raw radar data, the signal processing flow involves
PC generation on the 4D radar cube, and spectrogram generation using the slow-
time axis from particular range bins and one channel. The outputs of the signal
processing flow are two data representations- PC and spectrogram. The former
expresses three intrinsic features: range, azimuth, and elevation, i.e., (X ,Y , Z ) as
in the cartesian coordinate system. The latter, on the other hand, expresses the
remaining intrinsic features- received energy, Doppler, and time.

2. The orientation (ori.) classification module includes the so-called T-Net (intro-
duced by Qi et al. in [66]). Through learning the geometric characteristics of the
PCs, T-Net predicts the human orientation of the subject.

3. For each predicted orientation of the human subject, PC classification module
makes a classification (PPC ) according to the spatial similarity of the activity within
the segment interval (2 seconds, for more details refer to chapter 5.2), e.g., (a)
sitting still, (b) standing still, (c) sitting down or standing up from chair (yellow-
shaded in Table 5.1), and (d) bending over or standing up from bending (red-
shaded in Table 5.1).

4. The last module is the so-called spectrogram (spc.) classification module. This
module treats the predicted class from the previous module as prior knowledge
and further uses the spectrogram as the input to the AlexNet [3] to recognize the
activities within (c) or (d), outputting the probability vector Pspc . Therefore, the
final prediction result is jointly subject to the decisions made by argmax(PPC ) and
argmax(Pspc ). The choice of AlexNet is in accordance with its relatively simple
architecture and presumably easy-to-converge.

Furthermore, inspired by Yang et al. [1], a good angle-insensitive HAR pipeline should
be robust to make predictions given data on multiple orientations for training, or, even
more ideally given data on one orientation only. Thus, two definitions are given for the
way to use a pipeline in terms of different training data combinations with respect to
aspect angle, e.g. training with data from one human orientation and testing with mul-
tiple human orientations is termed SAC, while namely MAC if training and testing with
multiple angles. Naturally, the orientation classification module is insignificant for SAC
and thus bypassed.

The main innovations of the proposed pipeline are as follows.

• Unlike in the past work such as [64] and [58], the proposed modular pipeline is
designed with a goal to exploit all intrinsic features obtained by imaging radar,
i.e. range, azimuth, elevation, Doppler, received power and time, and not just one
specific data representation.
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Figure 4.1: Overview of the proposed pipeline, where the main contributions are the par-
allel processing and fusion of PCs and spectrograms, and the usage of T-Net for angular
orientation insensitivity.

• The cascaded architecture of the subsequent modules simplifies the task of multiple-
angle human activity (posture and motion) classification with the help of the des-
ignated neural networks.

– In particular, the usage of T-Net to learn geometric features of PCs and there-
fore achieve orientation classification is of an original contribution of this
thesis.

• The pipeline is designed to be compatible with noisy and limited amount of radar
data by replacing the symmetric function- Max Pooling- with Average Pooling and
using light-weight neural networks, respectively. More detailed explanation on
this is given in Section 4.3.

4.2. SIGNAL PROCESSING ALGORITHMS

Resolutions of range, azimuth and elevation enable the construction of 3D PCs. An im-
plicit assumption here is that human bodies are perceived by radar as an ensemble of
multiple scatters since a human body fits the definition of extended target, i.e., the body
size exceeds the range and angular resolutions provided by mm-Wave imaging radar and
thus could originate multiple detected points. Therefore the PCs supposedly represent
the shape of the human body seen from the line-of-sight direction of the radar. Sev-
eral signal processing algorithms applied for the generation of PCs are described in this
section.



4.2. SIGNAL PROCESSING ALGORITHMS

4

23

4.2.1. SIGNAL MODEL
The concept of MIMO is based on the orthogonality of the transmitted signals. In this
thesis, time-division multiplexing is utilized to ensure this requirement. A overview of
the time-multiplexing FMCW signal model is given Figure 4.2.

Figure 4.2: Visualization of time-multiplexing FMCW signal and beat signal.

To be more specific with the mathematical expressions of the FMCW signal model, a
few assumptions can be made for people as "objects of interest" within an indoor envi-
ronment within a sub-frame interval of time (96.7ms) 1:

• The movement rate of human body parts is small enough so that these parts stay
in a particular range and angular voxel and the body shape remains approximately
the same within a sub-frame. As a result, the following parameters can be assumed
to be constant within a sub-frame interval:

– The distance between the i’th TX and object, Rt i , and the distance between
object and the j’th RX, Rr j ;

– the TX gain GT x and RX gain GRx ;

– the RCS of the body, σ; the polarization of the receiver p⃗r ec and that of the
scattered EM waves p⃗scat ter ;

• The antennas transmit stable power levels within a chirp interval, i.e. PT x is a
constant.

It is logical to start with expressing frequency modulation. Frequency modulation
involves frequency ramping within a chirp, and the instantaneous frequency of a linear
chirp signal (as used in this work) can be described by as follows,

1One frame expresses the time duration of one complete segment of human activity (2 seconds), and sub-
frame expresses the coherent processing interval for Doppler. 20 sub-frames constitute one frame that can
be used for classification)
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fT x (t ) = fst ar t + BT x

Tchi r p
t = fst ar t + rchi r p t (4.1)

The instantaneous phase of a cosine signal can be found by the integration of its
instantaneous frequency as follows,

φT x (t ) = 2π
∫

f (t )d t = 2π( fst ar t t + rchi r p t 2), (4.2)

while assuming the initial phase of the signal is 0, the transmitted signal can be sim-
plified and written as follows,

sT x (t ) = AT x cos(φ(t )) = AT x cos[2π( fst ar t t + rchi r p t 2)], (4.3)

where AT x is the transmitted signal amplitude.

Taking the phase, noise and clutter into consideration, the complete signal transmitted
by i’th TX and received by j’th RX can be modelled as follows,

sRx,i , j (t ) = Amedi a · sT x (t −τ) ·e− j k(Rt i+Rr j )− jφt ar g et · [p⃗r ec · p⃗scat ter (t )]+C (t )+n(t ) (4.4)

PRx,i , j ==
PT xGT xGRxλ

2
chi r pσ

(4π)3R2
t i R2

r j

, (4.5a)

Amedi a,i , j =
PRx

PT x
, (4.5b)

where Amedi a is the amplitude attenuation of the signal due to the propagation path

and antenna gains as expressed in equation 4.5; τ = Rt j +Rr j

c is the delay caused by EM
wave’s round trip (Tx-to-object and object-to-Rx); phase of the received signal is also
subject to object scattering behavior (φt ar g et ), as well as the phase delay caused by the
total propagation distance (k(Rt i +Rr j )); the polarization of the receiver (p⃗r ec ) can be
seen as constant, while that of object’s scattering behavior should be time-dependent
(p⃗scat ter ); and the clutter-originated signals and noise are expressed in C and n. It is
noteworthy that one of the disadvantages of mm − w ave radar can be observed that
media attenuation of mm−w ave is much larger than the counterpart of radar operating
with at M H z.

Suppose in an ideal indoor environment, where clutter and noise do not exist, scattering
phase delay and polarization mismatch are negligible, the received signal model can be
simplified to be:

sRx,i , j (t ) = AT x · Amedi a · sT x (t −τ) (4.6)

= AT x · Amedi a(t ) · cos[2π( fst ar t (t −τ)+ rchi r p (t −τ)2)] ·e− j k(Rt i+Rr j )
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After mixing the received signal with the local oscillator (equivalent to the transmitted
instantaneous frequency, f (t ), from equation 4.1), the frequency component is divided
into high and low parts. The low-pass filter is supposed to effectively mitigate the high-
frequency component, leaving out the base-band signal, also known as beat signal (as
visually explained in Figure 4.2). The beat signal can be expressed as follows:

sRx,i , j (t ) = AT x · Amedi ae j 2π(rchi r pτt+ fst ar tτ) = AT x · Amedi ae jφRx,i , j (t ) (4.7)

The beat frequency, which equals the derivative of the instantaneous phase, then can
be expressed as follows:

fb,i , j (t ) = 1

2π

∂φRx,i , j (t )

∂t
= 2rchi r p ((Rt i +Rr j )+2vr t )

c
+ 2 fst ar t vr

c
, (4.8)

where, the small difference between two paths of i’th TX to object and object to j’th RX
is negligible since they are divided by the velocity of light (3·108m/s), so the approximate

distance between the radar and object R = Rt i+Rr j

2 is used; and the range variation due to
(human) target movement within the sub-frame interval is far smaller than R and thus
the component, 2vr t , can be safely neglected. The final beat frequency model is given
as follows:

fb = 4rchi r p R

c
+ 2 fst ar t vr

c
, (4.9)

Writing the beat signal being sampled at frequency, f ADC , in discrete-time domain gives
us as follows:

sRx (n) = AT x · Amedi a ·e
j 2π

[
2 fst ar t R

c +
(

2 fst ar t vr
c + 2rchi r p R

c

)
n

f ADC

]
(4.10)

Furthermore, for a time-multiplexing FMCW signal, each frame contains multiple chirps,
constituting the slow-time domain (also known as chirp domain). Denoting the received
sequence of chirps with m = 1,2, . . . , M , we can get the expression of the received fast-
time and slow-time FMCW signal per channel as follows:

s(m)
Rx (n) = AT x · A(m)

medi a ·e
j 2π

[
2 fst ar t R

c +
(

2 fst ar t vr
c + 2rchi r p R

c

)
n

f ADC

]
(4.11)

4.2.2. RANGE-DOPPLER FFT
As shown in equation 4.10, the beat signal can be interpreted as a discrete 2D sinusoidal
signal. Therefore, it is crucial to estimate the beat signal frequency in order to accurately
obtain the range and Doppler information on the object. In this particular HAR use case,
we have no prior knowledge on the number of sources, i.e., how many range or Doppler
bins the object would occupy; or, multiple realizations of the 2D sinusoidal signal. The
best estimation method is periodogram (Fast Fourier Transform (FFT) for discrete sig-
nal), assuming the beat signal is stationary (i.e., R is constant within a chirp of 756µs
and vr is constant with a frame of 0.1s), which is fairly reasonable for human activities.
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Expressions of 1D range FFT and 2D range-Doppler FFT on the received signal are given
in equations 4.12 and 4.13, respectively.

S(m)
Rx (k) =

N−1∑
n=0

s(m)
Rx (n)e− j 2πkn/N for k = 0, . . . , N −1 (4.12)

SRx (k, l ) =
M−1∑
m=0

S(m)
Rx (k)e− j 2πlm/M (4.13)

=
M−1∑
m=0

N−1∑
n=0

s(m)
Rx (n)e− j 2πkn/N e− j 2πlm/M

for l = 0, . . . , M −1, and k = 0, . . . , N −1

4.2.3. CFAR
2D FFT is firstly applied on the fast time and slow time dimensions, outputting range-
Doppler matrix. Detecting the presence of human body part(s) at a specific range and
Doppler is the next step, and for that Ordered-Statistic (OS) Constant False Alarm Rate
(CFAR) Detection is used.

CFAR is a common technique used for object detection in clutter and multiple target sit-
uations. CFAR is renowned for its capability to adaptively suppress homogeneous back-
ground clutter and therefore prevent the presence of undesired targets. The principle
is that for a given range-Doppler cell, namely Cell Under Test (CUT), the probability of
detection is positively dependent on the probability of false alarm. Unlike in an ideal
situation where the noise can be modeled as linear and Gaussian so that a mathematical
model can be used to compute the optimal threshold for detection, such assumptions
seldom hold in the real-world environment. Estimation of noise level is required, and
this raises the OS technique, which selects a certain pre-defined value (median in this
case) from the ordered sequence of reference cells. OS CFAR is chosen for its superior
performance over Cell-Averaging (CA) CFAR given the presence of non-uniform clutter
[70], such as the edges of tables and chair in our experimental environment which may
be included in the reference cells.

A visualization of the implementation of OS CFAR is given in Figure 4.3. In this
method, the reference cells (Nr e f = 8 for range detection, Nr e f = 4 for Doppler detec-
tion) are assumed to contain the background and clutter as in the CUT, whereas the
most adjacent cells, namely guard cells (Ng uar d = 16 for range detection, Ng uar d = 0
for Doppler detection), are used to prevent object being treated as noise or clutter since
human subject is treated as extended target for indoor HAR.

Figure 4.3: Visualization of OS CFAR for range and Doppler detection.
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Quantitatively speaking, a scaling factor is applied on the estimated noise to find the
optimal threshold as in equation 4.14,

T =αPnoi se , (4.14a)

PF A =
(
1+ α

M

)−M
(4.14b)

where, T is the detection threshold, Pnoi se is the estimated noise from adjacent cells, and
α is a scaling factor that can be computed via the desired false alarm rate PF A , and M is
the number of reference cells. If the CUT is of an intensity larger than T , the detection
result is positive, i.e., a scatter is present at the range-Doppler CUT.

4.2.4. ANGLE SPECTRUM ESTIMATION AND DETECTION
With a CUT detected as a target, the particular 2D range-Doppler voxel from all MIMO
channels can be rearranged to the virtual array matrix form, e.g. 86× 7 matrix. Next,
2D FFT can be applied to estimate the azimuth spectrum and elevation spectrum. The
86× 7 virtual array matrix is padded with zeros to a 256× 256. With an azimuth angle
and elevation angle map, multiple local maximum values on azimuth and on elevation
are chosen as the final detection results. The peak value detection algorithm is given
in Algorithm 1. Use of the peak value selection algorithm is subject to the fact that hu-
man body tend to occupy a varying number of azimuth or elevation cells in terms of the
present activity and the distance from body to the radar, causing CFAR with a constant
number of reference and guard cells less preferable. The final detected scatter(s) after
the transformation from spherical coordinate to Cartesian coordinate to construct a PC
in XYZ space.

Figure 4.4: A zoomed-in visualization of the data generation flow.

4.2.5. STFT
A human activity typically lasts for over 1 second. During this time, human subject un-
necessarily stays in designated range or Doppler bins. In other words, it is unreasonable
to assume the received signal is stationary for the whole coherent processing interval.
Thus, STFT becomes a reasonable solution that better exhibits the details of the micro-
motions, under the same assumption as in section 4.2.2.
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Data:
M cross-range (azimuth or elevation) spectrum estimated by FFT with length N ;
s, cross-range spectrum axis with length N ;
Result:
P power of the detection peaks ;
Θ, angle of the detection peaks;
γ← 1.6;
Pmi n ←∞;
Pmax ← 0;
i ← 0;
Peak Detection ← false;
while i < N do

i ← i +1;
CU T ← M(i );
if CU T > Pmax then

Pmax ←CU T ;
Θmax ← θ(i );

end
if CU T < Pmi n then

Pmi n ←CU T ;
end
if Peak Detection then

if CU T < Pmax
γ then

P ← Pmax ;
Θ← θmax ;
Peak Detection ← false;

end
else

if CU T > Pmi n ·γ then
Peak Detection ← true;

end
end

end
Algorithm 1: Peak value detection algorithm for cross-range detection
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First, a slow-time vector is generated by accumulating particular range bins from an ar-
bitrary channel within n f r ame th interval can be used and expressed as s(nt +m,n f r ame ).

The formula to generate Doppler-time matrix and spectrogram are given in equation
4.15 and 4.16, respectively.

ST F T (nt ,k,n f r ame ) =
Lwi n−1∑

m=0
s(nt +m,n f r ame )h(m)e

− j 2π mk
Lwi n , (4.15)

where nt = 1, . . . , Nt is the time index and k = 1, . . . ,K is the discrete frequency index
of a 2D Doppler-time matrix 2 S(nt ,k); s(·) expresses a slow-time vector for the given
frame; and Lwi n = 128 is the length of the employed Hann window function h(·). Ab-
solute square should be applied on the Doppler-time matrix to obtain the real-valued
spectrogram, which expresses the energy intensities.

S(nt ,k,n f r ame ) = ||ST F T (nt ,k,n f r ame )||22 (4.16)

A zoomed-in visualization of the data generation pipeline is given in Figure 4.4. Although
some of the blocks (OS CFAR and peak detection) are implemented by Texas Instrument,
the full pipeline is implemented as a contribution of this thesis. Intermediate outputs on
the other hand show how the raw radar data is step-by-step transformed into informative
data representations that can be processed by neural networks.

4.3. DL CLASSIFIERS
Referring to Figure 4.1, using the generated data representations three DL modules are
implemented and combined in the proposed pipeline. This section explains these mod-
ules in detail.

4.3.1. ORIENTATION CLASSIFICATION MODULE
The orientation classification module is the same as the T-Net in [66] except the last fully-
connected layer outputs the number of orientations instead of the 3× 3 regularization
matrix. The implementation details are given in Table 4.1. The structure of Conv1D are
(Ci n ,Cout put ,K ), where Ci n and Cout are number of input and output channels, and K is
the kernel size of 1D convolution.

To understand the design philosophy of T-Net, the characteristic of PC compared
with other data representations should be firstly explained:

• Unlike images, PC is a set of unordered points, i.e., these points have no physi-
cal significance in their order. Neighboring points must be defined by the metric
space distance instead of the position in the input set.

Considering this characteristic of PC, it is understandable why the 1D convolution lay-
ers (layer-1, 3 and 5 in Table 4.1) do not learn the orderly relations amongst points, but
only extracts the geometric feature of each point to a high-dimensional latent space.

2Doppler-time and spectrogram are sometimes interchangeably used, whereas in this thesis Doppler-time is
a complex-valued matrix after STFT, and spectrogram is the absolute matrix of Doppler-time
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Table 4.1: Implementation details of the T-Net, where k is the number of outputs which
could express the probability of classes or the regularization matrix in PointNet. The gray
row expresses the modified symmetric function- average pooling layer- with the aim of
achieving robustness against noise.

Structure
1. Conv1D(3,64,1)

2. Batch Norm & ReLU
3. Conv1D(64,128,1)

4. Batch Norm & ReLU
5. Conv1D(128,1024,1)

6. Batch Norm & Flattening
7. Average Pooling(L)

8. Fully Connected(1024,512)
9. Batch Norm & ReLU

10. Fully Connected(512,216)
11. Batch Norm & ReLU

12. Fully Connected(216,k = 6)

Moreover, it is also understood why a global pooling layer is employed to find the rela-
tions amongst all points since pooling can be viewed as a symmetric function such that
F (a,b) = F (b, a), and through such a function the order of PCs is non-influential. Av-
erage pooling layer is used instead of the max pooling layer because average pooling is
better suited to learning the global features for point cloud registration problem on noisy
data [71].
The loss for the orientation classification module is the cross-entropy loss as expressed
in equation 4.17.

LT−Net =LC .−E . =− 1

N

(
N∑

i=1
yi · log

(
ŷi

))
, (4.17)

where yi and yi express the ground truth and the predictions of the orientation, re-
spectively.

In summary, the T-Net is modified to fit our application of radar-based angle-insensitive
HAR by predicting the orientation of the human activities through corresponding PCs.

4.3.2. PC CLASSIFICATION MODULE
The PC classification module essentially is a modified PointNet [66] with a visualization
shown in Figure 4.5, and the implementation details are given in Table 4.2. To explain the
functionality of this module, it is logical to start with explaining PointNet, and another
characteristic of PCs is noteworthy:

• As a geometric description of the object, PC should be invariant to rotations. In
other words, if the PC is rotated to an angle, the physical meaning of the input
should be maintained.
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This is the reason for a transformation applied on the input PC and on the latent space.
Such transformation is achieved by learning the geometric pattern (orientation) of the
subject first, then generates a so-called regularization matrix to regularize the PC or la-
tent space.

Figure 4.5: PointNet architecture overview (image taken from [66] and only the classifi-
cation network is used).

As the T-Net is exactly meant to find the oriental information on the subject, it is
pointless to re-train the 1D convolution layers of the first T-Net. This constitutes the first
modification: the weights of 1D convolution layers in T-Net are pre-trained in the orien-
tation classification module, as a result the loss function (L ) of the modified PointNet
excludes this regularization loss as in equation 4.18,

LPoi nt Net =LC .−E . +Lr eg =− 1

N

(
N∑

i=1
yi · log

(
ŷi

))+||I − A · AT ||22, (4.18)

where I expresses a 64 × 64 identity matrix, and A is the transform matrix generated
through T-Net. The first part of the loss function (L ) is the cross-entropy loss between
the predicted vector (y i ) and the ground truth vector (ŷ i ); while loss term is a regu-
larization loss of the latent transformation matrix, forcing the regularization matrix to
approximate an unitary matrix.

The second modification is replacing the max pooling layer as in [66] with average
pooling layer to be robust to noise. This is consistent with the modification of the T-Net
to achieve robustness against noise.

4.3.3. SPECTROGRAM CLASSIFICATION MODULE
For kinematically dynamic human motions, it is still convinced that Doppler-dependent
representations, such as spectrogram, will be most efficient and representative accord-
ing to the findings in the literature review (section 2). It would be unreasonable to aban-
don this representation. Also, since the PCs already contain the full spatial information
on the target, spectrogram complements the other intrinsic features.

As for the architecture for the spectrogram (image) classification, a conventional
CNN model- AlexNet [3] is chosen in this project, considering the difficulty in radar data
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Table 4.2: Implementation details of the modified PointNet, where the gray row ex-
presses the modified symmetric function- average pooling layer- in the interest of ro-
bustness against noise.

Layer Structure
T-Net(3x3) Table 4.1, with k = 9

1D Convolution(64,64)

Conv1D(3, 32, 1)
BatchNormalization(32)

ReLU(slope=0)
Conv1D(32,64,1)

BatchNormalization(64)
ReLU(slope=0)

T-Net(64,64) Table 4.1, with k = 4096

1D Convolution(64,128,1024)

Conv1D(64, 128, 1)
BatchNormalization(128)

ReLU(slope=0)
Conv1D(128,1024,1)

BatchNormalization(1024)
ReLU(slope=0) & Flattening

Global Average Pooling Average Pool

MLP(1024,256,k=4)

Fully Connected(1024, 512, 1)
BatchNormalization(512)

ReLU(slope=0)
Fully Connected(512, 256, 1)

BatchNormalization(256)
ReLU(slope=0)

Fully Connected(256, k=4, 1)
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collection and the potential consequent insufficiency of training samples. To be more
specific, AlexNet [3] is of a simple architecture, consisting overall 61,100,840 trainable
parameters, which is smaller than other exemplary CNN models such as VGG [72] and
ResNet-50 [73], with 138,357,544 and 68,883,240 trainable parameters, respectively. This
hints that AlexNet [3] is a relatively a "easy-to-converge" model (or at least easier), and
thus used. Moreover, AlexNet is pre-trained on ImageNet in order to achieve transfer
learning from optical images to spectrogram images.

The implementation details of AlexNet [3] are given in Table 4.3, where Drop Out is a
function that randomly sets a portion of elements in the input tensor to be zero.

Table 4.3: Architecture of the AlexNet [3]. The gray row expresses the last layer of feature
extraction, which is followed by perception layers such as fully connected layer.

Input size: (channel,height,width) = (3x224x224)
Conv2D(3,64, kernel size=(11,11),stride=(4,4),padding=(2,2))

ReLU(slope=0) & Max Pooling(kernel size=(3,3),stride=(2,2),padding=(2,2))
Conv2D(64,192, kernel size=(5,5),stride=(1,1),padding=(2,2))

ReLU(slope=0) & Max Pooling(kernel size=(3,3),stride=(2,2),padding=(2,2))
Conv2D(192, 384, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU(slope=0)
Conv2D(384, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU(slope=0)
Conv2D(256, 256, kernel size=(3, 3), stride=(1, 1), padding=(1, 1))

ReLU(slope=0) & Max Pooling(kernel size=(3,3),stride=(2,2),padding=(0,0))
Drop Out(probability=0.5) & Flattening

Fully connected(9126, 4096) & Additive bias
ReLU(slope=0) & Drop Out (probability=0.5)
Fully connected(4096, 4096) & Additive bias

ReLU(slope=0)
Fully connected(4096, Ncl ass = 6)

4.4. BASELINES FOR PERFORMANCE COMPARISON
This work is novel in terms of the included activities, specifically the kinematically static
postures combined with dynamic activities, as well as the classification pipeline exploit-
ing 6 intrinsic features of imaging radar data, so there is a very limited amount of prece-
dent work available for direct comparison. Therefore, only two baselines are defined as
follows:

1. Baseline-1 of state-of-the-art radar-based HAR: The motion classification part
of this pipeline is essentially consistent with the definition of angle-insensitive
classifier proposed by [1]. Hence, in section 6.3 the performance of the proposed
pipeline on 4 motions is to be compared with the counterpart of the method pro-
posed by Yang et al. [1] 3

3Even if the code of their model is not provided, the model is re-implemented using the identical architecture
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2. Baseline-2 of state-of-the-art radar-based HAR: It is also valuable to compare
if the 3D PC gives better results than simply viewing PCs as snapshots/image.
This approach of treating PC as an image is implemented in [64], where 3D PCs
corresponding to 2 seconds are stored as 2D images (see for examples, Figure
5.5). These images are then proceeded by Deep CNN for recognition of activities.
Therefore, their proposed Deep CNN [64] is trained from scratch to compare the
performance with my proposed pipeline 4

Figure 4.6: Baseline-3 that fuses (concatenates) the latent space extracted from spectro-
gram and PC.

3. Baseline-3 to 4 for other data representations and pipeline structure: 2 other-
proposed baselines that exploit all intrinsic features of imaging radar data are dis-
cussed to comparatively study the performance of the final proposed pipeline.
These two alternative baselines were developed in the initial part of this MSc project
as precursors of the final proposed architecture.

• Baseline-3: Fusing two data representations at the feature (latent space) level
is a common approach in DL, for instance, [74] fuses the latent spaces ex-
tracted from spectrogram and cadence velocity diagrams. Baseline-3 is con-
sequently proposed by fusing the latent space extracted from PCs and spec-
trograms to exploit all six intrinsic features of imaging radar data. A visualiza-
tion of the baseline architecture is shown in Figure 4.6. As can be seen, two
neural networks are in parallel instead of cascaded as in the final proposed
pipeline, also T-Net is not employed in this baseline.

• Baseline-4: A baseline that firstly uses T-Net for orientation classification,
secondly uses a point set that consists of 6 intrinsic features as the input for
activity classification. The 6 intrinsic features are attainable from an imaging
radar, including x, y , z, estimated SNR expressed in logarithmic scale (power

as given in the paper, while hyper-parameters are fine-tuned empirically since they are not specified in the
literature.

4Even if the code of their model is not provided, the model is re-implemented using the identical architecture
as given in the paper, while hyper-parameters are fine-tuned empirically since they are not specified in the
literature.
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of CUT divided by averaged power of reference cells), Doppler and time (ex-
pressed by the frame index of the detected point, ranging from 1 to 20). The
architecture is the same as described in Table 4.2 except the input size is N×6
and the output of the first T-Net changes to 6×6.



5
MEASUREMENT SETUP AND

DATASET CONSTRUCTION

With all the radar parameters determined, signal processing and classification chain pre-
sented, proper data generation is thus desired. This thesis uses real-life imaging radar data
to comparatively analyze the performance of the proposed pipeline. This chapter describes
the laboratory set up in section 5.1, and the construction of the dataset in section 5.2.

5.1. MEASUREMENT SETUP
The measurements were taken in the Lage Hallen of EWI in TU Delft. The specific di-
mensions of the measurement setup are as follows:

• The distance from the ground to the radar is 0.75m such that the antennas could
cover the human subjects in the elevational field-of-view;

• The distance from the radar to the left, right, and front walls are 2.1m, 1.8m and
5m respectively;

• Shown in Figure 5.1 is a sketch of the room layout indicating the positions of radar
and human subject, human orientation directions, and potential sources of clutter
(tables, walls and closet).

5.2. DATASET DESCRIPTION
To the best of my knowledge, there is no existing open-source imaging radar-based hu-
man activity dataset that combines static postures and dynamic activities for HAR. to
examine the performance of the proposed HAR pipeline, collecting custom data sets ap-
pears to be the only option that also gives a degree of freedom to include both kine-
matically dynamic motions and static postures. The list of the included motions and

36
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Figure 5.1: Data measurement setup in an office-like room at TU Delft. The 12 positions
for the measurements refer to different subsets of data used for training and testing and

are described in section 5.2.1

postures is shown in Table 5.1. The chosen motions are the most common ones accord-
ing to the previous literature analyzed in Chapter 2, and those postures can be seen as a
kinematically static state between the motions. As a result, the radar-based HAR prob-
lem is extended beyond ’motion’ to ’motion plus postures’.

Table 5.1: List of motions and postures to simulate daily human activities, where the
four different colors represent the output classes of PC classification module.

Dynamic motion Static posture
1. Sitting down to a chair 5. Standing still

2. Standing up from a chair 6. Sitting still on chair
3. Bending over

4. Standing up after bending

The body characteristics of the eight human subjects who participated in the mea-
surements are described in Table 5.2. All the subjects are male and aged between 20 and
30 years old.
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Table 5.2: Body characteristics of the participated human subjects.

Subject index 1 2 3 4 5 6 7 8 Mean±Std
Height (cm) 180 168 170 180 185 178 177 177 176.9±5.5
Weight (kg) 75 70 70 70 95 82 72 72 75.7± 8.8

5.2.1. TRAINING AND TEST SETS

Overall 20 training sets and 23 test sets are generated via experimental measurement
and their manipulations such as adding white noise to the measured data. Additionally,
two pairs of training and test sets are generated for baseline approaches ([1] and [64]).
The main objective behind these multiple subsets of data is to have 1) a large dataset
(training/test set-1) for basic performance evaluation of the proposed pipeline, 2) several
evaluations on smaller sets (training set-2 to -20 and test set-2 to -20) designed to explore
the impact of specific variables such as the aspect angle, the kinematic diversity from
subject to subject, amongst others. The descriptions of these training and test sets are as
follows (with reference to the positions shown in Figure 5.1 as well):

• For training set-1 and test set-1, postures and motion are recorded separately at po-
sitions 0 to 4. Specifically, one complete time interval for measurement is 2 min-
utes. During this time, human subjects were asked to perform either one static
posture, e.g. sitting still on the chair, or a pair of complementary motions, e.g.,
sitting down and standing up at a period of approximately 2 seconds for each mo-
tion. Labels are then generated manually for these data by visual segmentation.
This particular way of data collection is an attempt to ease the process of labeling
and calibration by conditioning the execution time of each movement, at the price
of less realistic kinematics. The distributions of 6 activities in dataset-1 are given
in Figure 5.2, with overall 13,433 samples. Dataset-1 then is divided by 80% and
20%, forming training set-1 and test set-1 respectively.

Figure 5.2: Distributions of dataset-1 (splitted into training set-1 and test set-1).
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• Furthermore, as explained in the literature review part, radar data collection and
labeling are genuinely time-consuming. This additional test set attempts to ex-
ploit the symmetry of human bodys to generate PCs and spectrograms. According
to Figure 5.1, PCs on position 7, for instance, can be treated as the PCs mirrored
from position 1 with respect to the line-of-sight direction (Y axis in the given coor-
dinate system). Spectrograms can be exactly duplicated because the aspect angle
of movement orientation for positions 1 and 7 are the same. The same method
also applies for positions 6 (from position 2) and 5 (from 3). The simulated training
set-2 therefore includes overall 3 orientations and 6 activities 1. To test whether hu-
man subjects perform in-place activities in a strictly symmetric manner, test set-2
is experimentally created and contains the data of one human subject sequentially
performing all 6 activities on positions 5 to 7.

• Another dataset is obtained through adding additive white Gaussian noise to the
measured raw data while assuming the measured raw data as noise-free. The at-
tained SNR levels are, 20dB, 18dB, 15dB, 13dB, 10dB and 8dB. Also, it is noteworthy
that the change in SNR from 20dB to 10dB corresponds to a synthetic range varia-
tion of 1.78 times further range (e.g., from 2.7m to 4.8m), according to the relation
PRx ∝ 1

R4 (extracted from 4.5a). The noisy datasets are divided by 80% and 20%,
compositing training and test set-3 (20dB), test set-7 (10dB), and test set-8 (8dB).

• To examine to what extent of performance variation the diversity of the human
subjects may lead, the so-called leave-one-subject-out test is a common approach
as in [13]. The leave-one-subject-out test is dividing the total dataset in terms of
the subject, for instance in our dataset, data of one of the eight subjects is left-out
for testing, data of all other seven subjects are used for training instead. Therefore,
overall eight training and test sets are generated (training and test set-9 to -16),
where the left-out subject is 1 to 8 (see Table 5.2) in order.

• Having a MIMO aperture of 43λ on the horizontal channel domain and 3λ on the
vertical channel domain provides fairly good cross-range resolutions. However, it
may be unpractical or too expensive to use such a high-resolution imaging radar
for HAR. Training set and test set-17 to -20 are created by processing only a sub-
set of the original virtual array. The corresponding MIMO apertures are shown in
Figure 5.3 together with their corresponding derived angular resolutions.

• Last but not least, two datasets are created for the baselines of Yang’s work [1] and
Kim’s work [65], separately. Baseline training set-1 and baseline test set-1 are re-
spectively the spectrogram part of training set-1 and test set-1. Similarly, baseline
training set-2 and baseline test set-2 only include those of PCs.

A summary of all training sets and test sets is given in Table 5.3. Exp. stands for data
collected directly from experiments; Sim. stands for simulation of data by adding white

1It should be noted that the word ’simulated’ here refers to the fact that these data were not experimentally
measured, but generated synthetically from symmetry and/or duplication of the experimentally measured
data.
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(a) ∆φ= 3.6◦, ∆θ = 18◦ (b) ∆φ= 1.4◦, ∆θ = 114◦

(c) ∆φ= 3.6◦, ∆θ = 114◦ (d) ∆φ= 22.9◦, ∆θ = 114◦

Figure 5.3: Virtual arrays and corresponding angular resolutions of training and test sets
(a) 17, (b) 18, (c) 19, and (d) 20.

noise or by synthetic manipulation (e.g., rotation) of PCs; Orien. stands for orientation;
V.A. stands for virtual array; # Sample expresses the average number of samples per activ-
ity in the corresponding dataset, where one sample includes one for data representation
as in the column of input.

To evaluate if the constructed dataset is sufficient to train a data-driven model for radar-
based HAR, the numbers of samples are listed in Table 2.1 from the relevant literature
and those in Table 5.3 used in this thesis. For instance, 288, 500 and 1791 samples per
activity are included in the datasets of [10], [27] and in this work, respectively. It is es-
tablished that the generated dataset is larger than the typical radar-based HAR datasets,
whereas no data augmentation or simulation methods are used in this work. Moreover,
taking the fact that the employed neural networks are of simple architecture into consid-
eration, it is reasonable to conclude that even though the obtained training samples are
far smaller than the typical number of samples in other fields, e.g., 14,197,122 in Ima-
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geNet [75] or more than 8,120,000 in natural language dataset-Yelp, the datasets in Table
5.3 are sufficient to see the convergence of the neural networks processing radar data
representations.



Table 5.3: Summary of training and test sets described in section 5.2.1.

Dataset Exp./ Sim. # Subjects # Orien. SNR V.A. Position (5.1) Input # Samples
Training set-1 Exp. 8 5 meas. 3.3 0-4 PC + spc. 1791
Test set-1 Exp. 8 5 meas. 3.3 0-4 PC + spc. 448
Training set-2 Sim. 8 3 meas. 3.3 5-10 PC + spc. 8070
Test set-2 Exp. 1 3 meas. 3.3 5-10 PC + spc. 357
Training set-3 Sim. 8 5 ≈ 20dB 3.3 0-4 PC + spc. 1791
Test set-3 Sim. 8 5 ≈ 20dB 3.3 0-4 PC + spc. 448
Training set-4 Sim. 8 5 ≈ 18dB 3.3 0-4 PC + spc. 1791
Test set-4 Sim. 8 5 ≈ 18dB 3.3 0-4 PC + spc. 448
Training set-5 Sim. 8 5 ≈ 15dB 3.3 0-4 PC + spc. 1791
Test set-5 Sim. 8 5 ≈ 15dB 3.3 0-4 PC + spc. 448
Training set-6 Sim. 8 5 ≈ 13dB 3.3 0-4 PC + spc. 1791
Test set-6 Sim. 8 5 ≈ 13dB 3.3 0-4 PC + spc. 448
Training set-7 Sim. 8 5 ≈ 10dB 3.3 0-4 PC + spc. 1791
Test set-7 Sim. 8 5 ≈ 10dB 3.3 0-4 PC + spc. 448
Training set-8 Sim. 8 5 ≈ 8dB 3.3 0-4 PC + spc. 1791
Test set-8 Sim. 8 5 ≈ 8dB 3.3 0-4 PC + spc. 448
Training set-9 Exp. 7 5 meas. 3.3 0-4 PC + spc. 1567
Test set-9 Exp. 1 5 meas. 3.3 0-4 PC + spc. 51
Training set-10 Exp. 7 5 meas. 3.3 0-4 PC + spc. 1567
Test set-10 Exp. 1 5 meas. 3.3 0-4 PC + spc. 51
Training set-11 Exp. 7 5 meas. 3.3 0-4 PC + spc. 1567
Test set-11 Exp. 1 5 meas. 3.3 0-4 PC + spc. 51
Training set-12 Exp. 7 5 meas. 3.3 0-4 PC + spc. 1567
Test set-12 Exp. 1 5 meas. 3.3 0-4 PC + spc. 51
Training set-13 Exp. 7 5 meas. 3.3 0-4 PC + spc. 1567
Test set-13 Exp. 1 5 meas. 3.3 0-4 PC + spc. 51
Training set-14 Exp. 7 5 meas. 3.3 0-4 PC + spc. 1567



Dataset Exp./ Sim. # Subjects # Orien. SNR V.A. Position (5.1) Input # Sample
Test set-14 Exp. 1 5 meas. 3.3 0-4 PC + spc. 51
Training set-15 Exp. 7 5 meas. 3.3 0-4 PC + spc. 1567
Test set-15 Exp. 1 5 meas. 3.3 0-4 PC + spc. 51
Training set-16 Exp. 7 5 meas. 3.3 0-4 PC + spc. 1567
Test set-16 Exp. 1 5 meas. 3.3 0-4 PC + spc. 51
Training set-17 Sim. 8 5 meas. 5.3a 0-4 PC + spc. 1791
Test set-17 Sim. 8 5 meas. 5.3a 0-4 PC + spc. 408
Training set-18 Sim. 8 5 meas. 5.3b 0-4 PC + spc. 1791
Test set-18 Sim. 8 5 meas. 5.3b 0-4 PC + spc. 408
Training set-19 Sim. 8 5 meas. 5.3c 0-4 PC + spc. 1791
Test set-19 Sim. 8 5 meas. 5.3c 0-4 PC + spc. 408
Training set-20 Sim. 8 5 meas. 5.3d 0-4 PC + spc. 1791
Test set-20 Sim. 8 5 meas. 5.3d 0-4 PC + spc. 408
Baseline training set-1 Exp. 8 5 meas. 3.3 0-4 spc. 1791
Baseline test set-1 Exp. 8 5 meas. 3.3 0-4 spc. 448
Baseline training set-2 Exp. 8 5 meas. 3.3 0-4 PC(image) 1791
Baseline test set-2 Exp. 8 5 meas. 3.3 0-4 PC(image) 448
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5.3. DATA PREPARATION
After the signal processing algorithms, some preparation is still needed such that input
samples can be better processed by neural networks. This section introduces the data
standardization methods employed for the thesis.

5.3.1. DATA STANDARDIZATION
Data standardization is a common technique to prepare the pre-processed data for the
DL classifiers by removing the non-relevant differences amongst data samples.

PCs are standardized by (1) subtracting the mean value of each dimension from points,
then (2) dividing each of the X,Y,Z coordinate in the point set with its Euclidean distance.
For baseline training/test set-2, such standardization is also applied over the dimension
of Doppler, power and time index. Mathematically, standardization of PCs can be ex-
pressed as:

cst and ar di zed = c −mean(c)

||p||2
(5.1)

where X and Xst and ar di zed is x, y or z coordinate of a point before and after standardiza-
tion, respectively; and p = (cx ,cy ,cz ) expresses the position of the point.

On the other hand, spectrogram images are standardized by (1) subtracting the mean
value of each Red, Green or Blue (RGB) channels, then (2) dividing each of the RGB chan-
nel in the image with its standard deviation. The mathematical expression is the same
as the counterpart of PC standardization (equation 5.1) except replacing coordinate with
an RGB channel, and Euclidean distance of a point with the standard deviation of an RGB
channel of the overall dataset.

In this way of standardization, the input samples are not within a particular range
(e.g. [0,1]). However, the standardized samples are robust against outliers [76]. With
such standardization applied, the results would be conclusive to show that orientation
classification is not based on the variation in positions but the actual geometric patterns.
For instance, the trivial difference caused by the position variation (position 0 to position
8 for instance) could be eliminated. Moreover, data standardization is a common tech-
nique to help increase the convergence rate of neural networks [76].

5.4. VISUALIZATION OF DATA REPRESENTATIONS
This section shows examples of the generated data representations in terms of different
activities and human orientations from randomly selected human subjects (Figure 5.4
and 5.5). Specific implementation details to generate these input samples are as follows:

• Spectrograms are generated with a time interval of 2 seconds since the designated
activity period is 2 seconds for all data collections. The length of one window is
128 chirps (equivalent to 80.64ms), while the length of overlapped window is 127
chirps for a smoother appearance of the resulting spectrograms.

• In this thesis, the number of reference cells, M , is equal to 8 in range domain and 4
in Doppler domain; while the scaling factor,α, is chosen as 6.3 = 8dB in , giving the
probability of false alarm rate PF A = 0.0096 in range domain and 0.0227 in Doppler
domain according to equation 4.14.
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• Theoretically PC can be generated from an arbitrary CPI, while 20 sub-PCs with
each sub-PC generated from 0.1 seconds of data are aggregated as a complete PC
for two reasons,

– the physical time interval of one PC is therefore consistent with the spectro-
grams so that final classification is accomplished on a coherent dimension,

– the sub-PC generated from one sub-frame is generally too sparse to represent
a human subject [64], however, aggregation of PCs over multiple intervals
leads to dense and representative samples,

• Spectrograms are expressed in decibel scale:

Imag e(n f r ame ) = 10 · log10 S(nt ,k,n f r ame ) (5.2)

• To suppress the presence of noise, a threshold is applied to set the minimum en-
ergy level to be 45dB.

• Using the prior knowledge of where the human subjects are, only the points inside
the designated areas are kept as the target-originated when generating PCs. These
areas are:

– x ∈ [−0.75,0.75]m, y ∈ [2,3.1]m, and z ∈ [−0.75,1.25]m for position indices 0,
1 and 2;

– x ∈ [−0.75,0.75]m, y ∈ [2.4,3.5]m, and z ∈ [−0.75,1.25]m for position indices
3 and 4;

– x ∈ [−0.75,0.75]m, y ∈ [,3.5]m, and z ∈ [−0.75,1.25]m for position indices 8,
9 and 10;

– x ∈ [−0.75,0.75]m, y ∈ [,3.5]m, and z ∈ [−0.75,1.25]m for position indices 11
and 12;

• As in Table 4.2, the input size of PC is fixed (1024×3). However, this is not en-
sured in practice due to the statistical nature of detection algorithms and the un-
predictable scattering behavior from the human body at mm-Wave frequencies.
Therefore, random up-sampling or down-sampling is applied on the detected PCs.
While this is a crude approach to counteract this problem, it is the quickest way to
get the pipeline to work without extensive modifications to the network to accept
PCs of variable lengths.

Based on the spectrogram images in Figure 5.4, the movements (top 4 rows) and
postures (bottom 2 rows) are visually distinctive. Yet, two postures as expected orig-
inate almost zero Doppler regardless of the human orientation. This shows that the
spectrogram-based HAR methods cannot consider static postures as classes. It is also
clearly observable the compression of Doppler level with respect to aspect angle, sug-
gesting the difficulty in spectrogram-based classification of movements at large aspect
angle close to 90◦ (e.g. 3rd column of Figure 5.4).

On the other hand, it is more difficult to get visual cues from PCs, though the differ-
ences caused by variation in aspect angle could be seen for instance by comparing the
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third column with the first column in Figure 5.5. Moreover, the detected PCs rarely have
points close to the floor (z =−0.75m). This could be the result of the relatively small re-
flective area of the lower legs and feet, and the attenuated radiation power of individual
transmit antennas (as shown in Figure 3.5). However, it can be safely assumed that such
absence of data in lower human body parts is less important in this work since they are
not as representative as the torso for human activities [55].
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Figure 5.4: Examples of spectrogram images from the measured dataset (training set-
1). From top to bottom are motions of sitting down, standing up from sitting, bending
over and standing up from bending, and postures of sitting still and standing still, re-
spectively. From left to right are of different aspect angles, at positions 0 to 4 (Figure
5.1), respectively. The horizontal axis is of approximately 2 seconds, and vertical axis ex-
presses velocity in ±1.26m/s.
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Figure 5.5: Examples of the front view of PCs from the measured dataset (training set-
1). From top to bottom are motions of sitting down, standing up from sitting, bending
over and standing up from bending, and postures of sitting still and standing still, re-
spectively. From left to right are of different aspect angles, at positions 0 to 4 (Figure 5.1),
respectively.



6
RESULTS

This chapter analyzes the performance of the proposed method through different exper-
iments and metrics. The gain due to each module in the proposed pipeline is examined
as an ablation study in Section 6.2. Section 6.3 shows the performance of the proposed
pipeline in comparison with the state-of-art baseline architectures. Sections 6.4, 6.5 and
6.6 investigate the performance of the proposed pipeline in terms of different aspects of
robustness. Last but not least, section 6.7 analyzes the error sources and suggests what can
be improved.

Before going into the details, some common techniques are used in the experiment(s) to
improve the reliability of the results as follows:

• The hyper-parameters, e.g., Learning Rate (LR) and Batch Size (BS), are empiri-
cally fine-tuned for different training sets and classifiers, including the proposed
pipeline and the baselines, to optimize the classifier performances;

• Typically, data-driven methods approach the global minima using gradient de-
scent. Hence, it normally takes more than 1 epoch/iteration for a neural network
to reach its optimal state. Choosing a good number of training epochs could pro-
vide optimal performance. In this work, the number of training epochs is selected
based on the empirical observation of the loss/accuracy history (e.g., Figures 6.2
and 6.3). During the training process, the model that provides the highest classifi-
cation accuracy for the particular training set is stored and then used for indepen-
dent testing.

• To compare the classifier performance, accuracy Pa and (F 1− scor e) (Equation
6.1) are seen as promising metrics for a well-balanced dataset as the one collected
for this work (see Figure 5.2).

Pa = T P +T N

T P +T N +F P +F N
, (6.1a)

49



6

50 6. RESULTS

Pp = T P

T P +F P
, (6.1b)

Pr = T P

T P +F N
, (6.1c)

F 1− scor e = 2
(Pr ·Pp )

(Pr +Pp )
= 2 · T P

2T P +F P +F N
, (6.1d)

where T P , T N , F P , and F N denote the true positive, true negative, false positive
and false negative, respectively. These metrics are used to quantitatively reflect the
classification performance of a pipeline.

• To examine how robust the proposed pipeline is against the variations in human
orientations, the concept of angle sensitivity is inherited from [1] and explained in
detail in section 4.1. Correspondingly, Angle Sensitivity Matrix (ASM) and Angle
Sensitivity Vector (ASV) are used to show the angle sensitivity. The former has two
dimensions of training and test orientation, and the latter squeezes from a matrix
into a vector since data of all orientations are used for training together. Last, to
give quantitative metrics on the angle sensitivity of a classifier, mean value X̄ and
L2 distance ||v ||2 of ASM and ASV are employed. Suppose there are M individ-
ual training sets, each corresponds to the data of one particular aspect angle, and
similarly, there are N test sets. As a result, we get the metrics as follows:

– ASM is an M ×N matrix, where the cell on i th row and j th column expresses
the classification accuracy with the training data from i th angle and test data
from j th angle;

– Similarly, ASV is a vector of length N , where each element again expresses the
accuracy given the particular data for testing;

– Mean: X̄ = 1
M

∑
i , j xi , j , where X expresses ASM or ASV and x expresses the

entry of the element. Ideally, ASM or ASV should be filled with classification
accuracy of 100%. Therefore, this metric expresses the classification accuracy
of an angle-insensitive classifier/pipeline.

– L2-distance: ||v ||2 = 1
M

√
||∑i , j xi , j −1||. The result reflects the sensitivity of

the classifier/pipeline and should be as close to 0 as possible.

6.1. RESULTS OF THE PROPOSED PIPELINE
This section presents the results of the proposed pipeline classifying 6 activities (i.e.,
trained with train set-1 and tested with test set-1).

Figure 6.1 uses t-SNE (t-distributed stochastic neighbor embedding) [77] to visualize
the examples of the flattened feature vectors to help explain the working mechanism of
neural networks. As can be seen, the clusters are merged but distinguishable in the flat-
tened latent space in the orientation classification module, where clusters are grouped
according to the human subject’s aspect angle. Meanwhile, the clusters are well sepa-
rated and even the existence of different orientations (e.g., five separate red clusters) can
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(a) (b)

Figure 6.1: t-SNE visualizations of (a) the flattened latent space in orientation classifica-
tion module, and (b) the flattened latent space extracted in PC classification module.

be clearly observed. This discloses the functionality of the feature-extracting layers, i.e.,
the layers before the flattening operation can be viewed as a complete feature extraction
function, analog to handcrafted feature extraction The fully-connected layers following
the flattened vector can be viewed as an approximation of nonlinear functions to achieve
classification, e.g., drawing a line between the clusters in Figure 6.1 to separate them.

Figure 6.2: Examples of the training accuracy history of each module in the proposed
pipeline, where the training process includes 500 epochs for orientation classification
module and 50 epochs for the others.

Figures 6.2 and 6.3 present the examples of the accuracy and loss history of each
module in the training process, respectively, where the training process includes 500
epochs for orientation classification module and 50 epochs for the others.. As can be
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Figure 6.3: Examples of the training loss history of each module in the proposed pipeline,
where the training process includes 500 epochs for orientation classification module and
50 epochs for the others.

seen, the loss and accuracy of the validation curve reach a stable state, i.e. no longer
decreases or increases with respect to epochs. Therefore, it is reasonable to conclude
that the trained models have reached stability and converged, and therefore, represent
the optimal performance of the proposed pipeline.

Quantitative metrics of three modules are as follows:

• The orientation classification module makes very accurate predictions of the sub-
ject orientation (Pa = 0.975), which presumably will simplify the task for PC and
spectrogram classification module;

• PC classification module, using the spatial information of the subject, also makes
promising classification with the average accuracy, Pa = 0.969;

• Spectrogram classification, however, has less favorable performance:

– The average binary classification accuracy for sitting down/standing up from
sitting shows Pa,si t/st and = 0.838; and

– The average binary classification accuracy for bending down/standing up
from bending shows Pa,bend/st and = 0.855.

In conclusion, the working mechanism of the proposed pipeline is unveiled through vi-
sualization, and the promising classification performance of the proposed pipeline clas-
sifying 6 activities is validated with an accuracy of 87.0% and an F1-score of 0.867.
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Figure 6.4: Normalized confusion matrix for the proposed pipeline to classify 6 activi-
ties, where class-0 to 5 expresses sitting down, standing up from sitting, bending over,
standing up from bending, sitting still and standing still, respectively.

6.2. RESULTS OF ABLATION STUDY

Through the removal of certain classification modules in the proposed pipeline, this sec-
tion is expected to study the contribution of each module. Table 6.1 includes the results
obtained from the ablation study. As suggested by the columns of Difference in Table
6.1, it is reasonable to conclude that each module makes a crucial contribution to the ad-
vantageous performance of the proposed pipeline. Meanwhile, comparing first two rows
with third to fifth rows reveals the importance of the two complementary data represen-
tations as the results attained through one data representation is significantly lower.

Table 6.1: Summary of the results of ablation study

Used Module Accuracy (%) Difference (%) F1-score (%) Difference (%)
PC classification 74.7 -12.3 74.9 -11.8

spec. classification 74.0 -13 74.2 -12.5
Ori classification &
spec. classification

77.1 -9.9 77.2 -9.5

PC classification &
spec. classification

81.8 -5.2 80.7 -6

Ori classification &
PC. classification

81.8 -5.2 81.4 -5.3

Full Pipeline 87.0 0 86.7 0
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6.3. RESULTS OF THE BASELINE APPROACHES
Comparisons with state-of-the-art algorithms are a common and important step to crit-
ically evaluate the proposed method. This section demonstrates the results of four base-
lines. It should be noted that neural networks in Yang et al.’s work [1] and in Kim’s work
[64] are implemented by the author and trained from scratch as the pre-trained models
or training data was not made publicly available by the authors, while the AlexNet (Table
4.3) in baseline-3 is pre-trained on ImageNet.

Figure 6.5: ASVs of the proposed pipeline and the baseline-1 [1] as a function of aspect
angle.

Figure 6.6: ASMs of (a) the proposed pipeline for 4 motions, (b) the baseline [1] for 4
motions, and (c) the proposed pipeline for 6 activities, where classification accuracy of
each cell ranges from 0 (blue) to 1 (red).

Regarding the proposed pipeline as a SAC, the orientation classification module be-
comes pointless since only the data of one orientation can be used for training. As a
result, only PC and spectrogram classification modules are utilized, the corresponding
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ASM and ASV in comparison with those of the baseline ([1]) are given in Figures 6.5 and
6.6 and Table 6.2. It should be noted that, since the conventional spectrogram-based
classifiers lack the necessary spatial information to classify postures, only four motions
are examined in baseline-1. Four conclusive points are drawn as follows:

• Figure 6.5 shows that the closer to 90 degree human orientation is, the worse re-
sults are attained, considering all methods. This is presumably subject to the fact
that the movement of a torso with an aspect angle of 90 deg do not generate rep-
resentative Doppler features for classification;

• Figure 6.6 shows that the proposed pipeline outperforms Yang’s method [1] for the
seen test data as shown by the cells on the diagonal. Yet, the proposed pipeline
appears to be more sensitive to angle variations than Yang’s method [1] given test
data with an orientation close to the training data (e.g., the cells on the nondiago-
nal upper left or bottom right parts). Meanwhile, for those results obtained from a
test angle far from the angle of the training data (e.g., the cells on the upper-right
or bottom left parts), the proposed pipeline again shows superiority thanks to the
use of additional spatial information.

• According to Table 6.2, the proposed pipeline’s mean accuracy is closer to 100%
than the baseline’s, and the L2-distance is smaller. Therefore, quantitatively speak-
ing, the proposed pipeline is better at classifying motions and/or postures than the
baseline in terms of MAC or SAC.

• Moreover, the classification results of 6 activities are given in Table 6.3, where the
advantageous performance of the proposed pipeline over baselines in terms of
classification accuracy and F1-score is presented in the columns of Difference.

– It is noticeable that the F1-score of baseline-3 has an F1-score of NaN (Not
a Number). This is caused by the wrong prediction of Doppler-related mo-
tions, i.e. none of the samples is predicted as sitting down to chair nor bend-
ing over.

– The advantage of the proposed pipeline over the baseline-2 and 3 is obvious,
considering a difference of at least 12.1% in accuracy and 13.1% in F1-score.

Table 6.2: Quantitative metrics of the baseline [1] in comparison with the proposed
pipeline.

Method Activity
MAC-based results SAC-based results

X̄ ||v ||2 X̄ ||v ||2
proposed 4 motions 0.8208 0.0935 0.4767 0.1050
proposed 6 activities 0.8380 0.0735 0.5077 0.0988

baseline-1 [1] 4 motions 0.7628 0.1084 0.4558 0.1091

As discussed in the literature review, radar data measurement is expensive and time-
consuming, limiting the typical dataset to be much smaller than the computer vision
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Table 6.3: Classification results of the baselines in comparison with the proposed
pipeline (training/test sets-1 and baseline training/test set-2).

Method Accuracy (%) Difference (%) F1-score (%) Difference (%)
proposed 87.0 0 86.7 0

baseline-2 [64] 74.9 -12.1 73.6 -13.1
baseline-3 51.4 -35.6 NaN NaN
baseline-4 29.4 -57.6 27.7 -59

Figure 6.7: Classification accuracy of the proposed pipeline and two baselines with re-
spect to varying number of training samples.

datasets. Therefore, the architecture in Yang’s work [1] is deliberately designed to be
lightweight, and the neural networks in the proposed pipeline are also expected to achieve
convergence with as few samples as possible. Therefore, an important comparison is
around the classifier/pipeline performance with respect to variation in the number of
training samples. Figure 6.7 shows the test accuracy (test set-1) of the baselines and the
proposed pipeline trained with only a randomly selected subset of training set-1. The
results in Figure 6.7 show the following findings:

• The performance of the proposed pipeline shrinks sharply from 87% to 74% for
6 activities and from 83% to 73.5% for 4 motions, along with the decrease in the
number of training samples.

• Nevertheless, the test accuracy and F1-score remain higher than or approximately
equal to the state-of-the-art baselines given 20% of training set-1 (equivalent to
358 samples per activity).

In conclusion, in terms of various quantitative metrics, the proposed pipeline generally
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has superior performances over the baselines in 1) angle insensitivity, 2) classification
accuracy, and 3) robustness against a limited number of training samples.

6.4. RESULTS OF LEAVE-ONE-SUBJECT-OUT TEST
It is expected that different people have corresponding specific kinematic patterns when
performing certain activities. In the interest of training a generally applicable pipeline,
it is crucial to learn how such diversity in kinematic patterns could influence pipeline
performance. As can be seen from Figure 6.8, in the case of classifying an unseen human
subject’s activities, the average accuracy and F1-score are 63.5% and 62.5% respectively,
which are approximately 20% lower than the original results.

• Comparing the test results of subject-1 with subject-7, or subject-5 with subject-6,
shows that the similarity of kinematic patterns unnecessarily exists for people who
have very close body characteristics.

• The drop in classification performance in the leave-one-subject-out test however
fits the expectation since such pattern is also presented in [78].

• These results establish the importance of data generation and/or data augmenta-
tion from seen to unseen people, even if completely addressing this problem goes
beyond the scope of this MSc thesis.

Figure 6.8: Classification accuracy in the leave-one-subject-out test, where the horizon-
tal axis represents the index of the left-out subject and blue bar expresses the classifica-
tion accuracy and red for F1-score.
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6.5. RESULTS OF NOISY DATA

This section focuses on one of the most influential parameter in radar system-SNR, for
example training with train set-3 and testing with test set-3. Because of the random-
ness nature of additive noise, data generation, training and testing are independently
repeated for five times. Figure 6.9 shows the average test accuracy and the standard de-
viation of different realizations in terms of varying SNR levels. As can be seen, the classi-
fication performances almost linearly decrease along with lowering SNR levels, and the
accuracy could drop to nearly 50% for an SNR of 8dB. These suggest that a noisy environ-
ment could significantly undermine the performance of the proposed pipeline. Last and
most importantly, the pipeline gain due to replacing max pooling with average pooling is
clearly shown by comparing the blue curve with the red (see Figure 6.9), indicating that
average pooling as a symmetric function better fits the task of processing noisy radar
data. Therefore, the modification of replacing max pooling with average pooling as in
the proposed pipeline indeed leads to superior performances and thus is reasonable.

Figure 6.9: Classification accuracy and F1-score with respect to varying SNR levels,
where average pooling refers to the proposed pipeline, whereas max pooling refers to
the original PointNet and its transformation network T-Net [66].

For data-driven methods, it is also interesting to evaluate if certain controllable variables
between training and test data could influence the performance. In this case, we can
cross-validate the results of training-with-measured-data and testing-with-noisy-data,
and vice versa. The results are listed in Table 6.4. These results establish that the con-
sistency between the SNR levels of training and test data is also important. Therefore,
estimating the SNR level in practice and accordingly selecting the trained model could
be of merit.
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Table 6.4: Cross-examination of the robustness of the trained pipeline given data of un-
seen SNR levels, where training and test set-1 are from experimental measurement and
training and test set-3 to 8 are with SNR levels of 20dB , 18dB , 15dB , 13dB , 10dB and
8dB , respectively.

Train set Test set Accuracy (%) Difference (%) F1-score (%) Difference (%)
1 1 87.0 0 86.7 0
1 3 67.8 -19.2 67.4 -19.3
1 4 65.3 -21.7 64.6 -22.1
1 5 60.0 -21.0 58.7 -28.0
1 6 55.3 -31.7 52.8 -33.9
1 7 52.8 -34.2 49.8 -36.9
1 8 47.8 -39.2 44.4 -42.3
3 1 69.0 -18.0 68.7 -18
4 1 50.1 -36.9 50.4 -36.3
5 1 49.6 -37.4 50.8 -35.9
6 1 41.8 -45.2 43.2 -43.5
7 1 44.9 -42.1 45.1 -43.6
8 1 31.4 -55.6 30.8 -55.9

6.6. RESULTS OF VARIATION IN MIMO APERTURE
Using an imaging radar with relatively smaller MIMO aperture than the that used to gen-
erate training/test set-1 is economic and power-saving, thus the results obtained from
four pairs of training/test sets are given in Table 6.5. Meanwhile, the cross-examination
of training on the large-aperture dataset and testing on the small-aperture dataset and
vice versa is also listed.

These results evidence the findings as follows:

• since the largest decrease in accuracy is as small as 9.2%, it is reasonable to con-
clude that the proposed pipeline has promising robustness to be applied with dif-
ferent imaging radars (varying MIMO aperture); and,

• the significance of the consistency between training and test data is again high-
lighted according to the huge accuracy drops as in the cross-source evaluation
parts. On the contrary, since some features are learned (i.e. accuracy still is better
than flipping a dice), such trained models could be used as the pre-trained model
in transfer learning.
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Table 6.5: Performance of the proposed pipeline given data from varying MIMO aper-
ture.

Train set Test set Accuracy (%) Difference (%) F1-score (%) Difference (%)
1 1 87.0 0 86.7 0

17 17 83.6 -3.4 83.4 -3.3
18 18 83.3 -3.7 83.0 -3.7
19 19 79.4 -7.6 79.2 -7.5
20 20 77.8 -9.2 77.5 -9.1
1 17 26.4 -60.6 25.7 -61
1 18 58.7 -29.3 58.8 -27.9
1 19 27.4 -50.6 26.8 -59.9
1 20 31.6 -55.4 31.8 -54.9

17 1 28.1 -58.9 26.3 -60.4
18 1 72.8 -14.2 67.8 -18.9
19 1 26.8 -60.2 25.9 -60.8
20 1 29.0 -58.0 23.6 -63.1
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6.7. ERROR ANALYSIS
This section critically evaluates the sources of mistakes for the proposed pipeline.

Error Source-1 To begin with, the performances of the proposed pipeline per se, as
shown in Figure 6.4, sitting down is often mixed with standing up from sitting, and bend-
ing over is mixed with standing up from bending. This is due to the poor performances
of the spectrogram classification module. To be more specific, Figure 6.4 shows that clas-
sification accuracy of spectrogram based module (first to fourth cell on the diagonal) is
worse than the counterpart of PC classification module (fifth and sixth cell on the diago-
nal). To understand the cause of such results, data representations should be again dis-
cussed. The used PCs involve directly represent three intrinsic features of imaging radar:
range, azimuth and elevation (equivalently: X,Y, and Z); spectrogram exploits Doppler,
power and time. Therefore, spectrogram and PC contain distinct information. The er-
ror of spectrogram classification module is caused by the dimension of time. The data
collection is such that each subject repeatedly performs one pair of motions for approx-
imately same period of 2 seconds. However, human subjects often fail to comply this
rule, whereas the segments of samples are divided by exactly 2 seconds. Hence, some of
the spectrogram samples are inherently incorrect in time. Figure 6.10 presents two ex-
amples of the wrongly predicted sample in test set-1, where it is seen that spectrograms
do not include the full movement but starts from the half-way. Naturally, spectrogram
images cannot represent any real movement and then leads to the poor classification
performance.

In summary, the poor performances of spectrogram classification module is due the
crude way of segmentation, which causes that certain spectrogram images only contain
a part of the movement information, which is presumed to be the cause of wrong clas-
sification results. This suggests that an adaptive and automatic segmentation method is
crucial to attain more superior performances.

(a) (b)

Figure 6.10: Examples of wrongly predicted spectrogram images of motion samples (a)
bending over, and (b) standing up. The horizontal axis is of approximately 2 seconds,
and vertical axis expresses velocity in ±1.26m/s.
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Error Source-2 Figure 6.5 in section 6.3 confirms the superiority of the proposed pipeline
in general. However, the proposed pipeline classifying 4 motions at test test angle of 90
deg exhibits poorer results than the baseline-1 [1]. It is interesting to understand the
reasons of such dramatical drop in classification performance from adjacent aspect an-
gles to 90 deg. To elaborate on that, the confusion matrix of spectrogram classification
module processing the data of sitting down/standing up after sitting pair at the aspect
angle of 90 deg are presented in Figure 6.11. As demonstrated, CNN model finds it hard
to extract informative features from the spectrogram images of motions at large aspect
angle. This is due to the fact the macro-motion (of torso) and micro-motion (of arms
for instance) are not in radial direction, and therefore do not generate Doppler shift. For
example, Figure 6.12 shows an example of the spectrogram image of human subject sit-
ting down and standing up from sitting at 90 deg where almost no Doppler variation is
exhibited.

Therefore, with the Doppler information on certain motions missing at large aspect
angle, it is evident that further exploitation of the spatial information to make motion
classifications is important. For instance, RNN could be introduced to learn the tempo-
ral variations in the PCs within one segment of movement.

Figure 6.11: Confusion matrix of spectrogram classification module processing the data
of sitting/standing pair at the aspect angle of 90 deg, where class-0 expresses sitting
down and class-1 expresses standing up from sitting.

Error Source-3 Furthermore in section 6.3, it is realized that the proposed pipeline is
sensitive to the amount of training samples (see Figure 6.7). Figure 6.13 shows the con-
fusion matrix of training with 20% of training set-1 and testing with test set-1. By com-
paring Figure 6.13 with Figure 6.4, it is clear that more samples are mixed for the motion
pair of bending over/standing up from bending, and two postures. Therefore, the poor
classifier performance is subject to both PC and spectrogram classification modules. It
is reasonable to suspect that for the proposed pipeline, such drop in classification per-
formance is due to its hierarchical structure. For instance, when 20% of training set-1 are
utilized for training, spectrogram classification module has only 72 samples per class for
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(a) (b)

Figure 6.12: Example of the spectrogram image of human subject (a) sitting down, and
(b) standing up from sitting at 90 deg.

training. This number not only is far smaller than the number in ImageNet (more than
1000 samples per class), but also smaller than the typical radar-based HAR datasets (e.g.,
142 in [20], 500 in [27] and more examples in Table 2.1).

The disadvantages of the proposed hierarchical structure is realized that the number of
training samples for the second or the third stage may be too small to see neural net-
work’s convergence. Therefore, certain data augmentation methods could be adopted
to further enhance the robustness of radar-based HAR methods against limited number
of training samples.

Figure 6.13: Confusion matrix of the proposed pipeline training with 20% of training set-
1 and testing with test set-1, where class-0 to 5 expresses sitting down, standing up from
sitting, bending over, standing up from bending, sitting still and standing still, respec-
tively.
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CONCLUSION AND FUTURE WORK

Automatic indoor HAR is seen as a key technology to solve the severe shortage of health
care professionals brought by aging problem. Radar as a sensor is attracting people’s at-
tention due to its inherent advantageous characteristics such as respect to privacy and
promising functionality in poor lightening conditions. Through literature review, the
limitation of the past work on the topic of radar-based HAR is realized as the Excessive
Dependency on Doppler such that kinematically static postures and kinematically dy-
namic motions have not been jointly examined. Moreover, human activities are often
constrained to be performed in the line-of-sight orientation due to the excessive depen-
dency on the Doppler feature.

With this MSc thesis work focusing on the second point of the aforementioned lim-
itation, imaging radar is seen as a feasible solution. The main advantage of imaging
radar compared to conventional radar is that it provides additional spatial information
on the object. Such information enables more informative depiction of the shape of a
human body, and therefore, could be the key to recognize kinematically static postures
and movements at large aspect angles. Correspondingly, a few challenges are raised as
follows:

• It is challenging to find the informative data representations given additional spa-
tial information.

• It is not yet established what classifiers are most suitable to learn the important
information from the new format of data representations.

To respond to these challenges, two complementary data representations- PC and
spectrogram- are utilized. The former essentially represents three dimensions of information-
Doppler, power and time; the latter however expresses range, azimuth and elevation. A
hierarchical pipeline consisting of three modules is proposed to process these data. The
main innovations of this pipeline include the usage of all six intrinsic features provided
by imaging radar as well as the modifications of neural networks, enabling HAR with
respect to multiple aspect angles and in noisy environments.

64
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To validate the performances of the proposed pipeline, a custom experimental dataset
is generated. Furthermore, some ’simulated’ datasets are also generated based on the
measured data, for instance by adding white Gaussian noise to the measured data. Ab-
lation study is performed to learn the contribution of each module. Moreover, a few
baselines are implemented to comparatively study the performances of the proposed
pipeline. The main findings in the attained results are as follows:

• The proposed pipeline extracts high-dimensional latent space from the input rep-
resentations, and achieves promising accuracy (87.0%) for a classification problem
involving 4 motions and 2 postures;

• Each of the modules in the proposed pipeline is proved to be of crucial contribu-
tion via ablation studies;

• The proposed pipeline attains advantageous performances compared with the base-
lines, i.e. the accuracy of the proposed pipeline is 6% higher than [1] for classifying
four motions , and 12.1% higher than [64] for classifying all six activities.

• Leave-one-subject-out test shows that different human subjects inherently have
own kinematic patterns, which are unnecessarily dependent on the body charac-
teristics.

• Through adding white Gaussian noise to the measured data, it is valid that SNR
level directly affects the detection results and quality of spectrogram images, and
thus indirectly affect the classification performances.

• It is also established that large synthetic aperture of the imaging radar is effective
in attaining superior performances through accurate generation of PCs.

Last but not least, the error sources are analyzed to critically study the limitations of
the proposed method. These limitations and thus suggested future work can be summa-
rized as follows:

• Current segments are obtained by a fixed duration of 2 seconds. An adaptive and
automatic segmentation method is crucial to attain more superior performances.

• Spectrogram representation is not informative enough to represent the kinematic
characteristics of movements at large aspect angles (90 degree for instance). Fur-
ther exploitation of the spatial information to make motion classifications is im-
portant.

• Hierarchical structure limits the amount of training data for second or third stage.
Certain data augmentation methods could be applied to improve the sensitivity of
the proposed pipeline against number of training samples.

Future work: Apart from resolving the limitations of the proposed pipeline per se,
there are numerous aspects of future work on radar-based HAR worthy following up.
Referring back to the three main blocks of radar-based HAR (see Figure 1.1), future work
can also be divided into such three categories. Some rough ideas are given as follows:
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1. More realistic (less artificial) datasets should be collected. In these datasets, hu-
man subjects should have the freedom to causally perform daily activities, in-
place and transitional. In the meantime, simulations of imaging radar data could
be a crucial step to generate/ augment a large-scale, comprehensive and reliable
radar dataset. DL techniques will also play an important role in this aspect, since
GAN has been proved capable of generating spectrograms [46] even with noise
and clutter factors [47]. In the field of computer vision, GAN-based point cloud
generation has already been explored [79], future work for radar community is to
adapt such works to radar PCs which inherently have non-equidistant sampling
density. Transfer learning and many other data augmentation methods could also
contribute to this goal. And to my opinion, an open-source radar dataset, such
as [80], [81] and [82], is the most important step leading to the further scientific
advances of our community.

2. Two data representations- spectrogram and PC- are used in this project. There
still exist numerous other combinations of imaging radar’s six intrinsic features. I
would also like to stress a fact that the usage of time information in this project
is close to a ’micro-temporal relation’ within each segment of movement instead
of a ’macro-temporal relation’ that considers the dependencies between previous,
present, and even future activities. Sequences of spectrogram images is a good ex-
ample how of such macro-temporal relation can be shown in data representations
[34]. Naturally, sequences of frames of PCs will also be applicable.

3. Triggered by novel data representations, advanced classifiers (pipelines) must be
proposed to reasonably consume the input.

• Given a large-scale dataset, the architecture of neural network(s) can be more
complex. For instance, instead of PointNet [66], more advanced PointNet++
[83] which jointly considers the global feature and local semantic features
of PCs can be applied without concerning the problem of hard-to-converge;
meanwhile, those more advanced image classification models, such as ResNet
[73] or Vision Transformer [84] which were initially proposed with large-scale
image dataset such as ImageNet [75] would have the potential to more accu-
rately classify spectrogram images.

• Suppose a more realistic dataset is created and the macro-temporal relation
is to be introduced. As discussed in the chapter of literature review (2), RNN
or its variant [21], Transformers [85], etc., could be applied to capture such
macro-temporal relation. This supposedly will further improve the classifi-
cation accuracy in the temporally adjacent samples.

• The pipeline should not only includes the feedforward lines (from input sam-
ples to classification results as in my pipeline), but also feedback lines (from
classifications results to input samples). For instance, how the orientation
classification and classification results can help with detection and tracking
of the human subject, e.g. by choosing the adaptive number of guard and ref-
erence cells in CFAR, or, by choosing the correct motion model in a extended
target tracking algorithm [86].
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[58] A. Kılıç, İ. Babaoğlu, A. Babalık, and A. Arslan, “Through-wall radar classification
of human posture using convolutional neural networks,” International Journal of
Antennas and Propagation, vol. 2019, 2019.

[59] Z. He, X. Feng, H. Zheng, and W. Li, “Posture recognition with background noise
elimination using FMCW radar,” in 2020 Cross Strait Radio Science & Wireless Tech-
nology Conference (CSRSWTC). IEEE, 2020, pp. 1–3.

[60] G. Tiwari, P. Bajaj, and S. Gupta, “mmFiT: Contactless fitness tracker using mmWave
radar and edge computing enabled deep learning,” 2021.

[61] D. Nickalls, J. Wu, and N. Dahnoun, “A real-time and high performance posture
estimation system based on millimeter-wave radar,” in 2021 10th Mediterranean
Conference on Embedded Computing (MECO). IEEE, 2021, pp. 1–4.

[62] D. Sasakawa, N. Honma, T. Nakayama, and S. Iizuka, “Human posture identification
using a MIMO array,” Electronics, vol. 7, no. 3, p. 37, 2018.



7

72 REFERENCES

[63] N. Honma, D. Sasakawa, N. Shiraki, T. Nakayama, and S. Iizuka, “Human moni-
toring using MIMO radar,” in 2018 IEEE International Workshop on Electromagnet-
ics:Applications and Student Innovation Competition (iWEM), 2018, pp. 1–2.

[64] Y. Kim, I. Alnujaim, and D. Oh, “Human activity classification based on point clouds
measured by millimeter wave MIMO radar with deep Recurrent Neural Networks,”
IEEE Sensors Journal, vol. 21, no. 12, pp. 13 522–13 529, 2021.

[65] Y. Kim and T. Moon, “Human detection and activity classification based on micro-
Doppler signatures using deep convolutional neural networks,” IEEE geoscience
and remote sensing letters, vol. 13, no. 1, pp. 8–12, 2015.

[66] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets for 3D
classification and segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2017, pp. 652–660.

[67] “Design guide: Tidep-01012 imaging radar using cascaded mmwave sensor refer-
ence design,” Texas Instrumentation, online; accessed 19 August 2021.

[68] C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2015.

[69] B. Çağlıyan and S. Z. Gürbüz, “Micro-Doppler-based human activity classification
using the mote-scale Bumblebee radar,” IEEE Geoscience and Remote Sensing Let-
ters, vol. 12, no. 10, pp. 2135–2139, 2015.

[70] H. Rohling, “Radar cfar thresholding in clutter and multiple target situations,” IEEE
Transactions on Aerospace and Electronic Systems, vol. AES-19, no. 4, pp. 608–621,
1983.

[71] Y. Aoki, H. Goforth, R. A. Srivatsan, and S. Lucey, “Pointnetlk: Robust & efficient
point cloud registration using PointNet,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2019, pp. 7163–7172.

[72] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” 2015.

[73] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
2015.

[74] S. Chen, W. He, J. Ren, and X. Jiang, “Attention-based dual-stream vision trans-
former for radar gait recognition,” 2021.

[75] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pat-
tern Recognition, 2009, pp. 248–255.

[76] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2019.



REFERENCES 73

[77] L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal of
Machine Learning Research, vol. 9, no. 86, pp. 2579–2605, 2008. [Online]. Available:
http://jmlr.org/papers/v9/vandermaaten08a.html

[78] Y. Zhao, R. G. Guendel, Y. Alexander, and F. Francesco, “Distributed radar-based
huamn activity recognition using vision tranformer and CNNs,” in European Radar
Conference 2022, April 2022.

[79] D. W. Shu, S. W. Park, and J. Kwon, “3D point cloud generative adversarial network
based on tree structured graph convolutions,” in Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), October 2019.

[80] “Radar signatures of human activities,” 10.5525/gla.researchdata.848, accessed:
2022-01-30.

[81] “Asl-sequential-dataset (77 ghz fmcw mimo),” https://github.com/ci4r/
ASL-Sequential-Dataset, accessed: 2022-01-16.

[82] “Dataset of continuous human activities performed in arbitrary directions col-
lected with a distributed radar network of five nodes,” https://data.4tu.nl/articles/
dataset/Dataset_of_continuous_human_activities_performed_in_arbitrary_
directions_collected_with_a_distributed_radar_network_of_five_nodes/16691500,
accessed: 2022-01-30.

[83] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature learn-
ing on point sets in a metric space,” arXiv preprint arXiv:1706.02413, 2017.

[84] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An
image is worth 16x16 words: Transformers for image recognition at scale,” 2021.

[85] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” 2017.

[86] J. Pegoraro and M. Rossi, “Real-time people tracking and identification from sparse
mm-wave radar point-clouds,” IEEE Access, vol. 9, pp. 78 504–78 520, 2021.

http://jmlr.org/papers/v9/vandermaaten08a.html
10.5525/gla.researchdata.848
https://github.com/ci4r/ASL-Sequential-Dataset
https://github.com/ci4r/ASL-Sequential-Dataset
https://data.4tu.nl/articles/dataset/Dataset_of_continuous_human_activities_performed_in_arbitrary_directions_collected_with_a_distributed_radar_network_of_five_nodes/16691500
https://data.4tu.nl/articles/dataset/Dataset_of_continuous_human_activities_performed_in_arbitrary_directions_collected_with_a_distributed_radar_network_of_five_nodes/16691500
https://data.4tu.nl/articles/dataset/Dataset_of_continuous_human_activities_performed_in_arbitrary_directions_collected_with_a_distributed_radar_network_of_five_nodes/16691500

	Acknowledgements
	Summary
	List of Figures
	List of Tables
	Introduction
	Background
	Problem Formulation
	Thesis Contribution
	Thesis Structure

	Literature Review
	HAR using conventional radar
	Radar Data Representations
	Classifiers
	Activities
	Data Generation

	HAR Using Imaging radar
	Limitations and Challenges

	Radar Parameters
	2D MIMO Radar Description
	Derived Radar Features and Waveform

	Proposed HAR Pipeline
	Pipeline Overview
	Signal Processing Algorithms
	Signal Model
	Range-Doppler FFT
	CFAR
	Angle Spectrum Estimation and Detection
	STFT

	DL classifiers
	Orientation classification module
	PC classification module
	Spectrogram classification module

	Baselines for Performance Comparison

	Measurement Setup and Dataset Construction
	Measurement Setup
	Dataset Description
	Training and Test Sets

	Data Preparation
	Data Standardization

	Visualization of data representations

	Results
	Results of the Proposed Pipeline
	Results of Ablation Study
	Results of the Baseline Approaches
	Results of Leave-One-Subject-Out Test
	Results of Noisy Data
	Results of Variation in MIMO Aperture
	Error Analysis

	Conclusion and Future Work
	titleReferences


