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SUMMARY

In steady flow a weU known method to determine a discharge is the
method of dilution discharge-measurement : after constant injection of a
known rate of tracer material and sufficient mixing over the entire
cross-section, the concentration of the tracer material can be used to
compute the discharge by way of an explicit relation.
Using the same relation during a flood wave (unsteady flow) will result
in inaccurate values of the discharge caused by a difference in the
respective velocities of propagation between flood wave and tracer
cloud.
When, however, the dispersion equation is solved back into time with the
aid of a Kalman filter, it turns out to be possible to compute with the
dilution method accurate values of the discharge during a flood wave.
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CHAPTER 1 INTRODUCTION

To solve river engineering problems. it is in general necessary to have
information on the characteristics of the river in question. One of
these characteristics is the stage-discharge relationship. Several
measurement techniques have been developed to measure the df scharge,
e.g. the velocity-area method. the moving boat method. the slope-area
method. etc. Besides discharge measurement-structures can be used such
as weirs and flumes. Many methods are described in detail in ISO (1990).
A special method is the one of the dilution discharge-measurement. In
principle this is a simple method : after constant injection of a known
rate of tracer material and sufficient mixing over the entire
cross-section. the concentration' of the tracer material can be used to
determine the discharge. The principle of this method is shown in Fig.
1-1.

measurement
~.

L

Fig. 1-1: Dllutlon _thod.

The necessi ty of mixing over the entire cross-section restricts the
practical use of this method to small streams. 50 the dllution method
seems to be particularly suitable for mountain-streams with excessive
turbulence or debr Ls, where the flow is inaccessible to man and/or
measuring devices. or where the cross-sectional area cannot be
accurately measured and current-meter measurements are impractical.
For steady flow the dilution method has been standardized by the
International Standardization Organization (ISO. 1990). but for unsteady
flow a sound theoretical background is still lacking.
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This explains the aim of this study, viz. making the dilution method
applicable for mountain-streams with a wild regime (excessive
turbulence) under flood wave conditions (i.e. unsteady flow).
The problem of deriving the discharge from dilution measurements during
flood-wave conditions has in principle been solved by Noppeney (1988).
Noppeney has shown that a time lag (i.e. the result of a difference in
the respective velocities of propagation between flood wave and tracer
cloud) causes the major error in the computation of the discharge. Here
the discharge was computed with the following expression :

M~(L,t) = Q(L,t) + ~1 (1. 1)

in which ~(L,t) = concentration at x=L and time t,
~ = initial (or 'background') concentration,
1

M = amount of released tracer material,
Q(L,t) = discharge at x=L and time t,
L = distance from injection point to point of measurement(L

must be larger than the mixing length),
t = time.

The released tracer material is supposed to be a constant input, i.e. a
constant amount of tracer material is continuously injected.
To avoid the error caused by the time lag, in this study a method is
developed to compute the concentration at the injection point. Using
again Eq. (1.1), but now for x=O, the discharge then can be computed.
Before developing this model a brief review of the theory of mixing
processes in rivers is given in Chapter 2; a numerical approach to the
dispersion equation is dealt with in Chapter 3.
The deterministic equations from Chapter 3 have to be matched with
on-line measurements and one way to achieve this is the application of a
Kalman filter. This is a stochastic filter based on a determinist ic
model and it has the capability of correcting model predictions using
on-line information. An introduction to the Kalman filtering theory is
given in Chapter 4
Chapter 5 contains the actual model to compute the concentration at the
injection point; to this end a Kalman filter is developed based on
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solving the difference equation back into time.
The performance of this filter is examined with simulated data in
Chapter 6.
The conclusions which can be drawn and some recommendations for further
study are given in Chapter 7.
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CIIAPTER 2 MIXING PROCESSES IN RIVERS

2.1 Introduction

In this Chapter a brief review of the theory of mixing processes in
rivers is given. In Section 2.2 the dispersion equation is derived and
in Section 2.3 the analytical solution for a steady uniform flow is
given. In Section 2.4 the equation will be extended for rivers with dead
zones.

2.2 Dispersion

The spreading of a dissolved substance in a turbulent open channel flow
is due to a combined effect of diffusion and dispersion. An order of
magnitude analysis indicates that dispersion by cross-sectional
non-uniformity exceeds turbulent diffusion by far (e.g. Jansen, 1979).
Dispersion has been defined as the spreading of marked fluid elements by
the combined action of aveloci ty distribution and turbulent veloei ty
fluctuations (Fig. 2-1).

_XU _X

ti> ti>

I _A Î

_X' _X

Fig. 2-1: Dlspersion aechanl .. (af ter Fl.her. 1979).
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The basic one-dimensional differential equation for dispersion in
channel flow is (see Noppeney, 1987):

a - a - - a ~at( A ~ ) + ax( Au ~ ) + ax( A u '11 ) = 0 (2.1)

in which A = cross-sectional area of the river
u = flow velocity in x-direction
~ = concentration.

A double overbar denotes cross-sectional average and 11 stands for the
turbulent and cross-sectional fluctuations with regard to this average,
so

~ = ~(x,y,z,t) = ;(x,t) + ~"(X,y,z,t) with ;(x,t) = iIJ ~ dydz.

A similar expression holds for u.
A general procedure to express the last term in Eq. (2.1) in terms of a
cross-sectional average is not available, but widely used in river
engineering is the Taylor method.
Taylor (1954) assumed a balance between longitudinal convective
transport and cross-sectional diffusive transport (Fig. 2-2), yielding
the following relationship

AUil~iI= AK a;
ax

in which : K = - iIJu"f(y,Z)dYdz = dispersion coefficient.

The function f(y,z) is defined by : ~" = f(y,z) :~.
Substituting these expressions into Eq. (2.1) and omitting the overbars
for simplicity yields the dispersion equation :

a a a a~at (A~) + ax (Au~) - ax (AK ax) = 0 (2.2)

On account of laboratory and field experiments the dispersion
coefficient for real streams is found to be (Fischer, 1979):

K = 0.011 U~2a u. (2.3)
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in which u. = shear velocity
B = mean flow width
a = mean flow depth.

In most cases Eq. (2.3) has been found to agree within a factor 4, but
'a mountain stream that consist of a series of pools and riffles is not
a suitable place to apply Taylor's analysis' ( Fischer, 1979).
Day (1975) for example investigated the longitudinal dispersion of fluid
particles in natural channels in an extensive series of experiments in
small mountain streams in New Zealand. He concluded that the spread or
standard deviation of an initially concentrated mass increases linearly
with distance and not as its square root, as is necessary for the
application of Taylor's mixing model. One consequence of this linearity
is an ever-increasing dispersion coefficient along the channel.
Day also showed that the time-concentration curve of a dispersing tracer
mass maintains a persistent asymmetry. This persistent asymmetry and the
.continued lineair spreading appear to be characteristic of dispersion in
natural channels and as such show the inadequacies of applying Taylor's
analysis.
However, since a better theory is not available the dispersion equation,
Eq. (2.2), wUI be applled keeping in mind the imperfection of the
theory.

dx / z

y

Fig. 2-2: Balanee between convectlon and dlffuslon (FIscber, 1979).

transverse
dlffuslon

equals .\_ convectlon
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2.3 Steady uniform-flow dispersion

For steady uniform flow the dispersion equation can be simplified to

a~ a~ a2~
+ u -- - K --- = 0

at ax ax2
(2.4)

Assuming that at time t=O there is no tracer material in the channel
yields the initial condition :

~(x.O) = O.

One boundary condition follows from reasoning that at infinity the
concentration equals the initial concentration

For an impuls input at x=O and t=O, the solution of the dispersion
equation is given by (see e.g. de Vries, 1984) :

[ [ ]2]
M/A x-ut~(x,t) = exp ---
2vnKf 2~

(2.5)

The concentration distribution for a constant input from t=O at x=O can
be seen as the sum of the concentration distributions resulting from a
successive series of impuls inputs during the time t (see Noppeney,
1987). This yields

t [ ]
2MVA X-UT~(x,t) = J exp -(-] d-r

2"llKT' 2vXTo

(2.6)

This integral can be written as (Abramowitz and stegun, 1965), see also
Fig. 2-3 :
for x>O :

~(x,t) M [erf(;:;]- 1 + exp(~)(erf[:;]+ 1]]- 2Au

for x<O : (2.7)

~(x,t) M [(X-ut] (ux) (x+ut]]- 2Au erfc 2v'Kr - exp ~ erfc 2VKt
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in which
2 JZerf(z} = --. exp(-v2}d~

Vio

2 JeDerfc(z} = 1 - erf(z} = -- exp(-~2}d~
Viz

M

u ~ u

0
X

t;

I
M!CAU)--

Fig. 2-3: Concentratlon dl.trlbutlon (Berkhoff, 1973).

2.4 Dead-zone model

In the cross-section of natural streams or rivers are parts where the
water barely moves or parts with no net downstream movement. These 'dead
zones' are quite arbitrarily distributed along the cross-section and may
have a natural cause (e.g. due to meandering of the river, existence of
debris, eddies or pockets behind obstacles like big rocks) or an
artificial cause (like groynes or forelands).
When a tracer is injected into a river, tracer material will be trapped
in these dead zones and this will have influence on the concentration
distribution of the tracer.
The trapping of material in dead zones can be seen as a mass transport

15



through an interface between the flow and the dead part of the
cross-section.
The transport of mass through the interface will, by complete mixing in
the dead zone, be proportional to the difference in concentration
between both zones :

F = - D (~ - ~ )
B d

index s

F = mass-flux through the interface
D = exchange velocity

denotes the flow zone
denotes the dead zone

in which

d

The value of the exchange velocity will be influenced by the
cross-sectional geometry and the transport processes.
For the flow zone the dispersion equation can be extended to (see
Noppeney, 1988) :

a~
B + u

a~
B = - D (~ - ~ )

B B d
(2.8a)

at B ax
while for the dead zone the equation becomes

a~d- = D (~ - ~ )at d. d
(2.8b)

in which the entrainment coefficients D and D are defined asB d

B

PD = - Dd A
d

D = ~ D
B A

with P = length in cross-section along which flow and dead zone make
contact.

The storage time l/D is the time tracer material stays in the dead zone
d

and the relation between the two entrainment coefficients is :
A
d

D = - D
BAd

B

Thackston and Schnelle (1970) have found an experimental relation for
the fraction of natural dead zones in a cross-section (see Fig. 2-4)

16



A
d = 0.0152 + 0.89 f2.22

where f = friction factor and 0.04 < f < 0.26.
Others like Purnama (1988) and Nordin and Troutman (1980) give a value
in the order of Ad/As ~ 0.03.

A + A
• d

ILI
Z

2.06
o« .05
ILI
o
z .04
o
5·03
«
11:
~.02L- --o-~--

o 0o

Fig. 2-4: Natura 1 dead zone fractlon (Thackston and Schnelle, 1970).

OL--L __L--L __L--L __L--L __L-~ __ ~~ __ ~~
o .02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22 .24 .26

f - FRICTION FACTOR

The dead-zone model generates an asymmetrical concentration distribution
and with well-chosen parameters this model can lead to astonishing
results as can be seen in Fig. 2-5.

50~--------------------------~
ZONE MODEL40

>,
L..
<11
.t 30
:ö
L..
<11
I 20oz
o 10U

DISPERSION MODEL

°EXPERIMENTAL POINTS

Fig. 2-5: Fit of two .adel. to experl.ental data
(Thack.ton and Schnelle, 1970).
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CHAPTER 3 NUMERICAL APPROACH TO THE DISPERSION EQUATION

3.1 Introduction

A vast number of computational methods on dispersion are available and
it is unfeasible trying to find the best. It is more important to avoid
an uncritical use of the chosen scheme. Section 3.2 gives the numerical
scheme that has been used for this study. The initial and boundary
conditions needed to start a computation and to solve the difference
equations are treated in Section 3.3. Section 3.4 contains some
reflections on the accuracy of the numerical scheme.

3.2 Numerical scheme

The numerical scheme used to compute the solution of the dispersion
equation, Eq. (2.4) , is a finite difference scheme of the
Crank-Nicholson type. Fig. 3-1 shows the definition of the grid.
The difference equation reads :

~k+1 _ ~k

+ • { U
~k+1 _ ~k+1 ~k+1 _ 2~k+l + ~k.'}

1 1 1+1 1-1 _ K 1+1 1 1-1 +

l!.t 2 l!.x l!.x2

{u k k k - 2l + l }+ (1-9)
~1 +1 - ~1-1 ~1+1 1 1-1 0-K =

2l!.x l!.x2

(3.1)

in which 9 = weighting factor
~k = approximation of ~(il!.x,kl!.t).
1

For 9 > 0 this is an implicit scheme and for 0.5 ~ 9 ~ 1 the stability
will be ensured without restrictions concerning the time step.

By defining ~ = [~~... ~~... ]T . where T denotes the transpose vector,

the difference equation can symbolically be written as :

19



Ax = Bx + u.-k+l -k -K+l

where A and Bare coefficient matrices and ~ depends on the boundary
condition.
This can be rewritten as :

-1
~k+l = t~k + A ~+1 (3.2)

ilt
t ilx

+r

- -- --+-- - -- lAtI Ieilt
I

I
I
I

i k+1

k

i +1 ilx
x

Fiq. 3-1: Grid for fini t e diff erence scheIDe.

3.3 Initial and boundary conditions

Solving the above difference equation requires one initial and two
boundary conditions.
As initial condition a constant background concentration ~ throughouti

the channel is applied.
At the upstream boundary (x=O) the tracer input can be specified as a
mass-flux with the following equation:

~(o.t) - Klu a~~~.t) = ij H(t) + ~i

or with the more simple concentration-condition. defined by

~(o.t) = ij H(t) + ~i

20
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in which ~(O,t) = concentration at the boundary
H(t) = Heaviside or unit step function, defined as

H(t) = 0 for t<O
H(t) = 1 for t>O

82~At the downstream boundary the model uses = 0 as a boundary
condition. 8x2

3.4 Accuracy

In order to study the accuracy of the numerical solution of the
dispersion equation it is for practical purposes often sufficient to
consider the numerical dispersion, the numerical diffusion and the
effects of the convection separately. If separate analyses of these
phenomena yield reasonable accuracy for a given 6x, 6t and 9, it may be
expected that the accuracy as a whole is acceptable (Vreugdenhil, 1989).

Numerical dispersion caused by the difference scheme can be quantified
by expanding each difference term in a Taylor series. This yields the
'modified' equation and the 'modified' equation for the Crank-Nicholson
scheme, Eq. (3.1), reads (e.g. Vreugdenhil, 1989)

8~ + u 8~

8t 8x

2

(9-1/2) 6t u2 8 : + Q(6x2,6t2)
8x

The right hand side of this 'modified' equation is the truncation error
and its first term has the nature of a dispersion coefficient (e.g.
Vreugdenhil, 1989) :

K = (9-1/2) 6t u2
•num

Apparently the computation is carried out with an effective dispersion
coefficient :

K ff= K + K .e num

This has two consequences. For reasons of stability the effective

21



dispersion coefficient should not be negative and for reasons of
accuracy the numerical dispersion should be an order of magnitude
smaller than the physical dispersion.
It has to be emphasized, however, that the other term in the truncation
error may be important as well, but is more difficult to interpret.

The accuracy of the finite difference method for mere diffusion, can be
Judged by considering the diffusion equation as a 'black box', which
transfers a certain 'input signal' at one location to an 'output signal'
at another (e.g. Vreugdenhil, 1989). The difference between the
respective transfer functions of the differential and the difference
equation during, for example, the relaxation time yields a measure for
the accuracy. This is given in Fig. 3-2 as function of 9, K, k and àt,
where k is the wave number of the wave present in the initial condition.

1

0.9

0.8

0.7
g:

... =
iJ 11
~ 0.5

OL---~----~--~----~--~----~--~--~----~--~o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9

Fiq. 3-2: Needed time-step for different levels of accuracy
(after Vreuqdenhll, 1985).
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The influence of convection can be estimated by comparing propagation
and damping by the differential and the difference equation. In Fig. 3-3
the relative celerity Cr (the ratio of the velocities of propagation)
and damping factor dn (the ratio of the amplitudes) are given as a
function ofAx/L and a, where L is the wave length of the wave present
in the initial condition.

In the case of a sudden variation in the concentration, e.g. imposed by
a boundary condition or a sudden release of tracer, oscillations can
occur even if the computational scheme is stable. The existance of these
oscillations is governed by the cell-Peclet number Pand a sufficient
condition to prevent them is (e.g. Vreugdenhil, 1989) :

P=uàx 2-y- < .

1

0.9
.........................

........
........

0.8 ..........

0.7
I..u 0.6.
c O.S-e

0.4

0.3
solld : dD

0.2 dotted : Cr

0.1 :\ '"' 2Ut/t.x
2

0
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Ax/L

Fig. 3-3: Relatlve celerlty and daaplngCactor (aCter Noppeney, 1988).
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CHAPTER 4 DISCRETE FILTERING THEORY

4.1 Introduction

Since the original papers by Kalman and Bucy (1960, 1961) a considerable
amount of literature on the theory and the applications of Kalman
filters has become available. In this chapter a short review of the
filtering theory is given with special attention for those aspects of
discrete filtering theory which are of major relevance to the problems
dealt with in this study. For a more thorough discussion the reader is
referred to the textbooks of Jazwinski (1970), Maybeck (1979, 1982) or
Anderson and Moore (1979).

In Section 4.2 the Kalman filter for linear discrete systems is
introduced and in Section 4.3 attention is paid to the stability of the
filter. Section 4.4 gives an extension to nonlinear filters and Section
4.5 briefly discusses the use of the nonlinear filters in estimating
uncertain parameters.

4.2 Linear filtering theory

The discussion of linear filters starts with the definition of a system
and of the state of a system. A system represents a part of the real
world (here a river) and the state of a system describes the system at a
certain time t (here the concentration distribution) . The different
components describing the state of a system can be ranged into a vector;
the state vector.
The essence in filtering now is to get an optima I estimation of the
state at time t on account of the available information.
Suppose that the sequence of states is the result of a process and that
this process can be described with a mathematical (or numerical) model.
The difference between the actual system and this mathematical (or
numerical) model is then defined as the system noise.
This study is dealing with the dlspersive processes in a river and the

25



state vector ~ at time t=k~t is here defined by

where N = number of grid points.

Using the numerical scheme given in Section 3.2, the stochastic state
equation describing the propagation in time of the state vector ~ can
be written as :

X-k+1 = ~ X + A-1~ + G W-k -K+l -k+l
(4.1)k = 1,2, ...

where Hk is the system-noise vector and G is the noise input-matrix.

A linear filter has a predictor-corrector structure and can be
characterized as follows (Fig. 4-1):

_ the time-dependent variables, represented in the state vector,
are computed one time step ahead with the state equation until a
measurement is available,

_ the filter compares the corresponding state variable(s) or
combination of state variables with the measurement(s),

_ an adaptation vector is computed by the filter and added to the
state yielding a corrected state.

compute
corrected state ---

measurement yes-=---~available ?
~ compute next

" time step
InoL- ~

Fiq. 4-1: Workinq of a filter.

To be able to compare the state vector with the available measurements,
arelation between these two has to be formulated. This is do ne with the
observation equation :

(4.2)
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in which Zx = observation vector comprising the measurement(s) for
t = kAt,

H = observation matrix describing the actual relation(s)
between state and measurement(s),

Yk = observation-noise vector, as all measurements will be
disturbed with measurement faults.

Given the observations, the state equation and the observation equation
the Kalman filter is able to give an optimal linear estimation of the
state if the noise vectors are Gaussian white-noise processes. This
means

and

The covariance matrices of the system noise and the observation noise
are defined as

E[Hk H~] = Qk

E[Yk Y~] = 11c.

The Kalman filter for a discrete problem can be described by the
following equations; the derivation of these filter equations can be
found for instance in the works of Haybeck (1979) and Jazwinski (1970).

The prediction of the state is computed with
A -1
X. -tx. +A u.....lc+1 - ....lc -k+1 (4.3)

where the circumflex A over a quantity denotes its predicted value.

The propagation of the covariance matrix Pk of the state ~ must also be
computed, this is done through :

(4.4)

If an observation vector is available for the current time step (not
necessarily every time step), the predicted state and covariance matrix
are updated with the following corrector equations :

27



~+1 = ~+1 + ~+1 [Zk+1 - H ~+1] (4.5)

(4.6a)

or the numerieally better equation (see Jazwinski, 1970, p.270)

(4.6b)

in whieh :
~+1 = Pk+1 HT [H Pk+1 HT + ~+1]-1 represents the Kalman gain, (4.7)

I = identity matrix,
-1 denotes the matrix inverse.

A bloek-diagram representation of the Kalman filter described above is
given in Fig. 4-2.
The initial conditions necessary to start the above Kalman filter are ~
and PO.

process
measurements --

._._.__ .._- .._ .._-- compute :

eompute; :

state
eorreeted;
state :

-_._ .._-_ .._._-_ ..
:

r
------ I---

I
, ._._----_ .._ .._._._-_._. __ .._ .... compute

eompute compute eorrected
state Kalman statecovariance gain covariance
...._ ...._._ ...__ ....._._ ......_-_. --_._------

delay ,

Fig. 4-2: Block-dlagram representatlon of the Kalman filter.
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4.3 Observability. controllability and stability

It is important to ask what, if anything, can be gained from filtering
the data. How much information about the state of the system do the data
contain? Can the state vector be determined from the data? The
importance of these questions is obvious and if little is to be gained
from filtering, remodelling the system should be considered. This might
involve taking additional or alternative observations, or even
redesigning the dynamics of the system.
How weIl the state is known is measured by the estimation-error
covariance matrix Pk. Two concepts, the concept of observability and the
concept of controllability, have been developed to check the condition
of the filter (see Appendix A).

The concepts of observability and controllability, both introduced by
Kalman, can be used to establish stability. Through the explicit
generation of an appropriate Lyapunov function, it can be proved that,
if a system model is both uniformly completely observable and
controllable, the Kalman filter is uniformly exponentially stabie (see
Kalman, 1963).
An immediate consequence of the exponential stability of a filter is
that the effect of the initial condition Po vanishes as more and more
observations are incorporated. This is important, since Po is often
poorly known. Furthermore, it indicates that the computation of Pk is
stabie and the numerical errors in Pk vanish (Heemink, 1986). This is a
very favourable property, since in case the Kalman filter algorithm is
applied to ill-conditioned problems, these numerical errors can become
large.

Another approach to the stability of the filter can be obtained from the
filter equations (4.3)-(4.7). It can be shown that for the model
described in section 4.2 :

I - K(k) H(k) :S 1 , for all k.

Here 1·1 denotes a matrix norm.
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This implies that if the original system (4.1) is (exponentially)
stabie, the Kalman filter is also (exponentially) stabie and that the
filter is always more stabie than the original system (Heemink, 1986).
This stability-improvement property of the filter is a very favourable
one. Note that if the filter is uniformly completely observable and
controllabie, stability of the original system is not required for
filter stability. A system model can be unstable whereas the Kalman
filter is stabie.

4.4 Nonlinear filtering theory

This Section contains only a few remarks on the theory of nonlinear
filtering. A more detailed discussion can be found in Appendix B.
The Kalman filter was originally derived for linear models only, but
algorithms have been developed to linearize nonlinear modeis.
Dne way to linearize is using a reference trajeetory along which the
partial derivatives of the nonlinear equations are determined, yielding
approximate linear equations which can be used in a standard Kalman
filter.
The remaining problem is choosing the reference trajeetory. The easiest
way is to piek, a priori, a reference trajeetory; this approach is
called the Linearized Kalman filter. The performance of this Linearized
Kalman filter depends, however, very strongly on the accuracy of the
reference trajeetory chosen.
A better method is the application of the Extended Kalman filter, where
a new and better reference trajeetory is incorporated into the
estimation process as soon as a new observation is available and a new
corrected state has been obtained. With this choice of reference
trajeetory large initial estimation errors are not allowed to propagate
into time.
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4.5 Parameter estimation

A particular application of nonlinear filters is the estimation of state
variables in a system which is weU described by a (non)linear model,
but in which uncertain parameters are embedded in the tand/or H
matrices. These uncertain parameters can be treated as additional state
variables with the system equation

p =p +HP-tk -tk-l tk
(4.8)

By incorporating the system noise HPtk into this equation the random
character of the parameters can be taken into account. Note that in
general even a linear model in this case becomes a highly nonlinear one.
By applying a nonlinear filter to estimate both the state and the
uncertain parameters, it is possible to adapt the model to changing
physical conditions. Compared to other methods for combined state and
parameter estimation, this procedure is attractive from a computational
point of view. Dwing to the neglected higher-order nonlinearities, bias
errors mayalso appear in the parameter estimation. The more pronounced
the nonlineari ties are, the more the filter performance is degraded by
this effect. Therefore, in a given application the capability of the
filter to estimate uncertain parameters has to be verified by applying
the filter using simulated data. In that case the true value of the
parameters is known and, consequently, the performance of the filter can
be evaluated under a variety of circumstances.
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CHAPTER 5 BACK-INTO-TlKE MODEL

5.1 Introduction

In Chapter 3 a numerical scheme has been derived to compute the
dispersion equation. This scheme needs the discharge at the upstream
boundary, but this discharge is the quantity looked for and therefore
not known.
If the dispersion equation is numerically solved with the aid of a
Kalman filter, this problem can be avoided by considering the upstream
boundary (x=O) concentration as an autoregressive variabIe, that is :

(5.1)

The general idea now is :
- inject the tracer at x=O (= upstream boundary);
- measure the concentration of tracer material

at x=L (=downstream boundary);
- compute the concentration at x=O;
- and finally, compute from this concentration the discharge with a

normal boundary condition like the concentration condition, which is :
M(t)~(O,t) = Q(O,t) + ~i

yielding Q(O,t) (5.2)

Here we recall that :

~(O,t) = concentration at the upstream boundary

~i = initial (or 'background') concentration
M(t) = released tracer material
Q(O,t) = discharge at the upstream boundary.

Sa the major problem is to regain the upstream boundary concentration
given the measured downstream concentration. Therefore the numerical
scheme from Section 3.2 combined with an autoregressive boundary as
described above, is incorporated into a Kalman filter. This model is
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tested with the aid of a simulated flood wave down an imaginary river.
Fig. 5-1 shows the distribution of the concentration along the river at
some time taf ter the release of the tracer at x=O was started. The
distribution computed with the model. where the concentration at x=L was
inserted as measured concentration. is also given.

xlO"1.44 ,.---.-----r--,..---,------,,-----,-----..--,.---.------.

c::.g
11.36 --------------------------------------

1.34

1.38

1.32
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dashed : co.puted

1.28L--_-'-_---" __ ""-_ ........._---''--_......__--'- __ '-- _ _.__ __j

o 0.2 0.4 0.6 0.8 1.2 1.6 1.81 1.4 2

distance (in L)

Flq. 5-1: Concentratlon computed wlth a Ialaan fliter.

It can clearly be seen that the model shifts the concentration at x=L to
the ·measured· concentration. resulting in a fairly weIl computed
concentration for xel, (the Kalman filter actually introduces a new
boundary condition at x=L).
Unfortunately. this is not what we are looking for; we want to find the
upstream distribution of the concentration. and it is also clear that
this model cannot provide that. This is not a real surprise if we take
in mind that the concentration at x=L for the greater part contains
information from the past and hardly information about the future.
Due to the fact that the present contains information about the past. we
have chosen to solve the dispersion equation back into time. hoping to
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find the boundary concentration that caused the measured concentration.
To solve the dispersion equation (2.4), back into time an explicit
finite difference scheme is used.
The difference equation reads :

àt 2 àx

.l..k _ 2.1..k + .l..k
""1+1 ""1 ""1_1

K = 0
àx2

(5.3)
.l..k+1 _ .l..k .l..k .l..k
""1 ""1 ""1+1 - ""1_1+ U

When the boundary conditions are embedded into the system matrix t, this
equation can be rewritten as

(5.4)

where ~ consists of the concentrations in the grid points

~ = [4>~ ... 4>~ ... 4>:]T

The concept of back-into-time solving, is to take the inverse of Eq.
(5.4), so :

~ = F ~+1 (5.5)
-1where F = t .

Although an analytically correct move, numerical instability may occur
due to this inversion as will be shown in the next Section. Section 5.3
describes a Kalman filter based on the back-into-time scheme. The
accuracy of the back-into-time method will be investigated in Section
5.4 and in Section 5.5 an extension for rivers with dead zones is given.

5.2 Stability of the back-into-time method

To study the stability of this back-into-time scheme, the Von Neumann
method is used.
Suppose an initial condition of the form :

o 04> = 4> cos(kx)
J

For convenience' sake, this is written as
(5.6)
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in which ~n = amplitude at time level n
i = complex number i
j = grid point number
~ = kAx = 2nàxIL (k = wave-number, L = wave length)

Obviously the smallest possible grid size is àx = o. The largest
possible value is Ax = L/2, as it is not possible to represent a "wave"
with less than two grid points per wave length.
50 : 0 s ~ s n.

Rewriting the difference equation (5.3) to :

(5.7)

and substituting Eq. (5.6) into Eq. (5.7) yields :

~n+l exp(ij~) = ~n{l - ~ CT[eXP(i(j+l)~) - eXP(i(j-1)~)] +

+ ~ À[eXP(i(j+l)~) - 2 exp(ij~) + eXP(i(j-l)~)]}

(5.8)

where CT= uàt/àx
2À = 2Kl1t/àx.

Each term in Eq. (5.8) contains a factor exp(ij~), therefore

~n+l = ~n {1 _ ~ CT[eXP(i~)- eXP(-i~)] + ~ À[eXP(i~) - 2 + eXP(-i~)]} =

= ~n{l - À + À cos(~) - CTi Sin(~)} (5.9)

This equation can now easily be written in back-into-time form

n 1 n+l
~ = 1 - À + ÀCos(~) - CTi sin(~) ~ (5.10)

The numerical solution has been multiplied during this time step by a
complex factor : the amplification factor p

1 (5.11)
p = 1 + À(cos(~) - 1) - CTi sin(~)
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which means that the amplitude is multiplied by Ipl and that there is a
phase shift arg(p). During the next time step the same will happen and
after n time steps the multiplication factor is Ipln.
Here we started with a eosine function as an initial condition. but any
initial function can be developed into a Fourier series consisting of
eosine functions with various wave lengths. So , apparently. a general
condition for stability is that the absolute value of the amplification
factor should be less than unity

Ipl :s 1
for any value of the wave length Land the grid size àx.
Elaboration of Eq. (5.12) gives :

Ipl2 = 1 :s 1
ll+À(COS(~)-1)J2+ ~2sin2(~)

2À(cos(~)-1) + À2(cos(~)-1)2 + ~2(1-cos2(~)) ~ 0

(5.12)

Dividing by (cos(~)-l) yields :
2 22À + À (cos(~)-l) - ~ (l+cos(~)) :s 0

Ihis is a linear function of cos(~). so if the inequality is satisfied
for the two extreme values of cos(~). ±1. it is for the intermediate
values as well. This gives :

cos(~) = 1
cos(~) = -1

22À - 2~ :s 0
2À - 2À2 :s 0

..,.< 2
I\. - ~

À ~ 1

Combination of these two conditions gives the stability condition for
the back-into-time scheme

(5.13)

which is quite the opposite of the stability condition for the explicit
Crank-Nicholson scheme. (see e.g. Vreugdenhil. 1989) :

(5.14)

The meaning of this last condition is that ëx can be chosen and that
then àt is limited by Eq. (5.14) the time step cannot be taken
arbitrarily large. A way to get round this sometimes severe stability
restrietion is using an implicit aethod, which is unconditionally stable
if 1/2 :s 9 :s 1 (see Vreugdenhil. 1989).
The meaning of the stability condition for the back-into-time schene,
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Eq. (5.13), is that for a given time step àt the grid size llx is
limited. With the Von Neumann method it can be proven that an implicit
back-into-time scheme is unstable for 1/2 s 9 s 1 and only conditionally
stabie for 0 s 9 s 1/2, and these conditions are more severe than Eq.
(5.13).
back-into-time computation.

Therefore only explicit schemes will be used for the

However, even when satifying condition (5.13), the back-into-time method
appears to be unstable; oscillations originate at the downstream
boundary, travel upstream and grow exponentially. These oscillations
appear for every combination of fT and À, and therefore it can be
concluded that the back-into-time method is useless, unless a special
way to stabilize the method can be found.
A stabie method can be found by incorporating the back-into-time scheme
into a Kalman filter, as can be seen in Fig. 5-2 where the effect of the
Kalman filter on the oscillations can be seen quite clearly.
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Fig. 5-2: Stablllzing effect of the la1aan filter.
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5.3 A Kalman filter based on the back-into-time method

Before a Kalman filter can be applied, the determinist ic equation (5.5)
presented in Section 5.1 has to be converted into a stochastic equation.
This can be done by assuming that the modelling errors can be caught
into a noise vector and adding this noise vector to Eq. (5.5), yielding
the following stochastic system equation :

X =FX +W-tk -tk+1-tk

where Htk = system-noise.
To be able to match the computed state Xtk with measurements, the Kalman
filter needs another equation the observation equation. This

(5.15)

observation equation must give arelation between the state and the
measurements. In our case this relation is quite simpie, as one of the
state variables is measured.
The observation equation can be written as

Z =HX +V-tk -tk -tk
where Ytk = observation-noise

H = observation matrix.

(5.16)

As only the concentration at the downstream boundary is measured, the
observation matrix H = [0 ; ... ; 0 ; 1].
The boundary conditions are embedded in the original system matrix I

(F = 1-1), where at the upstream boundary the concentration is
considered to be an autoregressive variabie, see Eq. (5.1); as
downstream boundary a2ifJlax2 = 0 is used.
The resulting system is

ifJk 1 0 0 0 -1 ifJk+1
0 0

ifJk 1 (1-À) 1 0 ifJk+1-(CT+À) -(-CT+À)1 2 2 1
= + W-tkk 0 1 (1-À) 1 ifJk+1ifJN_1 -(CT+À) -(-cr+À)

2 2 N-1
ifJk 0 0 CT (1-CT) ifJk+1
N N

Xtk
-1 X + W= ifJ -tk+l -tk
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(•• ) = [0 ... 0 1]
N [I:] + Vt- k

= H x + V-tk -tk

where N = number of grid points
.. = measured concentration.

5.4 Accuracy of the back-into-time method

In order to study the numerical accuracy for the back-into-time method,
the numerical effects of diffusion and convection are considered
separately (see Section 3.4).
For diffusion the transfer functions of the differential and the
difference equations are needed. If as initial condition is taken

.(x,O) =. cos(kx)o

Vreugdenhil (1989) gives for the differential equation
.(x,t) = H. cos(kx) , with H = exp(-Kk2t)o

and for the difference equation :
~(x,t) = Hn. cos(kx) , with Hn = pn = (I+À(cos(~)-I))n

o

where n=t/àt is the number of time steps and p is the amplification
factor of the numerical method used.
Rewriting this to back-into-time mode, yields :

.(x,O) = Htn ;(x,t) = Hn-1.(x,t)

In Fig. 5-3 the transfer functions Hand Ht are given as function of the
wave length k. It is clear that in the back-into-time scheme shorter
waves are no longer damped out by diffusion. Fig. 5-4 gives the relative
error for the back-into-time scheme as weIl as for the original scheme.
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The influence of the convection can be estimated by pushing on the Von
Neumann analysis a little further.
Taking again as initial condition :

o~(x,O) = ~ exp(ikx)

the analytical solution becomes (see Vreugdenhil, 1989)
o~(x,t) = ~ exp(ik(x-ut»

For the back-into-time method this is put into the form

~(x,O) = exp(ikut) ~(x,t) (5.17)

According to the Von Neumann analysis the finite difference solution for
the back-into-time scheme reads :

~(x,t) = ~o Ipln exp(ikx + ni«) (5.18)

where « is the argument of the amplification factor p given in Eq.
(5.11). The ratio of the amplitudes in Eqs. (5.17) and (5.18) after n
steps is the damping factor

den) = Ipln
and the ratio of the phase angles is the relative celerity

Cr = ncx/ukt= cx/2nCT~

In Fig. 5-5 the relative celerity and the damping factor are given as
function ofAx/L.
It can be concluded that in the back-into-time scheme, shorter waves are
also damped more strongly than longer waves, so here too the shortest
relevant wave length is the critical one for numerical accuracy.

5.5 Extending the model with dead zones

If the cross-section of the river is extended with dead zones, a set of
two differential equations has to be solved (see Section 2.4) :

at
+ u

S ax
a~

S + D (~ - ~ ) = 0
s s d

(5. 19a)a~
s
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a."
~ - D (." - ." ) = 0at d. d

The explicit difference equations are

flt

..I....
k 2..1....k + ..I....

k

K
""-1+1 ""-1 ""-1_1 + D (..I....k k.,.._ -"'d) = 0
s t:.x2 • 1 1

(S.20a)
+ u

(S.19b)

(S.20b)

s
2t:.x

0.8

c. sol1d d(lOO)

0 dashdot : Cr- 0.6
~......
'0

0.4

t:.x/L

Fig. 5-5: Relatlve celerlty and da.plnq factor (after Noppeney, 1988).

To study the stability of this system, the Von Neumann method is used
again. Using the same approach as in Sectlon S.2, the ampllficatlon
factors are found to be

p = 1 - f32 2
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with 131 = f1tDs
132 = f1tDd'

With the condition for numerical stabillty, Ipl s 1, the following
relations can be derived

2 2~ s (1 - (1 + À(cos(~)-l) + 131(132-1))) / sin (~)

132 s 1

(condition following from Ip212 S 1)

(5.22a)

(5.22b)

(5.22c)

(5.22d)

The Figures 5-6 and 5-7 show the conditions (5.22a) and (5.22b) for a
few different values and combinations of 131 and 132,

A '" 1.0
1

0.9

0.8

0.7

0.6
Nen.

0.5

0.4

0.3

0.2

0.1

0
0

5 ._ .
'). ..~:...~.... - _'- - _,- ........ _ ......... -....._ ....

............ _ .
..'

;
;
;

.,.~.o:.S .

'l-? .--------------------

'*' 0:-_---.,. ---:
0' ,,'

//../ ...../

.....

i
i
;

!

5

.....

3 4 4.53.51.5 2 250.5 1

131

Flq. 5-6: Stabillty condltlon for À, /31 and /32.

44



0.9

0.7

0.6
N
b

0.5

0.8 0,9 10.6 0.7

For the back-into-time computation the dead-zone model has to be
inverted, but that is here more complicated than in Section 5.2. Writing

0.3 0.4 0.50.1 0.2

Flq. 5-7: Stability condition (5.22b).

for example Eq (s.20b) in back-into-time mode gives

~k = 1 ~k+l _ 1 t;sk
1 1 - 132 1 1 - 132 1

Thus the amplification factor for this scheme is
1

p = 1 - 13
2

and p is greater than unity for positive values of 132, which implies
instability. Direct inversion of the dispersion equation for the flow
zone also leads to a numerical instabile scheme.
To avoid these instabilities the source term caused by the dead zones is
not added to the normal dispersion equation (as is done in Eq. (s.20a»,
but to the inverted equation (5.5). For the description of the
concentration in the dead zone Eq. (s.20b) is used. So, the
back-into-time scheme from Section 5.2 is extended with dead zones,
yielding the following model :

@VAKGROEP -
WATERBOUWK~NDE
Afd. Civiele Techniek

TH Delft
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Now the amplification factors are :

1 + ~1(~2-1) + ~1 (~2-1)À(cos(~)-1) - ~1(~2-1)~isin(~)
1 + À(cos(~)-l) - ~ i sin(~)

p = 1 - ~2 2

(5.23a)

(5.23b)

(5.24a)

(5.24b)

The stability conditions following from these amplification factors are

(5.25al

(5.25b)

In Fig. 5-8 the stability domain described by Eq. (5.25a), is given for
a few values of ~1 and ~2 (notice that here the lower bounds are given).
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Final remark in the stability and accuracy analyses treated in this
Chapter the effect of the Kalman filter was not taken
into account while the Kalman filter has definitively
much influence in these regions. In fact a Kalman filter
is applied to adapt the computations gained with an
imperfect model to measurements taken in the real world.
Thereby is in Section 4.3 shown that applying a Kalman
filter improves the stability of the original system.
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CHAPTER 6 NUMERICAL RESULTS

6.1 Introduction

In this Chapter the performance of the back-into-time model is
investigated. The approach consists of generating the measurements with
a "truth" model (Eq. (5.20» for the situation that at the upstream
boundary (x=O) a flood wave is introduced by way of an appropriate
boundary condition. Then the back-into-time model is applled to study
its capability to reconstruct the original concentration at x=O. Use of
the same boundary condition leads -with the computed concentration- to
the discharge looked for.
The advantage of numerical experiments is that the true concentrations,
velocities and parameters are known and consequently, model performance
can be evaluated quantitatively under a variety of circumstances.
In Section 4.5 has been described how uncertain parameters can be
estimated along with the state. The parameters to be considered for the
case at hand are K, D. and Dd. The capability of the model to estimate
these uncertain parameters is investigated in Section 6.3.
To be able to compute the original discharge from a set of measured
concentrations and the amount of injected tracer material, an iterative
back-into-time model is developed and tested in Section 6.4. In this
iteration the program Duflow will be used to compute the velocity
distribution (Duflow is a micro-computer package for the simulation of
one-dimensional unsteady flow in channel systems).

.The initial values necessary to start the computation are previously
given in Section 6.2.

6.2 Initial values

The river characteristics used in the computation are based on data from
the Indonesian river Ciliwung :

3river discharge Q = 5 m /s,
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mean width B = 10 m,

mean velocity v = 0.5 mis,

Chezy-coeff. C = 35 -lïÀ/s,

disp. coeff. K 2= 25 mis,

"mixing length" L = 1 km,

where the "mixing length" is defined as the di stance beyond which the

released substance is "completely mixed" (q,(x,y, z)/~ ?: 0.99) over the

cross-section.
The three different flood waves used in the experiments are shown in

Fig. 6-1.
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Flq. 6-1: Flood waves used in the computations.
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dead-zone parameters D = 10-3 s-1
D = 5*10-3
d

3tracer release M = 0.02 m /s,
initial concentration, = 0,

1

system-noise statistics

8
-1S ,

observation-noise statistics r = 0
Q = 10-6 I,

R = 10-6,
g=Q

initial covariance matrix Po is a null matrix.

The discharge is computed with the upstream-boundary concentration using
the relation Q(O, t) = M/,(O, t) (Eq. (5.2) wlth, = 0).

1

The computer program used to solve
back-into-time is given in Appendix C.

the dispersion equation

6.3 Parameter estimation

Experiment 1 (10-hour flood wave).
In this experiment the influence of the different terms of the
dispersion equation (2.4) is investigated. Fig. 6-2 shows the
distribution in time of the respective terms 500 m from the point of
release (of course not the downstream boundary). It is obvious that the
diffusion term has no influence, except for the initial time when the
tracer front arrives. This is due to the fact that the grid size àx is
very small with respect to the length of the flood wave which is
approximately 50 km.

Experiment 2 (10-hour flood wave).
The influence of the dead zones or the parameters D and D is

8 d

The influence of the relation between
-4= 10 and D is 1, 5 and 10

d

investigated in this experiment.
D and D is shown in Fig. 6-3, where D
8 d •

times D, respectively.
s

Fig. 6-4 shows the influence of the values of Ds and Dd'

The experiments 1 and 2 have shown that a change in the value of the
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D and D has llttle or no influence
• d
Therefore it does not seem useful to

the computed
adapt these

on

parameters to the changing conditions during a flood wave.
Reasoning the other way around, the distrlbut10n of the concentratlon
does not tell much about the parameters. !his and the fact that the
concentrat1ons between adjacent grlds along the reach L do not differ
significantly. keeps us from building a filter whlch can est1mate the
parameters along with the concentratlons. Consequently lt will not be
necessary to use a non-Ilnear filter -whlch is necessary for parameter
estimation. see Sectlon 4.5- and a standard Kalman filter is sufficlent.

parameters K.
concentrations.
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Fig. 6-2: Influence of the ter.s of the dlspersion equatlon
(10-hour flood wave).
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Flq. 6-4: Influence of the value of 08 and Dd UO-hour flood wave).
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6.4 Back-into-time model

Experiment 3.
The performance of the model is here tested for a steady flow with a
changing release, resulting in the same distribution of the upstream
boundary concentration as in the case of a lO-hour flood wave.
Fig. 6-5 shows the upstream and downstream boundary computed with the
"truth" model. The upstream concentration computed with the
back-into-time (b-i-t) model, which is remarkably close to the original
concentration, is also given.

solld : xsO. "truth"
3.5

3

2.5c::
0

'Ë
28s

()

1.5

dashed : x=L, "truth"
dotted : x-O. b-l-t

Experiment 4 (lO-hour flood wave).
In this experiment the influence of the time step àt on the accuracy of
the b-i-t model is investigated. To avoid a limitation of the time step
by stability condition (5.25b), the dead zones are not taken into
account (so Da= D

d
= 0).

Fig. 6-6 shows the concentrations computed for àt = 5, 10 and 20 min.

··1 ·······0.5 ········0 ·0 1 2 3 4 5 6 7 8

time (hours)

9 10

Fig. 6-5: Resull uslng a sleady flow wllh a changlng release.

54



The original concentration is also given. It can be seen that the
accuracy of the b-i-t model for At = 5 min is of the same order as for
At = 10 min. For At = 20 min the model is less accurate.
In combination with the chosen dead-zone parameters (see Section 6.2),
the b-i-t model is not stabile for At = 10 min (condition (5.25b», so
At = 5 min will be used in the following experiments.

xlO-3
4r---~--~----r---~--~----r---~--_'----~--~

solld x-O. "truth"
dashed x-O. At-S.ln. b-l-t
dotted x-O. At-tOaln. b-l-t
dasbdot : x-O. At-ZOaln.b-l-t

10

3.5

ä
'::1

1 2S

Experiment 5 (lO-hour flood wave).
From now on a constant release of tracer material into a simulated flood
wave is assumed. The result is a changing velocity (see Fig. 6-7), which
is computed with Duflow. Fig. 6-8 shows the concentration computed with
the b-i-t model, when the velocity distribution is imposed as a known
quantity.

2

1.5

1~--~--~--~----~--~---L--~----~--~--~o 123 4 S 6 7 8 9

timc(hows)

F1CJ.6-6: Influence of the Uae step UO-hour flood wave).
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Fig. 6-7: Velocity dlstrlbutlon (10-hour flood wave).
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"truth"

6 7 8 91 2 3 4 5
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Fig. 6-8: Result when velocity dlstrlbutlon Is supposed to be known
(10-hour flood wave).
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Experiment 6 (lO-hour flood wave).
In experiment 5 the velocity distribution was supposed to be known. but
in reality this will not be the case. To investigate whether the model
can converge to the right solution. the concentrations are determined by
an iterative process :

a estimate the velocity distributionj
b compute the upstream concentrations with this velocity

distribution and the measurementsj
c compute the discharge with these concentrationsj
d compute a new velocity distribution with Duflow and the

discharge
e repeat the steps b. c and duntil the discharge does not change

anymore.

The Figures 6-9 and 6-10 show that this iterative b-i-t model does
converge from both above and below and that reasonably good solutions
can be obtained with two or three iterations.

xlO')
4r----r----~---r----~--~----,_--~----~----r_--~

l-O.. soUd : x-O. • truth·

• \.".......... ciashed : x-O. l·

t

lteratlon ..~•..•...
..... dotted : x=O. 2

ftd
iteration ..' -

3.5

3

2.5c::
0.~
~ 2
0c::
0
0

1.5 .,,,,,
1

,,·,··
0.5 •

0
0 8 96 71 2 3 4 5
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Fig. 6-9: Iteratlon started wlth v = 1.5 al. (1Q-hour flood wave).

57

10



10

x=O, ·truth·

x=O, t·t lteratlon

sol1d

dashed

Experiment 7,

In experiment 6 the iteration was started with a velocity distribution
which was quite arbitrarily chosen. A good approximation of the
discharge, however, can be computed using the measured concentration.
Now the iteration can be started at step d. The results of such a
computation are shown in Fig. 6-11.

s
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,//'/
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"»:'

,-'-'-- ...,-...,----"";-

Experiment 8.
In this experiment the concentration is computed in the same way as in
experiment 7, but now the 6-hour wave from Fig. 6-1 is used. The results
are shown in Fig. 6-12.

dotted x=O, 2ftd lteratlon

0.5 L-_ _'__ __'__ "___~ _ ___''--_'''''___ _''''__ ''___ _'__......J

o 6 7 8 91 2 3 4 5
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Flq. 6-10: Iteral10n atarted wlth v = O.l.va (lO-hoor flood wave).
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Fig. 6-11: Iteratlon started wlth the velocity dlstrlbutlon coaputed
fro. the .easured concentratlonB (10-hour flood wave).

x10·3
4

3.5

3
/J
!/:;
:.
;;

2.5 'ï

c:: j ,
0 ,
'a ,,
tl ,

2
,

s ,,,
u ,
c:: ,
0 ,
u ,

1.5
,,,,,,,,

1 ,,,,,
0.5 ,,,,.,,
0 ,,

0

soUd X"O, "truth",',.. ............., .• • dashed x-L. "truth"
····1 '\

1
"
"

........, " ...,,,,
....... .......... ...-,,"";.~--~----"':-"..-~~::~~.::~-~---

x-O, 2Dd lteratlon

1 2 4 5 63

time (hows)

Fig. 6-12: Iteration wlth a 6-hour f'lood wave.
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Experiment 9 (6-hour flood wave).
Until now the 'measured' concentration was taken equal to the
concentration at x=L, computed with the "truth" model. In practice,
however, the measured concentration will always have a measurement
noise. Therefore, in this experiment, the 'measured' concentration is
assumed to have a normal distribution with a mean equal to the
concentration computed with the "truth" model and a variance of ten
percent of that concentration.
Fig. 6-13 shows the 'measured' concentration together with the
concentrations computed with the "truth" model. The results obtained if
these 'measured' concentrations are introduced into the iterative b-i-t
model, are given in Fig. 6-14.

x10-3
4Sr-------~----~~----~~----~-------,-------,

solld : x-O. "truth"
dashed : x-L. "truth"
dotted : x-L. "aeasured"

6

Experiment 10.
To check the validity of the model for shorter waves, the model is also
tested for the l-hour wave given in Fig. 6-1. The results are presented
in Fig. 6-15 and show that even such an extreme short flood wave can be
computed quite reasonably (in this computation the velocity distribution
was presumed to be known).
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Flq. 6-13: Keasurement wlth lDeasurement nolse (6-hour flood wave).
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Fig. 6-14: Result obtained in case of .easureaents with noise
(6-hour flood wave).
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Fig_ 6-15: Resul t for a l-hour flood wave.
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CHAPTER 7 OONCLUSIONS AND REOOMKENDATIONS

The aim of this study was to make the dilution method applicable for
mountain-streams under flood wave conditions. Noppeney (1988) has shown
that the explicit relation between the concentration of tracer material
and the discharge, which can be used in steady flow, is very inaccurate
during a flood wave. This is the result of a difference in the
respective velocities of propagation between flood wave and tracer cloud
and downstream from the point of tracer injection this difference will
cause a time lag between the computed discharge and the actual
discharge.
The time lag can be avoided if the discharge is computed at the
injection point and therefore a method to compute the concentration of
tracer material at the injection point is developed in this study.
The developed model is the back-into-time model (b-i-t) and a comparison
between the results gained with this model and the values computed with

16r-------~r--------,---------~---------~---------~---------~
.•..........•.......••..

-l"' ............

......:,'"""""""" ....•........

........__..:: ....<._._ -,
............

14

4 solld x=O, "truth"
dashed x=L, "truth"
dotted )(SL, co.puted
dashdot : x=O, b-l-t

1 2 3 4 5 6

time (hows)

2

Flq. 7-1: I.prov~enl achleved wllh lhe back-lnlo-llae .odel.
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the explicit relation for steady flow, are given in Fig. 7-1. In Fig.
7-1 are also given the with a "truth"-model computed actual discharges
at the injection point (x=O) and at the measurement point (x=L).

The "truth"-model used to compute the actual discharge and the
'measured' concentrations, is based on the same numerical scheme as is
used for the back-into-time model. This yields that the model gives a
nearly exact description of the 'reality' and this means that a topic
for further study must be the numerical accuracy in modelling the
dispersive processes in mountain-streams in the real world.
Another topic is the modelling of flood waves through mountain-streams.
Here the program Duflow is used, but Duflow is a micro-computer package
for the simulation of one-dimensional unsteady flow in channel systems
and it is clear that Duflow cannot deal with the specific problems that
are encountered in real mountain-streams.

The results in Fig. 7-1 show that the accuracy problems caused by the
time lag can be avoided by using the back-into-time model and when the
problems just described can be solved it seems possible to make the
dilution method applicable for the determination of discharges in
mountain-streams under flood wave conditions.
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LIST OF SYMBOLS

All symbols are explained when they first appear in the text. In case of
non-uniqueness of symbols; their meaning is clear from the text.

Symbol Definition Dimension

A cross-sectional area of the river
a mean flow depth
B mean flow width
C Chezy-coefficient
Cr relative celerity
~ controllability matrix
D

D
d

D

exchange velocity
entrainment coefficient
entrainment coefficient

B

den} damping factor
F mass-flux

-1t = inverse of the state transition matrix
f friction factor
G noise input matrix
H observation matrix
I identity matrix
K dispersion coefficient

Kalman gain vector
k wave-number L-1

L distance from injection point to point of measurement L

M

wave length
amount of released tracer material

N number of grid points
n number of time steps
o information matrix
P cell-Peclet number

state-covariance matrix
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Q(x,t) discharge at place x and time t
Q system noise covariance matrix
g mean of the system-noise
R observation noise covariance matrix
r mean of the observation noise
t time

flow velocity in x-direction
shear velocity

u

u·
y observation-noise vector
H system-noise vector
~ state vector
x coordinate along the river axis L

~ observation vector

~ dimensionless dead zone parameter
l1t
l1x

time step
grid size

T

L

a weighting factor
À diffusion parameter
p amplification factor
~ Courant number
t state transition matrix
~ concentration
~l initial concentration
~ measured concentration
~k approximation of ~(il1x,kl1t)
1

index denotes

d dead zone
k at time kát
s flow zone

predicted value
-1 (matrix) inverse
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APPENDIX Al Observabili ty

The concept of observability is developed to check whether the
incorporation of the observation ~ improves the estimates of all the
components of the state vector ~.
Suppose the system model to be noise-free, i.e. Hk=O for all k. In that
case, applying some clever algebra (Maybeck, 1919), the equation to
compute the covariance matrix Pk can be rewritten as :

kP -1 = tT P -1 t + ~ tT HT R-1 H tkOL.. (Al-1)
1=1

The information matrix is defined as :
k

O(k,k-Nl) = E o :!ii Nl :!ii k (Al-2)
1=k-Nl

where O(k,k-Nl) = information matrix,
Nl = integer.

The system model is now said to be uniformly completely observable if
there exists a positive integer Nl and positive constants cl and c2 such
that :

c I ~ O(k,k-Nl) < c I
1 2

, for all k > Ni

where I = identity matrix.

Observability guarantees that the entire state ~ can be determined from
the data and prevents that certain eigenvalues of the covariance matrix
can grow unrestricted. It also implies that the effects of changes in
any component of the state can be observed in the observations.
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APPENDIX A2 Controllabili ty

The controllability of a filter can be checked under the assumption that
no observations are available. The equation to compute the covariance
matrix Pk then reduces to :

k

Pk = t Po t
T

+ I: t G Q G
T
t
T

1=1

(A2-1)

The controllability matrix is defined by

k

t;'(k,k-N2)= I: (A2-2)
1=k-N2

where t;'(k,k-N2)= controllability matrix,
N2 = integer.

The system model is now said to be uniformly completely controllable if
there exists a positive integer N2 and positive constants c and c such3 4
that :
cIs t;'(k.k-N2)s c I
3 4

, for all k > N2.

Controllabilty implies that the system noise Hk effects all the
components of the state ~k and prevents certain components of the state
to be determined almost exactly, in which case the new observations
would have very little effect on the estimates of these components and
the estimates and observations could easily diverge. This problem is
known as filter divergence.
If a filter is not controllabie, numerical difficulties are also very
likely to occur. In that case some state components (or linear
combinations of the state components) can be estimated very accurately
and some eigenvalues of the covariance matrix become almost zero. Due to
the finite word length on the computer these eigenvalues can easily
become negative, a condition which is theoretically impossible and
usually leads to a total failure of the recursion.
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APPENDIX B Nonlinear filtering theory

Consider a filtering problem involving a continuous-time system with
discrete-time measurements. Assume that a linear model does not provide
avalid description of the problem, i. e., that nonlineari ties in the
determinist ic portion of the state dynamics and measurement models are
not negligible.
Suppose the system state and the observations can be described by the
nonlinear stochastic equations

~+1 = f[~] + G Hk+1 (B-l)

Zk = h[~] + Yk (B-2)

in which f[~] = nonlinear vector function,

h[~] = nonlinear state-observation relation.

The other model assumptions are completely similar to those for the
linear case treated in Section 4.2.

Suppose now that it is possible to generate a discrete reference
state-trajectory ~. The state equation (B-1) may then be rewritten as
(see Heemink, 1986)

~+1 = {f[~] - f[~]} + f[~] + G Hk+1 (B-3)

and the observation equation (B-2) as

(B-4)

If the deviation ~ - ~ from the reference trajectory is small, a
Taylor series expansion of the terms between braces yields :

(B-S)

(B-6)

where respectively
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a f[~]

a~
(B-7)

a h[~]
1\ = a ~ ~=~

(B-8)

are the matrices of the partial derivatives along the reference
trajectory.
The equatlons (B-S) and (B-6) can be used to obtain the approximate
linear state and observation equations

(B-9)

(B-lO)

and the standard ICalman filter described in Sectlon 4.2 is directly
applicable to these linearized equations.

The remaining problem is the choice of the reference (or nominal)
trajectory. The obvious choice is made with ~=~, the prior estimate of
the state and necessary to start the computation. But the new estimates
of the state wiU in general deviate from the prior estimate as we
process the observations and the initlaUy wise choice of a reference
trajectory may turn out to be a poor one. This will be especially true

"if Po is large (so that ~ is not a good estimate),,,and/or if the system
noise is large. In that case, the deviation ~ -~ can become large,
violating the linearity assumption.
The estimator just described is called the Linearized ICalmanfilter.

The basic idea of the Extended ICalman filter (widely used in orbid
determination) is to relinearize about each estimate as new estimates
~ecome available. This procedure goes as fol~ows. At to' linearize about
~. Once ~1 is processed, relinearize about ~1' and so on. The point of
this is to use a better reference trajectory as soon as one is
available. As a consequence of relinearization, large initial estimation
errors are not allowed to propagate through time, and therefore are the
linearity assumptions less likely to be violated.
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APPENDIX C Back-into-time computer program

The computer program used to solve the dispersion equation
back-into-time is given on the next page. This program is written in
MatLab which stands for MATrix LABoratory.
MatLab was originally written to provide easy access to matrix software
but has evolved to a versatile scientific "spreadsheet" for numeric
calculations and has proven to be a powerful tooI in the development of
numerical modeis.

The back-into-time program needs two data input-files:
-the first must contain a vector with the measured concentrations, and
-the second must contain a matrix with the predicted v~locity

distribution.

The boundary conditions are embedded in the state transition matrix, but
it is important to note that the upstream boundary must be the inJection
point and has to be treated as an autoregressive variabie, and that the
measurement point must be the downstream boundary.

A null matrix can be taken as initial condition for the covariance
matric PO' but this implies that it will take the filter some time to
adapt itself to the case in question. The result is that the filter may
oscillate in this adaptation time, but these oscillations will damp out
as the filter gets better conditioned. To avoid serious oscillations, it
is mostly suff1cient when the numerical scheme satifies the stabll1ty
conditions given in Chapter 5. Af ter the adaptation time are those
conditions not so harsh anymore through the stabilizing effect of the
Kalman f11ter.
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r. BACK-INTO-TlME PROGRAM

clear
deltax = 100;
deltat = 300;
10 = 0.02;
I = 1000;
k = 2S;
Ds = 1E-3;
Dd = SE-3;

r. Clear memory
r. Grid size
r. Time step
r. Tracer release
r. Length of the river section
r. Dispersion coefficient
r. Entrainment coefficients
r.

n = fix(l/deltax);
la = 2·k·deltat/deltaxA2;

r. Number of grid points
r. Diffusion parameter

H = zeros(l,n); H(l,n) = 1;
P = zeros(n);
Q = 1e-6·diag(ones(n,1»;
R = 1e-6;
load truth
Z = downstr;
load V

r. Observation matrix
r. State-covariance matrix
r. System noise covariance

r. Observation noise covariance
r. Load data "truth"-model

observation vector with data from
velocity distribution from Duflow

matrix
matrix·

r. Fill "truth"-model
r. Load

x = Z(120)·ones(n,1);
Xd = X;

r. Starting values of all the concentrations in state
r. and dead zones are equal to the last observation

for i=120:-1:1

u=V(i,:)';
sigma = u·deltat/deltax; r. Courant number

F = zeros(n); F(l,l) = 1;
for j=2:n-1;

F(j.j-1) = 0.S·sigma(j-1)+0.S·la;
F(j,j) = l-la;
F(j,j+1) = -0.S·sigma(j+1)+0.S·la;

r.
r.
r. Computation of the
r. state transition

end
F(n,n-1) = sigma(n-1); F(n.n) = l-sigma(n); r.

r. matrix F
x

F = inv(F); r. Inversion of F to back-into-time mode

P = F·P·F' + Q;
X = F·X - (X-Xd)·deltat·Ds;
K = P·H'·inv(R + H·P·H');
P = P - K·H*P;
X = X + K*(Z(i) - H·X);
Xd = Xd + (X-Xd)*deltat*Dd;

r.
x
r. Filter equations
x
x
x

pdl f L) = X(1);
pdn(i) = X(n);

r. store interesting data
x

end
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