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Time-Varying Human Operator Identification
with Box-Jenkins Models

Alvaro Ortiz Moya∗, Daan M. Pool†, Marinus M. van Paassen‡ and Max Mulder§

Delft University of Technology, Delft, Zuid-Holland, The Netherlands

The identification of time-varying, adaptive behavior of a human operator in basic manual
control tasks is currently still a focus area, since most methodologies only account for time-
invariant system dynamics. Previous authors have proven that estimation techniques based on
ARX model structures can be used to identify time-varying HO model parameters. However,
ARX methods do present several problems, such as a persistent bias in the obtained estimates of
the HO model poles (neuromuscular parameters) that increases due to coupled noise and system
models. Therefore, in this paper a novel identification technique based on Box-Jenkins (BJ)
models is proposed, to achieve a better match between the BJ estimator’s inherently uncoupled
system and noise models and measured HO control dynamics. The identification process was
tested offline (batch-fitting) using Ordinary Least Squares and the Prediction Error Method for
both ARX and BJ models, respectively, or online when Recursive Least Squares and Recursive
PEM are employed. The BJ estimator has excellent potential as an identification tool due
to its bias reduction capabilities, as clearly shown in batch-fitting, although the non-linear
optimization processes decrease its convergence speed by 500%. An RPEM algorithm with
a forgetting factor of 𝝀 = 0.99609 and a first-order remnant model incorporated in the BJ
structure was tested on Monte Carlo simulation and experimental data. While the recursive BJ
estimator showed the same bias-diminishing advantages also seen in batch-fitting, the non-linear
RPEM estimator’s results showed much slower convergence after HO behavior adaptations and
frequent instabilities of the obtained parameter estimates. Hence, further research is needed
for implementing a practical bias-free HO model estimator based on the BJ model structure.

Nomenclature

Latin letters
𝐴(𝑧−1) BJ model’s HO output polynomial
𝐴𝑘 Sinusoid amplitude, 𝑑𝑒𝑔
𝑎𝑖 Coefficient 𝑖 of 𝐴(𝑧−1)
𝐵(𝑧−1) BJ model’s HO input polynomial
𝐵𝑟 (𝜗) Relative bias for parameter 𝜗, %
𝑏𝑖 Coefficient 𝑖 of 𝐵(𝑧−1)
𝐶 (𝑧−1) BJ model’s remnant input polynomial
𝑐𝑖 Coefficient 𝑖 of 𝐶 (𝑧−1)
𝐷 (𝑧−1) BJ model’s remnant output polynomial
𝑑𝑖 Coefficient 𝑖 of 𝐷 (𝑧−1)
𝑒(𝑡) Error signal, 𝑑𝑒𝑔
𝑓𝑡 (𝑡) Forcing function, 𝑑𝑒𝑔
𝐺 Maximum rate of change in sigmoid, 𝑠−1

𝑔(𝑡𝑘) Gain vector
𝐻𝐶𝐸 (𝑠, 𝑡) Time-varying CE dynamics
𝐻𝐻𝑂 (𝑠, 𝑡) Time-varying HO dynamics
𝐻𝐻𝑂𝑒

(𝑠, 𝑡) Time-varying HO’s linear response to 𝑒(𝑡)
𝐻𝑛𝑚 (𝑠, 𝑡) Neuromuscular dynamics
𝐻𝑚𝑛 (𝑠, 𝑡) Time-varying remnant filter of order 𝑚
𝐾𝑒 (𝑡) Error gain
𝐾𝑛 (𝑡) Remnant gain
𝐾𝑝 (𝑡) Control gain
𝑀 Monte Carlo replications
𝑚 Order of remnant filter
𝑁 Number of samples
𝑁𝑒 Memory horizon in samples for 𝜆
𝑁𝑡 Number of sinusoids
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𝑛(𝑡) Remnant signal, 𝑑𝑒𝑔
𝑛𝑎 Number of coefficients in 𝐴(𝑧−1)
𝑛𝑏 Number of coefficients in 𝐵(𝑧−1)
𝑛𝑐 Number of coefficients in 𝐶 (𝑧−1)
𝑛𝑑 Number of coefficients in 𝐷 (𝑧−1)
𝑛𝑘 HO model’s integer time delay
𝑛𝑡 Integer in sinusoid 𝑘
𝑃(𝑡𝑘) Scaled covariance matrix
𝑃𝑛 Remnant intensity level
𝑝(𝑡) Parameter function
𝑠 Laplace variable
𝑇𝑒 Memory horizon for 𝜆, s
𝑇𝐿 (𝑡) Lead-time constant, s
𝑇𝑚 Total simulation time, s
𝑇𝑛 Remnant-time constant, s
𝑇𝑠 Sampling time, s
𝑡 Continuous-time variable, s
𝑡𝑘 Discrete-time variable, s
𝑡𝑀 Time of maximum rate of change, s
𝑢(𝑡) Control-output signal, 𝑑𝑒𝑔
𝑉𝑁 Cost function, 𝑑𝑒𝑔2

𝑉𝐴𝐹 Variance Accounted For at BJ model
𝑥(𝑡) System output signal, 𝑑𝑒𝑔
𝑧 Z-transform variable
𝑍𝑁 Data set with pairs {𝑢(𝑡𝑘), 𝑒(𝑡𝑘)}, 𝑑𝑒𝑔

Greek letters

𝜀(𝑡) Remnant Gaussian White noise, 𝑑𝑒𝑔
𝜖 (𝑡) Prediction error, 𝑑𝑒𝑔
𝜁𝑛𝑚 (𝑡) Neuromuscular damping ratio
𝜃 Parameter vector
𝜗 Global variable for BJ or HO parameter
𝜆 Forgetting factor
𝜋(𝑡𝑘) Negative prediction error gradient
𝜎2 Variance
𝜏𝑒 HO time delay, s
𝜙𝑘 Sinusoid phase shift, 𝑟𝑎𝑑
𝜑𝑚 Phase margin, 𝑑𝑒𝑔
𝜔 Frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑏 (𝑡) Break frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑐 (𝑡) Crossover frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑘 Sinusoid frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑘,0 Sinusoid base frequency, 𝑟𝑎𝑑/𝑠
𝜔𝑛𝑚 Neuromuscular frequency, 𝑟𝑎𝑑/𝑠

Superscripts
0 True
∗ Simulated in BJ model
𝑑 Discrete time
𝑐 Continuous time

Subscripts
𝑖 Initial
𝑓 Final

I. Introduction
Human manual-control behaviour naturally changes over time, in various contexts, and across operators. In order to

explain the dynamic features of human operators (HOs) in skill-based manual control tasks, identification methods have
been developed [1–8]. However, they are often only applicable in situations when the control behaviour is sufficiently
time-invariant [6]. The availability of control-theoretic models that can capture both the adaptive and learning aspects of
manual-control behaviour has long been a goal [9–14]. Modern cybernetics is unable to fully explain how HOs modify
their behaviour to deal with control-task changes. The continued development of time-varying identification techniques
is necessary to make rapid progress in our knowledge of how people really interact with dynamic control systems [15].

The majority of research on identifying time-varying manual-control behaviour focuses on task variable changes,
particularly those caused by variations in the dynamics of the controlled element (CE) [3, 9–13, 16]. Many research
projects begin by examining single-axis compensatory control tasks and are based on the well-known crossover theory
[3], assuming that those developed models are scaleable to scenarios with additional types of inputs to the HO or even
multiple axes of control [13].

The purpose of this article is to study and develop a tool capable of identifying real-time (i.e. online) human
control behaviour adaptation in a compensatory manual-control task. Real-time execution of these processes offers new
possibilities in addition to advancing the earlier study objectives. For instance, pilot adaptation to anomalies in aircraft
or controlled elements could be studied and predicted [11–14]. On the other hand, reduced attention or distraction in
real-world control activities could be identified by continuously monitoring the operator through an update of a human
operator model [17]. Additionally, this might allow for adaptive haptic feedback that matches the operator’s present
behaviour [18]. Online identification can assist in modifying experimental circumstances in real time to directly analyze
adaptation behaviour or obtain desired haptic feedback characteristics in research with humans-in-the-loop.

Multiple authors have attempted to apply different techniques to achieve a successful online identification [7, 10, 18–
23]. Nevertheless, most of the methodologies used are not able to provide ideal results due to the high difficulty of the
problem. For instance, strategies based on recursive estimation of Auto-Regressive-eXogeneous (ARX) model structures
[6, 10, 12, 24, 25] may fail in reducing the relative bias [10] of the predicted model, in spite of their outstanding
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qualities in terms of low computational effort and straightforward estimation. Consequently, it is necessary to find
an identification method that is truly capable of assuming this task, so that a novel estimation technique based on
Box-Jenkins (BJ) structures is proposed. This paper lays the foundation for the development of a recursive BJ algorithm,
which aims to solve the previous issues in the human behaviour identification process. In parallel, the performance of
such a novel identification technique is compared to the ARX estimation outcome. Both methods are evaluated under a
time-varying scenario through Monte Carlo simulation and with experimental data obtained by Van Grootheest et al.
[10].

This article is structured as follows. The compensatory manual-control task and previous identification methods
are described in Section II. The Box-Jenkins identification approach is detailed in Section III. Afterwards, Section
IV discusses the required simulation conditions and their setup, while Section V presents an overview of the Monte
Carlo simulation results obtained. Identification results for experimental data are presented in Section VI. Section VII
discusses the applicability, limitations and impact of the research project. Final conclusions are drawn in Section VIII.

II. Compensatory Manual-Control Task
In a control task, the human operator is typically a multichannel, adaptive, learning, non-linear controller [6–

8, 20, 24–26]. Although a general control-theoretic model of the human controller has not yet been discovered, validated
models do exist for certain control tasks, as shown in [15, 27]. In particular, McRuer and Jex [3] proposed quasi-linear
human operator models that still represent the state-of-the-art in HO modeling. These models are based on the Crossover
Model theory [1, 3], which is only applicable to simple cases, i.e., single-channel tracking tasks with only a feedback
path from visual perception (pure compensatory display). The quasi-linear models separate the additional unexplained
behaviour by adding noise called ’remnant’ 𝑛 and capture the linear behaviour of the human controller in a descriptive
transfer function 𝐻𝐻𝑂𝑒

(𝑠, 𝑡).
Figure 1 depicts the quasi-linear operator model embedded in a compensating tracking task [11]. The HO, represented

by the model 𝐻𝐻𝑂 (𝑠, 𝑡), monitors and responds to the error 𝑒(𝑡) between a goal 𝑓𝑡 (𝑡) and the output 𝑥(𝑡) of the CE
dynamics 𝐻𝐶𝐸 (𝑠, 𝑡). The HO dynamics are composed of the remnant 𝑛(𝑡) and deterministic responses from 𝐻𝐻𝑂𝑒

(𝑠, 𝑡).
Regarding the remnant 𝑛(𝑡), it is generated by feeding a white-noise signal 𝜀(𝑡) with a determined statistical distribution
through a remnant filter 𝐻𝑚𝑛 (𝑠, 𝑡). Additionally, the HO must alter its control strategy as the CE dynamics change over
time (CE adaptation) [9].

Fig. 1 Single-axis compensatory manual-control task with time-varying dynamics: (a) Compensatory display,
where 𝑒(𝑡) acts as a stimulus, and (b) Block diagram.

A. Human-Operator Dynamics
In the Crossover model, McRuer and Jex [3] state that people modify their control behaviour to satisfy

𝐻𝑂𝐿 ( 𝑗𝜔) = 𝐻𝐻𝑂𝑒
(𝑠 = 𝑗𝜔)𝐻𝐶𝐸 ( 𝑗𝜔) =

𝜔𝑐

𝑗𝜔
𝑒− 𝑗𝜔𝜏𝑒 , 𝜔 ≈ 𝜔𝑐 (1)

in the crossover zone when transitory behaviour is eliminated. Then adjustment rules define how the describing function
𝐻𝐻𝑂𝑒

(𝑠, 𝑡) behaves in relation to the controlled element 𝐻𝐶𝐸 (𝑠, 𝑡) and what impact it has on crossover frequency 𝜔𝑐
and time delay 𝜏𝑒 in the frequency domain [3, 9]. By modeling the neuromuscular system (NMS) as a second-order
transfer function 𝐻𝑛𝑚 ( 𝑗𝜔) and the operator equalization as a gain and a lead(L) [3–5, 11], while using the approach
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stated in [10–12], the general formulation of the describing function can be defined as follows:

𝐻𝐻𝑂𝑒
(𝑠, 𝑡) = 𝐾𝑒 (𝑡) [𝑇𝐿 (𝑡)𝑠 + 1] 𝑒−𝑠𝜏𝑒𝐻𝑛𝑚 ( 𝑗𝜔) =

𝐾𝑒 (𝑡) [𝑇𝐿 (𝑡)𝑠 + 1] 𝑒−𝑠𝜏𝑒𝜔2
𝑛𝑚

𝑠2 + 2𝜁𝑛𝑚𝜔𝑛𝑚𝑠 + 𝜔2
𝑛𝑚

. (2)

The equalization parameters, i.e. 𝐾𝑒 (𝑡) and 𝑇𝐿 (𝑡), determine the action of the feedback controller in the pilot-vehicle
loop. On the other hand, 𝜔𝑛𝑚 and 𝜁𝑛𝑚 model the neuromuscular dynamics.

Regarding possible remnant signal models, the theoretical background is limited and there is no consensus on how
to model and take into account this remnant in Monte Carlo simulations [11, 20, 28, 29]. In most cases, a remnant
signal is obtained by passing zero-mean Gaussian white noise (GWN) through a filter.

The literature contains a variety of filter options, however, the most accepted one is the 𝑚𝑡ℎ-order remnant-filter
proposed by Zaal [11] and later used in [10, 12]:

𝐻𝑚𝑛 (𝑠, 𝑡) =
𝐾𝑛 (𝑡)

(𝑇𝑛𝑠 + 1)𝑚 . (3)

Additionally, the noise level 𝑃𝑛 has to be set during Monte Carlo simulations to give a certain value for the remnant
gain. The most adequate definition is provided by Van der El et al. [30], 𝑃𝑛 = 𝜎2

𝑢𝑛
/𝜎2
𝑢 , which compares the variance of

𝑢(𝑡) due to the remnant to the 𝑢(𝑡) signal’s total variance 𝜎2
𝑢 .

B. Controlled Element Dynamics
The following second-order CE dynamics were taken into consideration by several authors [10–12], which serve as

a general low-order approximation of typical vehicle dynamics [3]:

𝐻𝐶𝐸 (𝑠, 𝑡) =
𝐾𝑐 (𝑡)

𝑠(𝑠 + 𝜔𝑏 (𝑡))
. (4)

The break frequency 𝜔𝑏 (𝑡) and the control gain 𝐾𝑐 (𝑡) can both change over time. The dynamics variation of
the controlled element from single- to double-integrator dynamics (i.e., 1/𝑠 ↔ 1/𝑠2) occurs at approximately 𝜔𝑏 (𝑡).
Furthermore, a sigmoid function is used in [10–12] to define the time variation of the operator equalization parameters
in Eq. (2) and CE coefficients in Eq. (4):

𝑝(𝑡) = 𝑝𝑖 +
𝑝 𝑓 − 𝑝𝑖

1 + 𝑒−𝐺 (𝑡−𝑡𝑀 ) , (5)

where 𝑝(𝑡) is the time-varying parameter, 𝑝𝑖 and 𝑝 𝑓 are the initial and final parameter values, 𝐺 is the transition rate,
and 𝑡𝑀 is the time when states transition occurs.

C. Identification of Time-Varying Operator Behaviour
In HO system identification, there are two possible directions to estimate the 𝐻𝐻𝑂𝑒

dynamics. The non-parametric
method [7, 18, 19, 31, 32], only provides direct estimations of frequency response, and the parametric approach assumes
a HO model structure and requires estimation of its parameters.

The parametric methodology provides a more tangible understanding of the human controller than non-parametric
strategies. Five research lines are found: batch-fitting methods (maximum likelihood estimation [11, 20], fitting Linear
Parameter Variable (LPV) state space systems [21]) and recursive fitting methods (Kalman filter estimation [16, 22, 33],
fitting recursive ARX models [10, 12, 25], identification of Artificial Neural Networks (ANNs) [23]).

In batch fitting strategies, the fitting is applied on the whole dataset at once, and typically, the operation limitation
parameters (neuromuscular dynamics and operator time delay) are deemed constant while only the operator equalization
parameters may vary. On the other hand, in recursive fitting methods, the operation equalization parameters can vary,
but also, the NMS and HO time delay can be set constant or assumed time-varying depending on the type of estimator
used. The ARX model structure [34] is employed in [10, 12, 25] to estimate time-varying HO behaviour, extending the
work done in [6, 24]. ARX parameters are computed by the Recursive Least Squares (RLS) [35], which minimizes a
weighted linear least squares cost function relating to the input signals. Additionally, the RLS algorithm can be tuned by
evaluating the ARX structure for constant HO models [10] through an Ordinary Least Squares (OLS) algorithm [34].

ARX identification methods represent a simple, efficient option since they only require a linear optimization
process. In addition, convergence is fast in recursive estimation, which guarantees an acceptable adaptation to HO
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changes. However, permanent biases are found in estimated model parameters due to the mismatch in the remnant filter
poles (mainly when the remnant order 𝑚 equals 1 [10]), seeing that both denominators of the HO linear component
and remnant filter are considered as equivalent in ARX structures. Hence, an analysis of other model structures is
recommended in order to reduce the persistent bias found in ARX.

III. Box-Jenkins Model Identification

A. Box-Jenkins Model Family
Ljung [34] presents a series of transfer-function models from a general family of model structures, which can be

employed to identify the discrete-time transfer function (TF) corresponding to an HO model. Figure 2 shows the ARX
and BJ structures:

Fig. 2 Discrete-time model structures: (a) ARX, and (b) Box-Jenkins.

For the present case study, the Box-Jenkins structure represents the most suitable option since it enables more
freedom for zero and pole placement in both the remnant filter and the linear HO model, while ARX assumes a coupling
between these two components. This BJ family can be represented by the following expression:

𝑢(𝑡𝑘) =
𝐵(𝑧−1)
𝐴(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑘) +
𝐶 (𝑧−1)
𝐷 (𝑧−1)

𝜀(𝑡𝑘), 𝜀(𝑡𝑘) ∼ 𝑁 (0, 𝜎𝜀), (6)

where 𝑢(𝑡) is the output signal associated with the control-output, 𝑒(𝑡) is the input signal corresponding to the tracking
error, and 𝜀(𝑡) is the Gaussian White Noise (GWN) with a standard deviation 𝜎𝜀 . The variable 𝑧−1 acts as a discrete-time
shift operator, while 𝑡𝑘 represents the discretized time. The general model structure depends on a total of 4 polynomials
{𝐴, 𝐵, 𝐶, 𝐷} with orders defined by the integers {𝑛𝑎, 𝑛𝑏, 𝑛𝑐, 𝑛𝑑}:

𝐴(𝑧−1) = 1 + 𝑎𝑑1 𝑧
−1 + . . . + 𝑎𝑑𝑛𝑎 𝑧

−𝑛𝑎 , 𝐵(𝑧−1) = 𝑏𝑑0 + 𝑏𝑑1 𝑧
−1 + . . . + 𝑏𝑑𝑛𝑏 𝑧

−𝑛𝑏 , (7a)

𝐶 (𝑧−1) = 1 + 𝑐𝑑1 𝑧
−1 + . . . + 𝑐𝑑𝑛𝑐 𝑧

−𝑛𝑐 , 𝐷 (𝑧−1) = 1 + 𝑑𝑑1 𝑧
−1 + . . . + 𝑑𝑑𝑛𝑑 𝑧

−𝑛𝑑 . (7b)

In addition, the predictor of the control-output signal, �̂�(𝑡), would present the following general expression [34]:

�̂�(𝑡𝑘 | 𝜃) = 𝐵(𝑧−1)𝐷 (𝑧−1)
𝐶 (𝑧−1)𝐴(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑘) +
[
1 − 𝐷 (𝑧−1)

𝐶 (𝑧−1)

]
𝑢(𝑡𝑘), (8)

where 𝜃 is the adjustable parameters vector, i.e.,

𝜃 =
[
𝑎𝑑1 , 𝑎

𝑑
2 , . . . , 𝑎

𝑑
𝑛𝑎
, 𝑏𝑑0 , 𝑏

𝑑
1 , . . . , 𝑏

𝑑
𝑛𝑏
, 𝑐𝑑1 , 𝑐

𝑑
2 , . . . , 𝑐

𝑑
𝑛𝑐
, 𝑑𝑑1 , 𝑑

𝑑
2 , . . . , 𝑑

𝑑
𝑛𝑑

]𝑇
. (9)

By adjusting this previous expression, the prediction error is found:

𝜖 (𝑡𝑘 , 𝜃) = 𝑢(𝑡𝑘) − �̂�(𝑡𝑘 | 𝜃) = 𝐷 (𝑧−1)
𝐶 (𝑧−1)

[
𝑢(𝑡𝑘) −

𝐵(𝑧−1)
𝐴(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑘)
]
. (10)

B. HO Model Discretization and BJ Structure
Before setting batch-fitting or recursive estimations of BJ models, it is necessary to make sure those structures match

the discretized HO and remnant filter models. Franklin et al. [36] present a variety of discretization techniques that can
be applied to the continuous-time TF, and can follow a numerical integration, a Z-transform mapping strategy or try
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to model the sampled system. The discrete equivalents via numerical integration are based on the numerical method
[37] used to find a solution of the differential equation associated to the continuous-time TF to be discretized. The
principal methods are: Forward-Euler, Backward-Euler, Tustin (with/without pre-warp). Then, the zero-pole matching
equivalents are obtained by mapping the continuous-time TF’s poles and zeros from the relationship between s- and
z-planes. On the other hand, Tangirala [38] proposes model-sampling techniques, based on the Zero-Order Hold (ZOH)
or First-Order Hold (FOH), that reconstruct the measured signal and enable a two-step continuous-to-discrete time TF
conversion. In the HO model, a combination between ZOH and Backward Euler is applied.

1. HO Linear Component
In the case of 𝐻𝐻𝑂𝑒

(𝑠, 𝑡), Hess and Mnich [39] proved that the only feasible discretization method option is ZOH
(there must be a single solution for HO coefficients), achieving a discrete model with 𝑛𝑎 = 2 and 𝑛𝑏 = 1:

𝐻𝐻𝑂𝑒,𝑑𝑖𝑠
(𝑧) =

𝑏𝑑0 + 𝑏𝑑1 𝑧
−1

1 + 𝑎𝑑1 𝑧−1 + 𝑎𝑑2 𝑧−2
· 𝑧−𝑛𝑘 , (11)

where an additional unit-sample delay 𝑧−1 is obtained due to the discretization method. The integer 𝑛𝑘 represents the
time delay in the discretized model. Thus, the estimated continuous-time TF of the HO model, �̂�𝐻𝑂𝑒

(𝑠, 𝑡𝑘), and the
identified human operator coefficients are:

�̂�𝐻𝑂𝑒
(𝑠, 𝑡𝑘) =

𝑏𝑐0 𝑠 + 𝑏
𝑐
1

𝑠2 + 𝑎𝑐1 𝑠 + 𝑎
𝑐
2

⇒
{
�̂�𝑒 =

𝑏𝑐1
𝑎𝑐2
, 𝑇𝐿 =

𝑏𝑐0
𝑏𝑐1
, �̂� ¤𝑒 =

𝑏𝑐0
𝑎𝑐2
, �̂�𝑛𝑚 =

√︃
𝑎𝑐2 , 𝜁𝑛𝑚 =

𝑎𝑐1

2
√︁
𝑎𝑐2
, 𝜏𝑒 = 𝑇𝑠 (𝑛𝑘 − 1)

}
.

(12)

2. Remnant Filter
By the Backward Euler discretization, 𝑠 = (1 − 𝑧−1)/𝑇𝑠, a proper discrete-time transfer function for the remnant

filter is obtained:

𝐻𝑚𝑛 (𝑠) =
𝐾𝑛

(𝑇𝑛𝑠 + 1)𝑚 → 𝐻𝑚𝑛,𝑑𝑖𝑠 (𝑧) =
𝐾𝑛

(𝑇𝑛 1−𝑧−1

𝑇𝑠
+ 1)𝑚

=

𝐾𝑛

(
𝑇𝑠

𝑇𝑛+𝑇𝑠

)𝑚(
1 − 𝑇𝑛

𝑇𝑛+𝑇𝑠 𝑧
−1

)𝑚 . (13)

Since the numerator of the estimated discrete-time remnant filter must be equal to 1 based on the BJ model structure,
the resulting coefficient in the numerator of 𝐻𝑚

𝑛,𝑑𝑖𝑠
(𝑧) will be incorporated into the variance 𝜎2

𝜀 , giving as a result a
modified 𝜀′ with standard deviation 𝜎𝜀′ :

𝜎𝜀′ =
𝐾𝑛𝑇

𝑚
𝑠

(𝑇𝑛 + 𝑇𝑠)𝑚
𝜎𝜀 . (14)

Hence, the discrete-time model of the remnant noise signal would be the following one:

𝑛(𝑡𝑘) =
1(

1 − 𝑇𝑛
𝑇𝑛+𝑇𝑠 𝑧

−1
)𝑚 𝜀′ (𝑡𝑘), 𝜀′ (𝑡𝑘) ∼ 𝑁 (0, 𝜎𝜀′ ). (15)

Depending on the 𝑚𝑡ℎ-order of the remnant filter, the number of discrete-time parameters, 𝑑𝑑
𝑖
, to be estimated

changes, while the time constant 𝑇𝑛 would need to be averaged from such parameters computed:

𝑑𝑑𝑖 = 𝑓𝑖 (𝑇𝑠 , 𝑇𝑛,𝑑𝑑
𝑖
) → 𝑇𝑛,𝑑𝑑

𝑖
→ 𝑇𝑛 =

1
𝑚

𝑚∑︁
𝑖=1
𝑇𝑛,𝑑𝑑

𝑖
. (16)

3. Applied BJ Model Expression
Based on the considerations outlined in the previous sections, a BJ model structure {𝑛𝑎 = 2, 𝑛𝑏 = 1, 𝑛𝑐 = 0, 𝑛𝑑 = 𝑚∗}

is chosen to address the identification problem:

𝑢(𝑡𝑘) =
𝑏𝑑0 + 𝑏𝑑1 𝑧

−1

1 + 𝑎𝑑1 𝑧−1 + 𝑎𝑑2 𝑧−2
𝑧−𝑛

∗
𝑘 𝑒(𝑡𝑘) +

1
1 + 𝑑𝑑1 𝑧−1 + . . . + 𝑑𝑑

𝑚∗ 𝑧−𝑚
∗ 𝜀

′ (𝑡𝑘), 𝜀′ (𝑡𝑘) ∼ 𝑁 (0,
𝐾𝑛𝑇

𝑚∗
𝑠

(𝑇𝑛 + 𝑇𝑠)𝑚
∗ 𝜎𝜀), (17)
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where 𝑚∗ and 𝑛∗
𝑘

are the remnant order and time delay considered in the estimation model, respectively. Thus, the
𝐵𝐽 (𝑛∗

𝑘
, 𝑚∗) prediction error and adjustable parameter vector are given by the expressions:

𝜖 (𝑡𝑘 , 𝜃) = 𝐷 (𝑧−1)
[
𝑢(𝑡𝑘) −

𝐵(𝑧−1)
𝐴(𝑧−1)

𝑧−𝑛
∗
𝑘 𝑒(𝑡𝑘)

]
, 𝜃 =

[
𝑎𝑑1 , 𝑎

𝑑
2 , 𝑏

𝑑
0 , 𝑏

𝑑
1 , 𝑑

𝑑
1 , . . . , 𝑑

𝑑
𝑚∗

]𝑇
. (18)

C. Prediction Error Method
The parameter estimation of each BJ discrete-time polynomial requires the optimization of a non-linear problem,

hence, a Prediction Error Method (PEM) algorithm has to be evaluated as explained in [34, 38, 40, 41]. The PEM
procedure consists of initial state estimation, definition of the optimization model, and variance estimation.

Other methods can also be applied to the discrete-time transfer function estimation problem, such as the Maximum
Likelihood (ML) or the Refined Instrumental Variable (RIV) method [34, 40, 41]. The ML technique finds the full
optimization model from a log-likelihood function, which is based on a Gaussian distribution of the noise 𝜀. The RIV
method is a pseudo-linear regression approach to ML estimation. Both methods could be in ARX and BJ structures, but
they are only applicable to systems with Gaussian noise, thus, the PEM algorithm presents a more generalist alternative.
The ML model is only used to find an expression to estimate the noise variance (see Eq. (30)).

1. The Algorithm
Prediction error methods are based on the idea of minimizing a cost function, 𝑉𝑁 , that measures the level of

prediction error, 𝜖 (𝑡𝑘 , 𝜃), to find a solution for 𝜃 [34, 40]. Thus, from a batch of data 𝑍𝑁 ,

𝑍𝑁 = [𝑢(𝑡1), 𝑒(𝑡1), 𝑢(𝑡2), 𝑒(𝑡2), . . . , 𝑢(𝑡𝑁 ), 𝑒(𝑡𝑁 )] , (19)

and the prediction error formula (see Eq. (18)), the cost function can be defined as follows:

𝑉𝑁 (𝜃, 𝑍𝑁 ) = 1
𝑁

𝑖=𝑁∑︁
𝑖=1

𝑙 (𝜖 (𝑡𝑖 , 𝜃)). (20)

In 𝑉𝑁 (𝜃, 𝑍𝑁 ), 𝑙 (·) is a scalar-valued (typically positive) function. The quadratic norm is the most common in
optimization problems:

𝑙 (𝜖) = 1
2
𝜖2. (21)

Therefore, the goal of a PEM algorithm is to find the vector of parameters 𝜃 that minimizes the cost function:

𝜃 = arg min
𝜃

𝑉𝑁 (𝜃, 𝑍𝑁 ) = arg min
𝜃

{
1

2𝑁

𝑖=𝑁∑︁
𝑖=1

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷 (𝑧−1)
𝐴(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]2}

. (22)

To optimize such cost function, the partial differentiation of 𝑉𝑁 (𝜃, 𝑍𝑁 ) with respect to all the parameters is made:

∇𝜃
[
𝑉𝑁 (𝜃, 𝑍𝑁 )

]
=

1
𝑁

𝑖=𝑁∑︁
𝑖=1

𝜖 (𝑡𝑖 , 𝜃)∇𝜃 [𝜖 (𝑡𝑖 , 𝜃)] . (23)

Consequently, the optimization model is defined by the following set of equations, when set to zero:

𝜕𝑉𝑁

𝜕𝑎𝑑
𝑗=1,2

=
1
𝑁

𝑖=𝑁∑︁
𝑖=𝑖0

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷 (𝑧−1)
𝐴(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]
× 𝐵(𝑧−1)𝐷 (𝑧−1)

𝐴2 (𝑧−1)
𝑧− 𝑗−𝑛𝑘 𝑒(𝑡𝑖) = 0, (24a)

𝜕𝑉𝑁

𝜕𝑏𝑑
𝑗=0,1

=
1
𝑁

𝑖=𝑁∑︁
𝑖=𝑖0

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷 (𝑧−1)
𝐴(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]
× 𝐷 (𝑧−1)
𝐴(𝑧−1)

𝑧− 𝑗−𝑛𝑘 𝑒(𝑡𝑖) = 0, (24b)

𝜕𝑉𝑁

𝜕𝑑𝑑
𝑗=1,2,...,𝑚∗

=
1
𝑁

𝑖=𝑁∑︁
𝑖=𝑖0

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷 (𝑧−1)
𝐴(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]
×

[
𝑧− 𝑗𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝑧− 𝑗−𝑛𝑘
𝐴(𝑧−1)

𝑒(𝑡𝑖)
]
= 0. (24c)
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At this point, the PEM and ML optimization problems are identical [41], since Eq. (24) match the ones obtained
in an ML scenario. In order to find the optimal solution to this minimization problem, BJ models require non-linear
optimization methods based on gradient-based schemes [42], or more innovative techniques, such as the combination of
different line search algorithms at each iteration [43], which is used in this case.

When calculating each component of Eq. (24), there may be some difficulties in evaluating fractions of polynomials.
To solve this issue, Maclaurin series [43, 44] can be used to convert a fraction into a pure polynomial:

1
1 + 𝑥 = 1 − 𝑥 + 𝑥2 − 𝑥3 + . . . (25)

2. Initial States Estimation
In BJ estimation, the index 𝑖0 in Eq. (24) should be always equal to 1 due to the higher relevance of the initial states

in the optimization process. Otherwise, if a first-order series is assumed, the minimum index should be:

𝑖0 = 3𝑛𝑎 + 𝑛𝑏 + 𝑛𝑑 + 𝑛𝑘 + 1 = 𝑚∗ + 𝑛∗𝑘 + 8. (26)

Therefore, an initial model needs to be estimated beforehand to find the pairs {𝑢(𝑡𝑘<1), 𝑒(𝑡𝑘<1)}, i.e.,

𝑍𝑁𝑖 = [. . . , 𝑢(𝑡−1), 𝑒(𝑡−1), 𝑢(𝑡0), 𝑒(𝑡0)] , (27)

based on the initial conditions 𝜃𝑖 (i.e., 𝐴𝑖 (𝑧−1), 𝐵𝑖 (𝑧−1), 𝐶𝑖 (𝑧−1), 𝐷𝑖 (𝑧−1)) [43]:

�̂�𝑁𝑖 = arg min
𝑍𝑁
𝑖

𝑉𝑁𝑖 (𝜃𝑖 , 𝑍𝑁𝑖 ) = arg min
𝑍𝑁
𝑖

{
1

2𝑁

∑︁
𝑖<1

[
𝐷𝑖 (𝑧−1)𝑢(𝑡𝑖) −

𝐵𝑖 (𝑧−1)𝐷𝑖 (𝑧−1)
𝐴𝑖 (𝑧−1)

𝑧−𝑛
∗
𝑘 𝑒(𝑡𝑖)

]2}
. (28)

3. Variance Estimation
Once, the optimization process is converged and a parameter vector solution is found, i.e., a partial differentiation of

the log-likelihood function for 𝑁 observations shown by Young [41],

ℒ(𝜃, 𝜎2
𝜀′ , 𝑢(𝑡), 𝑒(𝑡)) = −𝑁

2
ln(2𝜋) − 𝑁

2
ln(𝜎2

𝜀′ ) −
1

2𝜎2
𝜀′

𝑖=𝑁∑︁
𝑖=1

[
𝐷 (𝑧−1)𝑢(𝑡𝑖) −

𝐵(𝑧−1)𝐷 (𝑧−1)
𝐴(𝑧−1)

𝑧−𝑛𝑘 𝑒(𝑡𝑖)
]2

(29)

is computed to find an estimation of the noise variance �̂�2
𝜀′ based on the predicted parameter vector:

𝜕ℒ

𝜕𝜎2
𝜀′

= 0 → �̂�2
𝜀′ =

1
𝑁

𝑖=𝑁∑︁
𝑖=1

[
�̂� (𝑧−1)𝑢(𝑡𝑖) −

�̂�(𝑧−1)�̂� (𝑧−1)
�̂�(𝑧−1)

𝑧−𝑛
∗
𝑘 𝑒(𝑡𝑖)

]2

. (30)

D. Recursive Prediction Error Minimization
The Recursive Prediction Error Minimization (RPEM) is one of the most extended online estimation techniques,

which enables a recursive implementation of the PEM algorithm [34, 40]. Other methods can be applied to the online BJ
structure estimation problem, such as the Real-Time Recursive Refined Instrumental Variable (RRIV) or the Extended
Kalman Filter (EKF) [40]. The RRIV method is probably the most similar to the RPEM algorithm, although it presents
some differences in terms of the covariance matrix definition (two sub-matrices with null off-diagonal blocks are used in
RRIV), the robustness of the algorithm (the Instrumental Variable modifications ensure a stable estimation process), or
the steps required (while RPEM is fully recursive, RRIV needs to iterate at each 𝑘 𝑡ℎ period).

A Recursive PEM algorithm [40] is built, by analogy with the RLS method and fulfilling the theoretical requirements
to achieve convergence. The RPEM algorithm is an online estimation method that consists of 3 steps, in which the
parameter vector 𝜃 (𝑡𝑘) is adjusted online by means of the gain vector 𝑔(𝑡𝑘) and the prediction error of 𝑢(𝑡𝑘). The gain
vector is also tuned based on a forgetting factor 𝜆, the negative gradient of the prediction error 𝜋(𝑡𝑘), and the scaled
covariance matrix 𝑃(𝑡𝑘), which accounts for the certainty in the estimation conducted of each model parameter. Eq. (31)
[34, 40] present the formulas used in this iterative process:

𝜃 (𝑡𝑘) = 𝜃 (𝑡𝑘−1) + 𝑃(𝑡𝑘)𝜋(𝑡𝑘)𝜖 (𝑡𝑘), (31a)
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𝑔(𝑡𝑘) =
𝑃(𝑡𝑘−1)𝜋(𝑡𝑘)

𝜆 + 𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1)𝜋(𝑡𝑘)
, (31b)

𝑃(𝑡𝑘) =
1
𝜆

[
𝑃(𝑡𝑘−1) − 𝑔(𝑡𝑘)𝜋𝑇 (𝑡𝑘)𝑃(𝑡𝑘−1)

]
. (31c)

Equation Eq. (31a) can be evaluated in two ways due to the relationship 𝑔(𝑡𝑘) = 𝑃(𝑡𝑘)𝜋(𝑡𝑘), although the first option is
usually preferred since it is more computationally efficient [40]. Each element of the forgetting matrix must belong to
the interval 𝐼 = [0, 1], where a 𝜆 near a null value provides a negligible memory horizon, and values close to 1 increase
this horizon significantly. Hence, for a forgetting factor 𝜆, a total number of 𝑁𝑒 = 1/(1 − 𝜆) samples are considered in
the RLS algorithm for a time horizon of 𝑇𝑒 = 𝑇𝑠/(1 − 𝜆).

The definition of vector 𝜋(𝑡𝑘) is based on the minimization of the instantaneous part of the cost function in Eq. (20),
in which the one-step-ahead prediction error can be approximated by the employment of the model parameters estimation
at the previous (𝑘 − 1)𝑡ℎ instant:

𝑉 𝑘 (𝜃 (𝑡𝑘)) =
1
2

[
𝜖2 (𝑡𝑘 , 𝜃 (𝑡𝑘))

]
≈ 𝑉 𝑘 (𝜃 (𝑡𝑘−1)) =

1
2

[
𝜖2 (𝑡𝑘 , 𝜃 (𝑡𝑘−1))

]
. (32)

As a result, the gain 𝜋(𝑡𝑘) is computed as the negative gradient of the prediction error [40]:

𝜋(𝑡𝑘) = −𝜕𝜖 (𝑡𝑘 , 𝜃 (𝑡𝑘−1))
𝜕𝜃 (𝑡𝑘−1))

. (33)

From Eq. (18), the prediction error derivatives can be defined as follows:

𝜕𝜖 (𝑡𝑘)
𝜕𝑎𝑑

𝑖=1,2
=
𝐷 (𝑧−1)
𝐴(𝑧−1)

𝐵(𝑧−1)
𝐴(𝑧−1)

𝑒(𝑡𝑘−𝑖−𝑛𝑘 ) =
𝐷 (𝑧−1)
𝐴(𝑧−1)

𝑦(𝑡𝑘−𝑖−𝑛𝑘 ) = 𝑦 𝑓1 (𝑡𝑘−𝑖−𝑛𝑘 ), (34a)

𝜕𝜖 (𝑡𝑘)
𝜕𝑏𝑑

𝑖=0,1
= −𝐷 (𝑧−1)

𝐴(𝑧−1)
𝑒(𝑡𝑘−𝑖−𝑛𝑘 ) = −𝑒 𝑓1 (𝑡𝑘−𝑖−𝑛𝑘 ), (34b)

𝜕𝜖 (𝑡𝑘)
𝜕𝑑𝑑

𝑖=1,2,...,𝑚∗
= −𝐷 (𝑧−1)𝑢(𝑡𝑘−𝑖) −

𝐷 (𝑧−1)𝐵(𝑧−1)
𝐴(𝑧−1)

𝑒(𝑡𝑘−𝑖−𝑛𝑘 ) = −𝜖 (𝑡𝑘−𝑖). (34c)

Where the subscript 𝑓1 denotes that the variable is filtered by the transfer functions:

𝑓1 =
𝐷 (𝑧−1)
𝐴(𝑧−1)

. (35)

Therefore, the negative gradient 𝜋(𝑡𝑘) presents the following expression:

𝜋(𝑡𝑘) = −𝜕𝜖
𝜕𝜃

=

[
−�̂� 𝑓1 (𝑡𝑘−1−𝑛𝑘 ),−�̂� 𝑓1 (𝑡𝑘−2−𝑛𝑘 ), 𝑒 𝑓1 (𝑡𝑘−𝑛𝑘 ), 𝑒 𝑓1 (𝑡𝑘−1−𝑛𝑘 ), 𝜖 (𝑡𝑘−1), . . . , 𝜖 (𝑡𝑘−𝑛𝑑 )

]𝑇
. (36)

The prefilter 𝑓1 and variables �̂�(𝑡𝑘) are calculated from the latest estimated polynomials, respectively:

𝑓1 =
�̂� (𝑧−1)
�̂� (𝑧−1)

, �̂�(𝑡𝑘) =
�̂�(𝑧−1)
�̂� (𝑧−1)

𝑒(𝑡𝑘−𝑛𝑘 ). (37)

Thus, the classical RLS algorithm is adapted to non-linear cases by means of converting 𝜋(𝑡𝑘) into a vector composed
of linear variables, as shown in Eq. (36). A forgetting factor 𝜆 = 0.99609 is selected for the implementation of the
recursive BJ method, based on previous results from Van Grootheest et al. [10]. In addition, the initial covariance
matrix can be defined as:

𝑃𝑖 = 𝑑𝑖𝑎𝑔 (0.1, 0.1, 0.1, 0.1 × 𝑚∗) . (38)
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E. Quality-of-Fit Metrics
In order to verify the quality of the estimation performed, several metrics need to be used. These metrics have to be

relevant in terms of addressing how well the predicted model represents the dynamics of the real one. To achieve such a
goal, the prediction error in estimated model parameters has to be analyzed, but the prediction capabilities of such a
model must be also studied.

Hence, two different quality-of-fit metrics are employed: the Variance Accounted For (𝑉𝐴𝐹) [6], and the relative
bias, 𝐵𝑟 (𝜗). Both have been employed in previous works to verify the ARX results [10, 12], thus, these ones should be
also applicable to the BJ results. The 𝑉𝐴𝐹 metric [45],

𝑉𝐴𝐹𝑛
∗
𝑘
,𝑚∗

= 𝑚𝑎𝑥

{
0,

(
1 −

∑𝑁
𝑘=1 | 𝑢(𝑡𝑘) − �̂�𝑛

∗
𝑘
,𝑚∗ (𝑡𝑘) |

2∑𝑁
𝑘=1 | 𝑢(𝑡𝑘) |

2

)
· 100%

}
, (39)

evaluates the correctness of a model, by comparing the real output, 𝑢(𝑡𝑘), with the estimated output of the model,
�̂�𝑛

∗
𝑘
,𝑚∗ (𝑡𝑘). The 𝑉𝐴𝐹 of two signals that are the same is 100%, while it will be lower if they differ. For a certain

combination of time delay and remnant filter order in the structure, the 𝑉𝐴𝐹 difference between ARX and BJ models
can be used to compare the accuracy of both methods and analyze the effect of the BJ model remnant order on estimation
results:

Δ𝑉𝐴𝐹𝑛
∗
𝑘
,𝑚∗

= 𝑉𝐴𝐹
𝑛∗
𝑘
,𝑚∗

𝐵𝐽
−𝑉𝐴𝐹𝑛

∗
𝑘

𝐴𝑅𝑋
. (40)

On the other hand, the relative bias can be used to verify the accuracy of parameter estimation:

𝐵𝑟 (𝜗) =
(
�̂� − 𝜗0

𝜗0

)
· 100%, (41)

where 𝜗 can be a discrete-time parameter from ARX or BJ models, or an HO coefficient.

IV. Method

A. Forcing Function
To accomplish adequate simulations, the forcing function needs to be defined properly. As proposed by Zaal [11], a

summation of 𝑁𝑡 sinusoids with different amplitudes 𝐴𝑘 , frequencies 𝜔𝑘 and phases 𝜙𝑘 ,

𝑓𝑡 (𝑡) =
𝑁𝑡∑︁
𝑘=1

𝐴𝑘 · sin (𝜔𝑘 · (𝑡 − 𝑡0) + 𝜙𝑘) , (42)

is an effective option to excite the closed-loop system shown in Figure 1. To avoid spectral leakage, the frequencies 𝜔𝑘
are chosen as multiples of the base frequency 𝜔𝑘,0 = 2𝜋/𝑇𝑚, where 𝑇𝑚 is the total simulation time. Thus, the integer 𝑛𝑡
is defined as 𝑛𝑡 = 𝜔𝑘/𝜔𝑘,0. In addition, a transient interval time is introduced in the simulation, 𝑡0, in order that control
loop variables are stabilized, consequently, the sinusoids are initialized at 𝑡 = 𝑡0. Table 1 shows the coefficients of each
sinusoid employed in simulations, while Figure 3 depicts its auto-Power Spectral Density (PSD) function, 𝑆 𝑓𝑡 𝑓𝑡 ( 𝑗𝜔),
and its peaks located at 𝜔𝑘 .

Table 1 Target function parameters.

𝑘, − 𝑛𝑡 , − 𝜔𝑘 , 𝑟𝑎𝑑/𝑠 𝐴𝑘 , 𝑑𝑒𝑔 𝜙𝑘 , 𝑟𝑎𝑑

1 3 0.230 1.186 -0.753
2 5 0.384 1.121 1.564
3 8 0.614 0.991 0.588
4 13 0.997 0.756 -0.546
5 22 1.687 0.447 0.674
6 34 2.608 0.245 -1.724
7 53 4.065 0.123 -1.963
8 86 6.596 0.061 -2.189
9 139 10.661 0.036 0.875
10 229 17.564 0.025 0.604

10
0

10
2

10
-30

10
-20

10
-10

10
0

Fig. 3 Auto-PSD of forcing function 𝒇𝒕 (𝒕).
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B. Remnant Noise
Then, a remnant realization is generated for every single simulation run by feeding the zero-mean GWN with

unit variance through a filter, i.e., 𝜎𝜀 = 1. Different 𝑚𝑡ℎ-order filters, 𝑚 ∈ {1, 2, 3, 4}, and a remnant time constant,
𝑇𝑛 = 0.06, can be simulated to address their influence on results (see [10, 11, 26]). Additionally, it is possible to introduce
multiple noise levels 𝑃𝑛 ∈ [0.0, 1.0) in the system by modifying the remnant gain 𝐾𝑛. 𝑃𝑛 ∈ {0.0, 0.1, 0.2, 0.3} are
considered in batch-fitting estimation, while 𝑃𝑛 ∈ {0.01, 0.10, 0.20} are used in recursive analysis. Consequently, a
certain value for the 𝐾𝑛 parameter has to be selected to obtain a requested noise level at each simulation, for which the
stochastic theory presented by Ljung [34] can be employed, so that a suitable formula is developed. From the noise level
definition, 𝑃𝑛 = 𝜎2

𝑢𝑛
/𝜎2
𝑢 , based on the forcing function expression and HO and CE models:

𝐾𝑛 =

√√√√√√√ 𝑃𝑛

(1 − 𝑃𝑛) · 𝑇𝑠

𝜋
2
∑𝑁𝑡

𝑘=1 𝐴
2
𝑘

��� 𝐻𝐻𝑂𝑒 ( 𝑗𝜔𝑘 )
1+𝐻𝐻𝑂𝑒 ( 𝑗𝜔𝑘 )𝐻𝐶𝐸 ( 𝑗𝜔𝑘 )

���2∫ 𝜋/𝑇𝑠
0

d𝜔
| (𝑇𝑛 ( 𝑗𝜔)+1)𝑚 (1+𝐻𝐻𝑂𝑒 ( 𝑗𝜔)𝐻𝐶𝐸 ( 𝑗𝜔) ) |2

. (43)

C. Simulation Conditions
To create a time-varying simulation framework, two different states, 𝑠1 and 𝑠2, are defined on the basis of the

CE dynamics variation and its effect on the human operator. Zaal [11] employs two sets of parameters for the CE
dynamics and the assumed HO dynamics resulting from adaptation. In the state 𝑠1, the HO×CE dynamics are given by
a crossover frequency 𝜔𝑐 = 1.5 𝑟𝑎𝑑/𝑠 and a phase margin 𝜙𝑚 = 77.0◦, while these two parameters are converted into
𝜔𝑐 = 2.8 𝑟𝑎𝑑/𝑠 and 𝜙𝑚 = 22.7◦ in state 𝑠2. When a ZOH discretization is applied, different discrete-time coefficients
are obtained for each set. Furthermore, the corresponding remnant gain 𝐾𝑛 is defined for each state based on Eq. (43).
These parameters are recorded in Table 2:

Table 2 CE, HO and ZOH-discretization parameters for states 𝒔1 and 𝒔2.

State
CE HO ZOH

𝐾𝑐 𝜔𝑏 𝐾𝑒 𝑇𝐿 𝐾 ¤𝑒 𝜏𝑒 𝜔𝑛𝑚 𝜁𝑛𝑚 𝑇𝑛 𝑎
𝑑,0
1 𝑎

𝑑,0
2 𝑏

𝑑,0
0 𝑏

𝑑,0
1

− rad/s − s s s rad/s − s − − − −

𝑠1 90 6.0 0.09 0.40 0.036 0.28 11.25 0.35 0.06 -1.9121 0.9243 0.0443 -0.0432
𝑠2 30 0.2 0.07 1.20 0.084 0.28 11.25 0.35 0.06 -1.9121 0.9243 0.1024 -0.1016

Two types of simulation conditions are considered in this article based on the scenarios proposed by Zaal [11]: a
constant set of parameters (C1-C2), or a time-varying scenario (C3-C6). In the first case, the state 𝑠1 (C1) or 𝑠2 (C2) is
implemented during the entire simulation trial. The second case is defined by a change between states (performed by a
sigmoid function in Eq. (5)) 𝑠1 → 𝑠2, in C3-C4 case, or 𝑠2 → 𝑠1, in C5-C6. Two types of transitions are considered
based on the sigmoid parameter 𝐺 (see Eq. (5)), i.e., a slow states change 𝐺 = 0.5 𝑠−1 in C3 and C5, and a fast transition
𝐺 = 100 𝑠−1 in C4 and C6. A transition from single- to double-integrator dynamics, together with an aggressive CE
transition, i.e. 𝐺 = 100 𝑠−1, is applied in order to analyze the most challenging scenario, employing the simulation
condition ‘C4’ in consequence. The HO time-delay and NMS parameters are assumed to remain constant during the
simulation [10, 11]. Figure 4 shows the effect of each simulation condition on 𝐾𝑒 as an example:

0 20 40 60 80

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 0 20 40 60 80

Fig. 4 HO gain for simulation conditions C1-C6 under simulation time 𝑻𝒎 = 81.92𝒔 and time of maximum rate
of change 𝒕𝑴 = 40.96𝒔.
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V. Simulation Results
The obtained Monte Carlo simulation results are addressed in this section. The ARX and BJ estimators’ performance

is evaluated in a batch-fitting scenario under simulation condition C1 using OLS and PEM algorithms, respectively, so
that the estimation accuracy and influence of model parameters, such as the remnant filter or time delay, and the noise
level can be analyzed. Two cases of model remnant order 𝑚∗ are studied: an order that matches the simulation remnant
order, i.e. 𝑚∗ = 𝑚0 ∈ {1, 2, 3, 4}, or a fixed first-order, i.e. 𝑚∗ = 1. An optimal PEM algorithm with a BJ(𝑚∗ = 1)
structure is selected due to its efficiency and accuracy. Once the BJ estimator is studied, the RLS and RPEM algorithms
are evaluated in a time-varying scenario (i.e. simulation condition C4) for ARX and BJ models, respectively. A total of
𝑀 = 100 replications are evaluated in each case, which are shown in Box and Whiskers plots in batch-fitting scenario,
or averaged in recursive estimation. A measurement time 𝑇𝑚 = 81.92 𝑠 and transient time 𝑡0 = 10.00 𝑠 are employed.
Estimation processes are only conducted during the measurement time, after tracking error and control output signals
are stabilized. The sample time is 𝑇𝑠 = 0.01 𝑠.

A. Batch-Fitting Estimation

1. ARX and BJ Model with Remnant Order 𝑚∗ = 𝑚0

Figure 5 shows that a large relative bias is obtained for 𝑚0 = 1 due to poles mismatch in the ARX remnant filter
structure, since it is modeled with the same discrete-time denominator used in the linear HO transfer function. Thus,
the ARX method sacrifices estimation accuracy to explain the remnant dynamics more precisely, by means of a filter
structure unable to model a first-order system. However, when remnant filters with order 𝑚0 ≥ 2 are simulated, the
ARX bias is diminished to acceptable values because the number of model remnant filter poles is never higher than the
number of poles in 𝐻𝑚𝑛 (𝑠, 𝑡), although the estimation error in 𝑏𝑑0 and 𝑏𝑑1 is still around 50% in most cases.

Changes in model time delay (x-axis) produce a linear trend in computed relative bias since the ARX estimator tries
to create or reduce lag. Hence, first-order integrator dynamics are achieved sooner for time delays 𝑛∗

𝑘
< 𝑛0

𝑘
= 29 by

placing the NMS poles at a lower frequency, while additional lead is generated in cases when 𝑛∗
𝑘
> 𝑛0

𝑘
= 29.

Increments in noise level give as a result a greater bias in general, which affects the stability of the ARX estimator
severely. Since the model filter structure is wrong and imposes unrealistic poles, higher remnant levels will lead to an
increase in estimation error. On the other hand, a null bias can be obtained in a remnant-free scenario if the ideal time
delay is employed (this fact proves a discrete-time estimator is implemented properly).

As depicted in Figure 6, the BJ estimator is capable of improving on the ARX results considerably. The BJ model
is initialized with coefficients close to the true simulated HO parameters to ensure convergence, although the PEM
algorithm’s flexibility with inaccurate initial conditions has been proven. The important bias found in first-order remnant
order simulations is now highly reduced, while estimations with similar accuracy are achieved for different remnant
orders.

Since BJ structures allow different pole allocations in 𝐻𝐻𝑂𝑒
(𝑠, 𝑡) and 𝐻𝑚𝑛 (𝑠, 𝑡), but also the same number of poles

in simulated and model remnant filters, BJ estimators are quite adaptive to create discrete-time structures that fit each
HO model adequately. For remnant orders 𝑚0 ≥ 2, ARX bias results present comparable values to BJ ones, nevertheless,
BJ estimators still provide a response with around 50% less estimation error.

Similar to the ARX case, the BJ estimator creates lag or lead depending on the assumed model time delay, hence, a
linear trend is also found. Nonetheless, relative bias values are close to zero for increasing values in noise level, which
ensures an ideal HO identification. Only small changes in 𝑏𝑑0 and 𝑏𝑑1 are found for 𝑚0 = 4. In contrast to ARX models,
relative bias results oscillate around the value obtained for the remnant-free scenario in BJ estimators. Therefore, BJ
structures represent a more consistent, robust alternative in batch-fitting cases, since the simulation remnant order and
noise level do not affect the accuracy of estimation.

2. ARX and BJ Model with Remnant Order 𝑚∗ = 1
Although the PEM algorithm for BJ model structures has been proven to be an adequate, precise estimation method

in the discrete-time domain, more information about the effect of the model remnant order is required to develop a
suitable, efficient estimator. Consequently, the 𝑉𝐴𝐹 metric is evaluated in Figure 7 for multiple BJ model time delays
and remnant orders in a 𝑚0 = 3 scenario, while it is also compared to the 𝑉𝐴𝐹 results for ARX models in Figure 8.
The BJ estimator presents a homogeneous average 𝑉𝐴𝐹 value for all model remnant orders, and differences are only
found for different time delays and noise levels. However, in scenarios with 𝑚0 = 1, it has been observed a poorer
performance when high model remnant orders are utilized. No significant differences are found between BJ and ARX
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Fig. 5 Box and Whisker plots for relative bias of discrete-time parameters in ARX model.
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Fig. 6 Box and Whisker plots for relative bias of discrete-time parameters in BJ model with 𝒎∗ = 𝒎0.
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Fig. 7 𝑉𝐴𝐹 results for BJ model with multiple model time delay 𝒏∗𝒌 and remnant order 𝒎∗. Simulation time
delay 𝒏0

𝒌
= 29 and remnant order 𝒎0 = 3 (red cross).

Fig. 8 Difference in 𝑉𝐴𝐹 results between BJ and ARX models with multiple model time delay 𝒏∗𝒌 and remnant
order 𝒎∗. Simulation time delay 𝒏0

𝒌
= 29 and remnant order 𝒎0 = 3 (red cross).

for cases with a time delay close to 𝑛∗
𝑘
= 29. Hence, the use of BJ models with 𝑚∗ = 1 is recommended to reduce the

degrees of freedom in these structures without a cost in estimation accuracy.
Such a hypothesis about the use of a constant model remnant order 𝑚∗ = 1 can be also validated by the relative

bias analysis, shown in Figure 9. Equivalent results are found when compared to Figure 6, and the bias in 𝑚0 = 4 is
even slightly diminished. BJ structures with 𝑚∗ = 1 present a discretized remnant filter directly obtained from the
Backward-Euler method, while the number of parameters in 𝐻𝑚𝑛 (𝑠, 𝑡) to be estimated differs from the number of 𝑑𝑑
coefficients, which makes the estimation more robust when 𝑚∗ = 1.

Bode plots of ARX and BJ models for multiple noise levels and simulation remnant orders, when the ideal time
delay is selected, are shown in Figure 10. The real 𝐻𝐻𝑂𝑒

dynamics are represented by the ZOH discretization. There is
a clear difference between both model structures, which can be explained by the relative bias results presented previously.
The zero is located at lower frequencies for higher noise levels in ARX results, obtaining a higher magnitude peak.
The ARX structure fails to capture the NMS poles in a first-order remnant filter, while these ones are moved to lower
frequencies when being estimated for higher remnant orders. ARX models attempt to explain remnant dynamics by
generating lag when the remnant order is increased, giving as a result a wrong estimation. This issue is not present in the
BJ case owing to the flexibility of its model structure, accomplishing almost 100% accurate estimations in all scenarios.

B. Recursive Estimation
To estimate ARX and BJ models recursively, RLS and RPEM algorithms with a forgetting factor 𝜆 = 0.996609 are

employed, respectively. The covariance matrix is initialized as shown in Eq. (38) in both methods. Two batch-fitting
estimations are performed for time intervals [0, 30.72] s and [51.20, 81.92] s to capture 𝑠1 and 𝑠2 dynamics, based
on [10]. The first OLS batch-fitting outcome is utilized to initialize the RLS algorithm (i.e. OLS→RLS). Also, OLS
estimations are used as initial conditions for the PEM algorithm, afterwards, these converged batch-fitting coefficients
are employed in the RPEM initialization (i.e. OLS→PEM→RPEM). Through this strategy, the recursive BJ algorithm
is independent of initial conditions set by the user.

Figure 11 depicts the estimation of the discrete-time parameters from RLS and RPEM for multiple remnant orders
and noise levels. In the 𝑚0 = 1 case, ARX models lead to significant relative bias while BJ provides a much more
precise estimation with almost null bias after full convergence, similar to what is shown previously in Figures 5 and 9.
For remnant orders 𝑚0 ≥ 2, ARX improves its results, but it still shows a considerable bias with respect to BJ outcome.
Therefore, batch-fitting results observed in previous figures also represent the real functioning of RLS and RPEM
algorithms in recursive estimation.
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Fig. 9 Box and Whisker plots for relative bias of discrete-time parameters in BJ model with 𝒎∗ = 1.
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Fig. 10 Bode plots for ARX and BJ models with model time-delay 𝒏∗𝒌 = 𝒏0
𝒌
= 29 and remnant filter order

𝒎∗ = 1. Reference ZOH discretization (black, dashed line).
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Nonetheless, the recursive BJ estimator presents more difficulties in achieving convergence for high noise levels.
While the RLS algorithm adapts quite fast to changes in simulation parameters, and provides a stable estimation once
those parameters are fixed, the BJ structure needs 500% more time to process, which may turn into divergence problems
due to excessive oscillations in some cases. The RPEM algorithm denotes a slower adaptation capacity, making it more
difficult for the recursive estimation to converge to each sub-batch-fitting result.

Fig. 11 Simulation results of recursive ARX(𝒏∗𝒌 = 29) and BJ(𝒏∗𝒌 = 29, 𝒎∗ = 1) algorithms in discrete-time
parameters. ARX estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line),
RPEM (continuous line).

Figure 12 shows the identified HO coefficients by ARX and BJ model structures. The RLS algorithm presents
considerable errors in the NMS coefficients for remnant order 𝑚0 = 1 simulations, which are mainly produced by highly
biased discrete-time estimations. When the discrete-time coefficients are obtained, the discrete-time state-space system
form is calculated for the transfer function 𝐵(𝑧−1)/𝐴(𝑧−1). Then, Gajic’s procedure [46] is used reversely to get the
continuous-time state-space system by means of the logarithm of its extended matrix. To obtain a successful conversion
of the state-space system, its associated extended matrix must be invertible and with no negative real eigenvalues [46].
Hence, the following discrete-time parameter constraints must be respected to ensure a proper state-space conversion:{
𝑎𝑑1 < 0, 𝑎𝑑2 > 0

}
.

When simulations with 𝑚0 ≥ 2 are conducted, the bias in ARX estimations is reduced by almost 10 times, although
it is still persistent in NMS coefficients. However, ARX offers more stable, precise results than BJ in 𝐾𝑒, 𝑇𝐿 and 𝐾 ¤𝑒,
while the BJ model provides a more adequate outcome in NMS parameters. Particularly, clear oscillations are visible in
the 𝑇𝐿 estimates obtained from BJ structures. Thus, ARX is able to adjust its discrete-time estimations to focus on gain
and zero estimation mainly, at the cost of a permanent NMS bias. On the other hand, BJ gives the same priority to all
coefficients, based on its non-linear optimization process. In addition, an additional error is produced when 𝑚0 = 2 in
BJ estimations since coupling can occur in poles of 𝐻𝐻𝑂𝑒

(𝑠, 𝑡) and 𝐻𝑚𝑛 (𝑠, 𝑡).

VI. Experimental Results
Experimental results obtained in an experiment in the SIMONA Research Simulator at Delft University of Technology

by Van Grootheest et al. [10] are analyzed in this section, following a similar estimation strategy explained in Section
V.B. Three subjects conducted the single-axis compensatory tracking task detailed in Figure 1. The run-in time is
𝑡0 = 8.08 𝑠, while the measurement time 𝑇𝑚 = 81.92 𝑠. A total of 7 runs were performed, from which the last 5 ones
are evaluated. The sample time is 𝑇𝑠 = 0.01 𝑠. Only the results for (simulation) condition C4 are studied below, in
which a fast transition from state 𝑠1 to 𝑠2 is performed, see Section IV.C.
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Fig. 12 Simulation results of recursive ARX(𝒏∗𝒌 = 29) and BJ(𝒏∗𝒌 = 29, 𝒎∗ = 1) algorithms in HO coefficients.
ARX estimations: OLS (dashed line), RLS (continuous line). BJ estimations: PEM (dashed line), RPEM
(continuous line).

A remnant model with order 𝑚∗ = 1 is employed, while the model time delay 𝑛∗
𝑘

and remnant time constant 𝑇𝑛 are
computed a priori by means of the average between the best two sub-batch-fitting estimations made. Thus, specific 𝑛∗

𝑘

and 𝑇∗
𝑛 are used in each run and model structure, which are shown in Table 3.

Table 3 Model parameters 𝒏∗𝒌 and 𝑻∗
𝒏 used in each run and model structure.

Model
Parameters

Subject 1 Subject 2 Subject 3
N1 N2 N3 N4 N5 N1 N2 N3 N4 N5 N1 N2 N3 N4 N5

ARX: 𝑛∗
𝑘
, − 21 24 22 28 20 24 22 20 25 24 25 24 24 24 26

BJ: 𝑛∗
𝑘
, − 30 30 31 32 31 26 28 26 29 27 28 30 26 27 27

BJ: 𝑇∗
𝑛 , 𝑠 0.16 0.13 0.16 0.13 0.11 0.17 0.11 0.13 0.06 0.14 0.10 0.05 0.08 0.15 0.05

Figures 13 and 14 show the discrete-time and HO model coefficients estimation results for ARX and BJ, respectively.
In all subjects, both recursive algorithms are capable of detecting HO adaptation, although subject 1 does not seem to
generate as much lead in the state 𝑠2 as subjects 2 and 3. As explained in Section V, the RPEM algorithm requires more
time to achieve convergence when facing changes in HO parameters, hence, this fact has a strong impact on the BJ
performance in real life, seeing that the human operator is not a steady, perfect controller.

Magnitudes of discrete-time parameter estimations are different for ARX and BJ, as can be observed in Figure 13.
This fact can be due to the effort of ARX structures in focusing more on HO gain and zero estimation, while RPEM
follows an optimization for all model coefficients equally. Modifications in 𝑎𝑑1 and 𝑎𝑑2 coefficients magnitudes directly
imply an adjustment in 𝑏𝑑0 and 𝑏𝑑1 , and vice versa. Additionally, incorrect estimations in 𝑛∗

𝑘
in ARX and BJ models also

affect the discrete-time parameter magnitudes.
Oscillations in estimated parameters are more noticeable in BJ than ARX. Since the RPEM algorithm follows a

non-linear optimization process, more noise is found in BJ estimations than whether the RLS was used, particularly in
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Fig. 13 Experimental results of recursive ARX and BJ algorithms in discrete-time parameters.

Fig. 14 Experimental results of recursive ARX and BJ algorithms in HO coefficients.
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the 𝑇𝐿 coefficient. BJ model covariance matrix starts to increase from the start of estimation, since more uncertainty
is given about the accuracy of predicted parameters, which turns into convergence issues when the state 𝑠2 is being
evaluated.

In addition, estimated NMS coefficients are not expected to show strong oscillations during the entire simulation
(relatively small changes are given in real life), but the RPEM algorithm provides an outcome with greater fluctuations.
Nevertheless, the average NMS estimations in BJ structures show higher values than in ARX models, which shows that
a considerable bias may be generated by the RLS algorithm.

VII. Discussion
A novel time-varying HO identification method based on recursive BJ model structures is developed, which tries

to make a precise fit of the HO model coefficients in single-axis manual-control tasks. An optimal version of the
algorithm is found for a structure with a model remnant order 𝑚∗ = 1, based on batch-fitting results. An RPEM
algorithm, implemented with a constant forgetting factor 𝜆, shows acceptable results when tested on simulation data,
since it is able to correctly track HO adaptations to CE dynamics transitions proposed by Zaal [11]. Through testing
on experimental data, the recursive BJ is capable of detecting adaptation in subjects, while providing HO coefficient
estimations whose magnitudes appear feasible. BJ results in batch and recursive fitting are compared to ARX results to
analyze the advantages and drawbacks of estimating HO coefficients by PEM or RPEM (BJ) algorithms instead of OLS
and RLS (ARX).

While BJ model structures have great potential as identification method, they do present several problems that can
affect their applicability. Firstly, the PEM algorithm is strongly dependent on initial conditions, and although it offers
adequate flexibility, initial conditions with high deviations from real values may lead to convergence failure. This fact is
quite relevant regarding PEM initialization by a prior OLS estimation, since it is proven that ARX batch-fitting will
provide a highly biased output. Furthermore, despite BJ model structure’s capability of detecting HO adaptation, the
convergence time required can be even 5 times higher due to the non-linear optimization procedure it follows, which can
cause identification problems in real life due to the fast changes in HO dynamics. Noticeable fluctuations can be found
in recursive BJ estimations, mainly in the parameter 𝑇𝐿 , and in the NMS coefficients that normally are expected to be
steady during an entire trial.

When comparing ARX and BJ model structures, BJ offers a 5000% more accurate estimation when the remnant
order is 𝑚∗ = 1, owing to the mismatch of the ARX model in the remnant filter poles. The BJ model can also prevent
the persistent bias found in ARX estimations, because of the versatility of BJ structures when facing different remnant
dynamics. Thus, RPEM can provide accurate results in NMS coefficients once the algorithm is converged, while RLS
reaches its final estimation fast, but it will always have a bias. Nevertheless, ARX is able to modify the discrete-time
parameters in order to still reliably estimate 𝐾𝑒, 𝑇𝐿 and 𝐾 ¤𝑒, achieving a more adequate, steady fit than BJ for considerably
high noise levels.

Still, there is room for improvement in the RPEM algorithm implementation. For instance, the covariance matrix
could be updated based on the 𝑉𝐴𝐹 from a validation data set, in order to reduce the strong estimate oscillations that are
observed in state 𝑠2. A forgetting matrix RPEM algorithm could also be implemented, although no MATLAB functions
are available for this setup, so that the algorithm should be built based on the theory explained in Section III. Such a
forgetting matrix could weigh all samples in discrete-time poles estimation, while applying a certain time horizon for 𝑏𝑑0
and 𝑏𝑑1 , as conducted in [10]. Another strategy would consist of applying the PEM algorithm to sub-batches of data
recursively, since this method has shown really high accuracy in all HO coefficient estimations. However, divergence
problems may occur due to wrong initialization, or whether the sub-batches are too small. Additionally, other recursive
BJ algorithms could be explored, such as the RRIV, which can be implemented through the Captain Toolbox [41]. In
particular, this could solve the issues of dependency on initial conditions and convergence rate.

Once the recursive BJ algorithm is refined, conducting a decimation analysis is important to verify the BJ model
structure’s applicability when different sample times are used, as shown by Van Grootheest et al. [10]. When 𝑛𝑘
can not be a multiple of the sample time 𝑇𝑠, or a time-varying delay is given, it is necessary to implement a Padé
approximation [47] that represents the effect of time delay by a transfer function. This approximation increases the
number of discrete-time parameters to be estimated, thus, it may affect the accuracy and convergence of recursive BJ
algorithms. Moreover, other models for remnant dynamics should be evaluated to test the performance of the RPEM
algorithm in a real-life scenario.

Experimental results are also affected by the time delay estimation, which may not be optimal in the calculations
performed in this article. It is more convenient to have an independent time delay estimation algorithm [12, 22] that
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provides an acceptable recursive identification for each subject. This way, the predicted time delay can be introduced
into the BJ structure in the RPEM algorithm. In addition, the model remnant time constant 𝑇𝑛 could be predicted by
means of other methods, although it does not have much effect on the estimation accuracy.

Based on the comparison of RLS and RPEM performance as shown in this paper, an ‘identification method fusion’
could be an interesting alternative. ARX has been proven to give adequate results for the HO gain and lead contribution,
while BJ can remove the bias in NMS coefficients. An ideal identification technique should have the precision of BJ,
but also the adaptation velocity of ARX. Therefore, RPEM could be implemented with a forgetting matrix, so NMS
estimations performed by RLS can be adjusted based on recursive BJ calculations, diminishing the persistent bias in
these coefficients.

VIII. Conclusion
This article lays the foundation for the development of a Human Operator (HO) identification method based on a

Box-Jenkins (BJ) model structure that is able to provide an adequate estimation of the time-varying adaptation of a
human operator in compensatory tracking tasks. A Monte Carlo simulation analysis, based on the experiment conditions
tested by Zaal [11], is conducted to evaluate the performance of the Prediction Error Method (PEM) algorithm (for
offline batch-fitting) and the Recursive Prediction Error Minimization (RPEM) (online recursive fitting). The recursive
BJ estimator employs a constant forgetting factor 𝜆 = 0.99609, based on earlier research [10], and a model remnant
order 𝑚∗ = 1. Furthermore, both Recursive Least Squares (RLS) and RPEM are tested on the experimental data from
three subjects. In batch-fitting, BJ is found to fix all bias problems that are typically present in ARX identification
results. The remnant filter order no longer meaningfully affects the bias and accuracy in BJ estimation, while it clearly
does for ARX. Furthermore, the use of a fixed remnant model order 𝑚∗ = 1 does not change the bias obtained by BJ,
which makes it a suitable model structure configuration. Additionally, BJ presents more robustness than ARX when
facing high noise levels. For (online) recursive estimation, BJ still offers a reduction in persistent bias found in identified
coefficients, while ARX converges to its final estimation 5 times faster, reaching a quicker adaptation to changes in HO
parameters. Except for a first-order remnant case, the RLS algorithm usually captures the HO gain and zero with 0-5%
less bias, while BJ estimates the HO model’s neuromuscular poles with 25% less error. When an 𝑚0 = 1 simulation is
conducted, the BJ model clearly outperforms ARX. Through experimental testing, it is proven that the slow adaptation of
the recursive BJ may lead to excessive fluctuations in the identified HO coefficients. In addition, BJ shows the expected
adaptation of 𝐾𝑒, 𝑇𝐿 and 𝐾 ¤𝑒 less clearly than the ARX outcomes. Overall, this paper contributes to development of
enhanced time-varying HO identification methods, by providing a novel non-linear BJ estimation procedure that can
improve on current widely-used estimation methodologies, especially for offline batch-fitting applications.
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