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Summary  

 

There is currently no supplementary operational system that assists the Air Traffic Control 

Officer (ATCO) in attaining accurate, fast, intuitive and interpretable predictions of Aircraft 

Safety Performance (ASP) enablers through suitable visualisation on the runway or on final 

approach. Thus, this study intends to develop an arrival ATCO support decision tool named 

the Runway Utilisation (RU) support tool. 

The prediction of the ASP enablers is significant for ensuring a safer and efficient 

runway throughput in real-time operations. The RU support tool can become a realistic 

decision-making tool for the ATCO if the following hypothesis can be proved valid for each 

ASP enabler: 

Machine learning can be used to effectively identify ASP patterns, risks and precursors, 

resulting in the extraction of RU requirements for tactical and strategic decision-making. 

 

The RU support tool contributes to improving safety and making better separation 

decisions for aircraft pairs by addressing ASP enablers as defined by ATCOs. Three 

independent ATCOs from different hub airports were interviewed in this study. The following 

ASP enablers were considered to be the most significant due to their subsequent impact on 

runway throughput operations:  

 

(1) Time to Fly (T2F) and True Airspeed (TAS), leading to a better 

characterisation of large spacings or infringements; 

(2) (abnormal) Taxi-Out Times (TXOT); 

(3) (abnormal) Arrival Runway Occupancy Times (AROT) and 

(4) Procedural and Non-Procedural Runway Exit Use (NREX) 

 

These ASP enablers depend on two key precursors. The first precursor is the impact 

of the prevailing meteorological and airport conditions, while the second precursor concerns 

runway congestion and decay of the wake turbulence. The following conclusions can hence be 

drawn in relation to the four ASP enablers along with their subsequent impact on runway 

throughput operations. 

(1) Considering the most important prediction variable – ground speed at 10NM – 

might lead to certain operational issues. In order to be able to predict the T2F in real time, an 

ATCO has to wait until the aircraft is at 10NM. The T2F helps the ATCO calculate the 

compression on final approach using, for example, the Time Based Separation (TBS) concept. 

The dynamic TBS for the follower aircraft must be known before 10NM. Therefore, it is 

suggested to predict the Ground Speed (GS) at 10NM of the previous aircraft (based on the 

historical flight information of that time period). Moreover, the computational time (10 

seconds) might be too large for real-time operations. We conclude that our hypothesis is not 

true for the ASP enabler T2F and TAS. Tactical predictions should be produced faster, and 

tactical and strategic decisions should be made before 10NM in this case. 



viii 
 

(2) From our prototype, we can conclude that machine learning (ML) is feasible for 

extracting precursors and patterns that support the controller when it comes to tactical and 

strategic decision-making. TXOT precursors were mainly observed when the unimpeded time 

was larger than 22 minutes and the congestion level was greater than 32 movements per hour. 

The downside of our model is that we did not have access to a Real Time Simulation (RTS) 

that could validate this ASP enabler in a Charles de Gaulle (CDG) environment. Furthermore, 

the computational time (80 seconds) was too large for testing the model in a real-time 

operational environment. 

 (3) It can be noted that we can use Classification and Regression Tree (CART) to 

extract abnormal AROT patterns, risks and precursors for tactical and strategic decision-

making. Therefore, the AROT conclusions for the RU requirements, ATCO operational needs 

and operational feasibility are addressed in Section 8.1. 

(4) We concluded that we can use Gradient Boosting to extract NREX patterns, risks 

and precursors for tactical and strategic decision-making. The risks and the most important 

NREX precursors were identified for cases in which the throughput was lower than 28 landings 

per hour, the Cloud layer was less than 8750m, the Groundspeed at 2NM was higher than 

147kts, the WMAWindSpeed was lower than 29kts and the Groundspeed at 5NM was higher 

than 155kts. These precursors could be used during similar situations, thereby allowing the 

ATCO to anticipate a non-procedural exit (intuitive). NREX operational needs, operational 

feasibility and RU requirement conclusions are presented in Section 8.1. 

AROT and NREX were selected, as they allow us to make intuitive, interpretable, 

visual, quick and accurate decisions through suitable visualisation. Therefore, we conducted 

an operational needs and operational feasibility study to analyse the manner in which our RU 

support tool (AROT and NREX) can be used by ATCOs in their decision-making and planning 

in order to ensure safety and efficiency (accurate, fast, intuitive and interpretable) of airport 

operations through suitable visualisation. The feasibility study was conducted with an ATCO 

RTS tool. 

Therefore, based on the findings from the validation activity, the validation was 

completed and the ML RU tool was reported to meet controllers’ operational needs and provide 

certain safety benefits. The impact of an ML RU controller support tool on controllers’ work 

and runway operations requires further investigation in follow-on validation activities. 

Potential benefits and impacts relating to the ML RU controller support tool that require more 

detailed investigation in upcoming validation activities are outlined in Section 8.3. 

Finally, the ATCOs concluded that the RTS was successful in predicting both AROT 

and NREX. They observed improved operations in certain weather conditions, including an 

increased runway throughput and potential for a greater level of safety. In conclusion, the result 

of the present research study presents a new RU tool that enables the provision of unique 

interpretable and intuitive information from AROT and NREX patterns on final approach and 

the runway. The Gradient Boosting technique proves ideal for the detection of patterns, risk 

and precursors. When predicting the NREX, 95 decision trees and 12 features were used. 

Consequently, tactical and/or strategic decisions can be supported using this approach. 
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Samenvatting  

 

Momenteel bestaat er geen aanvullend operationeel systeem dat de Air Traffic Controller 

(ATCO) helpt bij het voorspellen van Aircraft Safety Performance (ASP) enablers op en rond 

de startbaan of bij de nadering van de startbaan, rekening houdend met vijf aanwijsbare 

vereisten: nauwkeurige, snelle, intuïtieve en interpreteerbare ASP-voorspellingen verstrekt 

door een geschikte visualisatie. Daarom zal deze studie een ATCO-beslissingsondersteunings 

hulpmiddel voor landende vliegtuigen ontwikkelen, RU genaamd, dat staat voor Runway 

Utilisation voorspellingstool. 

 Deze ASP voorspellingen kunnen zeer waardevol zijn voor een veiligere en 

efficiëntere doorvoer van vliegtuigen  op en rond de landingsbaan  tijdens de werkelijke inzet 

(real-time operations). De RU voorspellingstool kan een realistische besluitvormings 

onderdeel worden als de volgende hypothese geldig kan worden bewezen voor de hier later 

benoemde ASP-enablers: 

 

Machine Learning kan worden gebruikt om effectief ASP-patronen, risico's en voorbodes te 

identificeren, resulterend in de extractie van RU voorwaarden voor tactische en strategische 

besluitvorming. 

 

De RU voorspellingstool draagt bij aan het verbeteren van de veiligheid en het nemen van 

betere scheidingsafstandsbeslissingen voor vliegtuigparen door het nader bestuderen van ASP-

enablers, zoals gedefinieerd door ATCO's. Drie onafhankelijke ATCO's van verschillende 

grote luchthavens werden geïnterviewd. De volgende ASP-enablers werden door hen als meest 

belangrijk beschouwd vanwege hun invloed op de doorvoer van landende vliegtuigen: 

 

(1) Time to Fly (T2F) en True Airspeed (TAS) welke leiden tot een betere 

karakterisering van grote of te korte afstanden op het laatste stuk voor de landing; 

(2) (abnormale) Taxi-Out Tijden (TXOT); 

(3) (abnormale) Runway Occupancy Tijden (AROT) en 

(4) Procedureel en niet-procedureel gebruik van de baanuitgang (NREX). 

 

 Deze ASP-enablers zijn afhankelijk van twee voorbodes. De eerste is de invloed 

van de heersende meteorologische en luchthavenomstandigheden, waarna de tweede de 

landingsbaanverzadiging en het verval van de turbulentie betreft. De volgende conclusies 

kunnen worden getrokken met betrekking tot de vier ASP-enablers, beoordeeld op hun invloed 

op de doorstroom van landende vliegtuigen op en rond de landingsbaan. 

 

  (1) Kijkend naar de belangrijkste voorspellingsvariabele - grondsnelheid bij 10NM 

- kan leiden tot bepaalde operationele problemen. Om de T2F in real-time te kunnen 

voorspellen, moet een ATCO wachten tot het vliegtuig zich op 10NM bevindt. De T2F 

ondersteunt de ATCO  om de samendrukking afstand te berekenen met behulp van 

bijvoorbeeld het Time Based Separation (TBS) concept. De dynamische TBS voor het 

volgvliegtuig moet vóór 10NM bekend zijn. Daarom wordt voorgesteld om de grondsnelheid 
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(GS) te voorspellen op 10NM van het vorige vliegtuig (op basis van historische 

vluchtinformatie van die periode). Bovendien kan de rekentijd (10 seconden) te groot zijn voor 

real-time bewerkingen. We concluderen dat onze hypothese niet waar is voor de ASP enabler 

T2F en TAS. Tactische voorspellingen moeten sneller worden gemaakt en tactische en 

strategische beslissingen moeten in dit geval vóór 10 NM worden genomen. 

 (2) Uit ons prototype kunnen we concluderen dat Machine Learning (ML) haalbaar 

is voor het extraheren van voorbodes en patronen die de ATCO ondersteunen bij tactische en 

strategische besluitvorming. TXOT voorbodes werden vooral waargenomen wanneer de 

ongehinderde TXOT tijd groter is dan 22 minuten en het verzadigingsniveau groter is dan 32 

bewegingen per uur. Een tekortkoming van ons model is dat we geen toegang hebben tot een 

Real Time Simulation (RTS) die deze ASP-enabler in een Charles De Gaulle (CDG) omgeving 

kunnen valideren. Bovendien is de rekentijd (80 seconden) te groot om het model in een real-

time operationele omgeving te testen. 

 (3) Er kan worden geconcludeerd dat we de classificatie- en regressieboom 

(CART) kunnen gebruiken om abnormale AROT-patronen, risico's en voorbodes te extraheren 

voor tactische en strategische besluitvorming. Daarom worden de AROT-conclusies voor de 

RU voorwaarden, operationele behoeften en operationele haalbaarheid van ATCO behandeld 

in paragraaf 8.1. 

 (4) Geconcludeerd kan worden dat we Gradient Boosting kunnen gebruiken om 

NREX-patronen, risico's en voorbodes te extraheren voor tactische en strategische 

besluitvorming. Risico's en de belangrijkste NREX voorbodes werden geïdentificeerd voor 

gevallen waarin de doorvoer lager is dan 28 landingen per uur, de Cloud-laag kleiner is dan 

8750m, de Grondsnelheid bij 2NM hoger is dan 147kts, WMAWindSnelheid lager is dan 29kts 

en de Grondsnelheid bij 5NM hoger is dan 155kts. Deze aanwijzingen kunnen worden gebruikt 

in vergelijkbare situaties waardoor de ATCO kan anticiperen op een niet-procedurele exit 

(intuïtief). NREX operationele behoeften, operationele haalbaarheid en RU voorwaarden 

conclusies worden gepresenteerd in paragraaf 8.1. 

 

 AROT en NREX werden geselecteerd omdat ze ons in staat stellen om intuïtieve, 

interpreteerbare, visuele, snelle en nauwkeurige beslissingen te nemen door geschikte 

visualisatie. Vervolgens hebben we een operationele behoeften- en operationele 

haalbaarheidsstudie uitgevoerd waarin we hebben geanalyseerd hoe onze real-time RU-

voorspellingstool (AROT en NREX) door ATCO's kan worden gebruikt bij hun 

besluitvorming en planning om veiligheid en efficiëntie (nauwkeurig, snel, intuïtief en 

interpreteer baar) van luchthavenactiviteiten door geschikte visualisatie (hoofdstuk 7). De 

haalbaarheidsstudie werd uitgevoerd in een ATCO RTS-tool. 

 Uiteindelijk kunnen we op basis van de bevindingen van de validatieactiviteiten 

concluderen dat het ML RU-hulpmiddel voldoet aan de ATCO operationele behoeften en 

mogelijke veiligheidsvoordelen biedt. De impact van een ML RU-controller 

ondersteuningstool op de operationele werkuitvoering van de ATOC's moet verder worden 

onderzocht in een vervolg validatieactiviteit. Potentiële voordelen en effecten met betrekking 

tot het ondersteuningsinstrument worden beschreven in paragraaf 8.3 en zullen nader worden 

onderzocht in de komende validatieactiviteiten. 
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 Tenslotte concludeerden de ATCO's dat de RTS succesvol was in het voorspellen 

van zowel de AROT als de NREX. Ze zagen verbeterde operaties in bepaalde 

weersomstandigheden, waaronder een verhoogde doorvoer van vliegtuigstromen op de 

landingsbaan en een potentieel verhogend veiligheidsniveau. We concluderen dat het resultaat 

van het huidige onderzoek een nieuw RU-tool is die het mogelijk maakt om unieke 

interpreteerbare en intuïtieve informatie te bieden uit AROT en NREX-patronen voor de 

uiteindelijke nadering naar en landing op de landingsbaan. De Gradient Boosting-techniek is 

ideaal voor het detecteren van patronen, risico's en voorbodes. Wanneer we de NREX 

voorspellen met deze techniek hebben we 95 classificatiebomen nodig en 12 features. 

Tactische en/ of strategische beslissingen worden ondersteund met behulp van deze aanpak. 
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List of Definitions 

 

Term Definition 

Abnormal 

behaviour 

Abnormal behavior is any behavior that deviates from what is 

considered normal. The abnormal behavior threshold value for each 

(Aircraft Safety Parameter) ASP enabler is shown at the ASP risk 

definition. 

Accurate ASP 

enablers 

predictions 

An ASP enabler statement about what will happen in the future. The 

following Mean Squared Error (MSE) or accuracy values have been 

applied in this study to judge if a model is accurate:  

 Time to Fly (T2F) MSE < 15 seconds  

 Taxi-Out Time (TXOT) MSE < 2 minutes  

 Arrival Runway Occupancy Time (AROT) MSE < 6 seconds  

 Runway Exit Use (NREX) accuracy > 80% 

AROT The Arrival Runway Occupancy Time. The time when the aircraft is 

above runway threshold, until the time the aircraft is clear of the 

runway. 

ASP enablers Aircraft behaviour that impacts runway throughput and safety, as 

defined by ATCO; the parameters considered in this study are AROT, 

TXOT, NREX, T2F and TAS. 

ASP pattern  Pattern is an underlying structure that organizes structures in a 

consistent, regular manner. AROT, NREX and TXOT patterns are 

defined by the regression or classification tree, which gives, per 

terminal leaf, a distribution describing the relation between an ASP 

enabler and the precursor features. These patterns and precursors can 

be transferred into “what-if” statements by analysing the relations 

between the ASP enabler and the precursors. 

A pattern for the ASP enablers T2F and TAS are defined as the normal 

distributions (from –2 to +2 sigma) of T2F and TAS for a given flight 

and for a range covering the last 10NM of the final approach. 

ASP precursor  A precursor is one that precedes and indicates the approach of another. 

A metrological or aircraft feature that precedes and indicates the 

approach of an ASP pattern or risk. 

ASP risk The likelihood that the potential for the accident or the incident will 

be realized1. An ASP risk is considered when the following threshold 

values are met, including an accurate prediction during HIRO: 

 The minimum time separation between an aircraft pair is 

smaller than the minimum ICAO Separation per aircraft 

                                                
1 International Civil Aviation Organization (ICAO) Doc 9859   
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pair2. This separation scheme is translated back from distance 

to time (T2F) during low wind conditions (< 5kts headwind)3 

 The abnormal TXOT is higher than 25 minutes 

 The abnormal AROT is higher than 2σ standard deviation 

from the normal distribution mean 

 The aircraft misses its intended runway exit as defined by the 

Aeronautical Information Publication (Table 6.1) 

ASP safety The condition of being protected from or unlikely to cause risk. The 

predicted TXOT, AROT, NREX, T2F and TAS enable the ATCO to 

anticipate the prediction. This study contributes to the following 

aspects of safety: 

 AROT and NREX, to request the leader to expedite an exit 

earlier or request the follower to apply speed deceleration, 

which could lead to a potential avoidance of an infringement 

or go-around 

 TXOT, to have a more accurate holding point time estimate 

during mix-mode operations 

 T2F/TAS, to request the follower to apply speed 

deceleration, which could lead to a potential avoidance of an 

infringement or go-around 

ATCO Air Traffic Control Officer 

Clear 

visualisation 

The act of visualizing something. Showing accurate ASP enabler 

predictions next to the airplane and on the Human Machine Interface 

(HMI) final approach; showing the value only on the HMI when the 

following criteria are met: 

 fast and accurate ASP prediction 

 when an ASP enabler exceeds a threshold (ASP risk) 

Effectively  In such a manner as to achieve a desired result. In this study it is the 

achievement of the Runway Utilisation (RU) requirements.  

Fast ASP 

predictions 

A prediction that is happening quickly. The quickest real time 

prediction should be the shortest time possible to take a useful ATCO 

action using it. A fast solution has less than five seconds between the 

prediction and the ATCO action. 

Feasible machine 

techniques  

Is capable of being done or carried out. The machine learning (ML) 

techniques proposed are based on the criteria in Section 2.4 and the 

potential of fitting the RU requirements.  

                                                
2 International Civil Aviation Organization (ICAO) Doc 4444 
3 Herrema, F., Curran, R., Zhao, W., Treve, V., & Graham, R. (2015). Time Based Separation: 

A study into runway compression and time based separation. In 15th AIAA Aviation 

Technology, Integration, and Operations Conference (p. 2430). 
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Infringements  An aircraft pair on final approach where the minimum required 

distance is not maintained. 

Intuitive and 

interpretable ASP 

predictions 

To understand the driving precursors and explain these precursors 

during a similar situation; explaining and showing driving precursors 

when an ASP enabler exceeds a threshold (ASP risk); the threshold 

values during high intensity runway operations are presented in the 

ASP risk definition.  

NREX Procedural or non-procedural runway exit taken. 

Operations ATCO’s performance of a practical work.  

Real-time 

(operations) 

Serve real-time applications that process data as it comes in. In this 

context, the ATCO support-decision tool aims to make fast ASP 

predictions for tactical decision-making. The data should be processed 

within five seconds such that it is immediately available virtually as 

feedback for the ATCO with regards to the process from which it is 

coming. 

RU requirements Fast, accurate, intuitive, interpretable predictions through feasible 

visualisation.  

Runway 

throughput 

It is a measure of the capacity of a runway. It defines the average 

movements (both arrival and departure) that can be performed in an 

hour’s time. 

RU support tool A computer program application that analyses data and presents it so 

that users can make decisions more easily. In this study it is considered 

as the supplementary operational ATCO support decision tool that 

assists the ATCO in predicting ASP enablers in consideration of the 

identified Runway Utilisation (RU) requirements. 

Strategic 

decision-making 

It involves the span of the next one or two hours from the moment of 

prediction and can be used by the ATCO supervisor to decide on 

changing aircraft pairs of the final approach sequence. 

T2F Time to fly till runway threshold. 

Tactical decision-

making 

It is performed over several seconds, enabling ATCOs to be warned 

about any impending runway capacity issues. 

TAS True airspeed on final approach. 

TXOT The time elapsed between the off-block time and the take-off time. 
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1.0  Introduction  

 

Many of today's major airports are often unable to handle the traffic demand. The busiest 

airports are already saturated, and there are political and environmental issues associated with 

further airport expansions. Considering the expected further growth in air traffic demand [1, 

2] (doubling in the next 20 years), there is an urgent requirement for runway capacity 

improvements in a safe and environmentally responsible manner.  

Safety and runway throughput capacity is, to a large extent, determined by the wake 

vortex separation criteria applied during instrument operations. Air Traffic Controllers 

(ATCOs) are responsible for applying these strict separation criteria. Similarly, they are 

responsible for the planning and spacing management to optimise the runway throughput. 

Separation management and standards are crucial for the efficient use of airspace resources 

and efficient airport operations [3]. 

 

1.1 Research context 

Currently, at many airports, the runway throughput is the limiting factor for the overall 

capacity. Among the crucial parameters limiting the arrival flow at airports are the wake 

turbulence separation minima expressed in distance and the uncertain speed variations in speed 

profile between two successive arrivals on final approach [4]. For dealing with these 

limitations, ATCOs apply a buffer based on training and experience for ensuring minimum 

separation.  

The size of the applied buffer does not only depend on the speed and time to fly profile 

but also on the runway exit utilised or the arrival runway occupancy time of the lead aircraft 

of two successive arrivals [5, 6]. In so-called mixed-mode operations, an ATCO may want to 

insert a departure flight between two successive arrivals when the gap between the two arrivals 

is sufficiently large to permit this. To be able to accomplish this, an ATCO needs an accurate 

estimate of the time at which the departing aircraft reaches the runway holding position. More 

accurate holding point time estimates can be realised through a better understanding and 

prediction of the taxi-out time. Research has shown [5] that the aforementioned experience can 

be quantified and thus predicted to facilitate optimum operations. This experience and terms 

highlighted in italics are covered by the name Aircraft Safety Parameter (ASP) enablers. 

The existing arrival wake vortex separation minima, usually expressed as fixed distance 

values, are generally considered to be over-conservative [7]. At many hub airports these fixed 

separation values depend only on the aircraft weight categories as defined by the International 

Civil Aviation Organisation (ICAO): Heavy, Medium and Light. 

Currently, different wake vortex separation rules are applied during the final approach 

that are typically expressed in terms of distance. In the coming years, distance-based separation 

is expected to be gradually replaced by time intervals and/or speed compensation at airports 
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where strong wind conditions apply. The problem is that each aircraft of a (leader-follower) 

pair flying on final approach differs in speed, causing the separation between two succeeding 

aircraft to either increase or decrease. Decreasing separation leads to an inherent safety risk 

due to the phenomenon of wake turbulence.  

To optimise runway throughput, it is not only necessary to refine the separation criteria, 

as is the objective of dynamic and flexible separation concepts, but also to better understand 

and avoid operational risks. Providing a support system to aid the controllers in their separation 

management and assurance tasks has the potential to yield significant benefits in terms of 

improved throughput efficiency. Such concepts are currently being developed in the SESAR 

(Single European air traffic management (ATM) Research) program. SESAR is a collaborative 

research programme oriented to completely overhaul European airspace and its ATM [8]. 

An example of a refined separation criteria is the new, more complex concept for 

reduced separation minima for aircraft pairs – the European Wake Vortex Re-categorisation 

(RECAT-EU). RECAT-EU offers a more refined categorisation of aircraft types than the 

traditional ICAO approach. It aims at safely increasing airport capacity by redefining wake 

turbulence categories and their associated separation minima. It divides the current Heavy and 

Medium categories into two sub-categories, e.g. creating a new Super Heavy category for the 

Airbus A380 [4]. 

The development and refinement of wake vortex separation rules is sensitive to the 

dynamic influences of wake behaviour [7]. For instance, ATCOs [9] suggested that fixed over-

conservative separation values such as RECAT-EU could be refined by addressing additional 

ASP enablers for identifying precursors and avoiding accident or incident risk. Therefore, 

proper ASP prediction is required to further avoid incidents and reduce spacing uncertainty.  

 

1.2 Runway Utilisation prediction  

 

Taking ASP enablers and precursors into account might help ATCOs to make better separation 

assurance, resulting in potentially safer operations and probably also higher capacity in certain 

weather conditions. This could potentially provide significantly more efficient spacing criteria 

in lieu of the worst-case criteria currently used but without increasing the risk associated with 

wake encounters. 

 Currently, ATCOs make use of Arrival Manager (AMAN) and Departure Manager 

(DMAN) tools. AMAN systems provide automated sequencing support for approach and 

runway ATCOs, while continuously optimising arrival traffic sequences and runway slot times 

for landing aircraft. This is accomplished by a more efficient and predictable arrival 

management process that can assist in reducing low-level holdings and tactical intervention by 

the ATCO. AMAN considers the locally defined maximum landing rate (capacity), the 

required separation standards for aircraft in the touchdown zone and additional operational 

criteria. DMAN is an advanced controller tool for optimising runway throughput. To achieve 

optimal use of runway capacity and airspace capacity in the Terminal Management Area 

(TMA), a DMAN assists the ATCO in managing departure traffic by providing optimised take-

off sequences when considering departure trajectories. AMAN and DMAN tools are essential 

controller aids that provide guidance and ensure the best use of the available runway capacity 

(i.e. maximum throughput). Both tools can provide the controller with advice on tactical or 
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strategic runway capacity decisions but without the associated precursors. Tactical decision-

making is performed over a horizon of several seconds, enabling ATCOs to be warned about 

any impending runway capacity issues. Strategic decision-making involves a horizon of the 

next 1 or 2 hours from the moment of prediction and can be used for the ATCO supervisor to 

decide on changing aircraft pairs of the final approach sequence. 

Based on the current AMAN/DMAN state-of-the-art and ATCO interviews [9], research 

requirements were identified as part of this work and are highlighted below in italics in 

brackets. 

An additional support tool providing real-time alerts (fast predictions) is expected to 

be an advantage if not a necessity in a future environment of High Intensity Runway 

Operations (HIRO), in which the associated risk of a loss of separation between aircraft has a 

direct negative impact on safety and accident and incident avoidance. Fast predictions are only 

useful if the ATCO has enough time to take an action during real-time HIRO.  

Therefore, ATCOs operating at hub airports are moving towards proactive risk 

management [10], which aims to identify, understand (intuitive) and predict ASP risk and 

precursors (interpretable) to mitigate the risks associated, thereby avoiding accidents or 

risking incidents during HIRO. Intuitive and interpretable decisions are useful when an ASP 

enabler exceeds a certain threshold. For example when a loss of separation between two A380s 

lower is than 120 seconds, resulting in a negative impact on safety. To increase the accuracy 

of the spacing between aircraft, the development of an ATCO support tool to alert the ATCO 

(clear visualisation) with (accurate) predicted ASP enablers that impact runway throughput 

and safety is considered as necessary [9]. 

Currently, there is no supplementary operational system that assists the ATCO in 

predicting ASP enablers on the runway or on final approach, considering the five identified 

requirements, highlighted in italics in brackets. Therefore, this study will develop an arrival 

ATCO support decision tool named RU which stands for Runway Utilisation support tool. 

 

Considering the urgent requirement for a fast, accurate, interpretable and intuitive 

model to the creation of the RU support tool, we can now formulate the primary research 

question: 

 

How to identify and analyse runway utilisation requirements, runway-throughput and safety 

to extract ASP patterns, risks and precursors on the runway and final approach in order to 

model and support tactical and strategical decision-making and alerting solutions? 
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1.2.1 Runway Utilisation prediction requirements 

 

RU requirements can be formulated for working with the envisaged RU tool during real-time 

operations with the following four requirements being the most important ones: 

1) Making fast ASP predictions, allowing ATCO to quickly decide and anticipate the 

leader or follower aircraft during real-time operations. The quickest real time 

prediction should be the shortest time possible to take a useful ATCO action using it. 

A fast solution [9] has less than five seconds between the prediction and the ATCO 

action. 

2) Making accurate ASP predictions, allowing ATCO to rely on these enablers and 

making trustworthy decisions for the leader or follower aircraft. Accuracy is a 

measure of how well samples are classified to the correct category. Accuracy is one 

metric for evaluating classification models. In regression analysis, it is a measure of 

how well the model predicts the response variable. The List of Definitions show the 

accuracy or regression values per ASP enabler. 

3) Being intuitive and interpretable, which allows ATCO to understand the driving 

precursors and understand and explain these precursors during a similar situation. 

Explaining and showing driving precursors when an ASP enabler exceeds a threshold 

(ASP risk) and when the model is accurate. The threshold values during high 

intensity runway operations can be found in the List of Definitions. 

4) Clear visualisation. Showing accurate predictions next to the airplane and on the final 

approach Human Machine Interface (HMI). Showing ASP value only on the HMI 

when the following criteria are met: 1) fast and accurate ASP prediction and 2) when 

an ASP enabler exceeds a threshold (ASP risk). 

 

Different approaches can be considered to address the aforementioned requirements and to 

develop the RU tool. Predicting ASP enablers and aiming at the RU requirements are the 

ingredients when developing the RU tool. The ASP enablers are predicted based on historical 

runway and final approach aircraft performance data under wind uncertainty (Chapter 3–6). 

The data that is utilised within this study has unknown ASP patterns and precursors [11], 

making it a stochastic problem [12]. Therefore, three approaches were selected based on the 

data used within this study for predicting ASP enablers. The following stochastic approaches 

are proposed; data mining [13], optimisation methods [14] and artificial intelligence [15].  

Table 1.1 shows the RU requirements on the upper row and suitable approaches on the first 

column.  
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Table 1.1: RU requirements and identified approaches.  

 Fast  Accurate Interpretable and intuitive Clear visualisation 

Data mining methods     

Optimisation 

methods  

    

Artificial Intelligence 

methods  

    

 

The following explains the relevance of each and the colouring in Table 1.1. 

 

Data mining refers to the process of discovering patterns in large historical data sets [13]. We 

use data mining analysis for knowledge discovery. It is expected that by analysing historical 

weather, airport and aircraft performance data, a better understanding and prediction of ASP 

enablers will be realised. However, data mining cannot merge and clean data sets [16]. 

Furthermore, it does not permit interpretable and fast predictions [16].  

Optimisation methods aim to generate fast and accurate solutions as the goal of optimisation 

methods is to find an optimal or near-optimal solution with low computational effort [17]. The 

effort of an optimisation method can be measured as the computational time and computer 

memory required by the method. For many optimisation methods, there is a trade-off between 

solution quality (accurate) and effort (fast) as with increasing effort, the solution quality 

increases [17, 18]. The most commonly used optimisation methods are decision rules and 

Heuristics which provide interpretable and clear visualisation results [17]. 

Artificial Intelligence (AI) is the simulation of human intelligence processes by machines, 

especially computer systems. These processes include: the acquisition of information and rules 

for using the information (learning), using rules to reach approximate or definite conclusions 

(reasoning) and using or creating rules when additional data is fed to the model (self-

correction). The rapid evolution and adoption of AI analyses in various industries (such as 

aviation) has led to more efficient AI analytical methods for improving efficiency in operations 

[19]. The data used to design the RU tool is stochastic, making it suitable for AI. AI is the only 

method that covers all RU requirements: clear visualisation, accurate, fast, intuitive and 

interpretable [20] predictions.  

 

1.2.2 Validating ASP enablers 

 

The RU support tool developed in this thesis needs to be tested and validated on operational 

needs, operational feasibility/ acceptability and RU requirements before it can deployed at hub 

airports.  

The ATCO Real Time Simulation (RTS) and ORD (Optimised Runway Delivery) 

tool developed by EUROCONTROL is used to validate the predicted ASP enablers. The 

EUROCONTROL tool is the first ATCO system vision in Europe [5] that integrates and tests 

the operational feasibility of different runway throughput enhancement solutions. It provides 

a dynamic application for separation and safety indicators that enable consistent and efficient 

delivery of the required separation or spacing between arrival pairs on final approach for the 

runway landing threshold. Different throughput solutions such as Time-Based Separation 
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(TBS), have already been tested in the ORD tool before being deployed and operational at 

London Heathrow and Vienna airports [21].  

 

 
 

Figure 1.1: The EUROCONTROL ORD tool which integrates different conventional 

constraints impacting runway throughput enhancement solutions. 

 

Figure 1.1 presents the system layout for the ORD tool. The flight schedule and the initial 

landing sequence is provided to the ORD tool based upon the order of the predicted landing 

times. The tool computes the Target Distance Indicators (TDIs) for each aircraft pair when the 

required spacing criteria are met and displayed on both the Approach and Tower ATCO 

working positions. The TDIs comprise a Final Target Distance indicator (FTD) and an Initial 

Target Distance indicator (ITD). The FTD calculation represents the minimum required 

separation or spacing depending on the most constraining factor (e.g. TBS and Wake 

separation, Surveillance Minima (MRS), Arrival Runway Occupancy Time (AROT), or a gap 

inserted by the final approach ATCO) to be applied at the point of separation delivery, in this 

case, the runway threshold. Currently, the employed fixed over-conservative separation values 

do not consider ASP enablers as defined by ATCOs [9], thereby lacking ASP predictability. 
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The necessity for developing the RU tool and validating accurate ASP enablers using 

an RTS tool (such as ORD) allows ATCOs to anticipate increased air traffic demand and events 

[9] that impact the runway throughput or safety concerns.  

 

1.3 Hypothesis and objectives 

 

We identified several requirements in Section 1.2 that need to be fulfilled to integrate multiple 

operational improvements through a single RU support tool. The ATCO support tool can 

become a realistic decision-making tool if the following hypothesis can be proved valid for 

each ASP enabler: 

 

ML can be used to effectively identify ASP patterns, risks and precursors resulting in the 

extraction of RU requirements for tactical and strategic decision-making. 

 

Before we can address the hypothesis for each ASP enabler, key objective 1 must first be 

addressed: 

 

1. To assess ML techniques, their different features and the amount of data to identify 

ASP enablers  

 

Here we identify applicable and feasible ML techniques and lessons learned with regard to 

collecting, combining, processing and analysing data in ATM and other domains. Through 

assessment and modelling, many core ML techniques, different data samples and sources need 

to be covered. It is crucial to understand which ML techniques are feasible for addressing 

different ASP risks (e.g. unnecessarily large spacing on final approach, missed runway exits, 

abnormal AROTs or TXOTs), using different data set sizes and sources. Different features 

impacting the runway were used and different ML techniques were assessed with respect to 

their forecast performance, computational time and amount of data required for an accurate 

prediction.  

 

After assessing objective 1, the hypothesis is addressed (objective 2), which will be presented 

in Chapter 8.1. For each ASP enabler, it was determined whether the RU requirements 

highlighted in Section 1.2 can be extracted using ML. 

 

2. To address the testing of the hypotheses for each ASP enabler identified 

Literature and interviews indicate that identifying patterns, risks and precursors from historical 

and real-time information has never before been implemented mathematically in a support 

decision tool for the ATCO. Therefore, this work will focus on tactical and strategic 

predictions and decision-making. 
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 Tactical prediction is performed over a horizon of several seconds from the moment 

of prediction, enabling tactical operation tools to be fed and ATCOs to be warned 

about certain events along with their associated precursors. 

 Strategic prediction involves a horizon of 1 or 2 hours and can be used either as a 

strategic operational tool for the ATCO supervisor to decide on the final approach 

sequence, or can be used as a strategic input for the RTS ORD tool. 

 

Objective 3 can only be addressed if the hypothesis is true for that corresponding ASP enabler. 

Key objective 3 can now be formulated: 

 

3. To validate the RU requirements and operational feasibility and acceptability of the 

RU tool in the RTS simulator  

The following validation process will need to be adaptable to meet the requirements (identified 

in Section 1.2) for the RU support tool: 

 Ensuring accurate, fast, intuitive and interpretable ASP predictions provided through 

suitable visualisation. These predictions are valuable assets for ensuring a safer and 

efficient runway throughput. 

 Assessing the performance of the RU system through the following set of indicators: 

operational needs and operational feasibility and acceptability. 

 

1.4 Methodology and novelty    

  

This work contributes to improving safety and making better separation decisions for aircraft 

pairs by addressing ASP enablers as identified in [5] and defined by ATCOs [9]. Three 

independent ATCOs from different hub airports were interviewed. The following ASP 

enablers were considered most significant due to their subsequent impact on runway 

throughput operations:  

(1) Time to Fly (T2F) and True Airspeed (TAS) leading to a better characterisation 

of large spacing’s or infringements (Chapter 3); 

(2) (abnormal) Taxi-Out Times (TXOT – Chapter 4); 

(3) (abnormal) Arrival Runway Occupancy Times (AROT – Chapter 5) and 

(4) Procedural and non-procedural runway exit used (NREX – Chapter 6). 

These ASP enablers depend on two key precursors. The first precursor is the impact 

of the prevailing meteorological and airport conditions [19, 30], while the second precursor 

involves the runway congestion and decay of the wake turbulence [31, 32].  

The focus of the research methodology is to identify and understand RU requirements 

and ASP patterns, as well as to show ASP precursors and risks impacting runway throughput 

and safety. To identify these patterns, risks and precursors, feasible ML and BD techniques 

were used. The ASP enablers were assessed through the three objectives highlighted in Section 

1.3. An overview of the methodology is illustrated in Figure 1.2 below; 
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Figure 1.2: Methodology for investigating the ASP enablers. 

In this dissertation, we apply the methodology highlighted in Figure 1.2 to investigate the ASP 

enablers: NREX, TXOTs, AROTs, T2F and TAS. The methodology begins with Step 1 in 

which we review and assess predicted ASP enablers regarding data, problems and ML 

techniques. In Step 2, ASP patterns, abnormal behaviour, risk and precursors are identified 

using feasible ML and BD techniques. In Step 3, a Validation on RU requirements, operational 

needs and operational feasibility is executed using EUROCONTROLs ATC RTS tool. Finally, 

we close the loop and return to Step 1 by adding additional data and updating ASP patterns 

and risks. 

 

Novelty 

This dissertation significantly advances the current practice of ATCO decision-making support 

on final approach. It specifically addresses the suitability of ML for improving ASP 

predictability using historical data and precursors. No known work has previously undertaken 

the task of developing an RU support tool for ATCO. The uniqueness of the ML field with the 
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use of ASP precursors, abnormal historical data and applying real-time support tools to the 

problem resulted in a novel solution tool. The novelty of this thesis can be summarised as 

follows: 

 

1) The suitability of ML for improving ASP enabler predictability using historical data:  

By addressing key objective 1, a better understanding of the ML suitability will be 

obtained. ML techniques have been assessed for each ASP enabler with respect to 

their different features and the amount of data required. 

2) The real-time feasibility of ML being used:  

The computational time is assessed for each ASP enabler (key objective 1). Only 

accurate predictions with low computational time can be validated in the RTS and 

used during real-time operations. 

3) Using abnormal historical data and precursors to further improve predictability  

Novelty statement 3 is part of validating the hypothesis.  Abnormal historical data and 

precursors are extracted using ML. For each ASP enabler, it is observed whether the 

predictability increases with the use of this data.  

 

1.5 AI in aviation industry  

 

In Section 1.2.1, it was explained why AI is the best approach for addressing the ATCO 

requirements: clear visualisation, accurate, fast, intuitive and interpretable predictions. The 

following Section elaborates on the feasibility of using AI methodology. The efficient 

deployment of the RU tool for ATCOs requires a reliable ASP prediction and clear 

visualisation of intuitive and interpretable precursors impacting the runway. This study will 

promote such a deployment through a better understanding of the mentioned ASP enablers, 

leading to safer and more efficient spacing.  

AI can be divided into two sub-domains: Big Data (BD) and Machine Learning (ML). 

In this context, BD and ML can be used to identify patterns in previous data [22], leading to 

specific ASP enabler shortfalls on the runway. These ASP enablers can be predicted during 

real-time operations but also for strategic decision-making. 

Due to the explosion in the capacity to acquire, store and analyse sizeable datasets 

with ML in recent years, analytical models are gradually being replaced by powerful data 

analysis solutions in most industries. This new technology yields notably reliable results in 

optimising scenarios where there are many factors that influence the value of an ASP enabler, 

such as the time to fly of an aircraft on final approach [23]. ML is especially beneficial when 

the relationship between these factors and the predicted ASP enablers is unknown and complex 

[23].  

Over the past few years, the opportunity has arisen at different hub airports to assess 

an increasing amount of short-term evolution of meteorological parameters and historical 

aircraft and airport performance parameters to enhance the expected prediction of ASP 

enablers using ML. As ML techniques are standardly available in many BD libraries and 

because of significantly faster computational time and lower costs, there is a definite interest 

to assess historical data growth to provide accurate ASP predictions.  
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Such predictions would alert ATCO members regarding forthcoming ASP issues to 

transform these issues into understandable precursors for tactical or strategical decision-

making and to propose specific solutions for these safety issues that impact runway throughput. 

An alarm flag should be raised when an ASP risk is expected.  

The illustration below in Figure 1.3 shows an ATCO alert example of the T2F or the 

TAS of the follower. As the follower is flying faster (as the leader slows down earlier) and due 

to the different speed profile characteristics per aircraft type, an infringement for this aircraft 

pair is expected. For these situations the ATCO normally takes a too conservative ITD into 

account [9]. Therefore the tool predicts that an ITD of 0.5NM could be applied to allow safe 

distance separations, instead of the 1NM ITD initially applied.  

The T2F and TAS are continuous variables that are computed depending on variables 

such as aircraft type, the airport and weather conditions. For this example, ML and BD can be 

used to identify patterns and to observe precursors leading to better T2F and TAS prediction. 

The ML techniques will be addressed by modelling the predicted T2F and TAS values under 

different weather conditions and at specific locations before the runway threshold.  

For choosing an appropriate feasible ML technique for assessing ASP enablers such 

as T2F and TAS, first the ML category with which the technique has to comply should be 

identified. The different ML and BD categories and techniques are elaborated in Chapter 2.0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1.3: the left image illustrates normal practices for a Medium aircraft pair when an 

infringement is expected. As shown in the right image an alarm should be raised as the ITD 

could be reduced by 0.5NM between a Medium aircraft pair.  

ITD to be applied = 1NM 

Prediction of ITD = 0.5NM 

FTD = 2.5NM FTD = 2.5NM 
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When considering an AI approach, first the current studies and work previously 

completed in aviation research were explored. AI techniques have been successfully applied 

in many aviation related domains. The authors of [24] proposed the use of the Tabu Search 

algorithm to solve the combinatorial Aircraft Conflict Detection and Resolution problem. They 

reported up to 23% improvement with respect to the Branch and Bound approach on data from 

Fiumicino airport, but their technique was unable to determine a conflict-free sequence in some 

situations. Their results were better on Malpensa airport data without any scheduling issue. In 

[25], the authors proposed the use of Ordinary Least Square (OLS) regression to extract wind 

parameters (direction and speed) from aircraft radar data. They assessed the accuracy of their 

technique using Meteo-France data compared to wind parameters extracted from two 

trajectory datasets (Mode-C radar data from the Paris area and Mode-S radar data from the 

Toulouse area). The study [26] used Random Forests to predict turbulences associated with 

thunderstorms, one of the most significant causes of weather delays. Their approach 

outperformed the basic storm distance and the Graphical Turbulence Guidance (GTG) product. 

More recently, [27] and [28] successfully used Gradient Boosting Machines (GBM) to predict 

the mass and air speed of aircraft during climbing. In [28], the researchers mixed predicted 

mass and (calibrated air speed, M) speed profiles in conjunction with the Base of Aircraft Data 

(BADA) performance model to predict the future trajectory (altitude) of an aircraft during 

climb within a 10-minute horizon. They claimed an improvement of at least 36% in the 

airspeed estimates using their GBM-based approach instead of the reference BADA profiles. 

Similarly, an improvement of at least 45% on the future altitude prediction task was reported. 

It is noteworthy that even with very accurate speed estimates, the altitude estimates might 

remain inaccurate. According to the authors, this might be due to errors in the weather model 

and/or the BADA performance model, particularly the max climb thrust setting approximation 

or inaccurate mass estimations. Another interesting example is the BagTrack project funded 

by The Danish Advanced Technology Foundation. This project aims to improve baggage 

handling quality using Radio Frequency Identification (RFID) baggage tracking data. In [29], 

the authors leveraged decision tree classifiers to identify potential issues in baggage 

management. 

1.6 Outline of the thesis   

 

To address the aim and research objectives and proof the hypothesis, an identification and 

mock-up of suitable ML techniques was performed as presented in Chapter 2 for finding RU 

requirements, runway throughput and ASP patterns on the runway and final approach. Chapter 

3 serves as a background chapter on the topic. Chapter 4 is a journal article published in a peer-

reviewed management journal. Chapters 5 and 6 were published in peer-reviewed journals. 

Chapter 7 is awaiting a decision for acceptance by a peer-reviewed journal. Each of the 

previously published or publication-pending articles has been reproduced here in their original 

format so that they can be read independently. The chapters are described in more detail below. 
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Chapter 2 

Chapter 2 presents existing ML and BD algorithms. First, we introduce ML categories, 

strategies and techniques. Second, the criteria for selecting suitable ML techniques are 

presented. In Chapters 3 to 6, the suitable techniques identified will be assessed on their 

forecasting performance, computational time and the amount of data needed for delivering a 

reliable ASP prediction. 

 

Chapter 3  

In Chapter 2, valuable insights were obtained with regard to feasible ML techniques for ASP 

enablers. These insights were used in our first ML model (Chapter 3). Chapter 3 presents how 

the ML techniques might be used for predicting the T2F and TAS profiles on final approach. 

Different ML techniques were assessed on their forecasting performance, computational time 

and the amount of data needed for delivering a reliable prediction. These techniques were 

applied to the traffic of two different major European airports and were benchmarked against 

the ORD tool using a statistical approach for deriving the T2F and TAS. Consequently, the 

most efficient ML techniques were applied on the two case studies for predicting the T2F and 

TAS. 

 

Chapter 4 

Chapter 4 uses the ML techniques that were considered suitable along with the amount of data 

required. Chapter 4 focuses on how TXOT can be predicted by using the neural networks, 

regression tree, reinforcement learning and multilayer perceptron methods. These four 

methods were assessed based on their performance indicators and were applied to the Charles 

de Gaulle airport operational taxi data and benchmarked against real-life TXOT profiles. The 

root-mean-squared error metric was selected as the essential performance indicator. The 

regression tree appeared to be the most efficient method which was then applied in a case study 

for predicting the TXOT and finding the key related precursors extracted from the top 10 

features. The TXOT prediction ASP enabler was used as a first input for the RU support tool. 

 

Chapter 5 

In Chapter 4 insights involved extracting patterns, risk and precursors using regression trees. 

The tree allows ATCOs to anticipate historical safety risks and how to avoid them in the future 

by understanding the extracted precursors. In Chapter 5, this knowledge is extended by using 

multiple trees in a real-time operational environment. A real-time ML model was developed 

in which the existing ML trees were combined for predicting the abnormal AROTs of unique 

radar data patterns. The regression tree, which was the best performing method, was used in 

this study to observe the key related precursors extracted from the top 10 features. The 

abnormal AROT prediction ASP enabler was used as a second input for the RU support tool. 
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Chapter 6  

This chapter presents a ML method building upon experience with the previous methods 

investigated in Chapters 4 and 5. Particularly, Chapter 5 demonstrated the extraction of 

abnormal behaviour and patterns and how the same can be used for real-time tactical and 

strategical decision-making. This knowledge was used for extracting the NREX. As identified 

in Chapter 3, classification ensembles are particularly suitable for predicting this third ASP 

enabler. In Chapter 6, the existing classification ensembles are assessed on their forecast 

performance and computational time for predicting the NREX. Tests were conducted using 

runway and final approach radar data at Vienna airport. 

 

Chapter 7  

Finally, a validation exercise with EUROCONTROL and proof of concept was performed 

based on the use of feasible ML and BD technologies. The two best performing models – 

abnormal AROT from Chapter 5 and NREX from Chapter 6 – were validated using the 

EUROCONTROL ATC RTS tool. This ensured the best possible use of the existing safety 

data to enhance ASP risk identification and risk assessment at European level. The final RU 

support tool should include a software infrastructure that provides the computational power 

required to receive and analyse the data managed from other airports. The final tactical and 

strategical predictive RU tool updates patterns and can show alerting issues and support 

decision-making for Vienna airport. 
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2.0  Background on Machine Learning and Big Data 

categories and techniques 

 

2.1 Machine Learning categories  

 

ML algorithms fall into the general categories of regression, classification, clustering, 

and anomaly detection. Each one is designed to address a different type of ML problem. These 

categories can be divided into two different branches. The first one is called unsupervised 

learning and the second ‘supervised learning’. 

 Unsupervised learning: the input data is totally unlabelled. There is no knowledge 

about the groupings of the data and the data is only based on input. An example is 

clustering algorithms. 

 Supervised learning develops predictive models that predict an outcome or a class of 

a new data point. In this case there is some knowledge about the input data. For 

example, you might have some training data, where you have the known labels or the 

known classes of the data. Here the data is divided into input and output data. In this 

study there will be a primary focus on supervised learning. Supervised learning takes 

a known set of input data and known responses to the data, and seeks to build a 

predictor model that generates reasonable predictions for the response to new data. 

This is what we want to achieve during the prediction of ASP enablers. Section 2.2 

elaborates on the proposed supervised learning strategy. Supervised learning can be 

divided into two different categories which are classification and regression. The 

different algorithm techniques per category can be found in Figure 2.1 shows also 

which techniques are most feasible for each ASP enabler, assessed in Chapter 3-6.  

You can have trouble deciding whether you have a classification problem or a regression 

problem. In that case, create a regression model first, because they are often more 

computationally efficient. In the supervised learning set, one is given a training set S =

{(𝑥𝑖|𝑦𝑖)} {
𝑛

𝑖 = 1
 made of independent and identically distributed random variables from a joint 

distribution 𝑃(𝑋, 𝑌) = 𝐷. A couple (𝑥, 𝑦) is made of an input vector 𝑥 ∈ 𝑋 and a label 𝑦 ∈ 𝑌. 

Depending on 𝑌, two sub-settings appear: 

 If 𝑌 is a discrete ensemble, the setting is called classification. If 𝑐𝑎𝑟𝑑(𝑌) = 2 (for 

example 𝑦 = {−1, +1}), one say binary classification, otherwise it is called multi-

class classification. 

 If 𝑌 is continuous, the setting is called regression. 

In the sequel, we will focus on the setting 𝑦 =• 
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Figure 2.1: The supervised learning categories with their corresponding techniques. 

2.2 Strategy supervised learning 

 

The goal of supervised learning is to construct a function ℎ ∈ 𝐻  that capture the dependencies 

between data x  and labels y. The quality of the function ℎ is measured using a loss function 

𝑙(ℎ(𝑥), 𝑦):• 𝑥 •⇾• + quantifying the deviation between the estimated value and the true label. 

The best function is the one that minimizes the risk:  

 

𝐹𝑙(h) = 𝐸(𝑋,𝑌)∼𝐷[𝑙(ℎ(𝑋), 𝑌)] = ∫ 𝑙(ℎ(𝑋), 𝑌)𝑑𝑃(𝑋, 𝑌) 

 

Since the joint probability distribution D is unknown, we need a mechanism to leverage the 

only available information:  S = {(𝑥𝑖|𝑦𝑖)} {
𝑛

𝑖 = 1
  

 

That mechanism is referred as empirical risk minimization [1]. We first define the empirical 

risk as 

𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(h, s) =
1

𝑛
∑ 𝑙(ℎ(𝑥𝑖), 𝑦𝑖)

𝑛

𝑖=1

 

 

The quantity 𝐹𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙(ℎ, 𝑠) is an estimator of the true risk 𝐹𝑙(ℎ) based on the sample S such 

that 𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(ℎ, 𝑠) converges to 𝐹𝑙(ℎ) when the number of examples n in the training set is 

such that n ⇾ ∞ . Hence, minimizing 𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(ℎ, 𝑠) seems to be a good proxy to minimize 

𝐹𝑙(ℎ) when 𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(ℎ, 𝑠) is a monotone function. But this is not always true since the quality 
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of the estimator 𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(ℎ, 𝑠) also depends on the chosen family of functions H [2, 3]. 

Basically, the bigger H is, the more complex a function ℎ ∈ H is and the more important the 

probability that 𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(ℎ, 𝑠) diverges from 𝐹𝑙(ℎ) even if 𝑛𝑙(ℎ). A simplified version of the 

dependence between 𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(ℎ, 𝑠) and 𝐹𝑙(ℎ) can be stated as:  

 

𝐹𝑙(h) ≤ 𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(h, s) + 𝜖⌊𝐻⌋/𝑛 

 

with high probability. This simplified equation shows the so-called bias-variance tradeoff. 

When ℎ is a too simple function, 𝜖⌊𝐻⌋/𝑛 is low but 𝑚𝑖𝑛ℎ∈𝐻 𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(ℎ, 𝑠)  can be large (large 

bias, low variance). When ℎ is a complex function, 𝑚𝑖𝑛ℎ∈𝐻 𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(ℎ, 𝑠) might be very 

small but 𝜖⌊𝐻⌋/𝑛  is potentially large (low bias, large variance) [4].  

 

2.3 Machine Learning techniques  

 

Regression; Regression for responses that are a real number, such as True Airspeed (TAS) and 

Time to Fly (T2F) to threshold. Common regression algorithms include: 

 Linear regression; normally with multiple predictor variables. A data model explicitly 

describes a relationship between predictor and response variables. Linear regression fits a data 

model that is linear in the model coefficients. The most common type of linear regression is 

a least-squares fit, which can fit both lines and polynomials, among other linear models like 

the Lasso technique [5]. The most common loss used in regression problems is the mean 

squared error defined as 𝑙𝑚𝑠𝑒(ℎ(𝑥), 𝑦) = (𝑦 − ℎ(𝑥))2. Considering the data set 𝑆 =

{(𝑥𝑖 , 𝑦𝑖)}.𝑖=1
𝑛 , one wishes to find a function ℎ minimizing the empirical risk. 

 

𝐹𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(ℎ) =
1

𝑛
∑(𝑦𝑖 − ℎ(𝑥𝑖))2

𝑚

𝑖=1

 

 

Where: 

𝑋 = (
𝑥1....
𝑥𝑛

) et 𝑌 = (
𝑦1....
𝑦𝑛

) 

 

 Nonlinear regression; Nonlinear regression with multiple predictor variables. Parametric 

nonlinear regression models the dependent variable (also called the response) as a function of 

a combination of nonlinear parameters and one or more independent variables (called 

predictors). The model can be univariate (single response variable) or multivariate (multiple 

response variables). The parameters can take the form of an exponential, trigonometric, power, 

or any other nonlinear function. To determine the nonlinear parameter estimates, an iterative 

algorithm is typically used. A special class of nonlinear models, called generalized linear 

models, uses linear methods. 
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 Generalized linear models; Regression models for limited responses. Linear regression models 

describe a linear relationship between a response and one or more predictive terms. Many 

times, however, a nonlinear relationship exists.  

 Decision trees; A decision tree with binary splits for classification. An object of 

class ClassificationTree can predict responses for new data with the predict method. The 

object contains the data used for training, so can compute resubstituting predictions. 

 Neural networks; The neural networks is a way to model any input to output relations based 

on some input output data when nothing is known about the model.  

Classification; Classification for responses can have just a few known values, such 

as 'true' or 'false'. Classification algorithms apply to nominal, not ordinal response values, 

where the data can be separated into specific “classes” like the Runway exit utilised (NREX) 

(Chapter 6.0). Classification algorithms can also use the algorithms within regression, however 

in addition the following techniques can be used for classification purposes only. 

 Support vector machines (SVM); Support vector machines for binary or multiclass 

classification. You can use a support vector machine (SVM) when your data has exactly two 

classes. An SVM classifies data by finding the best hyperplane that separates all data points of 

one class from those of the other class. The best hyperplane for an SVM means the one with 

the largest margin between the two classes. Margin means the maximal width of the slab 

parallel to the hyperplane that has no interior data points. The support vectors are the data 

points that are closest to the separating hyperplane; these points are on the boundary of the 

slab.  

 Naïve Bayes classifier; Train naive Bayes classifiers. Naive Bayes models assume that 

observations have some multivariate distribution given class membership, but the predictor or 

features composing the observation are independent. This framework can accommodate a 

complete feature set such that an observation is a set of multinomial counts. 

 Discriminant analysis; Linear and quadratic discriminant analysis classification. Discriminant 

analysis is a classification method. It assumes that different classes generate data based on 

different Gaussian distributions. To train a classifier, the fitting function estimates the 

parameters of a Gaussian distribution for each class. To predict the classes of new data, the 

trained classifier finds the class with the smallest misclassification cost. 

 Nearest neighbors (kNN); Find nearest neighbors for classification. Categorizing query points 

based on their distance to points in a training dataset can be a simple yet effective way of 

classifying new points. You can use various metrics to determine the distance, described next.  

Clustering; cluster analysis involves applying one or more clustering algorithms with the goal 

of finding hidden patterns or groupings in a dataset. Clustering algorithms form groupings or 

clusters in such a way that data within a cluster have a higher measure of similarity than data 

in any other cluster. The measure of similarity on which the clusters are modelled can be 

defined by Euclidean distance, probabilistic distance, or another metric. The distinguishing 

feature of each of these algorithms is the metric to measure similarity. Popular clustering 

algorithms (Figure 2.2) include: 

http://nl.mathworks.com/help/stats/compactclassificationtree.predict.html
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 Hierarchical clustering: builds a multilevel hierarchy of clusters by creating a cluster tree. 

 k-Means clustering: partitions data into k distinct clusters based on distance to the centroid of 

a cluster. 

 Gaussian mixture models: models clusters as a mixture of multivariate normal density 

components. 

 Self-organizing maps: uses neural networks that learn the topology and distribution of the data. 

 

Figure 2.2: Popular clustering algorithms. 

For a more detailed introduction to Machine Learning, please refer to [6] or [7]. 

 

2.4 Criteria for choosing feasible Machine Learning techniques  

 

For choosing a feasible supervised learning technique for assessing ASP enablers, first it 

should be identified to which category it has to comply. The different categories and techniques 

are elaborated in Section 2.1.  

As a next step, the designed classifier per prediction parameter will be tested on the 

following criteria; (1) Accuracy of the classifier, or the percentage of records that are classified 

correctly, should be as high as possible. This is very important, because the results of the Rule 

Discovery phase (which are influenced very much by this classification) should be very 

accurate. The objective is to train the classifier in such a way that it makes (as much as 

possible) the same decision as what the ATCO would do. (2) Amount of data needed; for 

different ML techniques and problems different amount of data is needed for having an 

accurate, intuitive and interpretable ML model. (3) Performance when combining ML 

techniques; The best three machine learning techniques are combined with each other and 

tested on their accuracy. (4) Clear decision process; For a good understanding of intuitive and 

interpretable predictions, the decision process should be very clear. As shown in the 

“Introduction to Machine Learning and Pattern Recognition” [6], neural networks and support 

vector machines both have an unclear decision process, because of their “ black box” nature. 

A Bayes classification is not easy to interpret, because it is based on a probability distribution. 

By contrast, decision tree classifiers and rule-based classifiers are very clear, because decision 

trees and rules are easily interpretable. Nearest neighbour classification is easy to interpret, 

because it is based on the largest vote among the nearest neighbours of the input vector. (5) 

Relatively easy to implement; Because preferably, the classifier has to be implemented in 

Visual Basic, it should be relatively easy to encode it. Neural networks are certainly the most 

difficult to implement, requiring specialized software or toolboxes. Support Vector machines 

Clustering

K-means Hierarchical
Neural 

networks
Gaussian 
mixture

Hidden 
Markov 
models
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and Bayes Classifiers are moderately easy to implement, using a model built with specialized 

software. Decision tree classifiers can be converted into a rule set and are therefore well suited 

for a software implementation. Implementing the output rule set of rule-based classifiers is the 

easiest way to implement a classifier. In the case of nearest neighbour classification, no model 

has to be built. The implementation therefore requires some work, but is straightforward. (6) 

Performance when applying feature analysis; Before the model will be trained, first the most 

important (group) features will be selected using Principal Component Analysis and RreliefF 

modelling (feature selection). The objective of feature selection is three-fold: improving the 

ASP prediction accuracy, providing faster and more effective predictors, and providing a 

better understanding of the underlying process that generated the data. (7) Relatively fast; 

Because it is the intention to process a large amount of data, classification speed should not be 

to slow. Nearest neighbour classification performs the worst: every time a record has to be 

classified, the whole set of data has to be scanned to find the nearest neighbours. For all the 

other techniques, the model is built only once, during the training phase. Classification of a 

new object is therefore much faster than for a nearest neighbour classifier. The speed of 

classification is for all these methods comparable.  

The above criteria will be assessed on all ASP enablers in Chapter 3-6. Based on the 

outcome feasible techniques will be extracted and used for the RU validation use case in 

Chapter 7 for finding ASP patterns and abnormal behaviours. 

 

2.5 Big data techniques  

 

We will focus on storage and processing capabilities separately and then move on to data 

streams and how they solve issues related to the various distributed processing models we will 

describe. Within this study Amazon Elastic Map Reduce (EMR) is used which is described in 

detail in the next section. 

Distributed Processing  

EMR is the industry leading cloud-native big data platform, allowing to process vast amounts 

of data quickly, and cost-effectively at scale. Using open source tools like Apache Spark which 

is a unified analytics engine for Big Data (BD) processing, with built-in models for ML [8]. 

Within this study spark is coupled with the dynamic scalability of Amazon EC2 and scalable 

data storage of Amazon S3. EC2 forms a central part of Amazon’s cloud computing platform, 

by allowing users to rent virtual computers on which to run their own computer applications. 

Data is scaled and stored in the S3 bucket. 

MapReduce: A data processing job is described as two parallel operations: Map and Reduce. 

These can then be chained for more complex workloads. The MapReduce paradigm introduces 

a simple way of declaring processes while maintaining enough flexibility to describe more 

complex operations. It also allows for parallel execution. In particular, the map tasks are 

distributed across the data nodes and are performed locally on the data blocks. The result of 

such a map task is then partitioned across various reducers spread out across the cluster. The 

map task is the transformation of an input key value pair into a key value pair suitable for the 

reducer. Often times, the input key value pair is just a line number and the corresponding 
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content. The reducer on the other hand is an operation on the group of values that belongs to a 

certain key. Important to note is the arbitrary shuffle and sort step in between map and reduce 

tasks. A key limitation of the model is also the necessary synchronization after each map and 

each reduce step. Hadoop provides an API for declaring these MapReduce jobs and a 

framework that knows how to execute them in a distributed way. Furthermore, through its 

ecosystem, Hadoop also provides various abstractions on top of the MapReduce paradigm. So 

while MapReduce is a strong framework for doing parallel computations on top of large data 

sources, it is not suited for low-latency processing on data fractions. 

Extended MapReduce  

Because of its limitations, some frameworks like Apache Spark and Apache Flink, have 

adopted a more advanced version of the MapReduce paradigm. They provide a slightly richer 

API than traditional MapReduce and leverage memory to speed up the process. Since they are 

still batch processing frameworks, they remain unsuitable for near real-time processing on 

fractions of the data, but they will get the batch jobs done more quickly. The key difference is 

that these frameworks do not require data to be loaded from disk all the time. By keeping them 

in memory between jobs, they are able to outperform the traditional MapReduce jobs. In 

particular for iterative algorithms or multiple ad-hoc queries on the same data, they can achieve 

great performance gains. Furthermore, they are generally built on top of a DAG engine, an 

engine able to execute a job defined as a directed acyclic graph where the vertices represent 

certain operators and the edges define the data flow across those operators. This DAG engine 

allows the framework to translate the process into one single job rather than having to define 

multiple MapReduce jobs and chain them. This allows them to better understand the full work 

flow and thus make smarter choices in terms of which data sets should be cached. Because of 

their ability to handle iterations more efficiently, these frameworks are often the first choice 

when it comes to implementing distributed ML algorithms and often have a library in place 

with pre- built algorithms. 

 

Data Streams mini batch processing In some ways derived from the extended MapReduce 

paradigm, mini batch processing or discretized stream processing arbitrarily splits a stream 

into an infinite set of finite mini-batches. Spark Streaming, part of the Apache Spark project, 

is an implementation of such a model. Through various optimizations, operations such as map 

and reduce can now be applied to a much smaller set of records, drastically decreasing the 

latency. While a valid option for some use cases, the extended MapReduce API is not flexible 

enough for all streaming use cases. It does provide some benefits over the traditional stream 

processing model discussed below though. As data comes in, mini batches are dynamically 

cached and processed on the worker nodes. This allows the framework to perform dynamic 

load balancing, limiting the impact of skew in workloads. The model also allows for faster 

recovery by executing failed jobs in parallel on multiple other nodes. This can be important of 

that failed job is delaying the entire processing job. In general, the similar development 

approach between extended MapReduce and discretized stream processing is also considered 

an added advantage when attempting to combine the two in what is called a Lambda 

architecture delivery [9]. 
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3.0  Evaluation of feasible machine learning techniques for 

predicting the time to fly and aircraft speed profile on 

final approach 

 

 

ver-conservative separation values expressed in distance or time are used by ATCOs 

at different hub airports. Currently they do not take into account ASP enablers as 

defined by ATCOs. In this Chapter the most feasible ML techniques are reviewed to 

model the ASP enablers Time to Fly (T2F) and True Airspeed (TAS) profile on final 

approach. Accurate predictions are used to refine the separation values. Chapter 3 

consists of three parts. First, different ML techniques are assessed on their forecasting 

performance, computational time and the amount of data needed for delivering a reliable 

prediction. Second, the techniques are applied to the traffic of two major European airports. 

Finally, they are benchmarked against the ORD tool using a statistical approach for predicting 

the T2F and TAS. The most efficient ML techniques are applied on two case studies. 
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Abstract 

Currently, at many airports, the runway throughput is the limiting factor for the overall 

capacity. Among the most important constraining parameters is the separation minima 

expressed in distance. On the top of these minima, the difference of the leader and follower 

aircraft speed profiles imposes to consider buffer to cope with compression effect.  Currently, 

Air Traffic Control Officers (ATCOs) take these buffers on the basis of their training and 

experience. However, this experience will not be sufficient to safety deploy advanced 

concepts, like pair-wise separations, that increase variability in the separations to be delivered 

and therefore in the compression buffer to be considered. Systematic analysis of years of radar 

tracks has allowed to better predict the buffers to apply by characterising the time to fly (T2F) 

given a separation distance and True Airspeed (TAS) profile as a function of meteorological 

parameters.  

This chapter presents how Machine Learning (ML) techniques may be used for predicting the 

T2F and TAS profile on final approach. Different ML techniques will be assessed on their 

forecast performance, computational time and amount of data needed for delivering a reliable 

prediction. The techniques will be applied on two different major European airports traffic and 

will be benchmarked against Optimized Runway Delivery (ORD) study using a Model Based 

Approach (MBA) for deriving the T2F and TAS. As a result, the most efficient ML techniques 

will be applied on two case studies for predicting the T2F and TAS. 

 

3.1 Introduction  

 

ML can be used to identify patterns4 and to observe ‘what-if’ scenarios in past data. These 

patterns can be transferred into ‘what-if’ statements by analysing relations between the 

response variables (T2F and TAS) and the prediction variables highlighted in Table 3.1. This 

analysis is needed to predict forthcoming operational risks during real time operations like loss 

of separation [1]. Such a prediction would feed ‘what-if’ tools at the airport to alert ATCO 

about impending aircraft behaviours.   

Presently Distance Based Separation (DBS) or Time-Based Separation (TBS) rules 

are applied during final approach. As a next step the ‘Dynamic pair-wise separation’ concept 

is proposed to allow controllers to sequence arriving and/or departing aircraft using Time-

Based, Weather Dependent and Pair-wise wake turbulence separations. The efficient 

deployment of such concept needs a reliable prediction of the T2F and TAS, which is mainly 

influenced by the aircraft type and wind profile. With this respect, it is envisaged to 

progressively move from a MBA to a ML approach for coping with the variability of aircraft 

speed behaviours. In this chapter, ML techniques will be assessed on their capabilities to 

produce fast and accurate predictions and their capabilities to test a large number of ‘what-if’ 

statements. 

                                                
4 Patterns in this context are defined as the normal distributions (from -2 to +2 sigma) of T2F 

and TAS for a given flight and for a range covering the last 10NM of the final approach 
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This chapter presents 10 feasible ML techniques; the amount of data needed, Principal 

Component Analysis (PCA) and feature analysis for predicting the T2F and TAS profile per 

wind-band on final approach based on 15 prediction variables. All relevant scenarios between 

combined data, ML techniques and problems will be assessed. As a result, the most efficient 

ML techniques will be applied on two case studies for predicting the T2F and TAS. 

The structure of this chapter is as follows; Firstly, the methodology and data sources 

such as; aircraft data, wind and speed profiles are described. Secondly, the ML context is 

outlined. Thirdly, the pre-processing steps are elaborated. Fourthly the results of the two case 

studies and the respective prediction error are outlined in subchapter 3.7. Finally conclusions 

and recommendations are drawn.  

 

3.2 Data, Prediction Variables & Modelling 

 

In order to predict T2F and TAS profiles on final approach, two complementary sources of 

information are used; aircraft performance data and weather data.  

 

3.2.1 Aircraft Performance & Weather data  

 

Aircraft Performance is extracted from Radar data and has been provided by the Air 

Navigation Service Providers (ANSPs) for four airports. For one other airport, ADS-B data 

has been used. For each airport, the radar data cover 2 months of operations in 2012 or 2013. 

The ADS-B data covers two weeks of data in 2013. In total, the data comprises about 130,000 

flights. For each radar point, the flight ID, aircraft type, actual time, lateral and longitudinal 

position coordinates, altitude and ground speed is recorded with a 4s refresh rate. The focus of 

the analysis is on approaching aircraft to single runways over the last 10NM. All variables can 

be found in Table 3.1.  

The headwind (HW) profile and visibility measurements were gathered from Airport 

1 and Airport 2 for respectively a period of 2 months and 3 years.  The HW profile is defined 

by four measurements at heights of 10m, 500m, 1000m and 3000m. The HW profile is 

analysed per 10 minutes.  Wind measurements are grouped into six different wind bands; 0-

5kt TW (tailwind) and 0-5kt, 5-10kt, 10-15kt, 15-20kt and 20-25kt (headwind). The HW 

profile and visibility date and time have been included as input variables into Table 3.1. 

 

3.2.2 Prediction variables  

 

Table 3.1 gives all the 15 input prediction variables per 0.5NM segment. However, for some 

prediction variables the number is constant such as; recatEU, rwy and FAF or some are not 

considered such as gspass from 10NM till 0.5NM and AC from 19.5 till 10NM. The predictive 

response variables in our model are the T2F, y, and TAS, y’ and are outlined in Table 3.1 as 

number 16 and 17. 
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Table 3.1: Prediction and response variables. 

 

3.3 Modelling of ML techniques 

 

The ML techniques will be addressed by modelling the predicted T2F and TAS values under 

different weather conditions. The T2F is a continuous variable that is computed depending on 

variables such as aircraft type, airport and parameters related to weather conditions. The 

approach is based on learning a model per airport and aircraft type - A320 at Airport 1 and the 

B738 at Airport 2. The results for these two case studies will only be shown for the best 3 

feasible ML techniques. Going one step further, we propose to approach the prediction as a 

multi-task learning problem. This approach can lead to a better model for the main task by 

exploiting the commonality among the tasks. In this research, this leads to the following 

consideration: instead of predicting T2F and TAS for each segment of 0.5NM from 0.5NM to 

10NM individually, we propose to exploit multi-task learning by predicting the segments 

altogether. By solving the regression (subchapter 3.7) problem jointly for all these segments, 

we expect to improve the performance of the regression compared to the case where the 

segments are considered independently. The rationale behind this is that although the 

distribution of the T2F values depend on the segment, the behaviour of the aircraft on all the 

segments is subjected to the same conditions. 

 

 

 

 

 

Variable Description Variable Description 

1.Flightnr Flight number 10.METARcwnd Crosswind (kts) 

2.Apt Airport 11.METARvsby Visibility (m) 

3.actype Aircraft type 
12.ICAOcombi ICAO 

combination 

4.dpass Distance from threshold (NM) 
13.actypecombi Aircraft type 

combination 

5.hpass Height from threshold (m) 

14.ACin10NM Number of 

aircraft between 0 

and 10NM 

6.gspass 
Ground Speed (kts) from 10 till 

19.5NM 

15.FAF  Final approach fix 

7.rwy Runway (degrees) 16.T2F (response) Time to fly (s) 

8.recatEU RECAT EU category 
17.TAS (response) True Airspeed 

(kts) 

9.METAR

hwind 
Headwind (kts) 
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3.4 Context-Machine Learning 

 

This section describes the feasible ML category and techniques for predicting the T2F and 

TAS profile on final approach.  

 

3.4.1 ML techniques classification  

 

ML techniques can be classified into different categories following three main strands; 

unsupervised learning, supervised learning and reinforcement learning.  Supervised learning 

can be divided into two different subcategories which are classification and regression. In this 

study, there will be a primary focus on supervised regression learning since these are often 

computationally efficient for predicting the T2F and TAS (real numbers) whereas 

classification is often used for binary predictions such as go-arounds. For supervised 

regression learning, we propose two approaches that can be considered as baselines for this 

study [2] [13]. The first method is based on linear regression techniques and the second method 

on neural networks. These two methods can be divided into 10 sub techniques based on multi-

task learning. Multi-task techniques are selected since we try to jointly fit the T2F and TAS 

for all segments from 0 till 19.5NM (0.5NM step). By definition, a multi-task learning 

approach learns a problem together with other related problems, all at the same time. Learning 

multiple related tasks simultaneously has been empirically [3, 4, 5, 6, 7, 8, 9, 10] as well as 

theoretically [3, 11, 12] shown to often significantly improve performance relative to learning 

each segment independently. The 10 feasible ML techniques are outlined in subsection 3.4.2 

and 3.4.3. 

 

3.4.2 Regression techniques to be tested   

 

The regression techniques fitglm, stepwiseglm, ridge regression and Lasso are proposed for 

this problem. A variant of these techniques, called Elastic net, which combines the penalties 

of both methods and which is also a good candidate to tackle this particular prediction problem 

[14]. The Mean Square Error (MSE) serves as cost function for these algorithms. These 

techniques are applicable in the case of multi-task regression and are referred in the scientific 

literature as multitask regularized regression.  

 

3.4.3 Neural networks techniques to be tested   

 

Approaches based on neural networks are also proposed for the problem. We recommend the 

Multi-Layer Perceptron (MLP) as a baseline to tackle our case. The loss function used to 

train the network will be the MSE. 
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Neural networks are widely used in scenarios in multi-task learning, by making use 

of the fact that the underlying representation of the problem is inherently learnt during the 

training process. Depending on the amount of data at disposal, deeply connected neural 

network architectures will also be considered such as; Auto Encoder, Boltzmann and 

Recurrent Neural Networks.  

 

3.5 Pre-Processing  

 

This section describes the pre-processing steps to come up with a usable aircraft performance 

data set. This data set is needed to train a T2F and TAS prediction model. Each pre-processing 

step is detailed below: 

A. Compute T2F and TAS for each sample; Before feasible ML techniques can be 

applied first the T2F and TAS profile are extracted for each segment of 0.5NM, 5kts 

wind band and aircraft type. Remove the samples where the T2F and TAS of one 

segment is more than 2 standard deviation away from the segment mean. This forms 

a matrix Y where each row represents a flight and each column a segment.  

B. Feature selection; The RreliefF technique is applied before a model is learned.  

C. PCA: finding out which features are important for best describing the variance in a 

data set.  

D. Construct the datasets: based on different data sources and the Table 1 mentioned 

variables.  Furthermore standardize feature matrix X. 

E. Stability of three different data parts: split the matrices X and Y in two subsets 

Xtrain; Ytrain; used to train the model and Xtest;Ytest used to evaluate the model 

accuracy. For those experiments the data is split into 70% of training data, 15% of 

test data and 15% of validation data (standard hold-out). 

F. Accuracy of data and outliers: in the last pre-processing step the accuracy is 

measured and the outliers are shown. 

 

3.5.1 Compute T2F and TAS profiles  

The T2F is computed by the difference in time from a certain distance till threshold. The TAS 

is calculated by subtracting HW or adding TW of the wind profile from/to the GS profile. This 

study works with TAS since this gives a better indication of the speed compensations applied 

per aircraft type. 20.000 flights where extracted from Airport 1 to cover seasonal variations 

and to have a minimum of 50 measurements per aircraft type, wind-band and 0.5NM segment. 

Figure 3.1 shows an example of the TAS, GS and HW profile of an A318 in 10-15kts headwind 

as a function of distance from the threshold. The T2F and TAS results for 50 different aircraft 

types can be found in the report [15]. 
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Figure 3.1: Example TAS, GS and HW profile versus distance to threshold. 

 

3.5.2 Feature selection    

 

Before the model will be trained, first the most important (group) features will be selected 

using PCA and RreliefF modelling (feature selection). The objective of feature selection is 

three-fold: improving the prediction performance of the predictors, providing faster and more 

effective predictors, and providing a better understanding of the underlying process that 

generated the data [16]. RreliefF has commonly been viewed as a feature selection method that 

is applied in a prepossessing step before the model is learned [17]. The standard RreliefF 

regression modelling technique has been extensively discussed in many papers [18]. The 

technique has been applied on 500 low wind (0-5kt) A320 flights for Airport 1 as showed in 

Figure 3.2. 

 

Figure 3.2: Normalized feature selection using RreliefF algorithm. 
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Figure 3.2 shows from left to right the most important succeeding features for Airport 1. The 

ground speed at 10NM (GS-19) seems to have the most impact on the T2F, followed by the 

headwind (HW) and Aircraft type (AC). Similar feature relationships are obtained for Airport 

2 and different aircraft in low wind. According to the ORD study [19], the top 3 most important 

theoretical features match with the predicted RreliefF features. Table 3.2 in Section 3.6 

compares the best (group) prediction features for different amount of flights for both PCA and 

RreliefF. 

 

3.5.3 Assessibility of PCA   

 

After applying RreliefF (feature selection), PCA will be applied. PCA is a procedure for 

identifying a smaller number of linearly uncorrelated variables called principal components. 

The goal of PCA is to show as much of the variability in the data as possible with the fewest 

number of principal components. The data have been divided into 15 different indicators of 

aircraft and weather behaviour at 2 different airports, which are showed in Table 3.1. 

Figure 3.3 shows the top 10 feature selected variables, which are represented in a bi-

plot by a vector, and the direction and length of the vector indicate how each variable 

contributes to the two principal components in the plot. In the new coordinate system, the first 

axis corresponds to the first principal component, which is the component that explains the 

greatest amount of the variance in the data, whereby it is obvious that component 2 explains 

the 2nd greatest amount of variance in the data, etc. In this example, the first principal 

component, on the horizontal axis, has positive coefficients for GS, Visibility, HW, AC, 

RECAT CAT, ICAO comb and FAF variables. That is why the seven vectors are directed into 

the right half of the plot. The largest coefficients in the first principal component are the 

second, third, fourth and seventh elements, corresponding to the variables HW, GS, RECAT 

CAT and FAF. The second principal component, on the vertical axis, has positive coefficients 

for the variables Runway, Height, Cwnd, AC, RECAT CAT, ICAO comb, Visibility, HW and 

negative coefficients for the GS and FAF variable.  
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Figure 3.3: A bi-plot in two dimensions, to find the relation among different variables. 

Since Figure 3.3 doesn’t explain enough of the variance in the data of the first two principal 

components, Table 3.2 and Table 3.3 takes also into account component 3 and 4. 

 

3.5.4 Construct the datasets   

 

The first dataset includes the features flightnr, dpass, hpass, gspass, rwy, RECATEU, 

METARvsby, ICAOcombi, actypecombi, ACin10NM and FAF. Please note that we only 

consider the measurements from 19.5NM to 10NM. This forms the feature matrix X where 

each row is a flight and each column a feature. Another dataset is built from 10NM to 0.5NM 

with the same features plus the headwind at each segment determined as the difference 

between GS and TAS. When this is done the historical data will be divided into predictor 

variables and response variables. Finally, for each column X subtract the columns mean and 

divide by their standard deviation. 

 

3.5.5 Stability of three different data parts-cross validation    

 

To check the stability of different data parts, the data will be randomly divided into training, 

validation and testing subsets. Stability is defined as how the ML algorithm is perturbed by 

small changes to its input. A stable algorithm is one for which the prediction does not change 

much when the training data is modified slightly. It has been assumed that the default fractions 

in this study for training, testing and validation are 0.7, 0.15 and 0.15, respectively. The model 

is adjusted accordingly when training it. The validation is used to measure network 

generalization, and to halt training when generalization stops improving. To prove that a 
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randomly selected data set is stable, epoch and validation checks are performed. Epoch 

indicates the amount of a single pass through the entire training set, followed by testing of the 

verification set. Thereafter we check convergence on the validation and at the end of the 

learning process the model is evaluated on the test set. The test has no effect on the training 

and therefore provides an independent measure of network performance during and after 

training. Figure 3.4 shows a final approach trained speed model by selecting 5000 A320 flights. 

By training the model according to the above described method, a good representation of real 

life flights will be given and unstable data parts are neglected. 

 

 

Figure 3.4: MSE versus amount of epochs for 5000 A320 flights. 

 

3.5.6 Accuracy of data and outliers     

 

Outliers exist when building predictive models. With outliers we mean when a data point or 

flight is not consistent with the other data points. One way to show this inconsistency is by 

plotting the regression for training, validation, test and all. Figure 3.5 shows such an example 

where the regression R values measure the correlation between outputs and targets. An R value 

of 1 means a close relationship, 0 a random relationship. 
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Figure 3.5: R values for test, training, validation and all for an A320 predictive TAS model. 

Analysing these graphs shows that there are indeed many outliers. It will be obvious that by 

neglecting them in the target set, a better R value will be obtained for the predicted model. 

Doing this for the above example results in an overall R value of 0.69 instead of 0.61 presented 

in Figure 3.5. 

 

3.6 Results 

 

This chapter shows the results of the feasible ML techniques PCA and RreliefF for prediction 

of the T2F and TAS profile on final approach. The best technique will be assessed on the 

number of neurons and minimum amount of flights needed to come up with an accurate 

prediction model. 

 

3.6.1 PCA groupings and RreliefF for A320 at Airport 1 

 

Using PCA dimension reduction and/or feature selection will automatically not result in a 

better prediction model. It could happen that by excluding variables, you exclude automatically 

variables that are correlated with each other. It has been tested if by applying PCA and feature 

selection before training a ML model result in; (1) less time to compute, (2) a lower Mean 

Squared Error (MSE) and (3) an increased accuracy (lower sigma). Based on Table 3.3 and 

MBA experiences for different types and wind conditions, analysis are executed on the MSE 

by excluding expected correlations compared to including them. First Table 3.2 compares the 

important (group) prediction features for different amount of flights for both PCA and 

RreliefF.  
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Table 3.2: PCA and RreliefF outcome for different amount of flights. 

Number of 

flights  

PCA RreliefF 

50 9,6 (group 1) 

3,10,11,5,8,12 (group 2) 

7,15 (group 3) 

6,3,9,10,8,12,11,15,7,5 

100 3,9,6 (group 1) 

10,12,8,11,5 (group 2) 

15,7 (group 3) 

9,6,3,12,10,8,11,15,5,7 

300 6 (group 1) 

9,3,8,11 (group2) 

12,10,5,7 (group 3) 

15 (group 4) 

6,9,3,10,8,11,12,5,7,15 

500 6 (group 1) 

9,3,8,11 (group2) 

12,10,5,7 (group 3) 

15 (group 4) 

6,9,3,10,8,11,12,5,7,15 

     

First from this table it can be concluded that, based on PCA, 4 main groupings are correlated 

with each other. The numbers correspond to a certain prediction parameter and can be found 

in Table 3.1. After applying RreliefF we verified with PCA that above 400 flights, the 

prediction parameters influencing the response for the A320 flights at Airport 1 in low wind 

remain stable. At this stage the minimum amount of 400 should be inserted for designing an 

accurate prediction model. Table 3.3 shows for the MLP the TAS MSE and sigma results of 

the Table 3.2 mentioned groupings. These results are obtained by building a predictive model 

for 500 and 250 A320 flights in low wind at Airport 1 and by in-and excluding group 

correlations from Table 3.2. The MSE and sigma results are averaged per 0.5NM segment. 

Table 3.3: MSE and sigma results for 4 different groups. 

Group  MSE-500 Sigma-500 MSE-250 Sigma-250 

Group 1 49.1 6.5 57.7 7.7 

Group 1, 2 46.0 6.1 55.1 6.8 

Group 1, 2, 3 48.0 6.3 57.2 7.5 

Group 1, 2, 3, 4 48.3 6.3 59.5 7.4 

 

Analysing the MSE using all decision parameters compared to the first three groups, first two 

groups and first group result in respectively; a 1% and 5% improvement and 2% reduction for 

the TAS MSE (Table 3.3). The same results are obtained for the T2F. 

For this A320 flight case we conclude that after PCA we only apply the variables that 

are correlated with component 1 and 2. This can be explained by the fact that the first two 
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principal components for PCA cover around 90% of the correlation for the response variables. 

Furthermore the time for learning the model stays the same and the sigma values are lower 

(increased accuracy) for 500 flights compared to 250.  

 

3.6.2 Assess feasible ML techniques  

 

In this subsection the 10 feasible ML techniques will be assessed on their training time (speed), 

number of parameters and performance indicators. The most important performance parameter 

to be minimized by the predictions of the models is the Root MSE (RMSE). The RMSE will 

be calculated from 8.5NM to 0.5NM according to Equation 1; 

 

𝑅𝑀𝑆𝐸8.5−0.5𝑁𝑀 = √
1

𝑁
∑ (𝑇2𝐹8.5−0.5𝑁𝑀 − 𝑇2′𝐹8.5−0.5𝑁𝑀)2𝑁

𝑖=0    Equation 1 

Where 𝑇2′𝐹8.5−0.5𝑁𝑀 is the sum of the predicted T2F for each segment between 8.5NM and 

0.5NM before runway. Table 3.4 shows the outcome for the 10 best feasible regression and 

neural network techniques. The technique with the highest grade receives 10 points whereby 

the lowest receives 1 point.  

Table 3.4: Assess feasible ML techniques on different performance indicators. 

Technique  

Performance indicators  

MSE 

Performance 

3p 

Computatio

nal time 2p 

Apply 

RreliefF 

and PCA 2p 

Implementation 

clear decision 

process 2p [11] 

Outcome 

Lasso 10 9 6 9 78 

MLP 5 7 10 8 65 

Elastic net 8 5 9 5 62 

Ridge 7 8 7 4 59 

Auto 

Enconder 
9 4 8 4 59 

Recurrent 

Neural 

Networks  

4 
10  

(5 seconds) 
2 8 52 

Boltzmann 5 3 3 4 35 

Regularized 

regression 
2 2 2 2 18 

Stepwiseglm 2 2 2 2 18 

Fitglm 3 1 1 1 12 
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From Table 3.4 we conclude that MLP and Lasso performs best. Both techniques will be 

combined to design a third feasible technique – ensemble. The third model refers as ensemble 

which is simply the average of the predictions of the Lasso and MLP. Combining these 

techniques result in a more robust and accurate ML model [21]. 

 

3.6.3 Relation number of hidden neurons versus MSE  

 

Figure 3.6 shows the MSE outcome versus the number of hidden Neurons for the best 

performed neural network technique. The MLP outcome has been analysed for 5000, 10000 

and 30000 flights in low wind [20] 

 

Figure 3.6: TAS MLP MSE vs number of Neurons. 

It can be concluded by minimizing the validation MSE, the optimal amount of neurons lies 

between 20 and 23 for respectively 5000, 10000 and 30000 flights.  

 

Ensemble performance for different number of flights  

The ML model is programmed in such a way that it is able to calculate the MSE for 

different types, wind conditions and for 2 different airports. Figure 3.7 shows for the ensemble 

ML technique and MBA the MSE and sigma performances as function of the total number of 

flights for low (0-5kts) and strong wind (20-25kts) conditions at Airport 1. 
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Figure 3.7: Mean and sigma TAS vs amount of flights for low and strong wind at 1 NM from 

threshold. 

We conclude from Figure 3.7 that ensemble produces results comparable to MBA (differs 

between 1 and 2%) and that the standard deviation values are unaffected by sample size. 

Furthermore by analysing the MSE, we need 60 flights to build a ML model with accurate 

results - for the other aircraft types stable MSE values are obtained after learning the model 

with a minimum of 70 flights. The ensemble model is also validated with an additional data 

set from Airport 2 and shows comparable results. 

Based on the results showed above, it can be concluded that no prediction should be 

made based on fewer than 60 flights per aircraft type and wind-band. Furthermore outliers like 

NaN and 0 values should be excluded from the sample data set for valid predictions. The 

dataset need to be carefully constructed and measured by analysing the R value for a correct 

output of the model. 

 

3.7 Case Study Results 

 

In this section we analyse two T2F case studies using the Lasso, MLP and Ensemble 

techniques. During the first case study Airport 1 and aircraft type B738 are analysed. 

Thereafter we analyse Airport 2 and aircraft type A320. The RMSE of the MBA is estimated 

using the mean of dataset 1 and dataset 2 (Section 3.5.4). We compute the RMSE from 8.5NM 

to 0.5NM according to Equation 1 and accordingly, the RMSE from 4.5NM to 0.5NM which 

is given by Equation 2: 

 

𝑅𝑀𝑆𝐸4.5−0.5𝑁𝑀 = √
1

𝑁
∑ (𝑇2𝐹4.5−0.5𝑁𝑀 − 𝑇2′𝐹4.5−0.5𝑁𝑀)2𝑁

𝑖=0     Equation 2 
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Where  𝑇2′𝐹4.5−0.5𝑁𝑀 is the sum of the predicted T2F for each segment between 4.5NM and 

0.5NM before the runway. 

 

3.7.1 Airport 1 and B738 

 

For this airport and aircraft, the estimated errors of the MBA are 6.35 (RMSE 8.5-0.5NM) and 

3.65 (RMSE 4.5-0.5NM). Table 3.5 reports the errors of the different models. Clearly the 

headwind at each segment helps a lot diminishing the RMSE. Compared to the RMSE of the 

MBA, none of the model trained on dataset without headwind at each segment achieves the 

same performance. However, when we also take into account this feature our best model 

(Lasso) improves by 19.7% over the MBA for the 8.5 to 0.5 NM T2F task and by 19.5% for 

the 4.5 to 0.5NM task. Averaging the two models lead to a better performance without the 

headwind but with the headwind, if suffers the bad accuracy of the MLP. 

 

Table 3.5: Applying top 3 feasible techniques on first case study. 

Model Headwind Size RMSE 8.5-0.5NM RMSE 4.5-0.5NM 

Lasso 

Lasso 

Yes 

No 

(1321,331) 

(1388,347) 

5.0 

8.0 

2.9 

4.6 

MLP 

MLP 

Yes 

No 

(1321,331) 

(1388, 347) 

5.3 

8.0 

3.1 

4.7 

Ensemble 

Ensemble 

Yes 

No 

(1321,331) 

(1388, 347) 

5.1 

7.9 

3.0 

4.6 

 

The comparison is not exact but seems to be fair as we compute the RMSE on the same number 

of segments. Note also that the errors of our models are computed on unseen data. Finally, the 

bad accuracy of the MLP might be due to the lack of architecture optimization and/or the 

amount of data. 

 

3.7.2 Airport 2 and A320 

 

For this airport and aircraft, the estimated errors of the MBA is 4.82 (RMSE 8-0NM) and 3.65 

(RMSE 4-0NM). The analysis is the same for this experiment: the headwind at each segment 

helps diminishing the RMSE. Compared to the RMSE of the MBA, none of the model trained 

on dataset without headwind at each segment achieves the same performance. When we also 

take into account the headwind, the MBA is still better than our best candidate by around 2.7% 

for the 8 to 0 NM T2F task and have the same performance for the 4 to 0 NM task (Table 3.6). 

However, the maximum error of our model is lower (on average, all headwind conditions) as 

it can be seen in Figure 3.8. 
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Table 3.6: Applying top 3 feasible techniques on second case study. 

Model Headwind Size RMSE 8.5-0.5NM RMSE 4.5-0.5NM 

Lasso 

Lasso 

Yes 

No 

(6753,1689) 

(7100,1776) 

4.8 

7.3 

3.8 

4.9 

MLP 

MLP 

Yes 

No 

(6753,1689) 

(7100,1776) 

4.9 

7.4 

3.8 

4.9 

Ensemble 

Ensemble 

Yes 

No 

(6753,1689) 

(7100,1776) 

4.8 

7.3 

3.8 

4.9 

 

3.7.3 Absolute error results 

 

The absolute T2F error for the MBA is computed versus the Ensemble method. The 

comparison is not exact but seems to be fair as we compute the RMSE on the same number of 

segments (Figure 3.8). The same has been done for the TAS. Note also that the errors of our 

models are computed on unseen data. 

 

Figure 3.8: Maximum absolute error per 0.5NM segment. 

Furthermore, the tool is able to calculate for the ML and MBA model for different flight cases 

(per aircraft type and Airport 1 and Airport 2), the MSE and standard deviation per aircraft 

type, wind-band and segment.  
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3.8 Conclusion  

 

This study assessed feasible ML techniques on their performances for predicting the TAS and 

T2F. It can be concluded that by using the results of PCA and RreliefF before learning result 

in a lower MSE, lower sigma and same time compared to the results obtained without using 

these techniques. Our experiments show that PCA and RreliefF can discover strong 

dependencies between attributes, while in domains without such dependencies it performs the 

same as the MSE. It is also robust and noise tolerant.  

Comparing the PCA and RreliefF MSE results using all the decision parameters 

compared to the first three groups, first two groups and first group result in respectively on 

average a 1% and 5% improvement and 2% reduction in MSE value for both T2F and TAS 

(Table 3.3).  

From our experimental results we can conclude that learning multitask regularized 

regression with RreliefF is promising especially in combination with PCA. RreliefF’s good 

performance and robustness indicate its appropriateness for feature selection. 

Ground speed and other information at 10NM together with headwind information 

seem to capture a lot of the variation of the T2F and TAS in the last 10NM. According to 

Figure 3.2, the ground speed at 10NM is the most important feature whereby the headwind 

vector scores number two. 

The multi task techniques Lasso and MLP turned out to be the best feasible and most 

accurate techniques for predicting the TAS and T2F from 8.5NM till 0.5NM and from 4.5 till 

0.5NM. Combining these techniques result in a more robust and accurate ML model which is 

simply the average of the predictions of the Lasso and MLP - advanced model averaging 

techniques can be used to enhance the accuracy.  

Stable MSE values are obtained when learning minimum 60 flights per aircraft type, 

wind band and distance from threshold. However when averaging the MSE per 0.5NM 

segment (10 till 0NM) we suggest a minimum of 400 flights per type and wind band.  

Furthermore, outliers like NaN and 0 values will be excluded from the sample data 

set for analysing purposes. The dataset need to be carefully constructed and measured by 

analyzing the R value for a correct output of the model. 

The ML techniques are more accurate and more robust to changes and they improve 

in overall over the accuracy of the MBA. We have seen that the standard error decreases with 

larger sample sizes since the estimate of the population mean improves. 

It can be concluded that the optimal amount of neurons for MLP lies between 20 and 

23 for respectively 5000, 10000 and 30000 flights in low wind. For high wind values the 

amount stays the same. 

Table 3.5 and Table 3.6 shows that by learning a T2F ML model with HW, the MSE 

is significantly lower than without HW for both RMSE from 8.5-0.5NM and from 4.5 till 

0.5NM. Furthermore the 4.5 till 0.5NM segment has a lower RMSE compared to RMSE from 

8.5 till 0.5NM. Finally, the maximum error of our ensemble model is lower compared to MBA. 
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The results of this study are used as an input by SESAR and EUROCONTROL in the 

development of a new ATCO tool to predict aircraft speed performance. The Leading 

Optimized Runway Delivery (LORD) tool supports ATCO’s to optimize the separation, the 

buffer and more efficiently and easily deal with the compression effect on the last part of the 

final approach. 

The data supporting the above conclusions was obtained from 2 different airports. To 

improve verification the results were compared with data from Airport 2 and show significant 

similarities. 

 

3.9 Recommendations 

 

At this stage the ML tool is able to apply feature selection techniques and ensemble methods 

for calculating the MSE, standard deviation and amount of measurements for 30 aircraft types, 

wind-band and 2 different airports. For verification purposes more aircraft performance and 

weather data per airport should be considered where all airports count the same amount of 

flights during the same time period.  

Looking at the most important prediction variable – GS at 10NM – might give some 

operational issues. For predicting the T2F in real life an ATCO has to wait till the aircraft is at 

10NM. The T2F for an ATCO is interesting to calculate the compression on final approach 

using for example the TBS concept. The dynamic TBS for the follower aircraft needs to be 

known before 10NM. Therefore it is suggested to predict the GS at 10NM of the previous 

aircraft (based on historical flight information of that time period). 

Learn new features such as sequential to visualize the main prediction variables that 

influence the T2F and TAS. Furthermore find a subspace that captures the variation of the data 

using PCA dimension reduction. 

Learn one task at a time in order to see if the multi-task approach helps and validate 

that the multi-task approach lead to better results. Learn new ML techniques such as Support 

Vector Regression (SVR). 

In this study the prediction parameters are used from the radar and METAR sets. As 

a next step the Flight Data Recorder variables will be included for the prediction of the 

responses, causalities and risks.  

     A more detailed analysis of the results is needed in order to emphasize the limits of 

the current approaches. Furthermore, an improved accuracy can be expected from fine tuning 

of the hyper parameters, network architecture optimization and multiple models averaging. 
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4.0  Taxi-Out Time prediction model at Charles de Gaulle 

airport  

 

n the previous Chapter different ML techniques were assessed on their forecasting 

performance, computational time and the amount of data needed for delivering a T2F and 

TAS prediction. The regression technique MLP and Lasso allows the ATCO to refine 

separations for a wide range of environmental variables. However, the previous chapter 

is limited on fast and intuitive prediction. In this Chapter, a main focus will be given to 

Taxi-Out Time (TXOT) models that can be applied in real-time ATCO operations. The TXOT 

model is the second predicted ASP enabler for the RU support tool. We will start with how 

taxi-out time can be predicted by means of using the neural networks, regression tree, 

reinforcement learning, and multilayer perceptron methods. These four methods are assessed 

based on their performance indicators; applied to Charles de Gaulle operational taxi data and 

benchmarked against real-life taxi-out time profiles. The root-mean-squared error metric is 

chosen as the most important performance indicator. The regression tree is found out to be 

the most efficient method, which is then applied in a case study for predicting the TXOT and 

finding the key-related precursors extracted from the top 10 features.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter was previously published as:  

F.F. Herrema, R. Curran, H.G. Visser, D. Huet and R. Lacote. 2018. Taxi-Out Time Prediction 

Model at Charles de Gaulle Airport. Journal of Aerospace Information Systems, 15(3), pp.120-

130. 
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Abstract   

Taxi-out time predictions are a valuable asset in enabling efficient runway scheduling in real-

time operations so as to reduce taxi-out times and fuel consumption on the airport surface. This 

paper will focus on how the neural networks, regression tree, reinforcement learning, and 

multilayer perceptron methods can be used for predicting taxi-out time. These four methods 

are assessed based on their performance indicators, applied on Charles de Gaulle operational 

taxi data. The root-mean-squared error metric is chosen as the most important performance 

indicator, which gives, for the applied regression tree method, on any given day, an average 

error of 1.6 min. The regression tree turns out to be the most efficient method, which is then 

subsequently applied in a case study for predicting the taxi-out time and finding the key-related 

precursors extracted from the top 10 features. 

 
4.1 Introduction 

 

Pressure on the taxiway requires clearly defined decision-support capabilities to maintain 

safety, reduce workload, and increase throughput and efficiency. In this context, the efficient 

deployment of a decision-support tool calls for a reliable prediction of taxi-out time (TXOT). 

In response to this need, this study presents a machine learning (ML) approach for coping with 

the variability of aircraft behaviors, and it is demonstrated how this approach contributes to 

the state of the art. The ML technique can be used to identify patterns and to observe precursors 

in past data. This study shows that the regression tree (RT) performs best by assessing the 

neural-network Levenberg–Marquardt (NNLM), RT, reinforcement learning (RL), and 

multilayer perceptron (MLP) techniques on their performance indicators. Therefore, a RT is 

derived based on different precursor features. Based on the state the airport is currently in, the 

distribution corresponding to the relevant leaf of the tree is used for TXOT prediction. Patterns 

in this context are defined by the RT, which gives per terminal leaf, a TXOT (Gumbel) 

distribution describing the relation between the TXOT and the precursor features. These 

patterns and precursors can be transferred into “what-if” statements by analysing relations 

between the target TXOT variable and the precursors. This analysis is needed to predict 

forthcoming operational risks during real-time operations, such as an increased TXOT, based 

on the identification of precursors that lead to operational issues and to reduction in efficiency. 

Such a prediction would feed what-if online tools at the airport to alert air traffic controllers 

(ATCOs) about impending aircraft behaviors and to produce both point forecasts and 

probabilistic forecasts in real time.  

 

4.1.1 Related Work 

 

Prior studies reported in the literature have attempted to predict TXOT and observe related 

risks precursors. We divide the literature in two groups. We start with the first group, which 

focuses on statistical detection methods for the prediction of TXOT. In [1], predictive queuing 

models were developed to estimate the TXOT from gates to the departure runways. The paper 

presented in [1] proposed simple statistical linear equations derived from regression analysis 

using the airport surface detection equipment (ASDE). NASA and American Airlines are 
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jointly developing a decision-support tool that assists runway schedulers in making gate 

pushback decisions and helps to improve the overall efficiency of airport surface traffic [2]. 

Shumsky developed a model to predict TXOT using airline departure demand and departure 

runway selection as explanatory variables [3]. In [3], a queuing model was also developed for 

the runway service process. However, the proposed queuing model was based on cumulative 

behavior and did not reflect the stochastic nature of the process. Idris et al. [4] analysed the 

main causal factors that affect taxi times on factors such as queue size, runway configuration, 

weather, aircraft type, downstream traffic restrictions, and starting terminal. Based on this 

analysis, a statistical regression model to predict taxi times was developed. The work presented 

in [4] did not explicitly model the runway service process, and it required knowledge of the 

number of aircraft on the ground in order to predict TXOT. It was concluded that the take-off 

queue length was the most significant explanatory variable to predict TXOT. Basic statistical 

approaches have been introduced [5,6] to predict departure taxi times at Jackson Atlanta 

International Airport (denoted ATL) and New York’s John F. Kennedy Airport (denoted JFK) 

using ASDE-X (model X) surface surveillance data. Also, linear regression models were used 

for modelling aircraft TXOT at Dallas/Fort Worth International Airport (denoted DFW) with 

several independent variables such as, airlines, taxi distance gate group, and the number of 

departures and arrivals [7,8]. The EUROCONTROL Performance Review Unit (PRU) 

developed a method [9] that predicted the TXOT based on the unimpeded TXOT (UTXOT). 

Because the study presented herein is supported by the EUROCONTROL PRU, we use their 

method [9] to characterize and predict the TXOT profiles. The method will be explained and 

used in Section 4.3. It is noted that the approaches considered in this first group did not assess 

the predicted TXOT target variable on many aircraft operational taxi variables from runway 

schedulers, such as the number of departures and the time of the day. To end up with a selected 

number of features (assumed here to be the top 10), we apply off-the-shelf feature selection 

techniques. 

The second group of literature consists of feasible ML methods to predict aircraft 

performances on the taxiway system and on final approach. In previous papers [10,11], ML 

techniques like stochastic gradient boosting, neural networks (NNs), principal component 

regression, multiple linear regression (MLR), and least absolute shrinkage and selection 

operator (known as LASSO) were assessed in relation to their forecasting performance, 

computational time, and amount of data needed for delivering a reliable time to fly, as well as 

aircraft final approach mass and speed prediction. For the target variable TXOT, NN and RL 

algorithms were assessed based on their TXOT prediction accuracy at several major airports 

in the United States [12–16], such as Dallas Fort Worth Airport (DFW). In addition, regression 

methods, including MLR, least median squared linear regression, support vector regression, 

model trees, and fuzzy-rule-based systems were also applied to several European airports to 

predict TXOT [17,18]. Each ML method was independently applied to limited test data under 

different conditions, and therefore the prediction performance varied with the prediction 

model. Furthermore, state-of-the-art predictions of TXOT have relied on the ML techniques, 

viz., NNs, linear regression models, support vector machines, k-nearest neighbors, and random 

forest. These methods have, for example, been applied on limited traffic data for Charlotte 

Airport (denoted CLT), and their prediction performances were evaluated by comparing the 

predicted TXOT with the simulated taxi times, as well as with the predictions from fast-time 
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simulations [19]. Based on a literature review, the following shortcomings in TXOT prediction 

methodology were identified; first, extracting top TXOT features using many aircraft 

operational taxi variables and feature selection techniques has, as yet, not been considered. 

Second, applying top features before training the model has not been explored. Third, as yet, 

no algorithm has been developed that is capable of real-time computation and providing the 

distributions associated with the individual TXOT predictions to synthesize the what-if 

statements. In this study we apply the state of-the-art ML algorithms NNLM and RL, in 

additional to the RT and MLP methods, which are all capable of synthesizing the what-if 

statements and are expected to overcome the noted lacking aspects from literature. In [20], the 

characteristics of these techniques were reviewed, it was explained how they were feasible for 

real-time and what-if statements computations. 

 

4.1.2 Aim 

 

The main purpose of this study is fourfold. First, we will analyse and review five years of 

historical operational taxi data, allowing us to better characterize and predict TXOT as a 

function of different runway–stand (RWY-STD) combinations and congestion levels. Second, 

we will identify key processes that might benefit from data-driven ML predictions. Third, we 

will extract the most efficient ML method based on their performance indicators; finally, we 

will improve TXOT prediction quality and demonstrate this by comparing our model with 

state-of-the art predictions. The key objective of this study is to develop a real-time model that 

forecasts the TXOT and congestion levels for different RWY-STD combinations using 

machine learning techniques. This model enables us to identify the key precursors impacting 

TXOT. 

 

4.1.3 Structure 

 

The structure of this paper is as follows: first, the data and prediction variables are described 

in Section 4.2. Next, the employed methodology is outlined in Section 4.3, and it includes the 

description of the TXOT behavior and data preparation. Next, the ML techniques are applied 

and evaluated, and the results are presented in terms of performance indicators, identified 

precursors, and a prototype model. In Section 4.5, a comparison of the prototype model with 

baseline models is performed. Finally, recommendations and conclusions are drawn in Section 

4.7 and 4.8. 

 

4.2 Data and Prediction Variables 

 

To predict TXOT profiles and extract what-if scenarios, operational taxi data are used. 

 

4.2.1 Operational Taxi Data 

 

Aircraft operational taxi data are extracted from recorded runway scheduler data that have been 

provided by Charles de Gaulle (denoted CDG) airport. The data cover five years of taxi-out 
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and taxi-in records from 2011, up to and including 2015. In total, the data comprise records of 

about 1,000,000 arrival and departure flights. The datasets are stored in comma separated 

values (CSV) formats and are thereafter saved in separate MATLAB files (.mat). 

 

4.2.2 Prediction Variables 

 

Table 1 lists all the 42 input (potential) prediction variables related to the target variable 

TXOTs that have been identified; TXOT is listed as entry number 43 in Table 4.1. 

 

Table 4.1: Prediction and target variables. 

Variables Description Variables Description 

1. AOBT Actual Off Block Time 23. Day Day of the year 

2. ASAT Actual Start Up Time 24. Month Month of the year 

3. ATOT Actual Take Off Time 25. FlightNumber  Flight Number 

4. Year Year 26. DepartureStand Departure stand 

5. DeIcingStand  De-icing stand  27. QFU Runway Orientation 

6. CTOT Calculated Take Off 

Time 

28. SOBT Scheduled Off Block 

Time 

7. Caractredevol Commercial or private 

flight 

29. TOBT Target Off Block Time 

8. CodeIATA IATA code company  30. TSAT Target Start Up Arrival 

Time 

9. 

CodeAirportICAO 

Airport destination 

ICAO code 

31. Terminal Terminal departure 

10. 

CodeAirportIATA 

Airport IATA code  32. TimeATOT Date and Actual Take 

Off Time  

11. Airline Airline 33. TimeSchema Schema time 

12. DataPointSpeed Point where speed is 

measured 

34. TimeReal Actual time 

13. DateReal Actual Date 35. AircraftType Aircraft type 

14. DateSchema Schema Date 36. AircraftTypeICAO Aircraft type ICAO 

15. DepArr Departure or arrival 

flight 

37. 

GateConnectionType 

Connection Type at the 

gate 

16. EOBT/EIBT Estimated Off Block 

Time/ Estimated In 

Block Time 

38. CongestionLevel  The congestion level is 

the estimated number 

of movements (i.e. 

arrivals and departures) 

during the estimated 

Taxi-Out transit time 

(i.e. time between the 

estimated off-block and 
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estimated take-off) of 

the respective flight. 

17. ETOT Estimated Take Off 

Time 

39. 

NumberOfDepartures  

Number of departures 

in last 20 minutes 

observed when a flight 

is at ATOT on a 

specific runway. 

18. DeIcingStatus De-icing status  40. UnimpededTXOT  

 

There are two sets of 

Unimpeded values. The 

first set is the 

Unimpeded time per 

runway- stand 

combination and the 

second set is the 

Unimpeded time per 

stand group.  

19. ScheduleBloc Actual In Block Time 

(AIBT)  

41. SaturationLevel For explanation see 

section III.A 

20. SOBT/SIBT SOBT or Scheduled In 

Block Time (SIBT) - 

depending if it is a 

departure or arrival 

42. StandsGate 

Availability  

When a flight is at 

AOBT the number of 

not used stands are 

counted   

21. ATCcallsign ATC call sign 43. TXOT Taxi-Out Time  

22. 

RegistrationCode 

Registration code  

 

4.3 Proposed Methodology 

 

This study proposes a methodology comprising five steps. The method is based on the 

Statistical Package for the Social Science ML method [21]. This methodology describes the 

steps to come up with a usable predictability model. Each step is described in the following:  

 

4.3.1 Compute the TXOT  

 

Before feasible ML techniques can be applied, the TXOT response is extracted. One of the 

purposes of the TXOT indicator is to provide an accurate prediction of the average outbound 

queuing time during times that the airport is congested. Taking into account the timestamp 

data available, TXOT is defined as the time elapsed between actual offblock time (AOBT), 

from a specific stand, and the actual takeoff time (ATOT), on a specific runway [22]. This time 

envelope covers both systemic durations (e.g., time spans for certain procedures, queuing at 

runway to ensure flight demand) as well as additional time aspects linked to the actual progress 

of the operations. Therefore, in this step, we first plot the TXOT versus the congestion level 

for all 1730 RWY-STD combinations at CDG. The congestion level is defined as the estimated 
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number of movements (i.e., arrivals and departures) at CDG within the estimated taxi-out 

transit time (i.e., time between offblock and takeoff) of the respective flight. The number of 

movements and the taxi-out transit time are estimated because we start the prediction from the 

AOBT, for which we use the variables of estimated offblock time (EOBT), estimated takeoff 

time (ETOT), and estimated in-block time (EIBT). Furthermore, we only include the number 

of movements of the dependent runways from the TXOT flight considered. Figure 4.1 shows 

an example for the TXOT from stand C-E32 to runway 26R. Note that the TXOT and 

congestion levels are rounded off in, respectively, minutes and the number (#) of movements. 

We observe from Figure 4.1 that, as soon as a certain level of congestion is reached, the TXOT 

increases linearly (purple line denotes linearly fit) with the congestion level. At a low level of 

congestion, the actual taxi-out time tends to be constant (horizontal red line). This constant 

actual TXOT is considered to be the UTXOT (explained in Section 4.3.2) required by any 

flight to taxi out and take off. The intersection between the red and purple lines corresponds 

to the saturation level. Beyond this saturation point, the TXOT is directly proportional to the 

number of movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: TXOT versus the congestion level for stand C-E32 and runway 26R. 

4.3.2 TXOT Understanding 

 

An analysis is conducted in order to extract additional prediction variables that affect TXOT 

behavior. We observed from Section 4.3.1 and the EUROCONTROL PRU methodology [9] 

that the following prediction variables are highly influencing the TXOT: “congestion level,” 

“number of departures in last 20 min,” “saturation level,” “unimpeded TXOT per runway stand 

and stand group,” and “stands gate availability.” These variables are not included in the 

received historical operational taxi data, and are therefore calculated and included into Table 

4.1 as additional prediction variables (numbers 38–42). The duration of the TXOT is captured 

using a statistical analysis for periods of low traffic [9], referred to as UTXOT. The TXOT can 

be predicted more accurately by first calculating UTXOT and the additional taxi-out time 

based on historical operational taxi data. The indicator is first calculated at a disaggregated 



54 
 

level, i.e., for a comparable grouping of flights characterized by the same combination of 

RWY-STD. Each grouping of flights has an unimpeded reference associated with it. 

Thereafter, we benchmark our UTXOTs per RWY-STD combination with the UTXOT results 

of the PRU. Table 4.2 shows four examples where we benchmark the UTXOTs per runway–

stand group from our model with the PRU model. For example, stand group A1 includes the 

stands A01 up to A18, and stand group A2 includes stands A30 up to A38. We observe that 

the results from the PRU are similar, except for stand group B1. 

 

Table 4.2: Comparison of PRU UTXOT with our UTXOT results. 

Runway Stand group UTXOT calculated with our model UTXOT PRU 

08L A1 12:06 min 12:00 min 

08L A2 11:29 min 11.30 min 

08L B1 10:22 min 10:00 min 

08L B2 10:31 min 10.30 min 

 

4.3.3 Data Preparation 

 

The data preparation phase covers all activities required to set up the final dataset from the 

initial raw aircraft operational taxi data; also, the taxi data are merged and cleaned in this step. 

The tasks include feature selection for identifying which features are important for best 

describing the variance in a dataset. For feature selection, the RreliefF and Sequentialfs 

technique is applied. In previous papers, these techniques were introduced [10,11]. The 

objective of feature selection is threefold: improving the prediction performance of the 

predictors, providing faster computational performance and more effective predictors, and 

providing a better understanding of the underlying process that generated the data [23]. 

RreliefF and Sequentialfs have commonly been viewed as feature selection methods that are 

applied in a preprocessing step before the model is learned [24]. The standard RreliefF 

regression modeling technique has been extensively discussed in several papers [23–26]. The 

technique has been applied on 500,000 TXOT flights for CDG, as shown in Figure 4.2. The 

results for the Sequentialfs technique are shown in Figure 4.3. 

 



55 
 

 
Figure 4.2: Normalized feature selection using RreliefF algorithm (see Table 1 for 

feature/variable definitions). 

 
Figure 4.3: Normalized feature selection using Sequentialfs algorithm (see Table 1 for 

feature/variable definitions). 

Applying the “intersection” method on the features selected from Figure 4.2 and Figure 4.3 

results in the following 10 most important features: “unimpeded TXOT,” congestion level, 

“Saturation level, number of departures in the last 20 min,” “deicing stand,” “month,” “time 

real,” “departure stand,” “QFU,” and “AOBT.” These 10 features are included in the ML 

model that we have developed. The main reason for opting for fewer variables has already 

been explained by the feature selection objective described earlier. Next to this, there are more 

advantages associated to learning a ML model with only top features instead of including all 

prediction variables, as pointed out in [26].  
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4.3.4 Evaluation of Feasible Machine Learning Techniques 

 

The MLP, RT, RL, and NNLM modelling techniques are applied and assessed in relation to 

their performance indicators in order to come up with an accurate TXOT ML model. 

Furthermore, we construct the datasets and find the stability of three different data parts: 1) 

Based on different data sources and the variables listed in Table 4.1, we standardize the feature 

matrix X. 2) We split matrices X and Y into two subsets (Xtrain, Ytrain) used to train the 

model, and (Xtest, Ytest) are used to evaluate the model accuracy. 3) The default ratios 

(splitting the data) for training, testing, and validation are analysed. Before the forecasting 

performance, computational time, and minimum amount of data needed for each applied ML 

technique are analysed, the stability of three different data parts is checked first (cross 

validation). To check the stability of different data parts, the data will be randomly divided 

into training, validation, and testing subsets. It is assumed that the default ratios in this study 

for training, testing, and validation are 0.70, 0.15, and 0.15, respectively. The model is adjusted 

accordingly during training. The validation is used to measure network generalization, as well 

as to halt training when generalization stops improving. To prove that a randomly selected 

dataset is stable, epoch and validation checks are performed. The number of epochs indicates 

the number of single passes through the entire training set. Thereafter, we check convergence 

on the validation set and, at the end of the learning process, the model is evaluated on the test 

set. The test has no effect on the training, and therefore provides an independent measure of 

network performance during and after training. Figure 4.4 and Figure 4.5 show an example of 

a trained TXOT LMNN model selecting 250,000 CDG flights from all stands to all runways. 

We learn the model with all prediction variables listed in Table 4.1. It has been tested that 

similar mean squared error (MSE) results are obtained using the top 10 features from the 

previous section. However, by excluding 32 variables, the model is trained three times faster 

and is more robust when inserting new data with similar structure. Also, the ML TXOT 

prediction error results show similar statistical TXOT prediction errors [17]. Assessing the 

NNLM technique result in a root MSE (RMSE) of 1.97 min (MSE  3.89 min) for 79% of the 

predicted TXOT flights, whereas an approximately 5 min RMSE is obtained for 98% of the 

cases. 
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Figure 4.4: Number of TXOT flights (instances) versus errors in minutes for 250,000 TXOT 

flights. 

 

 

Figure 4.5: MSE in minutes versus amount of epochs for the NNLM technique and 250,000 

TXOT flights. 
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Outliers 

 

Outliers exist when building predictive models. Outliers are unusual data points (TXOT flight) 

that are far removed from the other data points. One way to show this inconsistency is by 

plotting the linear regression lines for the training, validation, and test sets, as well as for the 

complete set (all). The correlation coefficient values R represents a measure of the correlation 

between the predicted outputs and the TXOT target. An R- value of close to one means a close 

correlation and an R- value below 0.2 is defined as an outlier. It is evident that, by neglecting 

outliers in the target set, a better R value will be obtained for the prediction model. However, 

the TXOT model conceived herein takes all the outliers into account. 

 

Results of Neural-Network Levenberg–Marquardt, Multilayer Perceptron, Regression 

Tree, and Reinforcement Learning Modeling 

 

The same procedure has been done for the MLP, RT, and RL techniques. For the various 

techniques, Table 4.3 shows the minimum RMSE of TXOT in minutes, the computational time 

in minutes, and the minimum amount of data needed to obtain these results. We observed that 

the RT and RL techniques performed best in terms of the RMSE. However, due to a lower 

computational time and amount of data needed, we selected the RT as the most efficient 

method for TXOT prediction. The sequel to this paper will exclusively focus on the results 

obtained using the RT approach.  

 

4.4 Results Regression Tree Modelling 

 

Based on the results listed in Table 4.3, the regression tree modeling technique, by learning 

the tree based on the top 10 features extracted in the previous section, is further explored. The 

purpose of building a RT is to extract a set of if-then-else (what-if statements) split conditions 

in order to identify the main precursors that are mostly influencing the TXOT. After having 

built this tree, we start at the root node and ask a series of questions about the predictors. In 

each subsequent node, the tree selects the variable and the split point to achieve the minimum 

MSE between predictions and actual TXOT. This process will continue until a stopping rule 

is applied. Each of the terminal leaves represents one of the partitions of the input space. To 

provide a model that can generate accurate predictions that are not overcomplicated, we need 

to find the optimal tuning parameters for the tree. In this study, we use two parameters. The 

first parameter is the minimum leaf size lmin, for which we need enough data points in each 

terminal node to create a distribution. The parameter minimum leaf size can be used to stop 

the splitting process when the number of instances in a leaf is too small. In addition, if the tree 

contains too many variables, it is hard to interpret. The second tuning parameter for the tree is 

the maximum tree depth dmax. Avery large tree with many leaves might overfit the data, 

whereas a small tree might not be able to capture the important structure of all the variables or 

top 10 feature variables. The maximum tree depth can restrict the number of layers of a tree. 

Cross validation is used to select the minimum leaf size lmin, and MSE is used to select the 

maximum tree depth dmax. So, in our case, the tree is fit for a range of values of the two 

parameters based on three-quarters data. Thereafter, the MSE of the predictions is computed 
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based on the remaining one-quarter. This is done for each quarter of the data, and the four 

MSE values are averaged. The set of parameters that gives the lowest MSE will be selected. 

As shown in Figure 4.6, we first train the trees with all 42 variables and different settings of 

dmax and lmin. We observe that the MSE drops as the tree depth increases from one to seven, 

regardless of the leaf size. Once the tree depth reaches the value of six, the MSE does not 

change significantly. On the other hand, a tree with 4000 minimum leaf sizes performs slightly 

better than the trees with 5000 and 6000 minimum leaf sizes. We also explore setting the 

minimum leaf size to less than 4000, but the model does not appear to improve much. 

Moreover, if we further reduce the leaf size, we may not have enough instances in the leaves 

to fit a distribution. Thereafter, we also train a model with the top 10 features found in Section 

4.3.3, where we fit a tree to the entire dataset with the maximum tree depth and minimum leaf 

size set to 6 and 4000, respectively. We then sort the predictors based on their feature 

importance and select the first 10 as the final predictors. Thereafter, we retrain the tree with 

these 10 variables. We change the values of dmax and lmin, and we repeat the cross-validation 

process described previously. The tree with lmin equal to 4000 still performs slightly better 

than the others, and the MSE does not change significantly for tree depth values above six. 

Thus, our final model has 10 predictors and is fitted with a maximum tree depth and minimum 

leaf size set to 6 and 4000, respectively. By learning the tree, a mean and distribution are 

extracted per decision node. This is needed to observe precursors and understand what is likely 

to happen for the TXOT. Our model divides all the flights into 61 segments. In other words, 

the RT shown in Figure 4.7 has 61 terminal nodes and is learned with data from stand groups 

A, B, and C to runway 08L. Here, we will identify the most important predictors as the major 

factors that play key roles in influencing TXOT. The five most important factors are as follows: 

1) The first factor is whether or not the flight experiences unimpeded conditions, which is the 

most important predictor in our model. The key decision value in our model is 21.5 min (node 

1 in Figure 4.7). In the real-time prediction tool that has been conceived, a flight is considered 

unimpeded if the actually observed TXOT remains sufficiently low for that specific RWY-

STD. 2) The second factor is the congestion level, which is mainly influenced by the time of 

the day and RWY STD; it is estimated in real time using the EOBT, ETOT, and EIBT within 

the estimated taxi-out transit time. 3) The third factor is the saturation level [9], which is 

predicted based on the top 10 features and estimated congestion level. 4) The fourth factor 

includes the time and month. We observe that, during three time windows of the day, the 

probability of experiencing congested conditions is significantly higher as compared to other 

time windows. The key decision values range from 0800 to 0930 hrs, 1230 to 13:00 and 17:00 

to 18:00.  
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Table 4.3: Four feasible ML techniques assessed on their performance indicators for runway 

08L 1400 hrs, and 1800 to 2000 hrs.  

Technique  

Performance indicators  

RMSE 

(min)  

Computatio

nal Time 

(min)  

 

Feasible for real-

time 

computations 

Distributions 

associated with 

the individual 

TXOT 

predictions 

Amount of 

TXOT data 

needed 

(flights)  

Levenberg-

Marquardt 

01:58 

min 

01:06 min Yes Yes 70,000 

Regresion Tree  
01:36 

min 

01:20 min Yes Yes 70,000 

MLP 
01:42 

min 

01:50 min Yes Yes 110,000 

Reinforcement 

learning 

01:36 

min 

01:30 min Yes Yes 150,000 

 

Furthermore, cold conditions or winter conditions are negatively influencing the TXOT. 

Therefore, our decision variable of the de-icing stand can also be found in the top 10 features. 

5) The fifth factor is the number of departures in the last 20 min, which is measured before the 

ATOT and estimated using the ETOT. The decision value lies at 15 flights.  

Figure 4.7 shows what-if statements. If the statement (<) is true, we go to the left node 

at the next level; if the statement is false, we go to the right node at the next level. We also fit 

a parametric distribution to each terminal leaf. The probability distributions we consider 

include the Gumbel, Gamma, and F distributions. Equation (1) shows the Gumbel distribution, 

which provides the best fit over the terminal leaves:  

 

 

         Equation 1 

 

 

for -∞ < x < ∞, whereas 0 < μ and β < ∞. 

 

Figure 4.8 shows the Gumbel distributions fitted to the 61 terminal leaves. The blue bars 

represent the histogram of the 250,000 TXOT flight records in our training set. We note that 

the distribution of all the TXOT values (in the training, validation, and test sets) are more 

spread out than the distributions of the terminal leaves. The shapes of the terminal leaves’ 

distributions are quite different from each other. In general, the distributions with lower 

medians are less spread out. This indicates that, in these segments, the uncertainties of the 

TXOT flights are low. If there are a lot of TXOT flights in these segments at the airport, the 

managers should have more confidence in making adjustments to their plans. 
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Figure 4.6: RMSE versus tree depth for different leaf sizes and features.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Part of the regression tree with a tree depth of four. 
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Figure 4.8: Distributions of the 61 terminal leaves and the number of flights (PDF, probability 

distribution function). 

4.5 Prototype Model 

 

Based on what we have learned in the previous steps and the data availability, a prototype 

model has been developed using the RT method (best performance) to forecast TXOT at CDG. 

We run our model, given the input variables from our case study, which are runway 08L, all 

stands, a forecast window of 120 min, 1500 simulations, and a forecast resolution of 5 min. 

The model is built on 500,000 flights collected over three years of operational taxi data. To 

generate real-time predictions based on the proposed model, an application based on 

MATLAB is developed. The output from running the application includes the mean and 

quantiles of flights. The aim is to generate TXOT forecasts for each flight and of the number 

of aircraft assigned to a given runway per time window. Suppose we are at time instance h and 

try to make predictions for the next x min. Given real-time flight information before AOBT, 

our RT tree model will determine to which end leaf the flight corresponds. For example, if a 

flight departs at terminal 2 and plans to take runway 08L with an ETOT of 0850 hrs, then this 

flight will fall into leaf 10. Thus, the median of the TXOT is 17.2 min and the distribution of 

the connection time can be described by a Gumbel distribution with μ = 17.9 and β = 2.3. Next, 

we produce the distribution of the number of TXOT aircraft during a certain time interval [h1; 

h2], where h < h1 < h2 < h + x. This distribution is obtained by aggregating all the distributions 

of the flights that taxied out in the last 2 h or will depart in the next x min. The procedure of 

generating this distribution is summarized in two steps: 1) Suppose there are n flights that 

taxied out in the last 2 h or will taxi out in the next x min. We sample one TXOT from each of 

the n flights’ distributions, and we calculate the time when the aircraft concerned arrive at the 

runway. We then count how many flights taxied out between the time interval [h1; h2], and 

we record this number as y1. 2) Repeat step 1m times and construct an empirical distribution 

using y1, y2..ym. Then, the qth quantile of the number of flights taxied out between the time 

interval [h1; h2] can be approximated by the qth quantile of y1, y2..ym. In a live trial, we 

produced the distributions of the TXOT of the flights who have departed in the last 2 h or will 

depart in the next x min. The operational datasets can be accessed in real time with exception 

of the actual variables AOBT, ASAT, and ATOT (see Table 4.1). For this trial, we generate 
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real-time data for a selected historical data set of two years, in which we exclude the actual 

data variables. To conveniently generate predictions in real time, we develop a standalone 

MATLAB compiler that can work in most operation systems (Windows, Linux, Mac, etc.).  

 

 
Figure 4.9: Interface of application. 

Figure 4.9 shows the interface of the application. This application allows users to set the 

forecasting window x, the number of simulations m, the update frequency min, the forecast 

resolution r, the runway at CDG (RWY), the stand group, the starting time of the first 

forecasting window h, the machine learning technique (ML), and the ending time of the last 

forecasting window. The default settings of the first three parameters are 120min, 1500 

simulations, and 5min, respectively. We update the predictions every 1 min because it takes 

slightly less than 1 min to produce the forecasts for the upcoming 2 h. The default resolutions 

are 1, 5, 15, and 60 min; and the predictions are saved at different resolutions in different CSV 

files. The starting time defaults to the current time if the user does not specify one. The ending 

time will be 24 h after the starting time. As shown in Figure 4.10, the predictions for this case 

study are generated on a rolling basis from all stands to runway 08L. Suppose the trial started 

at 0800 hrs. We first collected data of the flights that departed at CDG after 0600 hrs or would 

depart before 1000 hrs, and then we generated forecasts for the next 2 h (0800–1000 hrs). 

Thirty minutes later (0830 hrs), the second trial started. Similarly, we only considered the 

flights that departed at CDG after 0600 hrs or would arrive before 1030 hrs, and we generated 

forecasts for the time interval between 0830 and 1030 hrs. The numerical values attached to 

the dots in Figure 4.10 show the difference between the predicted TXOT and their real values. 

The difference is measured in minutes per stand group. Each stand group attached under the 

dots represents a number of different stands. For example, stand group A1 includes the stands 

A01 up to A18. It has been observed that, for this case study and for each prediction trial, the 

first 30 min have a significantly lower error as compared to the prediction for the remaining 

60 min timeframe. Table 4.4 summarizes these differences in percentages for each trial. We 

observed an increase in error because of the longer look ahead time, which was not due to the 

increased number of flights. 
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4.6 Discussion on TXOT Results  

 

To the best of our knowledge, there is no existing TXOT prediction function to compare 

against. In Table 4.5, we built a lookup table of baseline models (average TXOT between 8 

and 14 min) to compare our CDG TXOT predictions against. The results of our case study 

include a final model that has 10 predictors and is fitted with a maximum tree depth and 

minimum leaf size set to 6 and 4000, respectively (Figure 4.6). The percentage of predictions 

that fall within approximately 3 and 5 min is used as metric to compare the TXOT prediction. 

Table 4.5 shows the RMSE TXOT prediction results for six different models. The models do 

not take into account 1) the layout of the airport (particularly by not considering the factors 

associated to the distances and the turning angles), 2) the time period and amount of data 

needed to learn, 3) the computational time needed for a prediction, and 4) the instances at 

which the prediction is performed. An average of 95.7% of predictions was found for Detroit 

International Airport (denoted as DTW), and an average of 93.8% was found for Tampa 

International Airport (denoted as TPA) for an approximately 3 min accuracy. The results for 

John F. Kennedy International Airport (JFK) were not very consistent and much less 

promising, showing an approximately 5 min prediction accuracy between 20.7 and 100% for 

different days and parts of the day. Additionally, [17] predicted 96.1% of the TXOT at 

Stockholm-Arlanda airport within 3 min of the actual time and 99.2% within approximately 5 

min. In contrast, our RT model found an average of an approximately 3 min accuracy of 94% 

for CDG and 99% within 5 min, considering both departures and arrivals simultaneously. 

Based on these results, it can be concluded that the Arlanda and Zurich airport cases performed 

slightly better than our model in terms of the average RMSE. However, the CDG model 

proposed herein is more complex in terms of operations, and over 250,000 movements were 

used to learn the model; whereas the other models only took a day or a week of operation to 

learn the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Predicted output after running the application for the first trial. 
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Table 4.4: Average error differences per trial and for different time prediction windows. 

Time prediction 

window 

0 - 30 minutes 30 - 90 minutes 

Trial 1 6% 10% 

Trial 2 4% 8% 

Trial 3 4% 9% 

Trial 4 2% 6% 

 

Table 4.5: RMSE TXOT prediction within approximately 3 and 5 min for six different 

models. 

 Within 3min  Within 5min Median TXOT 

(min) 

Charles de Gaulle Airport 94.2% 99.0% 17 

Tampa International Airport [15] 89.9%–95.7% - 12 

Stockholm-Arlanda Airport [17] 96.1% 99.2% 11 

John F. Kennedy International 

Airport [6, 17] 

- 20.7-100% 37 

Detroit International Airport [16] 89.9%–97.1% - 15 

Zurich Airport [17] 95.6% 99.4% 14 

 

Furthermore, our model is the first TXOT model that illustrates how shared data and advanced 

analytics can be used to the benefit of ATCOs and runway schedulers. 

 

4.7 Recommendations 

 

Airport operational rules, regulations, and standards can vary significantly over a time period 

of five years. Therefore, in future development of the conceived TXOT model, the utility of a 

faster trend-tracking model will be explored by reviewing the prediction accuracy of the model 

on a day-to-day basis as compared to a static model based on the full five years of data. 

Additionally, weather events, maintenance downtime, and runway/taxiway repair will also be 

included in our TXOT model. Although the model has been developed for a TXOT prediction 

problem, we believe the methodology proposed in this study can be easily applied to other 

runway processes as well, such as the prediction of runway occupancy times. This topic will 

be explored in future research. 

 

4.8 Conclusions 

 

This study demonstrates the use of machine learning (ML) techniques to forecast the taxi-out 

time (TXOT) per flight. First, the TXOT aircraft behaviors, the data sources, the key features, 

and the ML outcome are reviewed. Based on the availability of data and the importance of the 
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TXOT prediction, activities that will benefit from making greater use of data are then 

identified, where the focus is on the TXOT from all stands to runway 08L. A predictive model 

was built for TXOT flights using the neural-network Levenberg Marquardt, multilayer 

perceptron, reinforcement learning, and regression tree techniques. Then, an approach was 

developed to generate distributions associated to each TXOT flight and the number of aircraft 

to a specific runway (08L) within a timeframe of 30 min. An application was also developed 

for CDG to produce these forecasts. Finally, a live trial at CDG on 14 November will be run, 

for which the accuracy of the model will be assessed and improvements will be made. To this 

end, a feasibility study will be conducted where an analysis will be made of how the prediction 

tool can be used by air traffic controllers in their decision making and planning to ensure 

resilience, safety, and efficiency of air traffic control operations locally in a sector, which will 

also take into account coordination with other sectors. The following 10 features were included 

in the ML model after the intersection method was applied on our feature selection results: 

unimpeded TXOT, congestion level, saturation level, number of departures in the last 20 min, 

deicing stand, month, time real, departure stand, QFU, and actual offblock time (AOBT). It 

was observed that the RT technique performed best; for this regression technique, a maximum 

tree depth and minimum leaf size was adopted of 6 and 4000, respectively. Furthermore, 

learning the model based on 10 features as compared to learning the model with all features 

resulted in a model that was more robust for new similar structured data, and which had faster 

computational times and similar MSEs. Also, reviewing the state-of-the-art statistical TXOT 

prediction errors showed similar ML TXOT prediction errors. There were some advantages 

associated to using the current model. First, the ML technique that was used to build the model 

was fast, intuitive, and interpretable. It could help the airport managers to understand the 

driving features of the TXOTs per runway–stand. Second, the model has been built based on 

a large historical dataset (500,000 flight records). More than 40 variables were available for 

selection as predictors. These variables also enabled one to build new features using domain 

knowledge of the data. Third, the model could update the predictions in real time. The 

application developed for CDG Airport allowed easy extraction of real-time data. The 

forecasting procedure was effective, and the predictions could be generated in a short amount 

of time. The model was the first to provide TXOT forecasts for each flight to a specific runway. 

The TXOT forecasts for a flight movement might help ATCOs to make better decisions, to 

predict whether the flights will experience additional TXOT, and to anticipate in advance on 

the AOBT by knowing when departure queuing starts. If an ATCO could retrieve this 

information far in advance, he or she might be able to generate more stable and accurate 

TXOTs and an EOBT used in Airport Collaborative Decision Making and Airports Operations 

Centre. 
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5.0  Predicting Abnormal Runway Occupancy Times and 

observing related Precursors 

 

 

his Chapter builds on Chapter 4 by using the same methodology but by combining 

different feasible ML techniques. The reason for selecting this technique is that faster 

and more accurate predictions are found. The methodology and ML technique is 

applied to the third ASP enabler, being abnormal AROT. The main purpose of this 

Chapter is twofold: first, to better characterize and predict AROT as a function of 

operational parameters from historical data; second, to identify and predict abnormal AROT 

flights with their associated risk precursors. The identification and prediction is done using a 

new data-driven method by combining three feasible ML techniques. The key objective of this 

study is to develop a real-time model that forecasts the AROT for different aircraft types and 

weather conditions using this new data-driven ML method for Charles de Gaulle and Vienna 

airports. This model should offer insight into the predictability of key precursors impacting 

AROT due to abnormality. 
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Abstract  

Accidents on the runway triggered the development and implementation of mitigation 

strategies. Therefore, the airline industry is moving toward proactive risk management, which 

aims to identify and predict risk precursors and to mitigate risks before accidents occur. For 

certain predictions machine learning techniques can be used. Although many studies have 

explored and applied novel machine learning techniques on different radar and A-SMGCS 

data, the identification and prediction of abnormal runway occupancy times and the 

observation of related precursors are not well developed. In our previous papers, three existing 

methods were introduced, lasso, multi-layer perceptron, and neural networks, to predict the 

taxi-out time on the taxiway and the time to fly and true airspeed profile on final approach. 

This paper presents a new machine learning method where the existing machine learning 

techniques are combined for predicting the abnormal runway occupancy times of unique radar 

data patterns. Additionally, the regression tree method is used in this study to observe the key 

related precursors extracted from the top 10 features. Compared with existing methods, the 

new method no longer requires predefined criteria or domain knowledge. Tests were 

conducted using final approach radar data and A-SMGCS runway data consisting of 78,321 

flights at Paris Charles de Gaulle airport and were benchmarked against 500,000 flights at 

Vienna airport. 

 

5.1 Introduction 

 

Machine learning (ML) can be used to identify patterns and to observe related risk precursors 

in historic data [1–4]. These patterns and precursors can be transferred into “what-if” 

statements by analysing relations between the arrival runway occupancy time (AROT) and the 

precursors [5]. This analysis is needed to predict forthcoming operational risks during real-

time landing operations based on the observation of risk precursors. In this context, this study 

will focus on two different time window predictions. The first one makes predictions from 

moment t up to 1–5 min, which would feed tactical operational tools to alert air traffic 

controllers (ATCOs) on abnormal AROT and associated precursors. The second one will make 

predictions for the next 1–2 h, which may be either used as a strategic operational tool for the 

ATCO supervisor to decide on changing the sequence algorithm on final approach or can be 

used as input for the arrival and departure manager (AMAN/DMAN). Both predictions could 

lead to an improvement in runway safety and throughput. 

 

5.1.1 Related Work 

 

Prior studies have tried to tackle these patterns and observe related risk precursors. We divide 

the literature into three groups. We start with the first group, which focuses on abnormal events 

detection methods for aviation systems. The Morning Report software package was one of the 

earliest efforts made to detect abnormal events from routine flight data recorder (FDR) data 

[6]. The software models the time series data of selected flight parameters using a quadratic 

equation. Each flight is mapped into a point that is described by the coefficients of the quadratic 

equations in the feature space. Thereafter, for each flight an “atypical score” is measured using 
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the distance between the point and the mean of the distribution in the feature space. Later 

studies apply data-mining techniques to detect abnormal events in data of aerospace systems 

[7–12]. One of these studies applies supervised learning software called Inductive Monitoring 

System (IMS) [10]. The IMS software method summarizes the data distributions of typical 

system behaviors from a historical training dataset, which is then compared with real-time 

operational data to detect abnormal behaviors. However, the limitation of the IMS is that it 

always needs a training data set for labeling the norms. Other studies used unsupervised 

learning techniques. These studies focus on discrete flight parameters for monitoring pilot 

operations, such as cockpit switch flips [7,8]. The techniques observe abnormal events in the 

switch operations based on the longest common subsequence measures. The study presented 

in [9] developed a statistical framework to incorporate both continuous and discrete flight 

parameters in FDR data. Das et al. developed Multiple Kernel Abnormal Detection (MKAD), 

which applies a one-class support vector machine for abnormal detection [12]. MKAD 

assumes one type of data pattern for normal operations, which is not always valid in real 

operations, because standards vary according to flight conditions. Most recently, Matthews et 

al. summarized the knowledge discovery pipeline for aviation data using the previously 

discussed algorithms [13]. The second group focuses on the AROT extraction by applying 

statistical methods. For example, Kumar et al. [14] conducted a study that applied statistical 

methods for the extraction and analysis of surface track data for AROT. The study [15] 

highlights the factors using statistical methods that influence the AROT such as aircraft weight, 

velocity, air carrier, and meteorological conditions. Based on the above research studies, 

Airbus developed a system that shows the cockpit operational need by calculating the AROT 

and braking distance required when the aircraft is at touchdown point. In [16] the authors show 

a method for assisting the AROT and braking of an aircraft on a runway. The method 

comprises six steps, which are implemented automatically into the Airbus brake-to-vacate 

system. 

The third group of literature consists of abnormal event detection methods developed 

and applied outside the aviation domain. In general, those abnormal event detection techniques 

can solve problems for a domain-specific formulation. Some techniques are developed for 

intrusion detection in computer systems [17,18], fault detection in mechanical units and 

structures [19,20], and fraud detection related to phones, credit cards, insurance claims [21,22], 

and so on. Additionally, two groups of techniques are developed for time-series data depending 

on how dissimilarities are measured: data based and model based [23,24]. The former 

measures the dissimilarity based on data observations. The dissimilarity is measured by a 

variety of distance functions, such as Euclidean distance [25,26], dynamic time warping 

distance [27], probability-based distance [28], correlation-based distance [29]. Based on the 

literature review, the AROT prediction methodology is lacking in the following aspects: first, 

extracting top AROT features using statistical methods and feature selection techniques; 

second, applying top features before training the model and combining feasible state of the art 

ML algorithms to train the model; and third, developing algorithm that is capable of real-time 

computation and finally providing decision tree distributions associated with the individual 

abnormal AROT predictions to synthesize the what-if statements. Therefore, it is envisaged to 

progressively move from a statistical approach to a new ML approach for coping with the 

variability of AROT behaviors. 
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5.1.2 Aim  

 

The main purpose of this study is twofold: first, to better characterize and predict AROT as a 

function of operational parameters from historical data; second, to identify and predict 

abnormal AROT flights with their associated risk precursors. The identification and prediction 

is done using a new data-driven method by combining three feasible ML techniques. The key 

objective of this study is to develop a real-time model that forecasts the AROT for different 

aircraft types and weather conditions using this new data-driven method for Charles de Gaulle 

(CDG) and Vienna (VIE) airports. This model should offer insight into the predictability of 

key precursors impacting AROT. 

 

5.1.3 Structure 

 

The structure of this paper is as follows: First, the data and prediction variables are described 

in Section 5.2. Second, the methodology is outlined in Section 5.3, introducing the AROT 

behavior and data preparation. Furthermore, the feasible ML techniques are combined to a new 

ML model, which is applied on a regression tree. Thereafter abnormal AROT results are 

predicted, and related precursors are observed. In Section 5.4 the real-time model is outlined, 

and finally conclusions are drawn in Section 5.5. 

 

5.2 Data and Prediction variables  

 

The AROT is a key driver of airport runway throughput, especially when low airborne 

separation minima are applied. Several factors, such as aircraft type, weather conditions, traffic 

demand, and ATCO workload, influence the AROT [14,15]. All factors are included in our 

model with the exception of the ATCO workload, which will be included in future studies. To 

predict AROT profiles and extract risk precursors, final approach and runway radar data are 

used. 

 

Final Approach and Runway Radar Data 

 

Radar, A-SMGCS, and weather data are extracted from runway schedulers and have been 

provided by CDG and VIE airports. The data set covers, respectively, 5 years from 2011 to 

2015 and 3 years from 2013 to 2015 of final approach radar data and A-SMGCS runway data 

(Table 5.1). The weather data set covers 5 years of data from 2011 to 2015. In total, the data 

comprise about 78,321 and 500,000 arrival flights. The data sets are stored in CSV formats 

and are thereafter saved in separate MatLab and Python files. 
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Table 5.1: Prediction and target variables. 

AROT variables Description 

1. Anne Year 

2. Caractredevol Commercial or private flight  

3. CodeIATA IATA code company  

4. CodeAeroportOACI Airport origin ICAO code 

5. CodeAeroportIATA Airport origin IATA code 

6. Compagnie Airline  

7. Crosswind Crosswind vector  

8. DateReal Actual date 

9. Deep landing  The runway length available beyond the touchdown point 

10. IdentifiantvolATC ATCO call sign 

11. Long flare  Estimate the start of the flare until touchdown 

12. Mois Month 

13. NumFlight Flight Number 

14. Postedestationnement Gate arrival  

15. QFU Runway orientation and runway exit  

16. Semaine Week 

17. Tailwind  Tail wind vector 

18. Temp Temperature  

19. TimeReal Actual time of the day 

20. Typeavion  Aircraft type and ICAO category  

21. Visibility METAR visibility conditions  

22. Arrival runway 

throughput  

The amount of landings that is performed on the runway during 

the last 30 min 

23. ACSpeedPoint  Speed of the aircraft  at 2NM, and 1NM out, threshold and the 

runway exit point (RWEP) 

24. ALDT Actual Landing Time  

25. AROT Arrival Runway Occupancy Time 

 

5.3 Methodology  

 

For this study, we propose a methodology comprising five steps. The method is based on 

previous work [3,4,30] and the Statistical Package for the Social Science (SPSS) ML method 

[31]. This methodology describes the steps to come up with a usable predictability model that 

identifies and to predict abnormal AROT flights with their related risk precursors. Each step 

is detailed below. 
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5.3.1 Identification and Understanding of the AROT 

 

The AROT is extracted by calculating the time between the aircraft crossing the threshold and 

its tail vacating the runway [5], using the variables ACSpeedPoint and ALDT, as defined in 

Table 5.1 a matrix Y is then formed, where each row represents a flight, columns 1 until 22 a 

prediction variable, and column 25 the AROT target variable (see Table 5.1). Based on the 

state-of-the-art AROT analyses and the available data in Table 5.1, this subparagraph will 

show the correlation between the most important prediction variables from the literature and 

the AROT target variable, using a statistical approach. In Section 5.3.2 ML feature selection 

techniques will be applied to verify if the top features are similar. We propose to first extract 

the AROT per aircraft type for 78,321 CDG flights for runway 09L, 27R, 08R, and 26L and 

for 500,000 VIE flights for runway 11L and 29R. This is done to cover seasonal variations and 

to have a minimum of 15 AROT measurements per aircraft type and runway. Figure 5.1 shows 

the AROT values for 49 aircraft types at runway 08R at CDG airport. The AROT results for 

the remaining CDG runways and 49 different aircraft types can be found in [30]. We observe 

from Figure 5.1 that the AROT differs per aircraft type. As a next step we plot in Figure 5.2 

the AROT as function of the aircraft ICAO categories: “Heavy” (H), “Medium” (M), and 

“Small” (S), per CDG runway and time of the day. The error bars represent the standard 

deviation σ and -σ.  

 
 

Figure 5.1: Example of AROT per aircraft type for runway 08R. 
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Figure 5.2: AROT versus time of the day and different ICAO aircraft categories (H, M, S) 

for runway 09L, 27R, 08R, and 26L. 

Figure 5.2 shows that there is an effect of the hour of the day on the extracted AROT, especially 

during higher arrival demand (during peak hours), which is ranging at CDG airport from 07:00 

till 08:00 a.m., from 09:30 till 10:30 a.m., from 12:00 till 13:00 a.m., and from 15:00 till 16:00 

a.m.  

Figure 5.3 shows an example for the “Medium” aircraft types. According to [15] the 

AROT depends mainly on the aircraft type/category and the brake policy by the airlines. 

Therefore, as a next step we plot in Figure 5.4 the AROT versus different CDG runway exits 

for the ICAO wake vortex category. All results can be found in report [30]. Because of the 

confidentiality agreement, results for the AROT per airline cannot be shown. We observe from 

Figure 5.4 that “Super Heavy” (S) and “Heavy” (H) aircraft categories have a significantly 

higher AROT in comparison to “Medium” (M) categories. 
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Figure 5.3: Runway throughput levels versus AROT for different Medium aircraft types on 

runway 26R. 

Figure 5.3 shows indeed that the peak hours lead to lower AROT, and lower AROT can lead 

to higher arrival throughput. Plotting the arrival throughput versus the AROT confirms that a 

higher throughput leads to a decrease in AROT for all ICAO categories.  
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Figure 5.4: Number of flights versus the AROT for different runway exits for Super Heavy 

(S), Heavy (H), and Medium (M) categories.  

 

5.3.2 Data Preparation  

 

The data preparation phase covers all activities required to set up the final dataset from the 

initial raw aircraft operational runway and final approach radar data. Before the ML model 

will be trained with the prediction variables highlighted in Table 5.1, first the most important 

(group) features will be selected using RreliefF and Sequentialfs (feature selection) techniques. 

In previous papers we have introduced these techniques [3,4]. The RreliefF is only suitable for 

regression problems where the predicted value is continuous; therefore (nearest) hits and 

misses cannot be used. To solve this difficulty, instead of requiring the exact knowledge of 

whether two instances belong to the same class or not, a kind of probability that the predicted 

values of two instances are different is introduced. This probability can be modeled with the 

relative distance between the predicted (class) values of two instances. The function 

Sequentialfs provides a simple way (the default option) to decide how many features are 

needed. It stops when the first local minimum of the cross-validation MCE (misclassification 

error, i.e., the number of misclassified observations divided by the number of observations) is 

found. The objective of feature selection is threefold: improving the prediction performance 

of the predictors, providing faster and more effective predictors, and providing a better 

understanding of the underlying process that generated the data [32]. RreliefF and Sequentialfs 

have commonly been viewed as feature selection methods that are applied in a prepossessing 

step before the model is learned [33]. The standard RreliefF regression modelling technique 
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has been extensively discussed in many papers [34]. In this study, the technique has been 

applied on 78,321 final approach flights for CDG as shown in Figure 5.5 and benchmarked 

against 500,000 VIE flights. 

We observed for both airports that the QFU (runway orientation and runway exit), 

aircraft type, arrival runway throughput, visibility, wind vectors, and temperature are the most 

important features for predicting the AROT. The same results are obtained for the Sequentialfs 

technique. Those 10 features are considered for the remainder of this paper. Thereafter we 

construct the datasets and find the stability of three different data parts. Based on different data 

sources and the variables listed in Table 5.1, we standardize the top 10 feature matrix (X) for 

all the flights (Y). We have split the matrices X and Y into two subsets, Xtrain;Ytrain, and 

then used them to train the model and Xtest;Ytest have been used to evaluate the model 

accuracy. Finally we specify the default ratios (splitting the data) for training, testing, and 

validating into, respectively, 70%, 15%, and 15%. 

 

 
Figure 5.5: Top 10 features for the AROT using the RreliefF technique for CDG. 

It can be concluded that the top three features correspond to [15], which uses statistical 

analyses to find the most correlated prediction variables. However, the time of the day is an 

exception, which is ranked 9 using ML feature selection and ranked 2 using statistical analyses. 

In future studies we will assess the influence of weather variables on the AROT using a 

statistical approach and ML approach. 

 

5.3.3 Combining Feasible ML Techniques 

 

For choosing suitable ML techniques for the AROT prediction we have to take into account 

the size, quality, and nature of the data. Even the most experienced data scientists cannot tell 

which algorithm will perform best before trying them [35]. In previous work [3,4], ML 

techniques were assessed on their capabilities to produce fast and accurate predictions and to 

test a number of what if statements. Next to these what-if statements this study will focus on 

the robustness of the model. A possibility to achieve this is by using the outcome of different 
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feasible ML techniques [35–37]. Thereafter the regression tree was built to synthesize the 

what-if statements for our abnormal AROT predictions and to give a clear overview for the 

ATCO for what is likely to happen under certain situations. This study will use the outcome 

of four feasible ML techniques: lasso, multi-layer perception (MLP), neural networks (NN), 

and Regression Forest (RF). By doing so we take into account the characteristics of final 

approach and runway radar data. The method is based on expert studies [35–37] and will be 

explained below in 3 steps. 

 

Novel Combined ML Method 

 

1) First, we learn the AROT for 78,321 flights with 10 different features. Four models will be 

learned using the Lasso, MLP, NN, and RF techniques. 

 

2) Second, we merge the AROT results of all 4 models to 1 final matrix for 78,321 flights. 

 

3) Finally, we apply the Classification and Regression Tree (CART) technique to the final 

matrix obtained in the previous step. 

 

5.3.4 Assessing Combined ML Method 

 

Before we analyse the forecast performance, computational time, and minimum amount of 

data needed for the novel combined ML technique, we first check the stability of three different 

data parts known as cross validation. To check the stability of different data parts, the data will 

be randomly divided into training, validation, and testing subsets. It has been assumed that the 

default ratios in this study for training, testing, and validation are 0.70, 0.15, and 0.15, 

respectively. The model is adjusted accordingly during training. The validation is used to 

measure network generalization and to halt training when generalization stops improving. To 

prove that a randomly selected data set is stable, epoch and validation checks are performed. 

Epoch indicates the amount of a single pass through the entire training set for which all of the 

training vectors are used once to update the weights, followed by testing of the verification set. 

Thereafter we check convergence on the validation, and at the end of the learning process the 

model is evaluated on the test set. The test has no effect on the training and therefore provides 

an independent measure of network performance during and after training. Figure 5.6 shows a 

trained model by selecting 78,321 CDG final approach flights. We learned the model with the 

10 most important prediction variables highlighted in Figure 5.5. It has also been tested that 

the same mean squared error (MSE) results are obtained using all features. However, by 

excluding 15 variables (including ACSpeedPoint, ALDT, and AROT) the model is trained two 

times faster. The MSE is calculated by comparing the predicted outputs with the real target 

values. Our model gives a worst-case MSE of 18.8 s.  

 

 

 

 

 



84 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6: MSE of AROT using the top 10 features. 

 

Abnormal AROT Flights and Observation of Outliers 

 

We are interested in abnormal flights that stay too long on the runway. Therefore, in this study 

we consider an abnormal AROT if it is 2σ standard deviation from the normal distribution 

mean. The mean and 2σ values are calculated from the 78,321 CDG flights for which we 

assumed normal distribution. Only 8100 abnormal AROT flights are learned with our 

combined ML technique. As a next step, the inconsistency is measured between the outputs 

and the targets. One way to show this inconsistency is by plotting the regression for the 

training, validation, and test sets and for the complete set (all). Figure 5.7 shows an example 

where the regression R values measure the inconsistency between the predicted outputs and 

the targets. An R value of 1 means a close relationship, and 0 a random relationship. By 

analysing these R values we observe outliers. With outliers we mean occurrences where a data 

point is not consistent with the other data points. In this study we assume an outlier when it 

has an R value between 0 and 0.25. Analysing these graphs reveals that there are indeed 

outliers. It will be obvious that by excluding them in the target set, a better R value will be 

obtained for the predicted model. Doing this for the above example results in an overall R 

value of 0.54 instead of 0.31, as presented in Figure 5.7 

The next and final step of our methodology (step E) will only take those abnormal 

AROT flights into account with an R value of 0.25 < R < 1 for runway 08R at CDG. 
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Figure 5.7: Outliers example of abnormal AROT flights for training the model with 10 

features. 

 

5.3.5 Observe Risk Precursors with Regression Tree 

 

The purpose of building a regression tree is to extract a set of if-then-else (what-if statements) 

split conditions in order to extract the main risk precursors that most influence abnormal 

AROT flights. The observed flights from Figure 5.7 (0.25 < R < 1) for runway 08R are 

analysed and build into a single regression tree, which should give a good understanding of 

which features (top 10 from Figure 5.5) influence these abnormal AROT flights. By building 

this tree we start at the root node, and ask a sequence of questions about the predictors. In each 

iteration, the tree chooses the variable and the split point to achieve the minimum MSE 

between the predictions and the abnormal AROT targets. This process will continue until a 

stopping rule is applied. Each of the terminal leaves represents one of the partitions of the input 

space. To provide a model that can generate accurate predictions and is not overcomplicated, 

we need to find the optimal tuning parameters for the tree. In this study we use two parameters. 

The first parameter is the minimum leaf size (lmin), for which we need enough data points in 

each terminal node to create a distribution. The parameter minimum leaf size can be used to 
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stop the splitting process when the number of instances in a leaf is too small. In addition, if the 

tree contains too many variables, it is hard to interpret. The second tuning parameter for the 

tree is the maximum tree depth (dmax). Avery large tree with many leaves might overfit the 

data, whereas a small tree might not be able to capture the important structure of all the variable 

or top 10 feature variables. The maximum tree depth can restrict the number of layers of a tree. 

In Figure 5.8, cross-validation is used to select the minimum leaf size, lmin and, in Figure 5.9, 

the MSE to select the maximum tree depth, dmax. So in our case the tree is fit for a range of 

values of the two parameters to three quarters data. Thereafter, the MSE of the predictions is 

computed on the remaining one quarter. This is done for each quarter of the data, and the four 

MSE values are averaged. The set of parameters that give the lowest MSE will be selected. As 

shown in Figure 5.9, we first train the trees with all 22 variables and different settings of dmax 

and lmin. We observed that the MSE drops as the tree depth increases from 1 to 7, regardless 

of the leaf size. After tree depth reaches the value 6, the MSE does not change significantly. 

On the other hand, a tree with a minimum leaf size of 16 performs slightly better than the trees 

with minimum leaf sizes of 20 and 24. We have also tried to set the minimum leaf size to be 

less than 16, but the model does not improve much. Moreover, if we further reduce the leaf 

size, we may not have enough instances in the leaves to fit a distribution. Thereafter we also 

train a model with the top 10 features shown in Figure 5.5, where we fit a tree to the entire 

data set with maximum tree depth and minimum leaf size set to 6 and 16, respectively. We 

then sort the predictors based on their feature importance and select the first 10 as the final 

predictors. Thereafter, we retrain the tree with these 10 variables. We change the values of 

dmax and lmin and then repeat the cross-validation process described above. The tree with 

lmin 16 still performs slightly better than the others, and the MSE does not change significantly 

after tree depth reaches the value 6. Thus, our final model has 10 predictors and is fitted with 

maximum tree depth and minimum leaf size set of 6 and 16, respectively. By learning the tree 

a mean and distribution is extracted per decision node. This is needed to observe risk 

precursors and understand what is likely to happen for abnormal AROT flights. Our model 

divides all the abnormal AROT flights into 17 segments. In other words, the regression tree 

shown in Figure 5.10 has 17 terminal nodes for which the outcomes are rounded off to 100, 

105, 110, 115, or 120 s. We can interpret the most important predictors as the major factors 

that play key roles in influencing abnormal AROT.  
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Figure 5.8: Cross-validated error versus minimum leaf size. 

 

 

Figure 5.9: MSE versus tree depth for different leaf size and features. 
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Figure 5.10: Regression tree only for abnormal AROT at runway 08R. The tree shows 

“what-if” statements. If the statement is right, we go to the upper node; if the statement is 

wrong, we go to the lower node. 

After the tree is learned with a tree depth of 6, we observed for the 17 precursor categories 

their related precursors, which are listed in Table 5.2. 

 

Table 5.2: Seventeen different abnormal AROT categories with their related precursors. 

Precursor category  Amount of  flights observed 

per precursor category 

Median of the abnormal 

AROT and the Root MSE 

1.ArrRwyThroughput > 30 

  TypeAvion = Medium or   

(super) Heavy 

  Visibility < 935m 

  Crosswind > 14kts 

  Time = 07:00 -09:00  

33 120 sec 

3.5 sec 

2.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility < 935m 

  Crosswind > 14kts 

  Time ≠ 07:00 -09:00  

21 110 sec 

2.8 sec 
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3.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility < 935m 

  Crosswind ≤ 14kts 

  Temp > 15C   

18 115 sec 

2.9 sec 

4.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility<935m 

  Crosswind ≤ 14kts  

  Temp ≤ 15C   

40 110 sec 

2.1 sec 

5.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility ≥ 935m 

  Tailwind > 17kts 

18 110 sec 

3.4 sec 

6.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility ≥ 935m 

  Tailwind ≤  17kts 

  Temp > 17C 

21 115 sec 

3.2 sec 

7.ArrRwyThroughput > 30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility < 935m 

  Tailwind ≤ 17kts 

  Temp ≤ 17C 

18 105 sec 

3.9 sec 

8.ArrRwyThroughput > 30 

   TypeAvion ≠ Medium or   

(super) Heavy 

17 100 sec 

4.0 sec 

9.ArrRwyThroughput ≤ 30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility < 805m 

  Tailwind > 15kts 

  Crosswind > 12kts 

23 110 sec 

2.2 sec 

10.ArrRwyThroughput≤30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility < 805m 

  Tailwind > 15kts 

  Crosswind ≤ 12kts 

30 100 sec 

2.5 sec 
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11.ArrRwyThroughput≤30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility < 805m 

  Tailwind ≤ 15kts 

  Temp > 19C 

26 105 sec 

3.1 sec 

12.ArrRwyThroughput≤30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility < 805m 

  Tailwind ≤ 15kts 

  Temp ≤ 19C 

19 105 sec 

3.2 sec 

13.ArrRwyThroughput≤30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility ≥ 805m 

  Time = 07:00 -09:00 

20 100 sec 

3.5 sec 

14.ArrRwyThroughput≤30 

   TypeAvion = Medium or   

(super) Heavy 

  Visibility ≥ 805m 

  Time ≠ 07:00 -09:00 

26 105 sec 

4.2 sec 

15.ArrRwyThroughput≤30 

   TypeAvion ≠ Medium or   

(super) Heavy 

  Temp > 14C 

  Visibility < 1060m 

19 105 sec 

2.4 sec 

16.ArrRwyThroughput≤30 

   TypeAvion ≠ Medium or   

(super) Heavy 

  Temp > 14C 

  Visibility ≥ 1060m 

24 100 sec 

3.4 sec 

17.ArrRwyThroughput≤30 

   TypeAvion ≠ Medium or   

(super) Heavy 

  Temp ≤ 14C 

20 100 sec  

3.2 sec 
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Given the regression tree in Figure 5.10, we fit a parametric distribution to each terminal leaf. 

The probability distributions we considered include the Gumbel, Gamma, and F distributions. 

The following equation shows the Gumbel distribution because this one appears to fit best. 

 

 
 

For -∞ < x < ∞, where 0 < μ, β < ∞. 

 

The shapes of the 17 terminal leaves distributions are quite different from each other. In 

general, the Gumbel distributions with lower medians are less spread out. This indicates that 

in these segments, the uncertainties of the AROT flights are low. If there are a lot of AROT 

flights in these segments at the airport, the managers should have more confidence in making 

adjustments to their plans. 

 

5.4 Real-Time model 

 

Based on the data availability we develop in this section a prototype model using the same 

combined ML method and CART technique to forecast both abnormal and normal AROT at 

CDG airport. In the previous section we showed the results only for abnormal AROT that were 

extracted by taking the mean and 2σ from all flights. This section will build a tree based on all 

78,321 flights and associated radar data collected over 5 years. The tree will recognize by 

receiving real-time data if a certain flight will fall into an abnormal or normal leave node with 

a given mean and MSE. To generate real-time predictions from the model, we develop an 

application using MatLab. The output from running the application included the mean and 

quantiles of flights. The aim is to generate forecasts for each AROT flight and number of 

landing aircraft to a given runway per time window. Suppose that we are at time h, and try to 

make predictions for the next x min. Given real-time flight information before ALDT, our 

regression tree model will determine which segment the flight belongs to. For example, if a 

small aircraft type plans to land at runway 08R with an ArrRwyThroughput >25, then the 

median of the AROT is 76 s and the distribution of its connection time can be described by a 

Gumbel distribution with μ = 80 and β = 5.0. Next, we produce the distribution of the number 

of AROTs during a certain time interval [h1, h2], where h < h1 < h2 < h + x. This distribution 

is obtained by aggregating all the distributions of the flights that landed in the last 2 h or will 

land in the next x min. For this prototype we assume to update the model and tree on 2 h of 

historical daily data from moment h1; by doing so the what-if statements from the tree are 

updated. For updating the top 10 precursors and for robustness and accuracy reasons, it is 

suggested to update the whole model and tree when a new prediction is made on a new day. 

The procedure of generating this distribution is summarized in two steps: 
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1) Suppose that there are n flights that landed in the last 2 h or will land in the next x min. We 

sample one AROT from each of the n flights’ distributions, and calculate the time when the 

tail is vacating the runway. We then count how many flights landed between the time interval 

[h1, h2], and record this number as y1.  

 

2) Repeat step I, m times, and construct an empirical distribution using y1, y2,…ym. Then the 

qth quantile of the number of flights landing between the time interval h1; h2 can be 

approximated by the qth quantile of y1, y2,…ym. In the live trial we produced the distributions 

of the AROT of the flights that have landed in the last 2 h or will land in the next x min.  

 

Live Trial: Assumed Real-Time Data 

 

We assume real-time data for a selected data set for which we exclude the actual data variables 

ALDT ACSpeedPoint. To conveniently generate predictions in real time, we develop a 

MatLab compiler that can work in most operation systems (Windows, Linux, Mac, etc.). 

Figure 5.11 shows the interface of the application. This application allows users to set the 

following parameters: 

 

1) Forecasting window (x) 

 

2) Runway at CDG (RWY) 

 

3) Number of simulations (m) 

 

4) Update frequency (min) 

 

5) Forecast resolution (r) 

 

6) Starting time of the first forecasting window (YY-MM-DD hh-mm-ss) 

 

7) Machine learning (ML) technique 

 

8) Ending time of the last forecasting window (YY-MM-DD hh-mm-ss) 

 

The default settings of the first three parameters are 120 min, 1500 simulations, and 5 min, 

respectively. We update the predictions every 10 min and the default resolutions are 1, 5, 15, 

and 60 min. The starting time defaults to the current time if the user does not specify one. The 

ending time will be 24 h after the starting time. As shown in Figure 5.12, the predictions for 

this case study are generated on a rolling basis to runway 08R. Suppose that the trial started at 

8:00 a.m. We first collected data of the flights that landed at CDG after 6:00 a.m. or will land 

before 10:00 a.m., and then generate forecasts for the next 2 h (8:00–10.00 a.m.). Thirty 

minutes later (8:30 a.m.), the second trial started. Similarly, we considered only the flights that 

landed at CDG after 6:30 a.m. or will arrive before 10:30 a.m., and generate forecasts for the 

time interval between 8:30 to 10:30 a.m. A 2-h time window prediction is chosen to feed the 
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ATCO need. The dots in Figure 5.12 show the difference between the predicted AROT and 

their real values (error). The difference is measured in seconds and shown for 12 flights, for 

which each flight falls into one of the ICAO categories “Small” (S), “Medium” (M), or 

“Heavy” (H). We did not show all the flights in this example but only three per 30 min to 

illustrate the differences per ICAO category. 

 

 
 

Figure 5.11: Interface of application. 

 

Figure 5.12: Output after running the application for the first trial. 

It has been observed that for this case study and for each prediction trial, the first 30 min has 

a significantly lower error compared with the remaining 90 min prediction time. Table 5.3 

shows these differences in percentages for four trials. Furthermore, it has been analysed that 

the results are statistically significant for four trials. 
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Table 5.3: Average error differences per trial and for the time prediction window 0–30 min 

and 30–90 min 0–30 min 30–90 min. 

 0 - 30 minutes 30 - 90 minutes 

Trial 1 7% 13% 

Trial 2 5% 10% 

Trial 3 4% 10% 

Trial 4 3% 8% 

 

 

5.5 Conclusion  

 

This study demonstrates the use of combined ML techniques to forecast AROT per flight. The 

AROT aircraft behaviors, the data sources, key features, and ML outcome are first reviewed. 

Based on the availability of data and the importance of the problem, activities that will benefit 

from making greater use of data were then identified, where we focused on the AROT at 

runway 08R due to the largest number of flights designated at CDG.  

A predictive model for AROT flights was built by combining the NN, MLP, lasso, 

and regression tree techniques. Then an approach was developed to generate distributions of 

each AROT flight and the number of landings to a specific runway (08R) within a time frame 

of 30 min. An application for CDG and VIE was also developed to produce these forecasts. 

Finally, a live trial at CDG is scheduled on the 11th of September 2017, which will allow us 

to assess the accuracy of the model and make improvements. For this a feasibility study will 

be set up, where we analyze how our predictability tool can be used by air traffic controllers 

in their decision making and planning to ensure resilience, safety, and efficiency of air traffic 

control operations locally in a sector, but also taking into account coordination with other 

sectors. Based on the available data, the feature selection techniques RrelliefF and Sequentialfs 

show that the following 10 features mostly influence the AROT behavior: QFU, typeavion, 

ArrRwyThroughput, Visibility, Crosswind, Tailwind, Temp, LongFlare, TimeReal, and 

CodeAeroportIATA. It has been also seen in a previous study [30] that the top three features 

are well known as highly correlated factors impacting AROT by using statistical analyses. 

From the regression tree, it is learnt that by knowing the top seven features in advance a good 

prediction can be made of the abnormal and normal AROT and for which each abnormal 

AROT flight will fall into one of the 17 precursor categories shown in Table 5.2. Furthermore, 

the regression technique performs best for finding associated precursors, for which the CART 

technique is used to fit a maximum tree depth and minimum leaf size of 6 and 16, respectively. 

There are some advantages associated to using our model. First, the ML technique used to 

build the model is fast, intuitive, and efficient. It can help the airport managers to understand 

the driving features of the AROT per runway. Second, our model has been built based on a 

large historical data set of 78,321 CDG and 500,000 VIE flights, for which 22 variables are 

available for selection as predictors. These variables also enable one to build new features 

using domain knowledge of the data. Third, our model can update the predictions in real time. 

The application developed for CDG and VIE can easily extract real-time data for both airports. 
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The forecasting procedure is effective and the predictions can be generated in a relatively short 

amount of time. Our model is the first to provide forecasts for each AROT flight to a specific 

runway. The forecasts of an AROT flight may help ATCOs to make better decisions, predict 

whether the flights will experience abnormal AROT, and to anticipate the aircraft sequencing 

on final approach by knowing when landing queuing starts. If an ATCO can retrieve this 

information far in advance, he/she may be able to generate more stable and accurate AROT to 

be used in A CDM (Airport Collaborative Decision making), which aims to improve the 

operational efficiency of all airport operators by reducing delays, increasing the predictability 

of events during the progress of a flight, and optimizing the use of resources. Although the 

model is developed for an AROT problem, the methodology proposed in this study can be 

easily applied to other runway processes, such as the prediction of unstable approaches. This 

will be a topic of our future research.  
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6.0  A machine learning model to predict runway exit at 

Vienna airport  

 

 

This Chapter builds on the knowledge from Chapters 4 and 5. It focusses on the fourth 

ASP enabler or procedural and non-procedural Runway exit utilised (NREX). This 

Chapter presents a different combined ML technique. Furthermore, Chapter 5 did not 

focus on real-time operational visualisations for the ATCO. Therefore, the main 

purpose of this paper is twofold; the first is to extract the NREX as a function of 

operational parameters from historical data. Following this step, a prediction of the 

procedural or non-procedural runway exit taken with their associated risk precursors is 

performed. The identification and prediction is performed using the Classification Ensemble 

method. The key objective of this Chapter is to develop a real time visualization model that 

forecasts the procedural or non-procedural NREX for different classified aircraft using ICAO 

wake vortex categories (Heavy, Medium and Light) and weather conditions for VIE airport. 

This model should offer insight into the predictability of key precursors impacting runway exits 

taken and their impact on safety and the runway capacity provided. 
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Abstract 

Runway utilisation is a function of actual yearly runway throughput and annual capacity. The 

aim of the analysis in this project is to find data driven prediction models based on the features 

and relevant scenarios that might impact runway utilisation. The Gradient Boosting machine 

learning method will be assessed on their forecast performance and computational time for 

predicting the procedural and non-procedural runway exit to be utilised after the landing 

rollout. The Gradient Boosting method obtained an accuracy of 79% and was used to observe 

key related precursors of unique data patterns. Tests were conducted using runway and final 

approach data consisting of 54,679 arrival flights at Vienna airport. 

Keywords-component; Runway Utilisation, Runway Capacity, Runway Occupancy Time, 

Gradient Boosting 

 

6.1 Introduction 

 

Many of today's hub airports are at times unable to handle planned air traffic demand. Despite 

being saturated, some airports have political and environmental challenges associated with any 

further physical airport development. In view of expected further growth in air traffic demand, 

there is a clear need for safety and runway capacity improvements in an environmentally 

responsible manner. In order to enhance existing runway throughput, technology and 

procedures have enabled in certain circumstances reductions in legacy separation standards. 

Since demand for air traffic movements is continuously increasing, all stakeholders of the 

aviation system aim at a maximum utilisation for the given infrastructure, in particular the 

airport runways. A high number of runway movements entails the realisation of minimum 

separation standards between arrival and departing aircraft. With a view to avoiding accidents 

or risks of incidents, airline operators and Air Traffic Controllers (ATCOs) are moving toward 

proactive risk management which aims to identify and predict risk precursors and to mitigate 

the associated risks.  

In this context, Arrival Runway Occupancy Time (AROT) is one major impact factor, 

which cannot be adapted or regulated in any manner. In fact, AROT is a combination of the 

resulting braking profile and the particular runway exit an aircraft utilises after the landing roll 

out. Landing or departing aircraft that immediately follow a landing aircraft can only use the 

runway once it has been vacated.  If a landing aircraft misses a planned or foreseen exit or for 

whatever reason increases it’s AROT during the rollout phase, a tightly sequenced following 

aircraft will have to perform a missed approach and go around. These disturbances in the 

arrival/departure sequence will result in delayed operations for the scheduled movements. Due 

to the uncertainty surrounding AROT times, spacing buffers are routinely applied by ATCO 

so that separation standards are never infringed. Furthermore, the variation in the application 

of these buffers is down to the weather of the day, notably winds and precipitation but 

moreover the experience level of the controller and even if the aircraft is considered to be a 

locally based aircraft or airline. As a rule of thumb, minimum separation standards of 2.5 NM 

can only be achieved if landing aircraft vacate the runway in less than 50 seconds.  The 

majority of Hub airports not only have active AROT management campaigns but also define 
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runway exit management as a procedure within the Aeronautical Information Publication 

(AIP).  These procedures will define the most suited exit for the aircraft type additionally, if 

unable to comply as published, they are to advise tower as soon as possible.  These published 

procedures define the exits to be utilised however; a landing clearance implies the full-

dedicated use of the runway.  As such, an aircraft may land and exit the runway at an exit other 

than the exit defined by AIP procedure with or without prior ATCO coordination. Thus, it is 

of major importance to identify precursors for the probability of missed runway exits and 

landings with increased AROT. With our contribution, we provide a Machine Learning (ML) 

approach to predict the runway exit utilised based on actual movements at airports. Currently, 

there is no supplementary operational system that assists the Arrival Manager (AMAN) and 

Departure Manager (DMAN) on predicted runway exits and AROT.  AMAN systems provide 

an automated sequencing support for approach and runway ATCOs, whilst continuously 

optimising arrival traffic sequences and runway slot times for landing aircraft. This is 

accomplished by a more efficient and predictable arrival management process that can assist 

in reducing low-level holdings and tactical intervention by the ATCO. AMAN takes into 

account the locally defined maximum landing rate (capacity), the required separation for 

aircraft in the touchdown zone (safety) and additional operational criteria. DMAN is an 

advanced controller tool for optimising runway throughput and taking maximum benefit from 

the available runway capacity. To achieve optimal use of runway capacity and airspace 

capacity in the Terminal Management Area (TMA), a DMAN assists the ATCO in managing 

departure traffic by providing optimised take-off sequences in considering departure 

trajectories. AMAN and DMANs are essential controller tools that provide guidance and as 

such ensure the best use of the available runway capacity (i.e maximum through put). An 

additional support tool providing real time AROT alerts would be an advantage if not a 

necessity in a future environment of High Intensity Runway Operations (HIRO) where the 

associated risk of a loss of separation between aircraft in time and/or distance has a direct 

impact on incident and accident avoidance. A live trial should give insight into the risk 

mitigation. 

 

6.1.1 Related work and Interview with Vienna ATCO 

 

We divide the literature in two groups. We start with the first group which focuses on the work 

to be performed on runway capacity enhancements and methods to predict exit usage. In the 

context of efficient runway operations, the AROT is an important driver.  

AROT along with the runway exit utilised is key in quantifying actual throughput and thus 

generating predictions with respect to a runway utilisation indicator. For certain predictions 

Machine Learning techniques can be used. Previous studies have explored and applied ML 

techniques using radar and A-SMGCS data, but the identification and prediction of the runway 

exit used along with the observation of related precursors are not well developed. A statistical 

analysis of the final approach and AROT is done by [1] using data from the Detroit 

multilateration surveillance system. A study on surveillance data highlighting benefits and 

including different sources of information to improve capacity and safety is conducted [2]. 
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Several operational factors and their impact were analysed in [3]. In [4], a model to predict the 

landing performance of airplanes is developed with a focus on locating high-speed exits. This 

model was based on empirical heuristics, which were derived from field observations, as a 

different mix of aircraft and different environmental conditions at airports will result in specific 

approaches for runway exit designs. In [5, 6], a model for optimally tailored runway and exit 

layouts is proposed whereas [7] provides the airport taxiway structure and links it to the runway 

exit choice process. The runway utilisation depends on the runway used as well as several 

additional factors (e.g. number of arrivals and departures or runway configurations, efficiency 

of taxi operations) [8]. Furthermore, efficient airside operations will depend on a balanced 

consideration of capacity/demand management [9], aircraft/runway scheduling [10], taxiway 

planning/ground movements [11] and gate assignment [12], which clearly emphasise the 

demand for efficient runway exit selection for landing aircraft. In this context, [13] provides 

an operable calculation method to manage the runway exit availability considering uncertain 

exit usage and exit times. In [14], an analysis method for medium-speed manoeuvres and more 

specifically, runway exit manoeuvres is presented. A Monte Carlo simulation algorithm and 

empirical heuristics derived from field observations were used in [15] to estimate landing-roll 

trajectories and to predict aircraft landing performance on runways in order to locate high-

speed exits. In [16] an application was designed that relates to the optimisation of runway exits 

based on assessment of runway conditions and aircraft-based braking capability, with the aim 

of selecting the best runway exit to optimise runway throughput. 

The second group focuses on interviews with Vienna (VIE) ATCOs and how they subjectively 

identify lacking predictability on managing runway operations. They would welcome a support 

tool that warns controllers on the following event predictions: 

 Missed Procedural Runway Exit (MPRE)5 

 When the leader is at threshold and the follower has a time separation less than 40 seconds6. 

 When the leader has an AROT of more than 50 seconds2 and the follower is at the required 

ICAO minimum separation7. 

 When the time window available to accommodate departure traffic during mixed-mode 

HIRO. 

An indication will be provided when an event is detected and when the prediction accuracy of 

that event is higher than 80% during HIRO3. This first paper will only focus on the prediction 

of the target variable procedural or non-procedural runway exit to be used (NREX). A 

procedural exit for VIE Runway 34 (RWY34) is defined as a Heavy aircraft type that takes 

exit B5/B4, a Medium type that take exit B7/B5 or a Light types that utilises at B9/B7 (Table 

1 and Figure 1). We refer to non-procedural when a flight vacates the runway at an exit further 

along than the Aeronautical Information Publication (AIP) intended one. For example an alarm 

                                                
5 MPRE is defined as an aircraft on the runway that missed his intended runway exit from AIP. 

The intended runway exit of the ATCO is the optimal for maintaining the desired throughput. 
6 Based on the interview with Vienna ATCO. 
7 International Civil Aviation Organization (ICAO) 'Application of separation minima' (NAT 

Doc 008) and based on the interview with Vienna ATCO. Each flight falls into one of the 

ICAO categories ‘Light’, ‘Medium’ or ‘Heavy’. 
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is raised when the tool predicts with an accuracy of 80% or greater that a Light3 or Medium3 

aircraft type will vacate Runway 34 (RWY34) via exit B1, B2 or B4, or when a Heavy3 aircraft 

vacates at B2 or B1 (see Table 6.1 and Figure 6.1) provided the model has a proven accuracy 

of 80% or greater based on the last tree update.  Thereafter, the ATCO decides based on 

experience if a go-around is required for the following landing aircraft. In this context and 

based on the interviews with VIE ATCOs, this paper will focus on two different time window 

predictions during real time landing operations. The following predictions could lead to an 

improvement in runway safety and throughput. 

 The first prediction will be produced at 2NM upstream from the runway threshold, enabling 

tactical operations tools to be fed and ATCOs to be warned about the four events identified 

above, together with their associated precursors. 

 The second prediction will be related to the period between time of separations and the next 1 

or 2 hours, and can be used either as a strategic operational tool for the ATCO supervisor to 

make a decision on the final approach sequence or can be used as input for the AMAN and 

DMAN. 

Table 6.1: Procedural AIP exit4 at RWY34 for VIE airport. 

 

 

 

Aircraft ICAO 

category 

Procedural 

exit 

Non-procedural exit 

Heavy B4, B5 B1, B2 

Medium B5, B7 B1, B2, B4  

Light B7, B9 B1, B2, B4, B5 
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Figure 6.1: VIE Runway Design. The left green arrows in the lower left picture show the 

possible runway exit utilisations for RWY34. 

Based on ATCO requirements and experiences NREX predictions will be made during HIRO. 

Vienna’s RWY34 has a maximum capacity of 30 landings per hour during mixed-mode 

operations. As a consequence, HIRO are defined as 25 landings or more on RWY34 during 

the last 60 minutes from prediction at time (t). The most common configuration of HIRO 

(RWY34, mixed-mode operations, configuration D) was selected for the use case. Based on 

ATCO practical experience with RWY34 operations, 70% of the flights take the NREX, of 

which Heavy aircraft types take exit B5/B4, Medium types B7/B5 and Light B9/B7 (Table 6.1 

and Figure 6.1). The actual exit used on RWY34 may be different from the AIP published 

procedures typically, this will occur when the runway is contaminated and/or during an 

increase in tailwind. 

Based on a literature review and interviews with VIE ATCOs, the following 

shortcomings in NREX prediction methodology were identified; first, extracting principal 

components using many aircraft operational runway variables has as yet, not been considered. 
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Second, as yet, no algorithm has been developed that is capable of real-time computation and 

to provide the classifications associated with the individual NREX predictions to synthesise 

the what-if statements. In this paper we propose a state of the art ML method – Gradient 

Boosting (GB) which is capable of synthesizing the what-if statements and is expected to 

overcome the noted lacking aspects from literature. In [17], the characteristics of these 

techniques are reviewed and their added value is explained for real-time and what-if statements 

computations. 

 

6.1.2 Aim   

The main purpose of this paper is twofold; the first is to extract the NREX as a function of 

operational parameters from historical data. Following this step, a prediction of the procedural 

or non-procedural runway exit taken (NREX) with their associated risk precursors is 

performed. The identification and prediction is performed using the GB method. The key 

objective of this study is to develop a real time model that forecasts the procedural or non-

procedural NREX for different classified aircraft using ICAO wake vortex categories (Heavy, 

Medium and Light) and weather conditions for VIE airport. This model should offer insight 

into the predictability of key precursors impacting runway exits taken and their impact to the 

runway capacity provided. 

 

6.1.3 Structure 

The structure of this paper is as follows. First, the case study is presented in section 6.2. 

Second, the methodology is outlined in section 6.3 whilst introducing the NREX behaviour 

and data preparation. Furthermore, the results for the best performed ML technique (Boosted 

trees) are shown. In section 6.4 the prototype model is outlined and finally conclusions and 

recommendations are drawn in section 6.5 and 6.6. 

 

6.2 Case Study   

 

The Runway Utilisation (RU) use case is a function of actual yearly runway throughput and 

annual capacity. We will build an algorithm that would support the tower ATCO during HIRO 

by making predictions based on historical observations of runway traffic. For these predictions 

we use the GB method to identify patterns and to observe related risk precursors in historic 

data [18, 19]. These patterns and precursors can be transferred into ‘what-if’ statements by 

analysing relations between the target and the prediction variables. 

The RU use case is part of work being conducted by SafeClouds8 for which four 

building blocks have been defined. Each building block represents a part of the final algorithm. 

The key aim of each building block is to: (1) predict the runway exit to be used; (2) predict the 

time from overflying the runway threshold until tail clear of the runway; (3) predict the time 

                                                
8 www.safeclouds.eu 
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separation of the follower when the leader is at the runway threshold and finally (4) enhance 

the DMAN sequencing by predicting the time window available to release a departure during 

mixed-mode9 HIRO. This paper will only focus on the NREX prediction. After integration of 

the four individual building blocks, the final algorithm could be used as input for the Vienna 

AMAN and DMAN system. 

The ML techniques will be addressed by modelling the predicted NREX during 

mixed-mode operations at Vienna airport (RWY34, mixed-mode operations, configuration D). 

When configuration D is operational, no traffic is allowed for the second runway (RWY11/29). 

In total we have 54,679 arrival flights and 13,745 departure flights.  For this case study when 

only take the arrival flights into account. The NREX are categorical variables that depend on 

the prediction variables described in Table 6.2. Our four step approach is based on learning a 

model for RWY34 and six different NREX classifications during different weather conditions. 

First, the NREX is extracted for each arrival flight. Second, all ICAO3 flight categories (Heavy, 

Medium and Light) are classified into taking their procedural or non-procedural AIP intended 

exit. Third, during HIRO conditions we examine one specific ICAO category. The first 

category chosen is the Medium type since this is the most common ICAO type operating at 

Vienna airport. Finally, we identify and predict NREX procedural or non-procedural per flight 

and observe key precursors impacting this variable. 

 

6.3 Methodology  

 

For this study, we propose a methodology composed of six steps. The method is based on our 

previous studies [18, 19] and implements the Statistical Package for the Social Science (SPSS) 

ML method [20]. This methodology describes the steps to come up with a usable predictability 

model that identifies and predicts NREX per aircraft pair and observes key precursors 

impacting the runway exit taken. Details are given for each step in the following paragraphs. 

 

6.3.1 Final approach and Runway data sources  

 

The aircraft performance on the ground is a key driver for runway throughput, especially when 

reduced airborne separation minima are applied. Several factors, such as aircraft type, weather 

conditions (wind and visibility), traffic demand and air traffic controller workload influence 

NREX. In order to predict NREX and extract risks precursors, final approach and runway radar 

data are used. 

                                                
9 Mixed-mode operations, where take-offs and landings can take place at the same runway. 
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Radar10, A-SMGCS11, Wind profiler12, SNOWTAM13, SODAR14 and METAR15 data 

are extracted from runway schedulers and have been provided by VIE airport. The data set 

covers 2 years of final approach data from 2014 to 2016. In total, the data comprises 

54,679 arrival flights for RWY34. For these flights we have all the data listed in Table 6.2.  The 

prediction variables are selected by taking into account the selected features for predicting the 

runway exit utilised at Orly airport. For this study we have performed a feature selection study 

to understand which features are needed and are most important for making the prediction at 

2NM. The most important features were selected using the GB feature selection property 

(OOBPermutedVarDeltaError). 

 

Table 6.2: Prediction variable 1 till 14 and target variable 15. 

Variables Description Mean Max Min 

1. ACType Aircraft Type (binary 

variable) 

- - - 

2. ICAOcat Aircraft ICAO Category 

(binary variable) 

Medium - - 

3. Height2NM Aircraft height above 

Vienna terrain at 2NM  

2.01NM 2.30NM 1.80NM 

4. Height5NM Aircraft height above 

Vienna terrain at 5NM  

5.01NM 5.32NM 4.78NM 

5. GroundSpeed2NM Aircraft Ground Speed at 

2NM 

130kts 155kts 110kts 

6. GroundSpeed5NM Aircraft Ground Speed at 

5NM 

168kts 215kts 140kts 

                                                
10 Radar is an object-detection system that uses radio waves to determine the speed, altitude 

and direction of an aircraft. 
11 A-SMGCS is a system providing guidance, routing and surveillance for the control of 

aircraft. 
12 Wind profiler is a type of weather observing equipment that uses radar and sound waves to 

detect the wind speed and direction at different altitudes. 
13 SNOWTAM notifying the presence, or removal, of hazardous conditions due to snow, ice, 

slush or standing water. 
14 SODAR measure the scattering of sound waves by atmospheric turbulence. 
15 METAR is a format for reporting weather information. 
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Variables Description Mean Max Min 

7. Visibility Horizontal visibility in 

meters 

5km Infinity 100m 

8. Cloud1 The height of the first 

cloud layer in meters 

2km Infinity 100m 

9. Cloud1Okta How many eights of the 

sky are covered in cloud, 

ranging from 0 oktas 

(completely clear sky) 

through to 8 oktas 

(completely overcast). 

(binary variable) 

5 8 0 

10. SODARVelocity SODAR Velocity at 200 

meter from the ground 

(2NM before the 

threshold) 

7kts 25kts 2kts 

11. SODARheadwind SODAR headwind at 200 

meter from the ground 

340° 340° 0° 

12. WMAheadwind34 Headwind for RWY34 at 

15 meter (50ft) from the 

ground 

340° 340° 0° 

13. WMAWindSpeed34 Wind speed for RWY34 

at 15 meter (50ft) from the 

ground 

5kts 26kts 0kts 

14. Throughput The amount of landings 

performed on the runway 

using the Estimated Time 

of Arrival (ETA) during 

the last 60 minutes. 

28 32 25 

15. NREX Procedural (1) or non-

procedural (0) runway 

exit taken 

80% 

procedural 

flights and 

20% non-

procedural 

- - 
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6.3.2 Data preparation  

The data preparation phase covers all activities required to set up the final dataset from the 

initial primary aircraft operational runway and final approach radar data. Before the model will 

be trained, first the data set was cleaned by Austrocontrol (Austrian air navigation service 

provider) on missing values. As a next step the AROT is extracted by calculating the elapsed 

time between the aircraft crossing the threshold and its tail vacating the runway [16], which is 

received from the variable AircraftOnTheRunway. The variable AircraftOnTheRunway shows 

for each second a "1" if the aircraft is on the runway and a "0" if it doesn’t. The Runway Exit 

(RET) utilised is extracted by subtracting the utilised Latitude/Longitude RET coordinate with 

each possible RET Latitude/Longitude coordinate for RWY34. The minimum absolute value 

defines the RET used. Figure 6.2 shows an example of the AROT versus the number of flights 

per ICAO category for different RET utilised for RWY34. The RET is needed to extract the 

NREX. The red vertical dashed lines show the average AROT per ICAO category (Heavy, 

Medium and Light). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2: Number of cases versus the AROT for RWY34 and runway exits for ICAO 

categories Heavy, Medium and Light during HIRO. 

The attentive reader will notice that the distance to arrival is absent from the data, therefore 

making the identification of the point of prediction (2NM) wanted in our forecasting problem 

difficult. It is thus necessary to format and complete the original data. Therefore, the following 

modifications have been done to the dataset: 
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Distance from arrival: The vector of distances of the flight (at each time stamp) 𝐷𝑖
∗ from the 

reference point Tthres, which indicates the threshold of RWY34, is added. We define the 

threshold Tthres coordinates (𝑋𝑡ℎ𝑟𝑒𝑠, 𝑌𝑡ℎ𝑟𝑒𝑠, 𝑍𝑡ℎ𝑟𝑒𝑠) as (48.092222°, 16.596667°, 597ft). For 

each trajectory point, 𝐷𝑖
∗ is calculated as the great-circle distance from T, using the Haversine 

formula: 

 

𝐴 = 𝑠𝑖𝑛2 (
𝑋𝑖 − 𝑋𝑡ℎ𝑟𝑒𝑠

2
) + 𝑐𝑜𝑠(𝑋𝑖) ∙ 𝑐𝑜𝑠(𝑋𝑡ℎ𝑟𝑒𝑠) ∙ 𝑠𝑖𝑛2 (

𝑌𝑖 − 𝑌𝑡ℎ𝑟𝑒𝑠

2
) 

𝐷 = 2 ∙ 𝐻 ∙ 𝑎𝑡𝑎𝑛2(√𝑎, √1 − 𝑎) 

 

With coordinates in radian and 𝐻 = 𝑅 + 𝐸𝑉𝐼𝐸, 𝑅 being the mean radius of the earth and 𝐸𝑉𝐼𝐸 

= 597ft being the elevation of RWY34. 

 

Flight Level to Height: Merging the data has also allowed to link all flights with a specific 

atmospheric pressure measured and reported in the METAR as the QNH (Query: Nautical 

Height). It is possible to approximate the height from the Flight Level (FL) using the following 

formula: 

 

𝑍𝑖(𝑁𝑀) = 𝑍𝑖(𝐹𝐿) ∙ 100 +
288.15

0.0065 ∙ 0.3048
(

𝑄𝑁𝐻
0.0065∙287

9.81

1013.25
− 1) 

𝐻𝑒𝑖𝑔ℎ𝑡 = 𝑍𝑖(𝑁𝑀) ∙
𝐸𝑉𝐼𝐸

6076
 

Note that 1NM equals 6076ft. 

 

Angle to runway: The angle with respect with direction of the runway has been computed. It 

shows the variation in trajectory with respect to the direction of the runway - and we suspect 

it to be indirectly correlated with the adherence to the Instrument Landing System (ILS). The 

angle, in radians, is calculated with respect to the threshold coordinates as: 

 

∅𝑖 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑋𝑖 − 𝑋𝑡ℎ𝑟𝑒𝑠

𝑌𝑖 − 𝑌𝑡ℎ𝑟𝑒𝑠

) 

Unwanted noise: It was recommended by Austrocontrol to apply additionally data smoothing 

techniques for eliminating unwanted noise in the data. Therefore, we use additional the Median 

Absolute Deviation (MAD) outlier detection technique which identifies data points that are 

significantly different from the rest of the data [21]. For each feature with 

vector A and N scalar observations, the MAD is defined as:  

 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝐴𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝐴)|) 

For 𝑖 = 1,2, … . , 𝑁 

 



111 
 

The scaled MAD is defined as: 

𝑐 ∙ 𝑚𝑒𝑑𝑖𝑎𝑛(𝑎𝑏𝑠(𝐴 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝐴))) 

Where 𝑐 =
−1

(𝑠𝑞𝑟𝑡(2)∙𝑒𝑟𝑓𝑐𝑖𝑛𝑣(
3

2
))

 

By having the MAD, outliers are extracted as data points that are more than three 

scaled MAD away from the median. 

Unwanted flight scenarios: Additionally, we observed two flight scenarios in our data set that 

shouldn’t be included in the model. These identified flights are filtered out from the entire data 

set and are defined as follows: 

1) When for a single flight two individual time series of ones are detected for the 

variable AircraftOnTheRunway; 

2) When for each 1 NM segment - from 5 until 0NM before threshold - the flight level has not 

decreased with more than 200 feet (go-arounds). 

Holdout validation method: The data has been divided into 45,679 flights and 15 different 

aircraft and weather indicators which are shown in Table 6.2. Next, we construct the datasets 

and find the stability of two different data parts, known as the holdout validation method. The 

method is recommended for large data sets [22] and the method starts with randomly assigning 

data points to two different sets. We specify the default ratios for splitting the data into training 

and validation datasets as, respectively, 75% and 25% of the available data. A matrix X is then 

formed, where each row represents a flight Y, column 1 until 14 a prediction variable and 

column 15, the NREX target variable (see Table 6.2). Based on different data sources and the 

variables listed in Table 6.2, standardize the feature matrix (X) for all the flights (Y). Split the 

matrices X and Y in two subsets Xtrain; Ytrain used to train the model and Xval; Yval used to 

evaluate the model accuracy. 

 

6.3.3 Feature selection  

 

The most important features will be selected using the OOBPermutedVarDeltaError feature 

selection property for identifying which features are important for best describing the variance 

in the Vienna data set [23]. For all 14 prediction variables, the measure is the increase in 

prediction error if the values of that variable are permuted across the out-of-bag observations. 

This measure is computed for every tree, then averaged over the entire ensemble and divided 

by the standard deviation over the entire ensemble. In previous papers, we have introduced 

this technique [18, 19]. The objective of feature selection is three-fold: improving the 

prediction performance of the predictors, providing faster computational performance and 

more effective predictors [24] as well as providing a better understanding of the underlying 

process that generated the data [25]. As shown in Figure 6.3, the final 

OOBPermutedVarDeltaError model has the following top 12 predictors;  
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Throughput,SODARVelocity, SODARDirection, WMAWindSpeed34, GroundSpee

d5NM, Height5NM, Cloud1, Visibility, Height2NM, GroundSpeed2NM, ICAOcat and 

ACType. The variables WMAWindDirection34 and Cloud1Okta have been excluded from the 

model since they contribute significant lower to the accuracy of the model. Thereafter we 

project the validation data onto the reduced dimensions of the training data. We are projecting 

any new validation data onto the training data subspace to compare and classify (holdout 

validation). 

 

 

 

 

  

 

 

  

 

 

 

 

 

Figure 6.3: Normalized feature selection using OOBPermutedVarDeltaError algorithm (see 

Table 6.2 for feature/variable definitions).  

 

6.3.4 Suitable ML classification techniques  

 

To choose suitable ML techniques for the NREX prediction we have to take into account the 

size, quality and nature of the data. ML techniques can be classified into different categories 

following three main strands; unsupervised learning, supervised learning and reinforcement 

learning.  Supervised learning can be divided into two different subcategories which are 

classification and regression. In this study, there will be a primary focus on classification 

learning since these methods are used for predicting binary numbers (NREX) whereas 

regression is often used for the prediction of real numbers such as the time to fly on final 

approach. For supervised classification learning, we use the GB method [18] approach that can 

be considered as a baseline for this study.  In general, combining multiple classification models 

increases predictive performance and robustness of the model [17]. Individual decision trees 
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tend to over fit. In GB one tries to combine the models produced by several trees into an 

ensemble that performs better than the original trees. GB decision trees combine the results of 

many decision trees, which reduce the effects of overfitting and improves generalization [26].  

For the GB method we take into account the characteristics from the obtained data 

sets such as dealing with binary and real numbers within the data [17]. Furthermore in previous 

work [27], the GB technique was introduced to predict the time to fly on final approach. The 

technique was assessed on their capabilities to produce fast and accurate predictions and to test 

a number of ‘what-if’ statements.  

A possibility to achieve this is by using the outcome of the GB method. The GB was 

built to synthesize the what-if statements for the predicted NREX taken and to give a clear 

overview for the ATCO for what is likely to happen under certain situations. The method is 

based on expert studies [28, 29] and will be explained below in three steps: 

ML method 

 First we learn the NREX for 54,679 flights with 12 features and the GB method. Three 

models will be learned using the GB algorithm. 

 Second we assess the NREX results of all three models on their accuracy, F1 score, Area 

Under the Curve (AUC) and computational time. 

 Finally we show the results for the best performed model and top 12 features from the 

previous step. 

6.3.5 Assessing GB method  

 

Three GB models were developed, one for each ICAO category. As mentioned in section 6.2, 

we applied feature selection on the training data to reduce the number of dimensions and 

predictors. Thereafter we assess the GB on their forecast performance and computational time 

with the top 12 predictors included. The forecast performance includes the metrics: accuracy, 

F1 score and the Area Under the Curve (AUC).  

 

The classification accuracy depends on the number of samples correctly classified for each 

model. The accuracy is calculated as follows: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

= (
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃) + 𝐹𝑎𝑙𝑠𝑒𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁) + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝑇𝑁)
) 

The F1 score is calculated as follows: 

𝐹1 = (
2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) 
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Where precision is  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
) 

And recall or sensitivity  

𝑅𝑒𝑐𝑎𝑙𝑙 = (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
) 

The AUC score is calculated as follows: 

𝐴𝑈𝐶 = 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑣𝑠 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑡𝑦  

Where specificity  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = (
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

Table 6.3 and Table 6.4 shows the results for all three models. 

Table 6.3: Forecast and computational time performance for the GB technique.  

 
Forecast 

performance 

(accuracy in 

%) 

F1 score AUC Computational 

time (s) 

Heavy ICAO category 

model 

Procedural 

Non-Procedural 

 

98 

75 

Precision = 

97.8 

Recall = 98.3 

F1=98 

 

0.81 

 

5.5 

4.6 

Medium ICAO 

category model 

Procedural 

Non-Procedural 

 

95 

79 

Precision = 

95.8  

Recall = 95.6 

F1=95 

 

0.82 

 

5.5 

5.3 

Light ICAO category 

model 

Procedural 

Non-Procedural 

 

98 

73 

Precision = 

94.3 

Recall = 98.4 

F1=96 

 

0.78 

 

3.5 

2.9 
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Table 6.4: True classes versus the predicted classes for RWY34 and six different 

classifications during HIRO. 

True 

exit 

class 

Heavy Non 

Procedural 

(0) 

TN 

984 

flights 

6.0% 

FP 

328 

flights 

2.0% 

        

Heavy 

Procedural 

(1) 

FN 

246 

flights 

1.5% 

TP 

14844 

flights 

90.5% 

        

Light Non 

Procedural 

(0) 

    TN 

733 

flights 

13.4% 

FP 

268 flights 

4.9% 

    

Light 

Procedural 

(1) 

    FN 

71 

flights 

1.3% 

TP 

4396 

flights 

80.4% 

    

Medium 

Non 

Procedural 

(0) 

        TN 

4232 

flights 

13.0% 

FP 

1148 

flights 

3.4% 

Medium 

Procedural 

(1) 

        FN 

1213 

flights 

3.7% 

TP 

26212 

flights 

79.9% 

  Heavy 

Non 

Pro-

cedural 

(0) 

Heavy 

Pro-

cedural 

(1) 

Light 

Non Pro-

cedural 

(0) 

Light Pro-

cedural (1) 

Medium 

Non Pro-

cedural (0) 

Medium 

Pro-

cedural (1) 

    Predicted class 

  

Table 6.4 shows the true class for the six classifications in the rows, whilst the columns show 

the predicted class. The diagonal cells show where the true class and predicted class match. If 

these cells are green, the classifier has performed well and classified observations of this true 

class correctly. 

Each blue box in Table 6.4 counts 4 cells. The sum of the four cells is the total amount 

of flights per ICAO class; Heavy_(Non-Procedural), Medium_(Non-Procedural) or 

Light_(Non-Procedural). The second row from above shows all Heavy_Procedural flights with 

true exit class B4, B5 and B7. In this row, 90.5% of the flights are correctly classified, so 

13.0%+3.4% are all Medium Non 

Procedural flights. Therefore, the 

accuracy of predicting at 2NM if a 

Medium ICAO flight is non 

Procedural = 13.0/ 

(13.0+3.4)*100% = 79%  

 

 

1 
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90.5% is the true positive rate for correctly classified points in this class, shown in the green 

cell in the True Positive Rate (TPR) column. The other flights in this row are misclassified: 

1.5% of the flights are incorrectly classified as Heavy_Non-Procedural, 1.5% is the False 

Negative Rate (FNR) for incorrectly classified points in this class, shown in the red cell. Out 

of all Light flights, 93.8% is correctly predicted and 6.2% is wrongly predicted, for Medium 

flights this is respectively, 92.9% and 7.1%. 

For this paper, we are only interested in the flights that didn’t utilise their AIP 

proposed runway exit. After analysing the forecast performance and the computational time 

we conclude that the Medium ICAO category model performs best.  

Based on these results we can conclude that when an indication will be provided at 

2NM for Medium aircraft types, the ATCO should have confidence (with a Non-Procedural 

accuracy of 79%, see explanation in Table 6.4 that this flight will take runway exit B1, B2 or 

B4. Our model gives an accuracy of 81% for all validation flights (accuracy formula at the 

beginning of this section). It has also been tested that a lower accuracy is obtained without 

applying feature selection. However, by applying feature selection the model is trained 5% 

slower.  

6.3.6 Observe risk precursors with Gradient Boosting 

 

The purpose of building a Boosted tree is to identify a set of if-then-else (what-if statements) 

split conditions in order to identify the main risk precursors that most influence NREX. The 

observed flights for RWY34 are analysed and used to build three Boosted trees which should 

give a good understanding of which features influence the NREX choice. The hyperparameters 

for GB include the number of decision trees in the forest and the number of features considered 

by each tree when splitting a node. The model performed best using 95 decision trees and 12 

features. Table 6.5 shows16 an example for a medium procedural and non-procedural flight. By 

building this tree we start at the root node and ask a sequence of questions about the predictors. 

For each iteration, the tree chooses the variable and the split point to achieve the 

minimum node error between the predictions and the NREX targets. Each of the terminal 

leaves represents one of the partitions of the input space. To provide a model that can generate 

accurate predictions and is not overly-complicated, we need to find the optimal tuning 

parameters for the tree. In this study we use two parameters. The first parameter is 

the minimum leaf size (lmin), for which it is required enough data points in each terminal node 

to create a distribution. The parameter minimum leaf size can be used to stop the splitting 

process when the number of instances in a leaf is too small. In addition, if the tree contains too 

many variables, it is hard to interpret. The second tuning parameter for the tree is the maximum 

tree depth (dmax). A very large tree with many leaves might over-fit the data, while a small tree 

might not be able to capture the important structures of all the variables. The maximum tree 

depth can restrict the number of layers of a tree. While cross-validation is used to select the 

minimum leaf size, lmin, the minimum node error is used to select the maximum tree 

                                                
16 Note that we didn’t show the tree due to its complexity. Therefore, we only show 

precursors for a Medium_Non-Procedural flight in Table 5, extracted from the tree. 
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depth, dmax. So in our case the tree is fit for a range of values of the two parameters to three 

quarters data. Thereafter, the error of the predictions is computed on the remaining one quarter. 

This is done for each quarter of the data, and the four error values are averaged. The set of 

parameters that gives the lowest error will be selected. 

As shown in Figure 6.4, we first train the tree with different settings of lmin. We 

observed that there is an optimal point for the cross-validated error (error). The tree with a 

minimum leaf size between 130 and 140 performs best compared to other lmin numbers. 

For dmax we use the cost-complexity pruning technique which is based on [32]. Pruning reduces 

the complexity of the final classifier and hence improves predictive accuracy by reducing 

overfitting. The technique generates a series of trees where T0 is the initial tree and TN is the 

root in isolation. At step j, the tree is created by removing a subtree from tree j-1 and replacing 

it with a leaf node with value chosen as in the Boosted tree building algorithm. The subtree 

that is removed is chosen as follows. Define the error rate T over data set S as error(T,S). The 

subtree that minimizes T, is chosen for removal. Once the series of trees has been created, the 

best tree is chosen based on generalized accuracy as measured by cross-validation. We change 

the values of dmax and lmin and repeat the cross-validation process described above. The tree 

with lmin = 135 still performs slightly better than the others, and the misclassification does not 

change significantly after tree depth reaches the value 11. Thus, our final ultimate model, has 

12 predictors (reduced by OOBPermutedVarDeltaError feature selection) and is fitted with a 

maximum tree depth and minimum leaf size set to 11 and 135, respectively. 

 
 

Figure 6.4: Error versus minimum leaf size (lmin) for Medium aircraft types. 

By learning the tree, a mean and distribution are extracted per decision node. This is needed 

to observe risk precursors and understand what is likely to happen for the runway exit taken. 

Our model divides all the Medium NREX possible outcomes into 28 segments. In other words, 

the tree has 28 terminal nodes for which the outcomes are classified to Medium_Procedural 

and Medium_Non-Procedural. We can interpret the most important predictors as the major 

factors that play key roles in influencing NREX selection. After the tree is learned with a tree 
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depth of 11, we observed for the 28 NREX categories their related precursors and risk impact. 

Table 5 shows only the top 5 precursors that end up with a non-procedural exit. 

 

Table 6.5: Example of precursors for a Medium_Non-Procedural flight. 

Non-

procedural 

exit 

Precursors Number of 

times observed 

in the tree 

Normalized 

impact value  

1 Throughput<28 5 0.46 

2 Cloud1<8750 4 0.25 

3 GroundSpeed2.0NM>=147kts 3 0.23 

4 WMAWindSpeed< 29kts 2 0.28 

5 GroundSpeed5_0NM>= 155kts 2 0.25 

The entire tree for each model (Heavy, Medium and Light) can be received on request via the 

main authors email address. For example the tree for the Medium ICAO category includes for 

each terminal node (28 in total): 

1. Procedural or Non-Procedural;  

2. precursors;  

3. node error;  

4. node probability and  

5. node risk.  

 

6.4 Prototype model   

 

Based on what we have learned in the previous steps and the data availability, a prototype 

model has been developed using the GB to forecast NREX selection at 2NM before the 

RWY34 threshold at Vienna airport. The aim is to generate forecasts for each arrival flight on 

RWY34 per time window. Suppose we are at time t, and try to make predictions for the next x 

minutes. Given real-time flight information at 2NM from the RWY threshold, our GB model 

will determine which segment the flight belongs to. The GB tree will recognise, by receiving 

similar structured (Xtrain; Ytrain) real time data in which leaf node a certain flight will fall with 

a given node; error, probability and risk.  

To generate real-time NREX predictions from the model, we are developing an 

application using Python. The predictions are automatically presented in Comprehensive 

Airport Simulation Technology (CAST) to visualize real-time predictions. The CAST 

dashboard has been deployed in Austrocontrol operations and has currently one operational 

user. Figure 6.5 shows an example of the CAST dashboard. 
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Figure 6.5: Predictive NREX visualisations in CAST for RWY34 at Vienna. This example 

shows that an arrival flight is likely to utilise at exit B2. 

 

In a live trial, the operational datasets can be accessed in real-time for which we produce the 

classification accuracies of the NREX for each arrival flight. However, in the predictive 

visualisation tool (Figure 6.5) we only show an expected Non-Procedural runway exit taken. 

The example during mixed mode operations shows arrivals (red line) and departures (green 

line). The ICAO light arrival aircraft is expected to utilise RWY34 at exit B5. Therefore an 

alert is indicated for the controller. It should be noted that before executing the live trial, the 

GB tree was already learned with 2 years of historical data. By making real-time time 

predictions on a particular day the tree has to be learned with a minimum of two hours of data 

from the day of prediction.  

Suppose the trial started at 0800 hrs. We first collected data of the flights that arrive at VIE 

RWY34 after 0600 hrs, and then we generated forecasts for the next 2 h (0800–1000 hrs). 

Thirty minutes later (0830 hrs), the second trial started. Similarly, we only considered the 

flights that arrive at VIE after 0600 hrs or arrived before 0830 hrs, and we generated forecasts 

for the time interval between 0830 and 1030 hrs. It has been observed that, for this case study 

and for the second prediction trial, an increase in prediction accuracy is obtained of 5%, which 

was due to the increased number of daily arrival flights. 

 

 

 

 

 

 

Alert Exit B5 
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Discussion on NREX Results 

 

To the best of our knowledge, there is no existing NREX prediction function to compare 

against. However, we could compare different metrics with each other. In Table 6.3, we built 

a lookup table of both models to compare our NREX predictions against. The results of our 

case study include a final model that has 12 predictors and is fitted with a maximum tree depth 

and minimum leaf size set to 11 and 135, respectively (Figure 6.4). The models take into 

account (1) the layout of the arrival runway 34, (2) the time period and amount of data needed 

to learn, (3) the computational time needed for a prediction, (4) the instances at which the 

prediction is performed, and (5) the prediction variables. 

 

From the accuracy metric (see table 6.4) we conclude that for non-procedural exit the Medium 

aircraft performs best and for procedural the Heavy and Light category performs best. We first 

focus on the F1 score, which is a measure of a test's accuracy. It considers both the precision 

p  and the recall r of the test to compute the score; p is the number of correct positive results 

divided by the number of all positive results returned by the classifier, and r is the number of 

correct positive results divided by the number of all relevant samples (i.e. all samples that 

should have been identified as positive). In other words, precision is a measure that tells us 

what proportion of arrival flights that we predicted as procedural, actually took a procedural 

exit, whereas recall is a measure that tells us what proportion of flights that actually took a 

procedural exit was diagnosed by the algorithm as procedural. It is clear that recall gives us 

information about a classifier’s performance with respect to false negatives (how many did we 

miss), while precision gives us information about its performance with respect to false 

positives (how many did we catch). From Table 6.3 we can conclude that the F1 score performs 

best for Heavy aircraft, which leads to the conclusion that the procedural heavy model 

performs very well. 

On the other hand, the AUC score measures the positive rates against the false positive rates. 

The AUC performs best for the medium aircraft. This can be explained by the fact that this 

model has very few false positives which is an indication of the specificity.  

The computational time to learn a model depends on the number of historical flights used to 

learn a model. Hover the numbers are close to each other meaning that we cannot conclude a 

best performed model. 

 

 

6.5 Conclusion  

 

This study demonstrates the use of ML techniques to forecast NREX per flight. We first 

reviewed the AROT and RET aircraft behaviours, the data sources, precursors and ML 

outcomes. A model was derived to predict NREX for each flight using the GB method. We 

then developed an approach to generate classification associated to each NREX flight and the 

number of aircraft to RWY34 within a time frame of 30 minutes. We also developed an 

application for VIE to produce these forecasts. In order to facilitate a live trial at VIE, the 

accuracy of the model has been assessed and improvements were made. To this end, we will 
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conduct a feasibility study where we analyse how our prediction tool can be used by ATCOs 

in their decision making and planning to ensure resilience, safety and efficiency of airport 

operations. This is foreseen both within a local sector and within the scope of coordination 

with other sectors.   

There are some advantages associated to using our model. First, the ML technique that 

we use to build the model is fast, intuitive and interpretable. It can help the airport managers 

to understand the driving features of the NREX selection for RWY34. Learning our model 

with OOBPermutedVarDeltaError results in a model which is more accurate than when 

OOBPermutedVarDeltaError is not used for new similarly structured data [31]. Second, our 

model has been built based on 12 predictors, enabling to build new features using domain 

knowledge of the data. We observed that the GB technique performs best, when a maximum 

tree depth and minimum leaf size is adopted of 11 and 135, respectively. Third, our model can 

update the predictions in real-time. The application we developed for VIE airport allows easy 

extraction of real-time data. The forecasting procedure is effective and the predictions can be 

generated in a short amount of time. Finally, our model is the first to provide NREX forecasts 

for RWY34. When an indication is raised at 2NM from the RWY threshold for Medium 

aircraft types, the ATCO should have confidence that this flight will take runway exit B1, B2 

or B4. The NREX forecasts for a flight movement may help ATCO’s to make better decisions, 

to predict whether the flights will experience additional AROT and to anticipate in advance 

when arriving queuing starts.  

 

6.6 Recommendations  

 

A Real-Time Simulation (RTS) will be executed in a EUROCONTROL Real Time simulator 

with a primary objective to assess the operational feasibility and acceptability of using the 

predicted procedural or non-procedural runway exit taken (NREX) in an approach 

environment. With the RTS, you can conduct preliminary investigations on the impact that 

new ATM concepts will have on the air traffic controller working environment. The simulation 

is scheduled for the 23rd and 24th of April 2019.    

Airport operational rules, pilot practices, regulations, and standards can vary 

significantly over a time period of 3 years. Therefore, in future development of the conceived 

NREX model, the utility of a faster, trend-tracking model will be explored by reviewing the 

prediction accuracy of the model on a day-to-day basis compared to a static model based on 

the full 3 years of data. Additionally, pilot practices, ATCO observations, weather events, 

maintenance down-time and runway/taxiway repair will also be included in our NREX model. 

An example of a pilot practice is that efficiency is the main reason why flights depart from a 

specific point, or may exit at a specific point. This includes efficiency in; economic 

environmental, best practice (1) better departure sequence and (2) waiting time for departure 

is lower. An example of an ATCO observation is that Lufthansa Medium types have lower 

AROT compared to other airlines for the same runway and associated landing conditions. 
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While the model has been developed for a NREX prediction problem, we believe the 

methodology proposed in this study can be readily applied to other runway processes as well, 

such as the prediction of Arrival Runway Occupancy Times. This topic will be explored in 

future research. 
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7.0  Validation Runway Utilisation tool 

 

 

inally, together with EUROCONTROL a proof of concept and validation exercise was 

performed, based on the use of feasible ML and BD technologies. The two best 

performed models; abnormal runway occupancy times from Chapter 5 and missed 

procedural runway exit (Chapter 6) are validated into the EUROCONTROL ATC RTS 

tool. Both ASP enablers are validated on their RU requirements, operational needs and 

operational feasibility. The outcome for the RU requirements is summarized in Section 8.1.2. 

This ensured the best use possible of the existing safety data in order to enhance decision 

making at European level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter was previously published as:  

C.C. Morgan, F.F. Herrema, M. Ellejmi & R. Curran. Validation of the Runway Utilisation 

concept at Vienna airport. 9th SESAR innovation days (SID 2019), Athens. 
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Abstract  

The final RU tool includes a machine learning and big data infrastructure (Section 2.5) that 

provides the computational power required to ingest and analyse the data managed for Vienna 

airport. The tactical and strategical predictive RU tool updates ASP patterns and is able to 

show alerting issues and support decisions. The real-time simulation reported in this document 

is part of the first RU validation process to investigate how the knowledge gained from 

machine learning and big data tools can be applied in the operational environment to support 

the tower runway controllers in their work. The AROT and NREX were selected for the RU 

support tool in the previous chapters as they allow for intuitive, interpretable, quick and 

accurate decisions through suitable visualisations. Thus, we validated how the real-time RU 

support tool (AROT and NREX) could be used by ATCOs in their decision-making and 

planned to ensure safety and efficiency (fast, intuitive and interpretable) of airport operations 

through suitable visualisation.  

 

7.1 RU pre-validation steps   

 

The validation study was conducted in an ATCO Real Time Simulation (RTS) tool inside the 

EUROCONTROL Experimental Centre (EEC). The EEC in Paris validates any ATCO concept 

on the runway, during the final approach or in the airspace. They do this using realistic (real-

time) simulations to obtain hard data and human ATCO performance conclusions. Many 

simulations have been executed in the EEC RTS simulator using different airport 

environments. This led to different deployed runway throughput solutions like: RECAT-EU, 

TBS and airspace design solutions [1]. Over the last year we have been developing and 

validating ML support decision solutions using Machine Learning (ML)/ Big Data (BD). 

Under a H2020 project named SafeClouds17 (that enabled the thesis funding), we agreed to 

validate the predicted AROT and NREX using ML and BD in real-time. This RTS is a V118 

validation activity to investigate the way in which the knowledge gained from the Runway 

Utilisation (RU) activities can be applied in the operational environment and to support the 

tower runway controllers’ work. While validating new solutions in the air traffic management 

domain, three different maturity levels (V1, V2 and V3) [2] need to be cleared before 

industrialisation and deployment. Maturity assessment analyses come from project activities 

i.e. concept validation activities to assess the progress of R&D work for a solution through 

different trial scales. The maturity assessment involves checking whether the set of maturity 

criteria for a trial maturity phase have been successfully achieved by a SESAR solution being 

analysed and whether it is supported by a maturity assessment tool (MAT) provided by the 

SESAR Joint Undertaking19. 

 

 

                                                
17 www.safeclouds.eu 
18 V1 identifies the operational and technical solutions for meeting the target performance 

identified in Section 7.2.1 
19 www.sesar.eu 
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The EEC RTS [3] enables connecting RU ML python algorithm to the simulation platform 

that makes real-time predictions. The predictions were made on a local computer based on 

historical raw data from AUSTROCONTROL. The raw data sets were uploaded and secured 

on the Amazon S3 bucket [4] (Section 2.5) and has so far covered 100000 flights. The flights 

include the NREX and AROT along with their corresponding prediction values. Subsequently, 

the Extraction Transformation and Loading (ETL) of the data was executed [5]. The extraction 

and transformation (merging of the data) step was done in Spark using key value pairs [6] to 

merge data sources with similar time stamps. Then, the data was uploaded on Python – the 

cleaning, feature selection and prediction was executed it. After the ML was applied, the 

predictions were directly sent to the RTS (I-drive) for validation. 

The simulator must read all the arrival flights for each exercise at once, such that all predictions 

are made in advance. Each exercise counts 43 arrival flights, and there are thus 43 predictions. 

We tested if the predictions are fast enough by measuring the time between the moment the 

prediction was made and the moment the prediction was visible on the local I-drive from the 

simulator. After conducting two training sessions on Tuesday (Table 7.5), we concluded that 

all predictions were made in less than three seconds. As a next step, we plan to measure the 

time between the prediction and the action from the ATCO. However, we expect that the time 

from reading the data from the I drive and visualizing the prediction on the HMI to taking an 

action (by the controller) will not be more than one second. 

After performing the pre-computational steps and time measurements we concluded that the 

validation approach captures 3 of the 5 RU requirements. The platform: 

 Enables making predictions with low computational time, triggering actions by 

the ATCO in less than five seconds. 

 Enables showing the prediction value in green (=>80% accuracy) or in red 

(<80% accuracy). 

 Cannot show the precursors that impact an enabler exceeding their threshold 

(intuitive/ interpretable). This is possible during the maturity level 2 by the 

reception of precursors from the tree. 

 Enables showing the NREX and AROT prediction value on the HMI when the 

following criteria are met: 1) fast and accurate ASP prediction and 2) when an 

ASP enabler exceeds a threshold (resulting in ASP risk). 
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7.2 Validation methodology  

 

7.2.1 RTS objectives  

 

This RTS is a V1 validation activity to investigate how the knowledge gained from BD tools 

and ML activities can be applied in the operational environment and support the tower runway 

controllers in their work. There were three main objectives of the RTS: 

 

 Operational Needs  

To gain feedback from controllers in terms of whether such a controller support tool based 

on ML and enhanced prediction of RU meets controllers’ operational needs. 

 

 Operational feasibility & acceptability  

To assess the operational feasibility and acceptability of a controller support tool based 

on ML and enhanced predictions of RU. 

 

  Controller Runway Utilisation requirements  

To assess the requirements of the controllers with regards to controller support tool based 

on ML RU  predictions (e.g. AROT and NREX), for example, in terms of information 

requirements, timeliness of information, accuracy of predicted information. 

 

7.2.2 RTS scope 

 

Based on the findings from ML activities an initial prototype controller support tool was 

developed to inform controllers in advance of the predicted AROT and/ or NREX for each 

aircraft, i.e. the ML RU controller support tool.   

The prototype was used to provide controllers with a possible example of how the enhanced 

predictions of runway utilisation gained from ML could be applied in the operational 

environment to support their work.   

The simulation was conducted using the EUROCONTROL RTS eDEP platform with iTWP 

and a 3D external view.  The RU ML support tool prototype for predicting AROT and NREX 

was integrated into the EUROCONTROL eDEP integrated Tower Working Position (iTWP). 

[3]. The simulation was based on the Vienna approach / tower environment using Runway 34 

in segregated arrival mode only. Two controllers from the Vienna Tower participated in the 

simulation.  
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7.2.3 Solution description   

 

Within this study we are developing an algorithm that would support the tower ATCO during 

HIRO by making predictions relating to AROT and / or NREX based on historical observations 

of runway traffic.  

The predictions are produced at 2NM upstream from the runway threshold.  This enables 

tactical operational tools to be supplied with real-time data and provide additional 

information or warning to the tower controllers if appropriate, based on these predictions.    

The RU ML support tool provides an indication on the tower runway controller CWP HMI of 

the likelihood that that the AROT of the landing aircraft will adhere to HIRO rules. A red 

indication will be provided when the prediction accuracy of NREX is lower than 80% and/ or 

an AROT with a Mean Squared Error (MSE) higher than 6 seconds. A green indication will 

be provided when the prediction accuracy is higher or equal to 80% or lower than 6 seconds 

for the AROT. The prediction will be produced at 2NM upstream from the runway threshold, 

enabling tactical operations tools to be fed and ATCOs to be warned about the two predictions 

identified above.  

 

7.3 RTS conduct  

 

7.3.1 Environment    

 

The operational environment used for the RTS was based on the Vienna environment. Vienna 

airport has two runways (see Figure 7.1). This validation exercise only concerned a single 

approach HIRO environment for RWY34 (the most common pattern of operations), departures 

will not be simulated.   

The RWY 34 exits are B9/B7 for the light aircraft, B5/B7 for the medium aircraft and B5/B4 

for the heavy and super heavy aircraft. Within this exercise, it was also possible that a Light 

or Medium aircraft type vacate RWY34 via exit B1, B2, B4 or B5 (only for Light) or when a 

Heavy aircraft vacates at B2 or B1. 
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Figure 7.1: Vienna Runway layout  

7.3.2 Traffic 

 

Two traffic samples were used in the SafeClouds RTS.  The traffic samples were taken from 

the RTS performed within SESAR 2020 PJ02-O3 (namely traffic samples W2A1 and W2A2) 

and consist of arriving aircraft only. 

The traffic samples were based on real flight data taken from the morning traffic in Vienna 

(August 2015) which have been adapted so that they have a mix that corresponds to an 

extrapolation of what the traffic is currently predicted  to be at Vienna Airport in 2020.  

The traffic sample has included the aircraft types, call sign and traffic mix comparable to 

Vienna airport traffic. Table 7.1 presents the distribution of aircraft type categories within the 

sample. 
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Table 7.1: Traffic distribution 

ICAO WTC RECAT LOWW WTC Arr 

A380-800 A380-800 1 

Heavy 

Heavy  

(except 

B76X/B75X/A310) 

3 

B76X/B75X/A310 1 

Medium 

A320/B737NG 18 

Medium  

(except A320/B737NG) 
16 

Light Light 2 

 

7.3.3 Wind Profile Modelling   

 

The following low wind profile was used: 

Table 7.2: Wind characteristics applied in the Safe Clouds RTS. 

LEVEL Feet 

MSL 

WIND 

HEADING 

WIND 

SPEED 

Knots 

WIND 

SPEED m/s 

Crosswind 

Component 

Knots 

Headwind 

Component 

Knots 

000-4000 320 0 0 0 0 

000-4000 320 20 10,28 6,8 18,8 

The same wind was applied in all runs. The wind remained constant throughout each exercise, 

so there was no wind variation during an exercise. 

 

7.3.4 Speed Profile Modelling  

 

True air speed (TAS) profiles on approach have been analysed to create modelled profiles, 

which were split by aircraft type and wind band. The simulation platform used speed profiles 

(from Chapter 3.0), which were split by aircraft type, wind band to simulate variability.   

The model used is outlined in the figure below and is described using four parameters: 

 The glide speed VGLIDE maintained down to the deceleration fix; 

 The deceleration fix, defined as a certain distance from the threshold; 

 The stabilisation fix, defined as a certain distance from the threshold; 



132 
 

 The final approach speed VAPP reached and maintained by the aircraft from the 

stabilisation fix to touchdown. 

 

Stabilisation 
fix (SF)

Deceleration 
fix (DF)

Vglide (procedural 
speed)

 Vapp (landing 
speed)

Distance from 
threshold

TAS

 

Figure 7.2: Aircraft speed profile model for arrivals 

 

7.3.5 Separation Scheme    

 

The wake turbulence separation scheme was the current wake turbulence separation scheme 

used in the Vienna approach and tower environment, i.e. Distance Based ICAO wake 

turbulence separation scheme without any support tool under VMC.  In VMC in Vienna visual 

separations are often applied therefore, MRS pairs may be delivered under 2.5NM under visual 

separation rules. 

 

7.3.6 Arrival Runway Occupancy Time    

 

The average predicted AROT is highlighted in Table 7.3 

Table 7.3: Average AROT in the SafeClouds RTS. 

 Traffic sample 1 Traffic sample 2 

Super Heavy  76 seconds 79 seconds 

Heavy 65 seconds 68 seconds 

Medium  55 seconds 56 seconds 

Light 49 seconds 50 seconds 
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In each exercise, a number of non-procedural exits were simulated. A non-procedural exit 

refers to when a flight vacates the runway at an exit further along than the Aeronautical 

Information Publication (AIP) intended one. The number of non-procedural exits that occurred 

in each measured exercise run was about 15% of the total landing aircraft.  will be implemented 

in the RTS. 

Table 7.4 shows the procedural exit and non-procedural for Heavy, Medium and Light aircraft 

as will be implemented in the RTS. 

Table 7.4: Procedural AIP exit at RWY34 for VIE airport with associated non-procedural 

exit. 

Aircraft ICAO category  Procedural exit Non-procedural exit 

Heavy B4, B5 B1, B2 

Medium  B5, B7 B1, B2, B4 

Light B7, B9 B1, B2, B4, B5 

 

7.3.7 Tower simulation platform   

 

The EUROCONTROL eDEP Integrated Tower Controller Working Position including the 3D 

external view was used to simulate the tower runway position for RWY34 at Vienna in the 

Safe Clouds V1 RTS.  The tower runway controller worked only arrivals in segregated mode 

runway operations.  Controllers were required to input all aircraft clearances /instructions and 

sequence changes directly into the system via the ITWP HMI- The tower runway position is 

also manned by one pseudo-pilot.  The ground position is fully automated. 

 

7.3.8 Example of the RU support tool for predicting NREX  

 

The RU ML support tool for predicting AROT / NREX was integrated into the 

EUROCONTROL eDEP integrated Tower Working Position (iTWP).   

The RU ML support tool for predicting NREX indicate to the tower controller on the tower 

CWP HMI, whether not, each landing aircraft has a less than 80% prediction of taking the 

assigned runway exit.  

When the mouse is moved over the runway exit information either in the track label or in the 

EFS then a vertical arrow will be displayed next to the runway exit.   

If an aircraft has, a less than 80% prediction of taking the assigned/procedural runway exit as 

defined in the AIP the arrow displayed will be red. If the prediction of taking the 

assigned/procedural runway exit as defined in the AIP is more than 80% then a green arrow 

will be displayed (as will the RWY and assigned RWY exit presented in the aircraft label). 
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Figure 7.3: iTWP interface showing red arrow at RWY exit (B7) indicating the prediction that 

the approaching aircraft will take the procedural RWY exit for that aircraft (B7) is less 80%.  

 

 

Figure 7.4: iTWP interface showing green arrow at RWY exit indicating the prediction that 

the approaching aircraft will take the procedural RWY exit for that aircraft (B4) is above 80%.  

 

7.3.9 Conduct of RTS  

 

The RTS took place over a 4-day period from 23rd to 26th May 2019 (Table 7.5).   

Two Vienna tower controllers participated in the RTS.  Both controllers were already familiar 

with the eDEP iTWP simulation platform, as they had participated in several previous RTS 

conducted in SESAR1 WP6.8.1 and SESAR2020 PJ02, using the eDEP iTWP. 

The controllers were initially briefed on the objectives of the RTS, the ML concept for RU and 

the RU support tool.  
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Once fully briefed the controllers were each given a training exercise to re-familiarise 

themselves with the simulation environment, the iTWP HMI and also familiarise them with 

the RU ML controller support tool. 

Following the training exercises, each controller was asked to work the tower runway 

positions, as they would do in real life operations under VMC with the initial prototype RU 

ML support tool. 

After each exercise, debriefs were conducted with the controllers to gain their feedback 

regarding the RU ML support tool prototype. 

Based on the controllers’ feedback from the initial exercises, two additional versions of the 

RU ML support tool were developed and assessed by the controllers during the simulation. 

 

Table 7.5: RTS schedule  

Time  Tuesday Wednesday Thursday Friday 

 

 

09:15-

09:30 

 

  

Briefing 

 

Briefing 

 

Briefing 

 

09:30-

10:30 

 

  

Exercise 1 - Reference 

 ATCO 1  

Traffic TW2A1 

 

 

Exercise 5 – 

Solution RWY 

threshold  

ATCO2 

Traffic TW2A1 

 

Exercise 7 – Solution 

2NM with Alert  

ATCO2 

Traffic TW2A1 

 

10:30-

11:00 

 

  

Debrief 

 

Debrief 

 

Debrief 

 

11:15-

12:00 

 

  

Exercise 2 – Reference  

ATCO2 

Traffic TW2A2 

 

 

Exercise 6 – 

Solution RWY 

threshold 

ATCO1 

Traffic TW2A2 

 

Exercise 8 – Solution 

2NM with Alert  

ATCO1 

Traffic TW2A 

 

12:00-

12:30 

 

  

Debrief 

 

Debrief 

 

Debrief 

 

12:30-

13:30 

 

Briefing on concept, 

HMI & RTS 

objectives 

 

 

Lunch 

 

Lunch 

 

Lunch 

 

13:30-

14:30 

 

Training – Solution 

ATCO1 

Traffic TW2A2 

 

Exercise 3 – Solution 

2NM 

ATCO1 

Traffic TW2A1 

 

 

Safe clouds concept  

Use Case discussion 

 

 

 

 

Project meeting  
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14:30-

15:00 

 

Debrief Debrief 

 

15:00-

16:00 

 

Training – Solution 

ATCO2 

Traffic TW2A1 

 

Exercise 4 – Solution 

2NM 

ATCO2 

Traffic TW2A2 

 

End of day debrief 

 

16:00-

16:30 

 

End of day debrief 

 

Debrief 

 

 

End of day debrief 

 

End of RTS 

 

Therefore, over the 4 days of the RTS, each of the controllers worked with three slightly 

different versions of the RU support tool and provided their feedback.  The three different 

versions of the RU support tool consisted of: 

1. The initial prototype RU support tool with the NREX and AROT prediction for an 

aircraft updated when the aircraft was at 2NM from the runway threshold. 

2. The RU support tool with the NREX and AROT prediction for an aircraft updated 

when the aircraft was at runway threshold (therefore the information was updated 

later but had a higher percentage accuracy/reliability than the information updated 

when the aircraft was at 2NM from the runway threshold (approx. 6% more accurate). 

3. The RU support tool with the NREX prediction for an aircraft updated when the 

aircraft was at 2NM from the runway threshold plus an automatic pop-up 

information alert displayed on the iTWP HMI when an aircraft was predicted to take 

a non-procedural runway exit (i.e. with a less than 80% prediction of taking the 

assigned/procedural runway exit as defined in the AIP) that would increase the AROT 

to above what was usual for that aircraft type. 

The feedback obtained from all the controllers following each exercise was noted and is 

summarised per exercise in the results section below according to the three objectives defined 

in Section 7.2.1  

 

7.4 Results from the V1 real time simulation  

 

The results of this V1 validation activity are based solely on controllers feedback based on the 

three versions of the ML RU controller support tool tested in the RTS.  

 

7.4.1 Operational needs   

 

 The controllers felt that information based on ML regarding runway utilisation could 

be used to support operations and controllers work by enhancing controllers’ situation 

awareness and hence provide potential safety benefits.  
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 Whereas, predictive information relating directly to runway exit (NREX) was not 

considered to be needed by controllers to support their work, predictive information 

relating to a change in AROT was seen to be very useful and would support the 

operational needs of the controllers. (However, one of the controllers stated that the 

ML predicted NREX would be  ‘’a nice to have option although it was a bit of a 

gimmick’) 

 The ML predicted information relating to AROT or ideally information regarding the 

consequences of a change in AROT, especially if there is a potential negative impact 

on controllers work, was seen to needed from an operational perspective and would 

support controllers in their work.  The tower runway controllers stated that they only 

need to be alerted about unusual behaviour or if there is a potential situation where 

controller may have to do something, for example if the AROT of the preceding 

aircraft is greater than the time to touch down of the follower and there could be a 

potential loss of separation, then an information alert should be provided to 

controllers.  

 Controller’s reported that they would not act directly on the predictions (e.g. give a 

go-around to a follower aircraft) if reliability was not 100%, but they would monitor 

the situation more closely and wait to see how the situation unfolded. 

 Although, controllers did report that they would use such AROT predictions to try 

and prevent any predicted AROT increases from occurring, for example by stating 

the procedural runway exit the aircraft is required to take when communicating with 

the pilot or requesting pilots to expedite the runway.  

 Pilots may also like to have the information given to them by the controllers for 

example, one controller stated that pilots would like to know in advance if a preceding 

aircraft is staying longer on the runway and exiting further down the runway.  (This 

feedback from the controllers is based on a real life incident in operations as a pilot 

was complaining that the controllers gave such information too late when the follower 

was on the final approach and 1 or 2NM from the runway threshold). 

7.4.2 Operational feasibility and acceptability of the ML RU controller 

support tool 

 

 The ML RU support tool was considered operationally feasible and acceptable to the 

Vienna controllers that took part in the V1 simulation. 

 The predicted information regarding AROT if automatically presented to the 

controllers as an information alert was seen as being ‘’very valuable’’ as it would 

‘’draw the controllers attention to a potential situation’’ that may impact operations.  

This would help to enhance the tower runway controllers’ situation awareness 

relating to potential runway incursions, and therefore have potential safety benefits. 
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 However, the controllers stated that as the predicted information was not 100% 

reliable they would use the information presented to check and monitor a situation 

more closely. Controllers reported that they may use the information to issue 

instructions such as reminding the pilot to take the procedural runway exit or expedite 

the runway, or wait a little longer before giving a landing clearance in order to help 

mitigate any potential increase in AROT.  However, the controllers said they would 

not act on the predictive information in terms of issuing a go-around (for an arrival 

aircraft following the concerned arrival) or giving a line-up clearance (to a departing 

aircraft following the concerned arrival).   

 The controllers reported that the additional information based on ML predictions 

would not have any impact on their workload. 

 The controllers did not feel the RU information based on ML predictions could be 

used as a means to increase runway throughput capacity. 

 Although ML predictions could potentially optimise runway operations under certain 

circumstances. For example, in mixed mode runway operations if the leading arrival 

aircraft was taking an earlier exit the runway would be free earlier, therefore AROT 

would be reduced and perhaps a departure would be possible.     

 When questioned, if the first aircraft was predicted to exit the runway early and the 

second aircraft was at 4.5NM would the controllers tell the second aircraft to maintain 

speed and reduce as late as possible (‘’keep speed as long as possible’’) to allow for 

additional space for a departure in between the second and third aircraft on final.  The 

controllers responded that they would not do this based on predictive information.  

As stated previously, the controllers would use the alert as information only and 

would wait and observe the aircraft to see if it vacates earlier or not as there could be 

potential safety impact of over-relying and acting on the predictive information based 

on ML in such a situation.  

 Both controllers proposed that the predicted AROT determined by ML could be used 

to further optimise runway throughput operations by integrating the predicted AROT 

into the ORD tool (AO-0328) developed within SESAR 2020 PJ02-01.  In such an 

‘advanced’ solution the AROT determined by the ML could be fed into the ORD tool 

to update the FTD chevron when lead aircraft is at 1.5NM - 2NM from the runway 

threshold.  In this way, if AROT was the constraining factor between two arriving 

aircraft on the final approach any changes to the AROT based on ML prediction could 

be directly displayed to the controller via the FTD and the spacing between the 

aircraft pair optimised for the AROT constraint. 

 The level of reliability/accuracy of the predicted information by ML that is acceptable 

to controllers needs to be determined to ensure that controllers can build adequate 

trust in the alert/ controller support tool and there are not too many false alerts.  
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7.4.3 Controller information requirements for a ML RU support tool 

 

 The computational time of the AROT and NREX was less than five seconds when 

predicting during real-time operations at 2NM, making, it according to the 

controllers, suitable for tactical real-time operational use. 

 Based on the interview with the ATCOs (Section 1.1), they would prefer an indication 

only when the prediction accuracy of a non-procedural runway exit utilised is higher 

than 80% or when the abnormal AROT has an RMSE of less than five seconds.  

 The important information for the tower controllers is not the predicted RWY exit 

(NREX) but the AROT.  Therefore, the controllers do not need to know the predicted 

RWY exit but the predicted AROT or ideally the consequences of a change in AROT, 

especially if that consequence could have a negative impact on operations.   

 Controllers require an automatic pop-up information alert showing that there may be 

an issue. Controllers do not want to ‘’seek’’ for the information as implanted in the 

initial prototype (i.e. place mouse on the aircraft label or EFS to find the information); 

this is cumbersome and may lead to controllers missing the predicted information 

updates that could impact operations:  One of the controllers stated that ‘’constantly 

checking the NREX by hovering the mouse on the aircraft label and then looking at 

the arrows displayed on the runway in the ASMGCS display took their attention 

awareness from checking what was happening the air on the final approach’’. 

 Controllers do not need to have an information alert presented if there is no potential 

negative impact on operations, for example, if the AROT is predicted to be less than 

expected as an aircraft takes an earlier non-procedural exit, an alert would not be 

needed.  

 Therefore, an information alerts should be displayed only if there is a potentially 

negative situation predicted:  For example with consecutive arrivals, if the time to 

threshold of the follower aircraft is smaller than the predicted AROT with a buffer of 

the lead aircraft (exact buffer required to be decided in a safety assessment TBD) or, 

in mixed mode operations if there is not enough room for the planned consectuve 

departure. 

 If an alert is displayed the concerned aircraft (lead and follower) will need to be 

highlighted to ensure the controllers react to the correct aircraft. 

 Updated predictions regarding runway exit (NREX) are considered to be a ‘’nice to 

have’’ but not essential.  The format the arrow indicating the runway exit on the HMI 

as assessed in the RTS are OK and easy to interpret. Therefore NREX predictions 

could be a selectable option for controllers.  
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 Controllers do not need to know the level of reliability/accuracy of the predicted 

information presented on the CWP HMI. (Therefore, the colour of the arrow 

indicating the accuracy of the predicted information, as implemented in the RTS, is 

not needed).   

 The information should only be displayed when the reliability of the prediction is 

above a defined value (e.g. 80% as defined in the RTS was seen as sufficient but the 

exact value of reliability that is acceptable to controllers needs to be determined to 

ensure that controllers can build adequate trust in the alert/ controller support tool and 

there are not too many false alerts). 

 If implemented the alert should take into account whether there is a follower or not 

(arrival or departure), as alert would not needed if there is no follower close to the 

lead that will have a prolonged AROT. 

 Controllers reported that update to information based on ML predictions is required 

at latest when the follower aircraft is at 4NM, (i.e. lead aircraft at 1.5Nm to 2NM 

from the runway threshold); this gives the controller time to react if necessary on the 

follower aircraft under both segregated and mixed mode runway operations.  At 1-

2NM you can also instruct the lead aircraft to expedite the runway and remind them 

to take the procedural exit, whereas, if you get this updated prediction on the lead 

aircraft when it is at the runway threshold it is too late. In the RTS when the NREX 

was updated with predicted information at the runway threshold, this was considered 

to be too late for the controllers to react – both on the follower and lead aircraft. 

However, the NREX updated prediction when the lead aircraft was at at 2NM was 

considered OK even if the reliability of the prediction was slightly less (approx. 6% 

less in terms of reliability). 

 In mixed mode runway operations the tower runway controllers need a tool that 

provides the sequence.  It was suggested that the updated AROT prediction should be 

incorporated into the sequence tool and help controller determine whether or not there 

is a potential problem  for the follower aircraft (arrival or departure) or a potential 

benefit (in the case of a departures following an arrival).  This tool would be displayed 

in addition to the information alert. 

 The controllers also suggested that the information alert should disappear on 

acknowledgement by the controller. If the potential separation infringement continues 

and runway incursion is likely, the RIMCAS can then be displayed. 

 Both controllers proposed that an ‘advanced’ solution could be developed where the 

predicted AROT is integrated into the ORD tool (AO-0328) developed within 

SESAR 2020 PJ02-01.  As mentioned previously in such an ‘advanced’ solution, the 

AROT determined by the ML could be fed into the ORD tool to update the FTD 

chevron when lead aircraft is at 1.5NM - 2NM from the runway threshold. 



141 
 

References 

[1] Cappellazzo, Valerio, et al. "Design Principles for a Separation Support Tool 

Allowing Optimized Runway Delivery." 2018 Aviation Technology, Integration, and 

Operations Conference. 2018. 

[2] Gomez, Alfredo, et al. "Concurrent system engineering in air traffic management: 

steering the SESAR program." Proc Posters Work CSD&M 2013 (2013): 25-32. 

[3] EUROCONTROL. (2007). Integrated Tower Working Position. Available at: 

https://www.eurocontrol.int/publication/integrated-tower-working-position-evaluation-

report-session-1-april-2007. Last accessed 28th Sep 2019. 

[4] Palankar, Mayur R., et al. "Amazon S3 for science grids: a viable solution?." 

Proceedings of the 2008 international workshop on Data-aware distributed computing. 2008. 

[5] Tiwari, Prayag. "Improvement of ETL through integration of query cache and 

scripting method." 2016 International Conference on Data Science and Engineering (ICDSE). 

IEEE, 2016. 

[6] Verma, Ankush, Ashik Hussain Mansuri, and Neelesh Jain. "Big data management 

processing with Hadoop MapReduce and spark technology: A comparison." 2016 Symposium 

on Colossal Data Analysis and Networking (CDAN). IEEE, 2016. 



142 
 

  



143 
 

8.0  Conclusion & Recommendations 

 

his chapter includes three sections. The first reviews the research objectives presented 

in Chapter 1. Then, the main contributions of the research are summarized. 

Limitations of the work are stated. Lastly, suggestions for future work and extensions 

to this work are discussed. 

  

T 
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8.1 Conclusion  

In this thesis, we have addressed the design of an ATCO Runway Utilisation support tool. The 

tool captures ASP patterns and fits into a single approach operations environment. Its 

performance was assessed in terms of the three objectives listed in Section 1.3, and the 

identified limitations and merits were summarised. The basis for the tool design and the 

imaging ML techniques was developed in Chapters 1 and 2. 

As shown in Chapters 3–6, ASP enablers depend on the impact of the prevailing 

meteorological and airport conditions on the transport and decay of the wake turbulence. To 

ensure accurate predictions and decision support, all four ASP enablers, Time to Fly (T2F), 

abnormal runway occupancy time (AROT), taxi-out time (TXOT) and runway exit utilised 

(NREX) were assessed with respect to feasible ML techniques, their different features and 

historical data requirements. 

 

8.1.1 Objectives 1 and 2 

 

For objective 1, we assessed different ML techniques, different features and amount of data 

required, and for objective 2, we tested if, for each enabler identified, ML can be used to 

effectively identify and formulate ASP patterns, risks and precursors for tactical (real-time) 

and strategic (1 hour in advance) decision-making. 

We developed various decision trees to extract patterns and precursors. Additionally, 

interpretable results for tactical and strategic decision-making were obtained when tested on 

both measured and synthetic data. 

The following conclusions can be drawn relating to the four ASP enablers along with 

their subsequent impact on runway throughput operations and objective statements 1 and 2 as 

stated in Section 1.3:  

 

(1) Using predicted T2F and TAS allows us to make accurate decisions leading to a 

better characterisation of large spacing or infringements (T2F and TAS – Chapter 

3): 

Objective 1: Based on our T2F and TAS experimental results, we can conclude that 

learning multitask regularised regression with the feature selection technique “RreliefF” is 

promising especially when combined with Principal Component Analyses. The ML techniques 

Lasso and Multilayer Perceptron (MLP) were revealed be the most feasible and most accurate 

techniques for predicting the TAS and T2F from 8.5NM till 0.5NM and from 4.5 till 0.5NM. 

Combining these techniques results in a more robust and accurate ML model which is simply 

the average of the predictions of the Lasso and MLP. Stable Root Mean Squared Error (RMSE) 

values were obtained when learning minimum 60 flights per aircraft type, wind band and 

distance from threshold, resulting in a computational time of 10 seconds, thereby making it 

difficult to provide the ATCO with operational usable real-time predictions. Ground speed at 

10NM along with aircraft type, visibility, head-wind and crosswind information seem to 

capture substantial variation of the T2F and TAS in the last 10NM. When receiving these 
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driving features at 10NM, the ATCO receives accurate and understandable T2F and TAS 

predictions which they could use for similar situations (intuitive decisions). The ML 

techniques are more accurate and more robust to changes and overall improve the accuracy of 

the data mining approach. We have seen that the standard error decreases with larger sample 

sizes, as the estimate of the population mean improves. Table 3.5 and Table 3.6 suggest that 

by learning an ML model with head-wind information, the RMSE is significantly lower than 

without head-wind information for both RMSE from 8.5–0.5NM and from 4.5–0.5NM. 

Furthermore, the tactical predictions for the 4.5–0.5NM segment has a lower RMSE (2.9 

seconds) compared to RMSE from 8.5–0.5NM (4.8 seconds). The more accurate prediction 

(2.9 seconds) can be explained by the fact that the 4.5–0.5NM segment includes less abnormal 

historical data. In other words, it includes more patterns, making it easier for the algorithm to 

learn from. For the strategic predictions (1 hour in advance), we devised an RMSE of 4.5 

seconds for the segment 4.5–0.5NM and 6.9 seconds for the 8.5–0.5NM segment. 

Objective 2: Considering the most important prediction variable – ground speed at 

10NM – might lead to certain operational issues. To be able to predict the T2F in real-time, an 

ATCO has to wait till the aircraft is at 10NM. The T2F for an ATCO is beneficial to calculate 

the compression on final approach using, for example, the TBS concept. The dynamic TBS for 

the follower aircraft needs to be known before 10NM. Therefore, it is suggested to predict the 

GS at 10NM of the previous aircraft (based on historical flight information of that time period). 

Moreover, the computational time (10 seconds) might be too large for real-time operations. 

We conclude that our hypothesis is not true for the ASP enabler T2F and TAS. Tactical 

predictions should be produced faster and tactical and strategical decisions in this case should 

be made before 10NM.  

 

(2) Using abnormal taxi-out times (TXOT – Chapter 4) allows us to make accurate 

decisions: 

Objective 1: The RMSE metric was chosen as the most important performance 

indicator, which gives, for the applied regression tree method, on any given day, an average 

error of 1.6 min. For predictions 1 hour in advance (strategical decisions) a RMSE of 2.5 min 

was obtained. Stable RMSE values are obtained when learning is performed using a minimum 

of 70,000 taxi-out flights, resulting in a computational time of 80 seconds. It was observed that 

the Regression Tree ML technique performed best; for this regression technique, a maximum 

tree depth and minimum leaf size was adopted of 6 and 4000, respectively. Regression trees 

are very interpretable, as long as they are short. The regression tree in Figure 4.7 has 61 

terminal nodes making it easy to extract certain patterns or events and explain them using 

‘what if’-scenarios (as defined by the tree). A tree with a depth of 6 requires a maximum 

of 6 features and split points to create the explanation for the prediction of an individual 

pattern. There were some advantages associated to using the current model. First, the ML 

technique that was used to build the model was intuitive and interpretable. It could help the 

airport managers to understand the driving features of the TXOTs per runway–stand. The 

precursors help the managers to have a grasp on accurate TXOT without the need for reasoning 

(intuitive decisions). The most important features are: “unimpeded TXOT,” congestion level, 
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“Saturation level, number of departures in the last 20 min,” “de-icing stand,” “month,” “time,” 

“departure stand,” “QFU,” and “AOBT.” Second, the model has been built based on a large 

historical dataset (500.000 flight records). More than 40 variables were available for selection 

as predictors. These variables also made it possible to build new features using domain 

knowledge of the data. Third, the model was able to update the predictions in real time. The 

application developed for Charles de Gaulle (CDG) Airport allowed easy extraction of real-

time data. The real-time forecasting procedure was effective, and the model was the first to 

provide TXOT forecasts for each flight to a specific runway. 

Objective 2: From our prototype (Section 4.5) we can conclude that ML is feasible 

for extracting precursors and patterns that support the controller on tactical and strategical 

decision-making. Risks were mainly observed when the unimpeded time is larger than 22 

minutes and the congestion level is larger than 32 movements per hour. The downside of our 

model is that we don’t have access to a RTS that could validate this ASP enabler in a CDG 

environment. Furthermore, the computational time (80 seconds) is too large for testing the 

model in a real-time operational environment. 

 

(3) Using abnormal Arrival Runway Occupancy Times (AROT – Chapter 5) allows 

us to make intuitive, interpretable, visual, fast and accurate decisions: 

 

Objective 1: A predictive model for AROT flights was developed by combining the 

Neural Network, MLP, lasso, and regression tree techniques. An RMSE of 4.3 seconds was 

obtained for tactical predictions and 6.9 seconds for strategic predictions. Subsequently, an 

approach was developed to generate distributions of each AROT flight and the number of 

landings for a specific runway (08R) within a time frame of 30 minutes. An application for 

CDG and Vienna (VIE) was also developed to produce these forecasts. The regression tree 

indicated that by knowing the top 10 features (Figure 5.5) in advance, a good prediction can 

be made of the abnormal and normal AROT for which each abnormal AROT flight will fall 

into one of the 17 precursor categories shown in Table 5.2. Using seventeen terminal nodes 

makes it easy to extract interpretable abnormal AROT patterns and explain them using 

‘what if’-scenarios (Figure 5.10). Furthermore, the regression technique performs best for 

finding associated precursors, for which the Classification and Regression Tree (CART) 

technique was used to fit a maximum tree depth and minimum leaf size of 6 and 16, 

respectively. Therefore, our model has several advantages. First, the ML technique used to 

build the model is quick (computational time of 5 seconds), intuitive and interpretable. It can 

help airport managers understand the driving features of the abnormal AROT per runway 

during similar situations without the need for reasoning (intuitive). Second, our model has 

been built based on a sizeable historical data set of 78,321 CDG and 500,000 VIE flights for 

which 22 variables are available for selection as predictors. These variables also enable one to 

build new features using domain knowledge of the data. Third, our model can update the 

predictions in real time. 
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Objective 2: Thus, it can be concluded that we can use CART to extract abnormal 

AROT patterns, risks and precursors for tactical and strategic decision-making. Therefore, the 

AROT conclusions for the RU requirements, operational needs and operational feasibility are 

addressed in Section 8.1.2.  

 

(4) Using the non-procedural runway exit used (NREX – Chapter 6) allows us to 

make intuitive, interpretable, visual, quick and accurate decisions: 

Objective 1: A model was derived to predict NREX for each flight using the Gradient 

Boosting as the most feasible method. An accuracy level of 79% was obtained (tactical 

decisions) from the confusion metric using 45,679 arrival flights. For strategic predictions, we 

obtained an accuracy level of 71%. We subsequently developed an approach to generate 

classification associated with each NREX flight and the number of aircraft for RWY34 within 

a time frame of 30 minutes. Gradient Boosting trees are easily interpretable as long as they 

are short. The NREX tree for medium ICAO category had 28 terminal nodes for which the 

outcomes were classified to Medium_Procedural and Medium_Non-Procedural, making it 

interpretable for the ATCO. We can interpret the most important predictors as the major factors 

that play key roles in influencing NREX selection. These precursors are throughput, SODAR 

velocity and direction, WMA wind speed, ground speed at 5NM, height at 2NM and 5NM, 

cloud, visibility and ground speed at 2NM. We also developed an application for VIE to 

produce and visualize these forecasts in real-time with a computational time of 5 seconds. The 

results obtained indicated that our VIE model performed 5% better by comparing the NREX 

prediction results with the Orly airport. 

Objective 2: Thus, it can be concluded that we can use Gradient Boosting to extract 

NREX patterns, risks and precursors for tactical and strategic decision-making. Risks and the 

most important precursors were identified for cases where the throughput is lower than 28 

landings per hour, the Cloud layer is lesser than 8750m, the Groundspeed at 2NM is higher 

than 147kts, WMAWindSpeed is lower than 29kts and the Groundspeed at 5NM is higher than 

155kts. These precursors could be used during similar situations allowing the ATCO to 

anticipate a non-procedural exit (intuitive). NREX operational needs and operational 

feasibility conclusions are presented in Section 8.1.2. 

8.1.2 Objective 3 

 

AROT and NREX were selected as they allow us to make intuitive, interpretable, fast and 

accurate decisions through suitable visualisation. Therefore, we conducted an operational 

needs and operational feasibility study (objective 3) in which we analysed how our real-time 

RU support tool (AROT and NREX) can be used by ATCOs in their decision-making and 

planning to ensure safety and efficiency (fast, intuitive and interpretable) of airport operations 

through suitable visualisation (Chapter 7). The feasibility study and evaluating the RU 

requirements (Section 1.2.1) was conducted in an ATC RTS tool. The conclusions and 

recommendations from the RTS (Chapter 7) are summarised below: 
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Fast and accurate predictions: 

 The computational time of the AROT and NREX was less than five seconds when 

predicting during real-time operations at 2NM, making, it according to the 

controllers, suitable for tactical real-time operational use. 

 Based on the interview with the ATCOs (Section 1.1), they would prefer an indication 

only when the prediction accuracy of a non-procedural runway exit utilised is higher 

than 80% or when the abnormal AROT has an MSE of less than six seconds.  

Intuitive and interpretable predictions: 

 The ML RU controller support tool for AROT was considered operationally feasible 

and acceptable by the Vienna controllers that participated in the simulation. The 

predicted NREX information based on ML was also considered operationally feasible 

and acceptable by one of the Vienna controllers but was seen as something that would 

be a ‘nice to have’ option. The operational needs and high-level requirements for such 

a tool in operations are further detailed in Section 7.3. 

 The controllers concluded that certain predicted information based on ML, such as 

AROT, could be used to support operations and controllers’ work by enhancing 

controllers’ situation awareness and, thereby, providing potential safety or runway 

throughput benefits. The RU tool enabled a runway throughput increases for exercise 

5 and 6 (Table 7.5) with one landing per hour. 

 Although the NREX and AROT predictions are accurate (above 80% accuracy and 

MSE < 6 seconds), the controllers reported that they would not act directly on the 

predictions (e.g. give a go-around to a follower aircraft), but would monitor the 

situation more closely and would wait to see how the situation unfolded. 

 At this stage, the RTS was unable to provide the real-time tree structure for both 

AROT and NREX. Therefore, from the validation effort we cannot derive any 

conclusions regarding interpretable decisions. However, the controllers appreciate 

seeing the tree in a subsequent simulation and they already provided feedback 

regarding the trees presented in Figure 5.10 and Table 6.5. 

 Controllers believe that the tree is ideal for capturing interactions between features 

in the data. The interpretation is arguably quite simple. The data ends up in distinct 

groups that are often easier to understand than points on a multi-dimensional 

hyperplane, as in linear regression. 

Visualisation:  

 The Vienna controllers that participated in the simulation concluded that the NREX 

information was clearly visualised at 2NM. The visualisations were performed in 

terms of a red or green indicator depicting less or more than 80% accuracy in terms 

of prediction. As a subsequent step, controllers indicate that they would only like to 
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see precursors when a non-procedural exit is expected (with a green indicator) for a 

Light, Medium or Heavy aircraft type. This was accepted by the controllers during 

the RTS. 

 The controllers concluded that the AROT information in the RTS should be visualised 

better at 2NM. The visualisations were performed in terms of the MSE of the 

predicted AROT. As a subsequent step, controllers only wish to see abnormal AROT 

when the MSE is below 6 seconds. This was accepted by the controllers during the 

RTS. 

 The participating controllers during the validation exercise do not feel the need to 

have the driving features displayed on the RTS screen for normal AROT and NREX 

predictions during a subsequent validation exercise. Even though the reasoning is not 

visualised in this simulation, they do not expect that it would influence their decision-

making. However, they would like to see the driving features displayed for abnormal 

AROT and non-procedural exit utilised predictions. 

Therefore, based on the findings from the validation activity, we can conclude that 

the validation has been completed as the RU support tool was reported to meet controllers’ 

operational needs and provide certain safety benefits. The impact of an ML RU controller 

support tool on controllers’ work and runway operations needs to be further investigated in 

follow-on validation activities. Potential benefits and impacts relating to the ML RU controller 

support tool that need to be investigated in more detail in the upcoming validation activities 

are outlined in Section 8.3. 

Finally, the ATCOs concluded that the RTS was successful in predicting both the 

AROT and NREX. They observed improved operations in certain weather conditions, such as 

increased runway throughput and a potential for a greater level of safety. We conclude that the 

result of the present research is a new RU support tool that enables to provide unique 

interpretable and intuitive information out of AROT and NREX patterns on final approach and 

the runway. The Gradient Boosting technique proves ideal for the detection of patterns, risk 

and precursors. When predicting the NREX, 95 decision trees and 12 features were used for 

this technique. Consequently, tactical and/or strategic decisions can be supported using this 

approach. 

A common conclusion for the AROT and NREX enablers is that the most important 

features were extracted between 2 and 5NM using decision trees such as Gradient Boosting. 

Generally, these precursors capture patterns that strongly influence the predictability of the 

ASP enablers. The 10 and 5NM range includes the abnormal historical data which is hard to 

learn for the decision trees. 
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8.2 Limitations  

The RTS is foreseen to be applied only within a given local sector and not within the scope of 

coordination between sectors. This topic will be explored in future research and a next 

validation exercise. Moreover, the RTS RU tool covers only the ASP enablers, AROT and 

NREX. The ASP enablers T2F and TXOT will be addressed in a different RTS exercise. 

Additionally, pilot practices, ATCO observations, weather events, maintenance 

down-time and runway/taxiway repair should be included in our RU model. An example of a 

pilot practice is that efficiency is the primary reason why flights depart from a specific point, 

or might exit at a specific point. This includes efficiency in economic environmental, best 

practice (1) better departure sequence and (2) lower waiting time for departure. An example 

of an ATCO observation is that Lufthansa Medium types have lower AROT compared to other 

airlines. 

Airport operational rules, pilot practices, regulations and standards can vary 

significantly over three year time span. Therefore, in future development of the conceived RU 

model, the utility of a quicker, trend-tracking model will need to be explored by reviewing the 

prediction accuracy of the model on a day-to-day basis compared to a static model based on 

the entire 3 years of data.  

 

8.3 Recommendations for further development 

 

 Three potential solutions were identified for a RU support tool for AROT and NREX 

predictions and proposed for further investigation: 

o A simple solution for segregated runway modes only: This solution would 

comprise an automatic pop-up information alert when there might be a 

potential issue e.g. the AROT of the preceding aircraft is greater than the 

average due to, for instance, a non-procedural runway exit further up down 

the runway. 

o An intermediate solution for mixed mode runway operations. This solution 

would comprise an automatic pop-up information alert as defined in the 

simple solution above plus the predicted AROT. Mixed mode runway 

operations would also require a sequence list of the arrivals and departures. 

The aircraft sequence of arrivals and departures with the ML predicted 

AROT could be presented in the EFS or AMAN-DMAN tool. Ideally, the 

sequence list with the ML predicted AROT would be implemented as a 

decision aid (as done in SESAR 2020 PJ02-01 AO-) which could inform the 

controllers whether there is enough space between two arriving aircrafts to 

allow for a departure. 

o An advanced solution. The advanced solution would comprise the 

predicted AROT determined by the ML being integrated into the ORD tool 

developed within SESAR 2020 PJ02-01 (AO-028). In an advanced solution 
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with an ORD tool as developed in SESAR 2020 PJ02-01 input, the AROT 

determined by the ML into the FTD chevron when lead a/c is at 1.5NM–

2NM from the runway threshold. 

 More detailed information requirements for a RU support tool are identified in 

Section 7.4 and should be taken on-board in the development of future ML RU 

prototypes. These requirements will be further validated and refined in the upcoming 

validation activities. 

While the model has been developed for an ASP prediction problem, we believe the 

methodology proposed in this study can be readily applied to other runway processes as well, 

such as the prediction of Departure Runway Occupancy Times. This topic will be explored in 

future research. 
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