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Surrogate-based Aerodynamics for Composite Wing Box Sizing

Marco Tito Bordogna1,2, Dimitri Bettebghor1, Christophe Blondeau1 and Roeland De Breuker2

1 ONERA, The French Aerospace Lab, F-92322 Châtillon, France
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Abstract

The main objective of this paper is to propose an aeroelastic optimization approach capable of
performing structural sizing optimization considering structural and aerodynamic constraints.
The proposed approach uses a detailed FE model of a composite wing with shell elements in order
to obtain realistic weight estimation and structural responses. Moreover, a surrogate model based
on rigid RANS computations provides a high-fidelity lift and drag coefficient estimation during
the optimization as constraints. The use of RANS computations allows the surrogate model to
consider all drag components and not the induced drag only. An approximation of the structural
displacement is proposed based on modal projection and principle component analysis. Results
shows that a polynomial regression of order four is accurate enough to be used as surrogate
model of the drag coefficient and of the lift-to-drag ratio. Moreover, it is possible to conclude that
improvements in aerodynamic performance, with fixed aerodynamic shape, comes at the price of
a heavier and stiffer structure.
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The work included in this paper has originally been presented during the International Forum on
Aeroelasticity and Structural Dynamics (IFASD, 25-28 June 2017, Como - Italy). This document is an
extension of the conference proceeding and updates mainly concern the results and conclusions
sections.

1 Introduction

Composite materials, thanks to their anisotropy and their high stiffness-to-weight and strength-
to-weight ratios, are being used increasingly in many industries and especially in the aerospace
sector. Composite superior characteristics allow design engineers to explore novel configurations [1]
and to redesign conventional structure to further improve performance by tailoring the material
anisotropy [16, 5]. As seen in recent wing development (i.e. 777-X), there is a tendency in designing
lighter, longer and more flexible wings. One of the reason behind this is to reduce the span loading that
is linked to induced drag. Moreover, thanks to composite anisotropy, the span-wise lift distribution
can be improved by proper optimizing the material anisotropy. For these reasons, but also to account
for potential aeroelastic instabilities (e.g. flutter), fluid-structure interaction need to be taken into
account even during early design phase together with composite optimization.
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Different fidelity levels could be used to perform aeroelastic computations depending on the
design phase and the requested responses: from Euler-Bernoulli beam structures with panel methods
for unsteady aerodynamics [11], to complex FEM shell geometry fully coupled with high-fidelity RANS
computations [10]. Panel methods, like vortex lattice method (VLM) or doublet lattice method (DLM),
are very common during early design phase due to their fast computation time and easy modeling
that make them ideal for early optimizations. However, panel methods are irrotational and inviscid
thus unsuitable to estimate aircraft performance (i.e lift-to-drag ratio or drag coefficient). On the other
hand, RANS model can be used to calculate aircraft performance but at the price of very computational
expensive calculations, limiting their use in optimization even with current supercomputer. A very
popular alternative to the direct use of CFD in optimization processes, is to construct a cheap to
compute approximation model of the expensive CFD analysis solver. These approximation models are
usually referred to as surrogate models or metamodels. The surrogate model expresses complicated
relationships between the response (output) and the design variables (input) with a relatively simple
equation. Once computed, this model requires very little computational effort to run making them
ideal for optimization purposes.

Several authors used surrogate models to perform static aero-structural optimization. Zhang et
al. [20] compared different surrogate models (quadratic polynomial regression, Kriging and neural
network) with the objective of maximizing the aircraft lift-to-drag ratio and minimizing the weight
as function of wing planform parameters and structural thicknesses and concluded that not consid-
ering the aeroelastic effect will result in large errors. Rasmussen et al. [15] outlines a methodology
to optimize the weight and perform design exploration for a joined-wing aircraft. The optimization
has been divided in two steps, where the first step consists of performing aerostructural optimization
(no drag involved in the objective function) for weight minimization for different geometric aircraft
configuration. A weight-optimized solution was found by varying spar, rib, and skin thicknesses of the
wing structure. The second step consisted of creating an approximation, via polynomial regression, of
the entire design space using the optimized structures as sample points. The surrogate moderate fit
is then used to define optimal regions and design trends and not use to determine precise optimal
configuration. Paiva et al. [13] also compares different surrogate models (quadratic polynomial re-
gression, Kriging and neural network) of the aerodynamic coefficients (CL , CD and CM ) as function of
several geometrical, structural (thicknesses) and aerodynamic (NACA) parameters concluding that
polynomial regression prove to be adequate only for low dimensionality problems. Lebofsky et al. [11]
utilizes surrogate model to optimize the drag coefficient of an aircraft wing as function of the jig
twist-law and deflection parameters of trailing edge flaps.

In all above mentioned works surrogate models have been used to approximate aerodynamic
quantities (CL , CD ,CM or CL/CD ) as function of wing planform geometrical parameters, aerodynamic
parameter (NACA profile variables) and structural thicknesses. In the present work, a composite wing
box is optimized with respect to thickness and parameters modeling the composite anisotropy (i.e.
lamination parameters) of its different panels and therefore considering the effect of the composite
anisotropy in the optimization with the intent of tailoring it. A surrogate model based on rigid CFD
simulations, as function of wing displacement during maneuvers or cruise conditions, is introduced
to take aerodynamic performance into account. The ONERA CFD solver elsA [4] is used to perform
all aerodynamic computations. However, using directly the wing displacement (u) as surrogate-
model input would results in to many variables, therefore an approach to approximate the structural
displacement and to reduce the number of variables is proposed.
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The framework is presented in section 2 together with the displacement approximation, used to
reduce the dimensions of the surrogate model input, and the surrogate models. Sections. 3 and 4
present respectively the test case and the optimization problems. Finally in section 5 the results are
presented and commented.

2 Proposed Framework

The approach presented in this paper is built around the commercial FE tool MSC.Nastran. Its solution
144 is capable of computing static aeroelastic loads and sensitivities using the doublet lattice method
(DLM) [7] and it is commonly used in the industry to perform aeroelastic optimization with structural
constraints. However, aerodynamic performance cannot be properly captured due to the limitations
of panel methods. The surrogate model is built from rigid RANS computations and provides the total
wing drag coefficient and lift-to-drag ratio as a function of the wing displacement (u), that depends
directly on the structural parameters (X ). For example, if we consider a surrogate model of the drag
coefficient CD , it is possible to write it as:

ĈD ≈ f (u (X )) (1)

2.1 Displacement approximation

Lets consider free-free structure subjected to a static load (F ). In order to calculate the displacement
at which the structure is subjected the system (Eq.2) have to be solved.

Ku = F (2)

However, in the case of a free-free structure K is singular and the system cannot be solved as it is [6].
From a mechanical prospective, what makes u indetermined is the displacement associated to the
rigid body motion. One possible solution is to separate rigid (uR ) and elastic displacement (uE )
contributions and to study them separately.

To separate the rigid displacement contribution, associated to the inertia force, its necessary to
perform a projection over a modal basis. By projecting the structural displacement on to the rigid
modesΦR and the elastic modesΦE it is possible to separate the rigid from the elastic contribution.

u = uR +uE =ΦR qR +ΦE qE (3)

by left multiplying everything by the transpose of the rigid modes times the mass matrix (M), it is
possible to use the orthogonality of the modes with respect to the mass matrix and determine the
generalized coordinate associated to the rigid modes.

ΦT
R Mu =ΦT

R MΦR qR +ΦT
R MΦE︸ ︷︷ ︸

0

qE (4)

qR = (ΦT
R MΦR )−1ΦT

R Mu (5)

It is now possible to identify the elastic component associated to the displacement as:

uE = u −uR = u −ΦR qR (6)
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The rigid degrees of freedom associated to the free-free aircraft are three translations and three
rotations. By considering only symmetric steady flight conditions, out of those six degrees of freedom
only the rotations due to a change in the angle of attack of the aircraft (α) has an influence over
aerodynamic performances. Therefore we could rewrite Eq. 1 as:

ĈD ≈ f (α (X ) ,uE (X )) (7)

In order to take into account in the surrogate model of the structure of the elastic displacement,
an approximation of the displacement is performed with a projection-based reduced-order model:

uE ≈ Φ̃E qE (8)

where, instead of using the general modal basis ΦE with infinite number of basis vectors Φi , the
truncated modal basis Φ̃E with finite number of modes n in used (i.e. Φ̃E = [Φ1 Φ2 ...Φn]). To obtain
the values of the elastic generalized coordinates (qE ) the least squares problem (10) need to be solved.

q∗
E = min

qE

∣∣∣∣∣∣uE − Φ̃E qE

∣∣∣∣∣∣2

K
(9)

where K is the stiffness matrix and ||.||K correspond to the norm calculated in the space K . Equation 10
can be solved using: (

Φ̃E
T

K Φ̃E

)
q∗

E = Φ̃E
T

K uE (10)

It is then possible to rewrite the surrogate model as:

ĈD ≈ f
(
α (X ) ,Φ̃E (X ) , q∗

E (X )
)

(11)

In order to further simplify the surrogate model and to make it independent from the projection
matrix Φ̃E , the projection matrix is considered fixed and kept constant during the optimization. By
doing so we make the assumption that any structural displacement, at which the structure is subjected
to during the optimization, can be projected over a constant projection basis (ΦE ) without leading
to significant displacement residual (uRES = ||u −ΦE q∗

E ||2K ). A set of the first 50 structural modes
obtained from a previously optimized structure has been selected to build the constant projection
basis. The reason behind using so many modes comes from the need to reduce as much as possible
the residual error of the displacement. This is important if a the assumption of negligible uRES need
to be valid. At this point the surrogate model can be represented as:

ĈD ≈ f
(
α (X ) , q∗

E (X )
)

(12)

With Eq. 12 all information needed by the surrogate model about the wing displacement are
condensed into the angle of attack, a constant projection basis and 50 generalized coordinates. Nev-
ertheless, building a surrogate with 51 variable that could be correlated it is not ideal. Therefore,
we decided to perform a principle component analysis (PCA) to convert a set of possibly correlated
variables in to a new set of uncorrelated variables (ν) on a new orthogonal coordinate system. Using
uncorrelated variables results in better surrogate model training and reduces possible numerical
issues.

The PCA is an orthogonal linear transformation that transform a the data to a new coordinate
system such that the first vector basis, or principal modes of variation, is aligned with along the direc-
tion where data have the largest variance (Figure 1). The second vector basis, and all the succeeding
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one, points to the highest variance possible under the constraint the new vector is orthogonal to the
preceding components. The resulting vectors form an orthogonal basis set.

0 1 2 3 4
x

−0.5

0.0

0.5

1.0

1.5

2.0

y

Data in the original set
Data
PCA

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
xPCA

−3

−2

−1

0

1

2

3

y P
CA

Data in the PCA set

Figure 1: Data in the the original coordinate system with the directions of highest variance of data and
the data in PCA coordinate system.

In order to have data on the generalized coordinates associated to the projection of realistic aeroe-
lastic displacements on the constant projection basis ΦE , an aeroelastic optimization of the same
structure is performed and its optimization history has been saved. The performed optimization
involved only structural constraints, no aerodynamic performance was involved. The optimization
history has been used to extract realistic structural configurations encountered during the optimiza-
tion. These configurations have been then perturbed with random white noise in order to include a
wider range of structures. Once the pool of structures has been generated and perturbed, each of the
150 sampled structures has undergone an aeroelastic analysis that determined the wing displacement
at trimmed condition and the generalized coordinates when projected overΦE . This process allowed
also to define the range of realistic generalized coordinates and angles of attack.

The data obtained with this process have been used to perform a PCA of the generalized coor-
dinates and obtain a reduced set of new PCA coordinates (ν) by truncating the principal modes of
variation that have the lowest variance. In Figure 2 are reported the correlation matrices of the first 10
generalized coordinates (qE ) and the corresponding PCA coordinates (ν). The figures clearly show
that the generalized coordinates where indeed correlated while the new of coordinates are not. The
effect of the PCA selecting basis vectors from the direction of highest variance to the lowest is clearly
shown in Figure 3.
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Figure 2: Correlation matrices of the first ten generalized coordinates qi (on the left) and of the new
PCA coordinates νi (on the right).
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Figure 3: Magnitude of the generalized coordinates qi and the new PCA coordinates νi respectivelly.

Moreover, it has been found (see Figure 4) that just the first two principal modes of variation were
sufficient to account for > 99.6% of the data variance (

∑n
i=1σ

2
i /σ2

1, where σi is the variance associated

to the i th PCA direction). This significantly reduces the amount of input to the surrogate model and
also its complexity. The first two principal modes of variation are presented in a magnified way in
Figure 5. Therefore, the original Eq. 1 can be rewritten as:

ĈD ≈ f (α (X ) ,ν1 (X ) ,ν2 (X )) (13)

In Eq. 13 the effect the structural parameters, like panel thickness and composite anisotropy, over the
aerodynamic performance is translated in the effect of these three parameters. These parameters, or
surrogate variables, are the angle of attack (α), that takes into account for wing rigid body motion, and
two parameters (ν1 and ν2) derived from the structural generalized coordinate via PCA.



7

ν1 ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9 ν10
PCA modes

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

V
ar
ia
nc

e 
ra
tio

 σ
2 i
/σ

2 1

0.992

0.994

0.996

0.998

1.000

C
um

ul
at
e 
of
 th

e 
va

ria
nc

e 
ra
tio

 
n ∑ i=
1σ2 i

/σ
2 1

Figure 4: Variance ratio for each of the first 10 PCA modes and the cumulate value.

Figure 5: Visualization of the PCA modes. Original wing in gray, magnified mode associated to PCA
component ν1 in orange and magnified mode associated to PCA component ν2 in blue.

2.2 Surrogate Model

In this section the DOE strategy adopted for the creation of the surrogate model is presented together
with a brief introduction of the models considered in the building of the surrogate. The selection
criteria and the surrogates performance are shown and finally the best performing surrogate is chosen.

2.2.1 Design of Experiments

As mentioned in Sec. 2.1, a set of feasible structures has been retrieved from a former structural opti-
mization and the corresponding aeroelastic displacements have been transformed into generalized
coordinates and, via principal component analysis, into new PCA variables (ν). By doing so a realistic
range of the three surrogate variables (α,ν1 and ν2) is obtained. The obtained range have been then
doubled in order to take into account for a wider range of displacements. To evenly sample the new
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design space (Figure 6), the Halton sequence is used. This sequence is deterministic but thanks to its
low discrepancy property it can sample uniformly the design space.

α[
∘ ]

1∘6
1∘8

2∘0
2∘2

2∘4
2∘6

ν1

−3
−2

−1
0

1
2

ν2

−1∘00
−0∘75
−0∘50
−0∘25
0∘00
0∘25
0∘50
0∘75
1∘00

Figure 6: Sample scheme in the PCA space (ν1 vs ν2).

After the DOE the sampled ν1 and ν2 are converted into generalized coordinates q = [q1, q2, ..., q50]
and then into elastic displacement uE ≈ Φ̃E qE . This structural displacement is splined, by means
of Thin Plate Spline (TPS), onto the aerodynamic wetted surface and then the aerodynamic mesh
is deformed accordingly using elsA. The corresponding α then used in the CFD computation and
the resulting lift and drag coefficients for each configuration sample are stored for surrogate model
constructions.

Figure 7 shows the correlation between surrogate inputs (α,ν1 and ν2) and outputs (CL and CD ).
As usually desired, inputs are not correlated. Moreover, it is clear that the α has greater influence over
CL and CD then the two PCA coordinates. The range of the outputs is portrayed in Figure 8.
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Figure 7: Correlation matrix between inputs and
outputs of the surrogate model.
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2.2.2 Models considered

For this exploratory work only few simple surrogate models are investigated: linear regression (LR),
polynomial regression (PR) and Support Vector Machine (SVM) with RBF kernel. The selection of
the most suitable model is carried out by comparing: cross validation error and the regression error
characteristics (REC) [2] area. Another factor that should be taken into account, in case of more
sophisticated models, is the ease of implementation inside commercial optimizers (i.e. MSC.Nastran)
as LR and PR provides a simple closed form equation, while SVM can results in significant longer
formulas.

Linear regression of dimension n creates a linear model that can be represented as:

ŷ = w0 +w1x1 +w2x2 + ...+wn xn (14)

no hyper-parameters are involved in the model.

Polynomial regression is used when non-linear behavior between input and output, or interaction
between inputs, need to be modeled. For the case of dimension 1 and polynomial order k, the
regression can be written as:

ŷ = w0 +w1x1 +w2x2
1 +w3x3

1 + ...+wk xk
1 +wk+1x1x2 + ... (15)

where the order k is an hyper-parameters and need to be set before the training of the model.

Support vector regression is a supervised learning model derived from support vector machine
method for classification by Vapnik [18]. SVR exists in a linear formulation, a non-linear formulation
with kernel functions. In the current work SVR is used together with the RBF kernel. In total three
hyper-paramenters need to be set: ε (specify the tube within which no penalty is associated), γ
(coefficient in the RBF kernel) and C (a penalty parameter that is used for regularization).
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2.2.3 Surrogate performance

The selection of the hyper-parametes of the polynomial regression and the SVR is performed through
the classical cross validation process over a grid search. The resulting hyper-parameters are shown in
Table 1.

CD CL/CD
Surrogate Model Hyper-parameter Value Value

Linear Regression - - -
Polynomial Regression k 4 4

SVR RBF γ 1.0E-2 1.0E-2
ε 1.0E-4 1.0E-3
C 1.0E+3 1.0E+4

Table 1: Best performing hyper-paramenters for the polynomial regression and for SVR with RBF
kernel.

Figures 9 and 10 show the REC curves of the three models. The REC curve presents the percentage
of the amount of predicted quantities that are below a give relative error (on the x-axis). The ideal
surrogate model should have 100% of the predicted outcome at 0% relative error, this mean having
a REC composed only by an horizontal line at the 100%. As it is possible to conclude from those
figures, for both surrogate models the PR and the SVR are well performing while the LR is not. Table 2
present the cross validation error and the REC area. In conclusion among the three candidates the
performance of PR and SVR are quite close and PR of order 4 is chosen due to its simplicity.
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Figure 9: Regression Error Characteristics (REC)
for CD surrogate model.
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Figure 10: Regression Error Characteristics (REC)
for CL/CD surrogate model.

CD CL/CD
Surrogate Model Cross validation RMSE REC Area Cross validation RMSE REC Area

Linear Regression 30.323% 25.74 25.887620% 34.62
Polynomial Regression 0.000094% 99.46 0.358646% 98.78

SVR RBF 0.000183% 99.11 0.385440% 98.76

Table 2: Cross validation error and REC area for the different surrogate models.
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3 Test case

An ONERA internal wing model is used as a test case for this paper. The FEM model and the aerody-
namic CFD skin are presented in Figure 11.

Figure 11: Top and back view of the wing skin aerodynamic mesh (in black) and the structural FEM
model (in blue).

3.1 Structural Model Description

The shell FE shell model is characterized by upper and lower skins, front and rear spars, 32 ribs, 13
stringers and represents a realistic aircraft regional aircraft wing. The structure is divided in sections
each of them locally optimized by means its thickness and composite material anisotropy. In total
there are 44 sections, 14 for each skin and 8 for each spar (Figure 13). Ribs and stiffeners do not take
part in the optimization and are made of quasi-isotropic composite. Wing dimensions are presented
in Table 3 while fuel distribution is shown in Figure 12.

Wing geometric characteristics
Half Wingspan 16.7 m

Wing Area 111 m2

Wing Dihedral 3.5◦
Leading edge Sweep Angle 18◦

MTOW 60,000 kg
Design cruise Mach 0.75

Table 3: Wing features.
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Figure 13: Wing used in the optimization divided in different sections for local optimization.

3.1.1 Composite parameterization

The composite material used in the model has been parameterized by mean of lamination parame-
ters (LPs). LPs have been first introduced by Tsai et al. [17] and are used to describe the stiffness matrix
of composite laminates in a continuous space. Lamination parameters are defined as the integral,
over the thickness, of the layers angles (Eq. (16)).In this paper only symmetric stacking sequence
are considered, therefore only lamination parameters for membrane (A) and bending (D) stiffness
matrices are taken into account.

(V1A ,V2A ,V3A ,V4A) = 1

h

∫ h/2

−h/2
(cos2θ, sin2θ,cos4θ, sin4θ)dz

(V1D ,V2D ,V3D ,V4D ) = 12

h3

∫ h/2

−h/2
z2(cos2θ, sin2θ,cos4θ, sin4θ)dz

(16)

LPs have the advantages of describing the stiffness matrix in a continuos and linear manner
(Eqs. (17)) and they define a convex space [8]. Moreover, any generic stacking sequence can be
reproduced with twelve continuous variable plus laminate thickness given that each ply is made with



13

the same material.
A = h(Γ0 +Γ1V1A +Γ2V2A +Γ3V3A +Γ4V4A)

D = h3

12
(Γ0 +Γ1V1D +Γ2V2D +Γ3V3D +Γ4V4D )

(17)

where the invariant matrices (Γi ) contains the UD ply stiffness information by means of the material
invariant Ui .

Γ0 =
 U1 U4 0

U4 U1 0
0 0 U5

 , Γ1 =
 U2 0 0

0 −U2 0
0 0 0

 , Γ2 =
 0 0 U2/2

0 0 U2/2
U2/2 U2/2 0

 ,

Γ3 =
 U3 −U3 0

−U3 U3 0
0 0 −U3

 , Γ4 =
 0 0 U3

0 0 −U3

U3 −U3 0

 (18)

On the other hand the use of LPs requires an additional optimization step (usually performed by
evolutionary algorithms) that retrieves a discrete stacking sequence from the continuous optimum.
The present paper will not consider the stacking sequence retrieval [3] and will focus only on the
continuous optimization.

3.1.2 Constraints

Two sets of structural constraints are active on the model. One set of constraints is represented by
the material compatibility equations [14], these constraints ensure that each set of in-plane and
out-of-plane lamination parameters leads to a realistic "coupled" A and D stiffness matrix. The second
set of constraints ensure that the model satisfies mechanical requirements such as strength and local
buckling

The strength constraint used have been derived by IJsselmuiden et al. [9] and represent an analyt-
ical expressions for a conservative failure envelope based on the Tsai-Wu failure criterion in strain
space. Local buckling is constrained via the closed formula Eq. (19) in all regions delimited by two ribs
and two stiffeners and is enforced only in the wing skins.

λB =π2 D11(m/a)4 +2(D12 +2D33)(m/a)2(n/b)2 +D22(n/b)4

(m/a)2NX + (n/b)2NY
(19)

where buckling occurs for λB < 1, NX and NY are the stresses in the longitudinal and transverse direc-
tions, a and b are the corresponding region dimensions and m and n are the corresponding number
of half waves. The formula do not consider the effects of shear fluxes (i.e. NX Y ) and non-orthotropic
composite bending effects (i.e. D13 and D23) into account. A safety margin of 50% is applied to both
strength and local buckling criteria.

3.2 Aerodynamic Models

3.2.1 Doublet Lattice Method (DLM)

In this work the aeroelastic loads are calculated via the MSC.Nastran static aeroelastic solver that
utilizes doublet lattice method (DLM). Since the aeroelastic loads coming from the DLM are used to



14

perform trim analysis and to calculate wing displacement, it is important to correctly represent the
wing spanwise and chordwise load distribution. This is achieved by using the concept of separation
between the rigid and elastic load components, where the DLM rigid part is replaced with rigid CFD
results while the elastic increment is computed via DLM. This method, often referred to as Hybrid
Static Approach (HSA) [19], allows to consider geometrical effects in the aeroelastic load computation
(e.g airfoil camber and wing twist law). This, not only ensures a more realistic lift distribution for
structural sizing, but also provide correct wing deflection input to the surrogate model so that the
flexible load increment effect on aerodynamic performance will be realistic, thus improving the fidelity
of aircraft performance evaluation.

3.3 Computational Fluid Dynamics (CFD)

An aerodynamic mesh with 1M cells is used to perform rigid CFD RANS analysis with Spalart-Allmaras
turbulence model. All simulations have been computed at Mach number Ma=0.75 and at an altitude
of 35,000 ft. The ONERA CFD solver elsA [4] is used to perform all rigid aerodynamic computations.

4 Optimization problem and strategy

Two optimization problems are presented in this work (see (20) and (21)) and formulated as ε-
constraint problem in order to build the Pareto front point-wise. Both problems aim at reproducing
the behavior of conflicting responses like drag coefficient versus wing weight. The objective of the
optimization is to control the wing flexibility, which directly effects aerodynamic performance, by
increasing wing thickness and tailor composite anisotropy.

Mi ni mi ze W (X )

s.t g (X ) < 0

ĈD (X ) ≤C D

(20)

Mi ni mi ze W (X )

s.t g (X ) < 0

ĈL

CD
(X ) ≥ CL

CD

(21)

where X represent the structural parameters and includes thicknesses (t ) and composite anisotropy
variables (V A

1 , ... , V D
4 ) of each section in the structure, g (x) represents mechanical constraints such

as strain and buckling and CD and CL
CD

are respectively the target drag coefficient and lift-to-drag
ratio. The load cases used in the optimizations are shown in Table 4. It is important to underline
that DLM from MSC.Nastran is used in all load cases to generate the aeroelastic loads needed for the
optimization. However, while the first two cases (i.e. pull up and push down) are critical for structural
sizing they are not very interesting in terms of performance, therefore only the cruise condition is
required to fulfill aerodynamic constraints.

N Name Mach Altitude (ft) Load factor (g) Surrogate model
1 Pull up 0.48 0 2.5 No
2 Push down 0.48 0 -1 No
3 Cruise 0.75 35000 1 Yes

Table 4: List of load cases used in the optimization.
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5 Results and Comments

The results in terms of conflicting responses are presented in Figures 14 and 15. Those figures show
two different set of optimizations, in blu the structure has been optimized with respect to both
thickness and lamination parameters, while in red a smeared approach has been used freezing the
composite anisotropy and using only the thickness as design variable. In both figures it is possible
to notice that, tailoring the composite significantly improves wing performance leading to lighter
wings. Moreover, when high aerodynamic performance are requires (e.g. small CD or high CL/CD ),
there is an increment in structural weight and therefore wing rigidity. This, not only underlines the
potential benefit of locally tailoring the composite, but also shows the importance of considering
aerodynamic performance during aeroelastic structural sizing since not considering them will lead to
lighter but undesired designs. The smaller range of improvement in lift-to-drag ratio compared to drag
coefficient, is due to the fact that only the wing flexibility, and therefore its structural displacements, is
optimized while the aerodynamic shape is kept fixed, limiting the improvements in lift generation.
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Figure 14: Effect of the constraints on CD to the
optimized weight.
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Figure 15: Effect of the constraints on CL/CD to the
optimized weight.

Effects of the aerodynamic constraints is visible on both composite thickness and anisotropy.
Figures 16 and 17 show the thickness distribution of the optimized structures with CD = 185 drag
count (d.c.) and CD = 140 d.c. respectively. For the case where the constraint is set to CD = 185 d.c.,
which is very close to the design without constraint on CD , most of the thickness is concentrated in the
area close to the leading edge and the wing root. This correspond to a structure with higher flexibility
in the outboard wing. However, when the constraint is tightened and set to CD = 140 d.c., the overall
thickness of the wing is increased and more evenly distributed chordwise. This results in a stiffer wing
with respect to both bending and torsion.
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Figure 16: Thickness distribution for the optimized structure with constraint on CD = 185 d.c..

Figure 17: Thickness distribution for the optimized structure with constraint on CD = 140 d.c..

The effect of the aerodynamic constraints over the composite anisotropy distribution is also quite
evident. Figures 18 and 19 present the stiffness orientation [5] of the in-plane stiffness component
A11. This stiffness distribution allows a visual interpretation of the main fiber direction in each panel.
As it is possible to see in Figure 18, where CD = 185 d.c., most of the panels at the wing root and close
to the leading edge present a stiffness distribution aligned with the main wing axis direction, this
corresponds to a region with high stiffness. The rest of the panels presents a "soft" layout that is keen
to create a wash-out effect since most of the fibers in the outer section of the upper wing skin head
upwind. In the case where CD = 140 d.c. (Figure 19) most of the panel anisotropy is aligned along the
main wing axis, leading to a significantly stiffer structure. In should be pointed out that the outboard
section of the upper wing skin has fibers heading downwind while the lower wing skin has fibers
heading upwind. At material level this results in a local wash-in effect, as opposed to the wash-out
observed when CD = 185 d.c. It is here recalled that neither static divergence not flutter constraints
have been considered in this work and that results might change if such constraints would be taken
into account.
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Figure 18: In-plane stiffness distribution along the wing for the optimized structure with constraint on
CD = 185 d.c.

Figure 19: In-plane stiffness distribution along the wing for the optimized structure with constraint on
CD = 140 d.c.

The wing behavior expected from the resulting thickness and stiffness distributions is confirmed
in figures 20 and 21. The figures show respectively the spanwise change in vertical displacement and
the spanwise change in twist between the jig and the flight shape for different structures. The starting
point corresponds initial wing configuration prior to optimization, such non-optimized structure has
thick panels of non-tailored composite. The results without any constraint over CD and with CD = 185
d.c. are quite close and show more flexible design in both bending and torsion when compared to the
results obtained with CD = 140 d.c.
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Figure 20: Spanwise change in vertical
displacement between jig and flight shape.
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Figure 21: Spanwise change in twist between jig
and flight shape.

6 Conclusions and future works

The presented paper proposed an aeroelastic optimization approach capable of performing structural
sizing optimization considering both structural and aerodynamic constraints. The approach has been
implemented around the FE commercial software MSC.Nastran and utilizes a detailed FE model of a
composite wing in order to obtain realistic weight estimation and structural responses. Moreover, a
surrogate model based on rigid RANS computations provides a high-fidelity lift and drag coefficient
estimation during the optimization. The use of RANS computation allows the surrogate model to
represent the total drag and not only the induced drag component.

Convergence history of a previously performed structural optimization, with no aerodynamic
performance constraints, is used to approximate the structural displacement on a constant modal
projection basis. Moreover, a principal component analysis has been used to reduce the dimension of
the input space to only two parameters.

For this exploratory work only few simple surrogate models are investigated: linear regression
(LR), polynomial regression (PR) and Support Vector Machine (SVM) with RBF kernel. Results show
that a polynomial regression of order four is accurate enough to be used as surrogate model for the
drag coefficient and the lift-to-drag ratio. Finally, two optimization problems have been solved under
two different aerodynamic constraints (CD and CL/CD ). In both cases the approach was able to
adequately reproduce the antagonistic nature of the structural and aerodynamic performance indices.
Specifically, it is possible to conclude that improvements in aerodynamic performance comes at the
price of a heavier and stiffer structure with fixed aerodynamic shape and moreover being able the
tailor the composite significantly improves the performance of the structure leading to lighter wings
when compared to a smeared composite.

The overall strategy aims at improving distributed MDO architectures. Indeed, such architec-
tures [12] (BLISS, CO, CSSO, ...) often target discipline independency and enhance each discipline
optimization problem with interdisciplinary constraints. In this paper, our approach allows the struc-
tural optimization problem to be constrained by high fidelity simulation prediction of the aerodynamic
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discipline with frozen aerodynamic parameters (i.e. aerodynamic shape). Such a strategy can then be
used to reduce discrepancy between each discipline optima and therefore improving the convergence
of the overall MDO scheme.

This work on surrogate model will be extended to include winglet planform design. By doing so it
would be possible to relieve some of the structural weight penalty for a given aerodynamic constraint
by optimizing the winglet planform shape (Figure 22).

Figure 22: Parameters defining the winglet planform geometry.
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