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SUMMARY

This thesis aims to contribute to the physical understanding of turbulence in canonical
flows. For that purpose, experiments are conducted in a statistically steady turbulent pipe
flow, ramp-type accelerating/decelerating turbulent pipe flow and turbulent Taylor-Couette
flow. For the first two flows, time-resolved data is acquired in the cross section of the pipe
with stereoscopic PIV. The databases spanning over a friction Reynolds number range
of Re; = 340—1259 are utilised to study coherent motions, in particular the large-scale
motions and the internal shear layers bounding them. For the turbulent Taylor-Couette
flow study, in addition to torque measurements, high resolution stereoscopic-PIV measure-
ments are performed in the radial-axial planes to investigate the hysteresis phenomenon
in the system.

The large coherent motions are studied in an average sense by means of two-point cor-
relation analysis in the cross sections of the pipe as well as in the streamwise-wall normal
planes at several reference wall locations. Results reveal large positively correlated re-
gions surrounded by anti-correlated regions both in the statistically steady and unsteady
turbulent pipe flows. For the steady cases, these average structures are ~ SR long in the
streamwise direction, and ~ 0.33R wide in the spanwise direction in the logarithmic re-
gion, where R is the pipe radius. For all flow conditions, the width of the correlation peaks
is observed to increase with the wall distance up to y/R =0.4. Beyond that wall location,
on the other hand, no significant changes in the width of the correlation peaks is observed.
Furthermore, it is also found that the width of the correlation peaks (based on the correla-
tion coeflicient for the streamwise velocity fluctuations, R, >0.5) is very similar for the
steady flow conditions provided Re, > 752. For the unsteady flow conditions, the stream-
wise length of the average structures maintains its initial length during the deceleration or
acceleration. The spanwise length, on the other hand, increases during the deceleration,
while it decreases towards the end of the acceleration.

In the second part of this thesis, a comprehensive analysis is performed of the internal
shear layers, that bound large-scale energetic motions in a statistically steady turbulent
pipe flow. Similar to the previous turbulent boundary layer studies, a significant step-like
change in the flow properties is observed to occur across them in the wall normal direction.
Furthermore, these layers are observed to be highly dissipative. This work also provides
the 3D geometry of these structures. Iso-surfaces marking these shear layers are observed
to be quite connected surrounding the whole cross section of the pipe. Even after distin-
guishing the strong shear regions from the surrounding using 1.5x local mean of the shear
layer detection parameter (Horuiti & Takagi [54]), the thresholded structures are found to
be extended in the spanwise and streamwise directions, while they are relatively thin in
the radial direction. Furthermore, the intense shear layers are observed at the edges of
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large-scale regions of nearly uniform velocities. Their streamwise length is of the order of
the streamwise length scales of the large-scale motions determined through the two point
correlations. Moreover, 3D conditional flow analysis relative to the shear layers reveals
a strong low-speed flow beneath the averaged shear layers. This low-speed flow is asso-
ciated with positive wall-normal velocity fluctuations and accompanied by two swirling
motions with opposite signs. Also, the average shear layers are observed to be stretched
by two opposite azimuthal motions. This could explain why the shear layers are thin in the
radial direction. This whole picture conveyed by the 3D conditional analysis points out the
connection between shear layers and hairpin structures. Similar type of shear layers hav-
ing similar geometrical sizes are also found in the accelerating/decelerating turbulent pipe
flows. The streamwise velocity profiles across the detected shear layers during the accel-
eration/deceleration are of the same order of magnitude as those for the steady turbulent
cases.

Large-scale motions having nearly uniform streamwise velocities, and their thin bounds
(shear layers), are also studied using the histogram of the streamwise velocities. Here, the
shear layers are considered as the continuous interfaces of the large-scale motions. Ob-
viously, this method is totally different from the above mentioned 3D detection method.
Histogram analysis are performed using two different orientation of the planes, namely
streamwise-wall normal plane and cross-section of the pipe. A comparison of these two
different methods and different orientation of the planes reveals that the shear layers de-
tected using the 3D method have a very good overlap with the interfaces detected by the
histogram method, especially when the wall normal-streamwise planes are used. This con-
firms the above findings that the shear layers are located at the edge of nearly uniform mo-
mentum zones (UMZs), which links small-scale activity (structure) directly to large-scale
structure.

Finally, the hysteresis behaviour in Taylor-Couette flow is studied at different shear
Reynolds numbers ranging between Re; = 1.5 x 104 —5.5 x 104, The lowest Reynolds
number is around the transition, while the other flow conditions are in the fully turbulent
regime. The torque measurements conducted at all these flow conditions reveal hysteresis
for a certain range of @ number, which is the ratio of the rotational frequencies of the inner
and outer cylinders. However, the behaviour of the hysteresis observed at the lowest shear
Reynolds number (which is around transition) is found to differ significantly from the be-
haviour of the hysteresis observed in the fully turbulent regimes. For the fully turbulent
conditions, the magnitude of the hysteresis as well as the extent of the a number that it is
observed decreases. To investigate whether this phenomenon is artificially generated by
the finite geometry of the system or not, further torque measurements are conducted at
different aspect ratios of the system, which is achieved simply by changing the water level
in the gap. The hysteresis, this time, is observed to become more pronounced although
the boundary conditions as well as the flow conditions are kept the same. Although these
results imply that the phenomenon is a genuine change happening in the flow, the torque
measurements with different boundary conditions reveal that its behaviour and magnitude
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is still affected by the boundary conditions of the system. Finally, stereo-PIV experiments
are conducted at several @ numbers to investigate if and how the large-scale flow structures
differ with the occurrence of the hysteresis in the torque. Results reveal that the dominant
flow structures at the same flow condition and @ number are non-unique, i.e. the number

of the rolls as well as their sizes change, when the @ number is within the hysteresis loop.
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SAMENVATTING

Dit proefschrift heeft als doel bij te dragen aan het fysisch begrip van turbulentie in canon-
ieke stromingen. Hiervoor zijn experimenten uitgevoerd in een statistisch stationaire tur-
bulente pijpstroming, versnellende/vertragende turbulente pijpstroming en in turbulente
Taylor-Couette-stroming. Voor de eerste twee stromingen zijn tijdsopgeloste data verkre-
gen in de dwarsdoorsnede van de pijp door middel van stereoscopische PIV voor Reynolds
getallen gebaseerd op de wrijving van Re; =340—-1259. De databases worden gebruikt om
coherente structuren te bestuderen, met name de grootschalige structuren en de interne
afschuiflagen die deze grote structuren begrenzen. Voor de studie van hysterese in tur-
bulente Taylor-Couette-stroming worden naast koppelmetingen ook stereoscopische PIV-
metingen met hoge resolutie uitgevoerd in het radiaal-axiale vlak.

De grote coherente bewegingen worden in een gemiddelde zin bestudeerd door middel
van een twee-punts-correlatie in de dwarsdoorsneden van de buis en in de wand-normale
vlakken op verschillende referentie posities ten opzichte van de wand. De resultaten on-
thullen grote positief gecorreleerde gebieden omgeven door anti-gecorreleerde gebieden
zowel in de statistisch stationaire als in de ontwikkelende turbulente pijpstromingen. Voor
de stationaire gevallen zijn deze gemiddelde structuren ~ 5R lang in de stroomrichting,
en ~ 0.33R breed in de spanwijdte voor punten in de logaritmische laag, waarbij R de
pijpradius is. Voor alle stromingscondities wordt waargenomen dat de breedte van de cor-
relatiepieken toeneemt met de wandafstand tot y/R = 0.4. Voor grotere wandafstanden
wordt daarentegen geen significante veranderingen in de breedte van de correlatiepieken
waargenomen. Verder is ook gebleken dat de breedte van de correlatiepieken (gebaseerd
op de correlatiecoéfficiént voor de snelheidsbewegingen, R, > 0.5) zeer vergelijkbaar is
voor stationaire condities waarbij Re; >752. Voor de instationaire stromingscondities be-
houdt de lengte van de gemiddelde structuren zijn initi€le lengte tijdens de vertraging of
versnelling. De breedte neemt daarentegen toe tijdens de vertraging, terwijl deze afneemt
tegen het einde van de versnelling.

In het tweede deel van dit proefschrift wordt een uitgebreide analyse uitgevoerd van
de interne afschuiflagen, die de grootschalige energetische bewegingen in een station-
aire turbulente pijpstroming van elkaar scheiden. Vergelijkbaar met eerdere turbulente-
grenslaagstudies, wordt waargenomen dat in de wand-normale richting er een significante
stapachtige verandering in de stromingseigenschappen optreedt over deze lagen. Verder
wordt waargenomen dat deze lagen zeer dissipatief zijn. Dit werk laat ook de 3D geome-
trie van deze structuren zien. Met behulp van iso-oppervlakken die deze afschuiflagen
markeren, wordt waargenomen dat ze verbonden zijn en de hele dwarsdoorsnede van de
buis omringen. Zelfs na het onderscheiden van de sterke afschuifgebieden van de omgev-
ing met behulp van 1.5x lokaal gemiddelde van de afschuiflaagdetectieparameter (Horuiti
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& Takagi [54]), blijken de structuren boven deze drempelwaarde te zijn uitgestrekt in de
breedte- en stromingsrichting, terwijl zij relatief dun zijn in de radiale richting. Verder wor-
den de intense afschuiflagen waargenomen aan de randen van grootschalige gebieden met
bijna uniforme snelheden. Hun lengte is van dezelfde orde als van die van de grootschalige
bewegingen, zoals bepaald door de twee puntcorrelaties. Bovendien onthult de 3D condi-
tionele stromingsanalyse ten opzichte van de afschuiflagen een gebied met sterk verlaagde
snelheid onder de gemiddelde afschuiflagen. Deze stroming met lage snelheid wordt ge-
associeerd met positieve wand-normale snelheidsfluctuaties en gaat gepaard met twee
wervelende bewegingen met tegengestelde draairichtingen. Ook wordt waargenomen dat
de gemiddelde afschuiflagen worden uitgerekt door twee tegengestelde bewegingen in de
omtreksrichting. Dit zou kunnen verklaren waarom de afschuiflagen in radiale richting
dun zijn. Dit hele beeld dat naar voren komt door de 3D conditionele analyse wijst op het
verband tussen afschuiflagen en haarspeldwervelstructuren. Een soortgelijk type afschui-
flagen met vergelijkbare geometrische afmetingen worden ook gevonden in de versnel-
lende/vertragende turbulente pijpstroming. De profielen van de axiale snelheid over de
gedetecteerde afschuiflagen tijdens de versnelling/vertraging zijn van dezelfde orde van
grootte als die voor de constante turbulente gevallen.

Grootschalige bewegingen met bijna uniforme stroomsnelheden en hun dunne begren-
zing (afschuiflagen) worden ook bestudeerd met behulp van het histogram van de stroom-
snelheden. Hier worden de afschuiflagen beschouwd als de continue interfaces van de
grootschalige bewegingen. Het is duidelijk dat deze methode totaal verschilt van de bovenge-
noemde 3D detectiemethode. Histogramanalyse wordt uitgevoerd met behulp van twee
verschillende oriéntatie van de vlakken waarover het histogram wordt bepaald, namelijk
het vlak gegeven door de wand-normale en de stromingsrichting en het vlak van de dwars-
doorsnede van de pijp. Een vergelijking van deze twee verschillende methoden en van
de verschillende ori€éntatie van de vlakken onthult dat de afschuiflagen gedetecteerd met
behulp van de 3D-methode een zeer goede overlap hebben met de interfaces gedetecteerd
met de histogrammethode, vooral wanneer het vlak door de wand-normale en de stro-
mingsrichting wordt gebruikt. Dit bevestigt de bovenstaande bevindingen dat de afschui-
flagen zich bevinden aan de rand van de uniforme momentumzones (UMZ’s), en koppelt
de kleinschalige activiteit (structuur) direct aan de grootschalige structuur.

Ten slotte wordt het hysteresegedrag in Taylor-Couette-stroming bestudeerd bij ver-
schillende afschuif-Reynolds-getallen variérend van Re; = 1.5 x 10*—5.5 x 10*. Het laag-
ste Reynolds-getal bevindt zich rond transitie, terwijl de andere stromingscondities zich
in het volledig turbulente regime bevinden. De koppelmetingen uitgevoerd bij al deze
stroomomstandigheden onthullen hysterese voor een bepaald bereik van het a getal, wat
de verhouding van de rotatiefrequenties van de binnenste en buitenste cilinders weergeeft.
Het hysterese gedrag waargenomen bij het laagste afschuif-Reynolds-getal (rond transi-
tie) blijkt echter aanzienlijk te verschillen van het hysterese gedrag waargenomen in de
volledig turbulente regimes. Voor volledig turbulente omstandigheden neemt de omvang
van de hysterese en bereik van a getallen waarover hysterese wordt waargenomen af. Om
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te onderzoeken of dit fenomeen kunstmatig wordt gegenereerd door de eindige geometrie
van het systeem, worden verdere koppelmetingen uitgevoerd bij verschillende geometrie-
verhoudingen van het systeem, wat eenvoudig wordt bereikt door het waterniveau in de
opening te veranderen. De hysterese wordt meer uitgesproken naarmate de geometrie-
verhouding groter wordt. Hoewel deze resultaten impliceren dat het fenomeen een echte
verandering in de stroming is, onthullen de koppelmetingen met verschillende randvoor-
waarden dat het gedrag en de omvang ervan nog steeds wordt beinvloed door de rand-
voorwaarden van het systeem. Ten slotte worden stereo-PIV-experimenten uitgevoerd bij
verschillende a getallen om te onderzoeken of en hoe de grootschalige stromingsstruc-
turen verschillen met het optreden van de hysterese in het koppel. Uit de resultaten blijkt
dat de dominante stromingsstructuren bij dezelfde stromingsconditie en a getal niet uniek
zijn, dat wil zeggen dat het aantal rollen en hun grootte veranderen, wanneer het a getal
zich bevindt binnen de hysterese-gebied.
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INTRODUCTION

1.1 BACKGROUND

From the large scale mixing in the oceans to harvesting energy from wind farms, turbulent
fluid flow plays a crucial role in nature as well as in various applications in science and
engineering. However, it still remains a big challenge to describe the full physics of this
flow phenomenon and to accurately predict it. This is substantially related to the complex
nature of turbulent flow itself; that can be represented by random fluctuations, undergoing
nonlinear interactions, over a broad range of scales both in time and space.

Since Osborne Reynolds [102], researchers have developed several approaches to study
this complex fluid flow. One way is to describe turbulent flows as collection of organised
motions, or eddies (Townsend [124]); that have significant coherence over time and space
(Robinson [104]). Indeed, studies on coherent motions in turbulent flows have contributed
importantly to our knowledge about the nature of these complex fluid flows, in particular
for wall turbulence, which is the main focus of this thesis. These coherent motions are
also closely associated to the local skin friction (e.g. Kravchenko ef al. [71] and Hwang
& Sung [60]). Thus, the ability to manipulate these motions plays a key role for drag
reduction over surfaces.

For wall bounded turbulent flows, the near wall region is known to be populated by low
speed streaks, which are basically composed of slow fluid regions lifted from the wall
by quasi-streamwise vortices (e.g. Kline et al. [68], Smith & Metzler [114], Schoppa &
Hussain [106]). These thin slow fluid regions are oriented in the streamwise direction, and
flanked by high speed regions in the spanwise orientation. These low-speed streaks occur
with approximately 100 wall units (v/u;) spacing, independent of the Reynolds number
(Kline et al. [68], Gupta et al. [46], Smith & Metzler [114], Kéhler [66]). Here, v is the
kinematic viscosity of the fluid, and u, is the wall friction velocity.

The outer layer (typically y > 30 v/u;), on the other hand, is characterised by energet-
ically significant large scale motions (LSMs). The existence of these structures was first
postulated by Townsend [122] based on the long correlation tail of the streamwise velocity
fluctuation, the experiments of which were conducted by Grant [39] in a turbulent bound-
ary layer (TBL). The presence of LSMs in wall turbulence was later supported by several
other correlation based studies (e.g. Bradshaw [17], Blackwelder & Kovasznay [14]) and
spectral based studies (e.g. Bullock et al. [20], Perry & Abell [97], Guala et al. [43]). The
long correlation tails and the spectral peaks in these studies showed that the length of these
LSMs is of the order of ~R or ¢, where R is the radius of the pipe, and ¢ is the boundary
layer thickness. With developments in experimental measurement techniques, Tomkins &
Adrian [120] and Ganapathisubramani et al. [36] captured some instantaneous snapshots
of these structures using particle image velocimetry (PIV). They showed that these long
structures are flanked by high speed fluid regions, forming the streaky nature of the log
region (typically between 30 v/u, < y <0.2R). Compared to the near wall streaks, on the
other hand, the streak-like structures in the outer layer are much longer in the streamwise
direction and much wider in the spanwise orientation.
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In addition to LSMs, wall turbulence has been reported to contain even larger structures,
called very large scale motions (VLSMs). VLSMs have a streamwise extent of typically
~10R (but individual structures can be as long as 30R) in turbulent pipe and channel flows
(Kim & Adrian [67], del Alamo & Jiménez [137], Guala et al. [43], Monty et al. [90], Bai-
ley et al. [10]). Originally, the low wavenumber peaks in the pre-multiplied energy spectra
of the streamwise velocity fluctuations led to the discovery of these structures. Very long
elongated regions of high and low speed fluids were also identified in a turbulent boundary
layer (TBL) by Hutchins & Marusic [59]. They termed these very large energy motions as
superstructures. Although large scale motions in internal and external flows are argued to
be qualitatively very similar (Balakumar & Adrian [11], Monty et al. [91]), Monty et al.
[91] showed that the large-scale energetic motions in internal flows extend to much higher
wall normal distances. Also, they found that the energy of VLSMs corresponds to larger
wavelengths in internal flows.

A lot of effort has been put into the investigation of large energy-containing motions
in the outer layer of wall turbulence, mainly because these coherent motions carry a sub-
stantial portion of the turbulent kinetic energy (TKE) and Reynolds stress. Also, they play
an important role in the transport mechanism (Zhou et al. [135], Liu et al. [79], Gana-
pathisubramani, Longmire & Marusic [36], Guala, Hommema & Adrian [43], Wu et al.
[132], Ahn et al. [3]). The large scale motions have also been reported to modulate the
amplitude of small scale motions near the wall (Hutchins & Marusic [58], Mathis et al.
[87], Guala et al. [44], Ganapathisubramani et al. [37]). Furthermore, as discussed in this
thesis (Chapter 6), the large coherent motions were found non-unique in Taylor-Couette
flow, that is, different large-scale flow states were observed for the same flow conditions.
Therefore, understanding the characteristics of these motions is very important for the con-
ceptual picture of wall turbulence as well as its advanced modelling, which still remains
a great challenge.

Compared to the near wall cycle there is relatively little known about the origin and
evolution of these energetically significant coherent motions. Kim and Adrian [67] and
Adrian et al. [1] argued that these structures are formed by the streamwise alignment
of several packets of hairpin vortices. The formation of individual hairpin vortices in a
packet, on the other hand, is explained by auto-generation (Zhou et al. [135], [136]). The
auto-generation is a non-linear process where a new hairpin vortex is formed if the vortex
strength is above a certain threshold. Evidence for the hairpin vortex concept was provided
by the experimental studies of Christensen & Adrian [24], Dennis and Nickels [26] and
Jodai & Elsinga [65]. In these studies and many others (e.g. Perry & Chong [98], Head
& Bandyopadhyay [53], Zhou et al. [135], Marusic [85]), individual or packets of hair-
pin vortices were argued to be representative features of the attached eddy hypothesis of
Townsend [123], [124]. According to this hypothesis, the logarithmic region of wall tur-
bulence is dominated by a hierarchy of energetically significant eddies whose sizes scale
with the distance from the wall. Moreover, structures similar to the packets of hairpin vor-
tices were also observed in the DNS of del Alamo ef al. [139] in a turbulent channel flow
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(TCF), which they termed vortex clusters. They argued that the detected vortex clusters
cannot grow from the wall because of their short lifetime, but they are formed from the
larger vortex clusters in front of them, supporting a top-down approach rather than the
bottom-up approach mentioned above.

According to the conceptual picture of Adrian et al. [1], based on their PIV experiments
in a TBL, the hairpins within a travelling packet induce low speed fluid motions, forming
regions of similar streamwise velocity called uniform momentum zones (UMZs) as first
introduced by Meinhart & Adrian [88]. This framework was later supported by de Silva et
al. [111], where they generated UMZs and their structural statistics with superimposing
hierarchies of hairpin packets (using attached eddy model) in a turbulent boundary layer.
The results of the synthetic data were compatible with their experimental findings, which
revealed a log linear increase in the detected number of the zones with Reynolds number.
Different to the attached eddy model, Saxton-Fox & McKeon [105] used a spectral model
based on travelling waves to represent large scale motions, and they could also produce
these structural features of instantaneous turbulent flows and UMZs. The structural nature
of a turbulent boundary layer was also investigated recently by Laskari et al. [74]. They
observed high turbulence activity associated with the ejection events in the log layer for
the cases conditioned on the higher number of UMZs than average. The statistics condi-
tioned on the lower number of zones, on the other hand, showed low small-scale activity
accompanied by high sweep events near the wall. Apart from these TBL studies, Kwon et
al. [73] studied the interface demarcating the less turbulent core of a channel flow from the
comparatively more turbulent part closer to the wall. They observed that this continuous
interface is appearing around 95% of the central velocity of the channel.

These large scale organisations of UMZs are interesting also because they are bounded
by relatively thin intense vorticity regions where strong jumps in the flow quantities have
been reported (e.g. Meinhart & Adrian [88], Adrian ef al. [1], Eisma et al. [32]; de Silva
et al. [112], Laskari et al. [74]). These regions are referred to as internal shear layers
or internal interfaces, and together with UMZs they appear to characterise the instanta-
neous behaviour of wall turbulence. As shown by Eisma et al. [32] in a TBL, the internal
shear layers have similar characteristics as the turbulent/nonturbulent interfaces (TNTI).
Also, they reported that these structures in the outer layer of the TBL move away from
the wall faster than the growing rate of the boundary layer. Other than wall turbulence,
highly sheared thin regions were also reported in homogeneous and isotropic turbulence
both experimentally (e.g. Worth & Nickels [131]) and numerically (e.g. Ishihara et al.
[61]). These studies showed that the shear layers are overlapping with the regions of high
enstrophy, dissipation and stretching. Moreover, Wei et al. [127] and Elsinga et al. [34]
investigated shear layers in the averaged flow field based on the local frame of reference
defined by the eigenvectors of the strain rate tensor. These average shear layer structures
were observed to be separating two large-scale regions of nearly uniform streamwise ve-
locities similar to instantaneous observations of UMZs.
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Although the importance of large scale motions and thin shear layers bounding them
have been recognised by several researchers, there are still several issues that remain to
be addressed, in particular, understanding the mechanism by which these structures form
and evolve, scaling laws, 3D geometrical features of these structures and the effect of flow
confinement. To address some of these questions, a comprehensive analysis is conducted
in this thesis on the internal shear layers and the large scale regions of nearly uniform
streamwise velocities bounded by them in a turbulent pipe flow.

As briefly presented in this chapter, the large scale coherent motions and the shear
layers bounding them have long been a topic of interest for the turbulence community.
However, similar to the studies mentioned above, most studies of turbulence are restricted
to statistically steady flows. Unfortunately, unsteady turbulent flows have not taken the
attention of the researchers as their steady counterparts. This is especially the case for the
ramp-type accelerating/decelerating type of unsteady turbulent flows. On the other hand,
these type of flows are frequently encountered both in nature (e.g. weather and coastal
flows) and various engineering applications (e.g. turbomachinery, valve opening/closing),
therefore, it is quite important to accurately predict and model these types of flows as well.
Studies on these flows are also crucial to gain further understanding about the nature of
non-equilibrium state of turbulence. Therefore, in this thesis, additional analysis on the
coherent structures have been presented for the ramp-type turbulent pipe flows.

1.2 AIM OF THE THESIS

The overarching objective of the present thesis is to improve the physical understanding
and the conceptual picture of wall turbulence based on experimental investigations in a
turbulent pipe flow and Taylor-Couette flow. The objectives can, more specifically, be
articulated in three groups each related to a different flow, namely, the steady turbulent
pipe flow, ramp-type accelerated/decelerated turbulent pipe flow and Taylor-Couette flow.

For the case of steady turbulent pipe flow, the primary goal is to provide a compre-
hensive analysis of the structural properties (including 3D geometry) and kinematics of
internal shear layers. Since the shear layers are often studied in TBLs, the second goal of
this part is to investigate the effect of the flow confinement on these structures by com-
paring the results for the shear structures with those for TBLs available in the literature.
In addition, the shear layers in the instantaneous turbulent flows are mostly treated as the
continuous interfaces of the UMZs, where the identification of the interfaces relies on the
identification of the large scale motions. Shear layers, on the other hand, are thin regions
that are dominated by small scale activities. Therefore, it is also aimed in this study to
compare these two methods and assess whether they represent similar type of structures.

The main goal of the ramp-type accelerating and decelerating turbulent flow study is to
investigate the response of turbulence and the development of turbulent structures during
the acceleration and deceleration. For unsteady turbulent flows, collecting enough inde-
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pendent samples of the same flow conditions, and simultaneously resolving the whole flow
development in time, remains a challenge for experimentalists. It is also quite expensive
numerically to repeat the ramps for hundreds of times. Therefore, in this part, it is also
aimed to show the feasibility of stereo-PIV measurements (with only a few times repeated
experiments) for these kind of studies.

Finally, for Taylor-Couette flow, the primary goal is to investigate the hysteresis be-
haviour (or multiple turbulent states). In particular, the aim is to find out if this phe-
nomenon is a genuine change happening in the flow or influenced by the finite geometry
of the system. Three related research questions investigated in this part are: If and how
does the aspect ratio as well as the end conditions of the system affect the hysteresis be-
haviour of a Taylor-Couette flow? Is the hysteresis behaviour also visible in the size and
type of the flow structures other than the torque values? How does the magnitude of the
hysteresis as well as its behaviour change with different flow conditions (i.e. with shear
Reynolds numbers)?

1.3 OUTLINE OF THE THESIS

The present thesis consists of seven chapters. After the Introduction (Chapter 1), the ex-
perimental flow conditions for statistically steady turbulent pipe flow are introduced in
Chapter 2. In addition to the basic turbulence statistics, structural properties of coherent
motions are quantified in this chapter in an average sense based on two-point correlations.
In Chapter 3, a comprehensive analysis is conducted on the internal shear layers in turbu-
lent pipe flow using the datasets introduced in Chapter 2. The internal shear layers in this
chapter are detected using the method of Houriti & Kawaga [54], which provides a 3D
representation of these structures as opposed to earlier studies dealing exclusively with
the 2D signatures of shear layers. This work is continued in Chapter 4 with a different
detection method, the so-called pdf method, which was employed by Adrian et al. [1] to
identify UMZs in a TBL. Following the approach of de Silva et al. [111], the shear layers
are basically considered to be the continuous interfaces of these detected UMZs. In addi-
tion to providing a comparison of the properties of the shear layers detected using these
two methods, the relation between the number of the detected UMZs and the associated
turbulence properties is analysed in this chapter. In Chapter 5, the response of turbulence
and the development of coherent structures along ramp-type accelerated and decelerated
turbulent pipe flow is investigated. The ramp-type changes in the bulk Reynolds number
are achieved through a nearly constant rate of change in the mass flow rate starting from
an initial statistically steady turbulent flow. The acceleration/deceleration is stopped when
reaching a prescribed mass flow rate, after which the flow settles again into a statistically
steady state. In Chapter 6, the hysteresis behaviour of Taylor-Couette flow, i.e the existence
of multiple turbulent states, is discussed based on torque as well as stereo-PIV measure-
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ments. Finally, in Chapter 7, the main findings of the previous chapters are summarised
and discussed along with an outlook for the further research in wall turbulence.
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EXPERIMENTAL FLOW CONDITIONS FOR THE STATISTICALLY STEADY TURBULENT PIPE FLOW

2.1 INTRODUCTION

As introduced in the previous chapter, this thesis consists of three independent experimen-
tal campaigns. The first experimental campaign covers the statistically steady turbulent
pipe flow. The data acquired was used to study the spatial structures, in particular, the
internal shear layers and the regions of nearly uniform streamwise velocities bounded by
them (Chapters 3 & 4). For this work, experiments at four different Reynolds numbers,
namely Re, =340, 752,999 and 1259 were conducted. Here, Re; is the friction Reynolds
number, Re; = u:R/v, defined based on the wall friction velocity, u., radius of the pipe,
R, and the kinematic viscosity of the fluid (water in this case), v. The experiments of
the second campaign consist of the statistically steady turbulent cases at Re; = 459 and
1233, as well as their unsteady counterparts where unsteadiness was imposed through a
ramp-type change in the mass flow rate. These unsteady cases are discussed in Chapter 5.
Note that for both campaigns, the experiments were performed on the same pipe flow
facility where the datasets were acquired using stereoscopic Particle Image Velocimetry
(PIV) in the cross section of the pipe. Finally, the experiments of the last campaign were
conducted in a Taylor-Couette system to investigate the hysteresis behaviour (multiple tur-
bulent states) of Taylor-Couette flow (see Chapter 6). Since a number of steady turbulent
pipe flow conditions were considered for the first two experimental campaigns, a brief
analysis is conducted in this chapter to provide a brief summary about the accuracy and
repeatability of these experiments as well as to discuss some basic turbulence statistics
and the large-scale coherent motions in an average sense.

This chapter is organised as follows: A description of the experimental setup, method-
ology and flow conditions is given in Section 2.2. This is followed, in Section 2.3, by the
results of the first and second order turbulence statistics as well as the structural properties
of coherent motions based on two-point correlations. Finally, the findings are summarized
in Section 2.4 .

2.2 EXPERIMENTAL SETUP

The experiments were performed in the pipe flow facility at the Laboratory for Aero- and
Hydrodynamics of Delft University of Technology. The pipe is ~ 28 m long, and has an
inner diameter, D, of 40 mm. The measurement location is 21.82 m downstream of the
pipe inlet, corresponding to 545.5D. Further description of the pipe facility can be found
in the thesis of Draad [30].

The turbulent flows were captured with high-speed, stereoscopic particle image ve-
locimetry (PIV), where the measurement plane was perpendicular to the streamwise ve-
locity. A water-filled rectangular box with two prisms was located between the pipe and
cameras to decrease the optical distortions due to refraction (Figure 2.1). The stereoscopic
PIV measurements provide all three components of velocity across the entire pipe cross
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section. To enable the PIV measurements the flow was seeded with 10 um diameter tracer
particles (Sphericell). These are hollow glass spheres, which have a density close to that of
water. The entire cross section of the pipe was illuminated by a light sheet generated using
a twin-cavity frequency-doubled Nd:YLF laser (25 mJ, 527 nm at 1 kHz). The thickness
of this light sheet was ~0.9 mm, which was determined based on the method by Wieneke
[130].

For the first experimental campaign, the particle images were recorded using two high
speed CMOS cameras equipped with a Micro-Nikkor F105 mm objective operating at an
aperture number of f; = 11. The field of view was 2.36R X 2.58R, where R is the radius
of the pipe. The nominal image magnification and the depth of field is ~ 0.5 and ~ 2.5
mm, respectively. Images were recorded at a frame rate of 0.714 kHz. For each flow condi-
tion, Re; =340,752,999 and 1259, 1782 instantaneous velocity fields were obtained. Two
additional sets were collected for Re, =752.

The images of the second experimental campaign were recorded with different high
speed CMOS cameras (Phantom VEO 640L 4M, LaVision) with a pixel format of 2176 X
1600, which resulted in a field of view of 2.39R X 2.23R. Similar to the first campaign,
these high speed cameras were equipped with a Micro-Nikkor F105 mm objective op-
erating at an aperture number of f; = 11. The time resolved vector fields were captured
at a frame rate of 0.859 kHz, and each set of experiments for each flow condition, i.e.
Re; =459 and 1233, contains 1799 instantaneous velocity fields, and three independent
sets were collected for each case.

For both experimental campaigns, calibration, data acquisition, and post-processing
were performed with a commercial software package (Davis 8.3.1 & 8.4, LaVision). The
PIV images were interrogated with a multi-pass interrogation technique, where the final
interrogation windows had a 24 x 24 pixel size with 75% overlap, corresponding to a
spatial resolution based on the window size of 8.8,11.1,19.4,25.8,29.7 and 32.5 viscous
wall units (v/u;) for Re; =340, 459,752,999, 1233 and 1259, respectively. A summary of
the flow properties and resolution is given in Table 2.1.

In the present study, r, 6 and x represents the radial, azimuthal and axial coordinates,
respectively, with the corresponding velocity components, u,, ug, u,. Similar to the pre-
vious studies (e.g. Guala, Hommema & Adrian [43], Wu, Baltzer & Adrian [132]), the
cylindrical coordinates were transformed to the Cartesian coordinates to enable compari-
son with other wall bounded turbulent flows. In the new coordinate system, x, y=R —r and
z = r6 represent the streamwise, wall normal and spanwise directions, respectively. The
corresponding instantaneous velocities are u#, v and w. The time averaged quantities are
denoted by capital letters (e.g. U), and fluctuations in the velocities are denoted by prime
symbol (e.g. u”). The superscript ‘+’ is used to denote the inner scaling of length, (e.g.
y* =yu./v), and velocity, (e.g. u™ =u/u;). The bulk velocity is denoted by Uj,. Note that,
throughout this thesis, the wall friction velocities, u,, obtained from the Blasius empri-
cal correlation [15], was used, unless otherwise stated. This enables a better comparison
between the steady and unsteady datasets which are discussed in Chapter 5. The discrep-

11
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rectangular box

Figure 2.1: Stereoscopic PIV configuration with the high speed CMOS cameras (Phantom VEO).
A water-filled rectangular box with two prisms are located between the pipe and cam-
eras to decrease the optical distortions due to refraction.

ancies between the wall friction velocities from the pressure measurements and from the
Blasius emprical correlation are less than 3% for any Reynolds numbers studied in this
thesis.

Table 2.1: Summary of the steady flow conditions for the turbulent pipe flow, with d;" = dju; /v
and Art = Atuz /v, where d; and At are the dimension of the PIV interrogation domain
(in the light sheet plane) and PIV exposure time delay, respectively.

Re; Rep Up Ur Spatial Res. Temporal Res. Number of
(m/s)  (m/s) d; At Velocity Fields

340 10944 0.229 0.0142 8.8 0.3380 1782

459 15393 0.396 0.0236 11.1 0.7587 1799 x 3
752 27092 0.57 0.0316 19.4 1.6656 1782 x 3
999 37505 0.789  0.042 25.8 2.9377 1782

1233 47727 1.227 0.0634 29.7 5.4752 1799 x 3
1259 48828 1.024 0.0528 32.5 4.6538 1782

2.3 RESULTS AND DISCUSSION

2.3.1 FIRST AND SECOND ORDER TURBULENCE STATISTICS

To assess the accuracy of the datasets, mean velocity (U"), root-mean-square velocity fluc-

: + + + P,
tuations (., V;,,s and w;,,, ) and Reynolds shear stress (—u’v’) profiles were compared

with the experimantal and DNS data of Toonder & Nieuwstadt [121] and Lee & Sung [77],
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Figure 2.2: (a) Mean velocity, U", (b) rms profiles for the streamwise velocity component, u;,,,

for the first experimental campaign. Magenta, blue, red and green lines correspond to
current data at Re; =340, 752, 999 and 1259, respectively. Brown and black lines with
symbols represent the experimental data of Toonder & Nieuwstadt [121] for Re, =315
and 690, respectively; light blue with symbols (o) represent the DNS results of Lee &
Sung [77] for Re; =930.

respectively, at similar Reynolds numbers (Figures 2.2, 2.3 & 2.4). Figure 2.2 and Fig-
ure 2.3 show the flow conditions from the first experimental campaign, while Figure 2.4
mainly corresponds to the results from the second experimental campaign. As can be seen
from these figures, quite good agreement between the current data and the data of Toonder
& Nieuwstadt [121] as well as the DNS of Lee & Sung [77] is observed in the outer region
of the turbulent pipe flow. The deviations in the rms profiles are less than 2% for all the
compared cases beyond y* =50. In addition, the results for the similar Reynolds numbers
from two different experimental campaigns, i.e. 1259 and 1233 (see Figure 2.4) confirms
the repeatability of the experiments.

To assess the noise contribution from the PIV images to the rms profiles, a 2D Gaussian
smoothing over a kernel size of 5x5 was applied to the velocity fields in the spanwise-wall
normal planes for each snapshot. After the smoothing, a deviation of 0.7%, 1.7%, 2.1%
and 2.6% was observed at a wall normal distance of y* = 50 for the Reynolds numbers
Re; = 340, 752, 999 and 1259, respectively. Beyond that wall distance, the deviations
gradually become much smaller, which shows that the noise level in the PIV images is not
significant. Note that relatively larger deviations near the wall is expected as the near wall
region is dominated by the small scales of turbulence, and their contribution to the rms
profiles are attenuated by the smoothing.

2.3.2 TWO-POINT SPATIAL CORRELATIONS

The characteristic dimensions of the large scale structures can be obtained from two-point
correlations. Moreover, this statistical approach allows a comparison of the present re-

13
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Figure 2.3: (a) Rms profiles of the wall normal, v}, & (solid lines), and azimuthal, w, . (dashed
lines), velocity components in inner coordinates. () Turbulent shear stress, —u’v’, pro-
files normalised by the wall friction, 7,,. Magenta, blue, red and green lines correspond
to Re; =340, 752,999 and 1259, respectively (experimental data of the first campaign).

Black dashed line in (b) correspond to theoretical total shear stress.

Figure 2.4: (a) Mean velocity, U*, (b) turbulence intensity and turbulent shear stress profiles for the
second experimental campaign. Streamwise, u;,, ., wall normal, v/, ., and azimuthal,
wi ., profiles of the turbulence intensity is represented by the solid lines with filled

circles, solid lines and dashed lines, respectively. The turbulent shear stress profiles,

—u’v’, are shown by dashed-dotted lines. Purple and light blue correspond to the re-

sults for Re; =459 and 1233, respectively. Brown and black dotted lines represent the

experimental data of Toonder & Nieuwstadt [121] for Re, =315 and 690, respectively;

while the data represented by green correspond to the current result for Re, = 1259

from the first experimental campaign (Figure 2.2).



2.3 RESULTS AND DISCUSSION

sults with the available literature. The two point correlation coefficient in the azimuthal
(spanwise)-wall normal plane was determined as:

R ( ) u,(yref’z) u,(y’Z+rz)
WY F =
uu yref y Z urms(yref) I/lrms(y)

2.1

Here, y,.r and r; is the reference wall normal position and the spanwise separation, re-
spectively. The overbar represents temporal and spatial average along the homogeneous
(i.e. azimuthal) direction.

The contours of the resulting two-point correlation coefficient are shown in Figure 2.5
for all the flow conditions considered in this chapter. The contours of the correlation co-
efficients in (a, b, ¢, d) were determined using single sets, while those in (e, f, g) were
obtained using three independent sets to see the effect of convergence. Similar to the pre-
vious studies (e.g. hot wire rake measurements of Bailey et al. [10], DNS of Lee et al.
[76]), the two point correlation contours show large scale coherent motions in an aver-
age sense, i.e. large positively correlated regions which are surrounded by anti-correlated
structures. The positively correlated motions near the wall are observed to be connected
to the wall, but they become detached as the reference wall normal position moves be-
yond the log region. The anti-correlated parts appearing on both sides of the correlated
region, on the other hand, come closer to each other as the wall normal distance increases,
and with the effect of the confinement, these structures are observed to merge forming a
connected anti-correlated motion on top of the positively correlated motion.

Two-point correlations were also evaluated in the streamwise-azimuthal plane at several
wall normal positions. Results revealed streamwise elongated regions of positive correla-
tion flanked by anti-correlated parts (Figure 2.6). Here, the streamwise extent of the flow
was reconstructed using the local mean value of the streamwise velocity together with
Taylor’s hypothesis. Taylor’s frozen turbulence hypothesis [116] is a frequently invoked
assumption in many experiments when the time resolved data is needed to be converted
into spatial information. The spatio-temporal correlations of Dennis & Nickels [25] in a
turbulent boundary layer (TBL) showed the accuracy of this assumption up to a stream-
wise distance of 69, where ¢ is the boundary layer thickness. Beyond this distance, how-
ever, they reported that the accuracy of this assumption decreases as the streamwise extent
further increases.

Further analysis was conducted to quantify the width (/) and the length (/) of these
correlation peaks. The width and the length of the correlations were determined in the
streamwise-spanwise planes for R, > 0.05 at r, = 0 and r, = 0, respectively (see Fig-
ure 2.7). Since the convergence in the tail of the correlation was lower, the following fig-
ures also include results evaluated for R, > 0.5. In Figure 2.8 and Figure 2.9, the present
results are shown together with some data from the existing literature for turbulent pipe,
channel (TCF) and boundary layer (TBL) flows. The error bars show the maximum devi-
ation among the independent sets for a certain flow condition (present experiments).

15
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Figure 2.5: Two-point correlation coefficient of the streamwise velocity fluctuations in the az-
imuthal (spanwise)-wall normal plane with reference points at wall normal locations
Vre f/ R =0.15 (first column), 0.3 (second column), 0.5 (third column), and 0.8 (fourth
column). First four rows correspond to the data at (a) Re; = 340, (b) Rer = 752, (c)
Re; =999 and (d) Re; = 1259, where single sets are used; whereas last three rows
correspond to (e) Re; =459, (f) Re; =752 and (f) Re, = 1233, where three indepen-
dent sets are used to determine the correlations. Positive correlations are shown by
grey contour lines varied from 0.1 to 1, while dashed-dotted and solid red contour lines
correspond to a negative correlation of —0.05 and —0.1, respectively.
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Figure 2.6: Two-point correlation coeflicient of the streamwise velocity fluctuations for Re, =752
(consisting of three independent sets) in the streamwise-spanwise planes at several
wall normal locations y/R = 0.1 (a), 0.2 (b), 0.35 (¢), 0.5 (d) and 0.8 (e). Positive
correlations are shown by grey contour lines varied from 0.1 to 1, while red contour
lines correspond to a negative correlation of —0.05.

Figure 2.7: Sketch illustrating how the spanwise width, /., (a, b) and the streamwise length, /, (c,
d) of the correlation coeflicients are determined for R,,, = 0.05. Dashed (red) lines on
the correlation contours (a) and (c) indicate the cross section where the correlation
coeflicient profiles in (b) and (d) are obtained.



18 EXPERIMENTAL FLOW CONDITIONS FOR THE STATISTICALLY STEADY TURBULENT PIPE FLOW

035
0.8} 037
0.25
x I

:N_ 0.6 02l
0.4+ 0.15
0.17

0.2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
yref/R yref/R

Figure 2.8: Width of the correlation peak, [, /R, for different wall normal locations, y/R, deter-
mined based on R, > 0.05 (a), and R,,, > 0.5 (b). Magenta, purple, blue, red, light
blue and green correspond to the experimental data for Re, =340 (<), 459 (v), 752 (o),
999 (4), 1233 (x) and 1259 (O), respectively. DNS data of Lee et al. [77] for turbulent
pipe flow and channel flow at Re; =930 is represented by black symbols (») and (m),
respectively. Black (+), (¢), (%) symbols, on the other hand, represent the experimental
channel flow data of Monty et al. [90] at Re; = 3100, DNS of Del Alamo et al. [138]
for channel flow at Re; =934, and boundary layer experiments of Hutchins et al. [57]
for Re, =2800, respectively.

The present results (Figure 2.8) show that the azimuthal width of the structures is in-
creasing rapidly with the wall distance in the log region (roughly 0.05 < y/R < 0.2).
This is consistent with the attached eddy hypothesis of Townsend [123], [124]. Beyond
the log region, on the other hand, the rate of increase is decreasing, and finally the width
of the structures becomes approximately constant near the core of the pipe. When differ-
ent flow conditions are compared for R, > 0.5, the width of the structures is observed to
be independent of the Reynolds numbers for Re; > 752 (Figure 2.8b). However, for the
lower Reynolds number cases, i.e. Re; =340 and 459, the width of the correlation peak
is larger than those at higher Reynolds numbers beyond y/R = 0.4. Considering the error
bars for Re; =459, 752 and 1233, the difference in the width of the correlation peaks at
0.5 < y/R < 0.7 could not be due to the lack of convergence. In Figure 2.8 (b), it is also
seen that there is a very good agreement between the current experimental results and
the DNS of Lee et al. [76] for the turbulent pipe flow at Re; = 930. However, when the
azimuthal width of the structures in the turbulent pipe flow are compared with the ones
in the channel flow studies (Figure 2.8 a & b), clear differences are visible beyond the
log layer. This breaks the notion about the similarity between turbulent pipe and channel
flows, for which the structural properties of the coherent structures have been reported to
be quite similar not only near the wall but also in the wake region (e.g. Monty et al. [92]).

In Figure 2.9 (a), it is seen that the correlation peaks based on R,,, > 0.05 are quite
long in the streamwise direction. The trend of the streamwise length scales of the average
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Figure 2.9: Streamwise length of the correlation peak, I, /R, for different wall normal locations,
y/R, determined based on R, > 0.05 (a), and R,,, > 0.5 (b). Magenta, purple, blue,
red, light blue and green correspond to the experimental data for Re, = 340 (<), 459
(v), 752 (0), 999 (2), 1233 (x) and 1259 (O), respectively. DNS data of Lee et al. [77]
for turbulent pipe flow at Re, =930 is represented by black (») symbols.
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Figure 2.10: Contours of two-point correlation coefficients of the streamwise velocity fluctuations
conditioned on the positive events, u’ > 0 (a, c, e, g, i), and negative events, u’ < 0
(b, d, f, h, j), for Re; =752 (consisting of three independent sets) in the streamwise-
spanwise planes at several wall normal locations y/R=0.1 (a, b), 0.2 (¢, d), 0.3 (e, f),
0.5 (g, h) and 0.7 (i, j). Positive correlations are shown by grey contour lines varied

from 0.1 to 1, while red contour lines correspond to a negative correlation coeflicient
of —0.05.
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structures is clearer when based on R,,;, > 0.5 (Figure 2.9 b). Except for the cases at lower
Reynolds numbers, i.e. Re; = 340 and 459, it is seen that the length of the correlation
increases in the log region and beyond, similar to the width (Figure 2.8). However, around
y/R=0.4, the length starts to decrease with y. It can be also seen in Figure 2.9 (b) that for
the present flow conditions, Re; > 752, the streamwise length of the correlation peaks are
very similar near the wall as well as near the core of the pipe. However, at all other wall
locations, the correlation peaks are longer with higher Reynolds numbers.

Furthermore, two point correlations in the streamwise-spanwise planes were condi-
tioned on the positive streamwise velocity fluctuation events (u” > 0) or negative events
(u” < 0). Contour plots of these correlations are shown in Figure 2.10 for several wall
normal locations, i.e. yref/R =0.1, 0.2, 0.3, 0.5 and 0.7. Left column in Figure 2.10 cor-
responds to the correlations conditioned on the high speed regions (1’ > 0), while the
right column represents the results conditioned on the low speed regions (#” < 0). As
can be seen in these plots, the correlations are asymmetric in the streamwise direction,
such that those that are conditioned on the negative events are biased towards the down-
stream direction, whereas the correlations conditioned on the positive events are biased
towards the upstream direction. These observations are consistent with the results of Lee
et al. [76]. Furthermore, these authors related this bias to sweep and ejection events. Some
differences are also observed in the width and the length of these structures. Figure 2.11
(a and b) shows the width (for R,;,, > 0.3 & 0.5) and the length (for R,,, > 0.3&0.5) of
these conditional correlation peaks, respectively, at several wall normal positions. In Fig-
ure 2.11 (a), it is seen that the width of these correlations (for both conditions) increases
in the log layer as the reference wall normal position increases, similar to the original az-
imuthal width of the unconditional correlation. Also, similar to the previous observations,
the rate of increase is decreasing beyond the log layer. Below y,;/R ~ 0.5, the width of the
high speed regions is larger than the low speed regions; however, beyond that point the
azimuthal width of the low speed regions becomes greater than the high speed regions.
These observations are very similar to those of Lee & Sung [77] based on their DNS
of turbulent pipe flow, except for the wall normal positions very close to the core of the
pipe. For these reference locations, they observed a significant decrease in the width of the
structures, whereas in the current experiments no decrease in the width of the structures
is found.

For the length of the structures conditioned on positive and negative events, it is seen in
Figure 2.11 (b) that the correlations are longer for the negative events everywhere in the
pipe, except for the wall normal position around y,,r;/R=0.2. On the other hand, near the
wall, the differences are observed to be quite small. Similar to the previous observations
about the length of the correlations without any event conditioning, it is seen that the
length of the coherent motions also increases near the wall beyond the log layer as the
wall normal positions increases. Beyond y,,,/R=0.2, the length of the correlation peak is
observed to decrease rapidly towards the core of the pipe.
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Figure 2.11: (a) Azimuthal width, I, /R, (b) streamwise length, [ /R, of the correlation peak for
different wall normal locations, y/R, determined based on u’ >0 (open symbols) and
u’ < 0 (filled symbols) for Re; = 752 (including three independent sets). Symbols
with dotted, solid and dashed lines correspond to the scales for R, > 0.05, 0.3 and
0.5, respectively. DNS data of Lee et al. [77] for turbulent pipe flow at Re; =930 is
represented by black (») symbols.

2.4 CONCLUSIONS

In this chapter, two independent PIV measurement campaigns in a turbulent pipe flow
were presented, and the accuracy was assessed. The steady flow conditions of the first
experimental campaign are Re, =340, 752, 999 and 1259, while the second experimental
campaign consists of the steady cases at Re; =459 and 1233.

In the first part of this chapter, the basic turbulence statistics (first and second order)
were evaluated for all these flow conditions. The resultant mean, rms and turbulent shear
stress profiles showed good agreement between the current data and the previously re-
ported ones in the literature (e.g. Toonder & Nieuwstadt [121] and Lee & Sung [77]) at
similar flow conditions.

In the second part of the chapter, the two point correlations were examined in the span-
wise (azimuthal)-wall normal as well as in the streamwise-spanwise planes at several ref-
erence wall normal locations. The results revealed positively correlated coherent motions
which are surrounded by anti-correlated regions as previously reported by Bailey et al.
[10] and Lee et al. [76]. Furthermore, in this study, the average spanwise and streamwise
length of the correlations peaks were assessed at the same wall locations. The trend of
the azimuthal width of the peaks were observed to be the same for all the flow conditions
where Re; > 752. In the log layer, the azimuthal width of these structures are increas-
ing quite rapidly, whereas beyond the log region the rate of this increase first decreases
and then becomes more or less constant in the wake region. Furthermore, the correlations
conditioned on the positive and negative events were observed to be biased towards up-
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stream and downstream, respectively, which could be associated to the quadrant events.
The length of the correlations conditioned on the negative events are observed to be greater
than the ones conditioned on the positive events, in particular beyond the log region. For
the azimuthal width of the correlation coefficients, on the other hand, the correlations con-
ditioned on the positive events are wider until the wake region, however, near the core, they
are smaller in width compared to their counterparts conditioned on the negative events.
All these results were found to be consistent with the DNS results of Lee et al. [76] and
Lee & Sung [77] at Re. =930.
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3.1 INTRODUCTION

Two-dimensional shear layer structures were reported before in TBLs by Meinhart &
Adrian [88] and Adrian et al. [1] as the regions where high gradients in the streamwise
velocity occur; and by Eisma et al. [32] as highly sheared regions. Several other studies
(e.g. Kwon et al. [73], de Silva et al. [111], Laskari et al. [74]), on the other hand, treated
the continuous edges of large-scale motions that have nearly uniform streamwise veloci-
ties as shear layers. All previous studies involved the identification and analysis of these
structures within two-dimensional cross sections of the flow. In this chapter, we present
the appearance of the internal shear layers in 3D using a 3D detection method. In addition
to their thickness and streamwise extent, we also provide information about the spanwise
length of these structures, which has not been reported before. Furthermore, we provide
a comprehensive analysis on the 3D signature of these structures in the flow field using
conditional analysis.

Starting with the pioneering work of Townsend [122] and Grant [39], a lot of effort has
been put into the investigation of large scale motions in wall turbulence. These energeti-
cally significant coherent motions have been known to carry a substantial portion of the
turbulent kinetic energy (TKE) and Reynolds stress (Liu ef al. [79], Ganapathisubramani
et al. [36], Guala et al. [43], Wu et al. [132], Ahn et al. [3]). The momentum exchange
across these large scale regions as well as their growth rate, on the other hand, must be
largely determined by the thin shear layers bounding them, where large velocity gradi-
ents occur (e.g. Eisma et al. [32]). The large-scale motions have also been reported to
modulate the amplitude (Hutchins & Marusic [58], Mathis et al. [87], Guala et al. [44],
Ganapathisubramani et al. [37], Awasthi & Anderson [8]) and frequency (Ganapathisub-
ramani et al. [37], Baars et al. [9], Awasthi & Anderson [8]) of small scale motions near
the wall. Therefore, understanding the characteristics of these large-scale motions and
their thin bounds (i.e. the shear layers) is very important for the conceptual picture of tur-
bulence in canonical wall-bounded flows, as well as its advanced modelling, which still
remains a great challenge.

Initially, the long tail of the auto-correlation function of the streamwise velocity fluc-
tuations in the experiments of Grant [39], led Townsend [122] to argue the presence of
large scale motions (LSMs) in the outer region of wall turbulence. The existence of LSMs
has been supported later by several other correlation-based (e.g. Bradshaw [17], Black-
welder & Kovasznay [14]) and spectral-based studies (Bullock et al. [20], Perry & Abell
[97], Guala et al. [43]). The long correlation tails and the spectral peaks in these studies
showed that LSMs are of the order of ~ R or ~ ¢; where R is the radius of the pipe, and
¢ is either the boundary layer thickness or half channel height. With developments in ex-
perimental measurement techniques, Tomkins & Adrian [120] and Ganapathisubramani
et al. [36] captured the instantaneous snapshots of these structures using particle image
velocimetry (PIV). They showed that these long low-speed structures are flanked by high
speed fluid regions, characterising the streaky nature of the log region.
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In addition to LSMs, Kim & Adrian [67] hypothesized the existence of very large-scale
motions (VLSMs) in a turbulent pipe flow based on the low-wavenumber peaks in the
pre-multiplied energy spectra of the streamwise velocity fluctuations. The presence of
VLSMs with a streamwise extent as much as 30R in turbulent pipe and channel flows was
also discussed by del Alamo & Jiménez [137], Guala et al. [139], del Alamo et al. [138],
Monty et al. [90], Bailey et al. [10]. Very long elongated regions of high and low velocity
were, similarly, identified in a TBL by Hutchins & Marusic [59]. They termed these very
large energy motions as superstructures. Although large scale motions in internal and
external flows have been argued to be qualitatively very similar (e.g. Balakumar & Adrian,
[11], Monty et al. [91]), Monty et al. showed that the large energy motions in internal flows
extends to much higher wall normal distances. Also, they found that the energy of VLSMs
corresponds to larger wavelengths in internal flows.

While there are different views about the origin and evolution of these large energy mo-
tions, Kim and Adrian [67] and Adrian ef al. [1] argued that these structures are formed
by the streamwise alignment of several hairpin packets. According to the conceptual pic-
ture of Adrian ef al. [1], the hairpins within a packet induce a single low speed velocity
region, where the streamwise velocity is nearly uniform, which is referred to as a uniform
momentum zone (UMZ). Superimposing hierarchies of hairpin packets using the attached
eddy hypothesis, de Silva ef al. [111] generated UMZs and their structural statistics in a
turbulent boundary layer. The results of the synthetic data were compatible with the log
linear increase in the detected number of the zones with Reynolds number as observed in
their experiments. Recently, Laskari et al. [74] associated the higher than average num-
ber of the UMZs at a certain Reynolds number with the increased turbulence activity and
ejection events in the log region in a TBL. The lower than average number of the UMZs,
on the other hand, were coupled with sweep events together with low turbulence activity
away from the wall.

The UMZs are interesting also because they are bounded by relatively thin regions of
intense vorticity associated with strong jumps in the flow velocity (e.g. Meinhart & Adrian
[88], Adrian et al. [1], Eisma et al. [32]). These thin regions are referred to as internal shear
layers or internal interfaces, and together with UMZs they characterise instantaneous wall
turbulence. The vorticity in the layer may be associated (in part) with hairpins in a packet,
which encloses a low-speed (uniform) flow region. However, the 3D structure of the shear
layer and possible connection with hairpins are unclear at this point. Similar shear layer
structures were also reported by Worth & Nickels [131] and Ishihara ez al. [61] in homoge-
neous and isotropic turbulence. Therefore, shear layers may be important general features
of turbulence. This finds statistical support in the average flow field associated with turbu-
lent strain, which reveals a shear layer bounded by two large-scale approximately uniform
flow regions similar to the instantaneous internal shear layers (Wei et al. [127] and Elsinga
et al. [34])

Although the importance of internal thin shear layers have been recognised by several
researches since the late 1900s (e.g. Blackwelder & Kovasznay [14] and Robinson [104]),
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there are still several issues that remain to be addressed; in particular, their geometrical
features, the mechanism by which these structures form and evolve, and if and how their
characteristics differ between turbulent flows. Moreover, two different approaches seen
in the literature have been employed so far to detect the internal shear layers. The first
approach relies on distinguishing the shear through the velocity gradient tensor, while
the second one relies on the histogram of the streamwise velocities determined over wall
normal-streamwise planes at a certain spanwise position. With the latter method, the shear
layers are treated as the continuous interfaces of the UMZs. Obviously, these two methods
are rather different from each other, which may introduce some differences. Therefore, it
is also of interest to provide a comparison between these two difterent approaches.

To address some of the above questions, we provide a comprehensive analysis of inter-
nal shear layers based on the experimental databases acquired with time-resolved stereo-
scopic PIV in the cross section of a turbulent pipe flow which can be reconstructed into
quasi-instantaneous 3D realizations of the flow, following van Doorne & Westerweel [29].
In particular, we investigate the geometrical properties of these shear layers and their 3D
signature in the flow field through conditional sampling and two point correlations. Also,
we provide a comparison between the above mentioned 3D detection method and the his-
togram method (Chapter 4). We carry this analysis for four different flow conditions, i.e.
Re;=340,752,999 and 1259, to examine if and how their properties change with Reynolds
number.

This chapter is organised as follows: A description of the datasets used in this chapter
as well as the 3D detection method for the internal shear layers are given in Section 3.2.
The geometrical properties of the shear layers are discussed in Section 3.3, and the flow
profiles/fields conditioned on the layers are exemplified and quantified for four different
Reynolds numbers. Finally, the findings are summarized in Section 3.4.

3.2 EXPERIMENTAL DATASETS AND METHODOLOGY

For this study, the experimental databases acquired with stereoscopic particle image ve-
locimetry (PIV) in the cross section of a turbulent pipe flow were utilised. The databases
span over four different friction Reynolds numbers, namely Re,; =340, 752, 999 and 1259.
Here, the friction Reynolds number, Re; = u;R/v, is defined based on the wall friction
velocity, u,, radius of the pipe, R, and kinematic viscosity of the fluid, v, which is water
in the present experiments. For the details about the experimental setup (both the pipe
facility and measurement technique) as well as for a discussion of the accuracy of the
experiments, the reader is referred to Chapter 2.

Since the shear layer detection method is based on an evaluation of the velocity deriva-
tives, further assessment was carried out on the velocity gradients, for y/R =0.1-1. The
velocity gradients were obtained by applying a second order regression filter over a kernel
size of 5x 5x 5 (Elsinga et al. [33]). Here, the local mean streamwise velocity along with
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Figure 3.1: (a) Joint pdf of (0v/dy + dw/0z) and (—du/0x). The contours are from 0.05 to 0.95
with an increment of 0.05. Pdf of the parameter £ (o) and divergence of the vector field
V.u which was normalized by the 2-norm of the velocity gradient tensor, (Viu:Vir)'/? (c).
All these profiles were determined between the wall normal location of y/R=0.1 — 1.

the Taylor hypothesis was used to convert the temporal derivatives into the out-of-plane
component of the velocity gradient. The joint pdf of (0v/dy + dw/dz) and (—du/0x), pre-
sented in Figure 3.1 (a) for Re; =752, shows that the data tends to the red diagonal line,
which is indicative of the divergence-free condition, as required for mass conservation in
an incompressible fluid. The data away from the diagonal, i.e. non-zero divergence, indi-
cates a finite measurement error, which is quantified by the rms divergence error. For the
flow conditions, Re,; = 340, 752, 999 and 1259, the rms divergence error is 1.8, 4.5, 6.2
and 8 s7!, respectively. All these values are consistent with the values reported by Jodai
& Elsinga [65] and Eisma [64] for tomographic PIV (TPIV) in a TBL. The increase in
the rms divergence with Reynolds number is mainly due to the effect of the decreased
spatial resolution in x. The local divergence error was further assessed using two other
parameters, i.e. & (as proposed by Zhang et al. [134]) and V.u normalised by the 2-norm
of the velocity gradient tensor (Vu:Vu)'/?. Here, & is defined as:

3 (Ou/0x + dv/dy + 0w/ 0z)?
&= (Au/0x)% + (Ov/Dy)? + (Ow/dz)?

3.1

Higher values of & implies higher divergence error. In the present study, the mean value
of £ is found to be 0.07, 0.18, 0.27, 0.35 for Re; = 340, 752, 999 and 1259, respectively,
which is consistent with the ranges reported by Zhang et al. [134] (¢ = 0.07 — 0.74) for
their turbulent channel flow (TCF) measurement using holographic PIV and by Casey et
al. [21] (¢ = 0.09 — 0.36) for their turbulent jet flow experiments with scanning TPIV.
From the pdf of V.u/(Vu:Vu)'/?, a mean value of approximately zero is obtained for each
flow condition, whereas the rms value is 0.110, 0.139, 0.153 and 0.166 for Re, =340, 752,
999 and 1259, respectively. These parameters are also within the ranges that have been
reported previously (e.g. Casey et al. [21], Mullin & Dahm [93] and Ganapathisubramani
et al. [35]).
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Figure 3.2: Instantaneous three dimensional views of the detected shear regions, where iso-
surfaces are representing [A] / [Z]y R=02 = 0.5 (magenta), 1 (yellow) and 5 (green).
Azimuthally averaged local mean (a) and 1.5% local mean (b) shear values are used to
distinguish the intense shear regions from the surrounding. Here, [Z] JR=0.2 is both
time and azimuthal averaged shear value at the wall location y/R=0.2. (¢) & (d) show
two closer views from different perspectives with the latter threshold.

3.2.1 DETECTION OF THE SHEAR LAYERS

The shear regions were detected using the identification method of Horuiti & Takagi [54]
for vortex sheet like structures. This method is based on the correlation between the strain
rate, S;;[=1/2(0u;/0xj+0u;/0x;)], and vorticity, Q;;[=1/2(0u;/0x;—0u;/dx;)], tensors,
which is represented by the symmetric tensor A;; = S;x Q2 ; + S5 Q. After the eigenvalues
of this symmetric tensor are determined, they are ordered according to the alignment of
their eigenvectors with the vorticity vector. The eigenvalue whose eigenvector has the max-
imum alignment is represented by [Ai j] .- The largest remaining eigenvalue is represented
by [A,- j] ,» and the last remaining one by [Ai j]_. The eigenvalue [Ai j] . is a measure for
the local shear content in a point and will be used to identify vortex sheet like structures.
Throughout this chapter, we simply use [A] to represent [A,- j] L



3.3 RESULTS AND DISCUSSION

To distinguish the (intense) shear layers, we applied a threshold based on the local mean
value, which was determined for each snapshot by averaging the instantaneous shear quan-
tities in the azimuthal direction, [A], for a given radial position. Note that the detected
shear regions were very similar when time averaging was performed in addition to az-
imuthal averaging. We employed two different threshold strengths, i.e the local mean and
1.5X the local mean value, and identified the regions exceeding these thresholds as internal
shear layers. With the higher threshold it was observed that the core of the detected shear
layers are overlapping fairly well with the peaks of the instantaneous wall-normal profiles
of [A] Therefore, in the remainder of this chapter, results with the latter threshold are
presented. In addition, throughout this chapter, figures and the corresponding information
belong to the condition Re; =752, unless the Reynolds number is specified.

As a final note in this section, the shear regions detected using [A] were observed to be
overlapping fairly well with the shear layers identified using the 2D Triple Decomposition
Method (TDM) of Kolar [69], which also was employed to distinguish shear regions in
turbulent flows (e.g. Maciel et al. [83], Eisma et al. [32]). However, the detected regions
with [A] , which is a 3D method, were observed to better define the azimuthal features of
the structures.

3.3 RESULTS AND DISCUSSION

3.3.1 THREE DIMENSIONAL FEATURES OF SHEAR LAYERS

In Figure 3.2 (a, b), the detected shear regions using the local mean and 1.5X local mean
value of the shear are shown, respectively. In (c) and (d) two closer views are presented
using the latter threshold. As can be seen in these figures, the near wall region of the pipe
is more densely populated by these structures as compared to the core region. Also, these
shear regions are fairly long both in the azimuthal and the streamwise direction, while they
are relatively thin in the radial (wall normal) direction, forming layer like structures. The
structural features of the shear layers are further analysed below on different cross sections
of the pipe, i.e. wall normal-spanwise planes (Figure 3.3) and wall normal-steamwise
planes (Figure 3.4).

Figure 3.3 (a) shows an instantaneous snapshot of the streamwise velocity together with
the detected shear regions in the spanwise-wall normal plane. The shear value correspond-
ing to the magenta surfaces ([A] / [ A ]y R=02= 0.5) is just above the noise level, while the
blue and black surfaces represent very strong shear regions that appear close to the wall.
These surfaces form sheet like regions, which appear to be connected in the spanwise di-
rection surrounding the entire cross section of the pipe, especially near the wall. The shear
content of the same snapshot of the flow is shown in Figure 3.3 (b). Here, the local shear
values are normalized by the azimuthally averaged shear values (for each radial position)
of the same snapshot. This results in intense regions of shear which are overlapping with
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Figure 3.3: (a) Iso-surfaces of the shear regions for [A] / [Z] VJR=0.2 =0.5 (magenta), 1 (white), 10
(blue) and 25 (black) for an instantaneous snapshot of the cross section of the pipe.
Part of the iso-surfaces until a streamwise extent of 0.006R is shown here. (b) Shear
field of the same instantaneous snapshot, where the shear values are normalised by
the azimuthally averaged shear value at each wall normal location, the values are pre-
sented by the colourbar below. (¢) and (d) represents the intense shear regions (shown
by black) greater than the local mean and 1.5xlocal mean shear values, respectively.
Background map in (a), (c¢) and (d) represents the instantaneous streamwise velocity
field normalised by the central velocity of the pipe, u/U,;.
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Figure 3.4: Sample instantaneous field of the streamwise velocity, u, normalised by U, (color map)
in the wall normal (y)-streamwise (x) plane together with the detected shear regions,
[A] (shown by the gray contours), normalised by the mean shear value at y/R = 0.2.
The streamwise extent is reconstructed using the bulk velocity, U,. Arrow indicates
the direction of the flow.
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Figure 3.5: Iso-surfaces of the streamwise and wall-normal velocity fluctuations (a), and swirling
motions together with the low speed flow (b), that are remapped with respect to
the wall-normal centres of the detected shear layers. Here, only the shear layers be-
tween y/R = 0.15 — 0.2 are considered. y;, x; and 6; corresponds to the wall normal,
streamwise and azimuthal position of the shear layers, respectively. Blue, red, yellow
and green surfaces in (a) correspond to < u’/U. >= —0.03, < u’ /U, >= 0.015,
<V /Uy >= -0.003 and < v'/U.; >= 0.006, respectively. The streamwise extent
is reconstructed using the local conditional-mean streamwise velocities. Iso-surfaces
in cyan and magenta in (b) represent a swirling strength of < AR/U.; >= 0.05 and
<AR/U.; >=-0.05, respectively.

the iso-surfaces in Figure 3.3 (a). After applying a threshold, based on the local mean
(Figure 3.3 (¢)) and 1.5%local mean (Figure 3.3 (d)), these intense shear regions can be
distinguished from the surrounding. Based on the thresholding criterion, the thickness and
the spanwise length of the structures varies somewhat, as expected. However, they remain
relatively thin compared to their spanwise length. Similar to Figure 3.3 (a, b), the struc-
tures identified by the applied threshold in Figure 3.3 (¢, d) are observed to surround the
core region of the pipe, which is less turbulent than the region near the wall. A similar ob-
servation was reported before by Kwon et al. [ 73] for a turbulent channel flow, where they
argued that a continuous interface marking a jump in the streamwise velocity demarcates
the quiescent core region.

From a visualisation of the detected shear layers in the streamwise-wall normal plane
(Figure 3.4), it can be seen that the layers are extended in the streamwise direction, and
that they are relatively thin compared to their streamwise length supporting the previous
observations in Figure 3.3. Also, the layers in the turbulent pipe flow are observed to
be bounding large-scale regions of nearly uniform streamwise velocities, as previously
reported observations by Meinhart & Adrian [88], Adrian et al. [1] and Eisma et al. [32]
in a TBL.
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Figure 3.6: Conditionally averaged fields around the shear layers for (a) streamwise velocity fluc-
tuation, < u’/U.; >, (b) wall-normal velocity fluctuation, < v'/U.; >, (c) spanwise
velocity fluctuation, <w’/U.; >, (d) swirling strength, < AR/U.; >, and (f) Reynolds
shear stress, < —u’v’/ Ugl >. (f) shows a close view for all components of the veloc-
ity fluctuations and swirling strength. Here, contour lines in blue, red, yellow, green,
black, orange, purple and cyan correspond to <u’/U.; >=-0.03, <u’/U.; >=0.015,
<V /Uq >= -0.03, < Vv /U >= 0.06, < w' /U, >= -0.06, < w'/Us >= 0.06,
<AR/U.; >=-0.05 and < AR/U.; >=0.05, respectively. Arrows indicate the average
vector field for <v’> and <w’ >. Results correspond to the plane at (x — x; =0).
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Figure 3.7: 2D cuts of the conditionally averaged fields around the shear layers at (0 — 6;)/21 =
—0.012 (a, d, g), 0 (b, e, h) and 0.012 (¢, f, i). (a, b, c) corresponds to the streamwise
velocity fluctuations, < u’/U.; >; (d, e, f) corresponds to the wall-normal velocity
fluctuations, <v’/U.; >; and (g, h, i) corresponds to the spanwise velocity fluctuations,
<w’ / Ug>.

Furthermore, Figure 3.5 (a) and (b) shows iso-surfaces of the streamwise and wall-
normal velocity fluctuations and swirling strength for the mean flow field conditioned on
the wall-normal centres of the internal shear layers between y/R = 0.15 — 0.2. Here, for
each cross-section of a detected shear layer in the spanwise-wall normal plane, the shear
layer was further divided into sections at each spanwise location. Finally, for each section
of the shear layer the wall-normal centre was determined. While y; corresponds to the wall
normal centre of each final cross-section, x; and 6; indicates the streamwise and azimuthal
positions of the these cross sections, respectively. Hence, the flow field was remapped with
respect to y;, x; and 6; for each cross-section of a shear layer. Here, local conditional mean
streamwise velocities were used to reconstruct the streamwise extent. As can be seen in
the resulting 3D figures, below (y —y; = 0) there is a strong low speed region extended
in the streamwise direction, which is surrounded by two distinguished swirling motions
having opposite signs. Also, this low speed region can be seen to be associated with strong
positive wall normal-velocity fluctuations, which would indicate a region dominated by
ejection events. These findings are consistent with the conceptual picture of Adrian et al.
[1], and support the connection between the shear layers and the hairpin structures.

In addition to Figure 3.5, in Figure 3.6, a 2D cross section of some averaged flow fields
at (x —x; = 0) is provided in the spanwise-wall normal plane for all components of the
velocity fluctuations as well as swirling strength and Reynolds shear stress. All the above
findings in Figure 3.5 can be more clearly seen in these 2D cross-sections. Furthermore,
from the spanwise component of the averaged velocity fluctuations (Figure 3.6 (c)) as well
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as the averaged vector field shown by the arrows and the swirling motions (Figure 3.6 (d)
& (f)), it can be seen that the shear layers are strongly stretched in the spanwise direction.
This is probably the reason why the layers are thin in the wall-normal direction. Moreover,
from the 2D cuts at (6 — 6;)/27 = —0.012, 0 and 0.012 in the wall normal-streamwise
planes as shown in Figure 3.7, the spanwise and the wall normal components of these
secondary motions are seen to be quite extended (~ 0.5R) in the streamwise direction
similar to the low-speed region, having angles of about ~ +12° and —12°, respectively.
For brevity, results for the swirling strength in the wall normal-streamwise planes are not
shown here, but swirling motions were observed to have similar angles (~10°) as well (at
(0 —0,;)/2mr=-0.012 and 0.012).

3.3.2 SHEAR LAYERS IN THE SPANWISE-WALL NORMAL PLANE

Previously mentioned studies examined the shear structures or the continuous interfaces of
the UMZs in the streamwise-wall normal plane only, either in a TBL or turbulent channel
flow (TCF). In this section, we continue the study in the previous section by providing a
comprehensive analysis on the properties of the shear layers in the wall normal-spanwise
plane of a turbulent pipe flow.

We begin the analysis by conditionally averaging some flow properties across the shear
layers in the spanwise direction. The shear layers were first divided into spanwise-wall nor-
mal cross-sections at each streamwise location similar to the previous section. Then, each
cross-section was further considered as a combination of sections at each wall-normal
position, having a certain wall thickness determined by the vector spacing but varying
spanwise length. Afterwards, with respect to its wall position, each section was grouped
from the near wall, y=0.1R, to the core, y=1R, of the pipe in bins with an equal increment
of 0.1R. Finally, relative to the spanwise centre of each determined section, the conditional
analysis were performed to find out if there is any change in the flow properties across the
detected shear layers along the spanwise direction. The resulting average profiles for the
streamwise velocity, < u >, and the dissipation rate, < & > are shown in Figure 3.8. The
profiles in (a) and (c) are normalised by U.; and Ug ;/ R, respectively, whereas the profiles
in (b) and (d) are normalised by the local conditional mean values of <u>, and <& >y, re-
spectively, found in (a, ¢) away from the effect of the layers. From Figure 3.8 (a, b), it can
be seen that these structures are associated with low streamwise velocity in the azimuthal
direction. The effect of the shear layers is stronger near the wall and weaker towards the
core of the pipe. Figure 3.8 (c, d), on the other hand, shows that these layers are highly
dissipative regions where a significant peak in the dissipation occurs. Additionally, Fig-
ure 3.8 (d) shows that when the profiles are normalised by the local mean dissipation rates
away from the location of the shear layers, similar peaks (in terms of the magnitude) in the
dissipation rates result at each wall normal location. It should be noted here that since the
dissipation rate was not fully resolved (45% near the core of the pipe), the unresolved dis-
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Figure 3.8: Conditionally sampled streamwise velocity, u, (a, b) and dissipation, &, (¢, d) profiles
in the spanwise direction, 6. The spanwise centre of each cross section of the detected
shear region is represented by 6;, while (6 — 6;) represents the distance from the centre
of the cross section of the layers in the spanwise direction. Shear layers are grouped
according to the location of their spanwise centre (for each cross section) in the pipe,
from 0.1R to 1R with a constant increment of 0.1R. The arrows show the direction of
the wall.

sipation was estimated by the large eddy (Smagorinsky) model (Sheng et al. [109], Sharp
& Adrian [107], Tokgoz et al. [118]).

To check the effect of the shear layers on the average flow structures, two point corre-
lations for the gradient of the streamwise velocity, R(uyuy,), and the streamwise velocity
fluctuations, R(u'u’), were computed. R(uyu,) can also provide information about the wall
normal and spanwise width of the shear layers in an average sense. Here, in addition to
correlations conditioned on the wall normal centres (see §3.3.1) of the shear layers (e.g.
eqn. 3.2), general correlations (e.g. eqn. 3.3) conditioned on wall normal locations irre-
spective of whether a shear layer is detected or not were also determined for comparison.
For the latter, the wall normal locations, Vrefs correspond to the centre of each bin that
the detected shear layers are grouped into. The subscripts s and ref in eqn. 3.2 and eqn.
3.3 corresponds to the properties related to the detected shear layers and reference wall
locations, respectively. The overbars, on the other hand, represent conditional averaging
over 6 and x.

35



36

SHEAR LAYERS IN A TURBULENT PIPE FLOW

The left column (a, ¢, e, g) in Figure 3.9 and Figure 3.12 represents the two point corre-
lations conditioned on the wall normal centre of the shear layers, while the right columns
(b, d, f, h) correspond to the general correlations conditioned on wall normal locations.
The correlation functions in Figure 3.9 (b, d, f, h) show that for each wall normal location
similar structures are obtained for R(uyu,, ,.r), and that the correlation peak is more elon-
gated in the azimuthal direction towards the core region (as also observed in Figure 3.8).
For the two point correlation coeflicients conditioned on the wall normal centre of the
shear layers, R(uyuy, ;) (Figure 3.9 (a, ¢, e, g)), it can be seen that the correlation peaks are
more elongated in the angular direction as well as their cores are wider in the wall normal
direction as compared to their counterparts in Figure 3.9 (b, d, f, h).

w(ys,2)w(y,z+ry)

Riuuy) = Urms(Vs) Urms () G2
’ _ u/(yref’z)u/(y’Z+rZ)
o) = G e ) o

The wall normal thickness and the spanwise length of these two-point correlations were
further quantified based on the peak width at R(u,u,) = 0.8. This threshold is relatively
high to ensure converged results at each wall normal location. The wall normal thickness
of the correlation is determined at the spanwise center of the correlation, i.e. (6 — 6; =0)
(see Figure 3.10 (a, b)), while the spanwise length is determined at the wall normal center
of the correlation coefficient (y — y;=0) (see Figure 3.10 (c, d)). Here, 6; and y; represent
the azimuthal (in terms of angles) and wall normal location of the detected shear.

The resulting width and the spanwise length of the two-point correlations are presented
in Figure 3.11 (a) and (b), respectively, for several wall normal locations and for all
Reynolds numbers. Full lines with open symbols correspond to the data conditioned on the
wall normal center of the shear layers, while the dashed lines with filled symbols represent
the results for general conditioning on wall normal location. When the general condition-
ing is compared to those for conditioning on the shear layers, a significant increase in the
wall normall thickness (~40%) and the spanwise length (~ 50%) of the correlation coeffi-
cient is observed for the case of the shear layers (see also Figure 3.17 (b, c)). On the other
hand, although the presence of the shear layers significantly affects the size of the correla-
tion peaks, the trends with wall normal distance are quite similar. For both conditions, the
wall normal width of the correlations are proportional to the Reynolds number until the
wall normal position of y/R =~ 0.6. Beyond that position, the behaviour reverses. Similar
behaviour is observed for the spanwise length of the correlation coefficients below the
same wall normal position, i.e. y/R = 0.6, such that the spanwise length is proportional
to the Reynolds number. Beyond this wall normal location, the spanwise length appears
independent of the Reynolds number.

The effect of the shear layer structures is also visible in the two-point correlations of the
streamwise velocity fluctuations, R(u'u”), (Figure 3.12). When the correlation coefficients
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Figure 3.9: Iso-contours of two point correlation coefficient for the gradient of the streamwise
velocity conditioned on the shear layer centre for different wall normal locations,
R(uyuys), (a, c, e, g); and general correlation conditioned at a wall-normal location,
R(uyuy o), (b, d, f, h). The shear layers are binned according to the distance of their
core from the wall, y/R=0.1-0.2 (a), 0.3 -0.4 (¢), 0.5-10.6 (e), 0.7 - 0.8 (g). The
reference points correspond to y/R=0.15 (b), 0.35 (d), 0.55 (f), 0.75 (h).

(y-y;) (6-6.)

Figure 3.10: Sketch illustrating how the wall normal thickness, /,, (a, b) and the spanwise length,
l;, (c, d) of the correlation coefficients are determined using the peak width at
R(uyuy) = 0.8. Dashed lines on the correlation contours indicate the spanwise and
the wall normal centers of the shear layers where R(u,u,) in (a) and (b), respectively,
corresponds to. r indicates the distance of the centre of the averaged shear layers from
the core of the pipe.
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Figure 3.11: Wall normal thickness, [, (a) and the spanwise length, [, (b) as determined from
the peak (see Figure 3.10). Full lines with open symbols are for the correlation con-
ditioned on the wall normal centre of the shear layers, and dashed lines with filled
symbols are for the general correlation at reference wall locations. Yellow (diamond),
blue (circle), red (triangle) and green (square) correspond to the flow conditions at
Re: =340, 752, 999 and 1259, respectively.
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Figure 3.12: Iso-contours of two point correlation coefficient for the streamwise velocity fluctua-
tions conditioned on the shear layer centre for different wall normal locations, R(u’u;),
(a, ¢, e, g); and general correlation conditioned at a wall-normal location, R(u’u;e ),
(b, d, f, h). The shear layers are binned according to the distance of their core from
the wall, y/R=0.1-0.2 (a), 0.3-0.4 (¢), 0.5-0.6 (e), 0.7 — 0.8 (g). The reference
points correspond to y/R=0.15 (b), 0.35 (d), 0.55 (f), 0.75 (h).
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Figure 3.13: Iso-contours of two point correlation coefficient for the shear values, [A] , conditioned
on the shear layer centre for two different wall normal locations, y/R = 0.2—-0.3 (a)
and y/R=0.5-0.6 (b).

in Figure 3.12 (q, c, e, g) are compared with those in (b, d, f, h), it can be seen that the
presence of the shear structures are decreasing the width of the core of the correlation
coefficient. Similarly, the spanwise length scale determined from the correlation coeffi-
cient around the shear centre decreases. Apart from the peak widths, the overall structure
of the correlation coeffcients in the wall normal-spanwise plane is quite similar for both
conditions at each wall normal location.

As a final note in this section, the spanwise shape of the shear layers was also investi-
gated through the two point correlations for [A] However, as can be seen in Figure 3.13,
similar results were obtained as for the correlations for the streamwise velocity gradients.

3.3.3 SHEAR LAYERS IN THE STREAMWISE-WALL NORMAL PLANE

In this section, the shear layers are examined in the streamwise-wall normal plane. First,
the detected shear layers were grouped according to their wall normal center as in §3.3.1,
and then conditional sampling was performed to analyse these structures in wall normal-
streamwise planes. The conditionally averaged profiles for the streamwise velocity, <u >,
wall normal velocity < v >, turbulent shear stress, < —u’v’ > and dissipation rate, < & >,
at (x — x;=0) are shown in Figure 3.14. From the streamwise velocity (a) and dissipation
rate (b) profiles, a significant increase across the averaged layers is observed at each wall-
normal location, the magnitude of which is deceasing towards the core of the pipe. For
the wall normal (c) and turbulent shear stress profiles (d), on the other hand, it can be seen
that there occurs a significant decrease in the magnitude across the sampled layers.

The jumps in the streamwise velocities are further quantified (similar to Chauhan et al.
[22], see Figure 3.15a) for each Re,, and for each wall-normal bin (Figure 3.15). Both
single set and three set results for Re, =752 are nearly identical, which implies that the re-
sults appear to be converged. Furthermore, it can be seen that the jumps in the streamwise
velocity are of the same order of magnitude for all the Reynolds numbers, that is between
10 = 17% of the centreline velocity near the wall and decreasing towards the core of the
pipe. However, it seems that these velocity jumps decrease in magnitude with Reynolds
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Figure 3.14: Conditionally sampled streamwise velocity, < u >, (a); dissipation, < &>, (b); wall
normal velocity, < v >, (¢); and turbulent shear stress, < —u’v’ >, (d) profiles. The
centre of the shear region is represented by y;, while (y — y;) represents the distance
from the centre of the layers in the wall normal direction. Shear layers are grouped
according to the location of their centres in the pipe, from 0.1R to 1R with a constant
increment of 0.1R. The arrow shows the direction of the wall (from 1R to 0.1R).
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Figure 3.15: (a) Jumps in the streamwise velocity profiles at several wall location, AU, which are
normalised by U,,. (b) Thickness of the shear layers at the same wall normal locations.
Yellow (diamond), blue (circle), red (triangle) and green (square) colors correspond
to the flow conditions at i.e. Re; =340, 752, 999 and 1259, respectively. Additionally,
filled circles correspond to data with three independent sets for Re, =752.

number. Based on the conditional streamwise velocity profiles (Figure 3.14 (a)), the thick-
ness of the layers is also determined (Figure 3.15 (¢)). It can be seen that the thickness of
the layers is between 0.045 — 0.09R.

Similar to the previous section, two-point correlations for the gradients of the stream-
wise velocity were performed in wall normal-streamwise planes to determine the effect
of the shear structures on the streamwise width of the correlation coefficient peaks. Fig-
ure 3.16 (a, ¢, e, g) shows the correlations conditioned on the detected shear layers, while
(b, d, f, h) correspond to the general correlations at the same wall normal reference posi-
tions. Similar to the thickness and the spanwise length of the correlation peaks, a signif-
icant increase in the streamwise length of the correlation coefficients are visible for the
former case. When the length scale determined from the width of the correlation peaks
based on R(uyu,) = 0.8 is compared for all Re, (Figure 3.17 (a)), it can be seen that the
increase is around 40% (Figure 3.17 (d)). Moreover, the correlations for the streamwise
velocity fluctuations (Figure 3.18) show that the presence of a shear layer (a, c, e, g) de-
creases the extent of the highly correlated regions in the wall normal-streamwise planes
compared to the correlations with the reference wall normal locations (b, d, f, h). Also,
it is seen that the shear layers are affecting the correlations across the plane, which was
observed to be quite local in the wall normal-spanwise plane (Figure 3.12). On the other
hand, still, similar types of average structures are obtained from these correlation coeffi-
cients for each condition in the streamwise-wall normal plane.

Furthermore, the streamwise shape of the shear layers was investigated through two
point correlations for [A] (Figure 3.19). However, similar results were obtained as for the
correlations of the streamwise velocity gradients.

Finally, in this section, conditional cross correlations were evaluated for the streamwise
velocity fluctuations, R,/ (y —y;;y" —y;), between certain wall-normal distances from the
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Figure 3.16: Iso-contours of two point correlation coeflicient for the gradients of the streamwise
velocity conditioned on the wall normal centre, (y —y; = 0), of the shear layers at
each streamwise position, R(uyuy, s)s (a, ¢, e, g); conditioned on reference points,
R(uyuy, ref), (b, d, f, h). The shear layers are binned according to the distance of their
core from the wall, y/R=0.1-0.2 (a), 0.3-0.4 (¢), 0.5-0.6 (e), 0.7 — 0.8 (g). The
reference points correspond to y/R=0.15 (b), 0.35 (d), 0.55 (f), 0.75 (h).

centre of the detected shear layers, (y' —y;), and all other wall locations (at the same
spanwise and streamwise position), which are positioned according to the centres of the
layers, (y — y;). For brevity, results only for Re; = 752 (a) and Re; = 1259 (b), and for
the shear layers between y/R = 0.5—0.6 are shown in Figure 3.20. As can be seen from
this figure, a significant decrease in the correlations across the layers occurs, which shows
the blockage effect of the internal shear layers. Similar results were reported before by
Ishihara et al. [62] for turbulent/non-turbulent interfaces (TNTI) in their direct numerical
simulations of a turbulent boundary layer.

3.4 CONCLUSIONS

In this chapter, a comprehensive analysis was presented on the properties of the internal
shear layers in a turbulent pipe flow. The experimental datasets used were acquired with
time-resolved stereoscopic PIV in the cross section of the pipe for four different Reynolds
numbers, Re; = 340, 752, 999 and 1259. For each flow condition, the shear layers were
detected using the method of Houriti & Kawaga [54], which enabled us to investigate the
3D features of these structures.
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Figure 3.17: (a) Streamwise length, L, of the peak of the correlation coefficients. Full lines with
open symbols are for the correlation conditioned on the wall normal centre of the
shear layers, and dashed lines with filled symbols are for the general correlation at
reference wall locations. (b), (c) and (d) shows percentage increase in the width of the
correlation peaks with the presence of the shear layers in the wall normal, spanwise
and streamwise directions, respectively.
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Figure 3.18: Iso- contours of two point correlation function for the streamwise velocity fluctua-
tions conditioned on the wall normal centre, (y —y; = 0), of the shear layers at each
streamwise position, R(u'u;), (a, ¢, e, g); conditioned on reference points, R(”’”;e ),
(b, d, f, h). The shear layers are binned according to the distance of their core from
the wall, y/R=0.1-0.2 (a), 0.3-0.4 (¢), 0.5-0.6 (e), 0.7 — 0.8 (g). The reference
points correspond to y/R=0.15 (b), 0.35 (d), 0.55 (f), 0.75 (h).
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Figure 3.19: Iso-contours of two point correlation coefficient for the shear values, [A] , conditioned
on the shear layer centre for two different wall normal locations, y/R =0.2-0.3 (a)
and y/R=0.5-0.6 (b).
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Figure 3.20: Conditional cross correlations, R,/(y —y;;y" —y;) between certain wall normal dis-
tances from the centre of the detected shear layers, (y' — y;), and all other wall lo-
cations which are positioned relative to the centre of the layers, (y — y;). Results
are for the shear layers whose centre is between the wall locations y/R = 0.5-0.6,
and for the Reynolds number Re; = 752 (a) and Re; = 1259 (b). Here, (y' —y;) =
-0.4,-0.3,-0.2, -0.1 and —0.01 (dashed lines) which are below the centre of the lay-
ers; and (y' —y;)~0.4,0.3,0.2 and 0.1 (solid lines) which are above the centre of the
layers. Gray contours show the approximate thickness of the shear layers.
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Visual examples of the shear layers together with the corresponding instantaneous ve-
locity fields showed clearly observable regions of similar streamwise velocities bounded
by the detected shear layers both in the spanwise-wall normal and streamwise-wall normal
planes. In particular, the core region of the pipe, which had relatively low turbulence, was
seen to be bounded by the layers. Also, the shear layers were observed to be elongated in
the streamwise directions (~ R), and they appear arc-like in the cross-sectional planes.

Conditional mean flow around the shear layers revealed a strong low speed region be-
neath the average shear layers. This low momentum flow was associated with strong posi-
tive wall-normal velocity fluctuations, and surrounded by two oppositely rotating swirling
motions. The shear layers, on the other hand, were observed to be stretched in the az-
imuthal direction by two oppositely signed secondary motions, keeping the layers thin in
the wall-normal direction. These findings are consistent with the conceptual picture of
Adrian et al [1] and support the relation between the shear layers and the hairpin struc-
tures.

Moreover, conditional averaging across the detected shear layers revealed significant
jumps in the flow properties (e.g. turbulent shear stress, streamwise and wall normal ve-
locities) occurring in the wall normal direction. In the azimuthal direction, on the other
hand, these layers were observed to block the flow, causing a decrease in the streamwise
velocity. In both direction, however, the analysis showed that these regions are highly dis-
sipative. Even for the shear layers near the core of the pipe, a significant increase in the
average dissipation rate occurs.

Further analysis on the shear layers was performed through two point spatial correla-
tions to reveal if and how much they affect the surrounding flow in an average sense. The
two point correlations were conditioned on the wall normal centre of the shear layers,
where the shear layers were grouped into according to their wall normal centre. For com-
parison, general correlations (i.e. not conditioned on shear layers) were also evaluated
for a given wall normal reference position. The resulting correlations revealed that the
shear layers significantly affect the average size of the correlation coefficient peaks in all
directions. Moreover, it was seen that the streamwise length of the structures are of the
same order as the large scale motions, which support the argument that the shear layers
are bounding the large scale motions having uniform velocities, i.e. UMZs. This argument
will be further discussed in the next chapter. Furthermore, cross correlations were carried
out for several reference points above and below the centre of the shear layers. The re-
sults revealed a significant decrease in the correlations across the layers, and the points
below and above the layers are less correlated. This clearly shows the blockage effect of
the internal shear layers similar to TNTIs.
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UNIFORM MOMENTUM ZONES

4.1 INTRODUCTION

In Chapter 3, the properties of the internal shear layers identified using a 3D detection
scheme were discussed in detail. The results revealed that these highly dissipative struc-
tures are elongated in both the streamwise and spanwise directions. Furthermore, the in-
ternal shear layers are bounded by large scale regions of nearly uniform velocities. This
strongly suggest that the shear layers are the edges of the so-called uniform momentum
zones (UMZs). Therefore, in this chapter, we detect and analyse the edges of the UMZs
for later comparison with the internal shear layers.

The UMZs are basically large scale regions identified by employing the histogram ap-
proach of Adrian et al. [1] and de Silva et al. [111]. With this current work, we aim to
provide a comparison between these two different detection methods for the shear layers
in a statistically steady turbulent pipe flow. In previous studies (e.g. de Silva et al. [111],
Kwon et al. [73], Laskari et al. [74]), the edges of the UMZs were analysed in wall normal-
streamwise planes (and for 2D data only). Here the analysis is extended to other orienta-
tions of the plane, i.e. wall normal-streamwise versus wall normal-spanwise plane, when
using the histogram method. Furthermore, with all the UMZ edges determined from the
wall normal-streamwise planes at different azimuthal position across the pipe, the cross-
stream connectivity of the UMZ edges can also be explored, which also allows assessing
the consistency of the method.

For the analysis in the present chapter, the same datasets, as well as the same notations
and the coordinate system are used, as in Chapters 2 and 3. This chapter is organised as
follows: In the following section (§4.2), the UMZs and their edges are analysed over the
wall normal-streamwise (§ 4.2.1) and wall normal-spanwise planes (§ 4.2.2), separately.
Then, in Section 4.2.3, a visual and a quantitative comparison is given of the UMZ edges
obtained using the histogram approach and the shear layers that were detected using a 3D
detection method in Chapter 3. Finally, the findings are summarized in Section 4.3.

4.2 RESULTS AND DISCUSSION

4.2.1 UMZS IN THE WALL NORMAL-STREAMWISE PLANE

In this section, we use the streamwise-wall normal plane to plot the histogram of the
streamwise velocities, and accordingly detect the continuous edges of the UMZs. The
wall normal plane extends from y=0.05R to the core of the pipe (y=R). The streamwise
extent of the plane, on the other hand, is limited to ~ 2.2R (explained below) for each
flow condition considered in this section. Since the data was acquired in the cross section
of the pipe with time-resolved stereoscopic P1V, the streamwise length was reconstructed
using Taylor hypothesis with the bulk velocity as the convection velocity. Following de
Silva et al. [111], the location of a UMZ edge was approximated by the streamwise veloc-
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Figure 4.1: (a) Sample instantaneous field of the streamwise velocity, #, normalised by the central
velocity of the pipe, U,;, together with the detected UMZs and their edges on a wall
normal-streamwise plane. (b) The corresponding histogram of the streamwise veloci-
ties over the plane shown in (a). R/, R2 and R3 show three different regions of similar
velocities (UMZs), while the black continous lines in (a) correspond to the mid points
between the peaks in the pdf as indicated by the dashed lines in ().
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Figure 4.2: Pdf of the number of the detected UMZs over the wall normal-streamwise planes with
case A (a), case B (b) and case C (c). Yellow (diamond), blue (circle), red (triangle)
and green (square) correspond to the flow conditions at Re, =340, 752, 999 and 1259,
respectively.

ity contour corresponding to the mid-point between the local peaks in the histogram of
the streamwise velocities. Figure 4.1 (a) shows a sample field of the streamwise velocity
together with the UMZ edges (black lines), and (b) shows the corresponding histogram
of the streamwise velocities over this plane. The local peaks on the histogram correspond
to the so-called modal velocities, and the locations of the UMZ edges in (a) were the
mid point between these modal velocities. The regions demarcated by these edges, i.e.
RI, R2 and R3, are called UMZs, since within each region the magnitude of streamwise
velocity is nearly constant. Note that the histogram of the streamwise velocities was not
much affected by peak locking. Therefore, the raw data without any smoothing was used
throughout this chapter.

In this section, all the streamwise velocities over each plane were distributed over 50

histogram bins, which corresponds to a bin size of ~0.12U; for all the cases considered.

In addition, to correctly identify the modal velocities and accordingly the edges of the
UMZs, the greater of the peaks that were separated by only a single histogram bin was
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Figure 4.3: Pdf of the velocities corresponding to the location of the UMZ edges, U;/ U, (a, ¢) and
the pdf of the modal velocities, U,,/ U, (b, d). Dashed, full and dotted lines show the
results for the case A, case B and case C, respectively. Results for the case B are shown
separately in (¢, d). Yellow, blue, red and green correspond to the flow conditions
Re =340, 752, 999 and 1259, respectively.
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chosen as the peak, and the smaller one was ignored. Furthermore, peaks whose count
was less than 0.5% of the total number of the data points in the considered plane were
also ignored to avoid noisy peaks affecting the identification near the wall. It should also
be noted here that the modal velocities are highly dependent on the number of histogram
bins. If the number of bins increases, then more modal velocities and UMZ edges are
identified. However, the locations of the detected UMZ edges become very close to each
other, such that the distance between them becomes less than the thickness of the shear
layers discussed in Chapter 3.

Another important parameter affecting the number and the location of the UMZ edges
is the streamwise extent of the considered plane. If the streamwise length of the plane is
very long then no separation between the regions of similar velocities occurs, since the
histogram would average to its mean, which is resulting in a single peak. On the other hand,
if the streamwise length is very short then the total number of data points in the plane is
not enough to accurately define the UMZs and their edges. In this study, a streamwise
length (~ 2.2R) was chosen after conducting several analysis with different streamwise
lengths, ranging between 1.2R and 2.5R. The results revealed that, although the number
density of the UMZ edges varied with the size of the streamwise distance, the overall
statistics were observed to be almost identical over the ranges considered. Therefore, to
have enough data points for each flow condition, a streamwise length ~ 2.2R was employed.
This length corresponds to Ax* ~ 752, 1682, 2208 and 2798 for Re, =340, 752, 999 and
1259, respectively.

In this section, the azimuthal continuity of the detected modal velocities was also used
as an additional criterion on the peaks of the histogram plots. Compared to the base case
(case A), where no azimuthal condition is applied, for case B only the peaks that also ap-
peared at least on one of the neighbouring wall normal-streamwise planes are considered.
The azimuthal spacing between two neighbouring planes is 0.01R (arc length) at the wall,
which is much smaller than the thickness of the internal shear layers. For case C, on the
other hand, the peaks on the histogram of the base plane were required to repeat on two
other consecutive planes located azimuthally either before or after the current azimuthal
position. Note that, throughout this chapter, unless otherwise stated, the results using the
first azimuthal criterion (case B) are presented.

Figure 4.2 shows the resulting pdf of the number of the UMZs in a plane for each
Reynolds number and also for the different azimuthal conditions (cases A, B and C, men-
tioned above). It can be seen that the distributions are not very sensitive to the azimuthal
condition. Similar behaviour with respect to the azimuthal condition is also observed in
the pdfs of the velocities corresponding to the identified UMZ edges, and of the modal
velocities. From these plots it can also be seen that a significant number of the velocities
corresponding to the UMZ edges appear around 95% of the central velocity of the pipe,
U.;, while the modal velocity pdfs peak at U,;. Similar behaviour was also reported previ-
ously by Kwon et al. [73] for a turbulent channel flow using a similar histogram approach.
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Figure 4.4: Rms of the streamwise velocity (a), turbulent shear stress (b), mean of the streamwise
velocity fluctuation (c¢), mean of the wall normal velocity fluctuation (d), Q2 events (e)
and Q4 events (h) that were conditioned on the number, N, of the UMZs for Re, =752.
ur, T, and Q,,, are the wall friction velocity, wall friction and the total number of the
quadrant events, respectively. Arrows show the direction of an increase in the number
of the UMZs. Data show in black in (a and b) corresponds to the baseline profiles
without any conditioning.



4.2 RESULTS AND DISCUSSION

To investigate if there is any correlation between the number of the UMZs and the
turbulence statistics, such as the rms of the streamwise velocity, turbulent shear stress,
mean of the streamwise and wall normal velocity fluctuations and sweep (1’ > 0, v/ <0,
Q4) and ejection (1’ <0, v/ >0, Q2) events, further analysis was performed conditioning
these profiles on the number of the detected UMZs in the plane (Figure 4.4). It can be seen
that different behaviour for the profiles are observed with different number of the nearly
uniform zones. For the rms and the turbulent shear stress profiles, it can be seen that
for the number of zones (i.e. N=4,5 and 6) the statistics are similar to the unconditional
results. For the higher numbers (i.e. N=7, 8 and 9), a significant increase in the turbulence
intensity, as well as the turbulent shear stress is observed within the logarithmic layer. Near
the wall and the core of the pipe, however, these profiles are similar to the profiles for the
cases where N=4, 5 or 6. For the other two lowest numbers (N =2 and 3), on the other hand,
it can be seen that both the turbulence intensity and the turbulent shear stress values are
higher than the unconditional cases in the inner wall cycle whereas they are approaching to
the unconditional values near the core region. Furthermore, from the conditional mean of
the streamwise and wall normal velocity fluctuations (i.e. u” and v") as well as the quadrant
events (02 and Q4), it can be seen that a small number of zones (i.e. N <5) is associated
with positive streamwise and negative wall normal veloctity fluctuations, which results
in sweep events, Q4. The higher (i.e. N > 5) number of the zones, on the other hand, is
associated with negative streamwise and positive wall normal velocity fluctuations, that
is ejection (Q2) events, as can be seen in Figure 4.4 (e and f). Similar relation between
Q2 and Q4 events and number of the UMZs was recently reported by Laskari et al. [74]
in a TBL. Note that, in Figure 4.4, only the profiles for Re, =752 are shown for brevity,
since the results for the other flow conditions are similar.

Finally, in this section, the edge of the UMZs detected over the wall normal-streamwise
planes at each of the azimuthal planes were projected onto the cross section of the pipe for
each flow condition (Figure 4.5). It can be seen that for the lowest Reynolds number (i.e.
Re; =340), the edge of the UMZs are coherent in the spanwise direction and separating
the regions of similar velocities in the cross section of the pipe, in the same way as in the
wall normal-streamwise planes where they were originally identified. The same applies
to the results obtained at other Reynolds numbers. However, the continuity of the UMZ
edges in the spanwise direction is not as clear as those for Re; =340. This is partly due to
the noisy peaks in the histogram at higher Reynolds number, which could be a result of the
decreased spatial resolution in the streamwise direction, hence, smaller amount of velocity
points in a given area. In addition, the increased random behaviour of the flow with the
Reynolds number is also an important factor effecting the histograms of the streamwise
velocities.
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Figure 4.5: The projection of the edges of the UMZs, which were detected using the streamwise-
wall normal plane, onto the wall normal-azimuthal plane (black regions) for the flow
conditions Re; =340 (a), Re- =752 (b), Re: =999 (c) and Re; =1259 (d). Background
colour shows the instantaneous streamwise velocity field normalised by the central
velocity, U,;.
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Figure 4.6: (a) Sample instantaneous field of the streamwise velocity, u, normalised by the central
velocity of the pipe, U, together with the detected edges of the UMZs (black con-
tour lines) on a wall normal-spanwise plane. (b) The corresponding histogram of the
streamvise velocities over the plane shown in (a). RI, R2, R3, R4 and R5 show five
different regions of similar velocities (UMZs), while the black continous lines in (a)
correspond to the location of the UMZ edges determined by the dashed lines in (b).

4.2.2 UMZS IN THE WALL NORMAL-SPANWISE PLANE

In this section, the UMZs and their edges were detected over the cross section of the
pipe, which has not been reported before. In this case, the UMZs and their edges were
detected using the histogram of the streamwise velocities in the spanwise-wall normal
plane where the bin size was ~ 0.12U,;. As before, the locations of the UMZ edges on
that plane were identified by considering the mid point between the local peaks in the
histogram (Figure 4.6). For the histogram peaks that were separated by a single bin, the
greater one was selected as before (§ 4.2.1).

As can be seen in Figure 4.7 (a), similar distribution for the total number of the UMZs
in the cross section is observed for all the considered flow conditions. These distributions
are also consistent with those, except for Re = 340, presented in Figure 4.2 based on the
detection in the streamwise wall-normal plane. Also, the pdfs of the velocities correspond-
ing to the location of the UMZ edges are quite similar to those obtained in the streamwise
wall-normal plane (compare Figure Figure 4.7 (b) and Figure 4.3 (a, c¢)). Again, the edge
velocities are mostly appearing around 0.95U ., bounding the relatively less turbulent core
region of the pipe.

4.2.3 COMPARISON OF THE UMZ EDGES AND THE SHEAR LAYERS

In this part, the edges of the UMZs and the identified shear layers are compared (both
visually and quantitatively). Figure 4.8 and 4.9 provide a visual comparison of the UMZ
edges detected using different orientation of the planes and the shear layers. These figures
present the results for Re; = 340 and for Re, = 752, respectively, to allow comparison
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Figure 4.7: (a) Pdf of the number of the UMZs detected using the spanwise-wall normal planes.
(b) Pdf of the instantaneous velocities corresponding to the location of the detected
UMZ edges. Yellow (diamond), blue (circle), red (triangle) and green (square) symbols
correspond to the flow conditions Re, =340, 752, 999 and 1259, respectively.

between two different Reynolds numbers. From the contour plots in Figure 4.8 (b) and 4.9
(D), it can be seen that the shear layers are appearing on the continuous edges of the UMZs
which were detected using the cross section pdf (wall normal-spanwise plane). Although
the shear layers are not fully connected in the azimuthal direction as are the UMZ edges,
they have a significant azimuthal length. When the UMZ edges that were detected from
wall normal-streamwise planes are compared with the shear layers (see Figure 4.8 (¢) and
4.9 (c)), it can also be seen that they correspond mostly to the regions of intense shear.
Furthermore, the azimuthal extent of the densely populated regions of the UMZ edges
(magenta) can be seen to be comparable to the azimuthal length of the shear layers.
Based on the visualizations it appears that the shear layers coincide with the edges of the
UMZs. This correspondence was quantified by considering the distance from the core of
a shear region to the nearest edge of the UMZs (defined over the wall normal-streamwise
plane). It was found that this distance is smaller than the thickness of the shear layers
(Figure 4.10 (a)). When the locations of the core of the shear layers are compared with
those of the UMZ edges defined over the cross section of the pipe, it can be seen that all
the shear layers are residing very close proximity of the these UMZ edges; see Figure 4.10
(b). For the distance between the UMZ edges determined over the two different orientation
of planes, it can be seen in Figure 4.10 (c) that the distance is greater than the previous
two cases. These results show that the shear layers detected by the 3D method have a very
good overlap with the UMZ edges detected by the histogram method. However, the reverse
is not the case. This is obvious for the UMZ edges determined from the cross section of
the pipe, since the shear layers are not continuous in the azimuthal direction. For the
UMZ edges determined from the wall normal-streamwise planes, these UMZ edges do
not always correspond to a detected shear layer. It should also be noted in this section that
the results are quite similar over the range of the Reynolds numbers considered.
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Figure 4.8: Comparison of the shear layers detected using the 3D method (black regions), edges
of the UMZs defined using the wall normal-spanwise planes (black contour lines) and
the projection of the UMZ edges identified over the wall normal-streamwise planes
(magenta regions). (a, b, ¢) and (d) show different combinations of the UMZ edges
and the shear layers for better comparison. Results correspond to the flow contion
at Re = 340, and backgound colormap shows the instantaneous streamwise velocity
normalised by U,;.

Finally, when the pdf of the number of the UMZs that were determined based on the
occurrence of the shear layers at each spanwise and streamwise location (Figure 4.10 (d))
are compared with those in Figure 4.2 and Figure 4.7 (a), a very similar distribution was
found. These results also suggest that the distribution for the number of the UMZs does
not change with Reynolds number in a turbulent pipe flow; at least within the range of the
Reynolds number considered in this study, no significant variation was found.

4.3 CONCLUSIONS

Following the work in Chapter 3, where a comprehensive analysis on the internal shear lay-
ers which were defined using a 3D detection method was provided, in the present chapter,
UMZs and their edges were investigated using the histogram approach.

The histogram approach has been frequently employed in the literature, however, the
analysis has been limited to the wall normal-streamwise planes at a certain spanwise po-
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Figure 4.9: Comparison of the shear layers detected using the 3D method (black regions), edges
of the UMZs defined using the wall normal-spanwise planes (black contour lines) and
the projection of the UMZ edges identified over the wall normal-streamwise planes
(magenta regions). (a, b, c) and (d) shows different combinations of the UMZ edges
and the shear layers for better comparison. Results correspond to the flow contion
at Re = 752, and backgound colormap shows the instantaneous streamwise velocity
normalised by U,,.
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Figure 4.10: Pdf of the distance of the core of the shear layers (Chapter 3) from the edges of
the UMZs defined using the wall normal-streamwise planes (a) and using the wall
normal-spanwise planes (b). (¢) Pdf of the distance of the UMZ edges determined
in wall normal-streamwise planes to the UMZ edges detected using the wall normal-
spanwise planes. (d) Pdf of the number of the UMZs which were determined based
on the occurance of shear layers at each spanwise and streamwise direction. Yellow
(diamond), blue (circle), red (triangle) and green (square) correspond to the flow con-
ditions Re =340, 752, 999 and 1259, respectively.
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sition, over which the histogram is constructed using the streamwise velocity information.
Therefore, the spanwise width of the UMZ edges could not be obtained. With the cur-
rent work, on the other hand, the UMZ edges that were obtained over the wall normal-
streamwise planes at each azimuthal position were projected onto the cross section of
the pipe. With this approach, the spanwise extent of the UMZ edges could be visualised.
The results showed that the UMZ edges appear to be connected in the spanwise direction
(when the densely populated regions of the UMZ edges are considered).

Furthermore, different than in previous studies, a different orientation of the plane, i.e.
wall normal-spanwise plane, was also used to investigate the UMZ edges in the cross
section of the pipe with the same histogram approach. Analysis with this new plane also
revealed similar UMZ edges that are separating regions of nearly uniform velocities, sim-
ilar to the findings in the wall normal-streamwise planes.

In the last part of this chapter, the UMZ edges defined using the histogram approach
with two different orientation of the planes were compared with each other, as well as the
shear layers that were defined using the 3D detection method. Both visual results and the
quantitative analysis showed that the detected shear layers mostly reside over the detected
UMZ edges, such that the distance of the core of the shear layers from the UMZ edges
was found to be much smaller than the thickness of the shear layers. However, since the
spanwise and streamwise lengths of the intense shear regions do not appear as long as
the UMZ edges, also because of the nature of the histogram method, the reverse does not
hold, i.e. the detected UMZ edges through the histogram method do not always appear to
overlap with the shear layers defined by the 3D method.
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5.1 INTRODUCTION

From the blood flow in large arteries to the flow over wind turbine rotors, unsteady turbu-
lent flows are commonly encountered in nature as well as in engineering and biomedical
sciences. Considering its practical impact on these fields, the ability to accurately predict
and model these type of flows is very important. The research on unsteady turbulent flows
is also important to gain further insight into the nature of turbulent flows. In particular,
the non-periodic unsteady flows, which is the focus of this chapter, can reveal valuable
information about the non-equilibrium state of turbulent flows.

Studies on unsteady turbulent flows can be classified into two broad groups, i.e. peri-
odic and non-periodic flows. For periodic turbulent flows, the unsteadiness is imposed by
periodic pulsations (having non-zero mean flow) or oscillations (having zero mean flow).
The frequency and amplitute of these regular changes together with the mean flow rate
define the unsteady flow (e.g. Mizushina et al. [89]; Tardu et al. [115], Choi et al. [23],
Maurizio & Stefano [100], He & Jackson [50]). Non-periodic turbulent flow, on the other
hand, is a non-equilibrium state. These type of flows are studied by either a rapid (step-
like) or a gradual (ramp-like) change in the initial statistically steady turbulent state that
eventually ends up with a different turbulent state. The process is highly dependent on the
rate at which the unsteadiness is imposed and the difference between the initial and final
turbulent states.

One of the earliest works on unsteady turbulent flow was conducted experimentally
by Maruyama et al. [86]. They considered turbulent pipe flow and achieved the unsteadi-
ness by a step-like change in the mass flow rate by the help of solenoid and sluice valves.
They carried out instantaneous velocity and wall shear stress measurements by an electro-
chemical method (with probes made of platinum wires). The variation in the turbulence
intensity led them to conclude that the propagation and generation of the new turbulence
was the dominant process after the sudden increase in the mass flow rate in the pipe, while
the decay of the old turbulence is the leading process after the step-like decrease. They
also observed that the turbulence first responded near the wall, and then the response prop-
agated towards the core of the pipe. This finding was later supported by the experiments
of He & Jackson [49], who studied constantly accelerating and decelerating turbulent pipe
flows using two-component laser Doppler anemometry (LDA). They also detected three
different delays in the response of turbulence, i.e. in turbulence production, energy redis-
tribution among its three components, and radial propagation of turbulence.

Considerable effort has also been put into the investigation of wall shear stress be-
haviour after the onset of unsteadiness (Shuy, [110]; Kurokawa & Morikawa [72], Ari-
yaratne et al. [6], Brunone & Berni [19], He et al. [47], [48]). He et al. ([47], [48]) ob-
served that depending on the balance between the inertia of the flow and the delays in the
response of turbulence, the wall shear stress undergoes three different stages in a gradually
accelerated turbulent pipe flow. During the first stage, the wall shear stress first overshoots
the quasi-steady value, and then decreases until it undershoots. The second phase starts
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with the generation of new turbulence, which increases the wall shear stress again. Finally,
in the third stage, the wall shear stress approaches the quasi-steady value. If the total wall
shear stress is split into the quasi-steady and unsteady parts, it was reported that the latter
component tends to be positive for an accelerated flow due to inertia (due to increase in
the velocity gradients), while the delays in the response of turbulence tend to cause a neg-
ative value for the unsteady wall shear stress (Vardy et al. [125], He et al. [48]). Similar
competition between the inertia and delays in the response of turbulence occur for a grad-
ually decelerating flow too, which finally determines the sign of the unsteady component
of the wall shear stress (Ariyaratne et al. [6]).

In addition to these studies, a different perspective on the transition process of non-
periodic flows was introduced by He & Seddighi ([51]) based on their DNS in a turbulent
channel flow exposed to a step increase in the flow rate. They argued that the transition
from a certain turbulent state at low Reynolds number (Re, = 2800) to another turbulent
state (Rep =7400) is similar to a boundary layer bypass transition due to free stream tur-
bulence. Here, Rey, is defined based on the bulk velocity and half channel height. They re-
ported three distinct stages during the turbulent transition process, namely: pre-transition,
transition, and fully turbulent stages. When compared with laminar-turbulent transition,
these phases correspond to buffeted laminar flow, the intermittent flow, and fully turbu-
lent flow phases. They showed that the initial streaky structures become elongated in the
streamwise direction during the pre-transition stage. With the generation of local turbu-
lent spots, due to the growing instabilities, the transition stage starts. These turbulent
spots grow both in the streamwise and spanwise directions until they inhabit the entire
wall surface, which finally completes the whole transition process. Later, He & Seddighi
([52]) extended this work with different initial and final Reynolds numbers ranging from
Rej, = 2800 to Rep = 12600. Although they found the same three phases resembling the
laminar-turbulent transition, they observed significant differences in the flow structures
depending on the Reynolds number ratio. For low Reynolds number ratios, for instance,
the elongated streaky structures and turbulent spots become less identifiable.

The existing literature on non-periodic turbulent flows is quite limited. In particular,
very little is known about the coherent structures (e.g. large scale motions, shear layer
structures) and their development along accelerating/decelerating flows. To shed some
light on this issue, an experimental investigation with stereo-PIV was conducted in accel-
erating and decelerating turbulent pipe flow. The ramp-type unsteadiness for both cases
were achieved by a constant change in the mass flow rate starting from an initial statisti-
cally steady turbulent state.

This chapter is organised as follows: A description of the experimental setup, method-
ology and flow conditions is given in section 2. This is followed, in section 3, by the
results of the first and second order turbulence statistics, the structural properties of co-
herent motions based on two-point correlations and a brief discussion of the development
of shear layer like structures along the acceleration/deceleration. Finally, the findings are
summarized in section 4.
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5.2 EXPERIMENTAL DATASETS AND METHODOLOGY

The stereo-PIV experiments for steady and unsteady flow conditions were performed in
the same pipe flow facility that was introduced in Chapter 2. The experiments for the
statistically steady flow conditions were carried out at Rep = 15393 and Rep = 47727.
Here, Rep is the Reynolds number based on the diameter, D, of the pipe, Rep = UpD/v,
where Uy, is the bulk velocity, and v is the kinematic viscosity of the fluid (which is water
for the current experiments). Further details about these datasets including the accuracy
of these measurements can be found in Chapter 2.

The unsteady cases, on the other hand, were achieved through a ramp-type change in the
mass flow rate, which was controlled with a LabView programme. The first unsteady case
covers the experiments conducted along the imposed acceleration from an initial steady
turbulent state of Rep =15393 to a different turbulent state where Rep =40228 (Figure 5.1
(a)). The second case, on the other hand, consists of the experiments where the mass
flow was decelerated at a constant rate from the steady turbulent state, Rep = 47727, to
Rep =23396 (Figure 5.1 (b)). Using the same LabView programme, the two high-speed
cameras were triggered by the initial input sent to the centrifugal pump to change the flow
rate, and the time-resolved stereo-PIV images were recorded in the cross section of the
pipe for ~2.1s.

Due to a time lag in the mass flow meter (Krohne-Altometer), the resulting bulk velocity
information from the flow meter was rendered inaccurate. Therefore, at each time instant,
the bulk velocity was determined based on the data from the stereo-PIV images. The dif-
ference between the bulk velocities determined from the PIV images and the flow meter
is less than 2.5% for all the steady flow conditions considered in this chapter. Therefore,
similar error is expected in the determination of the bulk velocity during the ramps. Conse-
quently, the evaluation of the Reynolds number (Figure 5.1) was derived using stereo-PIV.
As can be seen in these plots, for both cases after a time lag of ~0.21 s, the Reynolds num-
ber starts to change. On the other hand, it can be seen that both ramps are quite repeatable,
where a maximum deviation of ~ 1.3% and ~ 0.34% occurs among the repeated cases
for the accelerated and decelerated cases, respectively. These deviations are acceptable
considering the maximum deviation occurring among the repeated steady cases, which is
~ 0.3%. Furthermore, to analyse the development of the response of turbulence, as well
as the structural properties along these ramps, the trajectories in Figure 5.1 (a and b) are
divided into five equal length segments, i.e. Ty =t; —t, Tr =t —t3, T3 =t3 —t4, T4 =14 — t5
and T5=t5 —tg, where 11 =05s,1,=0425s,13=0.84 8,14 =126 s, 15=1.68 s and 1 = 2.1
s. The statistical properties are averaged over these sections in order to improve statistical
convergence.

As previously mentioned, both steady and unsteady turbulent flows were captured with
high-speed, stereoscopic PIV, where the measurement plane was perpendicular to the
streamwise velocity. The thickness of the light sheet was 0.9 mm. The particle images
were recorded using two high speed CMOS cameras with a 2176 x 1600 pixel format
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Figure 5.1: Excursions of the ramp-type accelerating (a) and decelerating (b) unsteady turbulent
flow cases, along which the time-resolved PIV images were recorded. Solid lines cor-
respond to Rep/Rep o, and different colours represent the repeated experiments for the
same case. Here, Rep, and Rep ¢ represents the instantaneous and initial Reynolds num-
bers, respectively, which are defined based on the bulk velocity, Uj, and the diameter
of the pipe, D. Black dashed lines correspond to the instantaneous wall friction veloc-
ity, u,, normalised by the initial value, u, o, during the same excursion. The excursions
for both unsteady cases last # ~2.1 s.

(Phantom VEO 640L 4M, LaVision). The field of view of was 2.39R X 2.23R, where R is
the radius of the pipe. The high speed cameras were equipped with a Micro-Nikkor F105
mm objective operating at an aperture number of f; = 11, and the time-resolved vector
fields were captured at a frame rate of 0.859 kHz. Three independent sets for the steady
cases, and 4 and 5 sets for the accelerating and decelerating flow cases were collected,
respectively, where each set contains 1799 instantaneous velocity fields.

For all these experiments, calibration, data acquisition, and post-processing were per-
formed with a commercial software package (Davis 8.4, LaVision). The PIV images were
interrogated with a multi-pass interrogation technique, where the final interrogation win-
dows had a 24 x 24 pixel size with 75% overlap, corresponding to a spatial resolution
based on the window size of 11.1 and 29.7 viscous wall units u, /v for the steady cases,
Rep =15393 and 47727, respectively. The spatial resolution of the unsteady cases varies
between these two numbers.

Similar to the previous chapters, r, 6 and x represents the radial, azimuthal and axial
coordinates, respectively. With a coordinate transformation from the cylindrical coordi-
nates to the Cartesian coordinates, x, y = R — r and z = rf represent the streamwise, wall
normal and spanwise direction, respectively. The corresponding instantaneous velocity
components are shown by u, v and w. Velocity fluctuations are denoted by prime symbols
(e.g. u’), and mean quantities are denoted by capital letters (e.g. U). The superscript ‘+ is
used to denote the inner scaling of length (e.g. y* =yu,/v) and velocity (e.g. u™ =u/u;).
Moreover, in this chapter, u, and u, o represents the wall friction velocity for the instanta-
neous and initial steady state flow conditions, respectively. Note that, all these wall friction
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definitions are based on the Blasius emprical correlation [15], since direct (fast enough)
pressure measurements were not possible during the current experiments.

5.3 RESULTS AND DISCUSSION

5.3.1 FIRST AND SECOND ORDER TURBULENCE STATISTICS

One of the difficulties in unsteady turbulent flow studies is to acquire a large number of
independent samples, which is crucial for accurately determining the velocity fluctuations
and therefore the turbulence statistics. In this work, to determine the velocity fluctuations,
at each time instant, ¢, along the ramp, the local mean velocity at each wall normal position,
v, is determined by averaging the independent sets, n, and also using spanwise averaging,
z,(eg.u' (y,zt,n)=u(y z t,n)—U(y 1), with:

1 Z N
Uy, 1) = mzzu(y 21, n). (5.1)

z=1 n=1

Here, Z and N represents the total azimuthal points at each wall normal position and
the number of the independents sets, respectively. Note that the present method is only
for determining the velocity fluctuations; all the turbulence statistics (e.g. rms, two-point
correlations) were determined based on the standard approaches, as in Chapter 2.

To assess the accuracy of the fluctuations determined by this method, the rms profiles
based on this method were compared with those based on both temporal and spanwise
averaging (the standard approach) for the steady cases, i.e. Rep = 15393 and 47727. Fig-
ure 5.2 (a, b) show the resulting rms profiles between y/R = 0.05 — 1 for both cases. It
can be seen in Figure 5.2 that the fluctuations determined on basis of the method defined
in this chapter is in quite good agreement with their counterparts defined by the standard
approach, except at the wall normal distances above y/R =0.8. Near the core of the pipe,
apparently, more samples are needed to accurately define the velocity fluctuations. In the
present chapter, the analysis was conducted between y/R = 0.1 — 0.8, and the deviations
in the rms of the streamwise velocity fluctuations were found to be less than 3.6% every-
where in this range for both flow conditions. For the other rms profiles, the results are
identical except the rms profile of the wall normal velocity fluctuation for Rep = 15393,
where an overestimation around ~ 7% is observed. Further details about the accuracy of
the steady data itself can be found in Chapter 2.

For further analysis, the data along the unsteady accelerating and decelerating ramps
were divided into five equal time intervals (see Figure 5.1 (a, b)), over which the turbu-
lence statistics were determined. Figure 5.3 shows the profiles for the mean streamwise
velocity over each time interval for the accelerating (a, ¢) and decelerating (b, d) flows. In
(a, b), it can be seen that in the first time interval, there is no change in the mean stream-
wise velocity profiles. Starting with the second interval, deviations from the initial profiles
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Figure 5.2: Rms profiles of the velocity components for the steady cases, i.e. Rep =15393 (a) and
47727 (b). Solid (-), dashed (——) and dotted-dashed (—-) lines correspond to u,

rms?
Vi and wi o respectively. Profiles shown by red correspond to the results using the

velocity fluctuations determined from the standard approach, while the profiles shown
by blue present the results where the velocity fluctuations were determined based on
the method described in this section. For both approaches, however, time resolved data
used for the determination of the rms profiles.

become significant. When the mean streamwise velocity profiles are normalised by the in-
stantaneous wall friction velocity, it can be seen that the mean velocity profiles for the
decelerating flow (d) follow the log law for each time interval. For the accelerating case
(c), on the other hand, starting with the second time interval, deviations in the log region
appear. The mean streamwise profiles first overshoot the profile for the initial steady case
(shown in blue) in the log region, then become quite similar again, and in the final time
interval undershoot it. Considering the studies of He et al. ([48], [47]) who reported the
response of the wall friction for an accelerated turbulent pipe flow, the deviations from the
log profile could be due to a possible discrepancy between the real wall friction during the
acceleration and the one determined from the PIV images, which is based on Blasius the-
ory for a statistically steady flow. Otherwise, it implies the difference in the behaviour of
accelerated flow from the steady turbulent flow. The decelerating flow, on the other hand,
behaves like a quasi-steady flow, where all the profiles determined from each time inter-
val collapse, when the wall friction velocity information is derived from steady Blasius
theory.

For the same time intervals along the ramps, the rms of the streamwise velocity fluc-
tuations and the turbulent shear stress profiles are shown in Figure 5.4 (a, ¢) and (b, d),
respectively. Profiles in (a, b) correspond to the results for the accelerated flow, while the
profiles for the decelerated flow are shown in (¢, d). For both the accelerating and deceler-
ating cases, it can be seen that there is a delay in the response of turbulence to the change
in the mass flow rate, such that the profiles from the first two sections are nearly iden-
tical when normalised by the initial u, ,. When the rms of the streamwise velocity and
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Figure 5.3: Mean velocity profiles of the streamwise velocity, U, for the accelerating flow, (a, ¢)
and decelerating flow, (b, d). The mean profiles in (a and b) are normalised by the
initial wall friction velocity, u; ¢, while profiles in (¢ and d) are normalised by the
instantaneous wall friction velocity, u,. Both u; ¢ and u, are determined using the
bulk velocity information from the PIV images. Blue, red yellow, purple and green
lines correspond to the data averaged over 711, 7>, T3, T4 and Ts, respectively. Profiles
shown by black (a and b) and magenta (c and d) correspond to the statistically steady
initial flow conditions and the experimental data of Toonder & Nieuwstadt ([121]) at
Rep = 24600, respectively. Insets in (¢ and d) provide closer views.
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Figure 5.4: Rms profiles of the streamwise velocity fluctuation, u;,,,, (a, ¢) and Reynolds shear

stress, (—u’v’), (b, d), for the accelerating (a, b) and decelerating (c, d) flows. Rms and
Reynolds shear stress profiles are normalised by the wall friction velocity, u, o, and the
wall friction, 7, ,, of the initial steady state. Blue, red yellow, purple and green lines
correspond to the data averaged over times 71, 7>, 73,74 and T5, respectively. Black
lines show the initial steady data. Arrows shows the direction of the time increase.

Reynolds shear stress profiles are normalised by u, and T, respectively, it can be seen
in Figure 5.5 that the overall turbulence intensity and turbulent shear stress are lower for
the accelerating case, whereas they are higher for the decelerating case when compared
with their steady counterparts. This again may be explained by a delay in the response of
turbulence.

Finally, the rms of all the velocity components as well as turbulent shear stress profiles
are plotted versus time (Figure 5.6). For convergence, the data was averaged over certain
bins, i.e. y/R=0.1-0.2,0.2-0.3,03-04,04-0.5,05-0.6,0.6-0.7,0.7-0.8.
Moreover, the profiles were smoothed using a moving average filter with a length of /,,, /[ =
0.056, where [ is the overall temporal length of the data (in seconds). As has been reported
in the literature, the response of turbulence is observed to appear first near the wall for both
cases (accelerating and decelerating), and then it propagates towards the core of the pipe.

5.3.2 TWO-POINT SPATIAL CORRELATIONS

In this section, the development of two-point correlations along the accelerating and de-
celerating ramps is investigated. Similar to § 5.3.1, the averaging was performed over five
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Figure 5.5: Rms profiles of the streamwise velocity fluctuation, u},, ., (@) and Reynolds shear stress,
(—u’v"), (b). Solid blue and red lines represent the initial steady data for Rep =15793 and
Rep =47727, respectively. Dashed blue and red lines correspond to the averaged data
along the accelerating and decelerating ramps, respectively. Profiles are normalised by
the instantaneous wall friction velocity, u. , and wall friction, 7,,, determined from the

PIV snapshots averaged over the independent sets.
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Figure 5.6: Rms profiles of the streamwise velocity, u},., (a, b), wall normal velocity, v},,., (c,
d), azimuthal velocity, w}, ., (e, f) and Reynolds shear stress, —u'v', (g, h), for the
accelerating (a, ¢, e, g) and decelerating (b, d, f, h) flows. Rms and Reynolds shear
stress profiles are normalised by the wall friction velocity, u; o, and the wall friction,
Ty,0, Of the initial steady state. Arrows shown in (a, b) denote (for each column) the
direction of the binned data from the wall (y/R = 0.1 — 0.2) to the core of the pipe

(y/R=0.7 — 0.8) with an equal increment of 0.1.
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different time intervals along the ramps. Results are compared with those for the steady
cases (Chapter 2).

Two-point correlations are examined first in the spanwise-wall normal planes for each
time interval for four different reference wall normal positions. The contours of the resul-
tant two point correlation coefficients are shown in Figure 5.7 for the accelerating flow
and in Figure 5.8 for the decelerating flow. In these figures, the contours shown in the
first row correspond to the correlation coefficients for the initial statistically steady cases,
Re(, and the remaining rows present the ones over the previously specified time intervals.
Since over the first time interval, 77, no significant changes were observed in the flow as
discussed in the previous section (§5.3.1), the differences between the results in the first
and the second rows could be explained by convergence. For both cases (accelerated or
decelerated), the contours of the correlation coefficients over each time interval are very
similar to those of the steady cases (see also Chapter 2), where the positive correlations
are surrounded by negatively correlated ones. These results show that during the studied
acceleration or deceleration, the large-scale motions present initially in the steady flow
preserve their structural organisation in the spanwise-wall normal planes.

Two-point correlations were also computed in the spanwise-streamwise planes for sev-
eral reference wall normal locations. The resulting contours of the correlation coefficients
are presented in Figure 5.9 and Figure 5.10 for the accelerating and decelerating flows, re-
spectively. Note that the streamwise extend of the flows were constructed using Taylor’s
hypothesis with local mean velocity over each time interval. Similar to the correlations in
the spanwise-wall normal planes, the correlation coefficients in the spanwise-streamwise
planes also show that the averaged structural organisations are very similar to those re-
ported for the steady flow conditions (Chapter 2).

Furthermore, using the method described in Chapter 2 (Figure 2.7), the width (/,) and
the length (/) of these correlation peaks were quantified for R=0.5 over each time interval
along the ramps. Figure 5.11 (a, ¢) show the width (a) and the length (c) of the correla-
tion coefficients for the accelerating flow, while (b, d) correspond to the width (») and the
length (d) of the correlation coefficients for the decelerating flow. The error bars in these
profiles show the maximum deviations from the mean considering each repeated sets for
the same time interval. For the decelerated flow, it can be seen in (b) that the width of the
correlation peaks in the first time interval (at each reference wall normal position) are al-
most identical to the ones obtained for the initial steady turbulent state. This was expected
for the convergent results since no changes were observed in the turbulence statistics over
this time interval when compared with the initial steady case. Similarly, over the second
time interval, it can be seen that the width of the peaks are preserved at each wall position.
However, over the third and the fourth time intervals, a significant increase in the width of
the correlation coefficients is observed for the reference wall positions y/R < 0.6. The in-
crease in the core region occur in the fourth interval. In the final time interval, on the other
hand, the width of the correlation peaks are observed to be similar at each reference wall
position. The overall increase in the width of the correlation coefficients observed during
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Figure 5.9: Two-point correlation coefficient of the streamwise velocity fluctuations in the
spanwise-streamwise planes at several several wall normal locations, i.e. y/R = 0.1
(first column), 0.2 (second column), 0.35 (third column), 0.5 (fourth column) and 0.8
(fifth column). First, second, third, fourth and fifth rows represent the data over the
time intervals 71, 7>, T3, T4 and T5, respectively, along the acceleration ramp. Positive
correlations are shown by grey contour lines varied from 0.1 to 1, while red contour
lines correspond to a negative correlation of —0.05.

w
[27
m
=
Ay
<
as
@)




5.3 RESULTS AND DISCUSSION 75

08— | S F P = — =

v

0 LUV |

|

Figure 5.10: Two-point correlation coefficient of the streamwise velocity fluctuations in the
spanwise-streamwise planes at several several wall normal locations, i.e. y/R = 0.1
(first column), 0.2 (second column), 0.35 (third column), 0.5 (fourth column) and 0.8
(fifth column). First, second, third, fourth and fifth rows represent the data over the
time intervals Ty, 72, T3, T4 and Ts, respectively, along the deceleration ramp. Positive
correlations are shown by grey contour lines varied from 0.1 to 1, while red contour
lines correspond to a negative correlation of —0.05.
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the deceleration (between Rep = 47727 — 23396) is higher than the difference between
the width of the correlation coeflicients obtained in the steady flow conditions in the range
Rep =47727—15393 (shown in black data in the same figure). These results show that the
width of the large scale motions increase during deceleration. During the acceleration, on
the other hand, in the first three intervals, and for the wall positions y/R < 0.5, the widths
of the correlation peaks are seen to be very similar (differences are within the maximum
deviations that occur for each case). For y/R > 0.5, the differences could be explained by
the lack of convergence since the observed difference at these wall positions is very simi-
lar to the difference observed between the repeated steady cases. Starting with the fourth
time interval, a significant decrease in the width of the correlation peak is observed at the
wall positions y/R < 0.5. The same width is preserved in the final interval near the wall;
however, it increases dramatically for y/R > 0.3. Considering that the maximum devia-
tions occurring in the repeated sets for the same time interval are smaller, this significant
decrease in the last two intervals should be explained by the effect of the acceleration on
the development of the averaged structures.

For the streamwise length of the correlation peaks during the deceleration, it can be
seen in Figure 5.11 (d) that at each reference wall position the length scale is more or less
constant when the time intervals are compared; at least the width of the correlation peaks
are not decreasing with the decrease in the Reynolds number in time, as observed for the
steady cases. Similarly, during the acceleration, especially near the wall, the streamwise
width of the correlation peaks is seen to be very similar to each other over each time inter-
val. Beyond y/R > 0.4, on the other hand, no clear trend is observed for the development
of the length of the structures during acceleration. But, still the length of the averaged
structures can be inferred to be of the same order when the results over each time interval
are compared.

5.3.3 INTERNAL SHEAR LAYERS

In this section, shear-layer like structures bounding the regions of similar streamwise ve-
locities are investigated for the current ramp-up/ramp-down turbulent flows using the same
detection method as discussed in detail in Chapter 3. Some examples of these structures
on the cross-section of the pipe (azimuthal-wall normal plane) during the flow develop-
ment are shown in Figure 5.12 and Figure 5.13 for the accelerated and decelerated flows,
respectively. The subplots correspond to different time instants along the ramps, i.e. 0.002
s (a), 0.63s(b),1.05s(c), 1.47 s (d), 1.89 s (e) and 2.08 s (f). The shear layers (shown by
black contours) are seen to have similar wall normal thicknesses and azimuthal lengths
during the acceleration or deceleration, which was further quantified in Figure 5.14 (a, b)
for the acceleration and deceleration cases, respectively. Here the open symbols represent
the data over the time intervals along the ramps, while filled squares and circles corre-
spond to the data at the initial steady state cases. To compare the results at different wall
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c) were obtained during the acceleration, while those in (b and d) were determined
during the deceleration. Solid blue (<), orange (O0), yellow (>>), purple (A) and green
(o) lines with the symbols correspond to the averaged length scales over the times
T1,T»,T3,T4 and Ts, respectively. Results shown by black dashed lines with the (a),
(o) and (Xx) symbols belong to the steady cases at Rep = 15393,27092 and 47727,
respectively, which were discussed in Chapter 2. Error bars show the maximum devi-
ation from the mean occuring among the repeated sets.
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Figure 5.12: Instantaneous velocity fields for the streamwise velocity (colormap) together with
the internal shear layers (shown by black contours) at different time instants along
the accelerated flow, i.e. (a) ~0.02 s, (b) ~0.63 s, (c) ~1.05s, (d) ~1.47s, (¢) ~1.89
s and (f) ~ 2.08 s. The streamwise velocities are normalised by the instantaneous
bulk velocity, Up.

normal locations, the shear layers are grouped based on the wall normal location of their
centres, i.e. the layers between y/R =0.1-0.2,0.2-0.3,0.3-0.4,0.4-0.5,0.5-0.6,
0.6 -0.7and 0.7 - 0.8.

In Figure 5.14 (a, b), it can be seen that the jumps in the streamwise velocity over the
shear layers averaged for the first time interval are very similar to the jumps for the initial
steady turbulent states for both ramps. This is expected since no significant effect of the
unsteadiness is observed in this interval compared to the initial turbulent state. Also the
average Reynolds number over this interval is very close to that of the initial steady state.
When the initial steady turbulent states are compared, it is seen that these jumps are higher
for the lower Reynolds number at each wall-normal location. The streamwise jumps over
the layers in the first time interval for both ramps follow this behaviour. Starting with
the second time interval, these jumps over the shear regions are seen to decrease as the
Reynolds number increases along the ramp (Figure 5.14 (a)) until the final time interval,
where the flow approaches steady state and the jumps are increasing again. Still, the final
velocity jumps are lower than the velocity jumps observed at the initial Reynolds number.
For the decelerating case, on the other hand, no significant changes are observed on the
velocity jumps when the results for each time interval are compared (Figure 5.14 (b)).
However, different than the accelerating flow, the jumps in the streamwise velocity along
the decelerating ramp are observed not to decrease.
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Figure 5.13: Instantaneous velocity fields for the streamwise velocity (colormap) together with
the internal shear layers (shown by black contours) at different time instants along
the decelerated flow, i.e. (a) ~0.02 s, (b) ~0.63 s, (¢) ~1.05s, (d) ~1.47 s, (¢) ~1.89
s and (f) ~ 2.08 s. The streamwise velocities are normalised by the instantaneous
bulk velocity, Up.
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Figure 5.14: Conditionally averaged streamwise velocity jumps over the detected shear layers
which were grouped according to their wall normal location for the accelerated flow
case (a) and decelerating flow case (b). Dashed blue (<), orange (O), yellow (), pur-
ple (») and green (o) lines with the symbols correspond to the data the time intervals
T1,T>,T3,T4 and Ts, respectively. Results shown by black dashed lines with the (a)
and (X) symbols belong to the steady cases at Re; = 459 and Re, = 1233, respec-
tively.
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5.4 CONCLUSIONS

In this chapter, an analysis was presented on accelerating/decelerating turbulent pipe flows
based on a series of stereo-PIV measurements. The acceleration and deceleration in the
flow was achieved by changing the mass flow rate from an initial statistically steady turbu-
lent state to another turbulent state. The acceleration was imposed at an initial Reynolds
number of Rep = 15393 while the deceleration started from Rep = 47727. The Reynolds
numbers at the end of the ramp-type excursions were Rep = 40228 and Rep = 23396 for
the accelerating and decelerating cases, respectively.

In the first part of the study, first and second order turbulence statistics were discussed
along the ramp-up/ramp-down turbulent flows. It was seen that the decelerated flow be-
haves like a quasi-steady flow when the mean streamwise velocities normalized by the
inner variables along five different time intervals are compared. Some deviations from
the log law, however, were observed for the accelerated flow, which could be related to
the behaviour of the wall friction velocity along the ramp-up flow. Also, similar to previ-
ous studies, delays in the response of turbulence were observed. The response was faster
near the wall and then the adjustment propagated towards core of the pipe.

The second part of this chapter focused on properties of the energetic flow structures, in
particular their width and length, through two-point correlations. The results revealed that
the width and the length of the average structures are comparable to those of the average
structures at steady flow conditions.

Finally, in this chapter, the internal shear layers were analysed using the detection
method introduced in Chapter 3. Similar to the steady turbulent cases, the shear struc-
tures were observed to demarcate the regions of nearly uniform velocity as the unsteady
flows develop along the ramps. However, as the flow accelerated it was seen that the mag-
nitude of these velocity jumps is decreasing. For the deceleration, on the other hand, the
jumps in the streamwise velocities over the shear layers were similar at each time interval
along the ramp.
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This chapter is adapted from M. Gul, G. E. Elsinga, and J. Westerweel. “Experimental investigation of torque
hysteresis behaviour of Taylor—Couette Flow.” In: Journal of Fluid Mechanics 836 (2018), 635-648.
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6.1 INTRODUCTION

Taylor-Couette flow occurs between two concentric and independently rotating cylinders.
It represents one of the closed systems in fluid mechanics that is widely used as a model
system for turbulence studies (e.g. see the recent review article by Grossmann et al. [42]).
In this highly symmetric system, the power input can be controlled via the differential
rotation of the cylinders, and the resultant energy dissipation can be measured by means
of the torque on the cylinders. Different geometrical parameters and differential rotation
of the cylinders enable us to observe various flow regimes (e.g. Andereck et al. [4], Dong
[27], Tokgoz [119]).

The relevant geometrical parameters are the radius ratio, n, defined as the ratio of the
inner and outer cylinder radius, and the aspect ratio, I', defined as the length of the cylin-
ders, L, relative to the gap width, d (Figure 6.1 (a)). The flow conditions at the ends of
the cylinders can also be considered as a geometrical parameter. Some other parameters
defining Taylor-Couette flow are the shear Reynolds number, Re;=2 |nRe,—Re; | /(1 + 1),
and the rotation number, Req = (1-717)(Re,+Re;)/(nRe,—Re;) (Dubrulle et al. [31]). Here,
Re,=2nf,r,d/v and Re; =2nf;r;d/v are the outer and inner cylinder based Reynolds num-
bers, respectively, where f,, f; are the rotation frequencies and r,, r; are radii of the outer
and inner cylinders, respectively, and v is the kinematic viscosity of the fluid.

Andereck et al. [4] conducted flow visualisation experiments at a radius ratio of 0.883
and accordingly formed a comprehensive map of different flow states occurring in Taylor-
Couette flow at low and moderate Reynolds numbers. At low inner and outer cylinder
Reynolds numbers the flow was observed to be laminar with several distinct flow states.
As they increased the Reynolds number to a shear Reynolds number of 5.9 x 103 no obvi-
ous structures were observed in the flow, and they termed this regime as ‘featureless tur-
bulence’. However, recent experimental and numerical studies (e.g. Bilson and Bremhors
[13], Dong [28], Ravelet et al. [101], Tokgoz et al. [117], Huisman et al. [55], Ostilla-
Mbénico et al. [95]) showed the persistence of large scale structures even at much higher
Reynolds numbers.

In their study, Lathrop et al. [75] proposed that a boundary layer transition to a turbulent
regime occurs at a Reynolds number of 1.3 x 10 based on their highly accurate torque and
wall shear stress measurements. Later, this finding was verified by local measurements by
Lewis and Swiney [78]. The transition can also be seen in the torque scaling experiments
of Wendt [128]. Recent experimental (e.g. Lathrop ef al. [75], Huismann et al. [56]) and
numerical (e.g. Ostilla-Monico et al. [94]) studies showed that at Reynolds numbers be-
yond the transition the boundary layer is turbulent having a logarithmic velocity profile
similar to other wall bounded turbulent flows.

Studies carried out by Brauckmann and Eckhardt ([18], [63]), van Gils et al. [38] and
Paoletti & Lathrop [96] showed that optimum angular momentum transport occurs around
moderate counter-rotation, i.e. f, /f; & —0.4 with radius ratios 0.5 <7 < 0.7245. A recent
study conducted by Tokgoz [119] revealed that at a constant shear Reynolds number of
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2.9 x 10% and a radius ratio of 0.917, coherent structures change orientation from Taylor
vortices to inclined vortices and to Taylor column-like structures at rotation numbers of
—0.083, —0.010 and 0, respectively. He relates this change in the orientation with the
rotation numbers to the change in the angular momentum transport and therefore torque.
So, depending on the control parameters, differences in turbulent states occur.

An interesting question raised recently is whether multiple states exist in turbulent
Taylor-Couette flows at the same experimental conditions (Huisman et al. [55]). They per-
formed torque and velocity measurements at a very high shear Reynolds number, of the
order of 10°. During their experiments they followed basically two different trajectories at
a constant shear Reynolds number while varying a, defined as a = —f, /f;. One trajectory
is in the direction of increasing a, while the other one is in the direction of decreasing a.
Their results reveal that hysteresis occurs with a high probability (80%) within a certain
range of values for a, i.e. 0.17 <a <0.51. They conjecture that this difference in the torque
values is due to different turbulent states occurring in the Taylor-Couette flow. Later, Van
der Veen et al. [126] continued this work with a different setup having a higher aspect
ratio (I'=18.3 compared to I' =11.7 before). They measured the radial and azimuthal ve-
locity components at several axial locations. Similar to their earlier study, they observed
bifurcation and different velocity distributions for a certain range of values for a, most
significantly in the radial velocity component. They concluded that hysteresis in highly
turbulent Taylor-Couette flow is robust, meaning that it occurs also at I' =18.3. However,
the detailed dependence of the hysteresis on the geometrical parameters, such as the as-
pect ratio, radius ratio and boundary conditions at the ends of a Taylor-Couette facility,
remains unclear. Furthermore, we wonder if the torque hysteresis represents a genuine
change in the turbulent flow state, i.e. the structure of velocity fluctuations, as opposed to
a change in the base flow, i.e. mean flow. Hence, in order to understand the hysteresis or
multiple states in turbulent Taylor-Couette flow further studies with different geometrical
parameters and flow conditions are required.

In this study, we performed torque and PIV measurements for different geometrical
configurations and flow conditions to study the hysteresis in Taylor-Couette flow up to a
shear Reynolds number of 5.5 x 10%, which is beyond the transition regime, and therefore
can be considered as fully turbulent. Different geometrical configurations were achieved
by changing the aspect ratio and the end conditions, while maintaining a radius ratio of
n=0.917.

This chapter is organised as follows: A description of the experimental setup and method-
ology is given in Section 6.2. This is followed, in Section 6.3, by the results of the torque
measurements at different shear Reynolds number and aspect ratio, and the analysis based
on the PIV measurements at the shear Reynolds number of 4.4 x 10* and aspect ratio of
88. Finally, the findings are summarized in Section 6.4.
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(@)

A

Figure 6.1: Schematic of a Taylor—Couette system (a) and sketch of the trajectories in the (f;, f,)
parameter space followed during the torque measurements for different constant Reg
(b). The red and blue arrows respectively indicate the direction of increasing and de-
creasing frequency ratio, a, along each trajectory.

6.2 EXPERIMENTAL SETUP AND METHODOLOGY

Torque measurements were performed in the same Taylor-Couette flow facility with water
as the working fluid. However, cylinders of different length were used to vary the aspect
ratio. The axial aspect ratio, I' = L/d, of the shorter and the taller cylinder was 22 and
88, respectively. Fully filled Taylor-Couette systems were closed at both ends with end
plates rotating together with the outer cylinder. On the other hand, intermediate values for
I" were achieved by changing the water level in the taller cylinder, where the system had
only the lower end plate while the upper boundary was a free surface (Figure 6.2). For all
cases the inner and outer cylinder radii were r; = 110 mm and r, = 120 mm respectively,
which resulted in a gap width d=10 mm and a radius ratio of 7=0.917.

During the torque measurements the outer and the inner cylinders were rotated varying
the frequency ratio, while maintaining a constant difference in the frequencies of the two
cylinders, Af=f; — f,. Therefore, the shear Reynolds number, Rey, remained constant. In
order to investigate the hysteresis in the torque, the frequency ratio, a, was first decreased
incrementally, and at the end of the trajectory it was increased again with the same incre-
ments for each data set. Since the measurements with various step sizes showed that the
hysteresis is not affected by the step size used, larger increments in a outside the hysteresis
loop were used to shorten the overall measurement time. After each increment in a, torque
data were collected for two minutes after waiting for the flow to reach stable conditions.
Finally, the mean torque at each setting was computed. Figure 6.1 (b) shows these tra-
jectories at five different constant shear Reynolds numbers in the (f;, f,) parameter space
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Figure 6.2: Schematic showing the water level in the gap of the tall and short Taylor-Couette cylin-
ders with the resulting aspect ratios, I', as well as the shear Reynolds numbers, Re;,
studied. The labels for the considered cases are given in the table.

and indicates the range of the measurements. In addition, Figure 6.2 provides a schematic,
summarizing and labelling all the cases considered for this study.

In our Taylor-Couette setup the water temperature cannot be actively controlled. Thus,
to avoid significant changes in temperature during the measurements, the system was op-
erated for a few hours until a stable temperature was reached before taking the measure-
ments. Furthermore, the temperature was recorded at the start and at the end of each data
set. Repeated experiments showed that the hysteresis always occurred over the same range
of rotational numbers and with approximately the same magnitude, even if the tempera-
ture difference in these experiments for an individual set varied between 0°C to 2.2°C.
Moreover, the range of rotational numbers for which hysteresis occurs spans only a lim-
ited part of the full range of a covered in each experiment, and the torque differences in the
hysteresis loop were small. Therefore, the power supplied to the flow was nearly constant,
and consequently we may assume that the temperature change is small during hysteresis.
This is confirmed by separate measurements covering only the range of rotational num-
bers corresponding to the hysteresis loop, which showed temperature changes less than
0.5°C (compared to 2.2°C for the full range).

On the other hand, not only for each individual data set, but also for the combined
data set for a certain flow case, approximately constant temperature conditions should be
maintained. For that, we applied a threshold of 2.2°C on the temperature variation among
the data sets for a particular flow case, and accordingly, we excluded the data that causes a
temperature variation exceeding the threshold. This resulted in an overall deviation of less
than 0.5% in the torque at a =1, which is outside the hysteresis loop in all cases, where
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Figure 6.3: Corrected and normalized torque at different Re, for the short cylinder (I' = 22) and
the taller cylinder (I'=88).

we expect the torque to return to the same value at the end of an experiment. Finally, as a
result of this threshold, the temperature difference over the remaining sets varies between
0°Cto 1.2°C.

The torque measurements were performed by means of a torque-meter (HBM T20WN,
2 Nm) attached to the inner cylinder shaft. Therefore, the measured torque contained con-
tributions from the Taylor-Couette flow and the von Kdrman flow. The latter flow state
is the flow in the gap between the end plates which are rotating together with the inner
and outer cylinders. The contribution of the von Karman flow was determined for several
shear Reynolds numbers, based on the study conducted by Greidanus et al. [40] in the
same setup (their Figure 4 (a)). Accordingly, the torque values were corrected. After ap-
plying the correction, a very good agreement in the torque was found for both the shorter
and taller cylinders at a =0 and a = 0.5 (Figure 6.3). The corrected torque, 7, before and
after the laminar-turbulent flow transition follows a similar power law, i.e. T < Re{ . In
the turbulent flow regime, « is between 1.77 and 1.80 for the cases shown in Figure 6.3,
which are in the range of previously reported values (e.g Wendt [128], Lathrop et al. [75],
van Gils et al. [38]). The standard uncertainty of the mean torque for an individual data
set, Emean = 01/ VN, was also determined for each case studied. Here, o is the standard
deviation of the torque, and N is the number of independent samples (Adrian & Wester-
weel [2]). The uncertainty was found to be less than the magnitude of the hysteresis in the
torque, AT, i.e. (Enean ~ 1072 AT), for all the cases considered. Further information about
the setup and accuracy of the measurements (torque and stereo & tomo PIV) conducted
in the same facility can be found in the studies of Ravelet et al. [101], Tokgoz [119] and
Greidanus et al. [41].



6.2 EXPERIMENTAL SETUP AND METHODOLOGY

Figure 6.4: Stereo-PIV set-up with two high-resolution cameras (a). Green lines indicate the laser
sheet. Sample mean velocity field (b). Arrows indicate the radial and axial velocities,
while the azimuthal velocity (normalized by the outer cylinder velocity) is represented
by colour coding.

In Figure 6.3, the corrected torque was normalized by pLv?. However, all following
torque data were normalized with the torque value, T}, obtained at a = 0 along the tra-
jectory where a increases, which facilitates an easy comparison of the hysteresis loops at
different flow conditions.

Finally, stereoscopic PIV measurements were conducted in the plane spanning the ra-
dial and the axial directions, which allowed examination of the large-scale flow structures.
Fluorescent spheres (rhodamine B) with a mean diameter of 15 um and a nominal density
of 1.1 g/cm® were used as tracer particles. The tracers were illuminated by a double-pulsed
Nd:YAG laser in a 1 mm thick light sheet, and the scattered light was recorded by two
double-frame CCD cameras (Imager Pro LX 16M) in a stereoscopic configuration with a
90° angle between the viewing directions. The field of view was 4.09d x 0.84d, which was
imaged onto 4872x1000 pixels. The time separation between the laser pulses was adjusted
such that in each case the average particle image displacement is around 6 pixels. For each
measurement, 800 image pairs, hence velocity fields, were obtained. The raw PIV images
were processed with a commercial code (DAVIS 7.2 by LaVision GmbH). A multi-pass
algorithm was applied with a final interrogation area of 32 x 32 pixels for the a =0 and
a=0.12 cases, and 64 x 64 pixels for the a =0.22 and a = 0.4 cases. The corresponding
in-plane spatial resolution is 0.027d X 0.027d and 0.054d x 0.054d, respectively, which is
sufficient to capture the large-scale turbulent motions (O(d)) and the mean flow structures.
Furthermore, a 50% overlap of adjacent interrogations was used for all cases. A picture
showing the stereo-PIV setup and a sample velocity field is given in Figure 6.4 (a) and
Figure 6.4 (b), respectively.
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6.3 RESULTS AND DISCUSSIONS

6.3.1 TORQUE MEASUREMENTS

The effect of the shear Reynolds number, Re;, on the hysteresis is investigated first. Fig-
ure 6.5 presents the measured torque for four different values of Re, between 1.5 x 10* and
4.6 x 10* at an aspect ratio of 88. The lowest shear Reynolds number (Figure 6.5(A)) is
around the laminar-turbulent transition Reynolds number, while the other shear Reynolds
numbers correspond to the fully turbulent regime. The blue symbols represent measure-
ments taken for decreasing a, while the red symbols represent for increasing a. The re-
sults clearly depict a hysteresis in the torque at all shear Reynolds numbers considered.
The magnitude of the hysteresis in terms of the normalized torque depends on the shear
Reynolds number. Moreover, a clear difference in the hysteresis behaviour is visible be-
tween the transitional case (Figure 6.5(A)) and the turbulent regime (Figures 5(B)-(D)).
For the turbulent regime the torque values obtained for increasing a (red) are higher than
the values obtained for the opposite trajectory, whereas the reverse is observed for the
transition regime. In addition, for the turbulent cases, it can be seen that the hysteresis
does not occur around the peak torque values, which is found to be the case in the study of
Huisman et al. [55] (their Figure 3 (a)). This may be explained by the different radius ratio
(7=0.716 in their experiment, while =0.917 for the present data), which can cause some
discrepancies in Taylor-Couette flow (Ravelet et al. [101], Brauckmann & Eckhardt [63],
Ostilla-Monico et al. [95]). Moreover, the torque in our Taylor-Couette system follows the
same behaviour without any jump between the states, in contrast to the results of Huisman
et al. [55]. Furthermore, as the shear Reynolds number increases, the range of frequency
ratios a, for which the hysteresis is observed, shrinks.

Further torque measurements were conducted with different aspect ratios at a constant
shear Reynolds number of Re; =4.4 x 10%. Different aspect ratios were achieved by chang-
ing the wetted surface of the cylinders; that is, changing the water level in the gap between
the cylinders (see Figure 6.2). The contributions of the top and bottom von Karman gaps
were determined based on the torque obtained at a=1 for all aspect ratios. Note that only
in the I'=88 case, the top gap correction needs to be included, while the bottom gap con-
tribution is corrected in all cases. The total gap contribution was found to be as the same
as reported by Greidanus et al. [40], where a similar frequency ratio (a=0.917) was con-
sidered. As can be seen in Figure 6.6, the hysteresis in the resulting torque becomes more
pronounced as the aspect ratio increases. It is thus concluded that, as the confinement of
the Taylor-Couette flow in the axial direction is reduced, i.e. I' is increased, the hystere-
sis persists and becomes even more pronounced. It implies that the hysteresis does not
result from confinement, but represents a genuine change in the turbulent flow state in the
Taylor-Couette gap. Still, end wall conditions can potentially lead to significant changes
in the large-scale meridional circulation, and consequently affect the shear boundary layer
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Figure 6.5: Hysteresis in the measured torque, 7, at different constant shear Reynolds numbers (A)
TR, Reg = 1.5 x 104, (B) TIR2, Reg = 3.7 x 104, (C) T'1R3, Rey = 4.4 x 10* and (D)
['IR4, Re; =4.6 X 10* at an aspect ratio of I'=88. For cases (A) and (B) we show 3 data
sets, and for cases (C) and (D) 4 data sets. Torque values are normalized by a reference
value, T;.r (§6.2).
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Figure 6.6: Torque hysteresis behaviour at different aspect ratios (A) I'IR3, I' = 88, (B) I'2R3,
I'=66, (C) I'3R3, I'=44 and (D) I'4R3, I’ =22, at Re;, =4.4 X 10%. Four data sets for
cases (A) and (D), and three data sets for cases (B) and (C) are shown.

on the inner or outer cylinder (Avila er al. [7], Lopez [80], Lopez and Avila [81]). Hence,
end effects and boundary conditions can affect the hysteresis, especially at low aspect ratio
I', as discussed below.

Final torque measurements were performed in two different Taylor-Couette setups at
the same aspect ratio, I' = 22, and same shear Reynolds number, Re; = 5.5 X 10%. In the
shorter setup, the fluid is bounded both from the top and bottom with end plates, whereas
in the taller setup it has a free surface at the top, therefore there is no von Karman gap at
the top. Here, a similar analysis was carried out taking into account the different torque
contributions of the bottom and top gaps. The corrected and normalized results are pre-
sented in Figure 6.7. The measurements were conducted within a temperature range of
23.9 -24.3°Cfor case A, and 25.5 — 25.9°C for case B. The maximum temperature change
for each run is 0.4°C in both cases. When the two cases in Figure 6.7 are compared, it can
be clearly seen that the hysteresis behaviour is different, although the hysteresis in the
torque measurements occurs at the same value, a = 0.4. The hysteresis observed in the
shorter set-up covers a shorter range, and inside this region the torque values are higher
along the trajectory for decreasing a, which is found to be the reverse of the behaviour ob-
served in the taller system. The resultant torque data for both configurations are in quanti-
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tative agreement outside the hysteresis loop, which confirms the correct determination of
the torque contribution from the von Kdrméan’ gaps. Hence, all differences between these
two systems seem to occur due to the different boundary conditions of the setups.

6.3.2 PIV MEASUREMENTS

After investigating the torque hysteresis, the associated flow structures were examined
using the PIV measurements together with the proper orthogonal decomposition (POD)
method (Lumley [82]). In particular we consider the case Re; =4.4 X 10* and T =88, T'IR3,
which is exemplary for hysteresis in the fully turbulent regime (§ 6.3.1). The average flow
contains a large-scale periodic structure consisting of rolls (Figure 6.8 (A)). The wave-
length of the rolls was determined based on the mean axial velocity field at four different
values for a around the hysteresis region. Figure 6.8 (B) shows the resultant wavelengths
normalized by the gap width. Again, blue and red symbols refer to the trajectories followed
in the decreasing and increasing a direction, respectively. As is evident from Figure 6.8
(B), inside the hysteresis region the wavelengths of the structures are longer when the tra-
jectory of the increasing a direction is followed (for the a = 0.22, a = 0.12, a = 0 cases).
It should be noted that in these cases the torque is also larger along the same trajectory
(Figure 6.5 (C)). For the a=0.4 case, where there is no observable hysteresis in the torque
data, the values of the wavelengths are the same to within the measurement uncertainty.
Similar behaviour is observed in the experimental study of Huisman et al. [55] (their Fig-
ures 3 (¢) and (d)). In addition, longer wavelengths of the structures would imply fewer
rolls in the flow. Therefore, when the results of the wavelengths for the same a values are
considered together with the torque results in Figure 6.5 (C), it can be seen that the torque
values are higher in the presence of fewer rolls. This result is also in agreement with the
findings of Martinez-Arias et al. [84] in the turbulent flow regime.

At the same conditions, the POD velocity modes were determined using the snapshot
method of Sirovich [113]. The POD modes represent coherent structures, as explained by
Lumley [82]. Since the modes are ordered according to their energy magnitude, the most
energetic POD mode is the first mode, which often reveals large coherent structures if they
exist in the flow. The plots of the axial velocity component of the first mode are presented
in Figure 6.9. Note that for visualisation purposes and easy comparison, the ranges of all
the colour bars are kept similar except for the data of cases (B) and (C) along the trajectory
for increasing a. In Figure 6.9 (D), which corresponds to the case outside the hysteresis
region, no significant change (quantitatively) in the flow structures as well as the energy
content is observed. On the other hand, in the other two cases (B) and (C), which both
occur within the hysteresis loop, it can be seen that the flow structures change significantly,
becoming more dispersed along the trajectory for increasing a. Also, a significant decrease
in the amplitude of the axial velocity is clearly visible when following the trajectory for
increasing a. For case (A), there are changes in the flow structures and in the magnitudes
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hysteresis regions of (A) and (B), respectively.

a

Figure 6.7: Torque hysteresis for two different Taylor—Couette (TC) set-ups, with aspect ratio I'=
22 and shear Reynolds number Re; = 5.5 x 10*. (A) Shorter TC set-up with two end
plates, I'5RS. (B) Tall TC set-up with bottom end plate and top free surface, ['4RS5.
The black dashed line in (A) is a fitted torque curve along the trajectory for decreasing
a for the I'5RS case, and it is duplicated in (B) for comparison. The error bars show
the uncertainty in the repeatability. Panels (C) and (D) are the close-up views of the
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Figure 6.8: (A) Mean velocity field of the axial velocity component and (B) normalized wave-
lengths of the patterns together with reading errors. The black arrows schematically
illustrate the rolls and flow direction.

for axial velocity, but these changes are not as pronounced as for the previous two cases.
Similar results were found when the radial and azimuthal velocity components of the
first mode are analysed, although for brevity these results are not included in this paper.
Hence, it can be concluded that large coherent structures exist in the turbulent flow at this
shear Reynolds number, and with the occurrence of the hysteresis in the flow, the effect of
following different trajectories at the same flow conditions shows up both quantitatively
and qualitatively in the most dominant flow structures. This suggests that a genuine change
in the flow dynamics and therefore different flow states occur inside the hysteresis region
when different trajectories are followed.

6.4 CONCLUSIONS

Measurements of the torque and of the instantaneous flow fields (using PIV) were per-
formed to study the hysteresis in the measured torque in a Taylor-Couette system with a
radius ratio of 0.917 and aspect ratios of 22 to 88.

In the first part of the study, torque measurements were carried out for different shear
Reynolds numbers and at different aspect ratios. The results for the torque show that the
magnitude of the hysteresis decreases at higher shear Reynolds numbers, whereas it is
increasing with increasing aspect ratio. This indicates that the observed hysteresis could
be the result of multiple turbulent states, and not due to the confinement of the flow. On
the other hand, the resultant torque measurements obtained in two different Taylor-Couette
configurations at the same shear Reynolds number and same aspect ratio show different
behaviour, which illustrates the relevance of different boundary conditions.
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Figure 6.9: First POD mode of the axial velocity component at: (A) a=0, (B) a=0.12, (C) a=0.22
and (D) a=0.4. The top and bottom rows represent the results along the trajectory for
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6.4 CONCLUSIONS

Stereoscopic-PIV measurements were performed and the axial wavelength of the struc-
tures were determined based on the mean axial velocity field. It was observed that the
wavelength, and therefore the number of the rolls along the height of the Taylor Couette
gap, changes inside the hysteresis region depending on the direction of the trajectory fol-
lowed for the frequency ratio a. It was found that the torque values along the trajectory for
increasing a are larger inside the hysteresis region where also the wavelengths of the struc-
tures are longer. Similarly, the axial velocity component of the first mode shows how the
dominant flow structures respond to a change in the measurement direction when hystere-
sis occurs. With these results it can be concluded that the signature of different turbulent
states observed in the behaviour of the torque is also visible in the flow structures.
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SUMMARY AND OUTLOOK

7.1 SUMMARY

As stated in Chapter 1, this thesis aims to contribute to the physical understanding and the
conceptual picture of wall turbulence. In this context, an experimental investigation with
stereoscopic PIV was conducted in a turbulent pipe flow and in turbulent Taylor-Couette
flow. For the latter study, additionally, torque measurements were performed to investigate
the hysteresis behaviour of the flow as well as the behaviour of the associated dominant
large-scale motions. For the Taylor-Couette flow, the study covers only the statistically
steady flow conditions. The pipe flow study, on the other hand, consists of statistically
steady turbulent flow conditions as well as unsteady flows, which are either accelerating
or decelerating monotonically between two different turbulent states. Large scale coherent
motions and the intense shear regions bounding them are the main structures investigated
in the turbulent pipe flow.

The two point correlation analysis conducted in a statistically steady turbulent pipe flow
showed large positively correlated regions, that are surrounded by anti-correlated regions.
These type of structures suggest the presence of counter rotating streamwise vortex pairs.
The average spanwise width and streamwise length of the correlation peaks were found to
be ~0.33R and ~ 5R, respectively, in the log layer for all the steady flow conditions con-
sidered in this thesis. Up to a wall distance of y/R=0.4, these structures were observed to
become wider in the spanwise direction and longer in the streamwise direction with the
wall distance. Beyond y/R = 0.4, on the other hand, the widths of the correlation peaks stay
similar while their streamwise lengths decrease with the wall distance. Moreover, when
different steady flow conditions in the range Re, =340 — 1259 are compared, the spanwise
width of the correlation peaks was found to be similar for the higher Reynolds number
cases (Re; >752) at each wall normal location. For the lower Reynolds numbers, signif-
icant deviations were observed beyond y/R = 0.4, where the correlation peaks became
wider. Similar types of averaged structures (i.e. correlations) were also found in the ramp-
type accelerating/decelerating turbulent flows considered in this thesis. The streamwise
length of the correlation peaks remained the same as in the initial turbulent state during
the acceleration/deceleration. Nevertheless, the peaks were found to become wider in the
spanwise direction during the deceleration, while their spanwise width is observed to de-
crease towards the end of the acceleration.

Large scale coherent motions are also visible in the instantaneous velocity fields of
wall turbulence, forming regions of nearly uniform streamwise velocities (UMZs). Previ-
ous studies, mainly in turbulent boundary layers (TBLs), have shown that these UMZs are
bounded by thin highly sheared dissipative regions similar to the turbulent/non-turbulent
interfaces (TNTIs). These studies were dealing exclusively with the 2D signatures of shear
layers. However, in this thesis, the 3D signature of these structures was provided employ-
ing a 3D detection method for the layers in a turbulent pipe flow. It could be seen that
the shear layers have a certain finite length in the spanwise direction as well as in the
streamwise direction, and bound regions of nearly uniform velocity. The average stream-
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wise length of these layers was found to be similar to the streamwise length of the average
large scale motions, which were determined by two-point correlations. Moreover, the 3D
average flow field conditioned on the wall normal centres of the shear layers revealed a
strong low speed region beneath the averaged shear layers, that is associated with strong
positive wall-normal velocity fluctuations. Also, this low speed region was observed to
be surrounded by two oppositely rotating swirling motions. The average shear layers, on
the other hand, were stretched by two azimuthal motions having opposite signs. This av-
erage flow field around the shears support the link between the shear layers and hairpin
structures. In the second part of this work, the shear layers were treated as the continuous
interfaces of the UMZs detected following the approach of de Silva et al. [111], but using
different orientation of the planes. While the shear layer detection method relies on the
velocity gradients, which is the signature of small scale activity, the histogram approach
is based on the instantaneous velocity information, i.e. large scale motions. It was found
in this study that these two methods identify similar regions of intense shear where a step-
like change in the streamwise velocity occurs. However, the 3D geometrical features of
shear layers can be revealed with the former method only. Highly sheared regions were
also identified during the accelerating/decelerating turbulent flows, revealing similar prop-
erties as those in steady flow conditions. It was found that the imposed unsteadiness does
not affect significantly the geometry of the structures as well as the flow properties across
them.

Finally, in a Taylor-Couette flow, the large scale motions were found to be non-unique,
leading to different turbulent states at identical flow conditions (i.e. shear Reynolds num-
bers) for a certain range of rotational frequency ratios of the inner and outer cylinders, a.
Within the same range of a, the resulting torque values, too, were observed to differ from
each other with the change in the flow structures. Although the stereo-PIV and the torque
measurements with different aspect ratios of the system revealed that the occurrence of
the hysteresis in the present Taylor-Couette system is associated to a genuine change in
the flow, still, the aspect ratio as well as the boundary conditions of the system were found
to affect the behaviour and the magnitude of this phenomenon. Moreover, it was observed
that the hysteresis is more pronounced at lower shear Reynolds numbers.

7.2 OUTLOOK

According to the classical picture of turbulence, the turbulent kinetic energy contained in
the large scales is transferred down to the smaller scales, and finally via the viscosity, the
energy is dissipated at the smallest scales of turbulence (Richardson [103], Kolmogorov
[70]). However, supporting the pioneering arguments of Batchelor and Townsend [12],
studies by Yeung et al. [133] and Shen & Warhaft [108] showed that this energy transfer
can also happen in a single step process without intermediate steps. In addition to this ‘for-
ward’ energy transfer, a significant transfer of the energy between the scales is also known
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to occur ‘backward’, i.e. from the small scales to larger scales, known as ‘backscatter’
(Pope [99], Aoyama et al. [5]). Moreover, the amplitude and the frequency of the small
scales was reported to be affected by the large scales (e.g. Hutchins and Marusic [59],
Mathis et al. [87], Ganapathisubramani et al. [37]), questioning the postulations of Kol-
mogorov [70]. So, to gain further understanding about the possible interactions between
the small and large scales of turbulence as well as the mechanism of the direct energy
transfer between them, it is of interest to investigate the flow dynamics near the detected
shear layers, which are dominated by small scale activities occurring between large scale
energetically significant motions.

Comparable interfacial layers similar to the internal shear layers have been known to
exist also between turbulent/non-turbulent interfaces (TNTI), which has been studied ba-
sically in turbulent jet flows and TBLs (e.g. Westerweel et al. [129], Borrell & Jiménez
[16], Eisma et al. [32]). As reported by Eisma et al. [32], internal shear layers and TNTIs
have very similar characteristics in a TBL. These type of interfaces (both TNTIs and inter-
nal shear layers) can be further investigated with generating puffs and slugs in a pipe flow.
These studies can also reveal information about the mechanism on how these shear layers
evolve. Another interesting topic for the internal shear layers is to investigate their scaling,
such as their length scales and the scale of the changes in the flow properties across them.
For that, data at higher Reynolds numbers with good spatial resolution is needed. How
these shear layer properties (e.g. thickness of the layers and the magnitude of the jumps
in the flow quantities across them) are determined also plays a key role.

So far, the main focus of turbulence studies has been the equilibrium state. Therefore,
very little is known about the nature of the non-equilibrium state of turbulence. In the
present thesis, a preliminary investigation of unsteady turbulent flow via accelerating/de-
celerating turbulent pipe flow was conducted. However, in the present study, it was ob-
served that the degree of imposed unsteadiness is not enough to cause a significant change
of the structures during the acceleration or deceleration. To increase the unsteadiness,
either the acceleration/deceleration between the initial and the final Reynolds numbers
should occur faster, or the ratio of these Reynolds numbers should increase while keep-
ing the same ramping time. With the current pipe flow facility, the main limitation was
related to the capacity of the centrifugal pump of the facility, which was not capable of
handling rapid changes in the flow rate. To achieve this in the same pipe facility, either
the centrifugal pump should be replaced by a gear pump, which can handle the transition
between these two Reynolds numbers in a shorter time, or another valve system should be
added to the set-up such that rapid changes in the mass flow rate can be achieved. On the
other hand, while doing this, one should be careful about the water hammer phenomenon
to avoid damaging the facility.

For the present Taylor-Couette flow, because of the limitations of the experimental set-
up, experiments at higher shear Reynolds numbers (e.g. Res >10>) could not be achieved.
Although the hysteresis phenomenon (i.e. multiple turbulent states) was already reported
to exist at the shear Reynolds numbers of the order of 106 by Huisman et al. [55], the
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flow is not statistically steady in their measurements. Also, previous studies (e.g. Ravelet
et al. [101] and Brauckmann & Eckhardt [63]), including the present study, showed that
different set-ups with different radius ratios could cause differences in the behaviour of the
flow. Therefore, it is still an open question if the hysteresis in the torque also exists at very
high shear Reynolds numbers in the current set-up. Apart from the hysteresis behaviour,
Taylor-Couette flow is of interest to further investigate the characteristics of internal shear
layers in canonical wall bounded flows.
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