
Computer Engineering
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2007

MSc THESIS

A Quantitative model for Hardware/Software
Partitioning

Roel Meeuws

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2007-02

Heterogeneous System Development needs Hardware/Software Par-
titioning performed early on in the development process. In order
to do this early on predictions of hardware resource usage and de-
lay are necessary. In this thesis a Quantitative Model is presented
that can make early predictions to support the partitioning process.
The model is based on Software Complexity Metrics, which capture
important aspects of functions like control intensity, data intensity,
code size, etc. In order to remedy the interdependence of the software
metrics a Principal Component Analysis performed. The hardware
characteristics were determined by automatically generating VHDL
from C using the DWARV C-to-VHDL compiler. Using the results
from the principal component analysis, the quantitative model was
generated using linear regression. The error of the model differs per
hardware characteristic. We show that for flip-flops the mean error
for the predictions is 69%. In conclusion, our quantitative model
can make fast and sufficiently accurate area predictions to support
Hardware/Software Partitioning. In the future, the model can be ex-
tended by introducing extra software metrics, using more advanced
modeling techniques, and using a larger collection of functions and

algorithms.

http://ce.et.tudelft.nl/

A Quantitative model for Hardware/Software
Partitioning

A decision model for partioning candidate functions using

software metrics

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Roel Meeuws
born in Rotterdam, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

A Quantitative model for Hardware/Software
Partitioning

by Roel Meeuws

Abstract

H
eterogeneous System Development needs Hardware/Software Partitioning performed
early on in the development process. In order to do this early on predictions of hardware
resource usage and delay are necessary. In this thesis a Quantitative Model is presented

that can make early predictions to support the partitioning process. The model is based on Soft-
ware Complexity Metrics, which capture important aspects of functions like control intensity,
data intensity, code size, etc. In order to remedy the interdependence of the software metrics
a Principal Component Analysis performed. The hardware characteristics were determined by
automatically generating VHDL from C using the DWARV C-to-VHDL compiler. Using the
results from the principal component analysis, the quantitative model was generated using linear
regression. The error of the model differs per hardware characteristic. We show that for flip-flops
the mean error for the predictions is 69%. In conclusion, our quantitative model can make fast
and sufficiently accurate area predictions to support Hardware/Software Partitioning. In the
future, the model can be extended by introducing extra software metrics, using more advanced
modeling techniques, and using a larger collection of functions and algorithms.

Laboratory : Computer Engineering
Codenumber : CE-MS-2007-02

Committee Members :

Advisor: Koen Bertels, CE, TU Delft

Chairperson: Stamatis Vassiliadis, CE, TU Delft

Member: Georgi Kuzmanov, CE, TU Delft

Member: Erik Dirkx, ETRO, VU Brussel

i

ii

To the Lord God Almighty.

iii

iv

Contents

List of Figures ix

List of Tables xi

List of Algorithms xiii

List of Terms xvi

Acknowledgements xvii

1 Introduction 1
1.1 A case study: Software Radio . 2
1.2 Reconfigurable Computing Requirements 3
1.3 Problem definition . 4

2 Literature Review 7
2.1 Hardware/Software Partitioning . 7

2.1.1 Partitioning Algorithms . 7
2.1.2 Partitioning and Estimation . 17
2.1.3 Dynamic versus Static Solutions 18
2.1.4 Synthesizability and Partitioning 19

2.2 High Level Estimation, Metrics, and Profiling 19
2.2.1 Area, Speed, and Power . 20
2.2.2 Other metrics . 30
2.2.3 Software metrics and comparability 32
2.2.4 Classifying metrics . 32
2.2.5 Characterizing hardware synthesis and optimization 39

2.3 Reconfigurable Computing Projects . 40
2.3.1 Delft Workbench . 40
2.3.2 Other toolchains . 43

2.4 Conclusions . 44

3 Metrics 45
3.1 Classifying Software Metrics . 45
3.2 Candidate metrics . 50

3.2.1 Lines Of Code (LOC) . 50
3.2.2 Halstead’s Software Science . 52
3.2.3 Cyclomatic Complexity . 54
3.2.4 Nesting level . 55
3.2.5 Scope Number/Ratio . 57

v

3.2.6 Average Information Content Classification (AICC) 58
3.2.7 Path Measures . 59
3.2.8 Prather’s µ measure . 61
3.2.9 Basili-Hutchens complexity . 61
3.2.10 Data Flow Measures . 62

3.3 Conclusions . 65

4 Statistical and Quantitative Model Building 67
4.1 Models and Prediction Systems . 67
4.2 Normalization of Metrics . 68
4.3 Linear Interdependence of Metrics . 69
4.4 Principal Component Analysis (PCA) . 70
4.5 Derived metrics and Ordinal Scales . 73
4.6 (Multiple) Linear Regression . 73
4.7 Model Quality and Significance . 74

4.7.1 ANalysis Of VAriance (ANOVA) 74
4.7.2 Performance Indicators . 76
4.7.3 Residual Analysis . 77

4.8 Conclusions . 79

5 Results 81
5.1 Methodology . 81

5.1.1 Acquire dataset . 81
5.1.2 Generate Observational Data . 81
5.1.3 Perform Statistical Analysis . 83

5.2 Results with Delft Workbench Automated Reconfigurable VHDL genera-
tor (DWARV) . 84
5.2.1 Predictions and model parameters 84
5.2.2 Normality . 85
5.2.3 Homoscedasticity . 85
5.2.4 Linearity . 87
5.2.5 Model Performance . 88

5.3 Results with SPARK . 89
5.3.1 Predictions and model parameters 90
5.3.2 Model Performance . 90
5.3.3 Discussion . 90

5.4 Conclusions . 91

6 Conclusions 93
6.1 Conclusions . 93
6.2 Future Research . 94

Bibliography 97

vi

A Detailed Results 107
A.1 DWARV - Partial Residual Plots . 108
A.2 DWARV - ANOVA Tables . 114
A.3 SPARK - Omitted Plots . 116
A.4 SPARK - Partial Residual Plots . 118
A.5 SPARK - ANOVA Tables . 124

B Contents of CD-ROM 127
B.1 codebase/ . 127
B.2 Metrics/ . 127
B.3 statisics/ . 128
B.4 thesis/ . 128

vii

viii

List of Figures

1.1 Design Space between performance and flexibility. 2

2.1 The NESTIMATOR neural estimator . 21
2.2 A Module power model . 30
2.3 Molen Platform . 41
2.4 Delft Workbench tool-flow . 43

3.1 Control structures for which Tai’s DU(G) is defined 63

4.1 Metrics Normalization Example . 68
4.2 Covariance Matrix . 69
4.3 Principal Component Analysis . 71

5.1 ISE synthesis options . 82
5.2 Model Predictions: DWARV . 84
5.3 Quantile-Quantile Plot s (Q-Q Plots): DWARV 86
5.4 Residual Plots: DWARV . 86
5.5 Metric Plot example: DWARV . 87
5.6 Model Predictions: SPARK . 89

A.1 Partial Residual Plot for Slices: DWARV 108
A.2 Partial Residual Plot for Flip-Flops: DWARV 109
A.3 Partial Residual Plot for Look-Up Tables: DWARV 110
A.4 Partial Residual Plot for Multipliers: DWARV 111
A.5 Partial Residual Plot for Period: DWARV 112
A.6 Partial Residual Plot for States: DWARV 113
A.7 Model Predictions: SPARK . 116
A.8 Q-Q Plots: SPARK . 117
A.9 Residual Plots: SPARK . 117
A.10 Partial Residual Plot for Slices: SPARK 118
A.11 Partial Residual Plot for Flip-Flops: SPARK 119
A.12 Partial Residual Plot for Look-Up Tables: SPARK 120
A.13 Partial Residual Plot for Multipliers: SPARK 121
A.14 Partial Residual Plot for Multipliers: SPARK 122
A.15 Partial Residual Plot for States: SPARK 123

ix

x

List of Tables

1.1 Levels of Programmability in control- and data-flow systems 2
1.2 Overview of the source code . 4

2.1 Hardware/Software Partitioning Literature Overview 8
2.2 Area Estimation Literature Overview . 20
2.3 Bit-based area models . 22
2.4 Speed Estimation Literature Overview . 25
2.5 Bit-based timing models . 26
2.6 Power Estimation Literature Overview . 28
2.7 Taxonomy of power estimation techniques 28

3.1 Overview of considered Software Metrics 51
3.2 Detailed NPATH complexity expressions 60

4.1 Principal Component Analysis Results . 72
4.2 ANOVA definition . 75

5.1 Model Parameters: DWARV . 84
5.2 Performance indicators for DWARV model 88
5.3 Model Parameters: SPARK . 89
5.4 Performance indicators for SPARK model 90

A.1 ANOVA for DWARV: Slices . 114
A.2 ANOVA for DWARV: Flip-Flops . 114
A.3 ANOVA for DWARV: Look-Up Table s (LUTs) 114
A.4 ANOVA for DWARV: Multipliers . 115
A.5 ANOVA for DWARV: Period . 115
A.6 ANOVA for DWARV: States . 115
A.7 ANOVA for SPARK: Slices . 124
A.8 ANOVA for SPARK: Flip-Flops . 124
A.9 ANOVA for SPARK: LUTs . 124
A.10 ANOVA for SPARK: Period . 125
A.11 ANOVA for SPARK: Multipliers . 125
A.12 ANOVA for SPARK: States . 125

xi

xii

List of Algorithms

2.1 Pseudo code of Greedy Partitioning . 9
2.2 Pseudo code of Simulated Annealing Partitioning 10
2.3 Pseudo code of Fiduccia-Mattheyses Partitioning 11
2.4 Pseudo code of Genetic Algorithm Partitioning 12
2.5 Pseudo code of Global Criticality/Local Phase driven algorithm (GCLP)

Partitioning . 13
2.6 Pseudo code of Dynamic Programming Partitioning 14
2.7 Pseudo code of Binary Constraint Search Partitioning 16
2.8 Pseudo code of Clustering Partitioning . 17
3.1 if-statement with only one possible path. 59
3.2 Tai DU(G) Allocation algorithm . 63

xiii

xiv

List of Terms

AICC Average Information Content Classification

API Application Programming Interface

ALAP As Late As Possible Scheduling

ANOVA ANalysis Of VAriance

ANSI-C American National Standards Institute standard for the C programming
language

ASIC Application Specific Integrated Circuit

ASIP Application Specific Instruction-set Processor

AST Abstract Syntax Tree

BCS Binary Constraint Search

CCU Custom Computing Unit

CDFG Control- and Data Flow Graph

CFG Control Flow Graph

CLB Configurable Logic Block

COCOMO COnstructive COst MOdel

COTS Custom Off-The-Shelf

CPI Cycles Per Instruction

CPU Central Processing Unit

DAG Directed Acyclic Graph

DFG Data Flow Graph

DSP Digital Signal Processing or Digital Signal Processor

DWARV Delft Workbench Automated Reconfigurable VHDL generator

FPGA Field Programmable Gate Array

FSM Finite State Machine

FU Functional Unit

GC Global Criticality

xv

GCLP Global Criticality/Local Phase driven algorithm

GLM Generalized Linear Model

GPP General Purpose Processor

GPRS General Packet Radio Service

GSM Global System for Mobile Communications previously Groupe Spéciale
Mobile

H-CDFG Hierarchical Control- and Data Flow Graph

ILP Instruction-Level Parallelism

KDSI 1000 Delivered Source Instructions

LOC Lines Of Code

LUT Look-Up Table

MIBS Mapping and Implementation Bin Selection

MSE Mean Squared Error

PC Principal Component

PCA Principal Component Analysis

PRESS Predicted Residual Sum of Squares

Q-Q Plot Quantile-Quantile Plot

R2 Coefficient of Determination

RC Reconfigurable Computing

ρµ-code Reconfigurable Micro-code

RMSE% Rooted Mean Squared Error Percentage of the mean of the independent
variable

RTL Register Transfer Level

STG State Transition Graph

TEW Total Edge Weight

VHDL VHSIC Hardware Description Language (VHSIC stands for
Very-High-Speed Integrated Circuit)

UMTS Universal Mobile Telecommunications System

xvi

Acknowledgements

I am grateful for all the help and support I received during my thesis project.
Therefore, my thanks go out to Koen Bertels, for all his advice, support, and
encouragement, to Stamatis Vassiliadis for his inspiration - may he rest in peace -,

to Yana Yankova for her endless work on DWARV that was essential for my work, to
Arcilio for his close cooperation and friendship, to Eric Cator for his important advice
on Modeling and Statistics, and Gerard Aalbers for proof reading my work and his
friendship.

Also, I would like to take the opportunity to thank the people that have played an
important role in my life. First of all my parents, thank you for your nurturing, support,
love, and confidence over the years! Also, I would like to thank all my friends, who have
been there for me and thought of me in their prayers.

And most importantly all my gratitude go to my Lord God, who has guided me
every step along the way.

Roel Meeuws
Delft, The Netherlands
May 1, 2007

xvii

xviii

Introduction 1
For many years, computers have been based on the Von-Neumann Machine (or

Stored-program machine), which is a machine divided into a processing unit, a com-
bined data and program memory for data, and a sequential flow of data and control

elements between the memory and the processing unit [99]. The idea of a program of
instructions that are executed sequentially made the implementation of algorithms much
simpler, hence the rapid advancement of software development in the following decennia
became possible.

However, as Backus [9] pointed out, the concept showed an inherent bottleneck,
which he called the “Von-Neumann bottleneck”. Because the processing unit and the
memory in a Von-Neumann machine are separate, instructions and data have to be moved
continually. Furthermore, the sequential nature of this process limits the speed one can
achieve by exploiting more parallelism. Still, the Von-Neumann computer has been
successful due in no small part to the many tools supporting the paradigm at each level.
Moreover, the miniaturization of electronics have provided regular speed improvements
(Moore’s Law), diminishing the need for a non-Von-Neumann architecture.

Despite the dominance of Von-Neumann machines, other architectures have been
used in specific areas. Application Specific Integrated Circuits (ASICs), for example
are able to use the parallelism inherent to the problem at hand and combine processing
and storage into their data-path. In contrast to more general applications, application
specific systems did not need the programmability and flexibility of the Stored-Program
machine. Special languages, tools, and design methodologies have been developed to
make the implementation of ASICs possible.

In recent years, the continuing applicability of Moore’s Law has come into ques-
tion. For one, wire delays become an increasing problem at higher speeds, and second,
the manufacture of transistors smaller than a few atoms seems unlikely. Furthermore,
a growing demand for mobile technology and other systems with limited power sup-
plies have made the use of fast Von-Neumann processors in such systems difficult if not
impossible. To cope with this problem, designers increasingly use ASICs to speed up ex-
pensive algorithms like media encoding and signal processing. Such systems, where both
programmable and application specific systems are combined, are called heterogeneous
systems.

The problem that remains, however, is the inflexibility of such custom hardware,
i.e. every different task needs a different circuit. This results in a combinatorial ex-
plosion of ASICs, driving up the cost considerably. In order to remedy this problem
the research community introduced the concept of Reconfigurable Computing (RC).
Reconfigurable Computing complements programmable software components with pro-
grammable hardware components [67], like Field Programmable Gate Arrays (FPGAs).
Hence, Reconfigurable Computing advances the idea of heterogeneous systems by intro-

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The design space between performance and flexibility of programming. Re-
configurable Computing positions itself between Hardware and Software.

ducing programmability to the hardware components. These programmable hardware
components make it possible to dynamically load different ASIC designs or configura-
tions, making flexible non-Von-Neumann machines a possibility. This way Reconfigurable
Computing positions itself in the design gap between hardware and software, as illus-
trated in Figure 1.1. To clarify the concept of Reconfigurable Computing , let us look
at [28], where three levels of programmability are identified for both control-flow models
(software) and data-flow models (hardware) (Table 1.1). The programmability in RC
comprises all those instances of programmability.

Control-flow Data-flow

Different programs can be executed Different circuits can be executed
Executing programs can be modified Executing circuits can be modified
Dynamic behavior through choice in con-
trol flows

Dynamic behavior through choice in data
flows

Table 1.1: Three different levels of programmability in control-flow and data-flow sys-
tems, as presented in [28]

1.1 A case study: Software Radio

As an illustration of how Reconfigurable Computing can help alleviate processing re-
quirements, while remaining flexible, we now look into the Software Radio[20, 102, 27,
87, 88]. In mobile communications many different frequency bands are used for different

1.2. Reconfigurable Computing REQUIREMENTS 3

applications, like Global System for Mobile Communications (GSM) for voice, General
Packet Radio Service (GPRS) for Internet, and Universal Mobile Telecommunications
System (UMTS) for video. To make things more complicated the exact frequencies differ
per region, for example GSM at 1800MHz in Europe and Asia and GSM at 1900MHz in
North America. Because of the different networks, frequencies, and bandwidths, a pro-
grammable radio that can service different networks on demand would be very helpful.

However, the computing power required for a software radio on a conventional pro-
cessor is quite high. As an illustration, look at the example in [102], that mentions that
processing a 500MHz carrier frequency using a 1 GHz sampling rate (as dictated by the
Nyquist theorem) on a 32-bit 4-issue 4GHz system, leaves 32 operations per sample,
which is not enough to filter and (de)modulate the signal, apply error correction, and so
forth. [102], argues for the use of a heterogeneous multiprocessor architecture, i.e. an
architecture that comprises different ASIC and General Purpose Processor s (GPPs), to
tackle this problem. Nevertheless, such an approach may be expensive. [27, 87] suggests
RC (especially FPGA technology) as a means to make radio signal processing possible,
while remaining flexible enough to service different networks at different times. In [87]
we even find an example design: the Layered Radio Architecture.

1.2 Reconfigurable Computing Requirements

Although the advantages of Reconfigurable Computing are clear, it has not pervaded
industry as traditional computing has. In an attempt to explain this, [67] argues that
while the Von-Neumann Machine is supported by an extensive and mature base of tools,
Application Programming Interface s (APIs), and design methodologies, no such exten-
sive support is available for the Reconfigurable Computing paradigm. In other words,
for Reconfigurable Computing to be commercially viable, it should have a comparable
support base. In recent years some tools have been developed to attack this problem.

The problem does not end there, however. Because Reconfigurable Computing moves
away from the Von-Neumann model, the extensive base of support should be adapted
accordingly. In [6], for example, current hybrid programming models are pointed out to
be immature, because FPGAs and Central Processing Unit s (CPUs) are treated com-
pletely separate. In order to make the design of Reconfigurable Computing systems
feasible the paper proposes a more transparent model, i.e. the multithreading model.
This model provides a way to describe concurrency without specifying where the thread
will be implemented. A separate partitioner can then partition the threads over the
hybrid processing elements. In [100] this model is elaborated in more detail. The paper
describes how to implement software and hardware threads by using a common abstrac-
tion layer in the operating system, providing a common interface between hardware and
software threads. Another possible programming model for RC is presented in [90],
where a functional programming model, called V, is introduced. That model uses im-
plicit parallelism and aims to be similar to both traditional embedded (compositional)
functional models, as well as more component based models used in hardware design.
Computational models need to be redefined with respect to Reconfigurable Computing
as well. In [23] a redefinition of the term algorithm, as used in computability theory, is
presented tailored to Reconfigurable Computing .

4 CHAPTER 1. INTRODUCTION

Domain Kernels Bit-Based Streaming Account-
Keepinga

Control-
Intensive

Compression 2 x x x
Cryptography 56 x x xb

DSP 5 x x xb

ECC 6 x x x
Mathematics 19

Multimedia 32 xb x x

General 15 xb x

Total 135

aNon-constant space complexity.
bOnly some instances in that domain express this characteristic.

Table 1.2: The number of functions in each domain together with the main algorithmic
characteristic present in the software implementations.

1.3 Problem definition

We have already established the need for extensive tool support when considering the
acceptance of RC in industry. Tool support and integration for RC is the main focus of
the Delft Workbench project (see Chapter 2.3.1). Its research covers the entire design
process from code profiling to compilation.

Within the Delft Workbench project research is being done into hardware estimation
and hardware/software partitioning. One possible strategy that has been suggested
in order to tackle these two problems was to use a model based on software metrics.
However, the question remains, can hardware characteristics be predicted using a model
based on software metrics? In this thesis, I try to answer this question by building a
preliminary decision model based on software metrics for the Delft Workbench.

For this purpose, I have collected a dataset of 135 functions in the C-language from
a broad spectrum of application domains, as can be observed in Table 1.2. Using such a
broad set of functions ensures that any results would be applicable to real world applica-
tions. As a consequence of the broad scope of the dataset, the candidate functions have
varying types of algorithms and memory access patterns as can be observed in Table 1.2.
This implies the need for different kinds of software metrics that can characterize the
different aspects of these application domains. In my thesis I will use these C-kernels
to build a statistical model based on linear regression. This model will predict several
hardware characterics. Although these predictions are made in the very first design
stages where many aspects of the final design are not yet concrete and thus a relatively
large error margin can be expected, these predictions can be invaluable for guiding the
hardware/software partitioning process.

My thesis is organized as follows. In Chapter 2 I investigate the problem further
and review previous research and literature. In Chapter 3 I investigate software metrics
in general as well as select a set of metrics for use in the decision model. Then, in
Chapter 4, I present the relevant theory of building a statistical model using software
metrics. Next, I present the methodology and experimental results in Chapter 5. The

1.3. PROBLEM DEFINITION 5

results comprise the model specification and validation. Finally, in Chapter 6 I briefly
discuss the results presented in this work and indicate possible future directions for
research and implementation.

6 CHAPTER 1. INTRODUCTION

Literature Review and Related
Research 2
The two main functions of the decision model envisioned by Delft Workbench are a)
deciding how to partition a software application over hardware and software components
and b) estimating the resource requirements and performance of the resulting system.
These problems have been researched extensively and in this chapter I review previous
solutions to hardware/software partitioning (Section 2.1) and estimation (Section 2.2).

Apart from discussing these two functionalities of the model, this chapter also de-
scribes the direct context of the mode, i.e. the MOLEN and Delft Workbench projects
Section 2.3.1. Other projects in the field of Reconfigurable Computing are also briefly
discussed.

2.1 Hardware/Software Partitioning

Later on, we discuss several hardware estimation measures that can help discover and
select candidates for hardware implementation. While estimation is an important part
of Hardware/Software partitioning, the actual process of partitioning is at least as im-
portant and will be discussed first. In the past partitioning was often performed by
hand, but in more recent years, automatic partitioners have begun to appear. Many
algorithms have been proposed over the years focusing on different aspects of a design.
All partitioning algorithms try to optimize some measure under certain resource con-
straints, e.g. minimizing power consumption under speed and area constraints. A model
for candidate selection for hardware implementation is in fact a partitioning model and
therefore further investigation into partitioning algorithms can be useful in determining
such a model. In this section, we discuss several partitioning strategies and how they
connect with estimation and profiling.

2.1.1 Partitioning Algorithms

The Hardware/Software partitioning problem shows many similarities with graph par-
titioning. And indeed there are papers on hardware/software partitioning that apply
algorithms from graph theory. Other algorithms come from evolutionary programming
or statistical analysis. In the following, we discuss some of these algorithms.

2.1.1.1 Greedy

An early approach to the partitioning problem, presented in [42], uses a greedy algorithm.
Greedy algorithms use locally optimal decisions to approximate the globally optimal
partitioning. In case of [42], the algorithm starts with an all hardware partitioning and
moves nodes that yield the largest decrease in communication first, until the constraints

7

8 CHAPTER 2. LITERATURE REVIEW

can no longer be satisfied. While this approach is relatively fast and may give acceptable
solutions, it leaves quite some room for further improvement. This scheme of sorting all
nodes according to some measure and then moving the topmost portion that still fulfills
the constraints to hardware is used in many other partitioning schemes in literature. In
[91], for example, the most frequently executed loops are migrated to hardware. The
CRUSADE algorithm [29] allocates task clusters with the highest priority in hardware
first.

2.1.1.2 Simulated Annealing

In order to remedy the flaw of greedy algorithms to get stuck in local optima, several
hill-climbing algorithms have been proposed for graph partitioning. These algorithms
can temporarily accept less optimal solutions, in order to find a (more) global optimum.
One such hill-climbing scheme, Simulated Annealing [58], that is often used in hardware

Paper Dynamic/ Static Strategy Criteria Model/ Data
Structure

Granularity of
Partitioning

Time Complexity

[58] Static Simulated Anneal-
ing

n/a n/a n/a n/a

[42] Static Greedy Minimal area, data-
rate constraints

System Graph
Model (like H-
CDFG)

operations linear

[41] Static Greedy (see [42]) Minimal area, data-
rate constraints

Hierarchical Se-
quence Graph

operations n/a

[77] Static Simulated Anneal-
ing

Minimal communi-
cation cost

Petri-nets, (anno-
tated) CDFG

operations O(tn)
t=temperature
steps

[34] Static Simulated Anneal-
ing

Hardware suitability
(compare local
phase [54])

(extended) Cx syn-
tax graph

basic blocks n/a

[54] Static GCLP GC objective func-
tion (e.g. Area com-
bined with speed)

n/a Tasks (instruction
level subgraphs)

O(ne), e=edges

[96] Static Binary Constraint
Search

Constraints of
encapsulated parti-
tioning algorithm

n/a n/a O(part(S))
part(S) = encaps.
part. alg.

[50] Static Dynamic Program-
ming

Temporal size
of loops / leaf
functions

n/a loops, leaf functions n/a

[53] Static GCLP (MIBS) See [54] CDFG Tasks O(n3 + n2B),
B=bins

[82] Static Evolutionary (Ge-
netic)

Minimal area, tim-
ing and concurrency
constraints

CDFG functional elements O(gp),
g=generations,
p=population

[30] Static Clustering Minimal cost, min-
imal power, tim-
ing and power con-
straints

Task Graph task clusters n/a

[29] Dynamic Greedy, Clustering Minimize area, tim-
ing constraints

Task Graph task clusters n/a

[65] Dynamic Clustering Area constraints CDFG loop clusters linear
[89] Static Evolutionary (Ge-

netic)
maximize fitness
(minimize area and
interconnect)

DFG fine:operations
coarse:DFGs

n/a

[84] Dynamic Evolutionary Maximum rank
(Pareto ranking in
power and price)

Task Graph Tasks n/a

[91] Static Greedy Temporal size
of loops / leaf
functions

n/a loops n/a

[14] Static Dynamic Program-
ming

Minimum latency,
resource constraints

DFG Tasks polynomial

[12] Static Simulated Anneal-
ing, Kernighan-Lin

Minimize latency,
area constraints

Call graph functions n/a

Table 2.1: Inventarization of several papers on hardware software partitioning with cor-
responding partitioning schemes, criteria, and data structures

2.1. HARDWARE/SOFTWARE PARTITIONING 9

1 function GreedyPart (system : graph) : graph
2 // Initialize partition and cost
3 partition := InitPartition (system) ;
4 cost := Cost (partition) ;
5
6 // partition each node
7 for each node in system do
8 partition ’ := partition ;
9 // move node in partition ’ from/to HW

10 swap (node , partition ’) ;
11 if feasible (partition ’) then
12 if Cost (partition ’) < cost then
13 partition = partition ’ ;
14 cost = Cost (partition ’) ;
15 end if
16 end if
17 end for
18 return partition ;
19 end function

Algorithm 2.1: Pseudo code of an example greedy algorithm for solving the partitioning
problem.

software partitioning [34, 77], is based on techniques in statistical mechanics. The idea
is to introduce a “temperature” to the optimization process, which determines how often
counter-productive moves from one part of the graph to another are allowed. This
“temperature” is lowered during the partitioning process, until the temperature is zero
at which point a local optimum can be found. This partition is not only locally optimal,
but also the optimal partition of several locally optimal partitions and is therefore closer
to the global optimum. While simulated annealing generally finds better solutions than
a simple greedy approach, it is also slower because the temperature has to drop to zero
over several iterations first.

2.1.1.3 Kernighan-Lin/Fiduccia-Mattheyses

Classical graph bi-partitioning algorithms like Kernighan-Lin and Fiduccia-Mattheyses
are also used in Hardware/Software partitioning. They consist of a sequence of passes
which yield trial partitions, which are used as input to subsequent passes. A trial par-
tition is obtained by repetitively moving nodes between partitions and locking them
during the remainder of the pass. Each move is performed according to some cost met-
ric. No paper discussed here presents hardware/software partitioning or synthesis using
one of these algorithms. However, [12] shows that Simulated Annealing can deliver better
quality partitions in less time.

10 CHAPTER 2. LITERATURE REVIEW

1 function SAPart (system : graph) : graph
2 Temp := StartTemperature ;
3 Conf := InitConfiguration (system) ;
4 while (cost changes) OR
5 (Temp > FinalTemp)
6 do
7 for a number of times do
8 generate a new configuration Conf’ ;
9 if accept (Cost (Conf’) , Cost (Conf) ,

10 Temp)
11 then Conf := Conf’ ;
12 end for
13 Temp := Temp ∗ ReductionFactor ;
14 end while
15 end function
16
17 function accept (NewCost , OldCost , Temp)
18 CostChange := NewCost − OldCost ;
19 if CostChange < 0
20 then // accept based on cost improvement
21 accept := TRUE ;
22 else // else accept randomly
23 Y := exp(−CostChange/Temp) ;
24 R := random (0 , 1) ;
25 accept := (R < Y)
26 end function

Algorithm 2.2: Pseudo code of a generic simulated annealing algorithm for solving the
partitioning problem as found in [77].

2.1.1.4 Evolutionary or Genetic Algorithms

Another approach to hardware/software partitioning is based on principles from evo-
lutionary biology. Evolutionary programming can be traced back to the fifties [8] and
since then several different types of evolutionary strategies have been developed, each
with their own niche. For combinatorial problems like graph partitioning, the so-called
genetic algorithm is most suitable. In hardware/software partitioning genetic algorithms
have been used in [82, 89, 84] among others.

In a genetic algorithm possible solutions to a problem are treated as genomes that
compete in an evolutionary setting. Intermediate solutions in one iteration (generation)
of the algorithm compete and the best solutions go to the next generation. When a new
generation starts changes (mutations) are introduced in the solutions and solutions can
exchange parts of their “genome” (crossover). In [82], for example, partitioning is mod-
eled as a constraint satisfaction problem, which in turn is mapped to a genetic algorithm.
The fitness of solutions is determined by the value of the constrained measures. This way
fitter solutions are expected to better fulfill the constraints. While genetic algorithms
can give good solutions to problems with many constraints and multidimensional cost

2.1. HARDWARE/SOFTWARE PARTITIONING 11

1 function FMPart (system : graph) : graph
2 partition = InitPartition (system) ;
3 repeat
4 for each node in partition
5 unlock (node) ;
6 gain = 0 ;
7 while unlocked nodes remain
8 node = MaxGainUnlockedNode (partition) ;
9 swap (node , partition) ;

10 gain = node . gain ;
11 lock (node) ;
12 for each node in partition
13 update node . gain ;
14 end while
15 until gain <= 0 ;
16 return partition ;
17 end function

Algorithm 2.3: Pseudo code of a Fiduccia-Mattheyses algorithm for solving the parti-
tioning problem.

functions, the strategy provides no test for optimality, requires carefully chosen parame-
ters like mutation rate, crossover rate, etc., and can be very time consuming, i.e. many
generations may be needed before a stable state is achieved.

2.1.1.5 Global Criticality/Local Phase driven algorithm (GCLP)

An extension to simple serial greedy partitioning is the Global Criticality/Local Phase
driven algorithm (GCLP) [54]. Serial greedy algorithms can only optimize for one cost
metric when deciding where to partition a node, GCLP on the other hand facilitates
using multiple cost metrics. Which cost metric to use is determined by comparing Global
Criticality (GC) , a measure of temporal criticality for each node, to a threshold value.
This threshold is augmented by a local phase delta. Local phase is a classification measure
that indicates the heterogeneity of a node. There are 3 local phase classes: Extremities,
Repellers, and normal nodes. Extremities for an implementation are nodes that are
inefficient for that implementation. Repellers of a certain implementation are nodes that
are more efficiently implemented in another partition than other nodes with the same
costs for the current partition. Normal nodes are nodes that are neither extremities nor
repellers. The main advantage of GCLP is the improved accuracy over simple greedy
algorithms while maintaining the speed of the partitioning process.

In [53] a more elaborate scheme based on GCLP is presented. This paper combines
GCLP and implementation-bin selection into an iterative algorithm called Mapping and
Implementation Bin Selection (MIBS). At the beginning of a MIBS iteration some
nodes have been mapped (fixed nodes) and some nodes have not (free nodes). GCLP is
applied to the free nodes accounting for the fixed nodes as well. From these temporarily
partitioned free nodes one node (tagged node) is selected for implementation bin selection.

12 CHAPTER 2. LITERATURE REVIEW

1 (* The chromosomes in the following algorithms are a concatenation of so -called

2 partial-codes

3 (xi), which denote the

4 implementation(uil, 0 ≤ l ≤ mi) of a

5 function (i). The chromosome represents a

6 solution and it ’s genes partial -codes. Partial -codes relate to partial -codes as

7 follows: l = xi mod mi*)

8
9 const threshold = minimal acceptable gain ;

10 function GeneticPart (system : graph) : graph

11 var population : chromosome [1 . . size] ;
12 fill population with random chromosomes ;
13 generation = 0 ;
14 previous = best = MAXINT ;
15 repeat

16 for each chromosome in population

17 calculate its fitness

18 newpopulation = [] ;
19 previous = best ;
20 while newpopulation . size < size do

21 parents = chooseParents (population) ;
22 child = crossOver (parents) ;
23 child = mutate (child) ;
24 newpopulation . add (child) ;
25 if child . fitness > best . fitness
26 then

27 best = child . fitness
28 bestchild = child

29 end if

30 end while

31 population = newpopulation ;
32 generation = generation − 1 ;
33 until (generation = maxgens) OR

34 (ABS (best−previous) < threshold)
35 return bestchild ;
36 end function

37
38 function chooseParents (population)
39 (*This function is based on the roulette -wheel method , i.e. the fitness of each

40 chromosome defines the chance it ’s chosen.*)

41 end function

42
43 const n ;
44 const crossChance ;
45 function crossOver (parents)
46 if flipCoin (crossChance)
47 then

48 choose n crossover sites randomly ;
49 for each crossover site s

50 temp := parent1 . partialcode [s] ;
51 parent1 . partialcode [s] :=
52 parent2 . partialcode [s] ;
53 parent2 . partialcode [s] :=
54 temp ;
55 end for

56 end function

57
58 const mutateChance = 0 . 0 0 8 ;
59 function mutate (chromosome)
60 for each bit in chromosome

61 if (flipCoin (mutateChance)) then

62 invert (bit) ;
63 end for

64 end function

Algorithm 2.4: Pseudo code of the Genetic Algorithm for solving the partitioning
problem as found in [82].

2.1. HARDWARE/SOFTWARE PARTITIONING 13

1 var U : unscheduled nodes ;
2 var S : scheduled nodes ;
3 (* ready nodes are nodes whose
4 predecessors have all been
5 scheduled *)
6 var R : ready nodes ;
7 function GCLPPart (system : graph) : graph
8 computeExtremities (system) ;
9 computeRepellers (system) ;

10 while not empty (U)
11 ComputeGlobalCriticality (system) ;
12 Determine R ;
13 Compute effective exec . time texec(i)
14 (* if i ∈ U:texec(i) = GC.t(HW,i) + (1−GC)t(SW,i)

15 else if i ∈ S:texec(i) = t(part,i)*)
16
17 for each node in R
18 compute LongestPath (root , node) ;
19 pick node from R with Max (longestPath) ;
20 if isExtremity (node) then
21 delta = node.biasHWorSW ;
22 else if isRepeller (node) then
23 delta = node . repelValue ;
24 else
25 delta = 0
26 end if
27 if node . gc >= .5 + delta
28 objective=speedobjective
29 else
30 objective=resourceobjective
31 end if
32 partition node so Min (objective)
33 U = U − node ;
34 S = S + node ;
35 end while
36 return system ;
37 end function

Algorithm 2.5: Pseudo code of a GCLP algorithm for solving the partitioning problem,
as found in [54]. Some functions have not been listed here for space reasons.

When the implementation is determined the tagged node becomes a fixed node, signaling
a new iteration. The implementation-bin selection traverses all implementations for the
tagged node from the fastest(L-bin) to the slowest (H-bin) and for each implementation-
bin determines the fraction of free nodes that need to move to their L-bin in order to
meet timing constraints. When the difference in the number of free nodes in their L-bin
between two successive bins is maximal the second-last visited implementation is selected.
The MIBS algorithm presents better results than GCLP, but is also a lot slower. On the

14 CHAPTER 2. LITERATURE REVIEW

1 function DPPart (system : graph) : graph
2 if hasMultipleOutputs (system)
3 then
4 add dummy output node ;
5 connect each ouput to dummy ;
6 end if
7 nodes = reverseTopologicalSort (system) ;
8 while not empty (nodes)
9 node = pop (nodes) ;

10 merge (node , system) ;
11 end while
12 node = output node ;
13 bestSolution = minimum latency solution for node ;
14 for each node in bestSolution
15 put node in node . partition ;
16 end function
17
18 function merge (node , DAG)
19 predecessors = fan−in nodes of node
20 for part in [HW , SW] do
21 node . partition = part ;
22 for each pred in predecessors do
23 out : for each solution in pred . solutions do
24 Delay = solution . delay + delaypred−>node ;
25 for each other predecessor do
26 (* choose solution that has smaller
27 delay than Delay and minimum
28 area.*)
29 if no solution found then
30 continue out ;
31 other [i] = chosen solution ;
32 end for
33 if sum (other [∗] . area) > maxarea then
34 continue out ;
35 node . solutions . add (combine (other [∗] , node)) ;
36 end for
37 end for
38 end for
39 end function

Algorithm 2.6: Pseudo code of a Dynamic Programming algorithm for solving the par-
titioning problem, as found in [14].

other hand the paper claims that the quality of the results come close to integer linear
programming solutions, while being much faster.

2.1. HARDWARE/SOFTWARE PARTITIONING 15

2.1.1.6 Dynamic Programming

When a problem has recursive characteristics and overlapping subproblems, dynamic
programming can help find a solution. Several papers use dynamic programming in
their partitioning [50, 14] strategies. For example, [14] describes how possible mappings
of a node in a Directed Acyclic Graph (DAG) are determined in a bottom-up fashion.
Starting at the root node of the DAG every node builds a solution list with delay and
resource information using its fan-in nodes. Infeasible solutions are pruned from the
list and if all fanout nodes of a node are processed the list can be pruned entirely.
When multiple solutions exist in fan-in nodes, only the one with the minimal resources
is selected. When all nodes have their possible solutions assigned, every node is assigned
to hardware or software according to the fastest solution listed.

When dynamic programming is applied correctly the algorithm will find exact solu-
tions. Dynamic programming can be time-consuming for arbitrary graphs (NP-hard),
but if DAGs are used the paper shows that this specific application of dynamic program-
ming has a time complexity of O(n). Dynamic Programming does have a larger space
complexity than a brute force approach.

2.1.1.7 Binary Constraint Search (BCS)

One problem in hardware/software partitioning are the often conflicting goals of mini-
mizing one cost measure while satisfying others. For example, when minimizing area,
performance constraints may be violated. The authors of [96] sought to solve this prob-
lem by splitting the problem in satisfying constraints and minimizing some cost measure
by encapsulating a partitioning algorithm in a binary constraint search algorithm. In
[96] the encapsulated algorithm optimizes for performance under a hardware size con-
straint that is determined by the encapsulating algorithm. The BCS algorithm then
uses a cost metric defined as the total number of constraint violations to search for the
solution with zero cost that has the lowest hardware size constraint. This encapsulation
approach can have various results depending on the encapsulated partitioning algorithm,
but the complexity of the resulting partitioning algorithm is O(Cpart log n), where Cpart

is the complexity of the encapsulated algorithm.

2.1.1.8 Clustering Algorithms

When dealing with large problem sizes partitioning algorithms can become slow and par-
titioners may require to switch to less efficient partitioning strategies. Another solution
is to reduce the problem size in some way. The COSYN system presented in [30] accom-
plishes this by clustering nodes (in this case tasks) together. This particular clustering
approach is also used by the CRUSADE algorithm [29]. In order to decrease the schedule
length [30] uses a clustering algorithm based on decreasing the longest path in a task
graph. By clustering tasks on the longest path together, communication between those
tasks becomes negligible. Now another path may be critical and clustering starts again
until no improvement of the critical path can be made. The acquired clustered task
graph can now be partitioned more easily. Of course the obvious speed improvements
this scheme has over normal partitioning comes with reduced accuracy. Furthermore,

16 CHAPTER 2. LITERATURE REVIEW

1 function BCSPart (system : graph ,
2 cons : constraints ,
3 PartAlg : function)
4 : graph
5 begin
6 low = 0 ;
7 high = AllHardwareSize ;
8 while low < high do
9 mid = (low + high +1)/2;

10
11 (H’ , S’)=PartAlg (H ,
12 S , Cons , mid , Cost ()) ;
13 if
14 Cost (H’ , S’ , Cons ,
15 mid)=0 then
16 high = mid − 1 ;
17
18 (Hzero , Szero) =(H’ , S’) ;
19 else
20 low = mid ;
21 end if
22 end while
23 return
24 (Hzero , Szero) ;
25 end function
26
27 function PartAlg (HW : set , SW : set ,
28 Cons : constraints ,
29 mid : area constraint ,
30 Cost : function)
31 begin
32 (* This function can have different
33 implementations , like GCLP , Greedy ,
34 etc. *)
35 end function

Algorithm 2.7: Pseudo code of a Binary Constraint Search algorithm for solving the
partitioning problem, as found in [96].

because the granularity has coarsened the final partitioning might contain some unused
area where a single task might have been partitioned.

A different clustering method, called hierarchical loop clustering, is employed by
[65], where loops are clustered together. Clustering in this method is based on the
loop-procedure hierarchy graph, which contains all procedure calls and loops as nodes,
while edges indicate a caller-callee or nesting relation between nodes. This graph is
then traversed from the root down and all nodes that have a common predecessor on
the current level are clustered together. When a cluster is within the cluster size limit
it becomes fixed, when clusters are too large the next level is inspected. This process

2.1. HARDWARE/SOFTWARE PARTITIONING 17

1 const maxsize ;
2 var loophierarchy : graph ;
3 function Cluster (root : node) : clusters
4 clusters = empty ;
5 if hasChildren (root) then
6 for each child in children (root) do
7 cluster = subtree (child) ;
8 if cluster . size <= maxsize
9 clusters . add (cluster) ;

10 else
11 clusters . add (Cluster (child)) ;
12 end for
13 else
14 return {root} ;
15 end if
16 return clusters ;
17 end function

Algorithm 2.8: Pseudo code of a Clustering algorithm for solving part of the partitioning
problem, as can be found in [65].

continues until all clusters are fixed. The advantage of this clustering approach is the
clusters are disjunct in time, which makes it possible to find a dynamic schedule for e.g.
an FPGA.

2.1.2 Partitioning and Estimation

Generally partitioning algorithms are targeted at optimizing certain criteria, while satis-
fying constraints on others. Different papers have focused on different optimization cri-
teria like area, speed, and power, but also communication, memory, and loop frequency.
It is evident that estimation strategies as discussed in Section 2.2 are essential to hard-
ware software partitioning. Some papers on estimation even presented schemes tailored
for partitioning schemes [89, 30, 66, 51, 95]. However, when combining estimation- and
partitioning schemes, one must consider the different levels of speed and precision. For
example, when a very precise partitioning scheme like dynamic programming is applied,
it makes less sense to incorporate estimators with large error margins, because it is use-
less to exactly partition a system using only partially accurate criteria. On the other
hand a greedy algorithm might benefit from more exact estimates by letting it find a
better local optimum.

In fact, when considering a certain granularity of partitioning it is good to use esti-
mates of a corresponding granularity. Indeed, if we look at the granularity of partitioning
in Table 2.1, it corresponds to the granularity levels mentioned in Section 2.2.4.7 with
the addition of operations, for which estimation is trivial. The table does not show a
particular trend in the granularity of partitioning.

18 CHAPTER 2. LITERATURE REVIEW

2.1.3 Dynamic versus Static Solutions

Most papers on hardware/software partitioning have focused on finding static partitions
between hardware and software. With the advent of RC, however, the need for dynamic
solutions to partitioning arose. Dynamic partitioning solutions define which part of a
system is executed in which partition and at which time. This allows a system to exploit
the dynamic reconfigurability of e.g. an FPGA, possibly reducing power, area, or other
requirements.

Examples of these dynamic partitioning techniques can be found in [65, 29, 86, 84]
among others. In [65] a clustering algorithm is used where each cluster is guaranteed
not to overlap other clusters in time. This results in a dynamic partitioning where each
cluster can reside on the same FPGA at different intervals in the program’s run-time.
However, the paper does not mention the problem of configuration time required to load
clusters onto the FPGA.

The CRUSADE system [29] also produces dynamic solutions. It does this by finding
all pairs of non-overlapping task graphs. After allocation every pair of non-overlapping
task graphs is merged when the resulting schedule still meets constraints. In order
to account for boot time, i.e. reconfiguration time, a reconfiguration option array is
introduced that contains various options for programming the reconfigurable logic and
the corresponding boot time and cost. The cheapest option that satisfies the timing
constraints is then chosen.

The Symphany Tool [86] utilizes a lazy scheduling algorithm to create dynamic
schedules for implementation on reconfigurable logic. In order to do this, dummy
dependency edges are added to the Hierarchical Control- and Data Flow Graph
(H-CDFG) between vertices contending for the FPGA. Vertices are then scheduled to

be loaded to the FPGA as soon as it is available, as long as the As Late As Possible
(ALAP) schedule of their successor is not violated. When multiple vertices contend,

the ALAP time of their successors are used as priority.

A more elaborate approach is presented in [84], where a dynamic scheduling scheme
is used to dynamically partition tasks over FPGAs. The scheme starts with assigning
priorities to all tasks based on their ALAP schedule, execution time, and reconfiguration
delay. When the FPGA is already (partially) configured with the same configuration
as the current task, the reconfiguration delay will be lower or zero. The task with the
highest priority is then selected and allocated on the FPGA at a certain location and a
certain time. The authors of [84] describe the factors that influence the allocation policy:

1. Reconfiguration Prefetching
Large FPGA configurations can have large reconfiguration delays. In order to hide
the impact of these delays configurations of such tasks can be loaded in advance.

2. Configuration Pattern Re-utilization
Different tasks may share parts of their configuration patterns and when they are
loaded onto the FPGA, those parts will be reused, speeding up reconfiguration.

3. Candidate Eviction
When a task does not fit on an FPGA, other tasks need to be removed from the

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 19

FPGA. When tasks are removed they might be reloaded in the future, yielding
extra reconfiguration delay. In order to minimize this an eviction cost measure is
defined based on the total of all recurrent frequencies of all evicted tasks. When
this measure is minimal, the configured task will be able to remain on the FPGA
longest.

4. Fitting policy
When assigning locations on the FPGA to tasks the allocation policy tries to avoid
fragmentation.

5. Slack time utilization
When parts of a configuration already exist on the FPGA, assignment to those
locations might lower eviction cost, possibly delaying the start time of the task.
The slack available can be used to determine whether this delay is tolerable. The
maximum slack allowed for the current task is the total slack divided by the number
of levels of tasks in the sub-graph rooted at the current task.

When the selected task is allocated, the priorities of the remaining tasks are updated
and the allocation repeats, until all tasks are allocated. The worst-case complexity of
this algorithm is O(n2 log n) but on average it behaves like an O(n log n) algorithm.

2.1.4 Synthesizability and Partitioning

Many papers in hardware/software partitioning either preselect the tasks that are parti-
tioned or assume the problem is implementable on an FPGA. In any case it is important
to factor out any system part that is not synthesizable. For example, in [7], the PRISM-I
system, aimed at automatically translating C-code to a hardware and a software image,
prohibits a total input or output bit-width of more than 32 bits, global variables, floating
point values, etc. A partitioner is often coupled to or integrated in a synthesis tool and
therefore should take into account language restrictions for synthesis.

2.2 High Level Estimation, Metrics, and Profiling

Estimation of different cost parameters has always been an important activity in high
level system design. Estimates of e.g. speed, area, or power inform a designer about
whether a design will meet requirements, stay within budget, and so forth, thus driving
further design choices. Not only cost parameters can be important measures to a de-
signer, others, like loop frequency or data reference locality, might help direct the design
process as well. Many tools and algorithms have been developed over the years that
help determine metrics and thus make the job of the designer easier. If we go one step
further and model the process of selecting candidates for hardware implementation, we
need to look at the measures and their meaning. In this section, we discuss different
metrics and techniques to estimate them. First, I briefly present the different papers I
reviewed. Then, I review different aspects of the estimation schemes by finding ways to
classify these metrics. Furthermore, we briefly go into synthesis and optimization and
how we may measure its effects.

20 CHAPTER 2. LITERATURE REVIEW

Paper Dynamic/
static

Level of
design

Application
Domain

Data
structure

Node
model

Granularity Strategy Complexity Error

[60] Static Behavioral Multimedia CDFG multiple
(non-
)linear
models

Entire
Graph

Hierarchical linear 2.5%-10%

[95] Static Behavioral Communication Custom n/a Functions Incremental O(1) per iteration about 7%
[31] Static Behavioral Multimedia CDFG Bit-width

based
Entire
Graph

Neural nonlinear 10% large
error with
badly
trained
networks

[71] Static System/
Behavioral

Multimedia,
Mathemati-
cal

VHDL
Abstract
Syntax
Tree

Bit-width
based

Entire Ap-
plication

Scheduling nonlinear 16%

[81] Static Behavioral Multimedia,
General
Purpose

PACT
HDL
Abstract
Syntax
Tree

Simple Entire Ap-
plication

scheduling,
allocation

nonlinear average 25%
(maxi-
mum of
241%)

[73] Static RTL and
lower

n/a Boolean
expres-
sions

n/a n/a Complexity linear within
56%

[51] Static Behavioral Multimedia,
Compression,
Mathemati-
cal, General
Purpose,
Cryptogra-
phy

CDFG unknown Entire
Graph

Hierarchical linear 60–100%

[85] Static Behavioral Multimedia DFG Simple Entire
Graph

Scheduling O(nc2) n/a

[66] Static Behavioral n/a (annotated)
CDFG

Simple Entire
Graph

scheduling O(speedest.) +

O(n2)

n/a

[57] Static Behavioral Cryptography n/a Simple n/a Hierarchical n/a n/a
[15] Static System/

Behavioral
Multimedia H-CDFG Simple Entire

Graph
Hierarchical O(n log n) n/a

[89] Static Behavioral Multimedia,
General
Purpose

(C)DFG Simple Node
clusters

Hierarchical linear n/a

[16] Dynamic System Communication (annotated)
DFG

Bit-width
based

Entire
Graph

Scheduling O(simulation)+

O(n2)

n/a

Table 2.2: Different classifications of area estimation found in several papers and indica-
tions of estimation error in those papers. For an explanation of the classifications, please
refer to Section 2.2.4.

2.2.1 Area, Speed, and Power

Most work in estimation has focused on area, speed-up, and power, probably because
they directly correspond with the cost and obvious requirements of designs. We will
discuss them here first, before we go on to less obvious areas of estimation.

2.2.1.1 Area

Area estimation has been tackled in various ways by different groups. In [85] a lower
bound on area is estimated under certain performance constraints. Specifically, they
estimated the number of modules of each type and the area needed for interconnect.
The paper explains how lower bound estimates can be determined by scheduling a DFG
and accounting for the minimum number of modules and buses required.

Because area estimation tries to predict the results of synthesis tools, [81] tries
to find estimates by mimicking high level synthesis. Techniques like force directed
scheduling, resource allocation, operation assignment, and interconnection binding, all
come from high level synthesis. The algorithm uses a simplified model of an FPGA

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 21

Figure 2.1: The NESTIMATOR neural estimator from [31] working together with a
synthesis tool. The results of synthesis are compared with estimates and the neural
network is adapted accordingly.

only taking into account standard LUTs and multiplexers as interconnection structures.
Furthermore, optimizations during synthesis are not taken into account. Although these
simplifications make the estimation process considerably faster, they also reduce the
accuracy of the result.

Where some area estimation techniques aim to be deterministic and are based on
knowledge about synthesis, the neural estimator (NESTIMATOR) in [31] takes a more
non-deterministic approach. The estimator in this paper is first “taught” to correlate
characteristics of a behavioral design to synthesis results by providing it with hundreds
of examples. The setup is depicted in Figure 2.1. The feed-forward neural network used
in this paper consists of 4 layers of neurons. The hidden layers use non-linear sigmoid
neurons and the output layer uses linear neurons. The input to the neural network are
several metrics characterizing CDFGs:

• Number of allowed time steps

• Maximum allowed clock period

• Average delay and area and variances of each Functional Unit (FU) type

• Number of nodes using each FU type

• Number of nodes

• Average bit-width of nodes and variance (indicates node and interconnect area)

• Average path length and variance (indicates interconnect area)

• Average number of inputs/outputs and variance (indicates interconnect and con-
troller area)

22 CHAPTER 2. LITERATURE REVIEW

Pattern Node type(s) Formula

Constant INPUT, OUTPUT y = C
Linear Unsigned ADD and SUB-

TRACT
y = p0 + p1n

Quadratic (Un)signed integer MUL-
TIPLICATION

y = p0 + p1(n− p2)2

Bi-product (Un)signed multi-input
ADD and SUBTRACT

y = (m− p0)(n− p1) + p2

Multi-linear multi-input AND or OR y = p0 +(p1 ∗x/2)(z/2−1)

Table 2.3: Bit-based area models of the main operators in LUTs, as mentioned in
[60].(y=area(LUTs), n=bit-width, m=inputs, pi=experimentally determined constants)

• Average minimal and maximal lifetime of outputs and variances (indicates storage
cost)

• Complexity of the CDFG (indicates parallelism)

An approach targeted specifically at partitioning algorithms is introduced in [95].
This paper describes how a preprocessed information data structure holding basic design
information can be maintained between successive iterations making it possible to get an
updated estimate of the area during every new iteration of the partitioning algorithm in
constant time. [30] demonstrates the usefulness of incremental estimation by integrating
the technique into the COSYN algorithm.

Another approach concerning estimation during the partitioning process is defined
in [66]. Here the optimal cost of a given partitioning for the minimal execution time
is calculated. The optimal cost is determined by adding the costs of single nodes while
accounting for the sharing of resources. Resource sharing is represented by the sharing
factor which is based on the similarity between nodes. Similarity may be defined in
multiple ways, but must indicate to what level nodes can share hardware.

In [51] the estimation is executed before the partitioning process and therefore tries
to be independent of specific synthesis tools. Because of this, the approach taken in this
paper only takes into account the data paths. The estimates are used in a cost function
in a partitioning algorithm and only need to be indicators of the actual area. This means
that, although disregarding the control paths does result in a significant error, the metric
can still be applied in partitioning.

As part of the fine-grained and coarse-grained partitioning strategies targeted
specifically at FPGAs in [89] the authors present an area estimation approach. The
partitioning strategy utilizes an area estimation algorithm that is based on summation.
However, this summation handles computation area and storage area separately. This
way the different logic used for storage (flip-flops) and computation(LUTs) is more
accurately represented in the estimate.

In an effort to guide optimizations in an SA-C compiler [60] introduced an area
estimation technique that captures the impact of compiler optimizations to the area

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 23

of a design. The estimator executes between the optimization and synthesis phases.
Because the estimator is targeted at a specific compiler, the estimator can use detailed
characterizations of the nodes in the DFG, depicted in Table 2.3. The estimate is further
refined by looking for common patterns of synthesis optimization, and adjusting the
estimate accordingly.

Instead of estimating the resource utilization of an entire design, some papers try to
estimate the impact of specific aspects of a design. In [21], for example, we encounter a
way to estimate the effect of loop unrolling on the area. The approach models pipelining
and full- and partial unrolling of loops and this way accounts for an increase of the
number operators and coarser grain array indexing. The paper mentions that unrolling
of outer loops, loop strip-mining, loop merging, and optimizing loop-unrolling side-effects
should be investigated to make the estimation more accurate.

A narrower approach focussing only on boolean functions is presented in [73]. It
demonstrates the use of a complexity measure in estimating the area of high level
descriptions. This complexity measure is based on the sizes and probabilities of prime
implicants in the on-set of boolean functions and shows an exponential relation with
the area needed to implement the functions. This relationship is the basis for the area
estimation in this paper.

Estimating area specifically from software oriented languages like C or Matlab has
been covered in several papers. The researchers in [57] tried to base the area estimation
on extracting relevant operations from the source code, matching modules from a library
to the operations, and use timing information to find out where resources can be shared.
The accuracy of this approach was somewhat disappointing, because

• the authors of [57] did not use the impact of the control logic in the area estimation

• the approach did not account for optimizations

• the algorithm needs the C description to have a hierarchy close to the hierarchy of
the final design.

Using Matlab specifications as a starting point [16] uses simulation to obtain exe-
cution traces that drive the estimation process. The traces are used to build a DFG
of the program. Together with an FPGA performance model that determines the char-
acteristics of specific operations based on bit-width and clock speed, the DFG is used
to estimate the area required by the Matlab code. The authors have chosen to use an
area/latency grid to schedule the DFG before estimation. Using this approach they try
to account for resource sharing and area constraints at the same time.

As a part of the research around the MATCH Compiler [11] the authors of [71] present
an area estimator to provide the compiler with information for automatic design space
exploration. The estimation comprises counting all operations and registers and uses a
simple heuristic formula (Equation (2.1)) to calculate the number of Configurable Logic
Block s (CLBs) that is needed for a design.

NCLBs = 1.15 ∗max(Nf/2, Nr) (2.1)

24 CHAPTER 2. LITERATURE REVIEW

Nf : # of function generators
Nr: # of registers

The algorithm uses a library to count the number of function generators used by
the operations. To get more accurate estimates. the paper describes a type refinement
pass, which determines the bit–widths needed for each variable and operation before
estimation.

The authors of [15] introduced an estimation technique where an entire trade-off
curve is calculated. Their algorithm uses H-CDFGs, which are CDFGs with other
CDFGs as nodes. From the bottom levels of the H-CDFG up, the CDFGs are scheduled
and resources are allocated using different time constraint values. Calculation of the
total number of required resources of multiple CDFGs is based on several heuristic and
deterministic summation rules that account for resource sharing.

2.2.1.2 Speed

In order to get an approximation of the performance of a design, the research community
has proposed many ways of estimating latency and speed–up. Performance measures
like these can indicate if a design is within performance constraints and can drive
hardware/software partitioning.

An example of latency estimation can be found in [85] for example. Apart from
estimating area, this paper also presents a way to calculate a lower bound on latency
given certain resource constraints. The lower bound is based on the critical path latency
and depending on the resource constraints is increased by the extra delay of every module
on the critical path due to module constraints.

In [66] the latency of a hybrid hardware/software system is estimated by determining
the critical path of a Co-design graph as defined in the same paper. The Co-design graph
is a task graph with annotated nodes and edges. For latency estimation the nodes are
annotated with latency information and for edges the graph records whether they are
software or hardware edges and whether they indicate a control or a data dependency.
The critical path is then determined by finding the longest path in the task graph.

As with area [15] tries to estimate entire trade-off curves for the latency of a design
using different timing constraints. Again the H-CDFGs are traversed in a bottom-up
fashion and the latency is calculated at every level by accounting for the allocated re-
sources due to the timing constraints.

The COSYN [30] and CRUSADE [29] co-synthesis algorithms estimate finish times of
tasks with the longest path algorithm. Described in [30] the algorithm finds the longest
path in a DAG taking in to respect both the execution and communication times of tasks
and links respectively.

The partitioning algorithms in [89] discussed earlier, also estimate latency by first de-
termining the longest path. This preliminary value is then refined by adding the latency
of moving input and output values from and to memory, the latency of transferring data
over partition boundaries, and the latency due to synchronization between tasks.

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 25

Paper Dynamic/
static

Level of
Design

Application
Domain

Data
structure

Node
model

Granularity Strategy Complexity Error

[35] Static Instruction-
level

n/a Intermediate
code

n/a Application Complexity n/a 8%

[16] Dynamic System Communication (annotated)
DFG

Bit-width
based

Entire
graph

Scheduling O(simulation)+
nonlinear

10%

[71] Static System/
Behavioral

Multimedia,
Mathemat-
ical

VHDL Ab-
stract Syn-
tax Tree

Bit-width
based

Entire
Graph

Scheduling linear 13%

[85] Static Behavioral Multimedia DFG Simple entire
graph

Scheduling O(nc2)
(c: time
steps)

n/a

[50] Dynamic Behavioral Multimedia,
Cryptog-
raphy,
Com-
pression,
General
Purpose

n/a n/a Loops Simulation O(simulation)+
O(1)

n/a

[66] Static Behavioral
(during
partition-
ing)

n/a (annotated)
DFG

Simple entire
graph

Scheduling O(n2 log n) n/a

[19] Static Behavioral Communication n/a Bit-width
based

Functions
(=Occam
processes)

Complexity n/a n/a

[30] Static Behavioral
(during
partition-
ing)

n/a Task graph Simple Entire
graph

Incremental linear n/a

[29] Static Behavioral
(during
partition-
ing)

Communication Task graph Simple Entire
graph

Scheduling linear n/a

[15] Static System/
Behavioral

Multimedia H-CDFG Simple Entire
Graph

Hierarchical,
Allocation
(bipartite
matching)

O(n log n) n/a

[89] Static Behavioral
(during
partition-
ing)

Multimedia,
General
Purpose

(C) DFG Simple Node clus-
ters

Scheduling n/a n/a

[91] Dynamic Behavioral Multimedia,
Cryptog-
raphy,
General
Purpose

Hierarchical
Loop
Graphs

n/a Loops Simulation O(simulation)+
O(1)

n/a

[81] Static Behavioral Multimedia,
General
Purpose

PACT HDL
Abstract
Syntax
Tree

Simple Entire
Graph

Scheduling nonlinear n/a

Table 2.4: Different classifications of speed estimation found in several papers and in-
dications of estimation error in those papers. For an explanation of the classifications,
please refer to Section 2.2.4.

Area estimation from Matlab code as presented in [16, 71] was already discussed in
the previous section. These two papers also describe delay estimation techniques. In [16]
the critical path is used as latency estimate. If area constraints introduce extra delays
on the critical path, the latency estimate is changed accordingly.

The authors of [71] take a more elaborate approach. They split the delay estimation
between estimating the critical path delay and the interconnection delay. The delay of
single tasks on the critical path are not retrieved from a normal library, but are calculated
using generic delay formulas describing FUs and using fan–in and bit width as inputs.
Libraries can become more compact this way. In general the paper models the delay of
an operation with Equation (2.2).

26 CHAPTER 2. LITERATURE REVIEW

Operation Architecture f(δ, n)

+ Ripple carry 2nδ
+ CCLA(n/p2)

p = BCLA dimension
if(n = 1)11δ
else
11δ(10 + log p(1 + n(n/4−
1))(n/4 + 1)

* Baugh Wooley if (n = 1)2δ else 4nδ
* Bisection if (n = 1)2δ else 4nδ
/ Restoring (Dean) (3n2 + 1)δ
/ Non-Restoring (Guild) 3(n + 1)2δ
/ Non-Restoring with 2-

level CLA and Carry-save
(Cappa-Hamacher)

(11n + 12)δ

/ Non-Restoring with 1-
level CLA and Carry-save
(Cappa-Hamacher)

(9n + 10)δ

Table 2.5: Bit-based timing models of the main operators as mentioned in [19].

δ = a + bnfan−in +
i=nfan−in∑

i=0

cimi (2.2)

mi: bit-width of input i
nfan−in: number of inputs
a, b, ci: experimentally determined constants

Using estimates for average interconnection length and physical FPGA wire lengths,
the algorithm determines the average number of physical wires and programmable
interconnect points and therefore the average interconnection delay.

Instead of determining a value for the latency of a design, papers [50, 91] use a tem-
poral profile of a software program to determine the maximum speed-up that can be
obtained by moving certain parts of the program to hardware. The more a function, for
example, contributes to the total execution time of a program, the larger the potential
speed-up when it is moved to hardware. However, [50] mentions that based on the exam-
ined programs a) almost 100% of the candidates for hardware implementation contribute
1% or less to the total execution time and b) memory access time and memory access
rate have a significant impact on the performance gain that can be achieved. [91], on
the other hand, puts the former comment in perspective by pointing at the so-called
90-10 rule, which states that 90% of the execution time is spent in 10% of the code.
It goes on to examine the validity of this rule and concludes that many application do
indeed exhibit this behavior. Finally the paper presents a simple formula to calculate
the expected speed up of partial hardware implementation based on loop frequency.

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 27

In an attempt to define a performance measure that makes it possible to compare
hardware and software performance during Co-simulation, [19] describes using the Cycles
Per Instruction (CPI) of OCCAM-II to indicate performance. The paper describes how
to calculate the CPI for software-bound processes and how hardware-bound processes
can be characterized by a so-called equivalent CPI. Both measures use a parameter that
depends on the architecture, compiler, synthesis tool, and scheduling policy. These mea-
sures have to be determined for every new architecture that needs to be simulated. The
hardware measure utilizes bit-based operator models to estimate timing characteristics.
The models of the main operators is depicted in Table 2.5.

The algorithm in [81] measures the speed-up of a design by counting the number of
control steps that are present in the control nodes in a CDFG and the number of times
they are executed. Then it applies different formulas for hardware and software to obtain
the execution times of both implementation alternatives. Simply dividing these yields
the speed-up factor.

The µ–profiler as described in [35] uses the number of cycles gained by hardware im-
plementation to drive the discovery and selection of custom instructions for Application
Specific Instruction-set Processor (ASIP) designs. Both the decrease in computation
cycles by moving a pattern in the intermediate code of an application to hardware and
the frequency of that pattern contribute to the measure. The author admits this measure
is crude, but argues it is useful for early discrimination between potential candidates for
hardware implementation and patterns with insufficient prospect for speed gains. In the
future this measure may be improved by accounting for Instruction-Level Parallelism
(ILP), pipelining, and other software optimizations.

One such optimization, i.e. loop unrolling, is specifically studied in [21]. We already
discussed how the authors of this paper estimate area in the previous section and
speed–up is handled in the same way. Results, however, show a larger discrepancy
between estimates and measurements for speed–up, than for area. The authors explain
how this might be caused by e.g. unbalanced pipeline stages due to resource con-
straints or other loop optimization side-effects and mentions that the underlying model of
the algorithm should facilitate more complex algorithms that do account for these effects.

2.2.1.3 Power

In order to increase battery lifetime in mobile and embedded systems, reduce heat dissi-
pation in high performance designs, etc. many researchers have sought to estimate the
power usage during system design. In [62], for example, we find a taxonomy of several
power estimation techniques at different levels. At the highest level the authors discern
several design levels at which power can be estimated. For each level the authors further
classified the estimation strategies as depicted in Table 2.7. The different levels in the
taxonomy also correspond to the design process. At the early stages power intensive parts
can be identified with system-level estimation. Later on when a behavioral description
is available, instruction- and behavioral level estimation can help guide the partitioning
process and optimization of software and hardware parts. Finally, before actual syn-
thesis is performed, architectural estimation can help choose from different architectures.

28 CHAPTER 2. LITERATURE REVIEW

Paper Dynamic/
static

Level of
Design

Application
Domain

Data
structure

Node
model

Granularity Strategy Complexity Error

[56] Static
(dynamically
determined
input prob-
abilities)

Behavioral Communication,
General
Purpose

CDFG,
state
transition
graph

Activity-
based
model

Entire
Graph

Hierarchical O(simulation)+
nonlinear

11.8%

[39] n/a System n/a n/a n/a n/a Complexity n/a n/a
[30] Static Behavioral n/a Task graph Simple Entire

Graph
Hierarchical linear n/a

[15] Static System/BehavioralMultimedia H-CDFG Simple Entire
Graph

Hierarchical,
Allocation
(bipartite
matching)

O(n log n) n/a

Table 2.6: Different classifications of power estimation found in several papers and in-
dications of estimation error in those papers. For an explanation of the classifications,
please refer to Section 2.2.4.

Level Class Based on Pros Cons

Architecture

Analytical

Complexity

� requires little

information

� inaccurate activity

modeling

� no block specific

estimates

Activity
� block specific

estimates

� uniform distribution of

capacitance

Empirical

Fixed Activity

� non-uniform

distribution of

capacitance

� disregards data

activity

Activity

Sensitive

� regards data activity

� strong link to real

implementations

� n/a

Behavioural

Static

Dynamic

Activity

� estimates indicate

general trends

� no absolute accuracy

� easy handling of data

dependencies

� much slower than

static

� requires input

specification

Instruction
� applicable to CPUs

and ASIPs

� bad estimates for

some instructions

System
� can guide optimization

efforts early on

� very low accuracy

Table 2.7: Taxonomy of power estimation techniques as presented in [62].

The system-level partitioning algorithm in the TOSCA co-design environment [10]
uses several power evaluation metrics to drive system level partitioning. In order to
choose the best design alternative several metrics indicative of good power performance
for different types of operating modes are proposed in [39]. The different system charac-
terizations are:

• Fixed Throughput Mode
These systems are characterized for power by the Power to Throughput Ratio,
which is the same as energy per operation. This metric is applicable to e.g. Digital

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 29

Signal Processing (DSP) applications.

• Maximum Throughput Mode
In these systems power is characterized by the Energy to Throughput Ratio. Energy
and throughput, in this case, mean maximum energy per operation and maximum
throughput respectively. Microprocessor-based systems are an example of these
systems.

• Burst Throughput Mode
Systems that only perform in bursts can be characterized by a modified Energy
to Throughput Ratio. Energy in this case the energy during computation and the
energy during idling per total number of operations. Systems with user-interaction
are often in burst throughput mode.

• Area-Constrained Systems
Two metrics are proposed that can characterize Area-Constrained systems: The
Power by Area Product, which allows to optimize for power, and the Energy by
Area Product, which allows for optimization of area and power together. Many
designs will have some degree of limitation for area.

Apart from presenting these metrics the paper also argues that communication
between hardware and software parts contributes significantly to the power consumption
of the design. When off-chip buses are involved this contribution can be even higher.
In order to estimate the power used by communication from the hardware, TOSCA
calculates the bus switching activity using the bus width, required bandwidth, and the
encoding scheme for data and addresses.

An example of static power estimation at the behavioral level, as discussed in [62],
is presented in [15], along with area and speed estimation techniques, discussed earlier.
The paper estimates trade-off curves for power consumption against varying timing
constraints. The power estimation differs from the area and time estimation by taking
into account the execution frequencies of FUs and the clock frequency.

The authors of [73] use the area prediction method discussed in the previous section
together with estimates of the average node switching activity and gate capacitance.
Problems with their approach are the need for additional estimators for switching activity
and the restriction to single-output boolean functions.

The contribution of control-flow circuits to the power consumption of a system is
often assumed to be negligible. This may be a fair assumption for data-flow systems,
but for control-flow intensive designs this aspect must be considered during power
estimation. One such approach can be found in [56]. This particular approach utilizes
both State Transition Graph s (STGs) annotated with branch probabilities and CDFGs.
Using a generic model for modules all edge capacitances are calculated using the
probability of each state and each transition. Special probabilities are calculated in
the presence of loops. Furthermore, the paper describes how the capacitance of the
controller itself is estimated with a simple formula based on the number of states in the

30 CHAPTER 2. LITERATURE REVIEW

Switched Capacitance Matrix
The m-input n-bit module depicted on the left has
a corresponding m×n matrix of switching activities
for each bit. The module capacitance can then be
estimated with Equation (2.3).

Cmod =
m∑

i=1

n∑
j=1

aij × cij (2.3)

aij and cij are respectively the activity and a
module-dependent constant for bit j of input i. The
constant is determined by switch-level simulation of
the module and the activity represents the probabil-
ity that the bit will change between successive states.

Figure 2.2: Module power model used in [56].

controller.

In the COSYN-LP algorithm [30] energy levels of tasks in a task graph are estimated
by using execution and communication time as starting points. The energy level of a
task is then estimated by adding the energy for all fan-out edges and all preceding nodes
to the tasks own energy level. This process starts from the bottom at the sink nodes
and progresses upwards via the fan-in edges. If after partitioning multiple allocations
have the same power level, an alternate estimation strategy is used, where different
heuristics are used for processors, FPGAs and links.

2.2.2 Other metrics

In Section 2.2.1 we discussed various methods of estimating the more obvious aspects
of hardware design. In the last decade, however, other aspects like memory usage,
communication, and design complexity have also been researched as possible driving
forces for system design. We will now briefly review some of these metrics and their
uses.

2.2.2.1 Communication

Estimating the amount of communication is also present in some area, speed, and
time estimation techniques (e.g. [85, 81, 71, 30, 39, 89]), and not without reason:
communication requires interconnect circuitry, requires a fair amount of power, and
introduces communication delays into the design. Therefore, accurate communication
estimation can be a valuable asset to any system designer.

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 31

A more focused effort to estimate the communication latency can be found in [51].
This paper specifically estimates the communication between hardware and software
segments in a hybrid system. They assume a shared memory model is used for com-
munication between hardware and software and also that communication with hardware
only occurs with adjacent hardware modules. The latter is a fair assumption in case of
data-intensive designs.

Another paper on communication is [55]. In this paper we see how the amount of
communication can be represented by the sum of all edge weights, or Total Edge Weight
(TEW). As edge weights the paper uses the amount of data transferred along the edges
(in bits).

2.2.2.2 Memory Usage

Few hardware-oriented memory usage estimation strategies have been proposed, but in
e.g. [50], we can see that memory usage can have significant impact on the speed of a
design. Furthermore, communication with the memory system and refreshing of volatile
memory can impact power usage. And finally, memory modules, extra interconnect, and
memory management circuits require area. As with communication it seems clear that
memory estimation can be very useful to a designer.

While many software profilers measure or characterize memory usage [39, 33, 48, 25]
and some hardware/software partitioning algorithms [89, 29] take into account memory
aspects of a design, to the best knowledge of the author there has been little research
into memory usage in hybrid architectures.

One example of memory size estimation for hybrid architectures can be found in [59],
where the size of individual data dependencies is estimated. The described algorithm
focuses mainly on dependencies between loop iterations and requires single-assignment
code, but it does give valuable information on memory size even in the early stages of
design, when only a partially fixed execution ordering is present.

The authors of [103] point out the difficulty of hardware synthesis of programs with
pointers. Traditional context-insensitive pointer analysis does not suffice. To answer
this problem the paper describes a context-sensitive method of analyzing pointers in a
program based on symbolic transfer functions. These functions capture how a function
influences the program state. The program state and the symbolic transfer functions are
represented as boolean expressions. The pointer analysis scheme presented utilizes binary
decision diagrams to speed up the analysis, making context-sensitive pointer analysis
feasible.

In [25] we find a study on reference locality in software programs resulting in some
metrics that characterize data reference locality in a program. These metrics are based on
hot data streams derived by bursty tracing [48]. Originally targeted at cache optimization
on modern processors, this information may also help optimize local memory utilization
in hybrid architectures or help decide whether a function can be efficiently implemented
in hardware, because a function with an intensive and erratic memory access pattern
might not benefit from hardware implementation at all.

32 CHAPTER 2. LITERATURE REVIEW

2.2.3 Software metrics and comparability

In defining a candidate selection model for hybrid architectures not only hardware metrics
are important, but also software metrics. In previous sections we have already discussed
software measures that may also describe hardware aspects ([25]) or may indicate code
most susceptible to optimizations ([91]), but software measures also make comparisons
of hardware and software implementations possible. In [47], for example, we find soft-
ware energy models that enable the authors to compare different hardware / software
partitions. However, such comparisons do yield some problems:

• Differences in precision
The precision of a software/hardware measure might be less accurate than its
hardware/software equivalent. This means comparisons are only as good as the
least accurate measure.

• Differences in algorithms
Different measures are often determined using different algorithms, which makes
it unclear if they are comparable in a straightforward way. Look, for example, at
cyclomatic complexity; it’s not at all clear if software (C) and hardware (VHDL)
cyclomatic complexity (see Section 3.2.3) are equivalent or comparable. To the best
of my knowledge no investigation in comparability between such measures exists.

2.2.4 Classifying metrics

Having discussed different estimation strategies and metrics for several aspects of a design
we now move on to classification. In the following few sections I discuss different aspects
of the presented metrics and estimation strategies, and explore possible classifications.

2.2.4.1 Dynamic vs. Static

One aspect of estimation strategies is whether they try to analyze a design statically,
at compile-time, or dynamically, at run-time or during simulation. In the following, we
refer to these as static estimation and dynamic estimation respectively.

From the papers discussed so far it seems static estimation has been dominant in
the field of hardware/software partitioning and hardware synthesis. We can explain this
if we take into account the many iterations partitioning algorithms may go through. If
every iteration performs a potentially expensive simulation, partitioning can take a long
time. This suggests that static estimation techniques aim to be fast more than they aim
to be accurate.

Static estimation is also the dominant strategy in area estimation. Because area is
almost always assumed to be fixed during run-time, this is only logical. When we look
at hybrid architectures, however, the assumption that area is fixed during run-time does
not have to apply. Future area estimation could take advantage of simulation to get
dynamic area profiles.

Power estimation is often based on area estimates or area estimation techniques and
thus power estimation, too, is mostly based on static estimation. In [62], however, we do
find some cases of dynamic techniques like dynamic behavioral activity-based estimation

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 33

(Table 2.7). Power consumption, especially that of control-intensive designs, depends
on the input of an algorithm as well as the implementation itself. Therefore dynamic
estimation can be useful for reasoning about power in designs.

The few dynamic estimation strategies discussed so far [50, 91, 16, 25, 62] all con-
centrate on speed and memory usage. These characteristics are often dependent on
the input and change during run-time. Still, hardware estimation mainly focuses on
static estimation. If we look at software profiling and estimation, however, we find
more dynamic techniques. It seems dynamic estimation techniques are more suitable
for control-intensive designs, while static estimation is more suitable for data-intensive
designs.

2.2.4.2 Level of design

Different estimation techniques require different levels of detail in a design and have
various levels of accuracy. Therefore, it is useful to categorize estimation according to
the design step it is targeted at. We have already seen a similar taxonomy for power
estimation techniques in [62].

It is not the aim of my thesis to present an exhaustive study of system design
steps, therefore we use a simplified model of system design as a tool for discussing
estimation. We discriminate three levels of design: System level, Behavioral level, and
RTL/Instruction level. As can be seen from the Figures 2.2, 2.4, and 2.6, the behavioral
level is the predominant level in the reviewed papers. This is mainly because the papers
were selected based on their relevance to high level synthesis.

1. System level
In the early stages of design a lot of high level decisions have to be made in a
relatively short time. In order to give the designer information on different design
alternatives, fast system level estimation is necessary. In this phase accuracy is not
very important yet and therefore, estimates should be only indicative of actual val-
ues. On the system level components are not yet (fully) specified using behavioral
descriptions, or are modeled by a mathematical model. Papers on the MATCH
compiler for Matlab models, for example, are considered to be on the system level
in this view.

2. Behavioral level
Later on in the design process system components will be refined with specific func-
tional descriptions. This is the phase where many hardware/software partitioning
algorithms are applied. The added detail potentially provides more accuracy in the
estimates. This makes it possible to check various constraints on the design with
greater certainty.

3. RTL/Instruction level
After partitioning and hardware specification accurate estimation is possible for
the hardware parts of the system. On the software side final estimates can be
made using instruction level estimation. Estimation on these levels is often slow,
because of the large amount of detail.

34 CHAPTER 2. LITERATURE REVIEW

2.2.4.3 Data structures

The speed and precision of estimation often depend on the data structures and the
strategies that are used. Different data structures might capture different aspects of a
system, or have different levels of efficiency. Traditionally, hardware synthesis has utilized
data flow graphs as data structures and conversely many estimation techniques focus on
these graphs. Software estimation techniques, however, are more control oriented and so
use other representations like control data flow graphs and call graphs. Most literature
on hardware/software estimation uses one or more of the following data structures:

• DFG
A DFG is a DAG where every node represents an operation and every edge rep-
resents a data dependency. Because there is no control information present in
the DFG, the execution flow of the DFG is straight-forward and analysis is rela-
tively easy. Many algorithms in hardware synthesis are based on these structures.
The dependencies give information on which tasks can run in parallel. The ab-
sence of control information makes DFGs less suitable for representation of higher
level functional specifications, like a C-program. A different term for DFG is Task
Graph. These terms are often used interchangeably. Nevertheless, a DFG is often
assumed to have finer grain nodes, like operations, while Task Graphs have coarser
nodes, e.g. another DFG.

• Control Flow Graph (CFG)
In the traditional Von-Neumann computing paradigm, an often used representation
of programs during e.g.compilation or analysis is the CFG. In this directed but
cyclic graph, edges denote the transference of control from one node to the other,
where nodes represent basic blocks, i.e. blocks without branches or jumps. While
this graph can accurately represent the control constructs in higher level languages,
its disadvantage is the single thread of control inherent to the control dependencies.
This makes discovering parallelism using CFGs difficult.

• H-CDFG
To account for both data and control dependencies in high level designs, the re-
search community came up with the CDFG. This graph is a data flow graph
extended with control edges denoting control dependencies between nodes. Some
papers utilize other representations of the control dependencies, e.g. in [41, 15] a
Hierarchical CDFG or Hierarchical Sequence Graph is used, which captures control
constructs as nodes in a DFG. A loop then becomes a node in a DFG, while the
loop body is represented as a DFG on a lower level. Because of the presence of
loops and branches, the run-time flow through a CDFG is not known in advance
and estimation becomes more difficult. High level synthesis tools often use these
representations because VHSIC Hardware Description Language (VHDL), C, and
other imperative languages make use of these control constructs.

• STG
Control-intensive designs often result in a non-trivial controller circuit. The impact
of such a circuit on performance characteristics, like area and power, cannot be

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 35

neglected anymore. Furthermore, the power consumption and speed of the data-
path can vary significantly depending on the state of the controller. In [56] a STG
is used for modeling the controller in order to estimate the power consumption of
the controller and the impact of the controller on data-path power consumption.
Exact metrics are hard to determine, because of the significant data-dependencies
inherent to control intensive designs. Therefore state transition probabilities are
determined beforehand. This way the average characteristics can be determined.

• Others
Apart from the (C) DFG representations, some other data-structures exist that
are less common in hardware estimation. In software estimation, for example,
we find Call Graphs and Abstract Syntax Tree (AST), among others. However,
these models, like CFGs, do not always directly represent data dependencies, which
makes determining parallelism inaccurate.

2.2.4.4 Strategies

Different strategies have been proposed for different data structures and models, but
some approaches are more alike than others. It can be useful to group similar estimation
algorithms into categories and characterize them. This section proposes several such
categories, but does not aim to be an exhaustive list, nor are the categories mutually
exclusive.

• Scheduling
Mainly applied in speed estimation, scheduling in estimation mostly provides the
timing for nodes in e.g. a DFG. After scheduling an indication of the latency of
a circuit can be obtained by finding the longest path. Scheduling in estimation
is borrowed from actual synthesis in order to obtain more accurate speed esti-
mates. There are many types of scheduling algorithms, like list scheduling and
force-directed scheduling. While scheduling often produces good estimates of the
latency of a design, it can be time consuming (optimal scheduling is NP-complete).
Note that scheduling is also used in several papers to acquire area estimates. In-
deed, when scheduling without any bounds on resources, the maximum number of
used resources for each resource type define the minimum required area.

• Allocation
Another technique borrowed from synthesis is allocation. By actually allocating
variables and operators to registers and FUs respectively, an indication of the num-
ber of resources is obtained. One such allocation strategy often found in estimation
and synthesis is weighted-bipartite graph matching [49]. Matching algorithms are
used in estimation to mimic resource allocation of data paths during synthesis. The
idea behind this approach is to find a matching, i.e. a set of edges without common
vertices, on a bipartite graph with one set of vertices representing variables (or op-
erations), the other set of vertices representing registers (or FUs), and the edges
representing possible mappings. An advantage of using synthesis-like allocation in
estimation is that separate estimates for registers, FUs, and possibly interconnect
can be obtained with most allocation schemes.

36 CHAPTER 2. LITERATURE REVIEW

• Weighted Sum/Hierarchical
One powerful template used in many algorithms is the Hierarchical approach. In
estimation this is used especially in hierarchical models. By estimating metrics
on subgraphs of a CDFG, for example, the next level in the CDFG hierarchy
can be estimated more quickly. A commonly used Hierarchical approach is the
weighted sum approach. In this approach the system is first divided in atomic
parts, i.e. components in a library. Then the weighted sum of the parts indicates
the estimate of the system. Weights can represent many aspects of the component
like I/O bit-width, slack, and criticality. This approach is mostly used in area and
power estimation.

• Neural
When it is not obvious how the value of a proposed metric can be obtained, like
hardware implementability, a neural network can be applied. Neural networks can
be trained to recognize certain aspects of complex systems and is similar to linear
regression. While this makes it possible to quantify hidden or complex aspects
of a system, there are some drawbacks. First, defining a correct neural network,
gathering a large enough training set, and training the network is time-consuming.
Second, the trained network is not transparent, which makes it difficult at least
to prove that results are correct. Furthermore, trained networks are specific to
the data set used. For example, if a neural area predictor is trained on designs
synthesized with tool A, then it may not be applicable to tool B.

• Correlation and Complexity
Another way of estimating metric values is by correlating metrics like area, speed,
etc. with other metrics that are easy to determine. For example, [73], correlates the
area of boolean functions with the sizes of the minterms in the on-set of a boolean
function represented by a complexity measure. Correlating different metrics does
require extensive datasets, however. One class of measures that may be correlated
to various metrics is the set of (software) complexity metrics. It seems plausible
that (software) complexity is in some way related to area, speed, etc.

• Simulation
An obvious estimation strategy used in some partitioning strategies is simulation.
Instead of synthesizing a design, which is slow and can use up resources, only
simulation of a functional model is performed. This strategy can result in fairly
accurate measurements, because the system is evaluated at run-time, but is much
slower than other approaches. In a Hierarchical approach, simulation might be
applied on small parts at lower levels of the system, to balance speed and accuracy.

• Incremental
Iterative hardware/software partitioning approaches often need to re-evaluate dif-
ferent aspects of a system for each iteration. Some partitioning algorithms, there-
fore utilize an incremental estimation scheme. These algorithms assume that tem-
porary partitionings only change very little between successive iterations and there-
fore adjusting the previous estimation instead of re-estimating the measures can
be beneficial.

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 37

2.2.4.5 Application Domains

Many estimation strategies discussed here have been targeted at specific application
domains or have only been validated using a limited set of applications. In the Tables
2.2, 2.4, and 2.6 these application domains are specified. In my study of estimation I
made the following inventory of application domains.

• Multimedia
The multimedia application domain comprises audio, video, image processing, an
3d applications, among others. Common examples are MPEG2 encoding, image
filtering, etc. In the field of Reconfigurable Computing much attention is given
to this domain. One reason for this is the high performance requirements set by
these applications. Because these applications often have a high degree of paral-
lelism, these performance requirements can efficiently be met when using ASICs or
FPGAs. Another reason is the continuing high demand for multimedia in mobile
devices.

• Mathematical
Another domain that might potentially exhibit a high level of parallelism is the
domain of mathematical problems. Examples of such problems are matrix multi-
plication, logical closure, finite element method, fractals, etc.

• Cryptography, Compression, and Error correction
With an increasing amount of private or classified information in digital form,
security has become very important. Furthermore, the vast amounts of data trans-
ported over the Internet and stored on backup devices, require some form of com-
pression and error correction. All three of these kinds of applications work on
streams of data in more or less a serial manner. Many algorithms have been
developed to tackle these problems, many of which do show a certain degree of
parallelism. Examples are DES, Reijndael, MD5, Reed-Solomon, gzip, huffman,
etc.

• Communication
Some papers validate their findings using descriptions of communication circuits.
Examples of such circuits are an Ethernet controller, a digital receiver, or the ILC16
HDLC link controller. Papers that target such systems, however, are not proven
to be applicable to C-level descriptions.

• General Purpose
Other application domains exist, but for this paper we group them in the domain
of general purpose applications. This class therefore has many different levels of
potential parallelism. Some applications in this class are an SQL server, bubble
sort, binary search, specint, etc. Estimation that does not target a specific domain,
makes them more usable in more general tool chains required for the acceptance
of Reconfigurable Computing .

38 CHAPTER 2. LITERATURE REVIEW

2.2.4.6 Use of libraries and component models

Many estimation algorithms make use of component libraries containing information on
the estimated properties for single components. The use of such libraries can make
estimation both faster and more portable. Speed is gained by working on a coarser
grained model and portability is increased because the estimation algorithm can target,
for example, other architectures by changing the library.

Depending on the estimation technique, coarser and finer grained libraries are used.
Several aspects are influenced by the granularity of the library. Coarser grained libraries
hide more details of a design, making estimation faster. However, estimation using
coarser grain libraries is less flexible and therefore less accurate. Furthermore, coarser
grain libraries tend to be larger than finer grain libraries, because of the increased number
of possible configurations for components.

Components in libraries can have precalculated estimates for e.g. area, but some
papers introduce component models based on bit-width, number of inputs, type of
module, etc. One advantage of such models is the added flexibility in designing a
system, e.g. one is not limited to a fixed bit-width. Another advantage is the reduction
of the size of the library, e.g. two-operand, three-operand, etc. addition can be modeled
by one equation. The drawbacks of using component models are the added computation
required to calculate the final estimates and the need to define the required models.
The latter, however, has to be performed only once during the creation of the library.

2.2.4.7 Granularity of Estimation

When estimating the value of metrics for certain parts of the design the question arises
what those parts are, i.e. what are the elements estimates are determined for. This is
relevant for choosing an appropriate estimation technique for a partitioning model. To
illustrate this, compare a model partitioning loops when only function-level estimates are
available. And in fact estimation granularity almost always corresponds to partitioning
granularity. In the papers I have reviewed in this section several levels of granularity of
estimation occur which I classify in the following groups.

• Loop or basic block level
Because loop parallelization is well understood, loops are often chosen as candi-
dates for hardware implementation. In an effort to guide this selection process
several estimation techniques have been developed that estimate metrics for loops.
Sequential parts of code, or basic blocks, and functions can be identified as special
kinds of loops in order to make the estimation process more general. In the papers
reviewed here, this kind of estimation is mostly found in speed estimation.

• Function or process level
An obvious level of partitioning is the function level, because during design of a
program or system different functionalities are already partitioned into functions.
It would be logical to estimate on this level as well. Oddly, only two papers [95, 19]
in this review acted on the function level.

2.2. HIGH LEVEL ESTIMATION, METRICS, AND PROFILING 39

• Cluster level
Instead of using parts of an application defined in the program description, like
functions and loops, clusters of nodes grouped together for other reasons can be
the object of estimation. A cluster could be, for example, a segment in a multi-
segmented partitioning. This level only appears in one paper reviewed here [89].

• Application or graph level
For the most part the discussed papers estimate metrics for an entire application or
system graph. Such estimates are not directly useful for the partitioning process,
however, before estimation is applied the system graph could be divided into smaller
parts.

2.2.4.8 Error in estimation

In order to utilize an estimation algorithm during design an idea of its precision is
needed. However, some measures are not intended to be exact figures, but aim at being
comparable. In [56] this comparability is denoted by the tracking index. Regrettably,
other papers give no quantification of comparability. In fact most papers discussed here
do not mention any quantitative error characteristics.

Nonetheless, there are basically three measures characterizing error behavior that
are important for use in a partitioning model: average error, worst-case error, and
tracking index. An ideal estimate has a low average error, i.e. is very precise, has a
worst-case error that is not significantly larger than the average error, i.e. is generally
applicable, and has a good tracking index, i.e. is comparable. When defining a new
partitioning model, these aspects should be considered.

2.2.5 Characterizing hardware synthesis and optimization

Some estimation approaches we discussed specifically accounted for synthesis optimiza-
tions. This can be useful, because optimizations can have large influence on the eventual
values of e.g. area, speed, etc. Other papers implicitly account for optimization, e.g.
a neural estimator, because the estimator is correlated to the synthesis results. A rea-
son to explicitly calculate for the impact of optimization could be that application of
optimizations can be unbalanced, i.e. only applied to specific parts of the design [21].

The optimization-aware estimation techniques discussed in this paper have mainly
focused on loop optimizations, like loop strip-mining, loop unrolling, loop pipelining,
etc. [60, 21, 56]. However, high level synthesis tools and compilers also use other
optimizations, which are not yet accounted for in estimation techniques discussed in this
paper. Among those are pointer analysis [83], procedure exlining [94], partial evaluation
[18], etc. Accurate estimation tools should somehow account for such optimizations,
however, not many such tools have been proposed in literature.

40 CHAPTER 2. LITERATURE REVIEW

2.3 Reconfigurable Computing Projects and Toolchains

Now that I have presented an overview in current research in hardware/software parti-
tioning and hardware estimation, I discuss several research projects in the field of Re-
configurable Computing . More specifically, I discuss those projects that have proposed
some kind of automatic toolchain for hardware/software partitioning and/or software to
hardware translation. The main focus, however, is on the Delft Workbench project at
the Delft University of Technology.

2.3.1 Delft Workbench and MOLEN

As part of the Computer Engineering department of the faculty of Electrical Engineer-
ing, Mathematics, and Computer Science at the Delft University of Technology, we have
a research project called Delft Workbench, which has been working on Reconfigurable
Computing for some time. Members of the project have developed a reconfigurable pro-
gramming paradigm, with an accompanying platform, called the MOLEN programming
paradigm [97] and the MOLEN polymorphic processor [76] respectively. Furthermore,
there is a research project targeted at design automation for this retargetable platform,
called Delft Workbench [1]. Because these projects are the direct context of my thesis,
I discuss them in more detail in this section.

2.3.1.1 MOLEN

The MOLEN programming paradigm features parallel hardware and concurrent hard-
ware processes, but is intended to be sequentially consistent, i.e. the result must be the
same as when the program would have been executed sequentially, and is targeted at
single-program execution. As is mentioned in [97, 76], this paradigm has been developed
to cope with 4 problems commonly associated with Reconfigurable Computing :

• Opcode space explosion
If new instructions are defined for every configuration on a reconfigurable platform,
a potentially unlimited amount of opcodes are needed to be able to implement a
broad number of applications, however, a typical architecture has only a limited
amount of unused opcodes available.

• Limitation of the number of parameters
Several Reconfigurable Computing approaches offer only a limited amount of input
and output parameters. The maximum amount of parallelism that can be attained,
therefore, is limited too.

• Lack of parallel execution support
Many architectures do not facilitate executing sequential data-independent opera-
tions or configurations in parallel.

• Lack of modularity
The configurations used in reconfigurable systems are often specific to a certain
platform or technology. This makes it quite laborious and thus expensive to port
configurations to another platform.

2.3. Reconfigurable Computing PROJECTS 41

Figure 2.3: A basic overview of the general MOLEN platform.

In order to provide solutions for these problems the MOLEN programming paradigm
suggests a limited instruction set extension. This extension provides instructions to load
and execute configurations, a large register set for parameter passing, and the possibility
to execute different configurations on the reconfigurable unit in parallel.

Loading configurations is implemented using configuration microcode, which is code
that performs the actual configuration. This way different types of reconfigurable units
can be configured without the need for changing the MOLEN architecture providing a
much needed degree of modularity. A so-called SET operation is defined that loads the
configuration microcode and initiates the configuration procedure.

When a configuration is completed the added functionality can be executed using an
EXECUTE instruction. The EXECUTE instruction uses one opcode in the base opcode space
and provides 2(n−o) (where n = no. bits per instruction, o = no. of bits per opcode)
additional configured operations, addressing the problem of the opcode space explosion.
The EXECUTE instruction loads an execution microcode program into the reconfigurable
unit. This program is then executed using the configuration previously loaded by the SET
operation. Multiple available configurations may be executed in parallel. Explicit syn-
chronization among the core processor and the different configurations can be performed
using the a special instruction (BREAK).

Before the EXECUTE instruction can commence, however, the necessary data should
be provided to the register set in the MOLEN architecture responsible for parameter
passing (XREGS). Therefore, instructions (MOVTX, MOVFX) for moving data between the
core processor and memory on one hand and the core processor and the XREGS on the
other have been added as well.

The basic structure of the MOLEN platform is depicted in Figure 2.3. First
instructions are fetched from memory and partially translated by the arbiter in order
to decide whether they are redirected to the core processor or the reconfigurable unit.

42 CHAPTER 2. LITERATURE REVIEW

The reconfigurable unit comprises of a Reconfigurable Micro-code (ρµ-code) unit
and a Custom Computing Unit (CCU). The ρµ-code unit interprets and executes
the configuration- and execution microcode, and the CCU is the actual configurable
hardware part, e.g. an FPGA.

2.3.1.2 Delft Workbench

In Chapter 1 we saw that tools that support development for reconfigurable platforms
are essential in order for them to be successful. Furthermore, I introduced the Delft
Workbench project, which researches the development on reconfigurable architectures.
More specifically, the project discerns four main objectives [1]:

• Program Analysis and Performance Prediction
The Delft Workbench aims to identify functions in a program that might benefit
the most from hardware implementation. These functions are then characterized
by performance and area metrics, in order to find a set of functions with optimal
increases in performance given the constrained area of the target platform. The
result is a (semi-)automatic selection of a set of functions for migration to hardware.

• C-to-VHDL mapping
In order to implement software functions in hardware, a designer would tradi-
tionally translate them to VHDL manually. Within the Delft Workbench, effort
is being made to automate this process. One example of such automation is the
C–to–VHDL compiler, that is being developed. It can translate C programs or can-
didate functions to VHDL. A problem with such a compiler, however, is the lack
of interactive design space exploration it allows. For this purpose Delft Workbench
envisions a library of FPGA configurations with an accompanying performance
model, which helps the designer evaluate different design alternatives.

• Retargetable Compiler
When a set of candidate functions is determined, the Delft Workbench provides a
retargetable compiler that can compile these functions to a MOLEN architecture.
Functions are translated to code for configuring the FPGA, moving the needed
parameters, starting the execution, and retrieving the output. The compiler must
deal with all compilation issues for the GPP as well as the added difficulties intro-
duced by adding a reconfigurable unit.

• Integration and Validation
The output of the retargetable compiler can now run on a real MOLEN implemen-
tation, allowing actual performance statistics, like FPGA reconfiguration time, to
be obtained. These statistics are used as feedback for the Delft Workbench tool-
flow. A refined set of candidate functions and a refined schedule are determined
using the feedback information. This process iterates until the designer is satisfied
with the results. The iterative nature of the process implies a tight coupling among
the different tools in the tool-flow.

2.3. Reconfigurable Computing PROJECTS 43

Figure 2.4: A basic overview of the general Delft Workbench tool-flow.

The Delft Workbench project focuses mainly on the MOLEN programming paradigm
as its target platform. The tools and tool-flow envisioned by Delft Workbench are de-
picted in Figure 2.4. At the moment, partitioning of a program for the MOLEN platform
is still manual. The Delft Workbench project proposes a code profiler and partitioner
that automate this task. The goal of this profiler/partitioner is to increase the speed of
the application, while staying within the bounds on the limited area of the reconfigurable
unit. In order to decide where parts of a program should reside, the Delft Workbench
specifies the need for a decision model based on metrics collected during profiling. Cur-
rently, no such model exists. And as mentioned in Chapter 1 it is the goal of my thesis
to devise a preliminary version of such a model.

2.3.2 Other toolchains

Apart from Delft Workbench there are several other toolchains and research projects in
the domain of Reconfigurable Computing . It is not the goal of my thesis to study these
in detail. However, I briefly mention three of these alternatives here.

• SPARK
SPARK[5, 43] is a C-to-VHDL high-level synthesis framework that aims to mi-
grate software components (functions) to hardware. It focuses on control-intensive
designs and optimizations and transformations for VHDL generation. Therefore,
the compiler has a modular design of optimization passes, which makes it easy to
implement new optimization passes and research different combinations of opti-
mizations. At the moment, SPARK does not fully support the American National
Standards Institute standard for the C programming language (ANSI-C) standard
and in fact only supports a restricted subset of ANSI-C.

44 CHAPTER 2. LITERATURE REVIEW

• ROCCC (SA-C)
ROCCC[4, 40], too, is a C-to-VHDL compiler that aims to migrate software com-
ponents to hardware. However, it focuses on loops instead of functions and on
data-intensive designs instead of control-intensive designs. The tool is an evolution
of SA-C, which was mentioned in Section 2.2, and therefore is highly applicable to
streaming image processing.

• MATCH
MATCH[11, 71], which was mentioned in Section 2.2, is a MATLAB compiler that
targets at heterogeneous systems consisting of CPUs, DSPs, ASICs, and FPGAs.
This system focuses on using Custom Off-The-Shelf (COTS) components from
component libraries and aims not to be more than 2-4x slower than a manual
implementation.

2.4 Conclusions

In this chapter we have reviewed the liturature on the subjects of hardware/software
partitioning and hardware estimation. We have seen that there are many different ap-
proaches to these subjects. The novel aspects of the model presented here are its ca-
pability of estimating from the C-language level and the short time it takes to make
predictions. Furthermore, we have discussed the Delft Workbench project and other
reconfigurable support tools.

Software Metrics 3
In the previous chapter, we have reviewed earlier research into estimation of hardware
characteristics and hardware/software partitioning. Virtually all research has based its
estimation or partitioning strategies on synthesis-like schemes, simulation, or some form
of summation of components. Such approaches often use some form of estimation library
of elementary components. These libraries can be of different granularity - compare a
basic arithmetic library with an image processing library - and sophistication - i.e. some
have only simple values, others have component models based on e.g. bit-width.

The problem with these approaches is that they can be relatively slow and they often
do not work well on higher level designs (C-programs). Furthermore, libraries can have
large space requirements, especially when they are of a coarser grain. In our approach
we do not translate the candidates to actual hardware components, but instead relate
software metrics to hardware metrics in an analytical model. Indeed, it seems logical
that a function with a high complexity would need more resources, than a less complex
function. Furthermore, a relation between the number of memory accesses, variables,
and operators on the one hand and area and speed-up on the other, seems plausible. One
advantage of this approach is that software metrics can be determined very fast in most
cases and, because software project management makes use of software metrics as well
[26], some metrics might be available without cost. Another advantage is that the need
for a library is eliminated, because the analytical model will take its place.

In this chapter I discuss software metrics that can be used in a model for hardware/-
software partitioning. First, I elaborate on the concept of software metrics and how to
classify and evaluate them. Then, I discuss multiple metrics in more detail.

3.1 Classifying Software Metrics

Before I start discussing software metrics, it is good to give a definition of what they are.
Many different notions of software metrics can be found in literature. Often, no explicit
definition is given. However, some authors provided a definition based on measurement
theory, e.g. Fenton[37] and Munson[70]. They state that metrics are in fact measures, i.e.
an empirical objective assignment of a number (or symbol) to an entity to characterize
a specific attribute. Software metrics, therefore, are measures based on software entities.
In this report I will use this definition of software metrics.

There are many different kinds of software metrics available, each targeted at
different aspects of software development. Some are aimed at early project phases,
others are postponed until later in the development process. Some indicate resource
requirements of the project, others indicate fault behavior of the final product. And so
on. Comparable to the classifications of estimation in Section 2.2.4, software metrics can
be classified based on different aspects. In the following, we discuss several important

45

46 CHAPTER 3. METRICS

classifications with respect to the quantitative model.

First, both Munson and Fenton discriminate between primitive and derived mea-
sures. Primitive measures are those measures that are not composed of other measures.
Thus, derived measures are measures that are composed of multiple primitive measures.
Munson points out that derived measures should be used with much care. Often,
derived measures are composed of primitive metrics without a careful analysis of the
compatibility of these metrics. As an illustration, consider the the number of distinct
variables in a program and the number of loops. Addition of these primitive metrics
does not make sense, because they are completely different.

Second, one can make a distinction between static and dynamic measurement. As
in Section 2.2.4, static measurement applies to analysis of the code before compilation,
while dynamic measurement analyses the program while it runs. When applying software
measurement to hardware estimation, one would expect static software measurement
to be more applicable to area estimation, because area is largely dependent on the
structure and functionality of the code. Dynamic software measurement would probably
give more information on speed characteristics, because speed is also dependent on the
dynamic behavior of a system, like the temporal contribution of a function to program
run-time. However, these notions are intuitive only. In my research I have focused on
static software measurement.

Another classification of software metrics is according to project phase or level of
design. There are specific measures for the requirements analysis, design, implementa-
tion, etc. Because hardware/software partitioning in Delft Workbench is performed on
C-code, I focus on metrics used during the implementation phase, i.e. at the behavioral
level. Specifically, I focus on so-called, (source) code metrics or measures of source code
[93, 37, 52, 70].

Furthermore, I would like to mention the taxonomy of software metrics defined by
Fenton [37]. He discriminates between entities and attributes of entities within software
measurement. Each entity and attribute has its own set of metrics associated with it.
He defined the following entities and attributes:

• Entities:

– Processes
The tasks and activities associated with the software development.

– Products
The deliverables that are generated during a projects lifetime.

– Resources
The required items for every process.

• Attributes:

– Internal attributes
Attributes that are inherent to the entity it belongs to.

3.1. CLASSIFYING SOFTWARE METRICS 47

– External attributes
Attributes that also depend on the entity’s environment.

A similar classification can be found in [70], where Munson discerns four domains of
measurement: people-, process-, product-, and environment metrics. Using these two
classifications, my quantitative model will be restricted to metrics concerning internal
attributes of product entities.

Then, it is necessary to present an important classification of metrics as determined in
measurement theory, called scales. Metrics can be qualitative or quantitative to different
extents, allowing different sets of operations. For example, it is not allowed to multiply
two temperatures in Celsius, because that would have no meaning. Measurement theory
defines four such scales:

1. Nominal scales assign entities to categories. There is no relation between the
categories other than that they are mutually exclusive.
operations allowed: {=, 6=}

2. Ordinal scales also assign entities to categories, but there is a sense of ordering in
these categories.
operations allowed: {<,≤,=, 6=,≥, >}

3. Interval scales add meaning to the distance between values.
operations allowed: {<,≤,=, 6=,≥, >, +,−}

4. Ratio scales are interval scales with an absolute zero point. Most interval measures
in practice are also ratio measures.
operations allowed: {<,≤,=, 6=,≥, >, +,−,÷,×}

5. Absolute scales are ratio scales that can only be determined in one way. For example
the number of people in a room. The distinction between absolute and ratio scales
is only rarely made, often when the method of measurement is very important.
operations allowed: {<,≤,=, 6=,≥, >, +,−,÷,×}

Because the proposed quantitative model should enable comparing the performance
of different functions, candidate software metrics should at least be on an ordinal scale
in order to be considered for our model. Preferably, the model should be based on ratio
scales, because area and speed are also ratio measures. However, ratio scales among
software metrics are scarce.

Finally, I mention the classification according to the nine properties or axioms for-
mulated by Weyuker in [101]. She, proposed these properties in an attempt to make
reasoning about the qualities and deficiencies more formal and standardized. The prop-
erties are targeted at complexity measures and try to capture intuitive aspects of com-
plexity. In this report, I refer to these properties as W1, W2, etc. Below the properties
are listed in the same order as they are found in [101]. Every property is presented
as an algebraic expression where possible. In these expressions, P , Q, and R represent

48 CHAPTER 3. METRICS

programs, µ(X), X ∈ {P,Q,R, ...} is the metric value for program X, and # represents
the concatenation operation.

• Property 1 (W1)

∃P ∃Q [µ(P) 6= µ(Q)] (3.1)

This means that the measure should not be completely trivial. For example, the
knot measure, which measures the number of intersecting control edges in a control
graph, is trivial in a structured language, where intersecting control edges do not
exist.

• Property 2 (W2)

Zµ̂ = {X|µ(X) = µ̂}
|Zµ̂| < n,n ∈ N (3.2)

Let µ̂ be any nonnegative metric value and let Zµ̂ be the set of all programs that
show this value. Then W2 states that |Zµ̂| < n for some finite number n. In other
words, there are only a finite number of programs that have a complexity of µ̂.

• Property 3 (W3)

∃P ∃Q [P 6= Q ∧ µ(P) = µ(Q)] (3.3)

Property W3 comprises the possibility of two different programs to have the same
metric value. If this does not hold true every program has a unique number and
in fact is a nominal measure.

• Property 4 (W4)

∃P ∃Q [P ≡ Q ∧ µ(P) 6= µ(Q)] (3.4)

This property states that different implementations of the same function can have
different metric values. In other words, a metric that has this property does not
measure just the functionality of a program.

• Property 5 (W5)

∀P ∀Q [µ(P) ≤ µ(P#Q)] (3.5)

This means that the complexity of individual program components should never
be larger than the complexity of the program as a whole.

• Property 6a (W6a)

∃P ∃Q ∃R [µ(P) = µ(Q) ∧ µ(P#R) 6= µ(Q#R)] (3.6)

3.1. CLASSIFYING SOFTWARE METRICS 49

Property 6b (W6b)

∃P ∃Q ∃R [µ(P) = µ(Q) ∧ µ(R#P) 6= µ(R#Q)] (3.7)

These two properties indicate the interaction of concatenated components. For
example, assume P uses some of the same variables as R, while Q does not. Thus,
R would be more dependent on P than Q. One could imagine a complexity metric
that would, therefore, assign different values to mu(P#R) and mu(Q#R).

• Property 7 (W7)
Let Q be a permutation of the statements in P .

∃P ∃Q [µ(P) 6= µ(Q)] (3.8)

Property W7 describes how a different ordering of statements can have an impact
on the degree of complexity. As an illustration, compare two if-statements executed
in sequence to the same statements nested in eachother.

• Property 8 (W8)

∀P ∀Q [P = Q ∧ nameP 6= nameQ ⇒ µ(P) = µ(Q)] (3.9)

Let P be a copy of Q with a different name, then µ(P) = µ(Q). This property
seems trivial, however, textual metrics like the number of characters in a function
might assign different complexities to P and Q.

• Property 9 (W9)

∃P ∃Q [µ(P) + µ(Q) < µ(P#Q)] (3.10)

This property relates the notion that the composition of program parts adds not
only the complexity of each program part, but also the complexity of module
interaction. In other words, the the whole is more than the sum of it’s parts.

Although these properties constitute a formal way of reasoning about software com-
plexity measures, Weyuker has not proven this set to be a necessary or sufficient set
of properties for good software measures. This notion is discussed in detail by Cherni-
avsky and Smith in [24], where they present a complexity measure (| |1) that satisfies
all Weyuker’s properties and continue to show that this measure can assign significantly
different values to almost identical code. Basically, they state that Weyuker’s properties
should not be used as axioms, nor should it be used outside the domain of imperative
languages.

For my research I focus on imperative languages only (C). Therefore, these properties
can be useful, although they can only be regarded as rules of thumb. Other sets of
properties have been presented, for example in a broad review of software metric
properties in [104] and by Lakshmanan et al. in [61]. Lakshmanan et al. specify
additional properties for metrics targeted at control flow or more precise properties that
characterize aspects of sequencing and nesting. Because I consider other metrics than

50 CHAPTER 3. METRICS

just control flow metrics and these metric properties are not the main focus of this
report, I do not discuss these alternate properties further.

3.2 Candidate metrics

Now that I have discussed the important aspects of software metrics, I present several
candidate metrics for inclusion into our model. Every metric is accompanied with a
short description and a discussion according to the relevant classifications mentioned in
Section 3.1. A summary of all metrics with some classifications can be seen in Figure 3.1.

3.2.1 Lines Of Code (LOC)

Probably the earliest metric used for software measurement was the number of Lines
Of Code (LOC) a program contained. This metric originates from the time when
programs were still written on punched cards[17] and more complex metrics were too
time-consuming. Although this metric seems fairly straightforward, some difficulties
arise when defining a line of code: should it include comment lines?, should it account
for different outlining styles?, how do you compare LOC for different programming lan-
guages?, do you account for included libraries?, etc. Clearly, any measurement practice
using LOC should provide a detailed description of what a line of code signifies.

Several software measurement models based on LOC provide such a definition, but
by far the most commonly used model is COnstructive COst MOdel (COCOMO). First
published by Boehm in [17], this model estimates the cost, effort, and schedule of software
projects using a primitive metric called 1000 Delivered Source Instructions (KDSI).
Boehm defined KDSI as the number of LOC or punched cards that are represented in
delivered products, without counting comment lines. No distinction is made between
programming languages or styles. The entire COCOMO model is based on the effort
equation (Equation (3.11)), which indicates the number of man months (MM) required
for a value of KDSI.

MM = 2.4(KDSI)1.05 (3.11)

COCOMO and its successor COCOMO II are models used for project management.
However, we are building a model for hardware/software partitioning. Therefore, we need
an applicable definition of LOC. First of all, comment lines and outlining style have no
influence on synthesis. Furthermore, we only consider single functions and finally, we
only use the language C. Therefore, I use the statement count per C function as LOC
metric.

The main advantages of the LOC metric are that it is very fast to measure and it is
a ratio scale. However, LOC does not account for any control or data flow information.
Although this might be an acceptable omission in a large project where only information
on the project level is required, like in COCOMO, this becomes a serious deficiency when
considering (considerably smaller) functions, because on the function level one cannot
assume control constructs and data structures will be uniformly distributed. While I

3.2. CANDIDATE METRICS 51

Name Scale Derived Weyuker
1 2 3 4 5 6 7 8 9

Total operands N1 Ratio no + + + + + − − + −
Total operators N2 Ratio no + + + + + − − + −
Unique operands η1 Ratio no + − + + + + − + −
Unique operators η2 Ratio no + − + + + + − + −
Loads Ratio no + + + + + − − + −
Stores Ratio no + + + + + − − + −
Variable Definitions Ratio no + − + + + + − + −
Avarage path length Ratio no + −a + + + + + + −
DU(G) Ratio no + − + + + + + + +
LOC Ratio no + + + + + − − + −
Maximum path length Ratio no + −a + + + − + + −
NPATH Ratio no + − + + + − + + +
Oviedo’s Data Flow Comp. Ratio no + − + + − + + + +
Cumulative Nesting Depth Ratio no + − + + + − + + −
Maximum Nesting Depth Ratio no + − + + + − + + −
Average Nesting Depth Ratio no + − + + − − + + −
Halstead length Ratio yes + + + + + − − + −
Halstead vocabulary Ratio yes + − + + + + − + −
Cyclomatic Complexity Interval no + − + + + − − + −
Piwowarski Interval yes + − + + + − + + −
Prather’s mu measure Ordinal no + + + + + − + + −
Scope Number Ordinal no + + + + + − + + −
AICC Ordinal yes + − + + − + − + b

SynC Ordinal yes + + + + + − + + b

Gong and Schmidt Ordinal yes + − + + + − + + b

Halstead Volume Ordinal yes + + + + + + − + b

Scope Ratio No Scale yes + − + + − + + + b

Halstead Difficulty No Scale yes + + + + − + − + b

Halstead Effort No Scale yes + + + + − + − + b

Halstead Level No Scale yes + − + + − + − + b

a ‘+’ when length of switch-statement considered to be dependent on number of cases.
b Addition not defined for non-interval scales.

Table 3.1: An overview of the different software measures discussed in this section,
containing the classifications I have not chosen a specific subset for.

include LOC in my experimentation of metrics in Chapter 5, it cannot be expected to
correlate well with hardware measures.

52 CHAPTER 3. METRICS

3.2.2 Halstead’s Software Science

A few years before COCOMO, Halstead presented his Software Science measures in [44],
mainly as a way to estimate the programming effort. Because LOC only represents the
quantity of the code, Halstead tried to account for the variability of the code. Fur-
thermore, his measures were independent of source outlining, because the measures are
based on tokens, instead of lines. Halstead based his measures on the following primitive
metrics:

• the number of unique operands (η1)

• the number of unique operators (η2)

• the total number of operands (N1)

• the total number of operators (N2)

The quantity of code is represented by N1 and N2, while the variability is represented
by η1 and η2. Again, at first glance these measures seem unambiguous. However, several
definitions of operands and operators have been used in the research community. As with
LOC clear definitions of operands and operators are needed when using these measures.
For my model, I assume operators are tokens that represent actions and indirectly the
structure of the hardware, e.g. C-operators, compound statements, etc. Operands on
the other hand represent the use of a data item, e.g. the total number of occurrences of
variables, constants, types, etc. In order to characterize memory or register accesses, I
separately determine the number of loads, i.e. the number of variables and dereference
operations, and stores, i.e. the number of assignments and effect operators (‘++’,‘–’).
Variable definitions do not infer actions, nor do they imply an instance of data use.
Therefore, variable definitions will be discarded in my model when counting operators
and operands. However, they will be counted in a separate metric variable definitions.
A further definition of operands and operators is presented in [44].

3.2.2.1 Metrics derived by summation

Halstead composes several derived measures. First, he presents two measures derived by
summation:

• Vocabulary

η = η1 + η2 (3.12)

This derived metric indicates the number of different tokens used in the program.
Actually, this implies this metric can also be determined directly and therefore is
not really a derived measure.

• Length

N = N1 + N2 (3.13)

The implementation length is defined by the total number of tokens in the program.
Again, this metric is actually a primitive measure.

3.2. CANDIDATE METRICS 53

As mentioned these metrics are not derived metrics. Nevertheless, in [70], Munson
makes a strong argument that in fact these two measures do not add new information.

3.2.2.2 Metrics derived by logarithms

A second set of derived measures is derived by application of the logarithm of the prim-
itive measures:

• Expected Length

N ′ = η1 log2 η1 + η2 log2 η2 (3.14)

Halstead also defined another length equation N ′, which is defined in terms of the
unique operators and operands. This second notion of length is called the expected
length and seems to be validated by several experiments [44, 22]. It must be
noted, however, that these experiments assumed specific datasets and programming
languages. For example in [36], the need for a correction of the expected length
for PASCAL programs is established. By adjusting the expected length to specific
datasets, the general applicability of the metric is lost. In fact, one can question
whether the metric was valid to begin with, because N ′ is a highly subjective value.

• Volume

V = N log2 η (3.15)

The volume metric is presented as an alternative size metric of a program. Because
of the logarithm this metric is no longer a ratio scale.

Again Munson is critical about these“new”measures. According to Munson, Halstead
did not give valid reasons for constructing these measures. In the end, one cannot add
new information by combining old information.

3.2.2.3 Complex derived measures

The following set of measures are based on the potentially new parameters η′1 and η′2,
which indicate the minimum number of operators/operands needed to implement the
required functionality:

• Program Level

L =
V ′

V
(3.16)

L′ =
2η2

η1N2
(3.17)

This measure indicates how close the program resembles the optimal implemen-
tation of the program. V ′ or potential volume indicates the minimal Volume of a
program. Because determining the optimal volume is not trivial, Halstead provides
an estimate.

54 CHAPTER 3. METRICS

• Difficulty

D = 1/L ≈ η1N2

2η2
(3.18)

This measure is the inverse of the program level.

• Intelligence Content

I = L′V =
2η2N log2 n

η1N2
(3.19)

This derivation aims to indicate how much actual information the program con-
tains. It is supposed to be highly correlated with the potential volume.

• Effort or total number of elementary discriminations

E = DV =
V 2

V ′ ≈
η1N2N log2 n

2η2
(3.20)

This measure is supposed to indicate the effort required to implement the program.

Regrettably, Munson shows that these optimal values are not possible to determine
with either certainty or precision. Furthermore, none of these derived measures has
been validated. The bottom line is that only Halstead’s primitive measures are valid
candidates for inclusion in my model.

3.2.3 Cyclomatic Complexity

While the previously mentioned metrics were based on the program text, McCabe pro-
posed a complexity measure based on control graphs in [68] called cyclomatic complexity
which is an application of the cyclomatic number or circuit rank from graph theory to
software measurement. In a strongly connected graph G, the cyclomatic number is equal
to the maximum number of linearly independent circuits. The following equation shows
the relation between v(G) and the number of edges e, the number of vertices n, and the
number of connected components.

v(G) = e− n + p (3.21)

Control graphs are not strongly connected by default. Therefore, McCabe assumes a
back edge from the exit node to the entry node. There are p such edges and so, McCabe
defines the cyclomatic complexity as in Equation (3.22). Furthermore, he provides a
simplified version of his metric in case of structured programs defined in terms of the
number of predicates in a function (Equation (3.23)). The definitions are as follows,

v(GP) = e− n + 2p (3.22)
v(GP) = π + 1 (3.23)

3.2. CANDIDATE METRICS 55

where GP stands for the CFG of program P and π for the number of predicates in
P. In the partitioning model I propose here, we assume only structured programs are
employed. Therefore, I use the simplified definition of the cyclomatic complexity.

The main advantage of this metric is its sole focus on control structures, in other
words adding or removing simple statements does not influence the complexity. Because
of this, I expect the cyclomatic complexity to indicate the complexity of control circuits
after synthesis. However, because this measure only focuses on control aspects of a
function, it will probably only be useful in a model that contains data flow metrics as
well. Furthermore, because the circuit rank is an actual property of graphs, this measure
is not a derived measure, although a high correlation with n and e is to be expected.

3.2.4 Nesting level

Another aspect several researchers have associated with complexity is nesting level. In-
deed, when building programs with deep nested structures, one would reckon them to
be harder to comprehend and more errorprone than “flatter” programs. In the following,
we discuss several metrics that are aimed to measure or account for the nesting level.

3.2.4.1 Maximum Nesting Depth

1)δ(I) = 1
2)δ(F1; ...;Fs) = max{δ(F1), ..., δ(Fs)}
3)δ(F (F1, ..., Fn)) = 1 + max{F1, ..., Fn} (3.24)

The most basic form to incorporate nesting level in a metric is by counting the maximum
nesting level in a function. Zuse’s depth metric, as presented in [37, 80], is one such
metric. It is defined as a recursive function on S-graphs (see [37] for details) and the
lowest level of nesting is assumed to have a depth of one. This metric is a real property
of code and is not derived from other primitive measures.

3.2.4.2 Piwowarski

PIWO(G) = V ′(G) +
i=π∑
i=0

depthi (3.25)

In [78] Piwowarski suggests to extend the cyclomatic complexity with nesting level in-
formation. For this purpose, he first alters how predicates of switch statements are
counted. Instead of counting a switch statement as its equivalent n− 1 if statements,
Piwowarski counts such a statement as just one predicate. On top of this change, he
adds the nesting depth of each predicate to his metric, where the nesting level of the
lowest level is assumed to be zero. Piwowarski showed that several functions that had
different qualitative notions of complexity were impossible to discern by the cyclomatic
complexity, while his proposed measure could discriminate between them.

56 CHAPTER 3. METRICS

3.2.4.3 Gong and Schmidt

εi = 1− 1
depthi

ε = (
i=π∑
i=0

εi)/π

c(G) = v(G) + ε (3.26)

Gong and Schmidt also extended the cyclomatic complexity with nesting level informa-
tion. However, they took another approach then Piwowarski. Instead of adding the
nesting level of each predicate, they use a degree of nesting (η). Furthermore, they use a
graph theoretical notion of nesting based on postdomination, that differs from the notion
of depth used in the previous nesting level metrics. A node A post-dominates another
node B if all paths from A contain B. With that concept Gong and Schmidt define that
the depth of a predicate is the number of predicates in the subgraph rooted at that pred-
icate, containing all paths up until the earliest post-dominating node of that predicate.
Because the degree of nesting cannot be larger than one, addition and subtraction of this
metric is not allowed. The Gong and Schmidt nesting metric, therefore, is no more than
an ordinal metric.

3.2.4.4 Discussion

Because the behavior of nested control structures is interdependent, the complexity of
nested structures can be larger than the sum of their respective complexities. The nesting
level, therefore, represents that added complexity and can be a valuable asset to our
model. However, the most nested structure of a function (indicated by the depth metric
Equation (3.24)) might not be a good indicator for hardware area, because other less
deeply nested structures are not accounted for. Piwowarski (Equation (3.25)) and Gong
& Schmidt (Equation (3.26)) did add this aspect to their measures. However, they
also base their metrics on the cyclomatic complexity, which makes the meaning of those
measures unclear. Because of this, I propose the following extra measures as candidate
measures for the quantitative model, which to the best of my knowledge have not yet
been proposed elsewhere:

• Cumulative Nesting Depth

CUMNEST =
i=nb∑
i=0

depth(bi) (3.27)

By summing the nesting depth of all nb basic blocks in a function, we obtain the
cumulative nesting level. Where the maximum depth level only indicates the most
“difficult” part of a routine, the cumulative nesting depth tries to represent the
“difficulty” of the entire routine. This metric thus is a measure of the size of a
function and therefore may be useful in area estimation.

3.2. CANDIDATE METRICS 57

• Average Nesting Depth

AVGNEST =

i=nb∑
i=0

depth(bi)

nb
(3.28)

With a notion of cumulative nesting depth we can define the average nesting depth
as in Equation (3.28). Instead of capturing a notion of total difficulty of a routine,
this metric indicates the average difficulty of any nested structure. Because nested
structures, like loops, have the potential to be parallelized in hardware, the average
nesting depth might be useful in speed-up estimation.

• Loop Complexity

1)LOOPCOM(F (∅)) =1 (3.29)

2)LOOPCOM(F1; · · · ;Fn) =
n∑

i=1

LOOPCOM(Fi)

3)LOOPCOM(F (F1, · · · , Fn)) =1.1LOOPCOM(F1; · · · ;Fn)

This new complexity metric captures the fact that nested loops often loop over
the same code and would therefore represent less increase in hardware as consecu-
tive loops, that introduce new code apart from the previous loops. The recursive
definition of the Loop Complexity (Equation (3.29)) is therefore multiplicative
for nesting and additive for sequencing of loops, where 1) represents a loop that
doesn’t contain another loop, 2) represents consecutive loops, and 3) represents
nested loops.

3.2.5 Scope Number/Ratio

Gong and Schmidt used the notion of postdomination to define the depth of a predicate.
The same concept is employed by Harrison and Magel in [46] to define the scope number
and the scope ratio. They define the complexity of a node (ci) to be one, except for the
complexity of predicate nodes. The latter is defined as the sum of the complexities of
all nodes in the subgraph rooted at the predicate containing all paths up until, but not
including, the earliest post-dominating node of that predicate. The scope number SN

is the sum of the complexities of all nodes and the scope ratio SR is the scope number
divided by the number of nodes N :

SN =
∑

i

ci (3.30)

SR =
SN

N
(3.31)

While the algorithm to determine the scope number is clear, the exact meaning of
this number is not. However, it is clear that adding more statements in sequence, as

58 CHAPTER 3. METRICS

well as nesting statements, increases the complexity. Furthermore, nesting implies a
larger increase of the scope number than sequencing. Harrison and Magel do point out,
however, that the scope number can be misleading, because the assumption that non-
predicate nodes have a complexity of one is not justified. The main reason for using the
scope ratio is to compensate for this problem.

Because the meaning of the scope number is unclear, its applicability to hardware
estimation is uncertain. However, because the scope number grows when statements are
added in sequence and in case of nesting grows superlinearly, it might be an indicator
for hardware area. The scope ratio, or the scope number per node, is even less clear.
However, we can say that to some extent it indicates the proportion of nodes that are
control nodes. Nevertheless, it is not clear how my model can use the scope ratio for
hardware estimation. Therefore, I only incorporate the scope number in my quantitative
model.

3.2.6 Average Information Content Classification (AICC)

AICC = −
η1∑
i=1

fi

N1
log2

fi

N1
(3.32)

In [45], Harrison proposes that there is a relation between program complexity and
the language entropy. More specifically, the program complexity is inversely propor-
tional to the average information content of its operators. The equation he derived
(Equation (3.32)) is based on the the following equation from information theory for the
average number of bits per symbol required for an alphabet of symbols: s1, s2, · · · , sq,

H = −
q∑

i=1

pi log2 pi (3.33)

where q is the number of symbols in the alphabet and pi is the chance of si occurring in a
text. Harrison’s Average Information Content Classification (AICC) uses the operators
as an alphabet and the chance of a character occurring in the program text determined
a posteriori as the quotient of the number of occurrences of that operator (fi) and the
number of occurrences of all operators (N1). Harrison points out that this measure is
only an ordinal measure.

Although, [45] includes results showing strong correlation between the AICC and
the average error span, we need to determine if the AICC can be useful in a hardware
software partitioning model. If we consider Equation (3.32) and assume every operator
has the same frequency f = N1/η1, then the value of the AICC will be as follows:

AICC = −
η1∑
i=1

fi

N1
log2

fi

N1
= −

η1∑
i=1

N1/η1

N1
log2

N1/η1

N1
= −η1 ·

1
η1

log2

1
η1

= log2 η1 (3.34)

We can now see that the AICC will increase when the number of unique operators
increases. Although the assumption that every operator has the same number of occur-
rences in the code is not realistic, this derivation does imply the AICC represents the
diversity of the operators in use by a program. Low AICC values could thus mean that
hardware allocated for operators is more likely to be reused.

3.2. CANDIDATE METRICS 59

1 int value = 10 ;
2 if (value > 0) {
3 // this is always executed
4 } else {
5 // this is never executed
6 }

Algorithm 3.1: if-statement with only one possible path.

3.2.7 Path Measures

According to several researchers software complexity corresponds to the number of pos-
sible paths through a program. It is indeed difficult to keep track of many paths through
a program during implementation, as well as during testing and maintenance. Many
researchers have used path counts as an indicator of complexity. Notice that the cyclo-
matic complexity also counts paths, i.e. it counts the number of linearly independent
paths. Apart from the number of paths in a program, also the length of paths can be
valuable information. Finally, there have been some special measures related to paths.
In the following sections, we discuss several path-related measures.

3.2.7.1 Actual number of paths

The most natural notion of the number of paths is the total number of possible paths
in a CFG. Although this does not seem particularly difficult to determine, there are
some serious problems with using this metric. For one, the definition is ambiguous,
because it is not clear how much partial evaluation of the code should be performed. To
illustrate this, consider the if-statement in Algorithm (3.1), which would normally have
two control paths. When we partially evaluate the code, however, we can deduce that
the else-part will never be executed. It is not clear, whether we should count one or two
paths for this structure. Another problem with this metric surfaces when we consider
loops. Because loops can have an indeterminate number of iterations at compile-time,
the exact number of paths can not be represented by a finite number.

While intuitively the number of predicates, for example, correlates with hardware
area, it is not clear how the number of paths will correlate with the area. This also
holds true for latency and speed-up. Therefore, I do not make any predictions as to the
usefulness of the path count in area and speed estimation here. For the results of the
use of this metric see Chapter 5.

3.2.7.2 NPATH

In order to address the problems of the actual number of paths, Nejmeh proposed a
static acyclic path count measure called NPATH[72]. NPATH is static in the sense that
no partial evaluation is performed to discover paths that are never taken, and acyclic in
the sense that loops are only considered to have a finite number of paths. NPATH is a
recursive measure with specific expressions for each type of statement, as can be seen in

60 CHAPTER 3. METRICS

Statement NPATH expression

if NP(〈if− range〉) + NP(〈condition〉) + 1
if-else NP(〈if− range〉) + NP(〈else− range〉) + NP(〈condition〉)
while NP(〈while− range〉) + NP(〈condition〉) + 1
do-while NP(〈do− range〉) + NP(〈condition〉) + 1
for NP(〈for− range〉) + NP(〈condition〉) + NP(〈initialization〉) +

NP(〈iteration〉) + 1
switch NP(〈condition〉) +

∑i=n
i=1 NP(〈casei − range〉) +

NP(〈default− range〉)
? operator NP(〈if− range〉) + NP(〈else− range〉) + NP(〈condition〉)
goto 1
break 1
Expressions Number of conditional operators in expression
continue 1
return 1
Sequential 1
Function call 1

Table 3.2: Detailed expressions for the NPATH complexity metric for statements in C
presented in [72]

Table 3.2. The total NPATH complexity (NP) is defined as the product of the complexity
of all statements in a program/function:

NP(f) =
∏

∀statementi

NP(statementi) (3.35)

According to Nejmeh, the NPATH metric does not correlate well with LOC, Hal-
stead’s primitive metrics, or the cyclomatic complexity. This means the information
contained in this metric measures separate aspects of code. Furthermore, Nejmeh shows
that NPATH can be a useful metric during testing. As with the actual number of paths,
mentioned above, I will not speculate on the relation of this metric with the area or
speed of the function here.

3.2.7.3 Longest and Average Path Length

A measure that is particularly useful to in measuring the delay of functions or programs
is the longest path length. This metric indicates the number of edges along the
longest path in the CFG, in other words it stands for the worst case delay of the
function. Nevertheless, when there are many possible paths, the worst case delay
may not be a good measure of the average delay of a function. Instead, the average
path length would be a more suitable candidate. Because the length of a path can
be of indeterminable length at compile-time, I use the same notion of paths as the
NPATH measure for these path length measures. In hardware estimation I expect
the maximum path length to correspond to the critical path length, and therefore

3.2. CANDIDATE METRICS 61

indicative of the hardware latency and speed-up. The average path length on the other
hand is an indication of the slack[38] of the tasks in the resulting circuit. Tasks with
more slack could complete in time with less resources. Therefore, I expect the ra-
tio between the longest and average path length to correlate with the area of the function.

Other path related measures have been proposed, but this is not the place for a
detailed evaluation of path measures. Furthermore, the chance that new path measures
have a high correlation with the measures mentioned here is high.

3.2.8 Prather’s µ measure

µ(P1) = 1, µ(D1) = µ(D2) = 2P (3.36)

µ(F1; · · · ;Fn) =
n∑

i=1

µ(Fi)

µ(F (F1, · · · , Fn)) = µ(F) max{µ(F1), · · · , µ(Fn)}

As a part of his presentation of an axiomatic theory of software complexity measures
[79], Prather presents a new testing metric, defined using this theory. The theory is
based on defining metrics for three basic structured programming constructs: sequence,
selection, and repetition. The testing metric µ presented in this paper is based on a
specific test strategy (multiple condition test strategy). In Equation (3.36) the µ measure
is defined for SD graphs as presented in [37], with one modification: µ(Di) is 2 instead
of 2P , where P is number of conditional operators in the condition. This modification
accounts for the lazy evaluation used in the C programming language. P1 stands for a
non-control statement, D1 stands for an if-statement, and D2 stands for a loop. The
behavior of the measure is additive for sequencing and multiplicative for nesting.

While this measure is designed to correlate with the number of tests required by
the multiple condition test strategy, principal component analysis Table 4.1 suggests the
measure relates to program length. Longer functions tend to be more complex and thus
may result in more area. For this reason, Prather’s µ metric will be incorporated in the
quantitative model.

3.2.9 Basili-Hutchens complexity

1)SynC(P) =

{
1 + log2(k + 1) if F ∈ S

2(1 + log2(k + 1)) otherwise
(3.37)

2)SynC(F1; · · · ;Fn) =
n∑

i=1

SynC(Fi)

3)SynC(F (F1, · · · , Fn)) =SynC(F) + 1.1
n∑

i=1

SynC(Fi)

In [13], a hierarchical measure based on the cyclomatic complexity is presented by Basili
and Hutchens (SynC). They have tried to devise a metric that discriminated between

62 CHAPTER 3. METRICS

structured and unstructured statements. They did not, however, define specifically how
this distinction can be made. Therefore, any application of this metric should provide
clear definitions of structured and unstructured statements. The definition of the Basili-
Hutchens complexity for prime S-graphs uses the logarithm of the number of predicates,
.i.e. the cyclomatic complexity. By using the logarithm, they assign lower complexity
to switch-statements, compared to if-statements. To show this, assume a sequence of
if-statements Fif and an equivalent switch-statement Fswitch and consider:

SynC(Fswitch) = 1 + log2(k + 1)

SynC(Fif) =
k∑

i=1

(1 + log2(2)) = 2k

1 + log2(k + 1) ≤ 2k ⇔ SynC(Fswitch) ≤ SynC(Fif) (3.38)

Applying this measure to a hardware/software partitioning model for an automatic
toolchain will most probably discard the distinction between structured and unstructured
statements, because practically no synthesis system to date supports these constructs.
There are, however, some possibilities to include this metric. First, the model could
support unstructured code. This would imply that manual changes are required, and
thus, the model includes these changes in the estimate. While this would fit in the Delft
Workbench, which is a semi-automatic - i.e. it supports manual changes and iterative
improvement - toolchain, I assume structured code only. Second, another distinction
between structured and unstructured code is employed. In this case, I would like to
propose hardware resource requirements as the criterion. Particularly, I define structured
statements as non-loop statements, and unstructured statements as loop statements. It
is not clear in advance, however, whether this metric will yield good results or not.

3.2.10 Data Flow Measures

Where complexity in software has traditionally been associated with control flow, in
hardware data flow has been more important. Therefore, I should give some attention
to data flow complexity measures. Since there is no comparable alternative of software
measurement theory and practice in hardware development yet and indeed control flow
has been the main focus in software complexity research, there are far less data flow
complexity measures available. In the following sections, I discuss two such metrics.

3.2.10.1 Tai’s DU(g) measure

In [92], Tai details a data-flow measure based on control-flow graphs. This seemingly
contradictory measure is based on assigning a pseudo-variable to the control structures
in a control graph and then counts the so-called definition-use tuples, or d-u tuples for
short. A ‘definition’ stands for the assignment of a value for the pseudo-variable and
a ‘use’ stands for the use of the pseudo-variable. Specifically, Tai defines which tuples
to count and how to assign the pseudo-variable definitions and uses. The algorithm for
assigning definitions and uses can be seen in Algorithm (3.2). The specific definition of
the measure Tai called DU(G) is the maximum number of d-u tuples in G, where:

3.2. CANDIDATE METRICS 63

1 G := a structured control graph beginning with a condition ;
2
3 /∗ Allocate definition use pairs ∗/
4 procedure ALLOCATE (G)
5 for each control structure in G do
6 case control structure of
7 IF :
8 assign ‘ use’ to condition ;
9 assign ‘ definition ’ to block containing path

10 with maximum number of conditions ;
11 WHILE :
12 assign ‘ use’ to condition ;
13 assign ‘ definition ’ to loop−block ;
14 OTHERS :
15 /∗ Tai did not define other constructs ,
16 however switch−statements , for−loops ,
17 do−while loops , etc . can be defined
18 analogously . ∗/
19 end case
20 end for
21 end procedure

Algorithm 3.2: The ‘definition’ and ‘use’ allocation algorithm defined by Tai in [92] for
the DU(G) measure.

(a) if-construct (b) while-construct

Figure 3.1: The two control constructs for which DU(G) is defined in [92]. The black
dots are blocks, which in turn can contain other blocks.

1. the number of Gs output definitions is maximum,

2. blocks can have no more than one ‘definition’ and no ‘use’,

3. all conditions have one ‘use’ and no definition.

The requirements of this metric are satisfied by the allocation algorithm in Algo-
rithm (3.2). Let m be the number of input definitions of the pseudo-variable to G, H(G)
be the maximum number of ‘use’s in any path in G, INSIDE(G) the number of d-u tuples

64 CHAPTER 3. METRICS

in G generated by definitions inside G, and G be one of the cases in Figure 3.1, then:

DU(G) = INSIDE(G) + mH(G) (3.39)

INSIDE(G) =

min{H(E), H(F)}+ DU(J) +

∑
X∈(F,E,J)

INSIDE(X) if G ≡ if-case

H(M) + DU(N) +
∑

X∈(M,N)

INSIDE(X) if G ≡ while-case

H(G) =

{
1 + max{H(E), H(F)}+ H(J) if G ≡ if-case
1 + H(N) if G ≡ while-case

In this equation, m stands for the number of input definitions of the graph G. When
the graph G is the CFG of a function, m is equal to one. However, when DU(G) is
called recursively, m = p + q + 1 in case of an if-construct, where p and q are the
number of if/while-constructs in the different branches of the if-construct. In case of
a while-construct m = r + 1, where r is the number of if/while-constructs in the loop
block.

According to Tai, the difference between DU(G) and other control-graph metrics is
significant. Basically, it captures the potential impact of the control flow on the data
flow in some way. This metric may, therefore, relate to hardware area and/or speed,
because any affect on the data flow can influence the final hardware design.

3.2.10.2 Oviedo’s Data Flow Complexity

Where Tai introduced a pseudo-variable in CFGs, Oviedo defines a data flow complexity
metric based on the actual variables in a program [75]. In order to explain how this
measure is defined, I first have to explain some terms. A definition of a variable is either
an assignment statement or function argument specification. A block is a sequence of
statements that is always executed entirely and in the same order. A definition is locally
available to a block, when it is defined in that block. A variable use is locally exposed
when the variable was not (yet) locally available at the time. When a block bi and a block
bj in a CFG are connected via a path and block bi contains a locally available definition
of variable v and there are no blocks along the path from bi to bj that have a locally
available definition of v, then the definition of v in block bi is said to reach block bj .
Now, let Ri be the set of definitions that reach block bi and Vi the set of locally exposed
variable uses in bi, then Oviedo defines the data flow complexity of a block DF (bi) as

DF(bi) =
||Vi||∑
j=1

|(ri ∈ Ri|ri defines vi)| (3.40)

which is the number definition-use pairs that exist in block bi and cross block bound-
aries. The total program P (or function) data flow complexity then surmounts to

DF(P) =
∑
∀bi∈P

DF(bi) (3.41)

3.3. CONCLUSIONS 65

which sums all complexities of the block of program P . Where Tai’s DU(G) measure
used a pseudo-variable that was closely tied to the CFG, Oviedo’s DF (G) is actually
based on the data-flow in a program. As with Tai’s metric, the DF (G) may be useful
for my model, because of it’s basis on data flow. In contrast with Tai, Oviedo’s measure
has a stronger relation to the actual data flow of the program, and therefore might be a
better choice for the quantitative model.

3.3 Conclusions

In this chapter, I introduced the concept of software metrics. We discuessed several
classifications of these metrics. Furthermore, several metrics were specifically introduced
and evaluated for inclusion in the quantitative model. Indeed, we can indicate several
ways the metrics could correlate with hardware characteristics. In Chapter 5 we find
which metrics do indeed show such a correlation.

66 CHAPTER 3. METRICS

Statistical and Quantitative
Model Building 4
Now that the building blocks of my model have been presented, I establish how to build
the model. I do this by establishing what a model is, how one should define a model,
and how we determine the quality of the model. Several elements in this chapter are
based on the work of Munson[70] and Lay[64]. Furthermore, the extensive information
on linear regression theory available on the website of the course ST111 - Regression and
analysis of variance, as offered by the Applied Mathematics department of the University
of Southern Denmark [63], has been of great use for the contents of this chapter.

4.1 Models and Prediction Systems

According to Fenton[37], a model is an abstract representation of an object. Because
this definition is rather general, Fenton focuses on a specific subset of models, which
are abstract representations of relationships between attributes of entities. In my case,
we seek a quantitative representation of the relationship between software measures and
hardware measures. Such a quantitative model or mathematical model provides a system
of equations that relate multiple measures to each other. The measures that the model
aims to determine are called dependent variables and the variables that the model is
based on are called independent measures. This naming scheme reflects the fact that the
dependent variable is dependent on the other variables and the independent variables
should not have a common source of variance, i.e. they should be independent of each
other. In general, a quantitative model is of the form,

y = F (x) + ε (4.1)

where (y) is a vector of dependent measures, (x) is a vector of independent variables, F
is some function of the independent variables, and ε is the error component or random
error, because the model will probably not reflect reality perfectly. The random error
is a random variable and therefore can not be exactly determined. Usually the random
error is represented by the residual vector

ε̂ = y − ŷ = y − F (x) (4.2)

where ŷ is the predicted value for y. There are many possible definitions of the function F ,
e.g. F might be a linear function, a nonlinear function, a neural network, etc. However,
because there has been no prior quantitative model for hardware/software partitioning
that was based on software metrics, I focused on linear models. A model will then be of
the form,

y = Ax + b + ε (4.3)

67

68 CHAPTER 4. STATISTICAL AND QUANTITATIVE MODEL BUILDING

0 20 40 60 80 100 120 140

0
5

0
0

1
0

0
0

1
5

0
0

Measurements

V
a

lu
e

Stores

Variable Declarations

(a) Original

0 20 40 60 80 100 120 140

0
2

4
6

8

Measurements

V
a

lu
e

Stores

Variable Declarations

(b) Normalized (z-scores)

Figure 4.1: An example of metrics normalization. in the original version the metrics have
values in different orders of magnitude and with different means, while in the normalized
version both metrics are in the same range.

which is a set of linear equations for each dependent measure yi based on the independent
variables in x, the matrix A holds the linear coefficients, and vector b holds the intercept
values. Many statistical methods that can be applied on linear models, require the
independent variables to be normally distributed. It seems plausible to assume that
generally many functions are of comparable complexity and the more functions deviate
from the mean complexity, the less common they are. Therefore I assume the data in
this study to have a normal distribution.

However, as Fenton points out, when predicting values of dependent measures, a
model alone will not suffice. For this purpose, he defines a so-called prediction system,
which is a mathematical model accompanied by a set of procedures for determining
the parameters of the model (x), and interpreting the results. In fact, my quantitative
model will be such a prediction system. More specifically, the descriptions of the software
metrics in Chapter 3 comprise the procedures for my proposed prediction system.

4.2 Normalization of Metrics

Different metrics measure different aspects of the source code, and therefore the numbers
we extract from a dataset will not directly be comparable. One of the obstacles in
comparing these raw numbers is that they have different normal distributions. In order
to compare the measures, therefore, I normalize the metrics to the standard normal
distribution with mean µ zero and standard deviation σ one. This can be done with the
formula,

Z =
V − h(m)µ

h(n)Σ
(4.4)

4.3. LINEAR INTERDEPENDENCE OF METRICS 69

V1

V2

V3

V4

V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

V16

V17

V18

V19

V20

V21

V22

V23

V24

(a) Unordered

V6

V19

V15

V20

V23

V1

V4

V17

V16

V13

V3

V18

V11

V21

V8

V22

V2

V9

V10

V14

V24

V12

V5

V7

(b) Ordered

Figure 4.2: A graphical representation of the covariance matrix. The original version as
well as a version with reordered rows and columns is presented.

where V is an n×m matrix of n measurements of m measures, µ is an 1×m vector of
the means of the m measures, h(t) is a t× 1 vector of ones, Σ is an 1×m vector of the
standard deviations of the m measures, and the division is on a per element basis. This
process is discussed in [70] and there the resulting values are called z-scores. With these
transformed values, it is now possible to identify outlying values in the measurements
and compare them to outlying values of other independent values.

4.3 Linear Interdependence of Metrics

As mentioned in my discussion of Halstead’s Software Science metrics in Section 3.2.2,
Munson[70] has some serious criticisms about derived metrics. Often there is no justifi-
cation for the way several primitive metrics are composed and no empirical evidence to
validate its use. Apart from this problem, Munson identifies the problem that metrics
often measure the same thing. Take for example the measures LOC and statement count.
Clearly, these metrics both measure the size of the source code and can be expected to
have a large correlation. That this is also the case for other metrics can be seen in
[74, 32, 93]. In statistics, this correlation between two measures can be characterized by
the covariance

Cov(x, y) =
1

n− 1

n∑
i=1

(xi − x̄)(yi − ȳ) (4.5)

where xi and yi are measurement values from a set of n measurements. Or with the
Pearson product moment for normalized measures

rxy =
1

n− 1

n∑
i=1

zxzy (4.6)

70 CHAPTER 4. STATISTICAL AND QUANTITATIVE MODEL BUILDING

where −1.0 ≤ rxy ≤ 1.0. The covariance indicates the amount of variance in measure X
accounted for by a corresponding variance in measure Y . In Figure 4.2, the covariance
between the different measures mentioned in Section 3.2 is presented.

4.4 Principal Component Analysis (PCA)

Because the software measures we use are apparently not independent, there will be a
problem in employing them in a mathematical model, which normally requires these
measures to be independent. Therefore, we need a way to extract a linearly independent
or orthogonal set of measures. Statistics, luckily, provides such a procedure: Princi-
pal Component Analysis (PCA). PCA maps the measures into orthogonal attribute
domains, i.e. groups of independent measures. Each principal component represents a
different aspect of the objects we measure.

In order to describe PCA, assume the measures set M of n measures with a multi-
variate distribution µ and the square n×n matrix of covariances Σ and a corresponding
matrix of covariances S determined from the set of measurements.

M = (m1, · · · ,mn) (4.7)
µ = (µ1, · · · , µn)
Σ = (σij = Cov(mi,mj)|i, j = 1 · · ·n)

Because Σ is a symmetrical matrix with real entries, i.e. σij ∈ <, the spectral decompo-
sition theorem states there exists a decomposition

S = PΛPT (4.8)

where P is the matrix with eigenvectors as columns and Λ is the matrix with just the
eigenvalues along the diagonal. Note that the eigenvalues in Λ need to be sorted in
decreasing order from left to right and P needs to change accordingly. In fact this de-
composition provides us with an orthogonal set of (eigen)vectors and so, each eigenvalue
stands for a linearly independent metric domain or domain metric di underlying the
original set of metrics or raw metrics. The eigenvalues represent how much variance can
be explained by a principal component. The sum of the eigenvalues equals the number of
principal components. Therefore, the percentage of variance accounted for by a principal
component i can be calculated as the ith eigenvalue divided by the number of principal
components. Munson describes this procedure in [70]. The next step is to character-
ize the relationship between the raw metrics and the domain metrics using a product
moment correlation as follows:

rmidj
=

Pij

√
λj

σi
(4.9)

In this equation λj is the jth eigenvalue along the diagonal of Λ and σi is the standard
deviation belonging to the raw metric mi. The results of the PCA can be found in
Table 4.1. The results of normal PCA are often unintelligible, because no objective
for determining the orthogonal set is prescribed. Several additional rotations of the
eigenvectors exist that remedy this problem. I employ the so-called Variance Maximizing

4.4. Principal Component Analysis (PCA) 71

1 2 3 4 5 6 7 8 9 10

Principal Component

E
ig

e
n

 V
a

lu
e

0
1

2
3

4
5

6
7

8
9

1
0

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0l

l

l

l

l

C
u

m
u
la

ti
v
e
 V

a
ri
a

n
c
e

l

95% of Variance

λλ=1
Cumulative Variance
Screeplot

λλ−rule components
95%−rule components
Insignificant components

Figure 4.3: A combined graph of the eigenvalues (Screeplot) and the cumulative variances
of the first twelve principal components of the set of software metrics I have considered

rotation (or VariMax), which maximizes the variance of the principal components. The
results in Figure 4.1 are actually the rotated components.

According to Munson there are two main objectives of the PCA. First, to obtain a
set of independent measures D and second, to reduce the number of distinct metrics.
The second objective comes from the observation that there are more raw measures than
actual sources of variation, because the raw measures were not independent.

In order to obtain the first objective, we need to derive a domain metric di for each
principal component. For this purpose, we use the PCA of the z-scores of the raw
measures. The PCA generates for each principal component a set of eigenvectors that
can transform the measures to the orthogonal domain measures. The sum of the pairwise
multiplication of the raw metric and their corresponding entry in the eigenvector, result
in a new z-score representing the principal component of the eigenvector. The values of
all domain metrics can thus be determined as folllows,

DZ = ZT (4.10)

where Z is the n × m matrix of the n measurements of the m raw measures, T is the
m× p matrix of the eigenvectors corresponding to the selected p principal components,
and DZ is the n × p matrix containing the set of values of the p domain measures for
the n measurements.

And for the second objective, Munson mentions there are several possibilities to select
a subset of principal components. One such possibility is to choose only the components

72 CHAPTER 4. STATISTICAL AND QUANTITATIVE MODEL BUILDING

Metric
Principal Components

P
C

1:
L
en

gt
h

P
C

2:
C

on
tr

ol

P
C

3:
N

es
ti
n
g

P
C

4:
D

iv
er

si
ty

P
C

5:
D

at
a

P
C

6:
V
ol

u
m

e

P
C

7:
L
o
op

C
om

p
le

x
it
y

P
C

8:
P
at

h
s

AICC 0.011 -0.008 -0.194 -0.821 -0.017 0.001 0.021 0.129
Avg. Nesting Depth -0.043 -0.025 0.633 -0.009 0.009 -0.006 -0.047 0.061
Avg. Path Length 0.370 0.014 -0.005 -0.016 -0.010 -0.012 -0.020 -0.067
Basili-Hutchens 0.364 -0.058 0.015 0.007 -0.019 -0.001 0.049 0.033
Cum. Nesting Depth 0.008 -0.373 -0.017 -0.013 0.202 0.005 0.029 0.224
Cyclomatic(McCabe) 0.031 -0.411 0.028 -0.001 -0.030 0.013 0.015 -0.128
Gong and Schmidt 0.029 -0.410 0.040 -0.001 -0.030 0.013 0.016 -0.121
Loads 0.001 0.007 0.008 0.005 -0.010 0.569 0.013 -0.024
Loop Complexity -0.024 -0.064 -0.034 -0.005 -0.011 -0.017 0.957 0.020
Max. Nesting Depth -0.042 -0.042 0.605 -0.014 -0.001 -0.001 0.035 -0.004
Max. Path Length 0.370 0.026 -0.045 -0.012 -0.007 -0.001 -0.010 -0.015
NPATH -0.046 -0.131 -0.077 -0.024 0.009 -0.020 -0.017 -0.900
Oviedo def-use pairs 0.212 0.278 0.028 0.050 0.368 0.094 0.122 -0.182
Piwowarski 0.023 -0.378 0.128 0.028 -0.022 0.020 0.139 0.032
Prather’s mu 0.345 -0.018 0.213 0.049 0.015 -0.001 -0.014 -0.009
Scope Number 0.372 -0.020 -0.020 -0.002 -0.017 -0.006 -0.006 0.015
Statements 0.352 -0.049 -0.042 -0.010 0.027 0.005 -0.026 0.056
Stores 0.372 0.023 -0.028 -0.005 0.002 0.002 0.014 -0.001
Tai def-use pairs 0.010 -0.517 -0.170 0.007 0.046 -0.013 -0.193 0.106
Variable Declarations -0.129 -0.006 -0.071 0.007 0.697 0.017 0.009 -0.006
Operands 0.025 -0.003 -0.011 -0.001 0.021 0.534 -0.005 0.009
Operators -0.046 -0.037 -0.002 -0.009 -0.029 0.613 -0.015 0.025
Unique Operands 0.025 -0.057 0.063 -0.029 0.573 -0.060 -0.055 0.052
Unique Operators 0.012 0.031 0.284 -0.564 0.032 0.006 -0.020 -0.172

Eigen Value 10.145 6.479 1.854 1.494 1.036 0.969 0.640 0.344
Variance 0.423 0.270 0.077 0.062 0.043 0.040 0.027 0.014
Cum. Variance 0.423 0.693 0.770 0.832 0.875 0.916 0.942 0.957

Table 4.1: Results of Principal Components Analysis with VARIMAX Rotation of the
24 Software Metrics considered.

that have an eigenvalue higher than 1.0. Another possibility is to choose the minimal
number of most principal components needed to account for at least a certain percentage
of the variance, let’s say 95%. Both methods are illustrated in Figure 4.3. It goes to far
to discuss these methods in depth and therefore, I use Munson’s choice for the former

4.5. DERIVED METRICS AND ORDINAL SCALES 73

method. Note that eigenvalues of 1.0 would be the result of complete random data.

4.5 Derived metrics and Ordinal Scales

There are some additional problems with using the measures from Section 3.2 in a linear
model. First, there were several derived measures, which by definition are dependent on
other (primitive) measures. When incorporating these measures in a quantitative model,
no extra sources of information are added, i.e. it will not add a new principal component.
Instead the quality of the PCA will deteriorate, because a subset of the information is
duplicated and therefore overly represented. Therefore, I do not include measures in my
model, that only contain measures that are already represented in the model.

Furthermore, some measures discussed earlier were only on an ordinal scale. This
means only comparison operators are applicable to these measures and therefore, ide-
ally they should not be used in linear regression nor in PCA. However, in practice,
ordinal scales with more than a few possible values are often assumed to be interval- or
ratio scales. The advantage of such an assumption is that normal quantitative analysis
becomes possible. Therefore, we assume ordinal scales with more than a few possible
values, like the scope number, can be used in normal quantitative analysis.

4.6 (Multiple) Linear Regression

When all independent and dependent variables have been determined for the set of
candidate functions, we would like to fit the data with a linear model. As mentioned in
section Section 4.1, such a model can be written as

y = Ax + b + ε (4.11)

, where y and x are available and the model parameters A and b are unknown. The model
parameters can be determined, with linear regression. There are several linear regression
approaches, however, the best known is the least squares method. Because I use this
method of linear regression, I outline the process here. In principle, linear regression
comes down to solving a set of linear equations. This linear system is traditionally
written as,

y = Xβ + ε (4.12)

where, y is the observation vector, X the design matrix, β the parameter vector, and
ε the residual vector. The observation vector and design matrix hold the observed
values of the dependent and independent variables, respectively. Additionally, the
design matrix has one column with only ones, which represents the intercept coefficient.
The parameter vector holds the linear model parameters, also known as regression
coefficients. Finally, the residual vector contains the residuals between the observed and
predicted values.

However, there will most likely not be an exact solution β to these equations, because
the model can’t exactly represent reality. Therefore, an approximate solution β̂ is needed.

74 CHAPTER 4. STATISTICAL AND QUANTITATIVE MODEL BUILDING

The approximation should minimize the error and therefore minimize the length of the
the residual vector. Hence the name least squares method. The approximate solution β̂
can be obtained by solving the following normal equations:

XTXβ̂ = XTy (4.13)

The solution β̂ then becomes:

β̂ = (XTX)−1XTy (4.14)

Of course, this involves calculating the inverse of a large matrix, as well as three non-
sparse matrix multiplications. Which makes this equation sensitive to an ill-conditioned
design matrix, i.e. when small variations in the design matrix result in large changes in
the least squares solution of β. This can be the case e.g. when the columns of the design
matrix are linearly independent. In our case the columns consist of linearly independent
principal components, therefore we use a numerically more stable method, using the
QR-factorization of the design matrix, which would yield the equation,

Rβ̂ = QTy (4.15)

where the solution can be obtained by backsubstitution.

However, so far the approximate solution β̂ only applies to one dependent variable.
For a model with multiple dependent variables, this process can be performed for each
one of them. The solutions β̂0, . . . , β̂n then, correspond to the linear model as follows: β̂0

...
β̂n

 =

 β̂0
0 · · · β̂0

m
...

. . .
...

β̂n
0 · · · β̂n

m

 = [bA] (4.16)

4.7 Model Quality and Significance

After linear regression is performed, it is useful to determine the quality or significance
of the resulting model. There are several techniques to evaluate model quality, some of
which I use in this work. In the following sections, I list and discuss these techniques.

4.7.1 ANalysis Of VAriance (ANOVA)

ANalysis Of VAriance , or ANOVA, discriminates between different sources of variance
and uses these to determine several model quality indicators. With these indicators one
can reason about the quality and significance of the model in question. ANOVA is based
on the following equation for one independent variable,∑

∀i

(yi − ȳ)2 =
∑
∀i

(yi − ŷi)2 +
∑
∀i

(ŷi − ȳ)2 ⇔ SSTOT = SSE + SSR (4.17)

where yi stands for an observation of a dependent variable, ŷi for a prediction for that
variable, and ȳ for the average value of the observations of that variable. The first term

4.7. MODEL QUALITY AND SIGNIFICANCE 75

Source of Variance Sum of
Squares

Degrees of
Freedom

Mean Square F-ratio

Regression SSR p MSR = SSR
p Fc = MSR

MSE

Error SSE n− p− 1 MSE = SSE
n−p−1

Total SSTOT n− 1

Table 4.2: All elements of the ANOVA for Multiple (Linear) Regression. n is the number
of observations and p is the number of independent variables.

(SSTOT) signifies the variance in the observations, the second term (SSE) signifies the
variance of the error of the model, and the final term (SSR) signifies the variance in the
predictions. These terms are also called the sums of squares. When considering multiple
independent variables, the sums of squares are defined in matrix algebra as follows,

SSR = βTXTY −
(

1
n

)
YTUUTY

SSE = eTe = YTY − βTXTY
SSTOT = SSE + SSR = YTY −

(
1
n

)
YTUUTY

(4.18)

where all variables are analogous to the regression equation y = Xβ + ε and U is an
n× 1 vector with one-valued elements.

Next to the sums of squares the ANOVA also uses the concept of degrees of freedom
of each sum of squares. For SSTOT , this concept is based on the deviations of the
observational data from the observational mean di = yi − ȳ. The sum of all deviations
should equal zero, and therefore, when all but one deviations are known, the last value
is fixed too. In other words there are n − 1 observations that can have an arbitrary
deviation. Therefore, we say that SSTOT has n − 1 degrees of freedom. For the other
sums of squares the definitions can be found in Table 4.2. In this table also the mean
square and F-ratio are mentioned. The F-ratio is actually related to the F-statistic with
(p, n− p− 1) degrees of freedom. Using Fc we can test the following hypothesis,

H0 : ∀i[i < p ⇒ βi = 0]H1 : ∃i[i < p ⇒ βi 6= 0] (4.19)

in other words, the null hypothesis states that there is no relation between the dependent
and independent variables whatsoever and the alternative hypothesis assumes there is
at least one independent variable that relates to the dependent variable. Using Fc we
reject H0 when

Fc > F (1− α; p, n− p− 1) (4.20)

where α is the agreed upon significance level. There are two statistical concepts impor-
tant for choosing a significance level: the importance of type I errors and type II errors.
The first kind of error stands for rejecting the H0 hypothesis, although it was true. And
the second kind occurs when we accept the H0 hypothesis, while actually H1 is true.
When choosing a lower significance level, the risk of a type II error increases. Because
the hypotheses used here (Equation (4.19)) only tests whether the model explains some-
thing or nothing, I decided that it is more important to make sure we do not have a

76 CHAPTER 4. STATISTICAL AND QUANTITATIVE MODEL BUILDING

type I error. Therefore, I assume a significance level of α = 0.01 for the remainder of my
thesis.

4.7.2 Performance Indicators

With the results of the ANOVA we can determine several traditional performance indi-
cators. One such indicator is the the so called Coefficient of Determination (R2), which
indicates how much of the variance of the dependent variable can be explained by the
regression equation.

R2 =
SSR

SSTOT
(4.21)

When R2 is closer to one, the error is smaller and the regression equation explains more
of the variance in the dependent variable.

Another indicator is the Mean Squared Error (MSE) of the model or in other words
the expected deviation of the predictions from the mean.

MSEmodel = E((y − ŷ)2) (4.22)

This definition implies the mean squared error is a random variable and therefore, can
only be estimated. Commonly, this is done by using the sample mean over all values
used to fit the model or over a separate set of validation samples.

M̂SEfit =
1
n

n∑
i=1

(yi − ŷi)2 (4.23)

M̂SEpredict =
1
m

m∑
j=1

(yj − ŷj)2 (4.24)

(4.25)

In Equation 4.25, n is the number of samples used in the linear regression, yi is the
ith such sample, m is the number of samples in the validation set, and yj is the jth
such sample. Because MSEfit is determined using the values the model was fitted to, it
doesn’t actually tell anything about the predictive quality of the model. MSEpredict is
more suitable for this purpose.

The problem, however, is that often there aren’t enough samples to split them into
two separate sets. In order to evaluate model quality in that case, one can use the
Predicted Residual Sum of Squares (PRESS) statistic. This statistic predicts the value
for one instance using a model derived based on the remaining n− 1 observations. The
statistic is calculated as follows,

PRESS =
n∑

i=1

(yi − ŷ(i))
2 (4.26)

where yi is the actual value of sample i, and ŷi is the predicted value using a regression
model based on the other n− 1 observations.

4.7. MODEL QUALITY AND SIGNIFICANCE 77

The disadvantage of the MSE and PRESS statistics is that they can only be used to
compare different models. It is not really useful to calculate them for just one model.
Often several combinations of the independent variables are considered for the final
model. In that case, these statistics can help decide which model is the best.

In order to derive a more general notion of the error of a linear model, often the
Rooted Mean Squared Error Percentage (RMSE%) is determined. It gives an indication
of the average error of the model. This indicator is defined as,

RMSE%fit =
n

√̂
MSEfit
n∑

i=1

yi

RMSE%PRESS =
n
√
PRESS
n∑

i=1

yi

(4.27)

where yi stands for the independent variable observations and n is number of these
observations. In short, these indicators represent the expected error percentage for fitted
data and predicted data.

4.7.3 Residual Analysis

Linear regression is performed under certain assumptions on the dependent and inde-
pendent variables. These assumptions, which are called the model assumptions, must
be satisfied for the model to be valid. For (multiple) linear regression the following
assumptions apply:

1. Independence
The dependent variables yi are independent of each other. Of course, they are still
dependent on the independent variables xi.

2. Normality
The dependent variables have a normal distribution yi ∼ N(µ, σ2).

3. Homoscedasticity
Every dependent variables has the same variance σ2.

4. Linearity
There is a linear relation between the independent and dependent variables.

Commonly these assumptions on model variables are converted to assumptions on ran-
dom errors εi. The main reason for this translation is that the fourth assumption becomes
somewhat simpler. The translated assumptions are:

1. The random errors are independent of each other.

2. The random errors have a normal distribution εi ∼ N(µ, σ2).

3. The random errors have the same variance σ2.

4. The random errors have a mean µi of zero.

78 CHAPTER 4. STATISTICAL AND QUANTITATIVE MODEL BUILDING

In other words, the random errors should be independent and all have a distribution
of N(0, σ2). Because the random errors are random variables, we use residuals when
evaluating these assumptions. However, the residuals in the residual vector ε̂ are not
suitable for this purpose, because these raw residuals have different normal distributions.
Therefore, we need to convert the raw residuals to standardized residuals si as follows,

si =
ε̂i√

1− hii
(4.28)

where hii are elements on the diagonal of the so called hat-matrix. This matrix transforms
a vector of observations y into a vector of predictions ŷ and is defined as

H = X(XTX)−1XT (4.29)

where X is the design matrix. The standardized residuals can be used to evaluate the
four assumptions mentioned earlier. In the following subsections I discuss how one can
evaluate these assumptions on a regression model.

4.7.3.1 Independence

The Independence assumption is usually evaluated subjectively. As mentioned in module
4 of [63] this assumption is largely dependent on how the data were obtained or how the
experiment(s) were performed. For example, if the outcome of observation i+1 would be
dependent on the outcome of observation i, the assumption would not hold. In our case,
the observational data consists of metric values obtained from functions. These metric
data are completely and solely dependent on the function specification and therefore, I
consider this assumption valid in the remaining part of my thesis.

4.7.3.2 Normality

In order to check the normality of the errors, one can compare the distribution of the
standard residuals with the normal distribution in a so called Q-Q Plot, which is a plot
where the quantile values of two distributions are plotted. A q-quantile is a subset of
the ordered set of observational data with n

q elements, or an interval in a distribution
where 100

q % is represented. When the points in the plot (roughly) lie on the line x = y,
then the distributions are (about) the same. When the plot does not imply that the
errors are normally distributed, one can consider transforming the data into a normally
distributed dataset. Common transformations are the log-transformation, square-root
transformation, etc.

4.7.3.3 Homoscedasticity

The Homoscedasticity assumption requires the errors to have equal variances. Therefore
when we plot all the predicted values for the samples against the standardized residuals,
we would need to see a somewhat uniform spread of random valued points around the
value zero. This plot is called the residual plot. In case the plot shows a pattern or trend
in the residuals, there may be a problem with the experimentation or the underlying
problem might not linear (assumption four). When there are a few outlying points,
these points may not fit into this model.

4.8. CONCLUSIONS 79

4.7.3.4 Linearity

In order to investigate whether the model adheres to the fourth assumption, a simple
approach would be to plot each independent variable against the dependent variable, and
evaluate whether the plots can be considered linear. However, more precise evaluation
needs to consider the relationship of this variable with respect to the other independent
variables. In order to do that we can investigate a so called partial residual plot, which
plots the predicted values for the samples against the partial residuals pi,j , defined as

pi,j = βjxi,j + ri (4.30)

where i is the number of the observation and j is the number of the independent variable.
The linearity assumption is valid when the resulting graph resembles a straight line. In
case the assumption does not hold, the independent variables could be transformed into
a linear metric.

4.8 Conclusions

In this chapter, I presented the theory of the modeling procedure. I defined the necessary
terminology, presented the necessary theoretical background for the principal component
analysis and linear regression, and discussed how the performance and quality of the final
model can be evaluated.

80 CHAPTER 4. STATISTICAL AND QUANTITATIVE MODEL BUILDING

Model Building and Results 5
In this chapter, I present the actual quantitative model for hardware/software partition-
ing. This process involves several mathematical operations, which have been discussed in
the previous section. In the following sections, I present the methodology and the results
of the linear regression. Furthermore, I will discuss the presented results according to the
theory presented in Chapter 4.

5.1 Methodology

In order to build the quantitative model for hardware/software partitioning, I took sev-
eral steps. In this section, I elaborate these steps. Several times I refer to the CD-ROM
accompanying my thesis. For more specific locations see Appendix B.

5.1.1 Acquire dataset

The first step in building the model was collecting a dataset of candidate functions that
would function as a source of observational data. For this purpose, a collection of 135
C-language functions was made. The functions come from a broad range of application
domains, like cryptography and multimedia. An overview of the dataset can be seen in
Table 1.2. The broad range of origins of the candidate functions was needed, in order
not to build a narrow model that would be applicable to a small set of applications only.
An additional consequence of this approach is that there are many different algorithms
and memory access patterns present in the dataset.

Because of the tools that were used to obtain the observational data (see Sec-
tion 5.1.2), there were some restrictions on what language features of C could be present
in the candidate functions. For example, at the time of writing DWARV does not sup-
port the float and doublei-types, nor are while-loops and do-while-loops supported.
Therefore, the functions were adapted in order to adhere to these and other restrictions.
For a more complete description of the restrictions imposed by these tools, the reader is
refered to [98].

The original code as well as the modified code can be found on the CD-ROM
accompanying my thesis. See Appendix B

5.1.2 Generate Observational Data

Using the collected C-code, the observational data for the dependent and independent
variables was obtained. However, for many metrics that were discussed in Chapter 3,

81

82 CHAPTER 5. RESULTS

run
-ifn vhdl_sources.prj
-ifmt mixed
-ofn adpcm_encode_nopointer.ngc
-ofmt NGC
-p xc2vp30-7-ff896
-opt_mode Speed
-opt_level 1
-top adpcm_encode_nopointer
-iobuf NO

Figure 5.1: Example of the options used for the synthesis with the Xilinx ISE I.33
synthesis tool.

there was no tool to extract the observational values from the candidate functions.
Therefore, the Elsa/Elkhound compiler frontend, from UC Berkeley [2, 69], was extended
with code for extracting metrics from candidate functions. Using this modified tool, the
metrical data was extracted. One of the main advantages of using software metrics is
the small amount of time it takes to determine their value. The mentioned tool required
on a 2.4GHz AMD Athlon64 only 7.5 seconds in total.

The Elkhound/Elsa source code and the modifications can be found on the
CD-ROM accompanying my thesis. See Appendix B

In order to obtain area information from the high-level source code in the dataset,
either manual or automatic transformation from C to VHDL was needed. Because of
the limited amount of time and resources, two automatic C-to-VHDL translation tools
were used to obtain VHDL code:

• Delft Workbench Automated Reconfigurable VHDL generator (DWARV)
DWARV is a high-level C-to-VHDL compiler that was built as part of the Delft
Workbench project at the TU Delft. It aims to support as much of the ANSI-C
standard as possible and generates straightforward code. At the moment of writing
it does not contain any optimization passes. Of the original number of roughly 140
kernels collected, 135 kernels were compiled to VHDL and 127 of those VHDL files
were correctly synthesized.

• SPARK
As mentioned in Section 2.3.2, SPARK is a C-to-VHDL high-level synthesis frame-
work that aims to migrate software components (functions) to hardware. In con-
trast with DWARV it is much more restrictive and supports less features of the
ANSI-C standard. In fact only 41 sources were compiled using the same original

5.1. METHODOLOGY 83

dataset as DWARV. SPARK does, however, incorporate optimization and schedul-
ing passes, which makes it a good case for comparison for our model.

For a more exhaustive comparison between these two VHDL generators, we refer
the reader to [98]. The resulting VHDL codes were then synthesized using the Xilinx
ISE I.33 Synthesis tool using the options in Figure 5.1. In this work we only focus
on area measures and therefore, we have not performed any simulations of the VHDL
source codes. The area of the FPGA that was the target hardware platform of our model
(Virtex II Pro), can be measured by counting the the following elements:

• Flip-Flops
These are D-type Flip-Flops.

• Look-Up Table s (LUTs)
These are 4-input LUTs.

• Slices
A basic element consisting of 2 LUTs, 2 D-Type Flip-Flops, and some extra ele-
ments like multiplexers and carry chains.

• Multipliers
These are 18bit by 18bit multipliers

• States
This is the number of states in the Finite State Machine (FSM)

In addition, the synthesis tool gives an indication of the Period of the design, while
generally this not an important aspect to know in the early stages of development, we
have incorporated it in the modeling process.

The synthesis scripts can be found on the CD-ROM accompanying my the-
sis. See Appendix B

5.1.3 Perform Statistical Analysis

The observational data were then transformed into matrix representations and loaded
into the open source statistical package R [3]. Using this package a PCA was performed.
Then the observational data were transformed in principal component data. This dataset
was then used to perform the regression analysis. Using several R language features
and newly implemented functions the quality of the resulting linear model was evaluated.

The R commands and programs can be found on the CD-ROM accompany-
ing my thesis. See Appendix B

84 CHAPTER 5. RESULTS
V
ar

ia
b
le

In
te

rc
ep

t

P
C

1:
L
en

gt
h

P
C

2:
C

on
tr

ol

P
C

3:
N

es
ti
n
g

P
C

4:
D

iv
er

si
ty

P
C

5:
V
ar

ia
b
le

s

P
C

6:
V
ol

u
m

e

P
C

7:
L
o
op

s

P
C

8:
P
at

h
s

Slices 6.37e+03 8.84e+02 3.54e+02 -1.50e+01 -8.28e+02 5.64e+02 3.49e+03 -4.08e+00 -5.25e+02
Flip-Flops 7.13e+03 3.30e+02 1.56e+03 -1.11e+02 -3.64e+02 2.03e+03 5.48e+03 9.75e+02 -8.50e+02
LUTs 9.51e+03 1.09e+03 5.78e+02 -4.28e+01 -1.52e+03 8.75e+02 5.20e+03 -1.10e+02 -1.34e+03
Multipliers 5.94e+00 -9.35e-02 2.27e-01 6.18e-01 2.23e+00 9.54e-01 -9.00e-01 -1.21e+00 -2.14e+00
Period 6.70e+00 1.52e-01 -1.17e-01 2.65e-01 1.35e-01 -5.28e-02 2.51e-04 -2.37e-01 -1.94e-01
States 1.64e+02 6.23e+00 1.90e+01 5.84e+00 -6.69e+00 5.22e+01 1.06e+02 1.60e+01 5.23e+00

Table 5.1: Model Parameters for the DWARV models.

ll

l

l

l
l
ll

l

ll
l

l

l

l

l

ll

l
l

ll

l

l

lll

l

l

l

l

l

l

l

l

l

l

ll

l

ll
ll

l

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

llll
l l

ll

l

l

l

l

l

l

l

l

lll
l

l

l

l
ll

ll

l

l

l
l
ll

ll

l
l

ll
ll

l

l

ll

l l

l

l

l

l

l

l

l

ll

l
ll

l

ll

ll

0 10000 20000 30000 40000

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

Slices

Predicted Value

R
e

a
l
V

a
lu

e

Compression
Cryptography
DSP
ECC
Mathematics
Multimedia
Other

ll

l

l

l
l

ll
l

ll
l

l

l

ll

ll

l
l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

ll
ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l
l

ll ll
l l

ll

l

l

l

l

l

l

l

l

lll
l

l

l
lllll

l

l

lll lll

ll

llll

l

l

ll

l
l

l

l
l

l

l

l

l

ll

l
lll

ll
ll

0 20000 40000 60000

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0

Flip−Flops

Predicted Value

R
e

a
l
V

a
lu

e

Compression
Cryptography
DSP
ECC
Mathematics
Multimedia
Other

ll

l

l
llll

l
lll

l

l

l

l

ll

l
lll

l

l

ll
l

l

l
l

l

l

l

l

l

l l

ll

l

ll
ll

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll ll
l l

ll

l

l

l

l

l

l

l

l

lll
l

l

l

l
ll

ll

l

l

l
l

ll ll

ll

ll
ll

l

l

l
l

l
l

l

l

l

l

l

l

l

ll

l
ll

l

ll

ll

0 10000 20000 30000 40000 50000 60000

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

8
0

0
0

0

LUTs

Predicted Value

R
e

a
l
V

a
lu

e

Compression
Cryptography
DSP
ECC
Mathematics
Multimedia
Other

l l ll

l

l

l llll l l

l

llll l l lll

l

l

l

l

l
l

l

l

l

l

l

l

l

l

ll l ll l lll l

l

l l

l

l

ll ll

l

l

l

l

l

l

l

l
l

l
l

llll

l

l l

l

l

l

l

llll l

l

ll

l

l

l

l

l

l ll ll llll l ll ll lll l ll ll lll lll

l

l

l

l

llll

−10 0 10 20 30 40

0
2

0
4

0
6

0
8

0
1

0
0

Multipliers

Predicted Value

R
e

a
l
V

a
lu

e

Compression
Cryptography
DSP
ECC
Mathematics
Multimedia
Other

l
l

l

l

l

l

l

l

l

l
l

l

l

l

ll

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll
l

ll

l

l

l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l ll l

ll

ll

l

l
l

l

l

l

l

l

lll

l

l

l

l

l

l

ll

l

l l

l

l

l

ll

ll
ll

ll

l
l

l

l

ll

l

l
l

l

ll

l
ll

l

l

l

l

ll

ll

6 7 8 9 10 11

4
6

8
1

0
1

2
1

4

Period

Predicted Value

R
e

a
l
V

a
lu

e

Compression
Cryptography
DSP
ECC
Mathematics
Multimedia
Other l

l

l

l

ll

l
l

l

ll

l

l

l

ll

ll

ll
ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

ll

l

llll

l

l

l

l l
l l

l

l

l

l

l

l

l

l

l ll

lllll l l

ll

l

l

l

l

l

l

l

l

llll

l

l

l
l

lll

l l

l
l

l

l

l

l
llll ll

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l
ll l

l
l

ll

0 200 400 600 800 1000 1200 1400

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0
1

2
0

0

States

Predicted Value

R
e

a
l
V

a
lu

e

Compression
Cryptography
DSP
ECC
Mathematics
Multimedia
Other

Figure 5.2: Model Predictions: DWARV

5.2 Results with DWARV

This section contains the results of the linear regression analysis. First, I present the ac-
tual model. Then, I evaluate the linear model assumptions as described in Section 4.7.3.
And finally, I discuss the performance indicators for each model.

5.2.1 Predictions and model parameters

The models generated by the linear regression are listed in Table 5.1. Figure 5.2 depicts
the predicted versus the actual values for the different models.

5.2. RESULTS WITH DWARV 85

In Figure 5.2, we find a clear relation between the model predictions for the number
of slices, flip-flops, LUTs, and States and their respective actual values. For the period
and the number of multipliers, however, the model does not give useable predictions.

One obvious reason why the Multipliers-model does not perform well is the absence of
a metric that represents the number of multiplications. Furthermore, the large number
of zeroes in the multiplier observations make classical linear regression unreliable. The
predictions for the period suggest there is no relation between the period and any of our
principal components or software metrics.

The graphs for the number of slices and the number of LUTs are quite similar.
Because every slice contains 2 LUTs, the number of slices seems to be dominated by the
number of LUTs. There are also two outliers in the top-left corner of both plots. One
outlier makes heavy use of expression lists, which our metrics implementation does not
account for at the moment. The other makes heavy use of constant expressions. These
make Halstead’s [44] metrics unrepresentative of the actual complexity of the system.

Apart from LUTs, slices also contain flip-flops, carry chains, and multiplexers. How-
ever, the flip-flops graph does not resemble the slices graph as the LUTs graph does. It
is not clear why this discrepancy exists. The flip-flop model appears to be the best of
the six models.

Another observation we make is that some application domains occupy specific areas
in the graphs. Especially, the Cryptography functions dominate the upper right part of
the graphs for slices, flip-flops, LUTs, and states. A possible implication of this behavior
is that different application domains may need different models. Or perhaps, the model
can incorporate the application domain as a categorical variable.

5.2.2 Normality

Figure 5.3 depicts the Q-Q Plots for the six models. We can discern that all plots have
so-called ‘heavy tails’, i.e. large discrepancies on the left and right hand side of the
plot with respect to the normal line. This implies that the normality assumption does
not apply. Nevertheless, the models do show predictive strength, as can be observed in
Figure 5.2.

The distribution of the samples seem to be lognormal as opposed to normal. In the
future, therefore, transformations should be applied to the dataset in order to satisfy
the Normality assumption. More specifically, a log or loglog-transformation could
transform the data for the dependent variables into a normally distributed dataset.

5.2.3 Homoscedasticity

The residual plots in Figure 5.4 show different types of behavior. For slices, flip-flops,
LUTs and states we find smaller standard residuals closer to zero. Because the dataset
contains more smaller functions, they are overrepresented during linear regression, which
could explain this behavior.

Furthermore, these plots have several outliers which pose problems for the ho-
moscedasticity assumption. Ideally, we would expect a homogeneous random distribution
of points tightly around the 0-line. Apart from the outliers, we do find most standard
residuals close to the 0-line. Therefore, I assume this assumption is (weakly) satisfied

86 CHAPTER 5. RESULTS

−2 −1 0 1 2

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0
1

5
0

0
0

Normal Q−Q Plot of
 Slices

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

−
8

0
0

0
−

6
0

0
0

−
4

0
0

0
−

2
0

0
0

0
2

0
0

0

Normal Q−Q Plot of
 Flip−Flops

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Normal Q−Q Plot of
 LUTs

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

−
5

0
5

Normal Q−Q Plot of
 Multipliers

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

Normal Q−Q Plot of
 Period

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

−
5

0
0

5
0

Normal Q−Q Plot of
 States

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

Figure 5.3: Q-Q Plots: DWARV

0 10000 20000 30000 40000

−
5
0
0
0

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Residual Plot of
 Slices

predicted values

s
ta

n
d
a

rd
 r

e
s
id

u
a

ls

0 10000 20000 30000 40000 50000 60000

−
8
0
0
0

−
6

0
0

0
−

4
0
0
0

−
2
0
0
0

0
2

0
0

0

Residual Plot of
 Flip−Flops

predicted values

s
ta

n
d
a

rd
 r

e
s
id

u
a

ls

0 10000 20000 30000 40000 50000 60000

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Residual Plot of
 LUTs

predicted values

s
ta

n
d
a

rd
 r

e
s
id

u
a

ls

−5 0 5 10 15

−
5

0
5

Residual Plot of
 Multipliers

predicted values

s
ta

n
d
a

rd
 r

e
s
id

u
a
ls

6 7 8 9

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

1
.5

Residual Plot of
 Period

predicted values

s
ta

n
d
a

rd
 r

e
s
id

u
a
ls

0 200 400 600 800 1000 1200

−
5
0

0
5

0

Residual Plot of
 States

predicted values

s
ta

n
d
a

rd
 r

e
s
id

u
a
ls

Figure 5.4: Residual Plot: DWARV

5.2. RESULTS WITH DWARV 87

ll

l

l

l
l

ll
l

ll
l
l

l

ll

ll

l
l
ll

l

l

l
l
l

l

l
l

l

l

l

l

l

l

l

ll

l

ll
ll

l

l

l

l
l

l

l

l

l

l

l

l

l

l

ll

l

l
l

llll
ll

ll

l

l

l

l

l

l

l

l

lll
l

l

l
l

l
lll

l

l

lll lll

ll

llll

l

l

ll

l
l

l

l

l

l

l

l

l

ll

l
lll

ll
ll

0 2000 4000 6000 8000

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0

Operands

F
lip

−
F

lo
p

s

Compression

Cryptography

DSP

ECC

Mathematics

Multimedia

Other

Sample linear relation

ll

l

l

l
l
ll
l

ll
l
l

l

l

l

ll

l
l
ll

l

l

lll

l

l

l

l

l

l

l

l

l

l

ll

l

ll
ll

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

l

llll
ll

ll

l

l

l

l

l

l

l

l

lll
l

l

l

l
ll

ll

l

l

l
l
ll
ll

l
l

ll
ll

l

l

ll

ll

l

l

l

l

l

l

l

ll

l
ll
l

ll

ll

0 2 4 6 8 10

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

PC 6: Program Volume

S
lic

e
s

Compression

Cryptography

DSP

ECC

Mathematics

Multimedia

Other

Sample linear relation

Figure 5.5: Metric Plot example showing a linear relation: DWARV

for the slices, flip-flops, LUTs and states models. In the future an outlier analysis can
improve the quality of the model.

The residual plot for the number of multipliers clearly is not randomly distributed,
i.e. there are linear patterns, and therefore the homoscedasticity assumption does not
hold for this model. For the period, we see that the density of the plot becomes higher
closer to the 0-line. This would imply the homoscedasticity assumption cannot hold for
this model, as well.

5.2.4 Linearity

In order to test the linearity assumption, I created 48 partial residual plots. Because
of the amount of graphs, these results can be observed in Section A.1. Generally, these
graphs do not show a clear linear relation. Principal Component 1 (Program Length),
5 (Data Size), and especially 6 (Program Volume) do have a somewhat linear relation
with the models for slices, flip-flops, LUTs, and states.

Nevertheless, there are not enough grounds to maintain the assumption of linearity
for most of the principal components, based on the partial residual plots. However, we
can observe good linear relations when we use the original metrics (see Figure 5.5). In
the future, therefore, the use of raw metrics should be investigated.

88 CHAPTER 5. RESULTS

Variable R2 RMSE%fit RMSE%PRESS p-value

Slices 0.717 85.0% 88.93% < 2.2e-16
Flip-Flops 0.920 47.2% 69.2% < 2.2e-16
LUTs 0.628 101.8% 108.4% < 2.2e-16
Multipliers 0.047 287.5% 296.5% 0.6732
Period 0.095 29.8% 30.1% 0.1458
States 0.795 70.2% 101.7% < 2.2e-16

Table 5.2: Performance indicators for the several dependent variables in the linear model
for DWARV.

5.2.5 Model Performance

In Table 5.2, several performance indicators are listed (see Section 4.7.2 for a description).
First, when we consider the coefficient of determination (R2), we see that the variance in
the data is not explained well by the models for the period and the number of multipliers.
In contrast, we see that the other models perform relatively well for this aspect, especially
the model for the number of flip-flops.

When we look at the errors of the different models, we see that the errors are
relatively large. Although, the errors of the multipliers model is unacceptably large,
the errors for the other models are sufficient for early prediction. Furthermore, when
we also compare the graphs for slices and LUTs in Figure 5.2, we can observe that the
error is larger for the smallest functions, i.e. the functions that have a low resource
utilization. Because the smaller functions are larger in number, this influences the total
expected error of the model.

Another observation we can make is that the expected error for the fitted data
(RMSE%fit) for the number of flip-flops and states is considerably lower than their re-
spective expected error for the predicted data (RMSE%PRESS). Apparently some of the
data points that are omitted during the calculation of the PRESS statistic have signif-
icantly different values from the rest of the data points. Therefore, these data points
are important for the model. In the future these samples should be investigated in more
detail.

Considering the p-value (for complete ANOVA tables refer to Section A.2), we can
conclude that the assumption that the models explain nothing at all is extremely small for
all models except the multipliers and the period models, i.e. we reject the H0 hypothesis
for these models. Actually, it is quite plausible that the latter two explain nothing (67.3%
and 14.6% chance respectively).

In short, the models for the number of slices, flip-flops, LUTs, and states can be
considered useful within an early prediction environment.

5.3. RESULTS WITH SPARK 89

V
ar

ia
b
le

In
te

rc
ep

t

P
C

1:
L
en

gt
h

P
C

2:
C

on
tr

ol

P
C

3:
N

es
ti
n
g

P
C

4:
D

iv
er

si
ty

P
C

5:
V
ar

ia
b
le

s

P
C

6:
V
ol

u
m

e

P
C

7:
L
o
op

s

P
C

8:
P
at

h
s

Slices 5.16e+03 -1.27e+03 -3.58e+02 -2.49e+03 -5.93e+03 -1.60e+03 6.12e+03 3.23e+03 -1.39e+03
Flip-Flops 3.02e+03 -7.34e+02 -6.24e+02 -1.02e+03 -2.32e+03 -6.13e+02 2.43e+03 7.40e+02 -3.28e+02
LUTs 7.48e+03 -1.72e+03 -1.04e+02 -3.80e+03 -9.26e+03 -2.62e+03 9.67e+03 5.64e+03 -2.43e+03
Period 5.93e+00 1.38e-01 3.48e-02 -1.51e-01 5.30e-01 -2.68e-01 6.05e-01 -7.19e-01 1.93e-01
Multipliers 3.17e+00 4.33e-01 1.65e+00 1.76e+00 1.93e+00 4.21e+00 8.88e-01 2.99e+00 5.82e-01
States 1.20e+01 5.73e-01 3.62e-01 -1.81e+00 -1.54e+00 -2.21e-01 3.17e+00 3.72e-01 -4.07e-01

Table 5.3: Model Parameters for the SPARK models.

l

l

l

l

l
l

l

l l

l

l l

l

l

l

l llll

l
l

l

l

l

l

l

l

l l
ll

l

ll
l

l

l

l

l

l

−20000 0 20000 40000 60000 80000

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
3

0
0

0
0

Slices

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
llll

l

l

l

l

l

l

l

l

l
l

ll

l

lll
l

l

l

l

l

−5000 0 5000 10000

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Flip−Flops

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

l
l

l

l
l l

l

l
l

l

l l

l

l

l

l
llll

l

l

l

l

l

l

l

l

l l
ll

l

ll
l

l

l

l

l

l

0 50000 100000 150000

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

LUTs

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l

l

−5 0 5 10

3
4

5
6

7
8

9
1

0

Period

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

ll llll ll l lll

l

l

l

l

l

l

l l

l

l

l

l ll ll

l l

l

lll

l

l

l

l

ll l

−80 −60 −40 −20 0 20

0
5

1
0

1
5

2
0

Multipliers

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

5 10 15 20 25 30

5
1

0
1

5
2

0
2

5

States

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

Figure 5.6: Model Predictions: SPARK

5.3 Results with SPARK

Because the proposed quantitative model is primarily targeted at the DWARV C-to-
VHDL compiler, the same procedure has been followed using the SPARK VHDL gener-
ator. This allows us to see whether our modeling process can apply to other compilers
as well. Because of the relatively poor performance of the model in case of SPARK, I do
not evaluate the four linear modeling assumptions.

90 CHAPTER 5. RESULTS

Variable R2 RMSEfit RMSEPRESS p-value

Slices 0.4767 131.3% 157.6% 4.041e-3
Flip-Flops 0.3342 122.8% 156.5% 7.752e-2
LUTs 0.4566 152.4% 184.9% 6.615e-3
Period 0.2182 29.1% 35.6% 0.3789
Multipliers 0.4572 160.5% 212.7% 6.521e-3
States 0.5482 36.3% 46.5% 5.585e-4

Table 5.4: Performance indicators for the several dependent variables in the linear model
for SPARK.

5.3.1 Predictions and model parameters

As with the models for DWARV, the models for SPARK that were generated by the
linear regression are listed in Table 5.3 and Figure A.7 depicts the predicted versus the
actual values for the different models.

The main observation here is that the predictions seem to be particularly uncorrelated
with the actual values. There is a large error in the predictions and we cannot find any
linear relation between the predictions (ŷi) and the actual values (yi), while in a good
model these should be equal within a reasonable error margin.

5.3.2 Model Performance

When considering the performance indicators for the SPARK models in Table 5.4, we
can again see the models do not perform particularly well. First, the coefficient of
determination is rather low for all models, indicating there is much variance not explained
by the model. Second, there are large errors for 4 of the models. The models for Period
and States have somewhat lower error percentages. Finally, we find that the significance,
i.e. p-value (for complete ANOVA tables refer to Section A.5), of the models is not as
high as with the DWARV models, in fact H0 cannot be rejected for the flip-flops model
and the Period model for the chosen significance level.

5.3.3 Discussion

There are several possible reasons for the bad performance of this model. In the first
place, the model is based on a subset (41 sources) of the original dataset (135 sources),
because SPARK was not able to compile several sources in the dataset. The reduced
amount of samples diminishes the quality of the model.

A second reason for this behavior are the optimizations and extensive scheduling
performed by SPARK. DWARV only performs the necessary non-optimizating trans-
formations. In contrast SPARK features dead code elimination, constant propagation,
code motions, scheduling, etc. These transformations may change the function to a point
where the software metrics don’t capture its complexity anymore.

Furthermore, SPARK restricts its output to a specified amount of resources, which a
designer can specify. In this work I used the original resource constraints shipped with

5.4. CONCLUSIONS 91

SPARK. Because SPARK attempts to schedule the design according to these constraints,
the complexity of the design is changed.

5.4 Conclusions

In this section, I presented the steps of the modeling process and the results of that
process. We saw that the DWARV models can make acceptable predictions for use in
the early design phases. Furthermore, the modeling process for SPARK did not yield
satisfactory results. In short, we saw encouraging preliminary results and clear points of
future research and improvement.

92 CHAPTER 5. RESULTS

Conclusions and Future
Research 6
In this chapter we conclude the work presented in this thesis. Furthermore, we present
several directions for future research and improvement of the quantitative model.

6.1 Conclusions

In this project I set out to build a preliminary quantitative prediction model for
hardware/software partitioning. More specifically, I developed a linear regression model
for prediction of several hardware characteristics based on software metrics. In order to
establish the context of such a model, I first reviewed the literature on hardware/soft-
ware partitioning, as well as hardware estimation. Subsequently, I presented a set of
software metrics and discussed how these metrics could relate to hardware. Using a tool
that could gather these metrics from C source code, I developed, I then collected the
software metrics and hardware characteristics of 135 C kernels and performed a linear
regression analysis, resulting in a quantitative model. The following list summarizes the
main contributions and conclusions of my project:

• We have developed a preliminary Quantitative Model for early prediction in a
hardware/software partitioning environment. Although the models for Slices, Flip-
Flops, LUTs, and States have a relatively large error (69.2%-101.7%), we have seen
that the predictions and the actual values show a clear linear relation, as well as that
these models explain the larger part of the variance of the independent variables
(62.5%-92.0%). In spite of the relatively large errors, our model can still be useful
for two main reasons.

1. The model makes it possible to predict hardware characteristics from the C-
language level. There are not many other approaches that allow this and those
mainly focus on C-dialects like SA-C, or use expensive synthesis algorithms
as force-directed scheduling, allocation and binding, etc.

2. Our model can be used for early design space pruning and design support. For
example, the model can omit those functions that will probably not fit on the
reconfigurable logic. Furthermore, the model may also identify functions that
are near trivial in size. Such functions may not exploit a sufficient amount
of parallelism. A designer can use the predictions to aggregate and segregate
functions in order to obtain more optimal candidate functions.

• Although the models for Slices, Flip-Flops, LUTs, and States can provide useful
predictions early on, of the four basic assumptions of classical linear regression only

93

94 CHAPTER 6. CONCLUSIONS

the Homoscedasticity assumption is weakly satisfied. There are several transfor-
mations and modeling techniques that can be applied to remedy this problem (see
Section 6.2). Despite these problems, we can reject the H0 hypotheses for these
models, meaning the models do not make predictions at random.

• The Multipliers and Period models do not perform satisfactory. Apparently, the
chosen software metrics do not correlate with these measures. Both models account
for almost none of the variance in the data (4.7%-9.5%) and are not sufficiently
significant to reject the H0 hypothesis. The relatively low prediction error for the
Period model is the result of the small range of possible values for this measure.

• The model can derive estimates in a short time. The predictions for 135 C kernels
spread over 81 files were made in 7.5 seconds. During the early stages of develop-
ment this is an important feature, because of the iterative nature of design space
exploration and the rapid succession of changes in the code. A designer can get an
impression of the effects of his changes on hardware in a matter of moments.

• Different application domains correlate differently with hardware characteristics.
For one, this makes the quality of the model less accurate, because it does not
make this distinction. Furthermore, this would imply there are still software code
aspects that are not represented by one of the software metrics.

• The linear model for SPARK performs significantly worse than the model for
DWARV. Although, the optimizations, scheduling passes, and resource constraints
of SPARK may be the cause of the bad performance, the set of observations was
significantly smaller (41 kernels) than the one for DWARV (135 kernels). Therefore,
we cannot claim this with sufficient certainty.

In short, we have seen that a quantitative model for hardware/software partitioning
based on software metrics can be feasible. Furthermore, we can state that there is a clear
correlation between aspects of C source code and hardware characteristics. This is an
important fact for emerging toolchains for developing heterogeneous computing systems
and RC systems, because it makes it possible to argue about hardware costs in the very
early stages of development.

6.2 Future Research

Because of the importance of early predictions in hardware-software codesign, further
research in this area is highly recommended. Specifically for the quantitative model
presented here, we can point out several areas of possible improvement and extension.
In the following, several of these areas will be identified and discussed.

• Advanced modeling techniques
Apart from classical linear regression, several more advanced modeling techniques
exist. For example, because the observational data for the number of multipliers
contains many zeroes, classical linear regression does not yield a good prediction

6.2. FUTURE RESEARCH 95

model. When instead we use Generalized Linear Model (GLM), the indepen-
dent variables do not need to be normally distributed. In case of the number of
multipliers, for example, a Poisson-distribution might be more applicable.

Another advantage of GLM is the correct use of categorical and ordinal dependent
variables. Instead of using ordinal scales as ratio scales, this technique can use so
called (ordered) factor columns for nominal and ordinal scales.

• Domain specific models
Because of the different behavior of different application domains, it may be nec-
essary to build different models for each application domain. It can be expected
that the linear regression will yield better results, when there are no groups of
observations that behave differently.

• Latency, Throughput, and Speed-Up
The models that were presented here all characterized in some way a kernel’s
resource consumption. However, other important aspects of a hardware design are
its latency, throughput, and speed-up. In the future detailed simulations of the
kernels in the dataset can provide the necessary data to build a prediction model
for these measures as well.

• Data transformations
In order to satisfy the linear modeling assumptions, the data could be transformed
using transformations as the logarithm, the square root, etc. These transformations
should not be applied blindly. Every transformation should be backed up by a
theory on why such a transformation is necessary. Therefore, careful research in
these transformations is needed.

• Remove irrelevant and redundant metrics
Because of the redundancy of the metrics, the presented quantitative model was
based on principal component scores. However, because some specific metrics cor-
relate better with some hardware attributes than the principal components they
contribute to, it is good to investigate the use of several specific metrics for the
linear regression. Furthermore, several metrics that do not show any correlation
might be dropped.

• Increase the number of observations
The predictions presented here were made by subsequently isolating one observa-
tion, rebuilding the model, and estimating the isolated observation. The reason
for this was the relatively small dataset (135 kernels). In order to use a more
traditional scheme of preselecting a regression set and a validation set, a larger
set of kernels is needed. Furthermore, several application domains are currently
overrepresented. In the future, the dataset should be extended and balanced in
order to make the dataset larger and more general.

• Investigate the influence of optimizations and transformations
As the quantitative model for SPARK seemed to suggest, the model cannot cur-
rently predict the effect of optimizations on the resource consumption of the gener-
ated hardware. Furthermore, it can be expected that kernels that are transformed

96 CHAPTER 6. CONCLUSIONS

into hardware by hand are even more difficult to predict. Research into the effect
of automatic and manual optimizations and transformations on the resource con-
sumption will be essential for estimations that remain applicable throughout the
design process.

Bibliography

[1] Delft workbench [online, cited 19 December 2006], Available from: http://ce.et.
tudelft.nl/DWB/.

[2] Elkhound and elsa [online, cited 19 December 2006], Available from: http://www.
cs.berkeley.edu/~smcpeak/elkhound/.

[3] The r project for statistical computing [online, cited 18 April 2007], Available from:
http://www.r-project.org/.

[4] Roccc website [online, cited 19 December 2006], Available from: http://www.cs.
ucr.edu/~roccc/.

[5] Spark: High-level synthesis using parallelizing compiler techniques [online, cited 19
December 2006], Available from: http://mesl.ucsd.edu/spark/.

[6] David Andrews, Douglas Niehaus, and Peter Ashenden, Programming mod-
els for hybrid cpu/fpga chips, Computer 37 (2004), no. 1, 118–120,
doi:10.1109/MC.2004.1260732.

[7] Peter M. Athanas and Harvey F. Silverman, Processor reconfiguration through
instruction-set metamorphosis, IEEE Computer 26 (1993), no. 3, 11–18,
doi:10.1109/2.204677.

[8] T. Bäck, U. Hammel, and H.-P. Schwefel, Evolutionary computation: comments on
the history and current state, IEEE Transactions on Evolutionary Computation 1
(1997), no. 1, 3–17, doi:10.1109/4235.585888.

[9] John Backus, Can programming be liberated from the von neumann style?: a func-
tional style and its algebra of programs, Commun. ACM 21 (1978), no. 8, 613–641,
doi:10.1145/359576.359579.

[10] A. Balboni, W. Fornaciari, and D. Sciuto, Partitioning and exploration strategies in
the tosca co-design flow, CODES ’96: Proceedings of the 4th International Work-
shop on Hardware/Software Co-Design (Washington, DC, USA), IEEE Computer
Society, 1996, p. 62.

[11] P. Banerjee, N. Shenoy, A. Choudhary, S. Hauck, C. Bachmann, M. Haldar,
P. Joisha, A. Jones, A. Kanhare, A. Nayak, S. Periyacheri, M. Walkden, and
D. Zaretsky, A matlab compiler for distributed, heterogeneous, reconfigurable com-
puting systems, FCCM ’00: Proceedings of the 2000 IEEE Symposium on Field-
Programmable Custom Computing Machines (Washington, DC, USA), IEEE Com-
puter Society, 2000, p. 39.

[12] Sudarshan Banerjee and Nikil Dutt, Very fast simulated annealing for hw-sw par-
titioning, Tech. Report UCI–CECS–04–18, University of California, Irvine, Irvine,
CA, USA, June 2004.

97

http://ce.et.tudelft.nl/DWB/
http://ce.et.tudelft.nl/DWB/
http://www.cs.berkeley.edu/~smcpeak/elkhound/
http://www.cs.berkeley.edu/~smcpeak/elkhound/
http://www.r-project.org/
http://www.cs.ucr.edu/~roccc/
http://www.cs.ucr.edu/~roccc/
http://mesl.ucsd.edu/spark/
http://dx.doi.org/10.1109/MC.2004.1260732
http://dx.doi.org/10.1109/2.204677
http://dx.doi.org/10.1109/4235.585888
http://dx.doi.org/10.1145/359576.359579

98 BIBLIOGRAPHY

[13] Victor R. Basili and David H. Hutchens, An empirical study of a syntactic complex-
ity family., IEEE Transactions on Software Engineering 9 (1983), no. 6, 664–672,
Available from: http://www.cs.umd.edu/~basili/publications/journals/
J17.pdf.

[14] Karthikeyan Bhasyam and Kia Bazargan, Hw/sw codesign incorporating edge de-
lays using dynamic programming, DSD ’03: Proceedings of the Euromicro Sympo-
sium on Digital Systems Design (Washington, DC, USA), IEEE Computer Society,
2003, p. 264.

[15] S. Bilavarn, G. Gogniat, and J. Philippe, Area time power estimation for fpga
based designs at a behavioral level, In ICECS’2K, Kaslik, Lebanon, December 2000,
Available from: http://citeseer.ist.psu.edu/bilavarn00area.html.

[16] Per Bjuréus, Mikael Millberg, and Axel Jantsch, Fpga resource and timing estima-
tion from matlab execution traces, CODES ’02: Proceedings of the tenth interna-
tional symposium on Hardware/software codesign (New York, NY, USA), ACM
Press, 2002, pp. 31–36, doi:10.1145/774789.774797.

[17] Barry W. Boehm, Software engineering economics, Prentice Hall PTR, Upper Sad-
dle River, NJ, USA, 1981.

[18] A. P. Bohm, B. Draper, W. Najjar, J. Hammes, R. rinker, M. Chawathe, and
C. Ross, One-step compilation of image processing applications to fpgas, FCCM
’01: Proceedings of the 9th Annual IEEE Symposium on field-Programmable Cus-
tom Computing Machines (Colorado State University, CO, USA), IEEE Computer
Society, May 2001, pp. 209–218, doi:10.1109/FCCM.2001.32.

[19] Carlo Brandolese, System-level performance estimation strategy for sw and hw,
ICCD ’98: Proceedings of the International Conference on Computer Design
(Washington, DC, USA), IEEE Computer Society, 1998, p. 48.

[20] Enrico Buracchini, The software radio concept, IEEE Communications Magazine
38 (2000), no. 9, 138–143.

[21] João M. P. Cardoso and Pedro C. Diniz, Modeling loop unrolling: Approaches and
open issues, Lecture Notes in Computer Science, vol. 3133/2004, p. 224, Springer,
July 2004, doi:10.1007/b98714.

[22] T Y Chen and S C Kwan, An analysis of length equation using a dynamic approach,
SIGPLAN Not. 21 (1986), no. 4, 42–47, doi:10.1145/15095.15097.

[23] M. Cherkaskyy, Theoretical fundamentals software/hardware algorithms, TCSET
’04: Proceedings of the International Conference on Modern Problems of Radio En-
gineering, Telecommunications and Computer Science (Lviv, Ukraine), February
2004, pp. 9–13, doi:10.1109/TCSET.2004.1365854.

[24] John C. Cherniavsky and Carl H. Smith, On weyuker’s axioms for software
complexity measures, IEEE Trans. Softw. Eng. 17 (1991), no. 6, 636–638,
doi:10.1109/32.87287.

http://www.cs.umd.edu/~basili/publications/journals/J17.pdf
http://www.cs.umd.edu/~basili/publications/journals/J17.pdf
http://citeseer.ist.psu.edu/bilavarn00area.html
http://dx.doi.org/10.1145/774789.774797
http://dx.doi.org/10.1109/FCCM.2001.32
http://dx.doi.org/10.1007/b98714
http://dx.doi.org/10.1145/15095.15097
http://dx.doi.org/10.1109/TCSET.2004.1365854
http://dx.doi.org/10.1109/32.87287

BIBLIOGRAPHY 99

[25] Trishul M. Chilimbi, Efficient representations and abstractions for quantifying and
exploiting data reference locality, PLDI ’01: Proceedings of the ACM SIGPLAN
2001 conference on Programming language design and implementation (New York,
NY, USA), ACM Press, 2001, pp. 191–202, doi:10.1145/378795.378840.

[26] Mike Cotterell and Bob Hughes, Software project management, third ed., McGraw-
Hill Publishing Company, Berkshire, England, UK, 2002.

[27] M. Cummings and S. Haruyama, Fpga in the software radio, IEEE Communica-
tions Magazine 37 (1999), no. 2, 108–112, doi:10.1109/35.747258.

[28] Aravind Dasu and Sethuraman Panchanathan, Reconfigurable media processing,
Parallel Comput. 28 (2002), no. 7-8, 1111–1139, doi:10.1016/S0167-8191(02)00107-
2.

[29] Bharat P. Dave, Crusade: hardware/software co-synthesis of dynamically reconfig-
urable heterogeneous real-time distributed embedded systems, DATE ’99: Proceed-
ings of the conference on Design, automation and test in Europe (New York, NY,
USA), ACM Press, 1999, p. 22, doi:10.1145/307418.307461.

[30] Bharat P. Dave, Ganesh Lakshminarayana, and Niraj K. Jha, Cosyn: hardware-
software co-synthesis of heterogeneous distributed embedded systems, IEEE Trans.
Very Large Scale Integr. Syst. 7 (1999), no. 1, 92–104, doi:10.1109/92.748204.

[31] P. Ellervee, A. Jantsch, J. Öberg, A. Hemani, and H. Tenhunen, Exploring asic
design space at system level with a neural networkestimator, ASIC ’94: Pro-
ceedings of the Seventh Annual IEEE International ASIC Conference and Ex-
hibit (Campus IT University, Kista, Sweden), IEEE, September 1994, pp. 67–70,
doi:10.1109/ASIC.1994.404607.

[32] James L. Elshoff, Characteristic program complexity measures, ICSE ’84: Proceed-
ings of the 7th international conference on Software engineering (Piscataway, NJ,
USA), IEEE Press, 1984, pp. 288–293.

[33] R. Ernst and W. Ye, Embedded program timing analysis based on path clustering
and architecture classification, ICCAD ’97: Proceedings of the 1997 IEEE/ACM
international conference on Computer-aided design (Washington, DC, USA), IEEE
Computer Society, 1997, pp. 598–604, doi:10.1145/266388.266562.

[34] Rolf Ernst, Jörg Henkel, and Thomas Benner, Hardware-software cosynthesis for
microcontrollers, Readings in hardware/software co-design, Kluwer Academic Pub-
lishers, Norwell, MA, USA, 2002, pp. 18–29.

[35] M.A. Al Faruque, K. Karuri, S. Kowalewski, and R. Leupers, Fine grained ap-
plication profiling for guiding application specific instruction set processors(asips)
design, Master’s thesis, Reinisch-Westfälische Hochshule, Aachen, Germany, 2004,
Available from: http://ces.univ-karlsruhe.de/~alfaruque/papers/thesis.
pdf.

http://dx.doi.org/10.1145/378795.378840
http://dx.doi.org/10.1109/35.747258
http://dx.doi.org/10.1016/S0167-8191(02)00107-2
http://dx.doi.org/10.1016/S0167-8191(02)00107-2
http://dx.doi.org/10.1145/307418.307461
http://dx.doi.org/10.1109/92.748204
http://dx.doi.org/10.1109/ASIC.1994.404607
http://dx.doi.org/10.1145/266388.266562
http://ces.univ-karlsruhe.de/~alfaruque/papers/thesis.pdf
http://ces.univ-karlsruhe.de/~alfaruque/papers/thesis.pdf

100 BIBLIOGRAPHY

[36] L. Felician and G. Zalateu, Validating halstead’s theory for pascal
programs, IEEE Trans. Softw. Eng. 15 (1989), no. 12, 1630–1632,
doi:http://dx.doi.org/10.1109/32.58773.

[37] Norman E. Fenton, Software metrics: A rigorous approach, Chapman & Hall, Ltd.,
London, UK, UK, 1991.

[38] Brian Fields, Rastislav Bod́ık, and Mark D. Hill, Slack: maximizing performance
under technological constraints, ISCA ’02: Proceedings of the 29th annual inter-
national symposium on Computer architecture (Washington, DC, USA), IEEE
Computer Society, 2002, pp. 47–58.

[39] W. fornaciari, P. Gubian, D. Sciuto, and C. Silvano, System-level power evalua-
tion metrics, ICISS ’97: Proceedings of the Second Annual IEEE International
Conference on Innovative Systems in Silicon (Milano, Italy), IEEE, October 1997,
pp. 323–330, doi:10.1109/ICISS.1997.630275.

[40] Zhi Guo, Betul Buyukkurt, Walid Najjar, and Kees Vissers, Optimized generation
of data-path from c codes for fpgas, DATE ’05: Proceedings of the conference on
Design, Automation and Test in Europe (Washington, DC, USA), IEEE Computer
Society, 2005, pp. 112–117, doi:http://dx.doi.org/10.1109/DATE.2005.234.

[41] Rajesh K. Gupta and Giovanni De Micheli, Hardware-software cosynthesis for dig-
ital systems, (2002), 5–17.

[42] R.K. Gupta and Giovanni De Micheli, System-level synthesis using re-
programmable components, EDAC ’92: Proceedings of the Third European Confer-
ence on Design Automation (Center for Integrated Systems, Stanford University,
CA, USA), March 1992, pp. 2–7, doi:10.1109/EDAC.1992.205881.

[43] Sumit Gupta, Nikil Dutt, Rajesh Gupta, and Alex Nicolau, Spark : A high-level
synthesis framework for applying parallelizing compiler transformations, vlsid 00
(2003), 461, doi:http://doi.ieeecomputersociety.org/10.1109/ICVD.2003.1183177.

[44] Maurice H. Halstead, Elements of software science (operating and programming
systems series), Elsevier Science Inc., New York, NY, USA, 1977.

[45] Warren Harrison, An entropy-based measure of software complexity, IEEE Trans.
Softw. Eng. 18 (1992), no. 11, 1025–1029, doi:10.1109/32.177371.

[46] Warren Harrison and Kenneth Magel, A topological analysis of the complexity of
computer programs with less than three binary branches, SIGPLAN Not. 16 (1981),
no. 4, 51–63, doi:10.1145/988131.988137.

[47] Jörg Henkel and Yanbing Li, Energy-conscious hw/sw-partitioning of embedded
systems: a case study on an mpeg-2 encoder, CODES/CASHE ’98: Proceedings of
the 6th international workshop on Hardware/software codesign (Washington, DC,
USA), IEEE Computer Society, 1998, pp. 23–27.

http://dx.doi.org/http://dx.doi.org/10.1109/32.58773
http://dx.doi.org/10.1109/ICISS.1997.630275
http://dx.doi.org/http://dx.doi.org/10.1109/DATE.2005.234
http://dx.doi.org/10.1109/EDAC.1992.205881
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/ICVD.2003.1183177
http://dx.doi.org/10.1109/32.177371
http://dx.doi.org/10.1145/988131.988137

BIBLIOGRAPHY 101

[48] M. Hirzel and T. Chilimbi, Bursty tracing: A framework for low-overhead tem-
poral profiling, In 4th ACM Workshop on Feedback-Directed and Dynamic Op-
timization (FDDO-4), December 2001, Available from: http://citeseer.ist.
psu.edu/hirzel01bursty.html.

[49] Chu-Yi Huang, Yen-Shen Chen, Youn-Long Lin, and Yu-Chin Hsu, Data path
allocation based on bipartite weighted matching, DAC ’90: Proceedings of the 27th
ACM/IEEE conference on Design automation (New York, NY, USA), ACM Press,
1990, pp. 499–504, doi:10.1145/123186.123350.

[50] Axel Jantsch, Peeter Ellervee, Johny Öberg, and Ahmed Hemani, A case study on
hardware/software partitioning, FCCM’94, Proceedings of the Workshop on FP-
GAs for Custom Computing Machines (Royal Institute of Technology, Stockholm,
Sweden), IEEE Computer Society Press, 1994, pp. 111–118.

[51] Rolf L. Ernst Jörg Henkel, High-level estimation techniques for usage in hard-
ware/software co-design, ASPDAC ’98: Proceedings of the ASP-DAC’98. Asia and
South Pacific Design Automation Conference (Princeton, NJ, USA), IEEE, Febru-
ary 1998, pp. 353–360, doi:10.1109/ASPDAC.1998.669500.

[52] Dennis Kafura and James Canning, A validation of software metrics using many
metrics and two resources, ICSE ’85: Proceedings of the 8th international confer-
ence on Software engineering (Los Alamitos, CA, USA), IEEE Computer Society
Press, 1985, pp. 378–385.

[53] A. Kalavade and E. A. Lee, The extended partitioning problem: hardware/software
mapping and implementation-bin selection, RSP ’95: Proceedings of the Sixth
IEEE International Workshop on Rapid System Prototyping (RSP’95) (Washing-
ton, DC, USA), IEEE Computer Society, 1995, p. 12.

[54] Asawaree Kalavade and Edward A. Lee, A global criticality/local phase driven
algorithm for the constrained hardware/software partitioning problem, CODES
’94: Proceedings of the 3rd international workshop on Hardware/software co-
design (Los Alamitos, CA, USA), IEEE Computer Society Press, 1994, pp. 42–48,
doi:10.1145/947193.

[55] Adam Kaplan, Philip Brisk, and Ryan Kastner, Data communication estimation
and reduction for reconfigurable systems, DAC ’03: Proceedings of the 40th confer-
ence on Design automation (New York, NY, USA), ACM Press, 2003, pp. 616–621,
doi:10.1145/775832.775987.

[56] Kamal S. Khouri, Ganesh Lakshminarayana, and Niraj K. Jha, Fast high-level
power estimation for control-flow intensive design, ISLPED ’98: Proceedings of
the 1998 international symposium on Low power electronics and design (New York,
NY, USA), ACM Press, 1998, pp. 299–304, doi:10.1145/280756.280941.

[57] Tae-Woo Kim and Hyunchul Shin, Hardware cost estimation techniques for c-
level description, ICVC ’99: Proceedings of the 6th International Conference on

http://citeseer.ist.psu.edu/hirzel01bursty.html
http://citeseer.ist.psu.edu/hirzel01bursty.html
http://dx.doi.org/10.1145/123186.123350
http://dx.doi.org/10.1109/ASPDAC.1998.669500
http://dx.doi.org/10.1145/947193
http://dx.doi.org/10.1145/775832.775987
http://dx.doi.org/10.1145/280756.280941

102 BIBLIOGRAPHY

VLSI and CAD (Ansan-City, Kyunggi-Do, South Korea), IEEE, 1999, pp. 85–88,
doi:10.1109/ICVC.1999.820831.

[58] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, Optimization by simulated anneal-
ing, Science, Number 4598, 13 May 1983 220, 4598 (1983), 671–680, Available
from: http://citeseer.ist.psu.edu/kirkpatrick83optimization.html.

[59] P. G. Kjeldsberg, F. Catthoor, and E. J. Aas, Data dependency size es-
timation for use in memory optimization, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 22 (2003), no. 7, 908–921,
doi:10.1109/TCAD.2003.814257.

[60] Dhananjay Kulkarni, Walid A. Najjar, Robert Rinker, and Fadi J. Kurdahi, Fast
area estimation to support compiler optimizations in fpga-based reconfigurable sys-
tems, FCCM ’02: Proceedings of the 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (Washington, DC, USA), IEEE Com-
puter Society, 2002, p. 239.

[61] K. B. Lakshmanan, S. Jayaprakash, and P. K. Sinha, Properties of control-flow
complexity measures, IEEE Trans. Softw. Eng. 17 (1991), no. 12, 1289–1295,
doi:10.1109/32.106989.

[62] Paul Landman, High-level power estimation, ISLPED ’96: Proceedings of the 1996
international symposium on Low power electronics and design (Piscataway, NJ,
USA), IEEE Press, 1996, pp. 29–35.

[63] Pia Veldt Larsen, St111 - regression and analysis of variance [online, cited 19
December 2006], Available from: http://statmaster.sdu.dk/courses/st111/.

[64] David C. Lay, Linear algebra and its applications, second ed., Addison Wesley
Longman, Inc., Boston, MA, USA, 2000.

[65] Yanbing Li, Tim Callahan, Ervan Darnell, Randolph Harr, Uday Kurkure, and Jon
Stockwood, Hardware-software co-design of embedded reconfigurable architectures,
DAC ’00: Proceedings of the 37th conference on Design automation (New York,
NY, USA), ACM Press, 2000, pp. 507–512, doi:10.1145/337292.337559.

[66] J. A. Maestro, D. Mozos, and H. Mecha, A macroscopic time and cost esti-
mation model allowing task parallelism and hardware sharing for the codesign
partitioning process, DATE ’98: Proceedings of the Design, Automation and
Test in Europe Conference (Madrid, Spain), IEEE, February 1998, pp. 218–225,
doi:10.1109/DATE.1998.655860.

[67] William H. Mangione-Smith, Brad Hutchings, David Andrews, André DeHon, Carl
Ebeling, Reiner Hartenstein, Oskar Mencer, John Morris, Krishna Palem, Vik-
tor K. Prasanna, and Henk A. E. Spaanenburg, Seeking solutions in configurable
computing, Computer 30 (1997), no. 12, 38–43, doi:10.1109/2.642810.

http://dx.doi.org/10.1109/ICVC.1999.820831
http://citeseer.ist.psu.edu/kirkpatrick83optimization.html
http://dx.doi.org/10.1109/TCAD.2003.814257
http://dx.doi.org/10.1109/32.106989
http://statmaster.sdu.dk/courses/st111/
http://dx.doi.org/10.1145/337292.337559
http://dx.doi.org/10.1109/DATE.1998.655860
http://dx.doi.org/10.1109/2.642810

BIBLIOGRAPHY 103

[68] Thomas J. McCabe, A complexity measure, ICSE ’76: Proceedings of the 2nd
international conference on Software engineering (Los Alamitos, CA, USA), IEEE
Computer Society Press, 1976, p. 407.

[69] Scott McPeak, Elkhound: A fast, practical glr parser generator, Tech. Report
UCB/CSD–2–1214, University of California, Berkeley, Berkeley, CA, USA, de-
cember 2002.

[70] John C. Munson, Software engineering measurement, CRC Press, Inc., Boca Raton,
FL, USA, 2002.

[71] A. Nayak, M. Haldar, A. Choudhary, and P. Banerjee, Accurate area and delay
estimators for fpgas, DATE ’02: Proceedings of the conference on Design, automa-
tion and test in Europe (Washington, DC, USA), IEEE Computer Society, 2002,
p. 862.

[72] Brian A. Nejmeh, Npath: a measure of execution path complexity and its applica-
tions, Commun. ACM 31 (1988), no. 2, 188–200, doi:10.1145/42372.42379.

[73] Mahadevamurty Nemani and Farid N. Najm, High-level area and power estimation
for vlsi circuits, ICCAD ’97: Proceedings of the 1997 IEEE/ACM international
conference on Computer-aided design (Washington, DC, USA), IEEE Computer
Society, 1997, pp. 114–119.

[74] Michael B. O’Neal, An empirical study of three common software complexity
measures, SAC ’93: Proceedings of the 1993 ACM/SIGAPP symposium on
Applied computing (New York, NY, USA), ACM Press, 1993, pp. 203–207,
doi:10.1145/162754.162867.

[75] E. I. Oviedo, Control flow, data flow, and program complexity, COMPSAC’80:
Proceedings of the Fourth International Computer Software and Applications Con-
ference, November 1980, pp. 146–152.

[76] Elena Moscu Panainte, The molen polymorphic processor, IEEE Trans. Comput.
53 (2004), no. 11, 1363–1375, Fellow-Stamatis Vassiliadis and Member-Stephan
Wong and Member-Georgi Gaydadjiev and Member-Koen Bertels and Student
Member-Georgi Kuzmanov, doi:10.1109/TC.2004.104.

[77] Zebu Peng and Krzysztof Kuchcinski, An algorithm for partitioning of applica-
tion specific systems, Tech. Report R-94-01, Department of Computer and In-
formation Science, Linköping University, Linköping, Sweden, 1994, Published in
Proceedings of the European Conference on Design Automation EDAC’93, Paris,
France, February 22-25, 1993, Available from: http://informatix.ida.liu.se/
publications/cgi-bin/tr-fetch.pl?r-94-01+ps.

[78] Paul Piwowarski, A nesting level complexity measure, SIGPLAN Not. 17 (1982),
no. 9, 44–50, doi:10.1145/947955.947960.

[79] R. E. Prather, An Axiomatic Theory of Software Complexity Measure, The Com-
puter Journal 27 (1984), no. 4, 340–347, doi:10.1093/comjnl/27.4.340.

http://dx.doi.org/10.1145/42372.42379
http://dx.doi.org/10.1145/162754.162867
http://dx.doi.org/10.1109/TC.2004.104
http://informatix.ida.liu.se/publications/cgi-bin/tr-fetch.pl?r-94-01+ps
http://informatix.ida.liu.se/publications/cgi-bin/tr-fetch.pl?r-94-01+ps
http://dx.doi.org/10.1145/947955.947960
http://dx.doi.org/10.1093/comjnl/27.4.340

104 BIBLIOGRAPHY

[80] Ronald E. Prather, Design and analysis of hierarchical software metrics, ACM
Comput. Surv. 27 (1995), no. 4, 497–518, doi:10.1145/234782.234784.

[81] Yang Qu and J.-P. Soininen, Estimating the utilization of embedded fpga co-
processor, DSD ’03: Proceedings of the Euromicro Symposium on Digital System
Design (VTT Electron., Oulu, Finland), IEEE Computer Society, September 2003,
pp. 214–221, doi:10.1109/DSD.2003.1231929.

[82] D. Saha, A. Basu, and R. S. Mitra, Hardware software partitioning using genetic
algorithm, VLSID ’97: Proceedings of the Tenth International Conference on VLSI
Design: VLSI in Multimedia Applications (Washington, DC, USA), IEEE Com-
puter Society, 1997, p. 155.

[83] Luc Séméria and Giovanni De Micheli, Spc: synthesis of pointers in c: application
of pointer analysis to the behavioral synthesis from c, ICCAD ’98: Proceedings
of the 1998 IEEE/ACM international conference on Computer-aided design (New
York, NY, USA), ACM Press, 1998, pp. 340–346, doi:10.1145/288548.289051.

[84] Li Shang and Niraj K. Jha, Hardware-software co-synthesis of low power real-time
distributed embedded systems with dynamically reconfigurable fpgas, ASP-DAC ’02:
Proceedings of the 2002 conference on Asia South Pacific design automation/VLSI
Design (Washington, DC, USA), IEEE Computer Society, 2002, p. 345.

[85] Alok Sharma and Rajiv Jain, Estimating architectural resources and performance
for high-level synthesis applications, DAC ’93: Proceedings of the 30th interna-
tional conference on Design automation (New York, NY, USA), ACM Press, 1993,
pp. 355–360, doi:10.1145/157485.164929.

[86] U. Nagaraj Shenoy, Alok Choudhary, and Prithviraj Banerjee, Symphany: A tool
for automatic synthesis of parallel heterogeneous adaptive systems, Tech. Report
CPDC-TR-9903-002, Center for Parallel and Distributed Computing, Northwest-
ern University, Evanston, IL, USA, March 1999, Available from: http://www.ece.
northwestern.edu/cpdc/TechReport/1999/03/CPDC-TR-9903-002.ps.gz.

[87] S. Srikanteswara, M. Hosemann, J. H. Reed, and P.M. Athenas, Design and im-
plementation of a completely reconfigurable soft radio, RAWCON ’00: Proceedings
of IEEE Radio and Wireless Conference (Mobile & Portable Radio Res. Group,
Virginia Polytech. Inst. & State Univ., Blacksburg, VA, USA), IEEE, September
2000, pp. 7–11, doi:10.1109/RAWCON.2000.880945.

[88] S. Srikanteswara, R. C. Palat, J. H. Reed, and P. Athanas, An overview of con-
figurable computing machines for software radio handsets, IEEE Communications
Magazine 41 (2003), no. 7, 134–141, doi:10.1109/MCOM.2003.1215650.

[89] V. Srinivasan, S. Govindarajan, and R. Vemuri, Fine-grained and coarse-grained
behavioral partitioning witheffective utilization of memory and design space explo-
ration formulti-fpga architectures, IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems 9 (2001), no. 1, 140–158, doi:10.1109/92.920829.

http://dx.doi.org/10.1145/234782.234784
http://dx.doi.org/10.1109/DSD.2003.1231929
http://dx.doi.org/10.1145/288548.289051
http://dx.doi.org/10.1145/157485.164929
http://www.ece.northwestern.edu/cpdc/TechReport/1999/03/CPDC-TR-9903-002.ps.gz
http://www.ece.northwestern.edu/cpdc/TechReport/1999/03/CPDC-TR-9903-002.ps.gz
http://dx.doi.org/10.1109/RAWCON.2000.880945
http://dx.doi.org/10.1109/MCOM.2003.1215650
http://dx.doi.org/10.1109/92.920829

BIBLIOGRAPHY 105

[90] Al Strelzoff, Functional programming for reconfigurable computing., IPDPS
’04: Proceedings of the 18th International Parallel and Distributed Process-
ing Symposium (San Jose, CA, USA), IEEE Computer Society, April 2004,
doi:10.1109/IPDPS.2004.1303138.

[91] Dinesh C. Suresh, Walid A. Najjar, Frank Vahid, Jason R. Villarreal, and Greg
Stitt, Profiling tools for hardware/software partitioning of embedded applications,
SIGPLAN Not. 38 (2003), no. 7, 189–198, doi:10.1145/780731.780759.

[92] Kuo-Chung Tai, A program complexity metric based on data flow information in
control graphs, ICSE ’84: Proceedings of the 7th international conference on Soft-
ware engineering (Piscataway, NJ, USA), IEEE Press, 1984, pp. 239–248.

[93] George Triantafyllos, Stamatis Vassiliadis, and José G. Delgado-Frias, Soft-
ware metrics and microcode: a case study, Journal of Software Maintenance
8 (1996), no. 3, 199–224, doi:10.1002/(SICI)1096-908X(199605)8:3<199::AID-
SMR129>3.3.CO;2-E.

[94] Frank Vahid, Procedure exlining: a transformation for improved system and be-
havioral synthesis, ISSS ’95: Proceedings of the 8th international symposium
on System synthesis (New York, NY, USA), ACM Press, 1995, pp. 84–89,
doi:10.1145/224486.224506.

[95] Frank Vahid and Daniel D. Gajski, Incremental hardware estimation during hard-
ware/software functional partitioning, Readings in hardware/software co-design,
Kluwer Academic Publishers, Norwell, MA, USA, 2002, pp. 516–521.

[96] Frank Vahid, Daniel D. Gajski, and Jie Gong, A binary-constraint search algorithm
for minimizing hardware during hardware/software partitioning, EURO-DAC ’94:
Proceedings of the conference on European design automation (Los Alamitos, CA,
USA), IEEE Computer Society Press, 1994, pp. 214–219.

[97] Stamatis Vassiliadis, Georgi N. Gaydadjiev, Koen Bertels, and Elena Moscu
Panainte, The molen programming paradigm, Proceedings of the Third Interna-
tional Workshop on Systems, Architectures, Modeling, and Simulation (Delft,
Netherlands), July 2003, pp. 1–10.

[98] Arcilio Jaime-Raul Virginia, Comparative study of vhdl generators, Master’s thesis,
Delft University of Technology, Delft, The Netherlands, May 2007.

[99] John von Neumann, First draft of a report on the edvac, Charles Babbage Institute
Reprint Series for the History of Computing, vol. 12, MIT Press, 1987.

[100] Miljan Vuletic, Laura Pozzi, and Paolo Ienne, Programming transparency and
portable hardware interfacing: Towards general-purpose reconfigurable computing.,
ASAP ’04: Proceedings of the 15th IEEE International Conference on Application-
Specific Systems, Architectures, and Processors, IEEE Computer Society, Septem-
ber 2004, pp. 339–351, doi:10.1109/ASAP.2004.10028.

http://dx.doi.org/10.1109/IPDPS.2004.1303138
http://dx.doi.org/10.1145/780731.780759
http://dx.doi.org/10.1002/(SICI)1096-908X(199605)8:3<199::AID-SMR129>3.3.CO;2-E
http://dx.doi.org/10.1002/(SICI)1096-908X(199605)8:3<199::AID-SMR129>3.3.CO;2-E
http://dx.doi.org/10.1145/224486.224506
http://dx.doi.org/10.1109/ASAP.2004.10028

106 BIBLIOGRAPHY

[101] E. J. Weyuker, Evaluating software complexity measures, IEEE Trans. Softw. Eng.
14 (1988), no. 9, 1357–1365, doi:10.1109/32.6178.

[102] Wayne Wolf, Building the software radio, Computer 38 (2005), no. 3, 87–89,
doi:10.1109/MC.2005.82.

[103] Jianwen Zhu and S. Calman, Context sensitive symbolic pointer analysis, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 24
(2005), no. 4, 516–531, doi:10.1109/TCAD.2005.844092.

[104] Horst Zuse, Properties of software measures, Software Quality Journal 1 (1992),
no. 4, 225–260, doi:10.1007/BF01885772.

http://dx.doi.org/10.1109/32.6178
http://dx.doi.org/10.1109/MC.2005.82
http://dx.doi.org/10.1109/TCAD.2005.844092
http://dx.doi.org/10.1007/BF01885772

Detailed Results A
This appendix contains detailed results for the models for DWARV and SPARK. For
SPARK I also included the graphs for evaluating the modeling assumptions, i.e. the
Q-Q plots, Residual plots, etc.

107

108 APPENDIX A. DETAILED RESULTS

A.1 DWARV - Partial Residual Plots

0 5 10 15

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−15 −10 −5 0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8 10

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4 5

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−10 −8 −6 −4 −2 0 2

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.1: Partial Residual Plot for Slices: DWARV

A.1. DWARV - PARTIAL RESIDUAL PLOTS 109

0 5 10 15

−
1

0
0

0
0

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−15 −10 −5 0

−
2

0
0

0
0

−
1

0
0

0
0

0
1

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4

−
1

5
0

0
0

−
1

0
0

0
0

−
5

0
0

0
0

5
0

0
0

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
1

5
0

0
0

−
1

0
0

0
0

−
5

0
0

0
0

5
0

0
0

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8 10

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4 5

−
1

5
0

0
0

−
1

0
0

0
0

−
5

0
0

0
0

5
0

0
0

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−10 −8 −6 −4 −2 0 2

−
1

5
0

0
0

−
1

0
0

0
0

−
5

0
0

0
0

5
0

0
0

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.2: Partial Residual Plot for Flip-Flops: DWARV

110 APPENDIX A. DETAILED RESULTS

0 5 10 15

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−15 −10 −5 0
−

1
0

0
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0

0
0

5
0

0
0

0
6

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8 10
0

2
0

0
0

0
4

0
0

0
0

6
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4 5

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−10 −8 −6 −4 −2 0 2

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

6
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.3: Partial Residual Plot for Look-Up Tables: DWARV

A.1. DWARV - PARTIAL RESIDUAL PLOTS 111

0 5 10 15

0
2

0
4

0
6

0
8

0
1

0
0

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−15 −10 −5 0

0
2

0
4

0
6

0
8

0
1

0
0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4

0
2

0
4

0
6

0
8

0
1

0
0

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

0
2

0
4

0
6

0
8

0
1

0
0

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8

0
2

0
4

0
6

0
8

0
1

0
0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8 10

0
2

0
4

0
6

0
8

0
1

0
0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4 5

0
2

0
4

0
6

0
8

0
1

0
0

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−10 −8 −6 −4 −2 0 2

0
2

0
4

0
6

0
8

0
1

0
0

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.4: Partial Residual Plot for Multipliers: DWARV

112 APPENDIX A. DETAILED RESULTS

0 5 10 15

−
4

−
2

0
2

4
6

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−15 −10 −5 0
−

4
−

2
0

2
4

6

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4

−
4

−
2

0
2

4
6

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
2

0
2

4
6

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8

−
2

0
2

4
6

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8 10
−

4
−

2
0

2
4

6

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4 5

−
2

0
2

4
6

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−10 −8 −6 −4 −2 0 2

−
4

−
2

0
2

4
6

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.5: Partial Residual Plot for the Period: DWARV

A.1. DWARV - PARTIAL RESIDUAL PLOTS 113

0 5 10 15

−
2

0
0

0
2

0
0

4
0

0
6

0
0

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−15 −10 −5 0

−
4

0
0

−
2

0
0

0
2

0
0

4
0

0
6

0
0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4

−
2

0
0

0
2

0
0

4
0

0
6

0
0

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
2

0
0

0
2

0
0

4
0

0
6

0
0

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8

−
2

0
0

0
2

0
0

4
0

0
6

0
0

8
0

0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

0 2 4 6 8 10

−
2

0
0

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4 5

−
2

0
0

0
2

0
0

4
0

0
6

0
0

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−10 −8 −6 −4 −2 0 2

−
2

0
0

0
2

0
0

4
0

0
6

0
0

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.6: Partial Residual Plot for States: DWARV

114 APPENDIX A. DETAILED RESULTS

A.2 DWARV - ANOVA Tables

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 8.7843e+09 8 1.0980+09 37.45 < 2.2e-16
Error 3.4598e+09 118 2.9320e+07

Total 1.2244e+10 126

Table A.1: ANOVA Table for the Slices dependent variable in the DWARV linear model
(α = 0.01).

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 1.5456e+10 8 1.9320e+09 170.67 < 2.2e-16
Error 1.3358e+09 118 1.1321e+07

Total 1.6792e+10 126

Table A.2: ANOVA Table for the Flip-Flops dependent variable in the DWARV linear
model (α = 0.01).

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 1.8649e+10 8 2.3311e+09 24.852 < 2.2e-16
Error 1.1068e+10 118 9.3799e-07

Total 2.9717e+10 126

Table A.3: ANOVA Table for the LUTs dependent variable in the DWARV linear model
(α = 0.01).

A.2. DWARV - ANOVA TABLES 115

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 1683 8 210 0.7203 0.6732
Error 34465 118 292

Total 12244116192 126

Table A.4: ANOVA Table for the Multipliers dependent variable in the DWARV linear
model (α = 0.01).

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 49.65 8 6.21 1.5551 0.1458
Error 470.99 118 3.99

Total 520.64 126

Table A.5: ANOVA Table for the Period dependent variable in the DWARV linear model
(α = 0.01).

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 6072174 8 759022 57.242 < 2.2e-16
Error 1564673 118 13260

Total 7636847 126

Table A.6: ANOVA Table for the States dependent variable in the DWARV linear model
(α = 0.01).

116 APPENDIX A. DETAILED RESULTS

A.3 SPARK - Omitted Plots

l

l

l

l

l
l

l

l l

l

l l

l

l

l

l llll

l
l

l

l

l

l

l

l

l l
ll

l

ll
l

l

l

l

l

l

−20000 0 20000 40000 60000 80000

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
3

0
0

0
0

Slices

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

l

l

l

l

l

l

l

l
l

l

l
l

l

l

l

l
llll

l

l

l

l

l

l

l

l

l
l

ll

l

lll
l

l

l

l

l

−5000 0 5000 10000

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0

Flip−Flops

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

l
l

l

l
l l

l

l
l

l

l l

l

l

l

l
llll

l

l

l

l

l

l

l

l

l l
ll

l

ll
l

l

l

l

l

l

0 50000 100000 150000

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0
5

0
0

0
0

LUTs

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

ll

l l

l

l

l

l

l

l

l

l

l

l

l

−5 0 5 10

3
4

5
6

7
8

9
1

0

Period

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

ll llll ll l lll

l

l

l

l

l

l

l l

l

l

l

l ll ll

l l

l

lll

l

l

l

l

ll l

−80 −60 −40 −20 0 20

0
5

1
0

1
5

2
0

Multipliers

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l l

l l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

l

l

l

5 10 15 20 25 30

5
1

0
1

5
2

0
2

5

States

Predicted Value

R
e

a
l
V

a
lu

e

Arcilio
Cryptography
DSP
Mathematics
Multimedia
Other

Figure A.7: Omitted Model Predictions for SPARK

A.3. SPARK - OMITTED PLOTS 117

−2 −1 0 1 2

−
2

0
0

0
−

1
0

0
0

0
1

0
0

0
2

0
0

0

Normal Q−Q Plot of
 Slices

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

−
1

5
0

0
−

1
0

0
0

−
5

0
0

0
5

0
0

1
0

0
0

Normal Q−Q Plot of
 Flip−Flops

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

−
4

0
0

0
−

2
0

0
0

0
2

0
0

0

Normal Q−Q Plot of
 LUTs

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

Normal Q−Q Plot of
 Period

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Normal Q−Q Plot of
 Multipliers

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

−2 −1 0 1 2

−
3

−
2

−
1

0
1

2
3

Normal Q−Q Plot of
 States

theoretical quantiles

s
a

m
p

le
 q

u
a

n
ti
le

s

Figure A.8: Omitted Q-Q Plots for SPARK

0 5000 10000 15000 20000 25000

−
2

0
0

0
−

1
0

0
0

0
1

0
0

0
2

0
0

0

Residual Plot of
 Slices

predicted values

s
ta

n
d

a
rd

 r
e

s
id

u
a

ls

−2000 0 2000 4000 6000 8000

−
1

5
0

0
−

1
0

0
0

−
5

0
0

0
5

0
0

1
0

0
0

Residual Plot of
 Flip−Flops

predicted values

s
ta

n
d

a
rd

 r
e

s
id

u
a

ls

0 10000 20000 30000 40000

−
4

0
0

0
−

2
0

0
0

0
2

0
0

0

Residual Plot of
 LUTs

predicted values

s
ta

n
d

a
rd

 r
e

s
id

u
a

ls

5 6 7 8

−
1

.5
−

1
.0

−
0

.5
0

.0
0

.5
1

.0
1

.5

Residual Plot of
 Period

predicted values

s
ta

n
d

a
rd

 r
e

s
id

u
a

ls

0 5 10 15 20

−
3

−
2

−
1

0
1

2
3

Residual Plot of
 Multipliers

predicted values

s
ta

n
d

a
rd

 r
e

s
id

u
a

ls

5 10 15 20 25

−
3

−
2

−
1

0
1

2
3

Residual Plot of
 States

predicted values

s
ta

n
d

a
rd

 r
e

s
id

u
a

ls

Figure A.9: Omitted Residual Plot for SPARK

118 APPENDIX A. DETAILED RESULTS

A.4 SPARK - Partial Residual Plots

−2 0 2 4 6 8 10

−
4

0
0

0
0

−
3

0
0

0
0

−
2

0
0

0
0

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−4 −3 −2 −1 0 1 2

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 0 2 4 6 8 10

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
1

5
0

0
0

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0
1

5
0

0
0

2
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−5 −4 −3 −2 −1 0 1 2

−
2

0
0

0
0

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4 5

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.10: Partial Residual Plot for Slices: SPARK

A.4. SPARK - PARTIAL RESIDUAL PLOTS 119

−2 0 2 4 6 8 10

−
1

0
0

0
0

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−4 −3 −2 −1 0 1 2

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 0 2 4 6 8 10

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−5 −4 −3 −2 −1 0 1 2

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4 5

−
5

0
0

0
0

5
0

0
0

1
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.11: Partial Residual Plot for Flip-Flops: SPARK

120 APPENDIX A. DETAILED RESULTS

−2 0 2 4 6 8 10

−
6

0
0

0
0

−
4

0
0

0
0

−
2

0
0

0
0

0
2

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−4 −3 −2 −1 0 1 2
−

2
0

0
0

0
−

1
0

0
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 0 2 4 6 8 10

−
3

0
0

0
0

−
2

0
0

0
0

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
2

0
0

0
0

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−5 −4 −3 −2 −1 0 1 2

−
3

0
0

0
0

−
2

0
0

0
0

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4
−

3
0

0
0

0
−

2
0

0
0

0
−

1
0

0
0

0
0

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
2

0
0

0
0

−
1

0
0

0
0

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4 5

−
2

0
0

0
0

0
2

0
0

0
0

4
0

0
0

0
6

0
0

0
0

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.12: Partial Residual Plot for Look-Up Tables: SPARK

A.4. SPARK - PARTIAL RESIDUAL PLOTS 121

−2 0 2 4 6 8 10

−
5

0
5

1
0

1
5

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−4 −3 −2 −1 0 1 2

−
5

0
5

1
0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 0 2 4 6 8 10

−
1

0
−

5
0

5
1

0
1

5

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
5

0
5

1
0

1
5

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−5 −4 −3 −2 −1 0 1 2

−
5

0
5

1
0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
5

0
5

1
0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
5

0
5

1
0

1
5

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4 5

−
5

0
5

1
0

1
5

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.13: Partial Residual Plot for Multipliers: SPARK

122 APPENDIX A. DETAILED RESULTS

−2 0 2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−4 −3 −2 −1 0 1 2
−

3
−

2
−

1
0

1
2

3

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 0 2 4 6 8 10

−
3

−
2

−
1

0
1

2
3

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−5 −4 −3 −2 −1 0 1 2

−
3

−
2

−
1

0
1

2

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4
−

3
−

2
−

1
0

1
2

3

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
3

−
2

−
1

0
1

2
3

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4 5

−
3

−
2

−
1

0
1

2

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.14: Partial Residual Plot for the Period: SPARK

A.4. SPARK - PARTIAL RESIDUAL PLOTS 123

−2 0 2 4 6 8 10

−
5

0
5

Partial Residual Plot of
 Prin. Comp. #1

X[, 1]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−4 −3 −2 −1 0 1 2

−
5

0
5

1
0

Partial Residual Plot of
 Prin. Comp. #2

X[, 2]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 0 2 4 6 8 10

−
5

0
5

Partial Residual Plot of
 Prin. Comp. #3

X[, 3]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3

−
1

0
−

5
0

5
1

0

Partial Residual Plot of
 Prin. Comp. #4

X[, 4]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−5 −4 −3 −2 −1 0 1 2

−
5

0
5

1
0

Partial Residual Plot of
 Prin. Comp. #5

X[, 5]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
5

0
5

1
0

Partial Residual Plot of
 Prin. Comp. #6

X[, 6]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−1 0 1 2 3 4

−
5

0
5

1
0

Partial Residual Plot of
 Prin. Comp. #7

X[, 7]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

−2 −1 0 1 2 3 4 5

−
1

0
−

5
0

5
1

0
1

5

Partial Residual Plot of
 Prin. Comp. #8

X[, 8]

C
o

m
p

o
n

e
n

t+
R

e
s
id

u
a

l(
Y

[,
 i
])

Partial Residuals

In
d

e
p

e
n

d
e

n
t

V
a

ri
a

b
le

 V
a

lu
e

s

Figure A.15: Partial Residual Plot for States: SPARK

124 APPENDIX A. DETAILED RESULTS

A.5 SPARK - ANOVA Tables

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 1.337659e+09 8 1.672073e+08 3.6444 4.041e-03
Error 1.468166e+09 32 4.588018e+07

Total 2.805824e+09 40

Table A.7: ANOVA Table for the Slices dependent variable in the SPARK linear model
(α = 0.01).

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 2.202121e+08 8 2.752651e+07 2.0079 7.752e-02
Error 4.386953e+08 32 1.370923e+07

Total 6.589073e+08 40

Table A.8: ANOVA Table for the Flip-Flops dependent variable in the SPARK linear
model (α = 0.01).

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 3.495949e+09 8 4.369936e+08 3.3605 6.615e-03
Error 4.161223e+09 32 1.300382e+08

Total 7.657171e+09 40

Table A.9: ANOVA Table for the LUTs dependent variable in the SPARK linear model
(α = 0.01).

A.5. SPARK - ANOVA TABLES 125

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 26.661 8 3.333 1.1161 0.3789
Error 95.549 32 2.986

Total 122.21 40

Table A.10: ANOVA Table for the Period dependent variable in the SPARK linear model
(α = 0.01).

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 697.54 8 87.19 3.3687 6.521e-03
Error 828.27 32 25.88

Total 1525.81 40

Table A.11: ANOVA Table for the Multipliers dependent variable in the SPARK linear
model (α = 0.01).

So
ur

ce
of

Va
ria

nc
e

Su
m

of
Sq

ua
re
s

D
eg

re
es

of
Fr

ee
do

m

M
ea

n
Sq

ua
re

F-
ra
tio

P
(>

Fc
)

Regression 729.00 8 91.13 4.8527 5.585e-04
Error 600.90 32 18.78

Total 1329.90 40

Table A.12: ANOVA Table for the States dependent variable in the SPARK linear model
(α = 0.01).

126 APPENDIX A. DETAILED RESULTS

Contents of CD-ROM B
This appendix contains a general specification of the contents of the CD-ROM accompany-
ing my thesis. The following sections represent the different directories on the CD-ROM.
All the third party sources included on the CD-ROM were published under open source
licences.

B.1 codebase/

This directory contains the set of C kernels that were used for this thesis. Furthermore,
several scripts for acquiring the metrics, compiling the kernels, and synthesizing the
kernels are present here.

• utils/
This directory contains a C library for generating the required data for performing
simulation from the C kernels.

• SPARK/
This directory contains the C kernels used in the SPARK model.

• Instrumented/
This directory contains all sources used in the DWARV model, but are parially
instrumented for generating the required data for performing simulation.

• DWARV/
This directory contains all sources used in the DWARV model. Furthermore, all
generated VHDL sources and synthesis log files can be found here.

• Results/
In this directory one can find the simulation and synthesis results for SPARK and
earlier experiments.

• scripts/
This directory contains the synthesis scripts for the SPARK framework.

• Original/
Here one can find the original unmodified sources for all kernels.

B.2 Metrics/

This directory contains the Elsa/Elkhound sources from UC Berkeley extended with
several classes that collect the software metrics from the C kernels. The added classes
can be found in the following files:

127

128 APPENDIX B. CONTENTS OF CD-ROM

• metrics.cc
Base class of all the metrics.

• halstead.cc
The Halstead metrics can be found here.

• simple.cc
The number of statements, number of variables, Cyclomatic complexity, Basili-
Hutchens complexity, and Prather’s µ metrics can be found here.

• nesting.cc
The Maximum, Average, and Cumulative Nesting Depth, Piwowarski complexity,
and Gong-Schmidt complexity can be found here.

• aicc.cc
This file contains the AICC metric implementation.

• npath.cc
This file contains the code for determining the NPATH metrics.

• scopenumber.cc
This file contains the implementation of the Scope Number.

• dataflow.h
In this file one can find the templates used in the Forward Data Flow Analysis
used in the pathlen.cc file.

• oviedo.cc
This file implements the Oviedo DU metric.

• taidu.cc
This file implements the Tai DU metric.

• pathlen.cc
This file implements the Average and Maximum Path Length metrics.

• memaccess.cc
This file implements the metrics: Loads and Stores.

• looparea.cc
This file implements the Loop Complexity metric.

B.3 statisics/

This directory contains the datasets and scripts used for performing the statistical anal-
ysis.

B.4 thesis/

This directory contains the original source for this thesis document.

Curriculum Vitae

Roel Meeuws was born in Rotterdam, the
Netherlands on the 24th of May 1982. He gradu-
ated in 2000 at the secondary school Blaise Pascal
in Spijkenisse. He began his study of Computer
Science in 2000 at Delft University of Technol-
ogy. After he received his B.Sc. degree in Com-
puter Science in 2004, he joined the Computer
Engineering laboratory, led by professor Stama-
tis Vassiliadis. He performed his thesis work at
the Delft Workbench project under the supervi-
sion of Koen Bertels, Ph.D. His thesis is titled ”A
Quantitative Model for Hardware/Software Par-
titioning. His research interests include: reconfig-
urable computing, computer architectures, pro-
gramming languages, operating systems, compil-
ers and embedded systems.

	List of Figures
	List of Tables
	List of Algorithms
	List of Terms
	Acknowledgements
	Introduction
	A case study: Software Radio
	Reconfigurable Computing Requirements
	Problem definition

	Literature Review
	Hardware/Software Partitioning
	Partitioning Algorithms
	Partitioning and Estimation
	Dynamic versus Static Solutions
	Synthesizability and Partitioning

	High Level Estimation, Metrics, and Profiling
	Area, Speed, and Power
	Other metrics
	Software metrics and comparability
	Classifying metrics
	Characterizing hardware synthesis and optimization

	Reconfigurable Computing Projects
	Delft Workbench
	Other toolchains

	Conclusions

	Metrics
	Classifying Software Metrics
	Candidate metrics
	Lines Of Code (LOC)
	Halstead's Software Science
	Cyclomatic Complexity
	Nesting level
	Scope Number/Ratio
	Average Information Content Classification (AICC)
	Path Measures
	Prather's measure
	Basili-Hutchens complexity
	Data Flow Measures

	Conclusions

	Statistical and Quantitative Model Building
	Models and Prediction Systems
	Normalization of Metrics
	Linear Interdependence of Metrics
	Principal Component Analysis (PCA)
	Derived metrics and Ordinal Scales
	(Multiple) Linear Regression
	Model Quality and Significance
	ANalysis Of VAriance (ANOVA)
	Performance Indicators
	Residual Analysis

	Conclusions

	Results
	Methodology
	Acquire dataset
	Generate Observational Data
	Perform Statistical Analysis

	Results with DWARV
	Predictions and model parameters
	Normality
	Homoscedasticity
	Linearity
	Model Performance

	Results with SPARK
	Predictions and model parameters
	Model Performance
	Discussion

	Conclusions

	Conclusions
	Conclusions
	Future Research

	Bibliography
	Detailed Results
	DWARV - Partial Residual Plots
	DWARV - ANOVA Tables
	SPARK - Omitted Plots
	SPARK - Partial Residual Plots
	SPARK - ANOVA Tables

	Contents of CD-ROM
	codebase/
	Metrics/
	statisics/
	thesis/

