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Abstract

The objective of this thesis is to show that warping can be used in a thin-walled beam to create a
suitable replacement for a classical differential mechanism. This normally negated deformation of the
cross section can be used to create an inverse transmission mechanism, used to create a monolithic
and simple alternative to a classic differential mechanism. This warping beam differential mechanism
can be used to add walking functionality to a back support passive exoskeleton. These exoskeletons
are optimized to reduce muscle stress during lifting, but this comes with the downside of an increase
in muscle activity during walking. To counter this increase in muscle activity, the use of a differential
mechanism is suggested.

To show the feasibility of the proposed solution, a characterization of the warping beam differential
mechanism is made for different geometric properties. This characterization is done with respect to
two functionalities, to determine the geometric advantage of the inverse transmission and the rotational
compliance under torque of the beam. The warping constant and torsion constant are determined
to be the geometric properties of most influence on the behaviour of the warping beam. It is also
shown that within the proposed boundary conditions, different beam cross sections with the same
geometric properties show the same behaviour. An increase in warping constant results in an increase
in geometric advantage and a reduction of the rotational compliance. The torsion constant has a linear
correlation to the stored energy for the inverse transmission functionality, having less influence on the
geometric advantage and rotational compliance compared to the warping constant.

This thesis shows that this new kind of differential mechanism can be used to replace the classical
mechanism and the potential can be seen with an achieved theoretical geometric advantage of almost
1. A systematic overestimation of the geometric advantage and an underestimation of the compliance
is made by the model with respect to the experiments, but with some improvements this theoretical
goal is not far away.
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1
Introduction

To reduce the work load or to increase endurance of a work force, industries are increasingly utiliz-
ing exoskeletons to aid employees. These exoskeletons can be categorized into active or passive
exoskeletons [17]. No external energy source is used to power passive exoskeletons, making them
self-sufficient, thereby differing from their active counterpart.

Different applications exist for passive exoskeletons, such as arm, leg or back support. Back support
exoskeletons work by storing energy while bending over, then utilizing this energy to aid the wearer
while standing up. Companies like Laevo and SuitX create such exoskeletons, both adopting this
design philosophy.

θ 

Figure 1.1: An illustrations of both a lifting position and walking poses, with the passive exoskeleton shown. depicts the relative
angle between the upper torso and upper legs.

Figure 1.1 shows such an exoskeleton and the position on a body. From each hip, a support goes to
the chest and another goes to the upper leg. The first pose shows the bent position, in which energy
is stored in both hip joints relative to angle 𝜃. This stored energy is used to assist the wearer during
lifting, lowering the load on the back muscles. Studies into the Laevo exoskeleton show a decrease in
back muscle activity during lifting [1, 4].

However, an increase in muscle activity during walking is measured, accompanied by a larger amount
of discomfort [1, 4]. This problem is illustrated by the walking positions shown in Figure 1.1. It can be
seen that the angle 𝜃 does not stay zero during walking, indicating a storage of energy during gait. It
should also be noted that the stored energy during walking is different for each leg, adding discomfort.

To counter this increase in muscle activity, a coupling between the legs is proposed to cancel this
energy built-up during walking while still aiding the upper body during lifting. A differential mechanism
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2 1. Introduction

is proposed to create this kinematic behaviour as it fits the natural behaviour of the legs during walking
while coupling the two legs to store energy during lifting. A differential mechanism is defined by IFToMM
as ”Mechanism for which the degree of freedom is two and which may accept two inputs to produce
one output or may resolve a single input into two outputs” [8].

For a conventional differential mechanism, these two Degrees of Freedom (DoF) can be dedicated to
the two different functionalities. An example of a differential mechanism used in a car can be seen
in Figures 1.2 and 1.3. Both figures depict the internal DoFs resulting in a single external DoF. Red
colored arrows are constraint, green are applied rotations and yellow are resultant rotations. Figure
1.2 shows the outer gear being locked, creating an inverse transmission shown as DoF 1. Figure 1.3
depicts DoF 2, with a single moment input on the outer gear resulting in an equally distributed output
moment on both shafts.

θ

Input 

Resultant
Constraint

Figure 1.2: Functionalities of a classic differential
mechanism with Degree of Freedom 1 being depicted.

M

Input 

Resultant
Constraint

Figure 1.3: Functionalities of a classic differential
mechanism with Degree of Freedom 2 being depicted.

A characterization of differential and remote center of rotation mechanisms is done to find possible
solutions or gaps in literature to apply to a passive lifting exoskeleton, seen in Appendix A. All two
DoF mechanisms are considered in characterizing a differential mechanism, as the IFToMM definitions
has no restrictions. Remote center of rotation mechanisms are also characterized, with the goal to aid
comfort by alignment of the exoskeleton with respect to the human movement.

A B C D

A B C D

B CA
D

Shear stresses in cross section

Resulting shear strains

Figure 1.4: Visualization of warping is non-cylindrical beam. The
applied torque create shear stresses in the cross section, caus-
ing shear strain. adapted from Oden and Ripperger (1981) [13].

These conventional differential mechanisms do
have shortcomings like play, assembly, wear
and possibly weight. To solve these shortcom-
ings, a compliant shell mechanism is proposed
to function as a differential mechanism. In ac-
cordance with Nijssen, ”Compliant shell mecha-
nisms are spatially curved thin-walled structures
able to transfer or transit, force, motion or energy
through elastic deformation” [12].

To gain differential mechanism functionality for a
compliant mechanism, warping is utilized. Warp-
ing, or warping displacement, is the out-of-plane
deformation of the cross section and occurs when
torque is applied to a thin-walled beam [18]. This
applied torque causes shear stress and conse-
quent shearing strain to develop in the cross sec-
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tion (CS). If Figure 1.4 is considered, elements B and C develop these stresses and thereby deform.
This does not hold for elements A and D, resulting in a rotation of the element and a subsequent out
of plane displacement of the CS called warping [13]. Further explanation on warping can be found in
Appendix B.

Studies have been done into the transmission of warping through beams and through beam joints and
connections [2, 3, 15], with the goal to predict and nullify this warping behaviour. The contrary is of
interest now as, next to exoskeletons, it could also serve as a solution for different engineering fields
benefiting from monolithic parts.

1.1. Thesis objective
To take the first step towards implementation into industry, the practicality of using warping needs to be
investigated. To give insight into this feasibility, the research goal is defined as:

”Characterizing the behaviour of a warping beam as differential mechanism for different geometric
properties”.

1.2. Thesis outline
The thesis starts out with a paper in Chapter 2, presenting the characterization of the warping beam
differential mechanism. The paper includes an overview of the theory on warping from which the im-
portant geometric properties are selected. The method section shows the experimental setup, used
beams during the tests, considered boundary conditions, material choices and used ANSYS models.
The results of the paper show the comparison of analytical and finite element models with the exper-
imental results and the contour plots made to characterize the beam functionalities over a range of
geometric property values. Chapter 3 shows the raw experimental data over a range of input rotation
angles and input torque and a general stress analysis. Chapter 4 and 5 discuss the additional results
and conclude on the total thesis. Supplementary material is given in the appendices, showing the
literature study, warping theory, test setup and MATLAB and ANSYS APDL code.





2
Paper : Warping in thin-walled structures
for differential mechanism applications

This chapter presents the research in a paper format. The essentials on the theory of warping warping
theory discussed to make the paper self explanatory. The method focuses on how the feasibility is
analysed, discussing the geometric properties, boundary conditions and models used. The results
show a comparison between the models and experiments, after which a more in-depth characterization
is done in ANSYS with a shell model. The discussion and conclusion review the obtained results, its
interpretation and future implication.
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In this paper, the effect of warping in thin-walled beams un-
der torsion is used to create a compliant differential mech-
anism. This normally negated deformation of the cross sec-
tion can be used to create an inverse transmission mecha-
nism, resulting in a monolithic and simple alternative with-
out frictional losses and no backlash. This paper presents the
characterization of such a beam differential mechanism and
determines the influence of the geometric properties on the
behaviour. The behaviour is characterized for two function-
alities, the geometric advantage of the inverse transmission
and the rotational compliance under torque. The simulations
are run in finite element software and verified by experiments
and analytical calculations.

The results show that the torsion constant and warping
constant are the geometric properties of influence on the be-
haviour, where an increase in the warping constant results
in an increase in geometric advantage and a reduction of the
compliance. An increase in torsion constant results in a mi-
nor decrease of the geometric advantage and an almost one
on one increase in the stored energy. The model overesti-
mates the geometric advantage by 25% on average and un-
derestimates the compliance of the more stiffer beams with
respect to the experiments. The overall conclusion can be
drawn that this new kind of differential mechanism has a lot
of potential and could certainly serve as an alternative for
the classic mechanism.

Nomenclature
J Torsional constant
B Bimoment
e Shear center
w Warping displacement
θ Angle of twist per unit length
A Cross sectional area
Iw Warping constant
E Young’s modulus
G Shear modulus
φ Angle of twist
c Torsional bending constant

1 Introduction
Classical thin-walled beams are designed to negate

warping, the out-of-plane deformation of the cross section
(CS) under torsional loading of a non-cylindrical beam. But,
apart from airplane wing adjustment [1], no research has
been found into warping beams as a differential mechanism.
An intriguing observation, as warping in beams would lend
itself to a differential mechanism functionality due to its in-
verse transmission characteristic during twist. Therefore,
this paper aims to further investigate the possibility of us-
ing warping to create a differential mechanism from a thin-
walled beam.

This warping beam is classified as a compliant shell
mechanism. Compliant shell mechanisms are a relative new
addition to the field of compliant mechanisms and have been
defined as ”spatially curved thin walled structures able to
transfer or transit force, motion or energy through elastic de-
formation” by Nijssen [2]. Research has been done into com-
pliant shells for translational transmissions [3], but no rota-
tional transmission or differential related research has been
found.

Using a compliant shell as differential mechanisms re-
duces the number of parts of an assembly, allowing for a
monolithic and simple design. The utilization of a compliant
shell mechanism will result in a decrease in weight, no back-
lash, no friction, a less complex design and a prospect for
low maintenance [4]. This will make the warping beam dif-
ferential mechanism suitable for environments like offshore,
space or medical as they would benefit from monolithic de-
signs, solving weight or contamination problems. Passive
exoskeletons would also benefit from such a light weight
solution due to the inherent inverse transmission Degree of
Freedom (DoF) during twist, mimicking walking.

The objective of this paper is to show that warping in a
beam can be used to create a suitable alternative for the clas-
sical differential mechanism. To show that warping can be
used to create a differential mechanism, this paper charac-
terizes the behaviour of the warping beam differential mech-
anism for different geometric properties. The variation of
geometric properties are applied to the standard I-,C-, and



Z-profiles. The investigated structures are referred to as
”beams”, as they are extrusion profiles with a constant CS.
Models are used to obtain the results, while experiments and
analytical formulas are used to verify the model and chosen
geometric properties.

An overview of the theory on warping is given in Section
2 to show how an inverse transmission can be created from
a warping beam, select the important geometric properties
and give the analytical formulas to compare with the experi-
ments. Section 3 shows the used beams for the experiments,
the considered boundary condition, the material choices and
the experimental setup. It also presents the models used in
the finite element program ANSYS APDL, later referred to
as ”ANSYS”. Section 4 contains the comparison of analyti-
cal and finite element models with the experimental results.
Section 4 also shows the contour plots made to characterize
the beam functionalities over a range of geometric property
values. Last, a discussion on the results and a conclusion is
given in Section 5 and 6 respectively.

2 Theory on warping
If a beam is loaded by uniform or St.Venant torsion,

only shear stresses will be present in the cross section. If
a cylindrical beam is considered, the shear stresses will be
equal throughout the section. Thus, the CS will stay planar
and the polar moment of inertia is used to calculate the re-
sulting twist [5]. For non-symmetric beams however, this
assumption of a planar CS does not hold anymore, as the
shear stresses are not equally distributed, and the resistance
is given by the St.Venant torsion constant J [6].

The shear stresses in these non-symmetrical beams in-
duce a shear strain between the different sections, causing
the center elements B and C of Figure 1 to deform. The
outer elements A and D do not develop these shear stresses
and therefore rotate out of plane, called warping. As stated
by Vlasov [7], ”The distortion of the plane section caused by
longitudinal displacements of its points is called ’The Warp-
ing’ of a section”. Such a case of uniform torsion is illus-
trated in Figure 2.

A B C D

A B C D

B CA
D

Shear stresses in cross section

Resulting shear strains

Fig. 1: Visualization of warping in a non-cylindrical beam.
The applied torque creates shear stresses in the cross section,
causing shear strain, resulting in warping. Adapted from
Oden and Ripperger (1981) [5].

Fig. 2: Uniform torsion of a non-cylindrical beam under tor-
sional load.

This out-of-plane deformation of the outer elements is
used to create the inverse transmission needed to create a dif-
ferential mechanism. If the center elements B and C are fixed
in space and a single rotation input is given, an out-of-plane
displacement of element A and D can still be seen. This dis-
placement of the outer elements will perpetuate through the
beam and result in a rotation opposite to the direction of the
input rotation, creating an inverse transmission mechanism.
However, this is no longer true when warping is constrained.

When warping is constrained, it is called warping or
non-uniform torsion [6,8], after the torsion theory of Vlasov
and shown in Figure 3. In this case the theory of St.Venant
does not hold anymore and the beam carries load by addi-
tional normal stresses [5,9]. These normal stresses are deter-
mined by a generalised force system called the bimoment [7],
increasing the torsional stiffness of the beam.

Fig. 3: Non-Uniform torsion of a beam under torsional load.

The bimoment is defined as the bending moment M mul-
tiplied by the CS height h [9], as visualized for an I-beam in
Figure 4a and b. The center piece of the beam section is
called the web and the two outer parts are called the flanges.
The height refers to the web and the width to the flanges.

The warping moment is the resultant bending moment
acting on both flanges, which acts self balancing as the mo-
ments are equal in magnitude with opposite direction. The
bimoment can not be directly measured and decreases as the
distance to the application point of torsion increases. Both
the shear stresses and the normal stresses corresponding to
the bimoment and bending moments can be seen in Figure
4c.

The resultant twist for both uniform and non-uniform
torsion is around the shear center e. This geometric property
is defined as ”the point in the plane of the cross section about
which twisting takes place” [6]. For an I-beam, the shear
center is located at the center web, but for a C-beam it is
located outside of the cross section of the beam.

2.1 Warping displacement
The warping displacement w is defined as the out-of-

plane displacement of the CS for both uniform and non-
uniform torsion. Figure 5 depicts a random cross section,
with a piece of the CS called ds. ds is defined by the perpen-
dicular distance r to the defined center point, taken to be the



h/2
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M

(A) (B) (C)

Fig. 4: (a) shows the applied torsion, (b) the resulting moments in the section and (c) the corresponding stresses.

shear center e, and distance s from the defined origin of the
section. θ is defined as the angle of twist per unit length of
the whole beam around the x-axis.

e

r

s

ds

z

y

x

 θ,φ 

Fig. 5: Parameters used to determine the warping displace-
ment. The shown illustration is all in plane. Illustration
adapted from Timoshenko [10].

w = θ(ω̄s−ωs)

ωs =
∫ s

0
rds

ωs =
1
A

∫ A

0
ωsds

(1)

The warping displacement is given by Equation 1 [5,10],
with A being the cross sectional area and ωs the so called
warping function, defined as the double sectorial area en-
compassing the center line s of the CS. ωs is the average
warping displacement, a factor used to compensate for the
distance between the defined center point and the shear cen-
ter e.

2.2 Warping constant
The warping constant Iw is a cross-sectional property

and ”a measure for the effort needed to reduce warping” with
units m6 [9].

Iw =
∫ A

0
(ω̄s−ωs)

2 tds (2)

The warping stiffness, or warping rigidity, of a beam is
given by multiplication with the Young’s modulus (E) and
is thereby given by EIw. This is in line with the notation
for torsional stiffness given by GJ, with G being the shear
modulus and J the torsional constant.

Similar to completely cylindrical cross sections, cross
sections consisting of thin rectangular elements intersecting
at one common point do not experience warping either [10],
as this will cause the distance r, shown in Figure 5, to reduce
to zero. These type of sections not experiencing warping
include V, T and L cross section shapes.

B =−EIwφ
′′

Ttot = Tst.Venant +TWarping

= GJφ
′−EIwφ

′′′
(3)

Equation 3 shows the equation for the earlier mentioned
bimoment, composed of the warping stiffness multiplied by
the second derivative of the twist of the beam [5, 7, 10, 11].
The total torsion formula is also given by Equation 3, split
up into St.Venant and warping torsion. With φ defined as the
angle of twist.

φ = A0 +A2ecx +A3e−cx +
T x
GJ

(4)

For a beam under non-uniform torsion with one free and
one fixed end, the general solution for the twist of a beam is
given by Equation 4, with x defined as the length along the
beam, as shown in Figure 5. With c being the torsional bend-
ing constant [12], defined as c =

√
GJ/EIw. The consid-

ered loading case must furthermore adhere to the following
boundary conditions:

φ =
dφ

dx
= 0 at x = 0 and

d2φ

dx2 = 0 at x = L

x=0 is a fixed end and x=L is a free end. An illustra-
tion of the considered problem is seen in Figure 4a. These
boundary conditions are given as they are later used in the
comparison between the experimental and simulation data.



3 Method
In order to establish the characterization of the geomet-

ric properties, later compared to the outcome of the exper-
iments and analytical calculations, two ANSYS models are
used. First, the different beams are tested in the experimen-
tal setup and compared to the ANSYS beam and shell model
and the analytical calculations. This verification serves mul-
tiple purposes, as the model results and the influence of both
the geometric properties and CS shapes are verified.

The torsional constant J and warping constant Iw are
identified as the two main factors to influence the beam
behaviour for both uniform and non-uniform torsion. The
shape of the CS is also a variable to be analysed, defined by
the shape of the cross section center lines. The shear center
e is not considered as a separate factor as it is included in the
definition of warping constant.

The characterization for the geometric properties and
different cross sections shapes is split op into two differen-
tial mechanism functionalities, these functionalities are in-
vestigated using two different load cases. Load case 1 (LC1)
is the determination of the geometric advantage of the in-
verse transmission mechanism, highlighting the internal DoF
caused by warping. Load case 2 (LC2) is an applied pure
torque to determine the rotational compliance. Furthermore,
although compliant mechanisms do not suffer from friction
losses, energy is stored in the deformation. Therefore, the
energy stored within the beam for LC1 is also shown to de-
termine the energy needed for operation. The analytical for-
mulas are only used to compare to LC2, as no boundary con-
ditions are found for the analytical model of LC1.

3.1 Beam specifications for experiments
Four chosen beam cross sections with varying CS and

dimensions are compared to show the effect of Iw, the type
of CS and the validity of the models. Table 1 shows the cross
sections of beams to be tested including dimensions and ge-
ometric properties.

Beam I1 and I2 have a comparable torsion constant.
This way, the effect of the warping constant on both load
cases can be shown. The dimensions of beam I1 and C are
chosen to have similar J and Iw, in order to compare the in-
fluence of the CS shape. The same reasoning is behind the
comparison between beam I2 and Z. The small deviations
in geometric properties for the different torsion constants,
warping constants and the cross sectional areas are due to
fabrication.

3.2 Boundary conditions for 2 load cases
LC1 is depicted in Figure 6 and is used to determine the

geometric advantage of the beam. The output over the input
angle is called the geometric advantage and is given within a
range from 0 to 1, with 1 being the theoretical maximum in
which case the output angle is equal to the input angle. The
beam will behave as an inverse transmission as the center
web is fixed. Both the input and output angle are measured
at the two outer webs. This geometric advantage deviates
from a standard differential, mostly used to transmit power.

Table 1: Dimensions and geometric properties of the beams
used during the experiments.

Beam name I1 I2 C Z

Illustration

Height [m] 50.75e-3 51.2e-3 50e-3 49.7e-3

Width [m] 45.6e-3 18.9e-3 40.5e-3 13.6e-3

Thickness [m] 0.75e-3 0.82e-3 0.78e-3 0.95e-3

J [mˆ4] 2.0e-11 1.64e-11 2.07e-11 2.2e-11

Iw [mˆ6] 7.63e-12 6.05e-13 8.16e-12 7.23e-13

A [mˆ2] 1.07e-4 7.30e-5 1.022e-4 7.31e-5

LC2 concerns the unconstrained rotational stiffness of
each beam as the applied pure torque induces a rotation. This
rotation is divided by the input torque and presented as the
compliance of the beam, shown in radians per Nm. LC2
applies a torque to the center web, with the outer webs being
constrained in rotation around the axis along the beam, as
shown in Figure 7.

These two factors are used to gauge the behaviour of
the warping beam differential mechanism. A parallel with
a conventional differential mechanism can also be drawn for
LC2, as the applied torque is equally distributed to both ends.

θ
Input 
Resultant deformations
Constraints

Fig. 6: LC1 considered for the warping beam differential
mechanism.

The applied rotational input for LC1 is set at 45◦ and
the applied torque for LC2 is 0.4Nm. A pure rotation and
pure torsion are used relatively, so no combined loading is
considered. The analysed beams have a length of 360mm,
with the CS dimensions being uniform over the length and
the position of the constraint at half length.

The webs are constrained as shown in Figure 6 and 7,
with the two outer webs constrained with a rigid link. 80%
of the web length is constrained to better compare to the ex-
perimental setup. A 100% constraint of the web is not chosen
as it can not be guaranteed if a clamping method is used to
achieve the constraint. The center web is constrained depen-
dent on each of the two load cases, with the flanges being
free for LC1 and fixed for LC2.
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Fig. 7: LC2 considered for the warping beam differential
mechanism.

3.3 Models and experiment
The material used in both ANSYS and the experiments

is polyamide 12 (PA12). The material properties are shown
in Table 2, with the tested beams 3D printed using Multi
Jet Fusion (MJF). PA12 was chosen to have monolithic test
parts, eliminating the effect of added stiffness caused by con-
nection pieces. The material is furthermore assumed to be
homogeneous, isotropic and linear elastic.

Table 2: Material properties of Polyamide 12.

ρ ν E G σy

[kg/m3] [−] [GPa] [GPa] [MPa]

1010 0.41 1.2 0.43 38

3.3.1 Ansys models
ANSYS is used to implement warping and make use of

the nonlinear geometry for the analysed models. Two models
are used in ANSYS, a beam and shell model. Both models
are chosen to compare results and decide on the best kind of
model to use for such an application.

The beam element used is ”BEAM188”, suitable for
slender beams and based on Timoshenko beam theory, with
an addeditional DoF [13]. The extra DoF gives every node
a 7th DoF to allow for out of plane displacement. The beam
model does not allow an input rotation or torque to be ap-
plied to only the web, so an input over the whole CS is used
instead. No buckling of the flanges can occur as the projec-
tion of the CS on its plane stays undeformed [13].

The ”SHELL181” element is used for the shell model
as it is well-suited for thin shell structures and large rota-
tions applications. The SHELL181 is made up of four-node
elements each having six DoF and is based on the Reissner-
Mindlin shell element [14]. For the simulations done with
the shell model, the input rigid links and constraints are ap-

plied at the web and thereby better represent the constraints
used in the experiment.

3.3.2 Experimental setup
The experimental setup is used to verify the results ob-

tained from ANSYS and show if the predicted influence of
the warping constant and CS type is correct. The constraints
used for the experiments differ from those used in the sim-
ulation as it a line constraint, so an alternative constraint is
used. All three web constraints are applied by clamping the
evaluated beam over a width of 3mm. A comparison between
the two clamping methods is shown in Figure 8.

Rigid link

Fig. 8: A comparison between the model constraint, a line
contact, and the experimental constraint, a line clamping
over a width of 3mm.

For LC1, a pure rotation around the x-axis is created and
transferred to the tested beam by a misallignment coupling to
allow for movement of the input link, seen in Figure 9. The
coupling part couples the rotation to the beam by a rigid link
at the web. The inclinometer measures the input angle, also
shown in Figure 9. Figure 10 shows the output angle incli-
nometer supported by a ball support to support its weight. An
overview of the constrained beam, the input and output can
be seen in Figure 11a. Both inclinometers have a minimal
tolerance of 160◦/800.

13

2

Fig. 9: Side view of the input side of the experiment for LC1.
(1) is the input inclinometer, (2) the load cell and (3) the
misallignment coupling and connection piece.

For LC2 only half of the beam is tested. A change in
constraint is necessary to create the same boundary condi-
tion compared to a symmetric load case. This constraint is
shown in Figure 12 and is needed as a single input torque in-
stead of a symmetric one is used. The input torque is created



5

4

Fig. 10: Side view of the output side of the experiment for
LC1. (4) is the ball contact to compensate for the weight of
the inclinometer and (5) the output inclinometer.

by the balanced lever seen in Figure 9. The load cell is used
to measure the applied pure torsion and the input inclinome-
ter is used to measure the resulting rotation. An overview of
the clamped beam for LC2 can be seen in Figure 11b. The
load cell has a minimal tolerance of 9N/1000 at a distance of
100mm. Thus, the tolerance on the torque is approximately
0.001Nm. The experiment setup for LC2 can be seen in Fig-
ure 11b.

(A)

(a) The experimental setup for LC1,
shown for a C beam.

(B)

(b) The experimental setup for
LC2, shown for a C beam.

Fig. 11: The experimental setup for LC1 and LC2.

Grounded

Fig. 12: Experiment constraints for LC2. Instead of the
model constraint, a total constraint is created at the center
flange.

3.3.3 Influence of the torsion and warping constant
After the experiment comparison and verification, only

the SHELL181 model is used to characterize the geometric
advantage and rotational compliance over a range of cross
section dimensions. The shell model is used as its constraints
better represent the constraints used in the experiments.

The dimension of the cross sections are varied within
a range of dimensions. The maximum design area is set at
50x50mm and the maximum cross sectional area is 1e−4m2.
The width, height and thickness are varied within these
bounds to create a multitude of J and Iw combinations per
CS. Each different combination of dimensions is a datapoint
to be run in ANSYS, with the geometric advantage and en-
ergy storage for LC1 and the compliance of LC2 computed
for each datapoint. The upper and lower bounds of the di-
mension are set as:

hmin,hmax = [10e−3,50e−3]
wmin,wmax = [10e−3,50e−3]

tmin, tmax = [0.5e−3,2e−3]

with h being the height of the web, w the width of the flanges
and t the uniform thickness over the web and flanges. The
Z CS has a maximum width of 25mm as the flange width is
measured from the center of the web.

4 Results
The results are shown between the experimental data,

analytical formulas and the ANSYS models first. Next, the
characterization of both load cases with respect to the torsion
and warping constant is shown.

4.1 Experiment comparison
One specimen per beam is tested in 2 different orienta-

tions in both directions, twice. So 8 sets of data are obtained
for each tested beam. For the comparison of the experimen-
tal data with the models, every shown data point is an aver-
age of the data around 45◦ and 0.2Nm. For LC1, the data
between 44.5◦ and 45.5◦ is picked and for LC2 the data be-
tween 0.195Nm and 0.205Nm. This is done to minimize the
effect of data scatter.

A distinction is made between two rotation directions
for the comparison between the experiments and model data.
This distinction is made as the Z beam is sensitive to the
rotation direction, with the directions as depicted in Figure
13.

Figure 14 shows the results obtained for LC1, showing
the 8 different data points obtained for each tested beam and
the beam and shell model simulation. The average of the 8
data points is also plotted. The x-axis shows the 4 separate
columns for the 4 tested cross sections. The values of both
models as well as the averages of the experiments are also
given in Table 3.



Direction 1

Fig. 13: Rotation direction 1 with respect to tested beams.
Direction 2 is opposite to direction 1. The directions are the
same between the two different load cases.
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Fig. 14: The compared results for LC1. The average of the
8 data points and the results of the ANSYS beam and shell
model are shown. The x-axis shows the 4 different tested
beams.

Table 3: The values of the experimental, beam and shell
model for LC1.

I1 I2 C Z

Beam model 0.98 0.83 0.98 0.81

Shell model 0.96 0.81 0.96 0.80

Experiment average 0.71 0.51 0.71 0.54

As can be seen in Figure 14 and table 3, a maximum dif-
ference of 3% for the geometric advantage between the beam
and shell model can be seen, with the shell model having a
lower overall geometric advantage. The spread between the
two specified rotation directions is largest for the Z beam.

The results of LC2 are shown in Figure 15, including the
analytical solution based on the boundary condition given in
Section 2. A maximum deviation of 50% between the beam
and shell model can be seen. Again, the biggest spread be-
tween the two directions is seen for the Z beam. Table 4
shows the values for the two models, the result of the analyt-
ical calculations as well as the average of all data points.
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Fig. 15: The compared results for LC2. The average of the 8
data points, the analytical results and the results of the AN-
SYS beam and shell model are shown. The x-axis shows the
4 different tested beams.

Table 4: The values of the experimental, analytical calcula-
tions, beam and shell model for LC1.

I1 I2 C Z

Beam model 0.105 1.126 0.096 0.943

Shell model 0.207 1.187 0.207 0.986

Analytical calculations 0.105 1.126 0.096 0.943

Experiment average 0.286 0.890 0.319 1.005

4.2 Influence of the torsion and warping constant
The results of the characterization are only performed

using the SHELL181 model within ANSYS APDL. The data
shown in the following figures is linearly interpolated be-
tween the datapoints gathered, with the datapoints depicted
by the black dots. No distinction is made between the cross
sections for LC1 as the data is equal for all. The data for
LC2 is CS dependent for the lower regions of the torsion and
warping constant and therefore only the data for the C sec-
tion is shown.

Figure 16 shows the geometric advantage obtained for
a range of both J and Iw in a contour plot, with the contour
lines depicting the lines of constant value. The yellow is seen
as the optimum part as a high transfer of rotation would be
preferable. It can be seen that both the torsional and warp-
ing constant have an effect on the measured geometric ad-
vantage, with Figure 17 depicting the energy stored in the
beam corresponding to LC1. A higher energy storage for
LC1 is seen as less desirable as it increases the operating en-
ergy. These datapoints are calculated by varying the cross
sectional dimensions, so not all combinations of torsion and
warping constant are obtainable.

Figure 18 shows the compliance for beam C under an
applied torque for LC2 for the same datapoints as LC1. It
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Fig. 16: The geometric advantage of all analysed beams. The
contour lines depict constant values throughout the plot and
the black dots depict the simulated datapoints.
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Fig. 17: The energy in the analysed beams under LC1. The
contour lines depict constant values throughout the plot and
the black dots depict the simulated datapoints.

can be seen that for a larger warping constant, a lower com-
pliance is measured. The blue areas depict cross sections
with a low compliance with respect to the applied torque.

5 Discussion
5.1 Experiment comparison

A spread within the experimental data can be seen in
both Figure 14 and 15, which for the I1, I2 and C beams
is minor and explainable by local pre-deformations due to
production. Hysteresis or visco-elasticity can also cause a
deviation but these quantities are harder to quantify. The Z
beam is direction dependent due to buckling occurring on
the flanges for ”direction 2”, as the flanges are compressed
in this direction.

For LC1, the shell and beam model follow the same
trend. As this load case is almost uniform torsion, no devia-
tions between the beam and shell were expected. The model
results of LC2 are however noteworthy, as for the more stiffer
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Fig. 18: The rotational compliance of all analysed beams.
The contour lines depict constant values throughout the plot
and the black dots depict the simulated datapoints.

beams I1 and C, a difference between the two models up to
a factor two can be seen. This is caused by the beam model
having a cross section unable to deform. Buckling is seen
for both the shell model analysis and the experiments, but
not for the beam model. A smaller deviation between the
models can be seen for the less stiff beams, as buckling is
less prevalent for structures with smaller flanges.

Comparing the model with the experimental results, a
loss of 25 to 30% in the geometric advantage can be seen.
The experiment center constraint was thought to be of great
influence on the transfer of warping through the beam. As
the beam is clamped over a length of 3mm, stiffness is cre-
ated opposing the transfer of warping. This can not occur
in the models, as a center web is constraint by a line con-
straint. Running the shell model with the exact same con-
straints only, however, results in minor losses with respect to
the original results. A fluctuation in cross section thickness
can be a more influential factor as the peak thicknesses vary
10% with respect to the mean dimension.

For LC2, the beam model data and analytical calcu-
lations are the same, as expected. Both methods assume
a static CS with a uniform torsion applied over the whole
plane. The shell model deviates from the other two, mainly
for beam I2 and Z. A reasoning can be found in a relative
rotation observed in the shell model and the experiments be-
tween the flanges and the web, not considered for the beam
model and analytical calculations.

An underestimation of the real compliance under torque
loading of the model can be caused by slight play in both
end-constraints. It is however curious to see a constant over-
estimation of beam I2 under torque loading, for which no
explanation is found.

General losses also exist in the setup, affecting both
LC1 and LC2. The input and output constraint shorten the
beam as a part of the beam is clamped, shortening the ef-
fective length. A shorter beam does not necessarily have
a lower geometric advantage, so possibly induced stresses
over the clamped area can also obstruct the transfer of warp-



ing through the beam. Friction in the ball support can also
induce losses relative to both models, just as rotation losses
in the misalignment coupling.

5.2 Influence of torsion and warping constant
Concluding from Figure 16 and 18, both the warping

and torsion stiffness influence the behaviour of the beam. An
increase in the warping constant results in both a higher ge-
ometric advantage and a higher torsional stiffness. An ex-
pected result, as the warping constant can be seen as the re-
sistance against warping torsion [6]. A higher torsion con-
stant results in a slight increase torsional stiffness, and a
lower geometric advantage. The energy level of LC1, shown
in Figure 17 , is highly dependent on the torsional stiffness.
As the energy storage is increased by an increase in torsion
constant, an expected decrease for the geometric advantage
occured.

As mentioned in Section 4, the contour plots for LC1
are equal over the three analysed cross sections. For LC2 a
difference is seen at low torsion and warping constant val-
ues, that can be caused by the shortcomings of the nonlinear
geometry analysis in ANSYS or other factors dominating at
these high deflections.

It is also important to understand the importance of the
center constraint, and particularly the length of web that is
constraint. Current comparisons are done with 80% of the
web length constraint, but lowering it to 60% would re-
sults in a change for LC1 of 0.96 to 0.93. For LC2 the
rotation compliance would increases from 0.064rad/Nm to
0.126rad/Nm. It is thereby advised to constraint the web
totally, if possible within the scope of a study or design.

5.3 Future work
Only pure rotation and torsion is considered in this re-

search, which can be improved on by considering combined
loading, a combination of both bending and rotation mo-
ment, to closer resemble an implemented design. The en-
ergy storage itself also is an important property of the beam.
A possible field of interest is adding pre-stress to the flanges
before assembly with the web [15], thereby increasing the
geometric advantage. Another field of interest that is not
considered, is changing the transmission ratio of the warp-
ing beam. The center constraint is now placed on the center
web, resulting in a maximum geometric advantage of 1:1,
but this distance can be changed.

If a further increase in warping constant is desired, with
constant area, other cross sections can be considered. Figure
19 shows beam cross sections with an inherent higher warp-
ing constant. These cross sections are however aimed at hav-
ing a square or round design area, so they are not applicable
to every design area.

As a design base, web sections like those of an I-beam
coincide with the shear center, thus can only be used to
influence the torsion constant. If a high warping constant
over area is desired, the perpendicular distance between the
flanges and the length of the flange should be maximized
within the design area. So an optimized structure, with re-

spect to the warping constant, will look like a long open
continuous element as far positioned from the center of the
structure as possible.

(A) (B) (C)

Fig. 19: Possible beam cross sections for future research.

6 Conclusion
To conclude, the obtained contour plots can be used to

predict the behaviour of standard cross sections for the use as
a warping differential mechanism. The maximum theoretical
geometric advantage is almost 100%, showing the potential
of a warping beam differential mechanism.

The SHELL181 model results are shown to more ac-
curate than the BEAM188 model with respect to the exper-
iments, as the deformation is better captured and the con-
straints better represent the experimental setup. A large con-
stant over-prediction of 25% is seen for the geometric advan-
tage by both ANSYS models, implying systematic losses.
The models have an accurate prediction of the rotational
compliance for the more stiffer beams, this accuracy how-
ever drops when the less stiffer beams are analysed. With
an increase in rotational deformation, the nonlinear material
and geometry start to dominate, unable to be captured by the
ANSYS model.

The warping constant Iw can be said to be of large in-
fluence on the results of both load cases. The kind of cross
section is of less influence, and only needs to be taken into
account once buckling of the cross section is expected. The
torsion constant J is shown to have an almost linear relation
to the energy stored in the beams for load case 1. A high
warping constant over area can be obtained by maximizing
the perpendicular distance between the flanges. To tackle the
energy stored in the beam during deformation, the torsion
constant can be lowered and the maximum warping constant
results in the maximum geometric advantage.

Thus, this paper shows that this new kind of differential
mechanism, utilizing warping in a thin-walled beam, can be
a suitable alternative for a classical one, but a constant offset
should be taken into account between the modelled expecta-
tions and real functionality.
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3
Additional results

This chapter elaborates on the obtained experimental results, presenting the raw and smoothened
data over a range of input rotations and torque. The input rotation relates to load case 1 (LC1), used to
determine the geometric advantage. The input torque is varied for load case (LC2), to determine the
rotational compliance.

To further elaborate on the feasibility of a warping beam as differential mechanism, the results of the
stress analysis, obtained from ANSYS, are shown. All data obtained from ANSYS is run via MATLAB,
for which the code can be found in Appendix D. A complete overview of the experiment setup, for both
load cases, is described in Appendix C.

3.1. Experiment data
The unfiltered data obtained for LC1 is shown in Figures 3.1, 3.2, 3.3 and 3.4. 2 different tests are
done for 2 different orientations. Test 1 and 2 are done for the same orientation as are 3 and 4, with the
beam rotated around the axis perpendicular to the web between the tests. The data of all four beams
shows a convergence of the data at 0 degrees towards infinity and a difference in geometric advantage
between the two input rotation directions.

Figure 3.5 shows the averaged and smoothened data obtained for LC1, with the data of every tested
beam presented for an input range of 10 to 45 degrees. The minimal shown input rotation is 10 degrees
as the data becomes too disturbed at lower input angles and a moving average is used to smoothen out
the data. A comparison is made between the smoothened average data and the shell model predictions
shown in Figure 3.5. It can be seen that the ANSYS shell model predicts a linear trend for the considered
boundary conditions and constraints. It should also be noted that the ANSYS trend for beam I1 and C
overlap.

Figures 3.6, 3.7, 3.8 and 3.9 show the unfiltered data obtained for the experiments for load case 2. The
compliance shown on the y-axis is defined by the output rotation over the maximum torque of 0.4Nm,
to be consistent with the data obtained in Chapter 2. The same test procedure is used for LC1 and
LC2, so test 1 and 2 are done in the same orientation. The ”loops” shown for all four analysed beams
indicate visco-elastic behaviour and hysteresis of the material. A hysteresis loop can be seen for all
four tested beams.

Figure 3.10 shows the averaged and smoothened data obtained for LC2. The data is shown between
0.1 and 0.4Nm, as the data below 0.1Nm goes into the negative compliance regime. A comparison is
madewith the shell model trends obtained fromANSYS, showing a linear gradient for all four considered
beams. Again, the ANSYS predictions show an overlap between the I1 and C prediction.
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Figure 3.1: The unfiltered experimental data for the geo-
metric advantage, with an input angle of -45 to 45 degrees
for beam I1. 4 tests are done per beam, with test 1 and
2 done in the same orientation and 3 and 4 in the other
orientation.
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Figure 3.2: The unfiltered experimental data for the geo-
metric advantage, with an input angle of -45 to 45 degrees
for beam C. 4 tests are done per beam, with test 1 and 2
done in the same orientation and 3 and 4 in the other ori-
entation.
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Figure 3.3: The unfiltered experimental data for the geo-
metric advantage, with an input angle of -45 to 45 degrees
for beam I2. 4 tests are done per beam, with test 1 and
2 done in the same orientation and 3 and 4 in the other
orientation.
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Figure 3.4: The unfiltered experimental data for the geo-
metric advantage, with an input angle of -45 to 45 degrees
for beam Z. 4 tests are done per beam, with test 1 and 2
done in the same orientation and 3 and 4 in the other ori-
entation.
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Figure 3.5: The filtered average experimental data and shell model prediction for the geometric advantage, with an input angle
of 10 to 45 degrees.
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Figure 3.6: The unfiltered experimental data for the rota-
tional compliance, with an input torque of -0.4 to 0.4 Nm
for beam I1. 4 tests are done per beam, with test 1 and
2 done in the same orientation and 3 and 4 in the other
orientation.
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Figure 3.7: The unfiltered experimental data for the rota-
tional compliance, with an input torque of -0.4 to 0.4 Nm
for beam C. 4 tests are done per beam, with test 1 and
2 done in the same orientation and 3 and 4 in the other
orientation.
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Figure 3.8: The unfiltered experimental data for the rota-
tional compliance, with an input torque of -0.4 to 0.4 Nm
for beam I2. 4 tests are done per beam, with test 1 and
2 done in the same orientation and 3 and 4 in the other
orientation.
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Figure 3.9: The unfiltered experimental data for the rota-
tional compliance, with an input torque of -0.4 to 0.4 Nm
for beam Z. 4 tests are done per beam, with test 1 and
2 done in the same orientation and 3 and 4 in the other
orientation.
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of 0.1 to 0.4Nm.
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3.2. Stress analysis
A stress analysis is done to pinpoint the positions of highest stress. For beam I1, an I-beam with longer
flanges, the results of the stress analysis are shown in Figure 3.11 and 3.12 for both LC1 and LC2. For
beam I2, an I-beam with small flanges, Figure 3.13 and 3.14 show the deflection and stresses for load
case 1 and 2 respectively. Local buckling of the shell flanges can be seen for both beams under LC2.

Figure 3.11: Stress analysis of beam I1 for load case 1. Figure 3.12: Stress analysis of beam I1 for load case 2.

Figure 3.13: Stress analysis of beam I2 for load case 1. Figure 3.14: Stress analysis of beam I2 for load case 2.



4
Discussion

In this chapter the experimental and smoothened average data of Chapter 3 is reviewed. Furthermore,
the data obtained in the ANSYS shell model analysis and the stress analysis is discussed, with the final
part of the discussion elaborating on future research.

4.1. Experimental data
The convergence of the data towards infinity at 0 degrees input angle for LC1 is caused by pre-
deformation of the tested beams and the instability of measuring around zero degrees. The pre-
deformation causes a large difference at low input angles between a positive and negative input rota-
tions, with the effect fading away at higher input angles. The convergence of the data towards infinity
is caused by the measuring setup, as deviations in the measurements around zero cause the captured
data to swing to positive and negative around zero, causing the division of the output angle over the
input to result in asymptotic behaviour.

Figure 3.4, depicting the geometric advantage of the Z beam, shows a big difference between the four
separate tests due to local shell buckling of the flanges under compression. A positive input angle for
test 1 and 2 will result in buckling, thereby lowering the geometric advantage. A negative input angle
will not result in buckling, as the flanges are not compressed. The results for test 3 and 4 are vice versa
as the tested beam is clamped the other way around.

The smoothened average geometric advantage decreases over the input angle with respect to the
linear trend predicted by the ANSYS simulation, both shown in Figure 3.5. This loss in geometric
advantage can be caused by imperfections in the experimental setup or material properties of the tested
beams. The material properties can be sensitive to hysteresis and visco-elasticity or the dimensions
are nonlinear over the width and thickness of the beams. To compensate for this decline in geometric
advantage, a more linear material like springsteel or a different production method can be used.

A hysteresis loop can be seen for all four tested beam under LC2, implying that the state of the system
is dependent on its history. An offset between the loops can be seen for beam C (Figure 3.7), with
test 1 and 2 having a positive offset with respect to test 3 and 4. This behaviour is caused by the
pre-deformation of the beam and can also be seen for beam C under LC1 (Figure 3.2). Beam Z again
shows the asymmetric buckling (Figure 3.4), also seen for LC1 in Figure 3.4.

Figure 3.10 shows the smoothened average data of the experiments and the ANSYS shell predictions.
The shell model predicts a linear trend, also seen for all four tested beams. The stiffer beams I1, C
and Z have a slight linear offset but show the same trend, while beam I2 deviates more from the shell
model prediction. The I2 beam is the only beam for which the shell model over-predicts the compliance
of the beam, as was also seen in Chapter 2, but no explanation is found for this behaviour.

21



22 4. Discussion

4.2. Stress analysis
The stresses for LC1 are seen in Figure 3.11 and 3.13, showing the highest stress concentration at the
input constraint as well as at the output constraint. Optimizations of the dimensions can be done to
relieve stress, but general stress reduction can be achieved by constraining the total web.

Figure 3.12 and 3.14 show the stress results of LC2. Stress concentrations are again seen at the input
and output constraint, but additional high stresses can be seen on the center plane. A difference can
be seen between both figures as an increase in flange width implies an increase in stress at this center
plane. Local shell buckling can also be seen in both figures, more prominent in beams with larger
flanges.

4.3. Future work
The steps to be taken after this research can go into two directions, the kinematic functionality can
be optimized for design applications or more fundamental research can be done to add functionalities.
Before the warping beam differential mechanism can be implemented into a design, it is advised to
increase the scope of the characterization by combining the two load cases. Looking at Figure 1.1, this
combined load case would involve bending of the torso while having the upper legs in a non zero degree
position with respect to the torso. This way of lifting is not uncommon and should be considered if the
beam differential mechanism is applied to a passive exoskeleton. Research into the effect non-pure
loading has on the characterization is also recommended, as the pure rotation and torque do not totally
represent the actual load cases. Investigating the effect of an added bending torque during loading
would correspond to the existing way of using the passive exoskeleton.

To add functionalities to the warping differential mechanism, multiple ideas are given. Research into
adding a remote center of rotation would let the beam transfer its functionality around bends or around
a non-reachable rotation center, which can be used to position the differential mechanism around the
hips without adding discomfort. Pre-stressing the flanges before assembly would be another addition to
the differential mechanism, as it will add zero-stiffness and multi-stability to the mechanism [10], aiding
the walking functionality as no energy is stored while also increasing the geometric advantage.

A possible warping beam differential mechanism is given in Figure 4.1 [19]. To combine the high
torsional stiffness with the warping Degree of Freedom, a slid tube with flexures is proposed as a
possible solution. This shown example would behave as a cylindrical beam under symmetric loading
that would allow for warping to transfer rotation under a non-symmetric loading.

Figure 4.1: Illustration of a possible beam to be used for future research. A slid tube with connecting flexures to allow for warping
during non-symmetric loading but stiff under torsion for the shown symmetric load.



5
Conclusion

In this thesis, a new kind of differential mechanism is proposed to add walking functionality to a passive
exoskeleton. This new differential mechanism utilizes warping to create the kinematic behaviour of an
inverse transmission in a beam. Warping is a normally negated deformation of the cross section, but
can be used to create a monolithic and simple solution to the problem posed by a passive exoskeletons.

Research on the potential of such a warping beam differential mechanism is done by characterizing
and validating a variation of beam cross sections. The torsion and warping constant are the geometric
properties of most influence on the characteristics of the two analysed functionalities, shown by the
models and experiments. The warping constant has a large influence on the geometric advantage,
the ratio between the out- and input ratio, and the rotational compliance under restrained warping.
The torsion constant has less influence on the geometric advantage and torsional stiffness, but scales
almost linear with stored energy in the beam. The type of cross section, like C, I or Z, has no influence
on the behaviour unless the rotation stiffness is too low and buckling occurs.

The experiments and analytical calculations are used to validate the model results. The models capture
the trends observed by the experiments, but a systematic over-prediction can be seen with respect the
experiments. Improvements need to be made to reach the theoretical obtained results but it is shown
that a warping beam can be used to create a differential mechanism and a lot of potential is seen in
future research.
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A
Literature study

A literature study is done to collect and generate suitable mechanical topologies to be used in an
exoskeleton, to aid the natural walking of the user. An overview of both differential and remote center
of rotation mechanisms is made. Suitable combinations are presented to show possible solutions.
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B
Warping theory

Torsion applied to a beam will cause it to deform. For structures with a circular cross section, this
deformation will be purely in plane with respect to its cross section [6, 16]. For non axisymmetric cross
sections a secondary deformation occurs, warping. Warping is defined by Vlasov [18] as: ”the distortion
of the plane section caused by longitudinal displacements”.

The applied torsion can thereby be classified as uniform or non-uniform torsion. Uniform torsion is also
called St. Venant torsion after his original theorem [14]. Uniform torsion will result in a constant twist
angle over the length of the beam, implying 𝜃 = 0. An illustration of uniform torsion is shown in Figure
B.1. The torsion constant 𝐽 is defined as the resistance of a beam against pure or uniform torsion [5].
Non-uniform torsion has a non-constant deformation angle over its length, or 𝜃 ≠ 0 in other words.
Figure B.2 shows this non-uniform torsion due to a symmetric load with a constraint on the centre plane.

Figure B.1: Uniform torsion of a beam under torsional load.
Figure B.2: Non-Uniform torsion of a beam under torsional load.

The resulting twist of the beam due to the applied torque is around the so called ”shear center” [5].
This geometric property is defined as ”the point in the plane of the cross section about which twisting
takes place” [5]. Which is different from the centroid of a beam, defined as center of mass of a cross
section. For an I-beam, the shear center is located at the center web, but for a channel-beam it is
located outside of the material. Figure B.3 illustrates the location of the centroid and shear center for
different cross sections.

CentroidShear center

Figure B.3: The location of the centroid and shear center for various cross sections.

For the following given theories regarding warping, assumptions are made. The material is assumed
to be homogeneous, isotropic and linearly elastic [6, 13]. The wall thickness is also presumed to be
thin-walled [6], which according to vlasov is defined as 𝛿/𝑑 ≤ 0.1. With 𝛿 being the thickness and 𝑑
the cross section characteristic dimension [18].
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B.1. Warping displacement
The warping displacement𝑤 is defined as the out of plane displacement of a CS as a function of location
on the cross section. A rotation per unit length 𝜃 is applied, with Figure B.4 showing an arbitrary cross
section. Due to the applied rotation, every point on this cross section becomes inclined with respect
to point O by 𝜌𝜃. Due to torsion a relative angle 𝛼 exists between the tangent and the z-y plane of
𝜌𝜃𝑐𝑜𝑠(𝛼) = 𝑟𝜃 [16].
With the perpendicular distance 𝑟 and distance 𝑠 from the defined origin of the section, the relation of
Equation B.1 is obtained [16]. Equation B.2 is obtained by integrating, with 𝑤 denoting ”the displace-
ment in the x-direction of the point from which s is measured” [16].

𝜕𝑤
𝜕𝑠 = −𝑟𝜃 (B.1)

𝑤 = 𝑤 − 𝜃∫ 𝑟𝑑𝑠 (B.2)

ρ

O

r

s

ds

 θ,φ 

α

z

y

x

Figure B.4: Parameters used to determine the warping displacement. Illustration adapted from Timoshenko [16].

If the point O is now assumed to be the shear center, the equation can be solved. Equation B.3 gives
the equation for the warping of a point on the cross section with respect to point O [13, 16].

𝑤 = 𝜃 (�̄� − 𝜔 )

𝜔 = ∫ 𝑟𝑑𝑠

𝜔 = 1
𝐴 ∫ 𝜔 𝑑𝑠

(B.3)

With 𝜔 being called the ”warping function”, represents the doubled sectorial area corresponding to the
arc s of the middle line of the cross section, while 𝜔 is the average value of 𝜔 [16] and 𝐴 is the area of
the cross section. The average is used to compensate for the distance between the shear center and
the point from which 𝑠 is measured, as the average is zero when it is measured from the shear center
itself.
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B.2. Torsion formula
A non cylindrical beam can resist torsion in two ways, by St. Venant and warping torsion [11]. In Figure
B.5(a), torsion is applied to the web of an I-beam, resulting in the internal moments as shown in Figure
B.5(b).

h/2

h/2

M

M

(A) (B) (C)

Figure B.5: (a) shows the applied torsion, (b) the resulting moments in the section and (c) the
corresponding stresses.

Equation B.4 shows the sum of the pure torsional moment 𝑇 and the warping torsional moment 𝑇
[6, 7, 11, 18], with 𝑇 being the total torsional moment at a cross section. 𝜙 is the derivative of angle
of rotation with respect to the distance along the length. The factor 𝐵 is called the bimoment and is
defined by Equation B.5, with 𝑀 the bending moment in the flanges and ℎ the distance between the
flanges of the I-beam.

𝑇tot = 𝑇 + 𝑇
= 𝐺𝐽𝜙 − 𝐸𝐼w𝜙

(B.4)

𝐵 = 𝑀ℎ
= −𝐸𝐼 ⋅ 𝜙 (B.5)

𝜙 = 𝑇𝑙/𝐺𝐽 (B.6)

The bimoment is an inmeasurable quantity but is used to talk about the 7 DoF of a beam. The 7 DoF
is used to describe restrained warping, as it ”allows” for out of plane movement of the cross section.
This 7 DoF relates to the derivative of the rotation in the displacement vector. This bimoment is also
independent of the shear centre and of the origin of the sectorial area [18].

B.3. Torsion stresses
The resulting stresses due to the applied torque can be seen in Figure B.5. Uniform torsion only results
in shear stresses, whereas warping torsion results in both normal and shear stresses [11]. Equation
B.7 is used to calculate the peak St. Venant shear stress, utilizing the relation given in Equation B.6.
With the stress being maximum on the surface and only being valid for constant thickness sections [7].

𝜏 = 𝐺𝑡𝜙
= 𝑇𝑡/𝐽 (B.7)

If warping torsion is considered, different formules must be applied. The peak normal stresses resulting
from warping of the cross section are given by Equation B.8, with the maximum at the flange tip [7, 9].
𝑊 is called the ”normalized warping function” [7].
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With 𝑆 being called the ”warping statical moment” [7]. Both 𝑆 and 𝑊 being standard values for
certain cross sections, as well as being location dependent [7]. The values change between the web
junction and the tip of the flange. A visualization of the distribution of the stress is given in Figure B.5.

𝜎 = ±𝐸𝑊 𝜙 (B.8)

𝜏 = 𝐸𝑆 𝜙 /𝑡 (B.9)

B.4. Warping stiffness
Equation B.5 refers to 𝐼 , which is called the warping constant. This geometric property measures the
resistance of a structural member to nonuniform or warping torsion [5]. It can be interpreted as the
resistance against warping deformation or torsion. 𝐼 has units of length to the sixth power [13, 16],
and is also called the second moment of inertia [18]. The warping constant is defined as followed
[6, 13, 16, 18]:

𝐼 = ∫ (�̄� − 𝜔 ) 𝑡𝑑𝑠

𝜔 = ∫ 𝑟𝑑𝑠

𝜔 = 1
𝐴 ∫ 𝜔 𝑑𝑠

(B.10)

For T-,V- or L-profiles, the perpendicular distance r ( Figure B.4) reduces to zero, thereby having a
warping constant of zero [13, 16]. Figure B.6 shows the kinds of structures with a very low warping
constant, for which secondary warping can occur. These secondary stresses occur if the thickness is
not too thin or vary over the thickness of the cross section [13]. If these kinds of structures are utilized,
a secondary warping constant should be taken into account.

CentroidShear center

Figure B.6: Examples of shapes with a zero warping constant.

The torsion rigidity or stiffness is defined as 𝐺𝐽 [13], with 𝐺 being the shear modulus and 𝐽 the torsional
constant [11]. The torsional constant can also be referred to as the St. Venant torsional constant [7].
𝐸𝐼 is called the warping rigidity, with 𝐸 being the elastic modulus and 𝐼 the previously mentioned
warping constant.

B.5. Twist
Equation B.5 shows the solved differential equation for determining the rotation angle along the length of
the beam 𝑥 [7], with 𝜙 the particular solution [13]. 𝑐 is called the torsional bending constant, describing
the decline of the warping torsional moment from the constrained to free state along the length of a
beam [6, 7, 13, 18].

𝜙 = 𝐴 + 𝐴 𝑥 + 𝐴 𝑒 + 𝐴 𝑒 + 𝜙
𝑐 = 𝐺𝐽/𝐸𝐼 (B.11)
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To obtain a specific solution, boundary condition are needed. The three most used end conditions are
given, a fixed-end end condition implies no rotation and no warping, a simply supported end implies a
fork support and the fee-end support cannot twist and is free of normal stress [7, 13].

• Fixed-end: 𝜙 = 0, 𝑑𝜙/𝑑𝑥 = 0
• Simply supported end: 𝜙 = 0, 𝑑 𝜙/𝑑𝑥 = 0
• Free-end: 𝑑 𝜙/𝑑𝑥 = 0, 𝑑 𝜙/𝑑𝑥 − 𝑐 𝑑𝜙/𝑑𝑥 = 0

An example is worked out for a beam being fixed at one side, with the input being free as shown in
Figure B.5 [13]. For the analysed example, Equation B.5 reduces to:

𝜙 = 𝐴 + 𝐴 𝑒 + 𝐴 𝑒 + 𝜙

𝜙 = 𝑑𝜙
𝑑𝑥 = 0 at 𝑥 = 0 and

𝑑 𝜙
𝑑𝑥 = 0 at 𝑥 = 𝐿

is solved to be

𝜙 = 𝑇
𝑐𝐺𝐽 [tanh 𝑐𝐿(cosh 𝑐𝑥 − 1) − sinh 𝑐𝑥 + 𝑐𝑥]





C
Test setup

This chapter presents the experimental setup used to obtain the data. Photos are used to show the
different components, how the tests are run and how the data is collected. A difference is made between
the two load cases, both shown in separate section.

C.1. Load case 1
Figure C.1 and C.2 show the total overview of the setup used for load case 1 from different angles.
Figure C.3 shows the input side of the experimental setup, including the inclinometer, misalignment
coupling and constraint. Figure C.4 shows the output inclinometer with output constraint and ball sup-
port. Figure C.5 and C.6 show the input and center constraint.

The aluminium (black) profile, shown in Figure C.6, is used to ”zero” the input and output inclinometer
with respect to the bottom plate. An experiment is done by first connecting the sensors to the LabVIEW
script. Next a cycle of 5 positive and negative input rotations is performed to gain the data for 1 test
for 1 orientation. This is done for 2 orientations twice, resulting in a total of 4 datasets. The deformed
states of beam Z and C are shown in Figure C.7 and C.8 respectively.

C.2. Load case 2
An overview of the experimental setup for load case 2 can be seen in both Figure C.9 and C.10. Figure
C.11 shows the center constraint used to test for load case 2, a fixed constraint is applied to the center
cross section as only half of the beam is used. Figure C.12 shows the input side of the experiment
setup.

The same zero method is used for load case 2 as for load case 1. With the data again obtain via
LabVIEW. The experiments are done by pushing and pulling the bolt connected to the load cell, for a
total of 10 times per test. For two orientation the tests are done twice, resulting in 4 datasets in total.
Figure C.13 and C.14 show an relaxed and deformed state of the system.
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Figure C.1: Total overview of the experimental setup shown for
load case 1 from the front.

Figure C.2: Total overview of the experimental setup shown
load case 1 from the side.

4

1 2 3

Figure C.3: Side view of the input side of the experiment for
load case 1. (1) is the input inclinometer, (2) the misallignment
coupling, (3) the connection piece to the analysed beam and
(4) the lever used to apply a rotation.

6

5

Figure C.4: Side view of the output side of the experiment for
load case 1. (5) is the ball contact to compensate for the weight
of the inclinometer and (6) the output inclinometer.

7

8

Figure C.5: Front view of the constraints of the experiments for
load case 1. (7) is the center constraint and (8) shows the input
misalignment coupling and input constraint.

9

10

Figure C.6: Front view of the constraints of the experiments for
load case 1. (9) is the center constraint and (10) show the input
misalignment coupling and input constraint. The profile under
the beam is used to level the inclinometer with respect to the
bottom plate.
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Figure C.7: Front view of the deformed Z beam for load case
1.

Figure C.8: Front view of the deformed C beam for load case
1.

Figure C.9: Total overview of the experimental setup shown for
load case 2 from the front.

Figure C.10: Total overview of the experimental setup shown
for load case 2 from the side.
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2 2

1

Figure C.11: Front view of the center constraint for load case
2. (1) shows the same constraint used in load cases 1, with (2)
showing the two extra constraint used for the flanges to create
a fixed center cross section.

34

5

Figure C.12: Side view of the input for load case 2. (3) is the
inclinometer measuring the twist under the applied torque. (4)
shows the coupling to the beam, with (5) showing the load cell
to measure to input torque.

Figure C.13: Front view of the undeformed C beam for load
case 2.

Figure C.14: Front view of the deformed C beam for load case
2.



D
Matlab and Ansys code

This chapter shows the code used to run ANSYS APDL from MATLAB. First, the cross section pa-
rameters are computed in MATLAB and the load case and cross section type are specified. Next, the
ANSYS model is opened and run with the given inputs. The ANSYS model saves it data for MATLAB
to load in again, completing the cycle.

The provided code is for the shell model. If another model is preferred, only the ANSYS code has to
be changed as no model is selected in MATLAB.
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% combinat ion s c r i p t f o r pre and post processing of ansys model
% Maurice Va l e n t i j n
c l c
c l ea r a l l
c lose a l l
addpath ( ’D : \ t u d e l f t 2019−2020\Thesis p r o j e c t −\ so f tware \ Ansys \

Cross_sect ions ’ )
Params1

%% Determining cross−sec t ion −−> copied to ansys −−> copy to s tarup ansys
pa r t

c rossec t ion= ’Z ’ ; % ’T ’ ’ Rectangle ’ ’ C i r c le ’ ’ C i rcu la r_ tube ’ ’ I ’ ’
Rect_tube ’ ’Chan ’ ’Z ’ ’ L ’ ’ Ha l f _ c i r c l e ’ ’ E l ips ’ ’ Hat ’ ’ IHat ’

Loading= ’ Torque ’ ; % ’ Rotat ion ’ ’ Torque ’
% Loading= ’ Torque ’ ; % ’ Rotat ion ’ ’ Torque ’
% ! ! ! ! ! ! ! ! ! ! ! Also change these parameters i n the output pa r t
%amount_of_cs =6;
amount_of_kp=1;
max_amount_param=4; % number o f output parameters from ansys

%% Pre processing −−> c a l l i n g upon the ” op t im i za t i on ” sc r i p s f o r d i f f e r e n t
cases

i f strcmp ( crossec t ion , ’Chan ’ )
% needed f o r cross sec t ion : W1,W2=” leng th o f f langes ” ,W3=” o ve r a l l

depth ” ,
% t1 , t2 =” f lange th icknesses ” , t3 =”web th ickness ”

[ b , h , t , bc , hc , tc , Optimize_cases_v2 , J_within_range_cJ , C_within_range_cJ ,
J_within_range_cC , C_within_range_cC ] = . . .

Pre_warping_beam_Chan_profi le_v2 ( steps ,A_max , b_min , h_min , t_min , b_max , h_max
, t_max , search_percentage_J , search_percentage_C , target_va lue_J ,
target_value_C ) ;

Optimize_cases=Optimize_cases_v2 ;
amount_of_cs= leng th ( t ) ;
%W1=1; W2=2; W3=3; T1=1; T2=2; T3=1;

e l s e i f strcmp ( crossec t ion , ’Z ’ )
% needed f o r cross sec t ion : W1,W2=” leng th o f f langes ” ,W3=” o ve r a l l

depth ” ,
% t1 , t2 =” f lange th icknesses ” , t3 =” stem th ickness ”

[ b , h , t , bc , hc , tc , Optimize_cases_v2 , J_within_range_cJ , C_within_range_cJ ,
J_within_range_cC , C_within_range_cC ] = . . .

Pre_warping_beam_Z_profi le_v2 ( steps ,A_max , b_min , h_min , t_min , b_max , h_max ,
t_max , search_percentage_J , search_percentage_C , target_va lue_J ,
target_value_C ) ;

Optimize_cases=Optimize_cases_v2 ;
amount_of_cs= leng th ( t ) ;
%W1=1; W2=2; W3=3; T1=1; T2=2; T3=1;

e l s e i f strcmp ( crossec t ion , ’ L ’ )
% needed f o r cross sec t ion : W1,W2=” leg leng ths ”
% t1 , t2 =” leg th icknesses ”

[ b , h , t , bc , hc , tc , Optimize_cases_v2 , J_within_range_cJ , C_within_range_cJ ,
J_within_range_cC , C_within_range_cC ] = . . .

Pre_warping_beam_L_profi le_v2 ( steps ,A_max , b_min , h_min , t_min , b_max , h_max ,
t_max , search_percentage_J , search_percentage_C , target_va lue_J ,
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target_value_C ) ;
Optimize_cases=Optimize_cases_v2 ;
amount_of_cs= leng th ( t ) ;
%W1=1; W3=3; T1=1; T3=1;

e l s e i f strcmp ( crossec t ion , ’T ’ )
% needed f o r cross sec t ion : W1,W2=” leg leng ths ”

[ b , h , t , bc , hc , tc , Optimize_cases_v2 , J_within_range_cJ , C_within_range_cJ ,
J_within_range_cC , C_within_range_cC ] = . . .

Pre_warping_beam_T_profi le_v2 ( steps ,A_max , b_min , h_min , t_min , b_max , h_max ,
t_max , search_percentage_J , search_percentage_C , target_va lue_J ,
target_value_C ) ;

Optimize_cases=Optimize_cases_v2 ;
amount_of_cs= leng th ( t ) ;
%W1=1; W3=3; T1=1; T3=1;

e l s e i f strcmp ( crossec t ion , ’ Ha l f _ c i r c l e ’ )
% needed f o r cross sec t ion : Radius , angle_inner , Radius_inner , angle

/2
[ r , t , a l f a , rc , tc , a l fac , Optimize_cases_v2 , J_within_range_cJ ,

C_within_range_cJ , J_within_range_cC , C_within_range_cC ] = . . .
Pre_warp ing_beam_Hal f_c i rc le_prof i le_v2 ( steps ,A_max , r_min , t_min , al fa_min ,

r_max , t_max , alfa_max , search_percentage_J , search_percentage_C ,
target_va lue_J , target_value_C ) ;

Optimize_cases=Optimize_cases_v2 ;
amount_of_cs= leng th ( t ) ;
%Radius =1; ang le_ inner =1; Radius_inner =1; angle =1;

e l s e i f strcmp ( crossec t ion , ’ I ’ )
% needed f o r cross sec t ion : W1,W2=” leng th o f f langes ” ,W3=” o ve r a l l

depth ” ,
% t1 , t2 =” f lange th icknesses ” , t3 =”web th ickness ”

[ b , h , t , bc , hc , tc , Optimize_cases_v2 , J_within_range_cJ , C_within_range_cJ ,
J_within_range_cC , C_within_range_cC ] = . . .

Pre_warping_beam_I_prof i le_v2 ( steps ,A_max , b_min , h_min , t_min , b_max , h_max ,
t_max , search_percentage_J , search_percentage_C , target_va lue_J ,
target_value_C ) ;

Optimize_cases=Optimize_cases_v2 ;
amount_of_cs= leng th ( t ) ;
%W1=1; W2=2; W3=3; T1=1; T2=2; T3=1;

e l s e i f strcmp ( crossec t ion , ’ Hat ’ )
[ b , h , t , hh , bc , hc , tc , hhc , Optimize_cases_v2 , J_within_range_cJ ,

C_within_range_cJ , J_within_range_cC , C_within_range_cC ] = . . .
Pre_warping_beam_Hat_prof i le_v2 ( steps ,A_max , b_min , h_min , t_min , b_max , h_max ,

t_max , search_percentage_J , search_percentage_C , target_va lue_J ,
target_value_C )

Optimize_cases=Optimize_cases_v2 ;
amount_of_cs= leng th ( t ) ;
%W1=1; W2=2; W3=3; W4=1 T1=1; T2=2; T3=1; T4=1; T5=1;

e l s e i f strcmp ( crossec t ion , ’ IHat ’ )
[ b , h , t , hh , bc , hc , tc , hhc , Optimize_cases_v2 , J_within_range_cJ ,

C_within_range_cJ , J_within_range_cC , C_within_range_cC ] = . . .
Pre_warping_beam_IHat_prof i le_v2 ( steps ,A_max , b_min , h_min , t_min , b_max , h_max

, t_max , search_percentage_J , search_percentage_C , target_va lue_J ,
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target_value_C )
Optimize_cases=Optimize_cases_v2 ;
amount_of_cs= leng th ( t ) ;

end

%% Sta r t loop to send and get r e s u l t s from ansys
Results_ansys=zeros ( amount_of_kp ,max_amount_param , amount_of_cs ) ;
f o r i =1: amount_of_cs

%% BEGIN Txt expor t to ansys_ input_crossect ion −−> sec t ion p rope r t i e s
needed f o r ansys

% crossec t ion= ’ Rectangle ’ ’ C i r c le ’ ’ C i rcu la r_ tube ’ ’ I _ p r o f i l e ’ ’
Rect_tube ’ ’Chan ’ ’Z ’ ’ L ’ ’ Ha l f _ c i r c l e ’ ’ E l ips ’ ’ Hats ’

% Loading= ’ Rotat ion ’ ’ Torque ’

f i d =fopen ( ’D : \ t u d e l f t 2019−2020\Thesis p r o j e c t −\ so f tware \ Ansys \
Warping_shel l_maurice_v3 \ Ansys_ input_crossect ion . t x t ’ , ’ wt ’ ) ;

f p r i n t f ( f i d , ’ c rossec t ion= ’ ’Z ’ ’ \ n ’ ) ;
f p r i n t f ( f i d , ’ Loading= ’ ’ Torque ’ ’ \ n ’ ) ;
% f p r i n t f ( f i d , ’ Loading = ’ ’ Torque ’ ’ \ n ’ ) ;
%f p r i n t f ( f i d , ’W1= %d \ n ’ , W1 ) ;

%% loops

i f strcmp ( crossec t ion , ’ Rectangle ’ )
%Optimize_cases =[ B1R H1R;
f p r i n t f ( f i d , ’ Width= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’ Height= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
%Width =1; Height =1;

e l s e i f strcmp ( crossec t ion , ’ C i r c l e ’ )
%Optimize_cases =[ R1Circ le ;
f p r i n t f ( f i d , ’ Radius= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
%Radius =1;

e l s e i f strcmp ( crossec t ion , ’Chan ’ )
%Optimize_cases =[ B1C B1C H1C TF1C TF1C TW1C;
f p r i n t f ( f i d , ’W1= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’W2= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
f p r i n t f ( f i d , ’W3= %d \ n ’ , Optimize_cases ( i , 3 ) ) ;
f p r i n t f ( f i d , ’ T1= %d \ n ’ , Optimize_cases ( i , 4 ) ) ;
f p r i n t f ( f i d , ’ T2= %d \ n ’ , Optimize_cases ( i , 5 ) ) ;
f p r i n t f ( f i d , ’ T3= %d \ n ’ , Optimize_cases ( i , 6 ) ) ;
%W1=1; W2=2; W3=3; T1=1; T2=2; T3=1;

e l s e i f strcmp ( crossec t ion , ’Z ’ )
%Optimize_cases =[ B1Z B1Z H1Z TF1Z TF1Z TW1Z;
f p r i n t f ( f i d , ’W1= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’W2= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
f p r i n t f ( f i d , ’W3= %d \ n ’ , Optimize_cases ( i , 3 ) ) ;
f p r i n t f ( f i d , ’ T1= %d \ n ’ , Optimize_cases ( i , 4 ) ) ;
f p r i n t f ( f i d , ’ T2= %d \ n ’ , Optimize_cases ( i , 5 ) ) ;
f p r i n t f ( f i d , ’ T3= %d \ n ’ , Optimize_cases ( i , 6 ) ) ;
%W1=1; W2=2; W3=3; T1=1; T2=2; T3=1;
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e l s e i f strcmp ( crossec t ion , ’ L ’ )
%Optimize_cases =[ B1L H1L TF1L TW1L;
f p r i n t f ( f i d , ’W1= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’W3= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
f p r i n t f ( f i d , ’ T1= %d \ n ’ , Optimize_cases ( i , 3 ) ) ;
f p r i n t f ( f i d , ’ T3= %d \ n ’ , Optimize_cases ( i , 4 ) ) ;
%W1=1; W3=3; T1=1; T3=1;

e l s e i f strcmp ( crossec t ion , ’T ’ )
%Optimize_cases =[ B1L H1L TF1L TW1L;
f p r i n t f ( f i d , ’W1= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’W3= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
f p r i n t f ( f i d , ’ T1= %d \ n ’ , Optimize_cases ( i , 3 ) ) ;
f p r i n t f ( f i d , ’ T3= %d \ n ’ , Optimize_cases ( i , 4 ) ) ;
%W1=1; W3=3; T1=1; T3=1;

e l s e i f strcmp ( crossec t ion , ’ Ha l f _ c i r c l e ’ )
%Radius =1; ang le_ inner =1; Radius_inner =1; angle =1;
f p r i n t f ( f i d , ’R1= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’ T1= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
f p r i n t f ( f i d , ’ALFA1= %d \ n ’ , Optimize_cases ( i , 3 ) ) ;

e l s e i f strcmp ( crossec t ion , ’ E l i p s ’ )
%Radius =1; ang le_ inner =1; Radius_inner =1; angle =1;

e l s e i f strcmp ( crossec t ion , ’ C i r cu la r_ tube ’ )

e l s e i f strcmp ( crossec t ion , ’ I ’ )
%Optimize_cases =[ B1I B1I H1I TF1I TF1I TW1I ;
f p r i n t f ( f i d , ’W1= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’W2= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
f p r i n t f ( f i d , ’W3= %d \ n ’ , Optimize_cases ( i , 3 ) ) ;
f p r i n t f ( f i d , ’ T1= %d \ n ’ , Optimize_cases ( i , 4 ) ) ;
f p r i n t f ( f i d , ’ T2= %d \ n ’ , Optimize_cases ( i , 5 ) ) ;
f p r i n t f ( f i d , ’ T3= %d \ n ’ , Optimize_cases ( i , 6 ) ) ;
%W1=1; W2=2; W3=3; T1=1; T2=2; T3=1;

e l s e i f strcmp ( crossec t ion , ’ Rect_tube ’ )
%Optimize_cases =[ B1R H1R TF1R TF1R TW1R TW1R;
f p r i n t f ( f i d , ’W1= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’W3= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
f p r i n t f ( f i d , ’ T1= %d \ n ’ , Optimize_cases ( i , 3 ) ) ;
f p r i n t f ( f i d , ’ T2= %d \ n ’ , Optimize_cases ( i , 4 ) ) ;
f p r i n t f ( f i d , ’ T3= %d \ n ’ , Optimize_cases ( i , 5 ) ) ;
f p r i n t f ( f i d , ’ T4= %d \ n ’ , Optimize_cases ( i , 6 ) ) ;
%W1=1; W3=3; T1=1; T2=2; T3=1; T4=1;

e l s e i f strcmp ( crossec t ion , ’ Hat ’ )
%Optimize_cases =[ B1Z B1Z H1Z TF1Z TF1Z TW1Z;
f p r i n t f ( f i d , ’W1= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’W2= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
f p r i n t f ( f i d , ’W3= %d \ n ’ , Optimize_cases ( i , 3 ) ) ;
f p r i n t f ( f i d , ’W4= %d \ n ’ , Optimize_cases ( i , 4 ) ) ;
f p r i n t f ( f i d , ’ T1= %d \ n ’ , Optimize_cases ( i , 5 ) ) ;
f p r i n t f ( f i d , ’ T2= %d \ n ’ , Optimize_cases ( i , 6 ) ) ;
f p r i n t f ( f i d , ’ T3= %d \ n ’ , Optimize_cases ( i , 7 ) ) ;
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f p r i n t f ( f i d , ’ T4= %d \ n ’ , Optimize_cases ( i , 8 ) ) ;
f p r i n t f ( f i d , ’ T5= %d \ n ’ , Optimize_cases ( i , 9 ) ) ;
%W1=1; W2=2; W3=3; T1=1; T2=2; T3=1;

e l s e i f strcmp ( crossec t ion , ’ IHat ’ )
%Optimize_cases =[ B1Z B1Z H1Z TF1Z TF1Z TW1Z;
f p r i n t f ( f i d , ’W1= %d \ n ’ , Optimize_cases ( i , 1 ) ) ;
f p r i n t f ( f i d , ’W2= %d \ n ’ , Optimize_cases ( i , 2 ) ) ;
f p r i n t f ( f i d , ’W3= %d \ n ’ , Optimize_cases ( i , 3 ) ) ;
f p r i n t f ( f i d , ’W4= %d \ n ’ , Optimize_cases ( i , 4 ) ) ;
f p r i n t f ( f i d , ’ T1= %d \ n ’ , Optimize_cases ( i , 5 ) ) ;
f p r i n t f ( f i d , ’ T2= %d \ n ’ , Optimize_cases ( i , 6 ) ) ;
f p r i n t f ( f i d , ’ T3= %d \ n ’ , Optimize_cases ( i , 7 ) ) ;
f p r i n t f ( f i d , ’ T4= %d \ n ’ , Optimize_cases ( i , 8 ) ) ;
f p r i n t f ( f i d , ’ T5= %d \ n ’ , Optimize_cases ( i , 9 ) ) ;
%W1=1; W2=2; W3=3; T1=1; T2=2; T3=1;

end
f c l ose ( f i d ) ; t r ue

%% Star tup ansys wi th ” run_ansys ” −−> which s t a r t s ansys and runs ”
Warping_shel l_maurice_v3 ”

cd ’D : \ t u d e l f t 2019−2020\Thesis p r o j e c t −\ so f tware \ Ansys \
Warping_shel l_maurice_v3 ’

! run_ansys . bat
% w i t h i n s t a r t i n g up ansys , make sure the f o l l ow i ng i s checked :
% 1: see i f the co r r ec t ma te r i a l p rope r t i e s are checked
% 2: make sure the vpn i s working ! ! ! !

%pause (10)

%% Post processing −−> ge t t i n g data from ansys
% index 1= ro t x index 2= ux Index 3= t o t a l energy
% Index 4= max s t ress Index 5= ( moment x )

%% Save r o t a t i o n data ansys
i f strcmp ( Loading , ’ Rota t ion ’ )
% index 1= x pos i t i on , index 2= Area Index 3= Rotx
% Index 4= X moment Index 5= Bimoment Index 6= B icu rva tu re
% Index 7= Energy Index 8= Maximum s t ress
%index_name= [ ” Angle−e f f ” , ” x−pos ” , ” Area ” , ” Rotx ” , ”X−mom” , ” Bi−m

” , ” Bi−c ” ] ;

% when opening example=ma t f i l e ( ’ as . mat ’ ) ; C=example . mat r i x ;
i f strcmp ( crossec t ion , ’ Rectangle ’ )
load Output_Ansys_Rectangle . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Rectangle ] ;
save ( ’ Output_mat lab_Rectangle_Rotat ion_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’Chan ’ )
load Output_Ansys_Chan . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Chan ] ;
save ( ’ Output_matlab_Chan_Rotat ion_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’Z ’ )
load Output_Ansys_Z . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Z ] ;
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save ( ’ Output_mat lab_Z_Rotat ion_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ L ’ )
load Output_Ansys_L . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_L ] ;
save ( ’ Output_mat lab_L_Rotat ion_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’T ’ )
load Output_Ansys_T . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_T ] ;
save ( ’ Output_mat lab_T_Rotat ion_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ Ha l f _ c i r c l e ’ )
load Output_Ansys_Hal f_c i rc le . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Hal f_c i rc le ] ;
save ( ’ Ou tpu t_mat lab_Ha l f_c i rc le_Rota t ion_She l l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ I ’ )
load Output_Ansys_I . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_I ] ;
save ( ’ Output_mat lab_I_Rotat ion_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ Rect_tube ’ )
load Output_Ansys_Rect_tube . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Rect_tube ] ;
save ( ’ Output_mat lab_Rect_tube_Rotat ion_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ Hat ’ )
load Output_Ansys_Hat . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Hat ] ;
save ( ’ Output_mat lab_Hat_Rotat ion_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ IHat ’ )
load Output_Ansys_IHat . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_IHat ] ;
save ( ’ Output_mat lab_IHat_Rotat ion_Shel l . mat ’ , ’ Results_ansys ’ )
end

%% Save torque data ansys
e l s e i f strcmp ( Loading , ’ Torque ’ )

% look ing i n t o moment t r a n s f e r
% index 1= x pos i t i on , index 2= Area Index 3= Rotx
% Index 4= X moment Index 5= Bimoment Index 6= B icu rva tu re
% Index 7= Energy Index 8= Maximum s t ress
%index_name= [ ” Angle−e f f ” , ” torque−e f f ” , ” x−pos ” , ” Area ” , ” Rotx ” , ”X

−mom” , ” Bi−m” , ” Bi−c ” ] ;

i f strcmp ( crossec t ion , ’ Rectangle ’ )
load Output_Ansys_Rectangle . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Rectangle ] ;
save ( ’ Output_matlab_Rectangle_Torque_Shel l . mat ’ , ’ Results_ansys ’ )

%e l s e i f c rossec t ion== ’ C i r c le ’

e l s e i f strcmp ( crossec t ion , ’Chan ’ )
load Output_Ansys_Chan . t x t ;
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Results_ansys ( : , : , i ) = [ Output_Ansys_Chan ] ;
save ( ’ Output_matlab_Chan_Torque_Shell . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’Z ’ )
load Output_Ansys_Z . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Z ] ;
save ( ’ Output_matlab_Z_Torque_Shell . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ L ’ )
load Output_Ansys_L . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_L ] ;
save ( ’ Output_matlab_L_Torque_Shell . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’T ’ )
load Output_Ansys_T . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_T ] ;
save ( ’ Output_matlab_T_Torque_Shell . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ Ha l f _ c i r c l e ’ )
load Output_Ansys_Hal f_c i rc le . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Hal f_c i rc le ] ;
save ( ’ Output_mat lab_Hal f_c i rc le_Torque_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ I ’ )
load Output_Ansys_I . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_I ] ;
save ( ’ Output_mat lab_I_Torque_Shel l . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ Rect_tube ’ )
load Output_Ansys_Rect_tube . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Rect_tube ] ;
save ( ’ Output_matlab_Rect_tube_Torque_Shell . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ Hat ’ )
load Output_Ansys_Hat . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_Hat ] ;
save ( ’ Output_matlab_Hat_Torque_Shell . mat ’ , ’ Results_ansys ’ )

e l s e i f strcmp ( crossec t ion , ’ IHat ’ )
load Output_Ansys_IHat . t x t ;
Results_ansys ( : , : , i ) = [ Output_Ansys_IHat ] ;
save ( ’ Output_matlab_IHat_Torque_Shel l . mat ’ , ’ Results_ansys ’ )
end

end

end
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! ! ! ! ! ! ! ! ! ! ! Warping beam ana lys i s f o r d i f f e r e n t cross sec t ions
! Maurice Va l e n t i j n

! ! ! ! ! ! ! ! ! ! ! ! General i n f o
/CWD, ’D : \ t u d e l f t 2019−2020\Thesis p r o j e c t −\ so f tware \ Ansys \

Warping_shel l_maurice_v3 ’
f i n i s h
/ c lear , s t a r t
/ t i t l e , Warping_shel l_maurice_v3
/FILNAME, Warping_shell_maurice_v3 ,1
/CONFIG, NRES, 100000 ! assigns values to ansys

con f i gu r a t i o n manager , ” nres ” i s the parameter to be changed
*Abbr , Gplot , gp l o t ! de f ines an abbrev ia t ion ,

makes them appear i n the t o o l box bar
*Abbr , Deformed , p ld isp ,1 ! dispays the d isp laced s t ruc tu re ,

makes them appear i n the t o o l box bar
*Abbr , Input , / input , Warping_shel l_maurice_v3
/ eshape ,1 ! Disp lays

elements w i th shapes determined from the rea l constants ,
/ nerr , , , , Off , ! Negates a l l e r r o r s given

by ansys dur ing / i npu t

/ un i t s , SI

! ! ! ! ! ! ! ! ! ! ! ! ! PARAMETERS de f i n i t i o n s
p i = 3.14159265
Poisson = 0.41
Elastmod = 1.2e9 ! youngs modulus −−> Ma te r i a l i s e says

1700−1800MPa
Gmod = 0.43e9
Densi ty = 1010!7800
! Pure aluminium , Densi ty =2.70e3 , Poisson =0.33 , Elastmod

=70.5e9 , Gmod=26e9 , y i e l d s t reng th=48e6
! 70 se r i es aluminium , Densi ty =2.85e3 , Poisson =0.33 , Elastmod

=71e9 , Gmod=27.5e9 , y i e l d s t reng th =427e6
! Average s tee l , Densi ty =7.8e3 , Poisson =0.29 ,

Elastmod=200e9 , Gmod=77e9 , y i e l d s t reng th
=310e6

! Average polupropylene , Densi ty =900 , Poisson =0.398 , Elastmod
=1.7e9 , Gmod=0.6e9 , y i e l d s t reng th=35e6

! Average polyamide Densi ty =1.01e3 Poisson =0.41 , Elastmod
=1.2e9 , Gmod=0.43e9 , y i e l d s t reng th=38e6 , UTS
48e6

! Matlab i npu t sec t ion
/ input , ’ Ansys_ input_crossect ion ’ , ’ t x t ’
! parameters from

! ! ! ! ! ! ! ! ! ! cross sec t ion shap
! c rossec t ion = ’ I ’ ! ’ Rectangle ’ ’ C i r c l e ’ ’

C i r cu la r_ tube ’ ’ I _ p r o f i l e ’ ’ Rect_tube ’ ’Chan ’ ’Z ’ ’ L ’ ’
H a l f _ c i r c l e ’ ’ E l i p s ’ ’ Hat ’ ’T ’
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! Loading= ’ Torque ’ ! ’ Torque ’ ’ Rota t ion ’
cons t r uc t i on = ’ cont inuous ’ ! ’ cont inuous ’ or ’ d i s c r e t e ’

! ! ! ! ! ! ! ! ! ! t w i s t load case
! steps=5
! theta_min=0
theta_max=p i /4 ! p i /4
! the ta_s tep =( theta_max−theta_min ) / ( steps−1)

! moment_min=0
moment_max=0.4/2 !20
! moment_step=(moment_max−moment_min ) / ( steps−1)

! ! ! ! ! ! ! ! ! ! ! / prep7 enters the general data preprocessor
/ prep7
! making a beam wi th the p rope r t i e s given before

ET, 1 , she l l181 ! she l l181 ! beam188 ! de f ines a l o c a l element
type from the l i b r a r y (ET, ITYPE , Ename, KOP1, KOP2)

mp, ex , 1 , Elastmod ! Def ines a l i n e a r ma te r i a l
p roper ty as a constant or a f unc t i on o f temperature .

mp, nuxy , 1 , Poisson
!mp, gxy , 1 , Gmod
mp, dens ,1 , Densi ty

* i f , c rossec t ion , EQ, ’ Rectangle ’ , THEN
!
!
!
* e l s e i f , c rossec t ion , EQ, ’Chan ’
! de f ine keypo in ts
x0=0
y0=0 ! he igh t
z0=0 ! width

leng th =360e−3
t1=T1 ! comes from matlab t = th ickness a l l a l l f l anges
y1=W3/2 ! comes from matlab y= the he ig th o f the beam
z1=W1/2 ! comes from matlab z= the width o f the f langes
x2= leng th

k ,1 , x0 , y1 , z0
k ,2 , x0 , y1 , z1
k ,3 , x0 , y1 , −z1
k ,4 , x0 , −y1 , z0
k ,5 , x0 , −y1 , z1
k ,6 , x0 , −y1 , −z1
k ,7 , x2 , y1 , z0

! de f ine l i nes , mate r ia l , secnum , lmesh
l ,2 ,3
l ,3 ,6
l ,5 ,6
l ,1 ,7

! ! ! ! ! ! ! ! ! ! ! ! ! USED TO CREATE CHANNEL BEAM
FLST,2 ,3 ,4 ,ORDE,2
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FITEM,2 ,1
FITEM,2 ,−3
ADRAG,P51X , , , , , , 4

! get r i d o f ex t ra l i n e s / nodes
NUMMRG,KP, , , ,LOW

! create c rosssec t ion
sect , 1 , she l l , ,
secdata , t1 ,1 ,0 .0 ,3
seco f f se t ,MID
seccont ro l , , , , , , ,

! To couple the d i f f e r e n t areas
NUMMRG,ALL

! meshing
FLST,5 ,4 ,4 ,ORDE,4
FITEM,5 ,6
FITEM,5 ,−7
FITEM,5 ,9
FITEM,5 ,11
CM,_Y , LINE
LSEL , , , ,P51X
CM, _Y1 , LINE
CMSEL, , _Y
LESIZE , _Y1 , , ,40 , , , , ,1
FLST,5 ,4 ,4 ,ORDE,4
FITEM,5 ,1
FITEM,5 ,3
FITEM,5 ,5
FITEM,5 ,10
CM,_Y , LINE
LSEL , , , ,P51X
CM, _Y1 , LINE
CMSEL, , _Y
LESIZE , _Y1 , , ,10 , , , , ,1
FLST,5 ,2 ,4 ,ORDE,2
FITEM,5 ,2
FITEM,5 ,8
CM,_Y , LINE
LSEL , , , ,P51X
CM, _Y1 , LINE
CMSEL, , _Y
LESIZE , _Y1 , , ,10 , , , , ,1
MSHAPE,0 ,2D
MSHKEY,0
FLST,5 ,3 ,5 ,ORDE,2
FITEM,5 ,1
FITEM,5 ,−3
CM,_Y ,AREA
ASEL, , , ,P51X
CM, _Y1 ,AREA
CHKMSH, ’AREA ’
CMSEL,S, _Y
AMESH, _Y1
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CMDELE, _Y
CMDELE, _Y1
CMDELE, _Y2

! couple nodes to create a r i g i d zone
! i npu t node to l i n e
FLST,5 ,9 ,1 ,ORDE,2
FITEM,5 ,502
FITEM,5 ,−510
CM,_NODECM,NODE
*SET, _z1 , 506
NSEL,S, , ,P51X
NSEL,A, , ,_Z1
CM,_CERGCM,NODE
CMSEL,S,_NODECM
! *
CMSEL,S,_CERGCM
CERIG,506 ,ALL , ALL , , , ,
CMSEL,S,_NODECM

! output node to l i n e
FLST,5 ,9 ,1 ,ORDE,2
FITEM,5 ,453
FITEM,5 ,−461
CM,_NODECM,NODE
*SET, _z1 , 457
NSEL,S, , ,P51X
NSEL,A, , ,_Z1
CM,_CERGCM,NODE
CMSEL,S,_NODECM
! *
CMSEL,S,_CERGCM
CERIG,457 ,ALL , ALL , , , ,
CMSEL,S,_NODECM

! keyopt statements

FINISH

/SOLU
antype , s t a t i c ! s t a t i c ana l ys i s
! nlgeom , on ! non l inear geometry
! autots , on ! auto time−stepp ing
! outres , a l l , a l l ! save r e su l t s o f a l l i t e r a t i o n s
!OUTPR, a l l , ALL , ! con t r o l s the so l u t i o n p r i n t out

! Cons t ra in t middle po in t
D,686 , ,0 , , , ,ALL , , , , ,

! Cons t ra in t web nodes
!D,32 , ,0 , , , ,UZ, , , , ,
D,530 , ,0 , , , ,UZ, , , , ,
D,569 , ,0 , , , ,UZ, , , , ,
D,608 , ,0 , , , ,UZ, , , , ,
D,647 , ,0 , , , ,UZ, , , , ,
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D,725 , ,0 , , , ,UZ, , , , ,
D,764 , ,0 , , , ,UZ, , , , ,
D,803 , ,0 , , , ,UZ, , , , ,
D,842 , ,0 , , , ,UZ, , , , ,
!D,482 , ,0 , , , ,UZ, , , , ,
! Cons t ra in t f l ange nodes
!D,159 , ,0 , , , ,UY, , , , ,
!D,237 , ,0 , , , ,UY, , , , ,
!D,315 , ,0 , , , ,UY, , , , ,
!D,393 , ,0 , , , ,UY, , , , ,

!D,1213 , ,0 , , , ,UY, , , , ,
!D,1135 , ,0 , , , ,UY, , , , ,
!D,1057 , ,0 , , , ,UY, , , , ,
!D,979 , ,0 , , , ,UY, , , , ,

! load ing statement f o r the ta
* i f , Loading , EQ, ’ Rota t ion ’ , THEN
D,506 , , theta_max , , , ,ROTX, , , , ,

! Loading statement f o r moment
* e l s e i f , Loading , EQ, ’ Torque ’
FLST,2 ,2 ,1 ,ORDE,2
FITEM,2 ,506
FITEM,2 ,457
F ,P51X ,MX,moment_max

* end i f

so lve

FINISH

! ! ! ! ! ! en ters the t ime h i s t o r y r e s u l t s postprocessor
/POST26
FINISH

/ post1

*cfopen , Output_Ansys_Chan , t x t ! Create f i l e

*GET,ROTX, node ,457 , r o t x ! r o t a t i o n around x ax is
! *GET,MOMX, node ,907 ,M11 ! measured torque around x ax is
*GET,UX, node ,1 , ux ! displacement i n i n x d i r e c t i o n

ETABLE,SENE,SENE ! Ret re ive s t r a i n energy per element
SSUM ! Sum s t r a i n energy from ETABLE
*GET,TOT_ENERGY,SSUM,0 , Item1 ,SENE ! Gets SENE from ETABLE and def ines i t

as ”my_Energy ”

!PLNSOL, S,EQV, 0 ,1.0
! *GET,MAX_STRESS,PLNSOL,0 ,MAX !Maximum value of i tem in l a s t contour

d i sp lay
! probably doesnt work because no v i sua l s given

*GET,MAX_STRESS,SECR,ALL ,S,EQV,MAX
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*CFWRITE, ,ROTX,UX,TOT_ENERGY,MAX_STRESS
* c f c l o s
!
!
!
* e l s e i f , c rossec t ion , EQ, ’ I ’
! de f ine keypo in ts
x0=0
y0=0 ! he igh t
z0=0 ! width

leng th =360e−3
t1=T1 ! comes from matlab t = th ickness a l l a l l f l anges
y1=W3/2 ! comes from matlab y= the he ig th o f the beam
z1=W1/2 ! comes from matlab z= the width o f the f langes
x2= leng th

k ,1 , x0 , y1 , z0
k ,2 , x0 , y1 , z1
k ,3 , x0 , y1 , −z1
k ,4 , x0 , −y1 , z0
k ,5 , x0 , −y1 , z1
k ,6 , x0 , −y1 , −z1
k ,7 , x2 , y1 , z0
k ,8 , x2 , −y1 , z0

! de f ine l i nes , mate r ia l , secnum , lmesh

l ,1 ,2
l ,1 ,3
l ,1 ,4 ! THIS LINE FOR I BEAM
l ,4 ,5
l ,4 ,6
l ,1 ,7
l ,4 ,8 ! a lso needed f o r I

! ! ! ! ! ! ! ! ! USED TO CREATE THE I BEAM! !
FLST,2 ,3 ,4 ,ORDE,3
FITEM,2 ,1
FITEM,2 ,3
FITEM,2 ,5
ADRAG,P51X , , , , , , 6
ADRAG, 4 , , , , , , 7
ADRAG, 2 , , , , , , 6
! ! ! ! ! ! ! ! END CREATING I BEAM

! get r i d o f ex t ra l i n e s / nodes
NUMMRG,KP, , , ,LOW

! create c rosssec t ion
sect , 1 , she l l , ,
secdata , t1 ,1 ,0 .0 ,3
seco f f se t ,MID
seccont ro l , , , , , , ,

! To couple the d i f f e r e n t areas
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NUMMRG,ALL

! meshing
FLST,5 ,6 ,4 ,ORDE,6
FITEM,5 ,6
FITEM,5 ,−7
FITEM,5 ,9
FITEM,5 ,14
FITEM,5 ,17
FITEM,5 ,20
CM,_Y , LINE
LSEL , , , ,P51X
CM, _Y1 , LINE
CMSEL, , _Y
! *
LESIZE , _Y1 , , ,40 , , , , ,1
! *
FLST,5 ,8 ,4 ,ORDE,8
FITEM,5 ,1
FITEM,5 ,−2
FITEM,5 ,4
FITEM,5 ,−5
FITEM,5 ,8
FITEM,5 ,13
FITEM,5 ,15
FITEM,5 ,18
CM,_Y , LINE
LSEL , , , ,P51X
CM, _Y1 , LINE
CMSEL, , _Y
! *
LESIZE , _Y1 , , ,5 , , , , ,1
! *
FLST,5 ,2 ,4 ,ORDE,2
FITEM,5 ,3
FITEM,5 ,11
CM,_Y , LINE
LSEL , , , ,P51X
CM, _Y1 , LINE
CMSEL, , _Y
! *
LESIZE , _Y1 , , ,10 , , , , ,1
! *
MSHAPE,0 ,2D
MSHKEY,0
! *
FLST,5 ,5 ,5 ,ORDE,2
FITEM,5 ,1
FITEM,5 ,−5
CM,_Y ,AREA
ASEL, , , ,P51X
CM, _Y1 ,AREA
CHKMSH, ’AREA ’
CMSEL,S, _Y
! *
AMESH, _Y1



74 D. Matlab and Ansys code

! *
CMDELE, _Y
CMDELE, _Y1
CMDELE, _Y2
! *
NUMMRG,ALL

! couple nodes to create a r i g i d zone
FLST,5 ,9 ,1 ,ORDE,2
FITEM,5 ,297
FITEM,5 ,−305
CM,_NODECM,NODE
*SET, _z1 , 301
NSEL,S, , ,P51X
NSEL,A, , ,_Z1
CM,_CERGCM,NODE
CMSEL,S,_NODECM
! *
CMSEL,S,_CERGCM
CERIG,301 ,ALL , ALL , , , ,
CMSEL,S,_NODECM

! output node to l i n e
FLST,5 ,9 ,1 ,ORDE,2
FITEM,5 ,248
FITEM,5 ,−256
CM,_NODECM,NODE
*SET, _z1 , 252
NSEL,S, , ,P51X
NSEL,A, , ,_Z1
CM,_CERGCM,NODE
CMSEL,S,_NODECM
! *
CMSEL,S,_CERGCM
CERIG,252 ,ALL , ALL , , , ,
CMSEL,S,_NODECM

! keyopt statements

FINISH

/SOLU
antype , s t a t i c ! s t a t i c ana l ys i s
! nlgeom , on ! non l inear geometry
! autots , on ! auto time−stepp ing
! outres , a l l , a l l ! save r e su l t s o f a l l i t e r a t i o n s
!OUTPR, a l l , ALL , ! con t r o l s the so l u t i o n p r i n t out

! Cons t ra in t middle po in t
D,481 , ,0 , , , ,ALL , , , , ,

! Cons t ra in t web nodes
!D,27 , ,0 , , , ,UZ, , , , ,
D,325 , ,0 , , , ,UZ, , , , ,
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D,364 , ,0 , , , ,UZ, , , , ,
D,403 , ,0 , , , ,UZ, , , , ,
D,442 , ,0 , , , ,UZ, , , , ,
D,520 , ,0 , , , ,UZ, , , , ,
D,559 , ,0 , , , ,UZ, , , , ,
D,598 , ,0 , , , ,UZ, , , , ,
D,637 , ,0 , , , ,UZ, , , , ,
!D,277 , ,0 , , , ,UZ, , , , ,
! Cons t ra in t f l ange nodes
!D,110 , ,0 , , , ,UY, , , , ,
!D,188 , ,0 , , , ,UY, , , , ,
!D,1174 , ,0 , , , ,UY, , , , ,
!D,1252 , ,0 , , , ,UY, , , , ,

!D,1047 , ,0 , , , ,UY, , , , ,
!D,969 , ,0 , , , ,UY, , , , ,
!D,764 , ,0 , , , ,UY, , , , ,
!D,842 , ,0 , , , ,UY, , , , ,
! Loading statements

! Loading statement the ta
* i f , Loading , EQ, ’ Rota t ion ’ , THEN
D,301 , , theta_max , , , ,ROTX, , , , ,

! Loading statement f o r moment
* e l s e i f , Loading , EQ, ’ Torque ’
FLST,2 ,2 ,1 ,ORDE,2
FITEM,2 ,301
FITEM,2 ,252
F ,P51X ,MX,moment_max

* end i f

so lve

FINISH

! ! ! ! ! ! en ters the t ime h i s t o r y r e s u l t s postprocessor
/POST26
FINISH

/ post1

*cfopen , Output_Ansys_I , t x t ! Create f i l e

*GET,ROTX, node ,252 , r o t x ! r o t a t i o n around x ax is
! *GET,MOMX, node ,907 ,M11 ! measured torque around x ax is
*GET,UX, node ,2 , ux ! displacement i n i n x d i r e c t i o n

ETABLE,SENE,SENE ! Ret re ive s t r a i n energy per element
SSUM ! Sum s t r a i n energy from ETABLE
*GET,TOT_ENERGY,SSUM,0 , Item1 ,SENE ! Gets SENE from ETABLE and def ines i t

as ”my_Energy ”

*GET,MAX_STRESS,SECR,ALL ,S,EQV,MAX
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*CFWRITE, ,ROTX,UX,TOT_ENERGY,MAX_STRESS
* c f c l o s
!
!
!
* e l s e i f , c rossec t ion , EQ, ’Z ’
! de f ine keypo in ts
x0=0
y0=0 ! he igh t
z0=0 ! width

leng th =360e−3
t1=T1 ! comes from matlab t = th ickness a l l a l l f l anges
y1=W3/2 ! comes from matlab y= the he ig th o f the beam
z1=W1 ! comes from matlab z= the width o f the f langes
x2= leng th

k ,1 , x0 , y1 , z0
k ,2 , x0 , y1 , z1

k ,4 , x0 , −y1 , z0

k ,6 , x0 , −y1 , −z1
k ,7 , x2 , y1 , z0

! de f ine l i nes , mate r ia l , secnum , lmesh
l ,2 ,1
l ,1 ,4
l ,4 ,6
l ,1 ,7

! ! ! ! ! ! ! ! ! ! ! ! ! USED TO CREATE Z BEAM
FLST,2 ,3 ,4 ,ORDE,2
FITEM,2 ,1
FITEM,2 ,−3
ADRAG,P51X , , , , , , 4

! get r i d o f ex t ra l i n e s / nodes
NUMMRG,KP, , , ,LOW

! create c rosssec t ion
sect , 1 , she l l , ,
secdata , t1 ,1 ,0 .0 ,3
seco f f se t ,MID
seccont ro l , , , , , , ,

! To couple the d i f f e r e n t areas
NUMMRG,ALL

! meshing
FLST,5 ,4 ,4 ,ORDE,4
FITEM,5 ,4
FITEM,5 ,6
FITEM,5 ,9
FITEM,5 ,11
CM,_Y , LINE
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LSEL , , , ,P51X
CM, _Y1 , LINE
CMSEL, , _Y
! *
LESIZE , _Y1 , , ,40 , , , , ,1
! *
FLST,5 ,6 ,4 ,ORDE,5
FITEM,5 ,1
FITEM,5 ,−3
FITEM,5 ,5
FITEM,5 ,8
FITEM,5 ,10
CM,_Y , LINE
LSEL , , , ,P51X
CM, _Y1 , LINE
CMSEL, , _Y
! *
LESIZE , _Y1 , , ,10 , , , , ,1
! *
MSHAPE,0 ,2D
MSHKEY,0
! *
FLST,5 ,3 ,5 ,ORDE,2
FITEM,5 ,1
FITEM,5 ,−3
CM,_Y ,AREA
ASEL, , , ,P51X
CM, _Y1 ,AREA
CHKMSH, ’AREA ’
CMSEL,S, _Y
! *
AMESH, _Y1
! *
CMDELE, _Y
CMDELE, _Y1
CMDELE, _Y2

! couple nodes to create a r i g i d zone
! i npu t node to l i n e
FLST,5 ,9 ,1 ,ORDE,2
FITEM,5 ,502
FITEM,5 ,−510
CM,_NODECM,NODE
*SET, _z1 , 506
NSEL,S, , ,P51X
NSEL,A, , ,_Z1
CM,_CERGCM,NODE
CMSEL,S,_NODECM
! *
CMSEL,S,_CERGCM
CERIG,506 ,ALL , ALL , , , ,
CMSEL,S,_NODECM

! output node to l i n e
FLST,5 ,9 ,1 ,ORDE,2
FITEM,5 ,453
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FITEM,5 ,−461
CM,_NODECM,NODE
*SET, _z1 , 457
NSEL,S, , ,P51X
NSEL,A, , ,_Z1
CM,_CERGCM,NODE
CMSEL,S,_NODECM
! *
CMSEL,S,_CERGCM
CERIG,457 ,ALL , ALL , , , ,
CMSEL,S,_NODECM
! keyopt statements

FINISH

/SOLU
antype , s t a t i c ! s t a t i c ana l ys i s
! nlgeom , on ! non l inear geometry
! autots , on ! auto time−stepp ing
! outres , a l l , a l l ! save r e su l t s o f a l l i t e r a t i o n s
!OUTPR, a l l , ALL , ! con t r o l s the so l u t i o n p r i n t out

! Cons t ra in t middle po in t
D,686 , ,0 , , , ,ALL , , , , ,

! Cons t ra in t web nodes
!D,32 , ,0 , , , ,UZ, , , , ,
D,530 , ,0 , , , ,UZ, , , , ,
D,569 , ,0 , , , ,UZ, , , , ,
D,608 , ,0 , , , ,UZ, , , , ,
D,647 , ,0 , , , ,UZ, , , , ,
D,725 , ,0 , , , ,UZ, , , , ,
D,764 , ,0 , , , ,UZ, , , , ,
D,803 , ,0 , , , ,UZ, , , , ,
D,842 , ,0 , , , ,UZ, , , , ,
!D,482 , ,0 , , , ,UZ, , , , ,
! Cons t ra in t f l ange nodes
!D,159 , ,0 , , , ,UY, , , , ,
!D,237 , ,0 , , , ,UY, , , , ,
!D,315 , ,0 , , , ,UY, , , , ,
!D,393 , ,0 , , , ,UY, , , , ,

!D,1213 , ,0 , , , ,UY, , , , ,
!D,1135 , ,0 , , , ,UY, , , , ,
!D,1057 , ,0 , , , ,UY, , , , ,
!D,979 , ,0 , , , ,UY, , , , ,

! load ing statement f o r the ta
* i f , Loading , EQ, ’ Rota t ion ’ , THEN
D,506 , , theta_max , , , ,ROTX, , , , ,

! Loading statement f o r moment
* e l s e i f , Loading , EQ, ’ Torque ’
FLST,2 ,2 ,1 ,ORDE,2
FITEM,2 ,506
FITEM,2 ,457
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F ,P51X ,MX,moment_max

* end i f

so lve

FINISH

! ! ! ! ! ! en ters the t ime h i s t o r y r e s u l t s postprocessor
/POST26
FINISH

/ post1

*cfopen , Output_Ansys_Z , t x t ! Create f i l e

*GET,ROTX, node ,457 , r o t x ! r o t a t i o n around x ax is
! *GET,MOMX, node ,907 ,M11 ! measured torque around x ax is
*GET,UX, node ,1 , ux ! displacement i n i n x d i r e c t i o n

ETABLE,SENE,SENE ! Ret re ive s t r a i n energy per element
SSUM ! Sum s t r a i n energy from ETABLE
*GET,TOT_ENERGY,SSUM,0 , Item1 ,SENE ! Gets SENE from ETABLE and def ines i t

as ”my_Energy ”

*GET,MAX_STRESS,SECR,ALL ,S,EQV,MAX

*CFWRITE, ,ROTX,UX,TOT_ENERGY,MAX_STRESS
* c f c l o s
!
!
!

!
!
!
* end i f
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