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Summary

From 2020, the global COVID-19 pandemic has had a significant impact on the world and specifically
the maritime industry. Striking examples were COVID-19 outbreaks onboard the U.S.S. Theodore
Roosevelt aircraft carrier and the Diamond Princess cruise vessel. These outbreaks happened at
the start of the pandemic and point to the complexity of contagious disease management onboard
large passenger vessels. This complexity is amplified by the international character of the industry,
shared facilities and confined environment. The COVID-19 pandemic showed the need to prepare for
new or reemerging infections onboard ships and support ’disease readiness’ tailored to the needs of
the shipping industry. This report therefore aims to: investigate the effect of ship layout design and
behavioral measures on contagious disease spread onboard large passenger vessels. The novelty of
this research lies in the developed integrated infection and crowd behavior model which provides an
agent-specific infection risk assessment, incorporating guest and crew circulation through a passenger
vessel layout.

Firstly, the state-of-the-art concerning contagious disease spread, disease prevention and control in
confined spaces was investigated. This state-of-the-art presents four disease transmission modes and
it introduces operational measures, behavioral measures and ship layout design adaptions that might
support disease prevention and control. Building on this background information, a research gap was
identified. This research gap covers initial stage retrofit design for large passenger vessels. The pre-
ferred result is a limitation of contagious disease spread through the implementation of adapted ship
layout design, operational and behavioral measures. A key detail in the research gap is the incorpora-
tion of guest and crew circulation through a ship layout. The research gap was then expanded into a
set of model requirements. Various infection and crowd behavior model combinations were explored
and the compatible combinations were tested against the requirements.

From the investigated model combinations, an integrated mesoscopic route choice model (RCM) and
modifiedWells-Riley infection model was selected. This combination calculates agent-specific infection
risk and it is layout dependent without being overly complex. The guest and crewmovement in the RCM
is modeled based on a detailed activity schedule where agents move between nodes (destinations) via
links (connections). The infection risk calculation is controlled by the RCM output, medical parameters,
ventilation assumptions and spatial parameters. The ship layout used in this research is a cruise ship
layout provided by the SAFEGUARD project. The sample case features an average infection risk of
0.807% with a variation between 0% and 2.5% over the day. The guest average infection risk is 0.730%
compared to a crew average risk of 1.04%. Additionally, peaks were identified for the number of agents
with a risk above 50% around 11:30, 16:00 and 21:00 with respectively 18, 7 and 14 agents. The sample
case has been validated against similar cases presented in literature. These cases covered attack rates
onboard the Diamond Princess and infection risk for office spaces, an out-patient hospital building and
a reception scenario. The sample case proved to be sufficiently validated as a baseline for disease
prevention and control scenario evaluation.

Finally, the integrated model was used to evaluate small-scale layout adjustments, capacity reductions
and mask wearing scenarios. The node locations showed significantly higher infection risk than the
links, which can be explained by the extended exposure time and increased occupancies. Local risk
improvements, although too small to be detectable in full-ship average infection risks, were achieved for
small-scale layout adjustments. Implementing capacity reductions above 50% resulted in average risk
improvements but might also introduce economic and operational feasibility issues. More significant
risk improvements were achieved for mask wearing, with average risk reductions over 40%with respect
to the sample cases. The largest improvements were found for combined capacity reduction and mask
wearing scenarios with average risk reductions over 55% compared to the sample cases. Additionally,
for mask wearing and the combined scenarios, the amount of agents with a risk above 50% decreases
significantly. Given these infection risk results, the developed integrated model has proven to be a
valuable tool for investigating infection risk onboard a large passenger vessel.
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1
Introduction

The development of the global COVID-19 pandemic from 2020 onward has had a significant impact
on the world and specifically the maritime industry. The shipping industry had to deal with restricted
travel, changing trade volumes, increased waiting times and stricter security measures in ports [98]. As
seafarers kept working through the COVID-19 pandemic; quarantines, travel restrictions and country
entering measures became standard practice and seafarers faced challenges renewing their maritime
certification [40].

The cruise shipping sector was confronted with significant challenges during the pandemic, amplified
by the international nature of the industry. Onboard, diverse populations live in close proximity to each
other for longer periods of time [98]. There is a potential for international disease spread once guests
return to their home countries [95, 98]. The diamond Princess cruise vessel, which can house over
3700 guests and crew, is frequently mentioned in literature concerning COVID-19. At the beginning of
February 2020, a COVID-19 outbreak occurred onboard the Diamond Princess, resulting in over 700
positive cases [89]. Early after the discovery of the outbreak, a rigorous 14-day quarantine was insti-
tuted for all guests and crew still onboard [75]. Using SEIR (Susceptible-Exposed-Infected-Recovered)
compartment models, it was estimated that an additional 2000 cases might have been prevented by
the implementation of quarantine and disembarkation measures [75].

Another outbreak example can be found onboard the nuclear aircraft carrier U.S.S. Theodore Roosevelt
at the start of the pandemic. Throughout the COVID-19 outbreak, approximately 27% of the 2779
complement tested positive for COVID-19 and nearly half of the positively-tested crew never developed
symptoms [39]. Research showed that confined work spaces, packed bunks and crowded general
spaces might have facilitated the transmission of COVID-19 [39]. Methods to deal with COVID-19
proved difficult to match with life onboard navy vessels which are often more cramped than regular
cargo or passenger vessels [75]. Different from a cruise ship, disease outbreaks onboard a navy
vessel can impact readiness in terms of the ability of the ship to carry out its mission [55].

The COVID-19 pandemic showed the necessity to prepare for new or reemerging infections, even
though some infections have been controlled or eradicated in the past [61]. This ‘disease readiness’
should be tailored to the specific needs of the shipping industry because a large passenger vessel or
aircraft carrier is different from a building. These vessels are by definition a confined space which crew
and guests are often not able to leave. Within the ship as a confined space, geometry, facility and
population based characteristics are important to discuss. Firstly, the geometry of a large commercial
passenger vessel is based on the requirement to efficiently transport a large number of guests at rea-
sonable speed [89]. The ship therefore has limited space and will feature shared living, dining and
sanitation areas. For naval ships, the space limitations can be even more extreme in order to satisfy
survivability and redundancy requirements [89].

The second category of characteristics is related to the facilities onboard. For cruise ships, the spaces
allocated for activities, accommodation and restaurant facilities are spread throughout the vessel. This
leads to frequent and complex movement patterns for both guests and crew [99]. Also, the medical

1



2 Chapter 1. Introduction

facilities onboard large passenger vessels might differ significantly for various vessels and there is
limited capacity in treating for example COVID-19 patients that require intense care (ICU) [58]. For
cargo vessels, the medical facilities are even more limited as there are no physicians onboard and the
shipmaster or second mate is designated to perform medical care [63].

Thirdly, populations onboard large passenger vessels have specific characteristics. Taking another
look at cruise ships, the guest population is frequently changing and there is ample opportunity to
bring diseases onboard [94]. Within the guest population there are differences in age, health condition
and nationality [57]. The population onboard a naval vessel features different characteristics as the
crew needs to adhere to military health requirements [44]. The COVID-19 outbreak onboard the U.S.S.
Theodore Roosevelt showed that a healthy young crew might lead to milder symptoms and a higher
proportion of asymptomatic cases. This made early disease detection and intervention more difficult
[44].

The specific characteristics of large passenger vessels, together with the Diamond Princess and U.S.S.
Theodore Roosevelt COVID-19 examples show the need to investigate ways to limit and control the
spread of contagious disease onboard large passenger vessels. Operational measures, behavioral
measures and possible ship layout design adaptions onboard large passenger vessels might be options
to decrease disease spread and therefore increase resilience in case of a disease outbreak.

1.1. Research Goal
The main objective of this research project will be to: investigate the effect of ship layout design, op-
erational and behavioral measures on contagious disease spread onboard a large passenger vessel.
To achieve this, an integrated model is developed combining two existing models: a crowd behavior
model which simulates guest and crew movement, and a disease infection model.

1.1.1. Scope
The scope of this research is defined by the details as described in the primary research objective.
The scope of the measures and interventions tested is limited to: operational measures, behavioral
measures and ship layout design. The effect of these measures will be investigated through model
simulations. The study of ventilation and ventilation system design onboard large passenger vessels
in relation to contagious disease spread falls outside the scope of this research.

1.1.2. Primary research objective
The primary research objective will be to:

Investigate the effect of ship layout design, operational and behavioral measures on contagious
disease spread onboard large passenger vessels, by combining an infection model with a crowd

behavior model.

In this report, the following research questions will be answered:

1. What is the state-of-the-art of contagious disease spread, contagious disease prevention and
contagious disease control in confined spaces such as a large passenger vessel?

2. What are the requirements for an integrated infection and crowd behavior model, if this model
is used to investigate the effect of ship layout design, operational and behavioral measures on
contagious disease spread?

3. Which infection model and which crowd behavior model can be combined to fulfill the require-
ments of research question 2?

4. What is the architecture of the integrated infection and crowd behavior model?
5. What are the infection risk results of a sample case scenario when the integrated infection and

crowd behavior model is applied?
6. How can the infection risk results from the integrated model be validated?
7. What are the infection risk results of selected prevention and/or control actions onboard a large

passenger vessel when the integrated infection and crowd behavior model is applied?



2
State-of-the-Art

This chapter aims to answer the first research question:

1. What is the state-of-the-art of contagious disease spread, contagious disease prevention and
contagious disease control in confined spaces such as a large passenger vessel?

The first section provides information regarding diseases onboard large vessels and the different dis-
ease transmission mechanisms. Section 2.2 continues to describe the state-of-the-art in disease pre-
vention and control. The chapter will close with the gap in research for prevention and control measures
to limit contagious disease spread onboard large passenger vessels. A literature search was performed
using different search terms for the WorldCat, Google Scholar and Semantic Scholar databases. The
search terms for the disease angle were: disease, contagious disease, communicable disease, air-
borne infections, epidemic, spread, transmission, COVID-19, respiratory disease and Norovirus. The
environment angle was covered by the following search terms: confined space, enclosed space, ship,
ship layout, cruise ship, built environment, navy ship and public transportation.

2.1. Disease transmission
Diseases have been a part of daily human life throughout history, and some diseases will be remem-
bered because of their deadliness and scope. The black death, for example, resulted in an estimated
25 to 40 million deaths and the 1918 Influenza pandemic led to approximately 50 million deaths. Specifi-
cally looking at disease onboard ships, one should mention diseases like smallpox, plague, and scurvy
(vitamin C deficiency) which were historically relevant [58]. Diseases that are currently linked to life
at sea are: tuberculosis, Noroviruses, influenza and coronaviruses [54, 38]. The diseases are often
categorized in terms of gastrointestinal infections, respiratory infections, and diseases related to food
and water sources [62].

3
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2.1.1. Transmission modes
Next to the different diseases that can occur on ships, it is relevant to discuss the way these dis-
eases spread. The way by which a disease spreads is also called a mode of disease transmission
[54]. Mangili and Gendreau describe four general modes of disease transmission related to infectious
disease transmission during commercial air travel [54]. The four modes are:

• Contact transmission
Contact transmission includes person-to-person contact, contact with a contaminated interme-
diate host and large droplet transmission; when someone for example inhales large droplets
generated when an infector sneezes or coughs [54]. The contaminated intermediate host might
be a surface, elevator button or door handle.

• Airborne transmission
Airborne transmission covers very small droplet residua (nuclei) that travel over long distances.
These aerosolized infectious agents might move around because of circulation inside a space,
mechanical ventilation or they end up in filtration systems [54, 85].

• Common vehicle transmission
Common vehicle transmission is associated with food and water sources [54].

• Vector-borne transmission
Vector-borne transmission relies on insects or rodents to spread a disease [54].

The exact transmission routes and dominant transmission routes for specific diseases remain a point of
discussion and motive for research. There are many factors, like human behavior and environmental
conditions, that play a role when studying disease transmission [25]. Also, the scale of the research cov-
ering transmission routes varies significantly: from modeling individual micrometer infectious droplets
up to simulating disease spread in an entire population. The scale of the study is often related to the
scale of the transmission mechanism studied which might lead other transmission mechanisms to be
underexposed.

For this research project, the ultimate interest lies with ship layout adaptions and operational and be-
havioral measures decreasing contagious disease spread onboard ships. Therefore, the least complex
medical disease transmission model will be used that fits the requirements instead of investigating more
complex medical research areas like disease-specific modes of transmission onboard ships. In order
to move towards a fitting medical model, it is relevant to apply the general transmission modes to a
confined space like a passenger vessel.

2.1.2. Transmission modes onboard large passenger vessel
As mentioned before, a large passenger vessel can be considered a confined space characterized by
shared facilities, crowded spaces, and a diverse population of guests and crew from different countries.
Guests and crew onboard a large passenger vessel will have close and frequent contact because of
the common areas and densely populated environment [7]. This is related to the following transmission
modes: person-to-person contact and contact with a contaminated intermediate host. Additionally, the
air in enclosed spaces is shared by the people inside the space and the ventilation is often restricted
[60]. The chance for large droplet transmission therefore increases in crowded confined spaces where
individuals are relatively close together [60]. The small particle airborne transmission is the most de-
bated transmission mode and its importance is related to the disease in question. It should be noted
that large passenger vessels often have interconnected HVAC systems which theoretically means that
aerosolized infectious particles can move through the entire ship. As mentioned before, the topic of
ventilation will be kept outside the scope of this research project and this transmission mode will there-
fore be difficult to take into account. The common vehicle transmission mode is easier to apply to
passenger vessels because of the shared food and water sources. The vector-borne transmission can
be applicable to large passenger ships although the geographical setting might determine the insects
and/or rodents that come into play. The various transmission modes and their occurrence onboard a
large passenger ship have been visualized in Figure 2.1.
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Figure 2.1: Transmission modes onboard a large passenger vessel

2.1.3. Examples: Norovirus & SARS-CoV-2
Two disease examples will be discussed in more detail: Norovirus and SARS-CoV-2. These diseases
are frequently mentioned in literature concerning diseases onboard large passenger vessels. Norovirus
is a gastrointestinal infection and SARS-CoV-2, also called COVID-19, is a respiratory infectious dis-
ease. Norovirus is a very contagious virus that can cause vomiting and diarrhea because of acute
gastroenteritis [34]. Norovirus can be characterized by a 1-2 day incubation period and individuals
are infectious for approximately 2 days [70]. Common settings where Norovirus outbreaks occur are:
healthcare facilities, schools, restaurants and cruise ships [34]. The virus is transmitted faecal-orally,
often starting at a common food or water source after which the virus spreads through person-to-person
contact and contaminated surfaces [45]. The transmission of Norovirus already shows the complexity
of disease spread as the total transmission is a combination of different transmission modes.

Since the COVID-19 pandemic, a lot of research has been done into the transmission mechanisms
of this contagious coronavirus. COVID-19 has strong transmission characteristics compared to other
contagious coronaviruses like SARS and MERS [101]. The Diamond Princess COVID-19 outbreak
suggests an incubation period of 5 days and a 10-day infectious period for COVID-19 cases onboard
a cruise ship [75]. One should note that a significant amount of COVID-19 infected individuals do not
experience symptoms or they are not aware of the symptoms. For this group, the infection proceeds
(initially) asymptotically whichmakes detection and the timely implementation of control measuresmore
challenging [52]. The transmission mechanisms of COVID-19 are: contact transmission, droplet trans-
mission and small particle airborne transmission [101]. Contact transmission and respiratory droplet
transmission are considered primary transmission routes [10]. Transmission via fomites, previously
referred to as the intermediate host transmission, is also a generally accepted transmission route for
COVID-19 [82]. Virus aerosolization or the airborne transmission route for COVID-19 is, however, very
much debated [10]. For the Diamond Princess outbreak, one source claims that ventilation and there-
fore long-range airborne transmission did not play a role in the outbreak at all [97]. Another source
claims the exact opposite, namely, that airborne transmission is likely the dominant contributor in the
outbreak [5]. In general, researchers seem to agree that airborne transmission could be possible and
should therefore not be ignored, especially for poorly ventilated indoor and confined spaces [82, 71].
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Airborne transmission is also proposed as an explanation for super spreader events which can hap-
pen in “closed environments, environments with poor ventilation, crowded places, and long duration of
potential exposure” [3].

2.2. Disease prevention and control
This subsection will focus on the state-of-the-art in methods to prevent or control disease transmission
onboard large passenger vessels. The subsection covers three types of interventions. The first type
of interventions are related to ship layout design which could help limit the spread of disease and/or
promote disease prevention. The second type of interventions covers operational measures. These
measures are overarching policies implemented by for example a ship operator, a captain, a specific
port or a country. These measures might include preventive screening, capacity reductions or even
a complete lockdown of the vessel. The last category covers behavioral interventions like keeping a
social distance or wearing a mask.

2.2.1. Ship layout design
The concept of using design as a way to prevent disease spread can be linked to the concept of preven-
tion through design (PtD). This is “The concept of anticipating workplace hazards and configuring the
work environment (e.g. a cruise ship) to ‘design out’ the hazards” [7]. In this situation, the hazard can
be defined as a severe uncontrollable disease outbreak onboard a large passenger vessel. The design
should therefore aim to prevent an outbreak from starting and facilitate outbreak control in case preven-
tion fails. Figure 2.2 provides a summary of possible ship layout interventions. Additional background
information for the specific ship layout measures can be found in Appendix A.

Figure 2.2: Ship layout design interventions

Current research
A literature search using the medical search terms mentioned at the start of this chapter combined with
ship design and ship layout search terms, revealed one paper focused on ship layout design connected
to contagious disease. This paper discusses the refit of an Italian ferry as a fast medical support vessel
[80]. The paper was written as a consequence of the COVID-19 pandemic which showed the need for
“a quick help, the transport of materials for med aids, the transport of mechanized tools for police mis-
sions and/or support to populations” [80]. The authors propose significant modifications to the general
arrangement of a MDV 3000m fast ferry vessel built by Fincantieri [80]. For example, a helipad and
morgue are installed and the entire upper deck can function as a hospital with separated HVAC, black
and grey water systems[80]. The main deck is adapted to accommodate a seating area, emergency
accommodation and food distribution facilities [80]. Also, the production and safe distribution of high-
quality medical Oxygen is discussed as high-flow Oxygen forms an integral part of COVID-19 therapy
[80]. An impression of the modifications can be seen in Figure 2.3, which shows the original general
arrangement for the upper decks of the Italian ferry, and Figure 2.4 which illustrates the proposed
modifications.
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Additionally, one relevant project was found in a general online search using similar search terms.
The specific project is the Healthy Sailing project “under the Horizon Europe Framework Programme”
which started in September 2022 [32]. The project aims to: “improve the quality of passenger shipping
services, facilitate recovery from the COVID-19 pandemic and make passenger shipping safer, more
resilient, competitive and efficient” [32]. There are no scientific publications or results available on their
website yet.

Figure 2.3: MDV 3000m original general arrangement of upper and main deck [80]

Figure 2.4: MDV 3000m modified general arrangement of upper and main deck [80]

Using ship layout design to prevent or control disease spread will always remain a complex issue. Most
of the mentioned design and layout options, seen in Figure 2.2, lead to the need for a higher space
versus guest ratio. Creating bigger or more cabins, adding a staircase or implementing multi-functional
areas will all require space. As discussed before, space is an in-demand item onboard any ship. Design
optimization for large passenger ships tries to fit a high number of guests onboard a vessel of a certain
size to ensure economic feasibility. This is in direct contrast with the proposed design measures and
might lead ship operators to look into operational and behavioral measures before implementing ship
design adaptions.
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2.2.2. Operational measures
This group of operational measures covers a selection of overarching measures regarding embarka-
tion requirements, onboard operational routines, surveillance and management, and people movement
restrictions. A visual summary of the operational measures is given in Figure 2.5. Some of the mea-
sures are related to gastrointestinal diseases (food and water) but most measures are related to res-
piratory infectious diseases. The different operational measures are discussed in more detail in Ap-
pendix A.

Figure 2.5: Operational measures

2.2.3. Behavioral measures
Behavioral measures are widely known since the COVID-19 pandemic. Four main categories can be
recognized in Figure 2.6: PPE, social distancing, personal hygiene and vaccinations. Appendix A
presents further details for the individual categories.

Figure 2.6: Behavioral measures

Summary
In conclusion, the possible ship layout interventions, operational and behavioral measures found in
literature are summarized in Figure 2.7. These measures are connected to two real-life COVID-19
outbreak cases onboard the Diamond Princess cruise vessel (February 2020) and the USS Theodore
Roosevelt (March 2020). The colors in Figure 2.7 correspond to the applied measures which could be
found in literature for these specific cases [100, 97, 72, 59, 53, 75, 39, 42, 87]. Vaccinations are not
relevant for these two specific outbreak cases as they occurred at the start of the pandemic and vac-
cinations were not yet available. For both vessels, no literature was found implementing specific ship
layout design interventions. This could be due to the large consequences of these interventions and
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the fact that these interventions would take significant time and funds to implement. This is especially
complicated at the start of a pandemic when information was still limited and research ongoing.

Figure 2.7: Ship layout design, operational and behavioral measures applied to
Diamond Princess cruise ship and U.S.S. Theodore Roosevelt aircraft carrier

2.3. Research gap analysis
A research gap was identified during the literature review concerning contagious disease spread on-
board ships, and possible interventions to limit this disease spread. The research gap is defined in
more detail and given in Table 2.1. The research gap covers the initial retrofit ship design stage. In this
stage, the layout is still modified and impactful design decisions might be frequently revised. It is impor-
tant to take contagious disease spread into account in this design stage because the layout can still be
adapted. This layout will for example cover the location, size and number of general areas, cabins and
corridors. The research gap focuses on large passenger vessels as section 2.1 showed the challenge
of controlling and preventing a contagious disease outbreak, specifically for this ship type.

As section 2.2 showed, there are multiple and diverse measures and interventions in order to limit
contagious disease spread. The investigated parameters can be defined within three categories: ship
layout design, operational and behavioral measures. The preferred result of these interventions is the
limitation of contagious disease spread onboard. There is literature available analyzing past outbreaks
and disease interventions on large passenger ships like the Diamond Princess cruise ship during the
COVID-19 pandemic. In general, literature is mainly focused on infection rates of real-life cases and
verifying infectionmodels against real-life data sets. The research gap lies inmodeling the effectiveness
of a variety of different interventions, including layout adaptions, before an outbreak has happened in
order to achieve a more disease resilient ship design.

Two key details were formulated in the research gap adding to the novelty of this research. The first
detail has to do with the normal day movement, also called circulation, of crew and guests. Section 2.1
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on disease transmission leads to the conclusion that the movement of people inside a confined space
such as a large passenger vessel matters for disease spread. The movement of crew and guests
onboard ships has been researched, largely to inform evacuation procedures and show compliance
with ship evacuation regulations. This research often models a single movement, for example from ‘a
start position’ to an assembly station or lifeboat. The most important output for these models is the time
it takes to complete evacuation. When disease spread is investigated, a research gap can be found
because disease spread is not just related to a single movement during a limited time. Instead, disease
spread is related to the normal day circulation through a specific layout. This circulation will include
multiple destinations in sequence based on the activities guests and crew undertake. The destinations
depend on the ship layout which links to the second key detail: incorporation of movement through a
layout.

Design stage The research covers initial retrofit design
Ship type The research focuses on large passenger vessels
Preferred result The preferred result of the implemented measures is the limitation of

contagious disease spread
Investigated parameters The research will investigate the impact of ship layout design, opera-

tional and behavioral measures on contagious disease spread
Detail 1 The research will incorporate crew and guests circulation onboard the

ship
Detail 2 The research will incorporate movement through a specified ship layout

Table 2.1: Research gap summary



3
Integrated Model Analysis

The identified research gap from the previous chapter leads into the second and third research ques-
tion:

2. What are the requirements for an integrated infection and crowd behavior model, if this model
is used to investigate the effect of ship layout design, operational and behavioral measures on
contagious disease spread?

3. Which infection model and which crowd behavior model can be combined to fulfill the require-
ments of research question 2?

This second research question is answered in section 3.1. Section 3.2 and Appendix B provide an
investigation into different types of movement and infection models. In section 3.3, a model analysis
matches the requirements from section 3.1 with various combinations of movement and infection behav-
ior models in order to choose the most suitable model combination for further implementation.

3.1. Model requirements
Table 3.1 presents the connections between the formulated requirements and the research gap from
section 2.3. R1 and R9 are related to the design stage as converging results are required within a
time frame that is acceptable for initial stage design. R2 covers the population size and is therefore
connected to the vessel type. The preferred result of the simulations would be the limitation of disease
spread and the simulation results should thus indicate disease performance as discussed in R3. R10
and R11 are linked to the preferred result as time spent inside a space and the space occupancy
influence disease spread. The effectiveness of certain interventions on the limitation of disease spread
could vary with the disease and is thus connected to R12.

R10 and R11 are also related to the investigated parameters: layout design, operational and behavioral
measures. R10 and R11 specify requirements to monitor the time spent in certain spaces and space
occupancy. This information can inform variations in layout design to avoid crowding. Additionally, ‘time
spent’ information is needed to implement certain operational measures like spreading the activities of
the people onboard by changing their activity schedules.

R6, R7 and R8 are requirements regarding the normal day circulation of crew and guests. These
requirements cover the need for individual movement, some amount of controlled random movement,
and multi-leg movement in order to model circulation realistically. R4 and R5 are the requirements
needed to ensure the incorporation of ship layout, space flow and capacity limitations.

11
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Design
stage

Initial stage retrofit ship design R1 R9

Ship type Large passenger vessel R2
Preferred
result

Limiting contagious disease spread R3 R10 R11 R12

Investigated
parameters

Ship layout design, operational and behavioral measures R10 R11

Detail 1 Incorporating crew and guests circulation R6 R7 R8
Detail 2 Incorporating movement through a ship layout R4 R5

Table 3.1: Research gap combined with requirements

Requirement 1 - Convergence

The simulation results converge within an acceptable time frame

The first requirement states that the simulation results converge within an acceptable time frame. As
a result, there are limits to the computational complexity of the model and the time it takes to run a
scenario as simulation repetitions are required. The model will be used for testing variations on scenar-
ios related to adjusted ship layout, and preventive and control measures for disease spread. Scenario
repetitions provide a chance to recognize and investigate outlier results and show that the model re-
sults converge. The maximum model run time on a standard computer and the number of repeated
simulations will be defined during the model development stage. If the model does become too compu-
tationally intensive for a laptop, the use of DelftBlue, the TU Delft supercomputer, should be considered.

Requirement 2 - Population size

3000-4000 Individual agents can be modeled (guests and crew)

The scope of this research focuses on large passenger vessels. The capacity of these large cruise
ships can be estimated between 2500 and 3500 guests [81]. The Diamond Princess cruise ship, for
example, has a total capacity of around 2700 guests and 1100 crew [73]. The total population size will
also be connected to the ship layout available for modeling. Previous research using a route-choice
movement model to simulate agent movement onboard a large cruise vessel used the layout data from
the SAFEGUARD project [26]. This project did full-scale evacuation experiments onboard a 2500-guest
passenger vessel to produce data for validation and calibration of ship evacuation models [24]. This
validation data set and the corresponding ship layout might also be applicable for studying disease
spread onboard large passenger vessels. Taking these two examples into account, the model should
be able to simulate 3000 up to 4000 individual agents, which includes both guests and crew.

Requirement 3 - Disease performance indication

The model results indicate scenario performance for contagious disease spread
The model results indicate where in the layout agents are most at risk for infection
The model results enable performance comparison between different scenarios

The integrated model will be used to investigate contagious disease spread onboard a large passen-
ger vessel. The results of the model should, therefore, say something about how well the scenario
performs with respect to contagious disease spread and infections onboard. Examples of disease per-
formance indicators are: the number of infections, the number of close contacts and infection risk. The
model results also need to provide relevant data to inform the scenario variations to test. For scenar-
ios changing the ship layout, it is relevant to know where agents have the highest chance of getting
infected. The layout design in these locations with high infection risk could be modified to test if the
infection risk can be reduced. Lastly, the results from the model should be useful for comparison be-
tween different scenarios. This research project will make certain assumptions, especially concerning
medical infection modeling. The simulation results should be viewed in light of these assumptions and
might lack accuracy when looking at the values themselves. However, this research specifically com-
pares several scenarios with ship layout adaptions or implemented operational and behavioral disease



3.1. Model requirements 13

measures. The model results should enable the comparison between different scenarios and not just
provide one set of results for one scenario.

Requirement 4 - Layout incorporation

The model is layout dependent
The model supports layout dimensions from 5 up to 50 meters per space

The integrated model should be layout dependent. This means that the layout of the space, in this
situation a passenger vessel, is taken into consideration when modeling the movement of the agents.
This is of particular importance as ship layout variations will be tested to see the performance with re-
spect to disease infection risk. If the layout is not a variable input parameter in the model, it will not be
possible to test these ship layout variations. Also, the layout will be detailed because of a high number
of spaces. A large passenger vessel is not just one space in which agents move around. The layout
features a significant number of small spaces, large spaces, corridors and stairs connecting the decks.
The way agents move through this layout and the time they spent in certain spaces might influence
the risk for infection. The layout dimensions will be in the range of 5 meters for small spaces, up to 50
meters for larger ‘activity’ spaces like restaurants.

Requirement 5 - Space capacity and flow

The model takes limited capacity of spaces into account
The model takes limited flow between spaces into account

In line with the requirement regarding layout, the model should also be able to account for limitations
regarding the flow and capacity of spaces. The spaces themselves will have a limited capacity. When
this capacity is reached, agents should not be able to move into the space until the occupancy is de-
creased. For disease control measures, this capacity can also be altered so that fewer people are
allowed in a space at the same time. Additionally, the flow between the spaces is limited which means
that the amount of agents that can change spaces is limited. For example, only one or two agents fit
through a door at the same time. These limitations can lead to queuing; large occupancies in corridors
and staircases even though these spaces might not be ‘destination’ spaces.

Requirement 6 - Individual movement

Movement can be modeled for each individual agent
Individual agent movement can be tracked and movement data is stored

To simulate a realistic situation onboard a large passenger vessel, it is important that the individual
movement of agents can be modeled. A guest onboard the vessel will have a different ‘schedule’ than
a crew member onboard the same vessel. Within the guest and crew groups, the activities and destina-
tions throughout the day are different. It should therefore be possible to implement varying movement
destinations for each individual agent. To speed up entering the input data, some overlap could be
applied where for example groups of four agents have the same activity schedule. Looking at the out-
put of the model, the movement of each agent needs to be tracked as agents with similar destinations
might take varying routes to reach their destinations. Also, the movement data should be stored as this
data says something about how crowded certain spaces in the layout are. This can in turn be used to
inform variations on ship layout as space occupancy can influence infection risk.

Requirement 7 - Random movement

There is controlled randomness in the activities that agents undertake
There is controlled randomness in when agents start different activities

There is controlled randomness in the routes agents take to their destinations

As mentioned in the previous requirement, in real life, agents with similar destinations might take dif-
ferent routes. This can be modeled by including randomness in the way agents choose the route they
take. However, a completely random choice is not realistic as this could lead agents to move from
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deck 3 to deck 4 via deck 8. The length of the chosen route and the convenience of the route, like the
amount of stairs, matter for the choice an agent will make. The model should thus include some degree
of chance in route choice combined with an assessment of how ‘good’ a route is. When the simulation
is run multiple times, as discussed in requirement 1, the output will differ slightly as the route choices
of agents can vary. In the end, this randomness in the way agents move will provide more realistic
modeling results. Also, a second and third random movement requirement relate to the activities that
agents undertake during the simulation. There should be controlled randomness regarding the activi-
ties, and thus destinations, that the agents undertake. There should also be controlled randomness in
the timing of these activities. These two requirements avoid the situation where all agents will visit the
same activities at the same time.

Requirement 8 - Multi-leg movement

Agents can move between multiple destinations in one simulation
The time an agent stays at a single destination can be adjusted

An additional requirement related to the agent movement in the integrated model has to do with the
implemented destinations. Well-known in the shipping industry are movement models simulating evac-
uations onboard ships. These models, however, often only implement single-leg movement with a
start location and a single destination. This destination can be an assembly station or a lifeboat. When
disease spread onboard a vessel is investigated, a longer time range becomes relevant. This could
be a single day or even multiple days during which agents move between multiple spaces. It should
therefore be possible to implement multi-leg movement. This means that agents will have multiple des-
tinations over time in one simulation run. These destinations might be activity spaces, outside decks,
a swimming pool, a crew mess or a cabin. The time the agents spent at these destinations should also
be programmable. This way, an activity schedule can be implemented for both the crew and guests
which represents a ‘normal’ day or week onboard the vessel.

Requirement 9 - Medical complexity

The medical model is as simple as possible while producing relevant results

As discussed in section 2.1, disease infection models can become complicated very quickly. There are
complete studies on small particle airborne transmission in a single elevator or the infectiousness be-
tween two people talking. This level of detail is not required for this research project as its focus lies on
the implications of ship layout design, operational and behavioral measures in dealing with contagious
disease onboard large passenger vessels. The medical model, which is combined with the movement
model, should be as simple as possible while still producing a relevant indication for disease infection
performance.

Requirement 10 - Time spent

The time spent at each location is known for every agent
The time spent at each location is incorporated when calculating infection risk

As the agents move through the layout, they will spend a certain time in specific spaces. This time
spent should be known and taken into account by the integrated model as it directly influences the risk
for infection. The longer an agent stays in a confined space, the higher the infection risk becomes
[84]. The time agents spent at their destination locations can be directly retrieved from the input data.
However, it is also relevant to know the time agents spent in corridors, staircases and other spaces as
they move between their destinations. These spaces on agents routes might be crowded which could
relate to a higher infection risk, especially if an agent is stuck in that space for a longer period.

Requirement 11 - Space occupancy

The space occupancy is known for each time step
The space occupancy changes with the agents entering and exiting spaces

The space occupancy is incorporated when calculating infection risk
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Another factor which is relevant to infection risk, is the number of agents that are in the same space
at the same time. A higher space occupancy, especially in small confined spaces, can lead to a lower
social distance and therefore higher infection risk [84]. Similar to requirement 10, the space occupancy
should be known and incorporated when looking at the infectious disease performance. Additionally,
the model should take into account that the occupancy of a space changes over time as agents enter
and exit spaces on their routes. This requirement 11 is connected to requirement 4 as space occupancy
cannot be determined without layout implementation. Space occupancy as value in itself could inform
variations in ship layout in order to decrease crowding. This is possible as high space occupancies im-
ply crowding when combined with a limited space volume. It is also possible to use space occupancy
data from simulations and decide to limit the capacity of certain spaces as an operational measure
against disease spread.

Requirement 12 - Disease specific

The model should (to a degree) take differences between diseases into account

The final requirement relates to the diseases investigated with the integrated model. In section 2.1,
two examples of frequently mentioned disease onboard passenger vessels were mentioned. These
examples were the Norovirus and SARS-CoV-2, and it was seen that the transmission routes are quite
different. One disease might be more contagious as people spread the disease more quickly or when
a smaller amount of infectious particles leads to infection. These variables influence the way a disease
will spread and the risk of infection for the agents involved. Disease spread of Norovirus and other gas-
trointestinal diseases are primarily related to the consumption of food and/or water and transmission via
the faecal-oral route [54]. These transmission routes are less compatible with the proposed model com-
bining agent movement and disease infection. Respiratory diseases rely more on person-to-person and
airborne transmission and are therefore a better match with the proposed model [62]. Coronaviruses,
the flu and possibly Tuberculosis might be relevant diseases to model on ships in combination with
the movement of guests and crew. For example, there is significant literature available with respect
to COVID-19 disease spread onboard large passenger vessels. This literature also includes research
into real-life cases which could function as reference data.

Table 3.2 provides a summary of the model requirements, answering research question 2 as formulated
in section 1.1.
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Requirement Details
1 Convergence The simulation results converge within an acceptable time frame
2 Population size 3000-4000 Individual agents can be modeled (guests and crew)

3 Disease performance
indication

Model results indicate scenario performance for contagious dis-
ease spread
Model results indicate where in the layout agents are most at risk
for infection
Model results enable performance comparison between different
scenarios

4 Layout incorporation Model is layout dependent
Model support layout dimensions from 5 up to 50 meters per
space.

5 Space capacity and flow Model takes limited capacity of spaces into account
Model takes limited flow between spaces into account

6 Individual movement Movement can be modeled for each individual agent
Individual agent movement can be tracked and movement data
is stored

7 Random movement
There is controlled randomness in the activities that agents un-
dertake
There is controlled randomness in when agents start different ac-
tivities
There is controlled randomness in the routes agents take to their
destinations

8 Multi-leg movement Agents can move between multiple destinations in one simulation
The time an agent stays at a single destination can be adjusted

9 Medical complexity Medical model is as simple as possible while producing relevant
results

10 Time spent Time spent at each location is known for every agent
Time spent at each location is incorporated when calculating in-
fection risk

11 Space occupancy
Space occupancy is known for each time step
Space occupancy changes with the agents entering and exiting
spaces
Space occupancy is incorporated when calculating infection risk

12 Disease specific Model should (to a degree) take differences between diseases
into account

Table 3.2: Model requirements summary

3.2. Movement and infection models
In the previous section, a set of requirements for the integrated infection and crowd model was pro-
posed. This section aims to answer the following research question:

3. Which infection model and which crowd behavior model can be combined to fulfill the require-
ments of research question 2?

The first step is the evaluation of different movement and infection models. The movement models
chosen frequently appeared in literature investigating the movement of people onboard ships or ship
evacuation modeling. Also, the three model groups provide a range for the level of detail, from macro-
scopic pipe flow models to microscopic agent-based models. Next, three medical infection model cat-
egories were researched. These models were potential candidates for integration with the discussed
crowd behavior movement models. In-depth information for both the movement and infection models
is presented in Appendix B. This section only provides background information and characteristics



3.2. Movement and infection models 17

of the chosen movement and infection model. After researching the different models, the movement
models were combined with the medical models and matched with the requirements from section 3.1.
The most suitable combination, based on the requirements, was chosen.

3.2.1. Mesoscopic route choice model
Route choicemodels can be found in work fromNarayan et al. and VanGisbergen [64, 51, 26]. Narayan
et al. present a “model combining activity and movement of guests in a cruise ship” and use the
SAFEGUARD data set with this model [64]. Figure 3.1 shows a potential scenario where the agent has
two activities with a ‘leg’ between them. This ‘leg’ or path taken is ship layout dependent. The novelty of
this research is the modeling of guest and crew behavior onboard a large cruise ship during normal day
operation. In comparison, most research is focused on evacuation scenarios with a short period and
single-leg movement [64]. Van Gisbergen works with Narayan’s model to further develop a large-scale
simulation for a large vessel implementing an activity schedule for all crew and guests [26]. The model
itself incorporates layout as a set of nodes and links. The nodes represent one or multiple spaces in
the layout and the different nodes are connected via one-directional links [64]. The nodes and links
can have a certain capacity and the links additionally feature a flow capacity. This flow capacity is the
amount of agents that can enter or exit the link at the same time [26]. The model is agent-based as
all agents make their own route choices. However, the model does not provide a Cartesian location
for each agent but rather transfers the agents between nodes. Different options for the route choice
model are available like: shortest path, least turns, logit or mixed logit [26]. Van Gisbergen chooses the
mixed logit route choice model in his work as this model combines “path utility and path choice based
on probability” [26].

Figure 3.1: Activity-based demand with path in ship layout [64]

3.2.2. Modified Wells-Riley infection model
One of the two risk based models investigated, is the infection model developed by Sun and Zhai [84].
The goal of their research was to provide quantitative answers to the following questions: “what is the
safe distance?” and “what is sufficient ventilation?” related to social distance and ventilation control
strategies during the COVID-19 pandemic [84]. They directly implement a social distance index and
a ventilation index in the Wells-Riley model [84]. The ventilation index will not be discussed in more
detail as ventilation is outside the scope of this research project. However, the distance index could
be relevant for this research project and will therefore be investigated further. The distance index is a
curve fit based on “the relationship between the statistical probability of droplets in different sizes and
their transmission distances based on the analysis of distribution and transmission of the experimental
exhaled droplets” [84]. The following figures show how this distance index is constructed. Firstly,
Figure 3.2 shows the distribution of particles for each diameter [84]. Secondly, Figure 3.3 provides
the distribution of transmission distance for each diameter droplet [84]. As expected, the smaller size
droplets will move away further and thus have a higher transmission distance.
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Figure 3.2: Particle size distribution [84] Figure 3.3: Particle transmission distance [84]

When the two distributions are combined, a probability distribution of particles against transmission
distance can be constructed. This distribution is shown in Figure 3.4 [84]. The transmission distance is
on the horizontal axis and the vertical axis shows the probability of different distance. This probability
of different distance essentially provides a representation of exposure probability. Suppose that the
transmission distance is almost zero. This means that two agents are extremely close together. In
this situation, the probability of different transmission distance will be 100% because all particles will
have a transmission distance larger than zero. The exposure probability will also be 100%. If a larger
transmission distance is taken, for example 1 meter, the probability of different transmission distance
is approximately 40%. This percentage means that 40% of all particles will have a different (larger)
transmission distance than 1 meter. Therefore, these particles can cross the distance between two
agents and cause infection. The exposure probability at 1 meter is therefore 40%.

Figure 3.4: Droplet transmission distance versus exposure probability [84]

The distance index Pd is a line fit from the data in Figure 3.4 and given in Equation 3.1 as a function of
social distance d between agents [84]. Next, the original Wells-Riley equation, shown in Equation 3.2,
is combined with the distance index and a ventilation index Ez in Equation 3.3. The parameters are
as follows; PI : probability of infection, C: new cases, S: susceptible individuals, I: number of infectors,
p: pulmonary ventilation rate of susceptible individuals [m3/s], q: quanta production rate per infected
individual [quanta/s], t: time [s] and Q: room ventilation rate [m3/s].

Pd =
−18.19 ln(d) + 43.276

100
(3.1)

PI =
C

S
= 1− exp(−Iqpt

Q
) (3.2)

PI =
C

S
= 1− exp(−Pd

Iqpt

QEz
) (3.3)
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It should be noted that this Wells-Riley infection probability only accounts for airborne disease transmis-
sion in a confined space. Especially for long-term exposure, other factors besides airborne transmission
might become more important. These factors could be other transmission modes like person-to-person
contact and contaminated host contact. The model is therefore better suited for short-term exposure
situations. Also, it should be mentioned that determining the quanta production rate, is quite difficult.
In literature discussing COVID-19, this value is a debated parameter which could be in a range from
10 qph to more than 2000 qph, dependent on the level of respiratory activity like singing or speaking
[82, 16]. Sun and Zhai calculate the quanta production rate to be q = 0.238 qps = 856.8 qph based on
a real-life case of COVID-19 infections on a bus [84].

3.3. Model analysis
In Appendix B, all investigated crowd behavior movement and medical infection models have been
presented. The possible combinations for these models are presented in Table 3.3. This table shows
that five combinations are not compatible, three combinations have limited compatibility and four com-
binations are a potential match. The argumentation behind these different compatibilities is presented
below the table. The combinations with limited compatibility and the combinations with a potential
match will be reviewed against the requirements from Table 3.2. In the end, the model combination
that best fits the model requirements will be chosen for further implementation.

Combi-
nation

Crowd
behavior
movement
model

Medical infection model Compatibility

P1 Pipe flow Compartment No match, movement model does not
influence infection model results

P2 Pipe flow Risk based EXPOSED Limited match, movement model out-
put data might be insufficient

P3 Pipe flow Risk based modified Wells-Riley Limited match, movement model out-
put data might be insufficient

P4 Pipe flow Agent-based No match, movement model output
data insufficient for medical model

R1 Route
choice

Compartment No match, movement model does not
influence infection model results

R2 Route
choice

Risk based EXPOSED Limited match, movement model out-
put data might be insufficient

R3 Route
choice

Risk based modified Wells-Riley Potential match

R4 Route
choice

Agent-based No match, movement model output
data insufficient for medical model

A1 Agent-based Compartment No match, movement model does not
influence infection model results

A2 Agent-based Risk based EXPOSED Potential match
A3 Agent-based Risk based modified Wells-Riley Potential match
A4 Agent-based Agent-based Potential match

Table 3.3: Crowd behavior movement and medical infection model combinations

3.3.1. Non-compatible combinations
Firstly, the non-compatible combinations will be discussed. These are the combinations where the
movement model and the medical model could not be matched. This is the case for all combinations
including a compartment model like SIR or SEIR. The specific combinations are: P1, R1 and A1. The
main reason for this non-compatibility is the fact that the movement model is not needed to run the
medical model and the movement data does not change anything in the medical model results. The
compartment medical models are based on a single space or population which is well-mixed and homo-
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geneous. These models assume that every individual has the same chance of contact with any other
individual. Therefore, pure compartment models are independent of agent location and layout, and the
results of the medical model are independent from how people move.

Two other non-compatible combinations are P4 and R4. These are the pipe flow movement model
and the route choice movement model combined with an agent-based infection model. The problem
with these combinations is that the agent-based medical model always requires the spatial location of
all agents. The pipe flow model and the route choice model do not provide this data. The pipe flow
model is not based on individuals moving through the system as the model only looks at flow. The route
choice model is agent-based but does not provide the spatial location either. The model moves agents
from node to node but does not provide the location or distance between agents who are located on
the same node. In the end, the output of these two movement models is insufficient for implementation
with an agent-based medical model.

3.3.2. Limited compatible combinations
The limited compatible combinations are P2, P3 and R2. P2 is the combination of a pipe flow model
and the EXPOSED risk based model. There is limited compatibility as the pipe flow model does not
look at individual agents and it is therefore not possible to count contacts within a certain radius of an
agent. The movement model output is insufficient to match directly with the infection model. P3 is the
combination of a pipe flow model and the modified Wells-Riley model. A similar challenge arises for
this combination as the modified Wells-Riley model requires information on social distance and the time
spent in a certain situation. The movement model output is, again, insufficient to match directly with
the medical model. For both combinations, there might be options to link ‘pressure’ from the pipe flow
model to either chance of infection or expected social distance as the ‘pressure’ says something about
crowdedness somewhere in the layout. P2 and P3 are labeled as limited compatible because finding
actual relations between these factors could prove challenging.

The last limited compatible combination is R2 which combines the route choice model with the EX-
POSED model. The route choice model would provide more detailed data than the pipe flow model for
the movement of crew and guests. The EXPOSED model does require the locations of agents in order
to determine close contacts. Within the route choice model, the agent space location for a specific time
step is known, but the exact Cartesian location is not. Similar to pressure in the pipe flow model, space
occupancy might be an indication for a contact probability as input for the EXPOSED model. In conclu-
sion, these three combinations only have limited compatibility as the disease performance indication is
based on indirect relations between the movement output data and the medical model input (like social
distance and close contacts). The questionable quality of the disease performance indication is also
visible in Table 3.4; where the models are compared to the set of requirements.

For the pipe flow combinations P2 and P3, the combinations do not meet the requirements for individual,
random and multi-leg movement. This is related to the pipe flow movement model which does not have
this level of detail. P2 and P3 also do not meet the requirements related to tracking the time agents
spent at locations and the space occupancies. Both risk-based medical models are not overly medically
complex and meet the medical complexity requirement. The EXPOSED model is not disease specific;
as the authors behind the model ought to create a generic model that could work for multiple diseases
[76]. The modified Wells-Riley is disease specific because the quanta values implemented are disease
specific.

R2 meets almost all requirements except for being disease specific and the disease performance in-
dication remains questionable. As discussed before, the combination is not diseases specific as the
EXPOSED medical model is generic by design. Implementing a route choice model instead of a pipe
flow model means that there are more options with respect to the movement of the agents. The indi-
vidual, random and multi-leg movement requirements are met. Also, the route choice model provides
information on the time agents spent in certain spaces and the space occupancy is known.
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Combination
Requirement P2 P3 R2

1 Convergence 3 3 3

2 Population size 3 3 3

3 Disease performance indication ∼∼∼ ∼∼∼ ∼∼∼
4 Layout incorporation 3 3 3

5 Space capacity and flow 3 3 3

6 Individual movement 7 7 3

7 Random movement 7 7 3

8 Multi-leg movement 7 7 3

9 Medical complexity 3 3 3

10 Time spent 7 7 3

11 Space occupancy 7 7 3

12 Disease specific 7 3 7

Table 3.4: Requirement analysis for limited compatible combinations

3.3.3. Compatible combinations
The last category covers combinations which are expected to be compatible. The combinations are:
R3, A2, A3 and A4. R3 is the combination of a route choice and a modified Wells-Riley model. The
risk-based modifiedWells-Riley model requires a social distance and time spent in a certain situation as
input parameters to determine infection risk. The route choice model does not provide spatial locations,
which leads to the limited compatible combination R2, but it does provide node locations for each agent
over time. This location data could easily be converted to an expected social distance based on the
number of agents on a node and the floor area that the node covers.

The three other compatible combinations feature agent-based movement models. These combinations
are expected to be compatible as the agent-based movement models are detailed models and provide
the spatial location for each agent over time. This information on the location of agents is sufficient
input for the EXPOSED model, modified Wells-Riley model and an agent-based infection model. For
the EXPOSED model, the spatial location can be used to determine the number of close contacts and
determine the agents between these contacts occur. The exposure matrix is then created for each
agent. The spatial location from the movement model can also be used to determine average social
distance as a value to be used in theWells-Rileymodel. The compatibility of the agent-basedmovement
and agent-based medical model speaks for itself. This A4 combination is the only combination where
sufficient data is available for an agent-based medical infection model.

Combination
Requirement R3 A2 A3 A4

1 Convergence 3 7 7 7

2 Population size 3 ∼∼∼ ∼∼∼ ∼∼∼
3 Disease performance indication 3 3 3 3

4 Layout incorporation 3 3 3 3

5 Space capacity and flow 3 3 3 3

6 Individual movement 3 3 3 3

7 Random movement 3 3 3 3

8 Multi-leg movement 3 ∼∼∼ ∼∼∼ ∼∼∼
9 Medical complexity 3 3 3 ∼∼∼
10 Time spent 3 3 3 3

11 Space occupancy 3 3 3 3

12 Disease specific 3 7 3 3

Table 3.5: Requirement analysis for compatible combinations
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In subsection 3.3.2, it was shown that combination R2 meets almost all requirements except for the dis-
ease performance indication requirement and the disease specific requirement. Combination R3meets
all requirements as the modified Wells-Riley model is disease specific. Also, the disease performance
indication requirement is met as the connection between the output of the movement model and the in-
put of the medical infection model is direct. For R3, the agent node locations can be converted to space
occupancy which can be linked to social distance. This provides a higher quality disease performance
indication than the indication for combination R2; where close contacts were related to close contact
probability based on space occupancy. Additionally, the social distance for R3 is location specific which
is useful when layout changes and operational or behavior measures are to be evaluated.

The combinations A2, A3 and A4 show some similarities when these combinations are compared with
the requirements. First of all, there are concerns that these models will not provide results that con-
verge within an acceptable time frame. The level of detail for these models leads to long run times and
the need for extensive computational power. It is expected that the convergence requirement, within
an acceptable time frame, is therefore not met. This requirement is important as this research aims
to test a large number of different scenarios to compare ship layout and the efficiency of various mea-
sures. The convergence requirement is also connected to the population size the models can deal with.
The population sizes for large passenger vessels might cause long run times to achieve convergence
for the results. For combination A4, it would be possible to account for different transmission modes
and assign every agent a state (like infected or susceptible). This model can account for individuals
transitioning between different disease states and it is possible to ‘see’ the infection progress over time
via specific individuals. This type of modeling requires a longer time frame as it may take multiple days
for the disease to spread. A4 is therefore even more complex and possibly time-intensive than combi-
nations A2 and A3. One could argue that the medical complexity of A4 is too large. The considerations
regarding convergence, population size and medical complexity can also be seen in Table 3.5.

A2, A3 and A4 show potential for layout incorporation, queuing and disease performance indication.
They also meet the individual and random movement requirements. However, the multi-leg movement
requirement might require some attention. This has to do with the fact that most agent-basedmovement
models are based on complete random movement of all agents inside a layout or single-leg movement.
The multi-leg movement requirement specifies that it should be possible to assign multiple locations
and model the agent executing an activity schedule. Some adaptions might be needed to be able to
implement this multi-leg movement. Lastly, A2 features the EXPOSED model which is not disease
specific and as a result, the last requirement is not met.

3.3.4. Model combination choice
Summarizing, this subsection has covered possible combinations of the movement and medical infec-
tion models as described in section 3.2, section B.1 and section B.2. The combinations that demon-
strated limited compatibility or compatibility were tested against the set of model requirements from
section 3.1. Combination R3 is the only combination that meets all requirements. This combination
integrates a route choice movement model with a modified Wells-Riley infection model and calculates
infection risk for each individual at different times in the simulation. The combination is not as complex
and time-intensive as the agent-based movement models but does provide a strong disease perfor-
mance indication. Also, the disease performance indication is layout dependent so different layouts
can be investigated and compared. In conclusion, combination R3 meets all requirements and this
combination is going to be developed further. A research proposal, integrating model combination R3,
is described in the next chapter.



4
Integrated Model Architecture

This chapter will provide an overview of the developedmodel integrating amodifiedWells-Riley infection
model and a crowd behavior model. The chapter answers the follow research question:

4. What is the architecture of the integrated infection and crowd behavior model?

The first section provides background on the chosen movement model: a route choice model (RCM)
initially developed by Narayan et al. and adjusted by Van Gisbergen [64, 26]. The second section
describes the integrated model which connects the RCM results and modified Wells-Riley infection
model. Thereafter, the third section will report on small-scale test cases which were used to verify and
test the model.

4.1. Route choice movement model
The high-level structure of the route choice model described by Narayan et al and Van Gisbergen,
can be found in Figure 4.1. The model is written in C++ and run in Microsoft Visual Studio 2022 with
an academic license. First, the file system is defined and eighteen start parameters are specified.
The start parameters are given in Table 4.1. Within the main() function, output folders are created
and a clock is defined so that the elapsed time can be given at the end of a run simulation. The
simulationruns() function is called within the main() function and three steps can be distinguished within
this simulationruns() function. The initialize function makes sure that the flow, capacity and length
parameters are set to zero at the start of the simulation. In the second step, output files for flow, link
occupancy and output times are created within the output folders created under the main() function.
The activity and mobility simulator can be run after these two steps and Figure 4.2 shows the simulator
process.

Agents & layout Time & repetition Chosen route choice model Path separation
agent_data simulation_time R_C_M path1
network_data time_step turn_penalty path2

number_of_agents number_of_runs angular_penalty path3
number_of_nodes double gamma
number_of_links draws

direction_angular_threshold

Table 4.1: Start parameters route choice model

23
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Figure 4.1: Route choice simulation - overview

Figure 4.2 shows the process in the activity/mobility simulator. This process is run for each agent for
every timestep. The process features four states that the agent can have: activity, wayfinding, walk
and stay. The wayfinding state has been highlighted as it features some complex considerations which
will be explained in more detail in Figure 4.3.

• Activity
The simulation is initialized at the activity state to avoid “all agents starting to walk at the same
time once the simulation has started” [26].

• Wayfinding
The agent will move to the wayfinding state if the activity time at a certain location has been
completed. The activity node location and the duration of the activities are stored in an activity
schedule which looks like Table 4.2. The path to the next destination node is determined in the
wayfinding state.

• Stay
The agent will be assigned the stay state when the wayfinding state is completed. The agent
remains in this state if the capacity of the next link does not allow movement.

• Walk
The agent moves from the stay state to the walk state. The agent keeps walking as long as the
link and flow capacities are smaller than the set maximum. When the end of a link has been
reached and that link is the last link in the determined path, the agent is transferred to the activity
state, provided that the entire schedule is not yet finished. If the link is not the last link in the
determined path, the agent iterates over the next link between two nodes. The simulator will end
when the activity schedules for all agents have been completed.
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Figure 4.2: Route choice simulation - activity and mobility simulator

Table 4.2: Example of activity schedule structure [26]

Van Gisbergen implemented path separation for the wayfinding state in order to decrease the compu-
tational time for longer routes [26]. The path separation can be seen in Figure 4.3 and the adjusted
path generator 2 is only called when the start and end node are far enough apart. If the path does not
qualify, the regular path generator will calculate a single path list. The size of this list can be adjusted
in terms of the variation, and the route choice model will choose its final path from this list. For longer
paths, the new path generator will create four lists between staircase 1 and staircase 2 as they connect
the entire ship [26]. The final path is the combination of two paths which takes the least amount of time
to complete.
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Figure 4.3: Route choice simulation - wayfinding state (path separation included)

4.2. Integrated model architecture
This section provides an in-depth explanation for the developed Python model connecting the move-
ment and infection model. Agent location, state and link occupancy results from the RCM, as described
in section 4.1, are used as basis input for the developed model. In subsection 4.2.6, the modified Wells-
Riley infection model can be recognized and this subsection also describes how the infection model
is implemented. The model output is a matrix providing agent-specific infection risk for every timestep
over a day. The model is run in Spyder, a free and open-source IDE for Python. Figure 4.4 shows
an overview of the model architecture and the various elements will be discussed in more detail in the
subsections below the figure.
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Figure 4.4: Model architecture - overview

4.2.1. Start parameters
At the start of the model, eleven important parameters are defined. The parameters and their assigned
values can be seen in Table 4.3. In the model, it is possible to run a limited calculation when only part of
the full simulation time (a day) is used. A partial time can be defined using the ‘partial time simulation’
and ‘simulated time’ parameters. The model will automatically run a full simulation if the ‘partial time
simulation’ parameter is set to zero. The table also shows medical and ventilation parameters which
are integral to the modified Wells-Riley infection risk calculation and are thoroughly investigated in
chapter 5.

Parameter Description Assigned value Unit
Number of links Amount of connections be-

tween locations in the layout
968 [-]

Number of nodes Amount of locations in the ship
layout

389 [-]

Number of agents Amount of agents in the simula-
tion

2848 [-]

Partial time simulation Decision to run a full or limited
calculation

1 (full) or 0 (limited) [-]

Simulated time Define time steps for partial sim-
ulation

0 - 86400 [s]

I Number of infectors Discussed in chapter 5 [-]
p Pulmonary ventilation rate of

susceptible individuals
Discussed in chapter 5 [m3/s]

q Quanta production rate per in-
fected individual

Discussed in chapter 5 [quanta/s]

ACH Air changes per hour Discussed in chapter 5 [-]
Hc Average ceiling height Discussed in chapter 5 [m]
Qz Ventilation index Discussed in chapter 5 [-]

Table 4.3: Start parameters for integrated model

4.2.2. File import
Besides the start parameters, more information with respect to agent location, agent state, link occu-
pancy and layout dimensions is required in order to calculate infection risk. Agent location, agent state
and link occupancy are directly retrieved from a completed route choice movement simulation and this
data is therefore scenario-dependent. The route choice model determines the length of each link as
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part of the calculation and, therefore, link length can also be directly used from the RCM model. Addi-
tionally, node area, link length and link ID are used in the model to determine location specific average
social distance.

Agent location
The from-node [FN ] and to-node [TN ] matrices provide agent location over time. Every row is a
time step of 1 second with t = [t0, t1, · · · , tq, · · · , tf ]. The maximum number of rows is related to the
activity schedule and will be less than 1 day or 86400 seconds (rows). Every column represents an
agentID = [0, · · · , i, · · · , n]. A structural example of the FN and TN location matrices is given in
Equation 4.1 and Equation 4.2. The location can be a node (for the activity state) or a link (for other
states). The location file is required as the agent location indicates the time spent at a certain location
and the location itself will be linked to a social distance indication. These parameters are both needed
in the modified Wells-Riley model.

FN i
t =



fn0
t0 . . . fni

t0 . . . fnn
t0

...
. . .

...
. . .

...
fn0

tq . . . fni
tq . . . fnn

tq
...

. . .
...

. . .
...

fn0
tf . . . fni

tf . . . fnn
tf

 (4.1) TN i
t =



tn0
t0 . . . tni

t0 . . . tnn
t0

...
. . .

...
. . .

...
tn0

tq . . . tni
tq . . . tnn

tq
...

. . .
...

. . .
...

tn0
tf . . . tni

tf . . . tnn
tf

 (4.2)

Agent state
The state output file is a matrix which specifies the agent state over time. Again, the rows represent time
steps and the columns represent agents. An example of this matrix is presented in Equation 4.3. This
file is required to get more insight into agent states during the simulation. Especially the activity state
is important because the agent is not located inside a link but rather on a specific node. This activity
location will have certain dimensions and a specific occupancy which can be translated to average
social distances.

Si
t =



s0t0 . . . sit0 . . . snt0
...

. . .
...

. . .
...

s0tq . . . sitq . . . sntq
...

. . .
...

. . .
...

s0tf . . . sitf . . . sntf

 (4.3)

Link occupancy
The average link and node social distance is determined using the space dimensions combined with
node and link occupancy. The node occupancy is not directly available from the route choice model
and will be calculated in subsection 4.2.5. However, the link occupancy is directly available and in the
structure as shown in Equation 4.4 with linkID = [1, · · · , i, · · · ,m].

LOi
t =



lo1t0 . . . loit0 . . . lomt0
...

. . .
...

. . .
...

lo1tq . . . loitq . . . lomtq
...

. . .
...

. . .
...

lo1tf . . . loitf . . . lomtf

 (4.4)

Link length and node area
Both the link length and node area are imported as vectors. The link length is calculated in the RCM
model and the vector [LL] thus provides the length inmeters for each link with linkID = [1, · · · , i, · · · ,m].
The node area is defined in a similar way where the vector provides the area for each node in meters
squared and nodeID = [1, · · · , i, · · · , w].
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LLi =
[
ll1 . . . lli . . . llm

]
(4.5)

NAi =
[
na1 . . . nai . . . naw

]
(4.6)

Link ID
A final imported file is connected to the links because the link ID number needs to be derived from
the agent from- and to-node in the model. Therefore, a file with every link ID and the corresponding
nodes is imported as shown in Equation 4.7. The first row defines the from-nodes and the second row
defines the to-nodes. The index of this matrix corresponds to the link ID numbers. The nodes are not
necessarily presented in an ascending order.

LDi =

[
ld1 . . . ldi . . . ldw
ld1 . . . ldi . . . ldw

]
(4.7)

4.2.3. Simulation time
The simulation time is determined based on the size of the imported state matrix for a full calculation.
This, because the RCM simulation time differs slightly for each run and the output matrices will thus
have different sizes each time the RCM is used. The ‘simulated time’ start parameter will be used as
input when a partial calculation is chosen.

4.2.4. Delayed agent simulation start
In the RCM model, the agents will not start the simulation all at the same time. This results in agents
whose from-node and to-node are zero as they are not yet participating. However, these agents are
onboard the ship at some location. To compensate for this delayed start, the agents are put at their
initial location even if they have not yet started the simulation. Listing C.1 shows the Python code used
to compensate for this delayed start. The values in the [No] vector are used in situations where agent
locations are still zero.

4.2.5. Node occupancy
At this point, the node occupancy can be calculated as the start parameters are defined, the run time is
determined and the required files are imported. Listing C.2 provides the Python code used to calculate
the node occupancy. The node occupancy is calculated using a nested loop over the run time and
the number of agents. The node occupancy is determined at each timestep and the agent-loop is
therefore inside the time-loop. An agent is located at a node during an activity or when the activity
schedule is completed. For all other states: wayfinding, stay, walk, the agent is located on a link and
the corresponding link occupancy has already been determined by the RCM. When the agents’ from-
node is zero, the first non-zero from-node will be used as described in subsection 4.2.4.

4.2.6. Infection risk
The infection risk calculation can be divided into four parts and these four parts are discussed separately.
The first part concerns the nested loop and exposure time reset, and can be found in Listing C.3. The
second part of the calculation determines the average node social distance for agents in the activity or
end state. After this calculation, the average link social distance for agents in the wayfinding, wait or
walk state is calculated. The final step is the risk calculation using the medical start parameters and
the average node/link social distance.

Similar to the nested loop in subsection 4.2.5, this nested loop is also defined over time and the number
of agents. However, the sequence of the loops is different as the calculations are done for every
agent going through all time steps tracking the exposure time. The exposure time is reset for three
situations:

• Moving to a new agent
• When an agent changes spaces
• When an agent starts an activity
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The second step, given in Listing C.4, features the calculation of the average social distance for agents
located at a node. The social distance index is set to zero when the node occupancy is 1, because
there can not be an infector present. The average social distance is determined using the appropriate
node area and node occupancy. This average social distance is used to calculate the social distance
index according to the paper by Sun and Zhai [84].

After some initial testing, it turned out that the social distance index becomes negative for a social
distance larger than d ≈ 10.8m. The agents will not have an ‘infectious’ effect on each other as they
are too far apart, according to the particle model used by Sun and Zhai [84]. The social distance index
in the integrated model is therefore set to zero for this specific situation as seen in Listing C.4.

Listing C.5 shows the third step of the infection risk calculation. This step results in the average social
distance index for agents located on a link. This is the case for agents in the wayfinding, walking and
waiting state. The from-node and to-node are retrieved from the input files. These nodes are agent
and timestep specific and are used to find the associated link ID number. After this, the social distance
index can be calculated. Similar to the second node calculation step, the social distance is also set to
zero when the social distance is too large or when there is no infector present in the space.

The final part of the integrated model is found in Listing C.6. This part features the actual infection risk
calculation for every agent at every timestep. The results are stored in an empty matrix. Infection risk is
dependent on the ventilation rate, medical parameters, the social distance index, the ventilation index
and the exposure time. The location-specific ventilation rate is calculated based on the air changes per
hour (ACH) and location area. The choice for a variable ventilation rate, incorporating the ACH parame-
ter, is preferred over an average ventilation rate for all spaces, as a constant ventilation rate would lead
to overestimated ventilation for small spaces and underestimated ventilation for large spaces.

4.3. Small-scale test cases
This section describes five small-scale test cases which were used for the initial verification of the
integrated model. The RCM model input, like from-nodes or state files, is not used for these test cases.
Instead, representative arrays and matrices for location, state and link-occupancy are defined for each
test case and directly used within the model. The medical parameters are, for now, chosen based on
the work of Sun and Zhai and given in Table 4.4 [84].

Parameter Description Assigned value Unit
I Number of infectors 1 [-]
p Pulmonary ventilation rate of

susceptible individuals
8.333 ∗ 10e− 5 [m3/s]

q Quanta production rate per in-
fected individual

0.238 [quanta/s]

ACH Air changes per hour 15 [-]
Hc Average ceiling height 2.35 [m]
Ez Ventilation index 1 [-]

Table 4.4: Medical parameters for integrated model [84]

4.3.1. Test case 1,2 and 3 - stationary agents
The first three test cases relate to stationary agents at three different locations. A vector or matrix for
link occupancy has not been defined as agents are not moving and the link occupancy is thus zero for
all links over the run time. The locations in the test cases are related to the SAFEGUARD project layout
for the Radiance of the Seas cruise ship operated by Royal Caribbean International [23]. Additional
ship specific information is given in chapter 5 when the sample case is defined, and the deck plans can
be found in Appendix D.
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The first test case features one stationary agent located in the aft restaurant at deck 5 (node 104). The
restaurant has a capacity of 477 people over 363 square meters. The location, from-node and to-node,
does not change and the agent is in an activity state.

The second test case models two stationary agents in three different locations: node 104 (restaurant
deck 5), node 15 (corridor deck 2) and node 17 (small corridor deck 2). The floor area of node 15 is
approximately 6 m2 and 2 m2 for node 17. The third test case models four stationary agents at node
15 and node 17. All three test cases are run for 1 hour.

Test case 1 2A 2B 2C 3A 3B
Number of agents 1 2 2 2 4 4
Run time [s] 3600 3600 3600 3600 3600 3600
From-node 105 105 16 16 16 16
To-node 104 104 15 17 15 17
State 1 1 1 1 1 1

Table 4.5: Test case 1,2 and 3 - characteristics

The results of test cases 1, 2 and 3 are given in Figure 4.5 up to Figure 4.10. Figure 4.5 and Figure 4.6
show a constant infection risk of zero. For test case 1, this can be explained by the fact that there is
no infector in the space, just a single agent who can not infect itself. Test case 2A gives a similar result
but for a different reason as the space and thus the social distance is too large for two agents to have
an impact on each other. This test case also demonstrates an assumption with respect to the average
social distance: agents distribute themselves over the available space. In reality, this might not be the
situation as agents in a large space group together, resulting in a smaller social distance.

Figure 4.5: Test case 1 - infection risk Figure 4.6: Test case 2A - infection risk

Figure 4.7 and Figure 4.8 present the results for two stationary agents at two locations on deck 2.
Both figures show that the infection risk increases over time according to an exponential relationship
where Figure 4.8 asymptotically approaches a 100% infection risk. This behavior can be explained by
the modified Wells-Riley equation used to calculate infection risk, given in Equation 3.3. These two
figures also show that the smaller space in test case 2C, results in higher infection risks reached after
a shorter amount of time. These test cases thus indicate that a difference in the space area matters for
the infection risk results.
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Figure 4.7: Test case 2B - infection risk Figure 4.8: Test case 2C - infection risk

The results for test cases 3A and 3B are given in Figure 4.9 and Figure 4.10. The infection risk gives
similar outcomes concerning test cases 2B and 2C. This is expected as the test cases only differ in the
number of agents involved and the locations stay the same. The agents in test case 3A reach higher
infection risks than the agents in test case 2A and they also reach these risks after a shorter time. This
can be explained by the smaller average social distance because the space is shared by four agents
instead of two. Also, for test case 3B, the infection risk approaches 100% more quickly because of the
smaller social distance. Comparing test cases 2B and 2C with 3A and 3B leads to the conclusion that
the number of agents in a space has, as expected, an (increasing) effect on infection risk.

Figure 4.9: Test case 3A - infection risk Figure 4.10: Test case 3B - infection risk

4.3.2. Test case 4 - two moving agents
Test case 4 models two agents who move from a 6 m2 corridor on deck 2 (node 15) to a 2 m2 corridor
on deck 2 (node 17) via node 16 which connects these two locations. The agents move together and
the specific data defined for this test case is presented in Table 4.6. The infection risk for the test case
is given in Figure 4.12. Three conclusions can be drawn from this figure. Firstly, the infection risk
increases over time as long as the agents stay in the same space. Secondly, the infection risk goes to
zero when the agents change spaces around timestep 3600 s. The time which is spent walking from
node 15 to 16 and from node 16 to 17 is short and does not give high infection risk values. Thirdly, the
risk does increase significantly when the agents arrive at the second location, time step 3840 s, which
features a smaller space and thus a smaller average social distance than the first location.
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Figure 4.11: Test case 4

Time step [s] 0 3600 3720 3840 7440
From-node 18 15 16 16 16
To-node 15 16 17 17 17
State 1 0 0 1 1
Link occupancy 0 2 (link 11) 2 (link 499) 0 0

Table 4.6: Test case 4 - characteristics

Figure 4.12: Test case 4 - infection risk

4.3.3. Test case 5 - two stationary and one moving agent
The final test case models two stationary and one moving agent. The moving agent is first located
close to the FWD stairs deck 6 port side (node 155) and moves to the starboard side close to the same
stairs (node 157). Both locations have an equal floor area of approximately 9 m2. The two stationary
agents are located at the SB side of the stairs (node 157). The specifics for the location, state and
link occupancy over time are noted in Table 4.7 and Table 4.8. Figure 4.14 shows the infection risk
over time for test case 5. For the moving agent, the risk is zero until the agent enters node 157 and
the risk increases after time step 3840 s. The risk is zero up to time step 3840 s, because the moving
agent is the only occupant in these spaces. The stationary agents experience risk from the start of the
simulation as they are both located at node 157. When the moving agent enters node 157, the infection
risk of the stationary agents shows an upward jump as the average social distance decreases.

Figure 4.13: Test case 5
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Time step [s] 0 3600 3720 3840 7440
From-node 151 155 158 158 158
To-node 155 158 157 157 157
State 1 0 0 1 1
Link occupancy 0 1 (link 181) 2 (link 667) 0 0

Table 4.7: Test case 5 - characteristics moving agent

Time step [s] 0 3600 3720 3840 7440
From-node 158 158 158 158 158
To-node 157 157 157 157 157
State 1 1 1 1 1

Table 4.8: Test case 5 - characteristics stationary agents

Figure 4.14: Test case 5 - infection risk

After executing the five test cases, it can be concluded that the model provides infection results match-
ing initial expectations:

• Infection risk increases with time for spaces with more than one agent and average social dis-
tances smaller than approximately 10.8 m.

• Infection risk shows exponential behavior, which can be related to the modified Wells-Riley Equa-
tion 3.3 used to calculate the risk.

• Infection risk increases faster and to higher values for spaces with an increasing number of
agents.

• Infection risk increases faster and to higher values for spaces with a smaller size.
• Infection risk goes to zero when agents change spaces.
• Infection risk increases when an agent enters a space.



5
Sample Case

This chapter will build on the integrated model described in chapter 4 and will answer the following
research questions:

5. What are the infection risk results of a sample case scenario when the integrated infection and
crowd behavior model is applied?

6. How can the infection risk results from the integrated model be validated?

First, a sample case is defined which is used in a convergence study for the RCM model. The RCM
model itself is based on probabilities and will provide different results every time the model is run,
even if the input parameters stay the same. Therefore, a convergence study is used to determine the
repetitions required to achieve converging input results for the integrated model. Second, a param-
eter sensitivity study will be completed for the integrated model. This study will determine the effect
or ‘sensitivity’ of medical and ventilation parameter changes, on the final infection risk results. This
sensitivity study combined with results from scientific literature will inform the final choice for medical
and ventilation parameters used during the layout, operational and behavioral scenario simulations in
chapter 6.

5.1. Sample case
The sample case can be described covering two main topics: the ship layout and the activity schedule
for the guests and crew. The activity schedule aims to realistically represent the real-life movements
onboard a cruise vessel. The sample case ship layout is taken from the second data set from the
SAFEGUARD project. Under this EU project, full-scale data sets for passenger evacuation response
times onboard a RO-PAX ferry (with and without cabins) and a cruise ship were generated [8]. These
data sets are used to validate the results of mandatory evacuation simulations for passenger vessels.
The second data set provides the deck plans for a cruise ship operated by Royal Caribbean Interna-
tional [23]. The complete cruise ship layout can be found in Appendix D. This layout corresponds
to the Radiance of the Seas cruise vessel and the ship characteristics as provided in Table 5.1 and
Figure 5.1.

35
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Figure 5.1: Radiance of the Seas [14]

Ship Radiance of the Seas
Owner Royal Caribbean Group
Maiden Voyage 7 April 2001
Tonnage 90,090 GT
Length (LOA) 293.2 m
Beam 32.2 m
Draft 8.63 m
Decks 13 (12 guest accessible)
Speed 25 kn
Capacity 2466
Crew 894

Table 5.1: Radiance of the Seas - main ship characteristics [79]

5.1.1. Guest activity schedule
The activity schedule prescribes the location for individual guests over the course of a day. The sched-
ule is structured as presented in Table 4.2 where location nodes and waiting times alternate. The guests
complete seven legs per day: cabin → breakfast → activity → lunch → activity → dinner → activity →
cabin. All schedules follow the same trend (7 legs) but the differences in activities and meal locations
lead to variety in the schedules. The activity and meal locations are chosen arbitrarily and the guest
route choice is based on the mixed logit method. Additional characteristics of the sample case guest
activity schedule are given in Table 5.2. Looking at extreme cases, two groups can be distinguished.
A first group of agents would start their day earliest and have the shortest activity and meal durations.
The guests in this group move to breakfast at 08:00, after which the agents have six activities/meals
of 130 minutes and complete the schedule around 21:00. A second ’extreme’ group will go to break-
fast at 09:00 and have 150 minute activity durations. This group then completes its schedule around
24:00.

Characteristic Specifics
Number of agents 2148
Groups Every 4 agents follow the same schedule
Activity/Meal duration 140 minutes ± 10 minutes
Moving to breakfast Uniform distribution 08:00 till 09:00
Final move to cabin Between 21:00 and 24:00

Table 5.2: Sample case guest activity schedule
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5.1.2. Crew activity schedule
The cruise vessel can house over 850 crew from which 700 agents will be modeled. This choice is
made because part of the crew has limited contact with the guests. This can, for example, be a crew
member working in the engineering or deck department. The crew schedule specify eight legs: cabin
→ shift → break → shift → break → shift → break → shift → cabin. The crew works four shifts with
three breaks in between. Contrary to the guest schedule, there are two schedules for the crew: an
early and a late shift. Two specific assumptions are made with respect to the work location of the crew.
Firstly, the activity crew can rotate between the activity locations on the ship. Their shift workplace over
the day can change after breaks. However, the restaurant crew will work in the same place for the
entire day. The deviation for the crew schedule lies much lower than for the guest schedule because
the crew is expected to show up in time for work. Additional crew activity schedule characteristics can
be found in Table 5.3.

Characteristic Specifics
Number of agents 700
Shift duration 180 minutes (4x)
Break duration 30 minutes (3x)
Early shift 07:30 ± 3 minutes till 21:00 ± 3 minutes
Late shift 10:30 ± 3 minutes till 00:00 ± 3 minutes

Table 5.3: Sample case crew activity schedule

5.2. RCM Convergence
In the previous section, the ship layout and activity schedules for the sample case were described. It
is important to note that the route choice model will provide different outcomes for every simulation,
even if the input parameters are kept the same. This can be explained by the implementation of prob-
abilities and probability distributions influencing the routes that the agents will take. Therefore, five
sample case simulations were run and the infection results have been analyzed. After these simula-
tions, it was noted that the model presented unrealistic results at the start and end of the day. The
action undertaken to address this issue is explained in subsection 5.2.2. Subsection 5.2.3 describes
the results for the adjusted model and compares these results to the sample case simulations from
subsection 5.2.1.

5.2.1. Sample case simulations
The assigned input parameters for the sample case simulations can be found in Appendix E, where
Table E.1 specifies the RCM input parameters and Table E.2 gives the integrated model parame-
ters.

The infection risk results are given in Table 5.4. During the calculation, risk locations and average
infection risks over time were determined. The high-risk locations are locations where the largest group
of agents experience their highest infection risk over the day. The average infection risk, over time, was
also calculated for the guests (agent 0 up to 2147) and the crew (agent 2148 up to 2848) as specific
groups. Additionally, a mean and standard deviation were determined over the five sample case runs.
The mean average risk for these five sample runs is 27.5% with a standard deviation of 0.359. The
mean average guest risk of 23.3% lies lower than the total value but shows a higher standard deviation
over the five runs. The mean average crew infection risk of 40.5% lies higher than the guest and total
infection risk. However, the crew standard deviation is smaller which might be explained by the fact
that the crew follow similar activity schedules between themselves which results in smaller differences
in the routes chosen for the five runs.

The risk locations 1, 4 and 5 are the same for all five sample case runs. Risk location 1 is node 5 which
is a move-through area in front of the stairs on deck 2. Interestingly, this node gives high values while
it is not expected to be a location where agents spent much time. The high value can be explained by
the activity schedule for the crew. Node 5 is, together with node 33, set as the first node in the crew
activity schedule because the crew quarters are not modeled. At the start of the simulation, the crew
will build up high levels of infection risk as part of the crew is ‘waiting’ on these nodes until their shift
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starts. Node 33 can be recognized as risk locations 2 and 3 in the table. Risk locations 2 and 3 are not
constant over the five runs as the frequency (amount of agents which has their highest infection risk
at that location) lies close together for nodes 33 and 330. Node 330 and node 293 feature restaurant
locations on deck 12 aft and deck 11 starboard. Node 388 is the Viking Crown lounge on deck 13.
These are spaces where large numbers of agents are expected to spend significant time, which results
in high infection risks.

Run 1 2 3 4 5 Mean σ

Average IR [%] 27.4 27.4 27.4 28.1 27.2 27.5 0.359
Average guest IR [%] 23.2 23.2 23.1 24.0 22.8 23.3 0.438
Average crew IR [%] 40.1 40.4 40.5 40.8 40.6 40.5 0.241
Risk location 1 5 5 5 5 5 - -
Risk location 2 33 330 33 33 330 - -
Risk location 3 330 33 330 330 33 - -
Risk location 4 293 293 293 293 293 - -
Risk location 5 388 388 388 388 388 - -

Table 5.4: Results for five sample case runs

Figure 5.2 shows a frequency distribution for the average infection risk over time for the complete group
of agents. In the figure, the five different sample case runs are presented and they show a similar trend.
The figure shows a frequency peak between 20% and 25% average infection risk which lies close to
the average infection risk mean as calculated in Table 5.4. The figure also shows that there are agents
with average infection risks above 60%. Also, there are only a few agents with a low average infection
risk between 0% and 10%.

Figure 5.2: Average infection risk - five sample case runs

In Figure 5.3, a different type of frequency distribution is presented. This figure shows the number of
agents with an infection risk above 90% over time. Figure 5.3 thus provides information which is more
related to the population as a whole and shows the fraction of the population that is at significant risk
over time. The developed model does not move past risk, assigning agents to become infected, sick
or recover. Therefore, it is only possible to present risk and not the number of infected individuals. The
90% risk condition was chosen because, if infection were modeled, at least these agents are likely to
become infected. All five runs show similar results with the slight exception of run 4. At the end of the
simulation for run 4, the risk peak seems to be steeper and lie earlier in time.

At the start of the simulation, Figure 5.3 shows a steep peak around timestep 10:15 as more than 800
agents have an infection risk above 90%. This is the moment just before the crew late shift starts. As
mentioned before, the crew quarters are not modeled and half of the crew population is waiting on either
node 5 or node 33. These agents build up unrealistic infection risks as they are waiting on locations with
limited dimensions for a longer period. At this point, all guests will have moved to breakfast. Guests
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who started breakfast early are approaching the end of their breakfast and this group has been building
up risk over the duration of their breakfast. The combination of the crew and guest situations results in
the identified peak.

Near the end of the simulation, the amount of agents with a high risk increases again beyond the values
seen during the day. This can be explained by the fact that the early shift crew is now gathering on
nodes 5 and 33 as they have completed their schedule. Just like the peak at the start of the simulation,
this situation results in high infection risks accumulated at an unrealistic location.

Figure 5.3: Infection risk above 90% - five sample case runs

The infection risk peak around 10:15 and the large number of high-risk agents after 21:30 highlight a
shortcoming in the current model for the situation where the agents are not participating in the simulation
yet or have finished the activity schedule:

• The late shift crew builds up unrealistic risk before 10:30 at node 5 and node 33 because the crew
quarters have not been modeled.

• The early shift crew builds up unrealistic risk after 21:00 at node 5 and node 33 because the crew
quarters have not been modeled.

• Congestion at node 5 and node 33 due to waiting crew could lead to high infection risks and
waiting times for the guests moving through these locations.

• The infection risk results for guests in their cabins, when they are not participating yet or have
finished, are questionable since cabins are not modeled individually. The guest cabin accommo-
dations are currently modeled as if the occupants of a group of cabins are located in one open
space.

5.2.2. Adjusted Time Range
Various solutions were considered to deal with the shortcoming identified in section 5.2. The RCM
model could be adjusted to include the ship layout for the crew quarters and decrease the group size
for guest cabins to produce a more realistic scenario. This would be a time-intensive solution as both
the layout and the activity schedule need to be adjusted. Additionally, it is relevant to consider that
this research is specifically focused on infection risks incorporating normal-day movement instead of
long-term stationary behavior.

Another option would be to look at a time range during the day, disregarding the unrealistic infection
risks at the start and end of the simulation. The complication with this solution lies in determining the
boundaries of the results taken into consideration. The late shift crew starts to participate in the simula-
tion after 10:30, so the first boundary should lie beyond this point in order to avoid the high infection risks
of the late shift crew. However, before this point in time, all guests have started to participate and their
movements are relevant for the final results. For example, putting the first boundary at 11:00 excludes
a significant part of the behavior of the guests. Using this solution would resolve unrealistic outcomes
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by introducing different unrealistic outcomes as certain agent behavior is unrepresented. In the end,
the problem can be traced to the spread-out movement of the agents which means that no agent starts
or finishes the simulation at the same time. However, this spread-out movement is implemented to
represent a real-life scenario where people do not move uniformly.

Finally, a variation on the second solution was implemented. In the integrated model, the infection risk
for every individual agent is considered to be zero when the agent is not yet participating or when the
agent has finished the activity schedule. The relevant code can be found in Listing C.7 and Listing C.8.
In Listing C.7, two relevant indices for each agent are found. These indices correspond to the time when
the agent first starts moving (state = 0) and the time when the agent has completed the activity schedule
(state = 4). These indices are used in Listing C.8 as boundaries. Before and after these boundaries,
the social distance index is set to zero, which leads to an infection risk of 0% at that timestep.

The implementation can be recognized in this chapter under the abbreviation ATR (Adjusted Time
Range), as the time range taken into consideration is individually adjusted. All simulations in sec-
tion 5.3 and chapter 6 were completed under the assumption that the infection risk is zero before and
after participating in the simulation, and this assumption will thus not be specifically mentioned after
section 5.2.

5.2.3. Sample case simulations - ATR
Table 5.5 presents the results for the sample case simulations both with and without the ATR adjustment.
The average infection risks have significantly decreased for the ATR simulations. The mean average
infection risk has decreased from 27.5% to 21.7% and both the guest and crew infection risks have
decreased. These changes were expected as high infection risks at the start and end of the simulation
are not affecting the average value anymore. The average risk decrease for the crew is much larger,
from 40.5% to 24.7%, than the decrease for the guests, from 23.3% to 20.7%. This was also expected
as the crew is no longer building up high risks at nodes 5 and 33 before and after their shifts.

The standard deviations of the average IR and guest IR have more than doubled while the standard de-
viation of the crew average infection risk has hardly changed. Additionally, this crew standard deviation
is much lower than the guest standard deviation.

Run 1 2 3 4 5 Mean σ

Average IR [%] 27.4 27.4 27.4 28.1 27.2 27.5 0.359
Average guest IR [%] 23.2 23.2 23.1 24.0 22.8 23.3 0.438
Average crew IR [%] 40.1 40.4 40.5 40.8 40.6 40.5 0.241
Adjusted time range
Average IR [%] 21.5 21.5 21.4 23.0 21.2 21.7 0.748
Average guest IR [%] 20.5 20.5 20.3 22.4 20.0 20.7 0.953
Average crew IR [%] 24.3 24.6 24.6 24.9 24.8 24.7 0.244

Table 5.5: Results five sample case runs with and without ATR

Figure 5.4 and Figure 5.5 visualize the average infection risk frequency for the ATR adjusted model.
The first figure shows the five different runs and it can be seen that run 4 deviates from the other runs.
For this run, there is a larger amount of agents with a higher average infection risk than the other
runs. Minor differences for run 4 can also be recognized in Figure 5.2 for the unadapted model. The
larger differences for run 4 will also contribute to higher standard deviations as seen in Table 5.5 for
the adjusted model.

Figure 5.5 compares the sample case for the adjusted and original model. The five runs are averaged
and no longer visible in this figure. For the ATR model, there are no agents with an average infection
risk above 60%. The frequency distribution has moved left as more agents have an average infection
risk below 20%. The frequency peak for the ATR model lies around 20% which matches with the mean
value found in Table 5.5.
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Figure 5.4: Average infection risk - ATR Figure 5.5: Average infection risk - comparison

Next to average infection risk figures, the frequency distributions for agents with more than 90% infec-
tion risk were calculated and can be seen in Figure 5.6 and Figure 5.7. Some observations can be
made using these figures. Firstly, Figure 5.7 shows the ATR model results against the original sample
case. The differences lie solely at the start and end of the simulation where the infection risk is cor-
rected. The ATR adjustment lowers and delays the peak around 10:15 and eliminates the risk build-up
at the end of the simulation.

Secondly, the difference for run 4 is more evident than seen in Figure 5.3, especially after 18:30. The
last two peaks seem to occur later in time than the other runs. The last peak does have a similar shape
to the last peaks of runs 1 and 2 but it occurs later in time. This corresponds to a situation where
guests (as the crew has a more rigid schedule) move to their last activity later which then delays the
final guests movement to the cabins. The peak lies just before they move to their cabins as they build
up risk from being at one activity location with other people for a longer period. This run 4 shows that
even with equal input values for the RCM model, there are differences in when agents move and how
much time they spend in one location as the model incorporates controlled randomness on purpose.
However, there seems to be a general trend for both average infection risk and time-specific risks when
five simulations are run.

Figure 5.6: Infection risk above 90% - ATR Figure 5.7: Infection risk above 90% - comparison

5.3. Parameter sensitivity study
This section provides an investigation into five parameters used in the integrated model. These param-
eters are: the number of infectors, air change per hour, social distance, pulmonary ventilation rate and
quanta production rate. The last four parameters are varied while documenting the impact on the in-
fection risk results. The parameters which are not investigated are kept constant with assigned values
as specified in Table 4.4. The parameter variations are repeated using the five sample case simulation
runs from section 5.2 to determine an average result.
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5.3.1. Number of infectors
The first important parameter needed in the modified Wells-Riley equation, is the number of infectors
in a single space. This parameter is complex as the Wells-Riley infection risk in this research is used
for a dynamic situation with multiple spaces while the original modified Wells-Riley equation was only
used for one space [84]. This parameter is set to one infected person per space introducing a fun-
damental assumption for the integrated infection and crowd behavior model; the risk for an agent is
determined ‘as if there is a single infected agent in every space the agent enters’. Theoretically, there
could be multiple infectors or no infectors at all in one space. However, determining the actual amount
of infectors would require the model to assign disease states (like infected, recovered etc.) and track
the disease progression over time. The model would then become a microscopic agent-based model
and as explained in section 3.3, the choice was made to work with a risk-based model instead of an
agent-based medical infection model. Therefore, the number of infectors is set to one infected agent
per space.

5.3.2. Air change per hour
The second parameter is related to ventilation and describes the rate at which the air is changed. As
discussed in subsection 4.2.6 and Listing C.6, a variable ACH-based ventilation rate was implemented,
instead of a constant room ventilation rate in m3/s used in the original work by Sun and Zhai [84].
This adjustment means that the room ventilation rate for a dining room is larger than the ventilation
rate for a small corridor, keeping the ACH constant. The ACH parameter is varied over the following
range: ACH = [1, 5, 10, 15, 20, 25, 30] h−1. As the time which agents spent in cabins or rooms is not
taken into account, it is important to note that the ACH parameter is related to the general spaces
onboard the ship. In literature regarding ventilation and spread of disease, ACH values between 6 and
12 are mentioned [82, 5, 102]. The Royal Caribbean Group mentions on its website in 2021, during
the COVID-19 pandemic, that they achieve 15 up to 20 air changes per hour onboard their their ships
[1].

Figure 5.8 provides the average infection risk for ACH values from 1 up to 30 air changes per hour. The
average infection risk decreases with higher ACH values. The guest and total average infection risk
seem to follow a similar trend while the crew average infection risk lies somewhat higher than the total
and guest value. At very low ACH values, the infection risk increases most and the guests achieve a
higher average infection risk than the crew for ACH = 1 h−1.

Figure 5.8: Average infection risk - ACH rates

Figure 5.9 and Figure 5.10 show frequency distributions for a range of ACH values. It can be seen that
the distribution in Figure 5.9 moves to the right for lower ACH values, especially for ACH = 1 h−1 and
ACH = 5 h−1. At these lower air change rates, there are more agents with higher average infection
risks. Next to higher average values, the number of agents with high infection risks (above 90%) over
time also increases for lower ACH values. This can be seen in Figure 5.10. This figure shows that the
number of high-risk agents increases significantly for ACH = 1 h−1 and ACH = 5 h−1. The results
for ACH values higher than 15 changes per hour lie closer together and these results present less
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variation over time.

In terms of decreasing infection risk, it can be concluded that implementing higher ACH values de-
creases the risk of infection significantly. However, taking a very ACH value of 25 or even 30 air
changes per hour might not be completely realistic compared to the values mentioned in literature [82,
5, 102]. Additionally, in a recent paper studying the virus spreading and ventilation inside the cabin
of a passenger ship, it was concluded that a higher ventilation rate might increase virus spread be-
cause droplets spread further [74]. This paper suggests operating a 3 ACH rate when guests are in
the cabin and ”increase to 15 ACH for at least 12 minutes after it has been vacated” [74]. In a re-
port on ”Emergency Response to Infectious Disease Outbreak on Cruise ships”, it was similarly noted
that ”the filtration of re-circulating air can reduce spread risk, but it may not counteract the increased
transmission risk by high horizontal air-change rates” [13]. The chosen ACH value will therefore be a
compromise ensuring a realistic value while recognizing possible negative effects at high ACH values,
which are not visible in the current integrated model. The ACH value used for the continuation of this
research is 15 air changes per hour.

Figure 5.9: Average infection risk distribution - ACH rates Figure 5.10: Infection risk above 90% - ACH rates

5.3.3. Social distance
This subsection provides more insight into the effect of social distance on the infection risk results.
This parameter is slightly different from the other parameters discussed in this section as it is not a
direct medical input parameter. Instead, the social distance is calculated by dividing the location area
by the variable occupancy over time. This ‘simple’ calculation assumes all occupants to be uniformly
spread over the available area and thus ignores crowd behavior mechanisms inside a space. For
example, a small number of agents in a large space might group together and thus have a smaller
social distance than currently calculated. Or a family would always stick together when they move
through the ship. To investigate the effect of this behavior on the final infection results, the social
distance was reduced by a percentage. The tested percentages of the original social distance are:
d = [10, 30, 50, 70, 90, 100] %.

Suppose one of the ship restaurants has a floor area of 50m2 and an occupancy of 30 agents. The so-
cial distance is then calculated to be d = 50/30 = 1.67 m. With the reductions, the social distance would
be: d = [0.17(10%), 0.5(30%), 0.83(50%), 1.17(70%), 1.5(90%), 1.67(100%)] m for that same space and
occupancy.

Figure 5.11 presents the average infection risk over the social distance percentage. As expected, the
average infection risk increases when the social distance is reduced and a smaller percentage is used.
The crew average risk lies higher than the guest average risk for all social distance values.
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Figure 5.11: Average infection risk - social distance reduction

Figure 5.12 and Figure 5.13 present the frequency distributions for the social distance parameter. For
lower social distance values, the distribution moves to the right in Figure 5.12, as was seen for the
ventilation in Figure 5.9. However, the effect of a decreasing social distance is much less than the
effect of a change in the ventilation rate. This can also be seen in Figure 5.10 and Figure 5.13. Even
for a social distance reduction of 90%, the number of agents with a risk above 90% stays below 800
while for 1 air change per hour, this number goes above 2000 agents. In Figure 5.13 it can also be
noted that for large social distance reductions, the peaks increases but the peak location and general
trend of the results stay the same.

In reality, the social distance is likely to be smaller than the calculated 100%. The degree of reduction
is, however, difficult to determine and would require additional research into agent behavior inside a
space. Again, this investigation would move into the microscopic agent-modeling domain in order to
find an average social distance reduction based on how agents actually move through or stay inside a
space. The current model was specifically designed to be mesoscopic in terms of the level of detail for
agent movement modeling. This social distance research would lie outside the research boundaries of
this project and therefore, the decision was made to not implement any social distance reduction as it
would be an arbitrary choice.

Figure 5.12: Average infection risk distribution -
social distance reduction

Figure 5.13: Infection risk above 90% -
social distance reduction

5.3.4. Pulmonary ventilation rate
The fourth medical parameter is the pulmonary ventilation rate which is related to the rate at which
susceptible agents breathe. At a higher pulmonary ventilation rate, agents would be able to absorb
more viral particles from their surroundings in the same amount of time. The pulmonary ventilation
rates investigated are: d = [1, 5, 6, 15, 30, 42] L/min. The ventilation rate of 5 L/min is used in the
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original research by Sun and Zhai [84] and Table 5.6 shows different activities and their corresponding
pulmonary ventilation rates. The pulmonary ventilation rates for running or participating in sports might
be as high as 60− 100 L/min [56]. Figure 5.14 shows the relation between average infection risk and
pulmonary ventilation rate. The average infection risk increases for higher ventilation rates and the
crew average lies somewhat higher than the guest average value. For very high pulmonary ventilation
rates, the guest average lies above the crew average which was also seen for low ACH rates.

Activity p

Resting 1-6 L/min [56] 2− 10 ∗ 10−5 m3/s
Sitting / light indoor activity 5 L/min [84] 8.333 ∗ 10−5 m3/s
Walking 15 L/min [56] 25 ∗ 10−5 m3/s
Fast walking 30 L/min [56] 50 ∗ 10−5 m3/s
Going up-stairs 30-40 L/min [56] 50− 70 ∗ 10−5 m3/s

Table 5.6: Pulmonary ventilation rates

Figure 5.14: Average infection risk - pulmonary ventilation rates

Figure 5.15 presents a frequency figure that differs from the graphs corresponding to ventilation and
social distance variations. The smallest pulmonary ventilation rate of 1 L/min gives a very large num-
ber of agents, over 2000, with an average infection risk below 10%. The number of agents with a risk
above 90% in Figure 5.16 presents as a line close to zero with little variation over time. For larger
pulmonary ventilation rates, the average infection risk distribution moves to the right. Different from the
figures for ventilation and social distance, the results are more spread out. In Figure 5.9, specifically
the distributions and its peak for 1 and 5 air changes per hour moved while the distributions for the other
ACH-values stayed closer together. The distributions for the reduction of social distance in Figure 5.12
also stayed closer together than the distribution in figure Figure 5.15. In Figure 5.16, the peaks are
more extreme for higher pulmonary ventilation rates. Also, for 5 or 6 L/min, the highest number of
high-risk agents lies at the start of the day around 10:15 while for higher pulmonary ventilation rates,
the maximum peak lies around 13:00. Looking at the general trend of the figure, the four peak loca-
tions recognized in Figure 5.16 at approximately 10:15, 13:00, 17:30 and 21:30 can also be seen in
Figure 5.12 although the height of the peaks differ.

In general, a lower pulmonary ventilation rate decreases the infection risk. During the COVID-19 pan-
demic activities with high pulmonary ventilation rates like indoor sports were not allowed as these
situations would put individuals at a higher risk of getting infected, which is supported by these results.
For the model, it is necessary to find an average pulmonary ventilate rate that represents the activities
agents undertake for the majority of the day. These activities are resting, light indoor activities and
walking. A pulmonary ventilation rate of 8 L/min is chosen. This value lies somewhat above the resting
or light activity values to account for the time agents walk around the ship.
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Figure 5.15: Average infection risk distribution -
pulmonary ventilation rates

Figure 5.16: Infection risk above 90% -
pulmonary ventilation rates

5.3.5. Quanta production rate
The last medical parameter investigated is the quanta production rate which quantifies the amount of
airborne infection particles produced per infector. This value says thus says something about how
contagious a disease is. This parameter is a highly debated parameter and the quanta production
rate can vary with disease, disease variant, activity, type of space and the characteristics of the agents
involved. The research by Sun and Zhai, developing the modified Wells-Riley model, uses a COVID-19
quanta production rate of 857 qph based on real-life infection scenarios. The quanta production rates
mentioned in literature range from 10 qph to more than 2000 qph . [22] mentions quanta values of 10
qph and 25 qph for the delta variant used in enclosed space research and in [91], q was defined to
be 14 qph when investigating COVID-19 infection risk during long-distance travel via train. Buonanno,
Stabile, and Morawska specifically investigated the quanta emission rate of SARS-CoV-2 and define
a quanta production rate of 142 qph for light activities [9]. A study focused on the different variants
of SARS-CoV-2 settled on much higher values: 89-165 qph for the Alpha variant, 312-935 qph for the
Delta variant, 725-2345 qph for the Omicron variant [16]. Taking these quanta production rates into
account, the tested range was defined to be q = [10, 100, 200, 400, 857, 1200, 2000] qph.

Figure 5.17 shows the average guest, crew and total infection risk for different quanta production rates.
The average infection risk will increase for higher quanta production rates and for low quanta production
rates, the crew and guest average values converge.

Figure 5.17: Average infection risk - quanta production rates

Figure 5.18 shows the average risk distribution for the different quanta production rates. The distribution
lies centered below 10% for q-rates up to 200 qph and moves right for higher quanta production rates.
For q = 10qph, all agents have an average infection risk below 10%. The results for the number of
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agents with a risk above 90% can be seen in Figure 5.19. The risks for quanta production rates below
400 qph lie close together compared to the largest three quanta production rates. The trend of the
extreme values in Figure 5.19 can be compared to the results for the social distance reduction and the
pulmonary ventilation rate. The difference for the ventilation study in Figure 5.10 with respect to the
extreme values and trend of the figure might thus be related to the impact of space dimensions which
is only connected to the ACH parameter and not to the other parameters.

A change in quanta production rate does seem to have a significant impact on the infection results and
the relative ‘high’ value used by Sun and Zhai is questionable compared to the other literature studies
mentioned. It might also be related to the fact that the q = 857qph value is derived from a single extreme
outbreak event in a confined space compared to more general values presented in the other sources
[84]. The choice is therefore made to use a smaller quanta production rate of q = 100qph. This value is
a compromise taking different sources into account in an effort to avoid both under- and overestimating
the infection risk.

Figure 5.18: Average infection risk distribution -
quanta production rates

Figure 5.19: Infection risk above 90% -
quanta production rates

5.4. Parameter choices
This section provides an overview of the chosen parameters based on the parameter sensitivity study
in section 5.3. The choices are summarized in Table 5.7. These parameters will be implemented in
section 5.5 where the five sample case runs are repeated with the chosen parameter values. This
sample case will be the starting point for the simulations in chapter 6.

Parameter Description Assigned value Unit
I Number of infectors 1 [-]
ACH Air changes per hour 15 [-]
d Social distance 100 [%]
p Pulmonary ventilation rate of

susceptible individuals
8 [L/min]

q Quanta production rate per in-
fected individual

100 [qph]

Table 5.7: Chosen medical parameters for integrated model

5.5. Sample case with chosen parameters
The sample case is repeated for the parameters as defined in section 5.4. Table 5.8 gives the aver-
age values for these simulations. The average values are significantly lower than the results seen in
Table 5.5. The average total infection risk with the previous parameters was 21.7% compared to the
new value of 0.807%. One of the main changes is the implementation of a lower quanta production
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rate which was expected to decrease the risk values significantly as demonstrated in subsection 5.3.5.
The average crew infection risk remains somewhat higher than the guest average infection risk.

The node high-risk locations in Table 5.8, based on the highest frequency of agents that have their
highest infection risk at that location, show similarities to the risk locations in Table 5.5. Node 33 is not
among the top five locations anymore which can be attributed to the ATR change in the model. Agents
no longer build up risk when they are not participating in the simulation yet or have finished the activity
schedule. However, node 5, which was also a crew start location, can still be found in the top five risk
locations. Even with the ATR implementation, agents seem to be building up high infection risks at this
location.

In chapter 6, a more in-depth analysis will be presented specifically coupling ship locations and high
infection risks. This analysis will form the basis for possible layout adjustments in order to reduce
infection risk in section 6.1.

Result Value
Average IR 0.807%
Average guest IR 0.730%
Average crew IR 1.04%
5 Risk locations N330, N293, N388, N5, N299

Table 5.8: Results sample case simulations with parameters from section 5.4

Figure 5.20 presents the average infection risk over time for the guest, crew and total agent population
onboard. The peaks for the crew average infection risk at 13:30, 17:00 and 20:40, reach higher values
than the guest peaks. The crew average risk also deviates more from the total average risk compared
to the guest average value. It is also relevant to compare the average infection risk to the agent activity
schedules. This can be seen in Figure 5.21 and Figure 5.22.

Figure 5.20: Average infection risk over time

Figure 5.21 gives the guest average infection risk against the activity schedule of an agent in the exact
‘middle’ of the schedule distributions. The guest will move to breakfast at 08:30 and every meal and
activity will have a duration of 2 hours and 20 minutes. In Figure 5.21, a connection between the activity
schedule and the average infection risk can be recognized: the average infection risk increases over
the duration of a meal or activity and decreases just before the end of the meal or activity. The highest
average infection risks are seen around the end of breakfast and the end of the first activity of the day.
Another increase can be seen at the end of the last activity around 22:00.
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Figure 5.22 presents the two crew shift schedules against the crew average infection risk over time. The
green parts of the schedule represent the legs where the crew is at work and the yellow parts represent
the breaks. The three minute late or early variation is not taken into account, so the schedule would be
for a crew member who is always exactly on time. In general, the average risk increases over the ‘at-
work’ part of the shift and decreases when the crew has a break. The average infection risk decreases
when guests or crew change activities because they change locations and the exposure time in the risk
calculation is reset. A returning trend can be seen just after the peaks at 13:30 and 17:00: decrease
(1), small increase (2), decrease (3), small increase (4), small decrease (5) steady increase (6). The
events correlating to this trend can be described as follows:

1. late shift break
2. risk build-up from late shift break and early shift ‘at-work’
3. early shift break
4. risk build-up from early shift break and late shift again ‘at-work’
5. early shift back ‘at-work’
6. risk build-up from both early and late shift ‘at-work’

The average crew risks at the start and end of the simulation are lower than the risks during the day. This
can be explained by the fact that one shift is working and only half the crew population is involved.

Figure 5.21: Average guest infection risk and activity
schedule indication

Figure 5.22: Average crew infection risk and crew shift
indication

The average infection risk can also be plotted per agent which is visible in Figure 5.23. In general, the
average guest values lie lower than the crew risks. There are outliers - agents who have a significantly
higher average risk than the majority of the guests or crew population. Especially for the crew, there
are agents with an average infection risk above 7%. More research into the agents with high average
risks is conducted in the next chapter, looking into the activity schedules of these ‘at-risk’ agents and
the infection risk at the locations where these agents spend their time.

Figure 5.24 shows the frequency distribution of the average infection risk. The distribution has moved
left from Figure 5.4 and almost 80% of the agents now modeled has an average infection risk below
1%.
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Figure 5.23: Agent average infection risk Figure 5.24: Average infection risk distribution

A frequency distribution for the number of agents with a certain infection risk over time is given in
Figure 5.25. This figure is different from the frequency figures created during the parameter sensitivity
study because the criteria has been brought down to 50%.

Peaks for the number of guests with a risk above 50% can be seen at 11:30, 15:50, 16:15 and 20:55
with respectively 18, 7, 7 and 14 guests. The five average infection risk peaks, as seen in Figure 5.20,
can be recognized as the dashed red lines in Figure 5.25. The location of the red lines does not
exactly correspond to the peaks for a high number of agents with a risk above 50%. Looking at for
example 11:30, the average infection risk does not peak although there is a high number of guests
with an infection risk above 50%. This highlights the need to investigate both the locations where high
infection risks occur and the locations which present with high average infection risks.

Figure 5.25: Infection risk above 50%
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5.6. Sample case results validation
With the final sample case results calculated for the chosen parameters, it is important to reflect on the
results in connection with the available literature. This section therefore aims to answer the following
research question:

6. How can the infection risk results from the integrated model be validated?

Most COVID-19 studies onboard large passenger vessels present their results in terms of attack rates
or reproduction numbers which are retrospectively calculated from real-life cases [75, 59, 53, 78]. A
systematic review on the “Transmission of SARS-CoV-2 Associated with Cruise Ship Travel” found
that these attack rates may range from 7% to over 60% depending on the ship and specific outbreak
investigated [78]. For the outbreak onboard the Diamond Princess cruise vessel, the National Institute
for Infectious Diseases in Japan reports that over 20 days, 22% of the ship’s population was “detected
to have been infected with SARS-CoV-2” [67]. The Diamond Princess cruise vessel had approximately
3700 guests and crew onboard at the time of the outbreak [67]. Comparing such an attack rate to results
from the integrated infection and crowd behavior model is complicated because of various factors. First
of all, the attack rate is based on actual infection cases while the integrated model only provides agent-
based predictive risk. This risk is not processed further to determine agents who get infected or spread
the disease. Also, the integrated model simulates a single day, while attack rates for COVID-19 ship
outbreaks are calculated over multiple days or even weeks. The time frame between these types of
research is thus quite different.

5.6.1. Attack rate
Keeping the described challenges inmind, it is possible to perform a rough calculation using the average
infection rate of 0.807% from Table 5.8. The simulated agent population onboard is 2848 agents. At the
end of a single day, theoretically, there would be C = S ∗PI = 2848 ∗ 0.00807 ≈ 23 new cases. If these
infected cases would directly isolate (removed from susceptible population) and the average infection
rate would stay constant; there would be approximately 427 infections after 20 days. The attack rate
over 20 days for the total population can then be calculated as: AR = 427/2848 ≈ 15%. This is slightly
lower than the 22% attack rate for the Diamond Princess COVID-19 outbreak [67]. In reality, infected
individuals might not isolate because they are asymptomatic or pre-symptomatic and it is also possible
that symptomatic agents do not isolate at all. The result will be an increase of infected individuals in
the agent population and the average infection risk is expected to rise over time instead of remaining
constant. The actual number of cases and therefore attack rate could thus be higher.

5.6.2. Infection risk single office space
The next step would be to investigate literature which is related to COVID-19 infection risk indications for
enclosed spaces. The first example is a paper that combines theWells-Riley equation with a regression
model for mean droplet nucleus concentration, in order to investigate the effect of portable air cleaners
(PAC) in office spaces [18]. TheWells-Riley equation for infection risk can be recognized in Equation 5.1
and the C+ therm represent a regression equation based on CFD analysis [18].

P = 1− e−qtC+

(5.1)

The three investigated offices with 20, 40 and 73 m2 floor areas can host two, six and eight people.
Variations for these offices covered the mechanical ventilation rate, PAC characteristics and location
of the infectious host [18]. The six-person office will be used for a comparison with the modified Wells-
Riley equation used in the integrated model. An indicative office set-up can be found in Figure 5.26
and it should be noted that the presence of a PAC can not be taken into consideration for the integrated
model. For a sample case, Dai and Zhao describe the infection risk to be 13.2% using Equation 5.1.
This value could be compared to the results from Equation 3.1 and Equation 3.3 with the following
input parameters: d = 2 m, I = 1, q = 14 qph, t = 8 h, Q = 0.15 m3/s, Ez = 1 and the pulmonary
ventilation rate is not specified and therefore assumed to be p = 8 L/min as chosen in Table 5.8 [84].
The infection risk PI result for the modified Wells-Riley equation is 3.0%. If a quanta production rate of
q = 100 qph from Table 5.8 is chosen, the infection risk becomes 19.6%.
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Figure 5.26: Six person office space geometry[18]

The first result using q = 14 qph is lower than the infection risk indication by Dai and Zhao and might
indicate that the modified Wells-Riley equation underestimates infection risk. Equation 5.1 uses a
regression formula derived from CFD analysis. This means that complex air/particle circulation and the
position of the mechanical ventilation units is taken into account. This is not the case for the modified
Wells-Riley equation. Additionally, the exposure time of eight hours is quite significant and much longer
than the maximum exposure times (three hours) used in the integrated model. As mentioned in the
literature section of this report, the modified Wells-Riley equation used in the integrated model is more
suitable for short-term exposure situations as other factors than purely airborne transmission become
important for long-term exposure [84].

When implementing a quanta production rate of 100 qph, the infection risk of 19.6% exceeds the result
from the paper. The modified Wells-Riley equation with social distance index was calibrated by Sun
and Zhai, who use a high quanta production rate over 800 qph. For the risk comparison using 14 qph;
the social distance index decreases the infection risk for the integrated model compared to the work by
Dai and Zhao. Using a higher quanta production rate produces the opposite effect and increases the
infection risk. A conclusion from this validation is that the equation for the social distance index used
in the integrated model is not independent from the quanta production rate implemented. This needs
to be taken into account when comparing different types of modified Wells-Riley equations.

5.6.3. Infection risk multi-room office space
The research by Dai and Zhao is restricted to infection risk indications for a single office space with
varying dimensions and characteristics [18]. However, in research by Srivastava, Zhao, Manay and
Chen, agent-based infection risks for a 59-person office building with several rooms are calculated [83].
The geometry for the office building can be found in Figure 5.27. The goal of the investigation was to
develop “an ultraviolet-C (UV-C) air disinfection device” but they also provide average infection risks for
‘case A’ and ‘case B’ without the disinfection device. ‘Case A’ has, however, a very small ventilation rate
so ‘Case B’ with an equivalent ventilation rate of 4.55 air change per hour will be investigated further.
The following parameters apply: texp = 8 h, q = 31 qph, p = 5 L/min, I = 4, Q ≈ 4.8 m3/s. The
social distance is not directly available, so an assumption is made based on the geometry provided
in the paper: d = 1.5 m. Using Equation 3.1 and Equation 3.3 while assuming the office building to
be a single open space, the infection risk can be calculated to be 0.62% for q = 31 qph and 1.97%
for q = 100 qph. The paper presents an average infection risk of 3.10% using a CFD tool to simulate
airflow within the actual office geometry. Because of the geometry and variation on the Wells-Riley
equation, it was not expected to achieve equal results but it shows that the infection calculations used
in the integrated model present results relatively close to the sample case average infection risk of
0.807%.
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Figure 5.27: 59-person office space geometry [83]

5.6.4. Infection risk hospital waiting rooms
Moving towards even more complex geometries, [48] presents research into the infection risks in an
out-patient hospital building in Shenzhen, China [48]. The study proposed “A modified Wells-Riley
model combining the airborne route and close contact route” in order “to predict the infection risks of
coronavirus disease 2019 (COVID-19) in main functional spaces” [48]. In 20 waiting rooms distributed
over four floors, CO2 was measured and used as an indication for the air change rate in the different
spaces. The basic principle behind these measurements is, that a high occupancy in a space will lead
to high CO2 concentrations. In the spaces with high CO2 concentrations, either occupancy should be
controlled or a larger fresh air supply should be implemented [48]. The research concludes that in 20
waiting rooms in the hospital, the COVID-19 average infection risk ranges between 0.19% and 2.63%
[48]. The average value over all 20 waiting rooms was 0.79% with a 2% infector proportion [48].

Looking at the sample case simulations done in section 5.5, it is possible to investigate the average
infection risk at specific locations. The waiting rooms would relate best to the nodes in the ship model
and the average infection risk per day can be found in Figure 5.28. The figure shows one specific
outlier at node 107 with an average day infection risk of 16.2%. In Figure 5.28, the axes have been
adjusted to better visualize infection risk for nodes other than node 107. This outlier will be further
investigated in chapter 6. The day average infection risk for the nodes, excluding node 107, ranges
between 3.58% and 0.75%. The average value for the 20 highest-risk nodes, excluding node 107, is
1.49% for a single infector per space. The infection results for the ship locations cover a bigger infection
risk range, with more locations that present very little or no infection risk at all. This was expected since
the focus in [48] was hospital waiting rooms, and perhaps less occupied spaces were not investigated.
Taking the obvious geometry differences between a ship and a hospital into account, the results do
seem to lie within a similar domain and this comparison supports the acceptability of integrated model
ship results.

Figure 5.28: Day average infection risk per node for sample case
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5.6.5. Infection risk at reception
The last research article considered in this section is specifically related to the calculation of COVID-
19 infection risk in indoor environments [47]. The pertinent part of this research are the results of
a reception event with a duration of three hours. Different from the research considered so far, this
duration lies close to the exposure times considered in the cruise ship simulations. The reception in
[47] has 100 subjects present at a location with a floor area of 100 m2, ACH = 2 h−1, p = 12 L/min
with a single index patient [47]. The individual risk at this reception is reported to be 1.6%.

This reception can be compared to the restaurant at node 45 in the ship simulation. This restaurant has
a floor area of 120m2 and can accommodate up to 120 people. In the range t = [20000, ..., 30800] s, the
average occupancy is 97 people. This range covers three hours and the average restaurant occupancy
is almost the same as the reception occupancy. Figure 5.29 shows the average infection risk at node
45 for the selected time range. The reception infection risk from [47] can be seen as the horizontal line
at 1.6%. Two separate infection risks were calculated. The blue line provides the average infection
risk with the parameters from Table 5.8 and the orange line shows the average infection risk when
three parameters are changed: p = 12 L/min, ACH = 2 h−1 and the ceiling height is adapted to
be 4 m [47]. The average infection risk for that three-hour range for the sample case is 0.49% and
for the sample case with adapted parameters 3.18%. The sample case average lies below the value
presented in [47] while the average value for the adjusted sample case lies higher than 1.6%. Some
variation between the reception and the restaurant results was expected as the quanta production rate
for the reception is not known. Instead, [47] uses an infective dose D50: “being the mean dose that
causes an infection in 50% of susceptible subjects” while the restaurant assumes q = 100 qph [47]. For
the adapted parameters, the average infection risk increases compared to the sample case. This can
be explained by a decreasing pulmonary ventilation rate and a significantly reduced room ventilation
rate. The decreased ACHwill be slightly compensated by the larger ceiling height leading to an increase
in the amount of cubic meters of ventilated air Q.

Figure 5.29: Average infection risk at node 45

5.6.6. Conclusion
In this validation section, the sample case results from section 5.5 were tested against five different re-
search sources related to COVID-19 risk in enclosed spaces. These validation cases also highlighted
the challenges for validating the results of the integrated infection and crowd behavior model applied
to a large passenger ship. The situational factors like geometry, occupancy and location type matter
to the infection risk outcome. It was therefore hard to find a ‘similar case’ to compare the final out-
comes to. Additionally, the results from the ship simulations provide infection risk and this risk is not
further processed to define infected cases. This makes validation with real-life COVID-19 outbreaks
challenging as the number of cases is often the main focus. Other challenges include the time frame
or exposure time used as seen for the office space research cases in subsection 5.6.2 and subsec-
tion 5.6.3. Lastly, it is meaningful to note that the research cases in subsection 5.6.2, subsection 5.6.3
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and subsection 5.6.5 describe stationary behavior. This is fundamentally different from the integrated
model which allows agents to move between spaces as they follow their activity schedule. The location-
based approach in the research case for hospital waiting rooms perhaps best captures some form of
movement as it measures occupancy and ventilation at different time steps.

On a population level, an attack rate comparison with a cruise ship population was made in subsec-
tion 5.6.1. The attack rate for the integrated model was lower than the COVID-19 attack rate onboard
the Diamond Princess cruise vessel, which could be explained by the assumptions with respect to the
daily infection risk. Focusing on a single space in subsection 5.6.2, the results from the social distance
dependent Wells-Riley equation in the ship simulation and the regression based Wells-Riley equation
for the single office space showed a high degree of variation. The difference can be directly related to
the differences in the Wells-Riley equations used for the ship simulation and the office simulation. It
was concluded that the implemented quanta production rate significantly influences the results and the
input parameters of a specific situation might not be directly transferable between different modified
Wells-Riley equations.

The modified Wells-Riley equation from the ship simulation is also used to calculate infection risk for
a multi-room office space in subsection 5.6.3. This result is compared against the work from Dai and
Zhao who implement a CFD tool to simulate airflow inside the multi-space geometry [18]. There are
still differences between the infection risk results but the results lie much closer to the sample case
average infection risk of 0.807%, compared to the results from the single office space.

In subsection 5.6.4 and subsection 5.6.5, a more location-based approach was used. Subsection 5.6.4
presents the infection risk range and average infection risk for 20 hospital waiting rooms compared to
20 high-risk ship locations. The risk ranges (0.19% - 2.63% versus 0% - 3.58%) and the average risk
(0.79% versus 1.49%) seem sufficiently close to support the acceptability of the integrated model ship
results. Finally, in subsection 5.6.5, a reception situation is compared to one of the onboard restaurants
for a three-hour time frame. The restaurant average infection risk was calculated to be 0.49% or 3.18%
depending on the input parameters. The reception risk was reported to be 1.6% which lies in between
these results. The complication with this study was the use of a different viral load indication than
a quanta production rate. This might have resulted in differences between the results because the
calculation for the restaurant is based on a quanta production rate of 100 qph.

In conclusion, these five comparisons show both the challenges and strengths of the integrated infection
and crowd behavior model when applied to a ship layout. The sample case infection results seem
sufficiently validated as a baseline from which to investigate risk improvement. In the next chapter, the
research will therefore focus on the implementation of layout adaptions, operational and behavioral
measures in order to decrease COVID-19 infection risk.
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Simulations

This chapter will investigate several options to improve the sample case infection risk results from
chapter 5. This section therefore aims to answer the final research question:

7. What are the infection risk results of selected prevention and/or control actions onboard a large
passenger vessel when the integrated infection and crowd behavior model is applied?

The first section focuses on the layout itself and proposes layout adjustments to achieve infection
risk reduction. Several high-risk locations are identified and the proposed layout changes are tested
against the sample case results. Section 6.2 describes two operational measures: one-way movement
and a capacity reduction for both crew and guests. Additionally, section 6.3 presents the infection risk
results when implementing mask wearing. Section 6.4 and section 6.5 show the conclusions related to
the infection risk improvements achieved by implementing separate or combined layout adjustments,
behavioral and operational measures.

6.1. Layout adjustments
In this section, the different layout adjustments have been investigated. The section first identifies the
high-risk locations onboard the cruise vessel when the sample case from chapter 5 is simulated. Then,
the high-risk locations and possible causes for the high infection risks at these locations are described.
Three high-risk locations are chosen and layout adjustments for these locations are proposed. It is im-
portant to note the fact the the Radiance of the Seas cruise vessel has been retrofitted after the research
from the SAFEGUARD project [8]. This means that there are significant differences between the SAFE-
GUARD layout and the current deck plans [14]. However, adjusting the current SAFEGUARD dataset
lies beyond the scope of this research and the current dataset does provide a realistic representation
of ‘a large passenger vessel’. This seems sufficient for the research done in this project.

6.1.1. Identification high risk locations
The integrated infection and crowd behavior model deals with nodes and links separately, depending
on the agent state. Nodes are the locations where guests attend their activities and meals, and these
locations also represent the ‘at-work’ or ‘break’ locations for the crew. Both the crew and guests spent
the majority of their time on nodes. They travel via links when they are switching between nodes.
Figure 6.1 and Figure 6.2 indicate the average infection risk per location onboard. The figures show
that the nodes present with higher average infection risks than the links. The node average infection
risk for all nodes lies at 0.145% against 0.0000184% for the link locations. Although the floor areas of
links are often smaller than the node areas, the occupancy and longer exposure time lead to higher
infection risks for node locations.
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Figure 6.1: Average infection risk per node Figure 6.2: Average infection risk per link

Table 6.1 shows the five node locations with the highest average infection risks. Note that the deck
numbering from the SAFEGUARD project is used. This deck numbering starts at deck 1 for the decks
accessible to guests. Online deck plans for the Radiance of the Seas start counting at deck 2 for the
guest-accessible decks. This is related to deck numbering for the crew quarters and machinery spaces.
The SAFEGUARD deck numbers are used in order to avoid confusion related to the input data for the
integrated model.

Node Function Location Average IR
N107 Bar SB - mid - deck 5 16.8%
N330 Restaurant SB - aft - deck 11 3.59%
N179 Multi-functional lounge CL - mid - deck 7 2.72%
N293 Restaurant SB - aft - deck 10 2.67%
N338 Sundeck SB - aft - deck 11 2.27%

Table 6.1: Node locations with highest average infection risk

As mentioned in section 5.5, a second analysis is needed to identify locations where a high number
of agents reach their maximum infection risk over the day, even if these locations do not have high
infection risks. The results for these five risk locations are given in Table 6.2.

Node Function Location Average IR
N330 Restaurant SB - aft - deck 11 3.59%
N293 Restaurant SB - aft - deck 10 2.67%
N388 Lounge CL - fwd - deck 12 0.897%
N5 Move through area PS - mid - deck 1 0.294%
N299 Restaurant SB - aft - deck 10 1.25%

Table 6.2: Node locations where ‘most’ agents reach their maximum infection risk

At this point, the analysis covers locations with a high average risk and locations where agents achieve
high risk. The last perspective on high-risk locations can be found by investigating the infection risk
over time from agents with the highest average infection risks as seen in Figure 5.23. The crew side
of the figure clearly shows ten crew members with a day average infection risk around or above 7%.
The infection risk over time for these ten crew members is plotted in Figure 6.3 and Figure 6.4. When
these crew members were investigated, it turned out that they follow a similar activity schedule divided
between an early and a late shift. For all ten crew members, the two highest infection risk peaks
correlate to the same location: node 107. This procedure was repeated for all guests with a day
average infection risk above 2%. The same situation appeared as they all visited the bar at node 107
during their day and built up infection risk above 25% for that location. Node 107 was already found
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to be an outlier in Table 6.1 with a day average infection risk above 16% and should be investigated in
more detail. Comparing Table 6.1 and Table 6.2, two node locations appear in both tables: N330 and
N293 which are investigated further. Lastly, the occurrence of N5 in Table 6.2 demands further analysis
as it is a move-through area that presents with a relatively low day average infection risk compared to
the other high-risk nodes.

Figure 6.3: Infection risk for early shift high-risk crew Figure 6.4: Infection risk for late shift high-risk crew

Node 5
The first high-risk node location discussed is N5. The node characteristics can be found in Table 6.3 and
Figure 6.5. This specific location has come up already in subsection 5.2.2 as one of the two locations
from which the crew starts their activity schedule, because the crew accommodations are not modeled.
The choice was made to use an adjusted time range in the integrated model and avoid the unrealistic
risk build-up which occurred at N5 and N33 at the start and end of the simulation. The crew occupancy
in Figure 6.6 also shows this high occupancy at N5 for the late-shift crew at the start of the simulation
and for the early-shift crew at the end of the simulation.

Function Location Node area Maximum occupancy Average IR
Move through area PS - mid - deck 1 22 m2 351 0.294%

Table 6.3: Characteristics node 5

Figure 6.5: Deck 1 layout at node 5 [23]
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For short periods of time in Figure 6.6, behavior similar to the situation before the crew shifts start and
finish, can be seen. For these periods, the infection risk rises as the crew occupancy increases to 25%
of the total crew population. The timings of these infection risk peaks coincide with the moment that the
crew has their break. Looking at the activity schedules of the crew, it was discovered that the ‘break’
node location is set to be N5 or N33 for all crew, leading to high infection risks at N5. N33 has probably
not occurred in subsection 6.1.1 because this node has a larger floor area of 34 m2. The N5 average
infection risk is not as high as the other nodes discussed in this section because the exposure duration
is limited to 30-minute breaks. Further model improvements could be made by introducing and defining
the crew accommodations for the ship layout. However, as discussed in chapter 5, this lies beyond
the scope of this research project. Testing a layout change for N5 would not make sense because the
problem lies with the use of this node as if it represents half the crew quarters, rather than the layout of
this location itself. Therefore, no adjustments will be implemented for this location. In further work, it is
recommended to model the crew accommodation more accurately to improve infection results during
the crew breaks.

Figure 6.6: Infection risk and occupancy for node 5

Node 107
Node 107 presents as a significant outlier compared to the other high-risk nodes with an average
infection risk of 16.8%. The high risk can be explained by the small node area of 6 m2. The node
characteristics are also presented in Table 6.4 and a partial layout of deck 5 can be seen in Figure 6.7.
Node 107 equals node 4 in the drawing as the SAFEGUARD datasets restart their node numbering
per deck [23]. Looking at the layout in Figure 6.7 it seems like there has been a node categorization
error in the work by [26] and the activity schedule currently used. N107 has been designated as a bar
and is used as an activity destination in the guest and crew activity schedules. However, it seems that
N107(4) is a move-through area in front of the bar at N110(7).

Function Location Node area Maximum occupancy Average IR
Bar -> Move through area SB - mid - deck 5 6 m2 47 16.8%

Table 6.4: Characteristics node 107
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Figure 6.7: Deck 5 layout at node 107 (location 4 in drawing) [23]

Looking at Figure 6.8, the maximum infection risk at N107 reaches 30.2% which is much higher than
the other high-risk locations N5, N293 and N330. Also, the infection risk stays high for longer periods
of time which leads to the high average infection risk. The explanation for these results can be found in
the combination of a 6 m2 floor area and an average 20-person occupancy over the entire day. There
are two options to deal with N107 and the extreme results. The first option would be to increase the
floor area of N107 and decrease the floor area of N110 (which is the actual bar). The result would be a
situation where there are two bars for this location. The second option merges the N107 ‘bar’ with node
110. In this situation, the activity schedule is adjusted and the N107 activity entries for the crew and
guests are replaced by N110. To stay closest to a realistic layout, the choice was made to substitute
N107 for N110 in the activity schedule so that N107 becomes a move-through area. This adjustment
thus presents an activity schedule correction rather than a direct layout change.

Figure 6.8: Infection risk and occupancy for node 107
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Node 293
The third identified high-risk node is N293 which represents the location of a starboard side restaurant
located on deck 10. Table 6.5 and Figure 6.9 show the local layout and characteristics of this node.
N293 is given by location 10 in the layout drawing.

Function Location Node area Maximum occupancy Average IR
Restaurant SB - aft - deck 10 32 m2 166 2.67%

Table 6.5: Characteristics node 293

Figure 6.9: Deck 10 layout at node 293 (location 10 in drawing) [23]

Figure 6.10 gives the occupancy and infection risk specific to N293. The crew occupancy lies around
fifteen crew members when one of the two crew shifts is working and around 30 agents when both
shifts are at work. The highest guest occupancy can be found during breakfast with a maximum guest
occupancy of 151 agents and a maximum infection risk of 5.82%. The guest occupancy increases
during lunch to 84 agents and 116 agents for dinner. The crew and guest occupancy combined with
extended exposure times, lead to high infection risks for the majority of the simulation.

In order to decrease the infection risk, the floor area of N293 should be increased. This area needs to be
subtracted from surrounding nodes. The surrounding nodes are N291, N294 and N295 or respectively
nodes 8, 11 and 12 in Figure 6.9. N291(8) has a floor area of 12m2 and forms the connection between
the N293(10) restaurant and the seating areas further aft. Placing tables and chairs at this location
would be inconvenient as people move through this location and it does not have a large floor area.
N294(11) is not an option either as this node represents the space close to the stairs with a small floor
area of 5.58m2. Therefore, subtracting floor space from N295(12), with a floor area of 20m2, presents
the most convenient choice. The N295 floor area will be reduced to 6 m2 which is similar to other
move-through locations and the N293 node area is increased to 46 m2.
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Figure 6.10: Infection risk and occupancy for node 293

Node 330
N330 is the last high-risk node analyzed in more detail. This node represents a restaurant on deck 11
as presented in Figure 6.11 with the characteristics mentioned in Table 6.6. The maximum occupancy
is 160 agents, close to the maximum occupancy of node 293. However, the N330 area is only 25.2m2

against the 32 m2 for N293. The average infection risk is 3.59% and this is the highest average risk
(excluding outlier N107) compared to the other high-risk nodes discussed in this section.

Function Location Node area Maximum occupancy Average IR
Restaurant SB - aft - deck 11 25.2 m2 160 3.59%

Table 6.6: Characteristics node 330

Figure 6.11: Deck 11 layout at node 330 (location 5 in drawing) [23]

The infection risk over time and node occupancy can be seen in Figure 6.12. The crew and guest
occupancy trend for N330 shows similarities with the occupancy at N293. Just like the restaurant at
N293, there is a guest occupancy peak around breakfast with 160 agents, and two additional smaller
peaks corresponding to lunch and dinner with a total occupancy of 93 and 95 agents. The infection risk
in Figure 6.10 follows the same trend as the infection risk in Figure 6.12 but the risk values for N330
are higher than the N293 risk values. This can be explained by the fact that N293 has a smaller area
which leads to higher infection risk results.
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Figure 6.12: Infection risk and occupancy for node 330

To reduce the average infection risk of the restaurant at N330, the floor area should be increased.
N330(5) lies close to the sundeck at N331(6) which has a floor area of 30 m2. This sundeck could be
adjusted in order to increase the area available for the restaurant. The neighboring N329(3) location
shows less potential for area reduction as it is a move-through area in front of a staircase. The layout
adjustment proposed for this node has more impact than the layout adjustment for N293. This can
be supported by three considerations. Firstly, the average infection risk for N330 is higher than N293
which justifies a bigger layout adjustment to achieve a risk reduction. Secondly, the N331 sundeck has
more space available to increase the restaurant area compared to N294. Lastly, for analysis purposes,
it will be interesting to see the effect of a smaller layout change (N293) and a larger layout change
(N330). The proposed changes around the N330 restaurant are as follows:

• The sundeck will be removed
• The node 331(6) becomes a move-through node of 6 m2

• The N330 restaurant area increases to 49.2 m2

• The link 328(3) - 331(6) and 331(6) - 328(3) will be removed
• The link 331(6) - 294(stairs) becomes 330(5) - 294(stairs)
• The link 294(stairs) - 331(6) becomes 294(stairs) - 330(5)
• The agents with the N331 sundeck in their activity schedule will be divided over the other three
aft sundecks at N329(4), N336(11) and N338(13) in the following percentages: 60%, 20% and
20%. More agents will be assigned to N329(4) because it has three times the floor area of N336
and N338.

The layout adjustments for this situation also included the removal and adjustment of certain links in the
route choice model. After careful consideration, this turned out to be more complex than anticipated.
The RCM model in its current state does not allow for links to be removed or changed as it presents
with errors after the first run. Also, it was noted that most agents do not reach their final scheduled des-
tination, which gives problems for the second run. Instead of changing the layout itself, the choice was
made to mimic a layout change by adjusting the activity schedule. The following schedule adjustments
were made:

• The agents with the N331 sundeck in their activity schedule will be divided over the other three
aft sundecks at N329(4), N336(11) and N338(13) in the following percentages: 60%, 20% and
20%.

• The agents with the N330 restaurant in their activity schedule will be divided 50/50 over N330
and N331 (which does not host sundeck guests anymore).

• The crew activity schedule, layout and node areas do not change.
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6.1.2. Location-based evaluation for proposed layout adjustments
For the proposed layout adaptions, it is possible to run the integrated infection risk model and deter-
mine infection risk for every agent for every timestep. The evaluation of these results is divided into two
subsections. In this subsection, the focus lies on the high-risk locations themselves to see if the layout
adjustments impact local infection risk. In the second subsection, a more general evaluation is exe-
cuted. In this evaluation, the overall infection risks for the whole ship and its population are analyzed
for the proposed layout adjustments.

Node 107
Node 107 was identified as a high-risk location with an extreme average infection risk over 16%. This
risk outlier can be seen in Figure 6.13, where the range for the y-axis has been restricted to match the
axis range in Figure 6.14. Figure 6.14 shows the average node infection risks in the situation where
N107 functions as a move-through area rather than a bar. The figure shows that N017 is no longer
an outlier and has an average infection risk of almost 0%. This makes sense as the location has
now become a move-through location where agents spend little time. Figure 6.14 also shows higher
infection risks for N179, N197, N219 and N236. These nodes represent hallways on deck 7 and 8 next
to the mid and forward staircases. The risk variations for these locations seems unrelated to the N107
layout change. They are perhaps more related to the agent route choices, including the controlled
randomness, in the RCM model. This ‘variance’ in risk results is something to take into account when
analyzing the general results and its significance in subsection 6.1.3.

Figure 6.13: Average infection risk per node
(y-axis range limited)

Figure 6.14: Average node infection risk for N107 layout
adjustment

Node 293
The second layout adjustment was related to the restaurant at N293 which received a higher floor area
at the expense of N295. Figure 6.15 presents the infection risk results at N293 for the sample case
and adjusted layout. It can be seen that the adjusted layout leads to a lower infection risk over the day.
In Figure 6.16, the restaurant and the average infection risk for node 293 and surrounding nodes are
given. The average infection risk for the restaurant goes from 2.67% to 1.57%, a local risk reduction of
more than 40%. Figure 6.16 also shows no risk increase for the surrounding nodes.
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Figure 6.15: Infection risk for N293 Figure 6.16: Average infection risk for N292 up to N299

Node 330
The final layout adjustment was proposed in an effort to decrease infection risk for the N330 restaurant.
Figure 6.17 shows the infection risk over time for the sample case and adjusted layout. Different from
the layout change for node 293, the N330 infection risk variations between the sample case and the
adjusted layout are small. This is supported by the node average risk values presented in Figure 6.18.
The average risk for N330 decreases from 3.59% to 3.30% while the average risk for N331 increases
from 1.17% to 1.57%. The N330 risk decrease can be explained by the decreasing amount of guests
eating at that location. The increasing risk for N331, which is now a restaurant space, might be related
to the fact that the number of eating guests is higher than the amount of ‘sundeck’ guests in the sample
case. Another consideration is the fact that the space is used at a different time because guests are
spending their ‘eating’-leg instead of an ‘activity’-leg at N331. The rerouted guests using the other aft
deck 11 sundecks do not significantly increase the infection risk for these locations (N329, N336 and
N338). These sundecks remain at average infection risks of around 0.2% for both the sample case
and layout adjustment.

Figure 6.17: Infection risk for N330 Figure 6.18: Average infection risk for N326 up to N334

6.1.3. General evaluation for proposed layout adjustments
In subsection 6.1.2, the infection risks for the sample case and three layout adjustments were investi-
gated. The presented results in this section were location specific and no full ship results have been
given yet. Therefore, in this section, a general evaluation of the proposed adjustments is given. Firstly,
the average infection risk for the total population is calculated for the sample case and the layout ad-
justments. Secondly, the average infection risk over time is given for the different situations. Thirdly,
two frequency figures are presented for the average agent infection risk and the number of agents with
an infection risk above 50%.



6.1. Layout adjustments 67

Table 6.7 shows the average infection risk for the sample case (SC1) and the layout adjustments. The
first observation is that risks for the adjustments and sample case lie relatively close together. The crew
infection risks exceed the guest risks for both the layout adjustments and the sample case. Additionally,
the layout adjustment results give slightly higher infection risks than the sample case. This would mean
that the layout adjustments have a negative impact on the general risk, even if they do provide risk
improvements on a local level. However, it is important to be careful formulating conclusions from
these average risks because of two reasons. Firstly, the validation from section 5.6 should be taken
into account when analyzing these results. This validation of the integrated model against similar cases
showed variation in risk results. For the multi-room office space, the differences between the integrated
model and the research by Dai and Zhao were in the order of 1 or 2%. One can question the significance
of a 0.1 or 0.2% difference in the average infection risks between the tested cases.

The second reason to be careful when formulating conclusions based purely on Table 6.7, is the varia-
tion related to the RCMmodel outcomes. This variation comes from the controlled randomness embed-
ded in the model to account for individual agent route choices. Therefore, a second sample case (SC2)
is presented to showcase the infection risk for another RCM model outcome. This SC2 features higher
infection risks than the original sample case (SC1). The average risk results for the layout adjustments
lie between SC1 and SC2. Taking the discussed considerations into account, the layout adjustments
do not have a significant effect on the general average infection risks for the crew, guests and total
population. Also, comparing the different layout adjustments on a ship level is complicated because
the risk variations can not be distinguished from risk variations related to the RCM model.

Result [%] SC1 SC2 N107 N293 N330 All adjustments
Average IR 0.807 1.05 0.922 1.02 1.03 0.902
Average guest IR 0.730 0.935 0.839 0.914 0.913 0.829
Average crew IR 1.04 1.39 1.17 1.34 1.39 1.12

Table 6.7: Average infection risks sample cases and layout adjustment

The average infection risk over time can be seen in Figure 6.19. Both the sample cases and the layout
adjustments follow the same trend over the day. However, SC1 does not show the infection risk increase
between 13:30 and 16:00. This might explain the lower average infection risk results in Table 6.7.
Additionally, the N330 and N293 layout adjustments present with higher peak risks around 13:00 which
correlates with the end of the first activity. This seems again related to variation for the RCM model
as the layout adjustments mainly cover restaurant spaces. For the N330 layout adjustment, the peak
could be related to the distribution of sundeck agents to other locations. However, in subsection 6.1.2
it was already mentioned that these other sundeck locations do not present with an increased infection
risk. It is therefore unlikely that the increased infection risk at 13:00 for the N330 adjustment correlates
to the layout adjustment itself.

Figure 6.19: Average infection risk - layout adjustments
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Figure 6.20 and Figure 6.21 visualize frequency figures for the average infection risk and number of
agents with an infection risk above 50%. Just like Table 6.7 and Figure 6.19, the SC2 results and
adjusted layout simulation results provide similar distributions. Most agents have an average infection
risk below 1% which lies close to the average infection risk result. Both figures do not show significant
risk improvements for the layout adjustments when focusing on the whole ship and the total population.
Sample case 1 does give interesting results compared to sample case 2 and the layout adjustment.
It has fewer agents with an infection risk over 50% and it shows a higher number of agents with an
average infection risk below 1%. Comparing the layout adjustments and the second sample case
results with SC1, it can be concluded that SC1 lies somewhat on the positive side of the range of
results (related to the RCM outcome variation). The combination of SC1 and SC2 is very useful when
the layout adjustments, operational and behavioral measures are tested. Sample case 1 is conservative
in the sense that it already has ‘low’ infection risk values without any adjustments or measures. SC1
thus provides a conservative reference when investigating risk improvements. This helps to put the
significance of achieved improvements into perspective while the second sample case provides a more
mid-range reference.

Figure 6.20: Average infection risk distribution -
layout adjustments

Figure 6.21: Infection risk above 50% -
layout adjustments

Two additional frequency figures for agents at high-risk can be found in Figure 6.22 and Figure 6.23.
In these figures, the number of agents with a risk above 90% is given over time for the two sample
cases, N107 layout adjustment and the scenario combining all layout adjustments. For the N293 and
N330, there are no significant improvements compared to the base cases and they are therefore not
shown in the figures. For the N107 categorization correction and the combined scenario, a significant
improvement can be recognized. For these two cases, there are respectively three moments and one
moment in time where agents present with risks above 90%. For the rest of the day, there are no agents
with infection risks above 90%. The improvement for the combined scenario is probably only related to
the N107 adjustment because the other two adjustments do not significantly decrease the number of
at-risk agents.

In conclusion, the full-ship average infection risk differences for the layout adjustments and the two
sample case situations are difficult to distinguish from the RCM-induced variations. It does make sense
that the layout adjustments do not result in large general risk changes as the layout adjustments are
relatively small compared to the size of the total ship. Also, the agents affected by the layout change
only cover a small part of the total population. There is a notable difference between the agents at high
risk for the N107 adjustment and the case where all layout adjustments are implemented. The amount
of agents at high risk is reduced to either 3 moments (N107) or 1 moment (all adjustments) where there
are any agents with a risk above 90%.

It is advised to implement the N107 and N293 layout adjustments even if they provide mainly infection
risk improvements on a local level. The N107 adjustment is important as it solves a categorization issue
that resulted in very high local infection risks and a high number of agents with a risk above 90%. The
N293 restaurant adjustment does provide local risk improvement and it does not negatively affect sur-
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rounding nodes. The local positive risk improvement for the N330 adjustment is less straightforward as
the improvement comes with a risk increase for N331. This adjustment is therefore not recommended
and other measures or adjustments might be considered at this location. For example, limiting the
number of people allowed, promoting other restaurants onboard or working with reservations to spread
the local occupancy.

Figure 6.22: Infection risk above 90% -
N107 adjustment

Figure 6.23: Infection risk above 90% -
all layout adjustments

6.2. Operational measures
This section covers two types of operation measures described in chapter 2: one-way movement and
a capacity reduction. For the one-way movement measure, two scenarios are explored from which one
covers the mid and fwd staircases. The other scenario involves the walking route to and from the main
restaurant (N296) on deck 10.

6.2.1. One-way movement
Forced one-way movement is an operational measure which was applied widely during the COVID-19
pandemic. The basic idea is that people all walk in the same direction which improves flow movement
and thus decreases risk. It is important to realize that counter-flow in hallways and corridors is not
simulated in the RCMmodel. The links are bi-directional themselves but they are split up in two direction
paths which do not interact with each other. This assumption might affect the results for the forced one-
way simulations. Additionally, in subsection 6.1.1 it was noted that the RCM in its current state does
not function when links are removed. The logical way to mimic forced one-way movement is to remove
the links from the input files. Alternatively, the choice was made to increase the length of the relevant
links to 200m. The route via these links will have a lower utility and therefore be a less favorable route
choice for the agent. However, this does mean that some agents might still choose a route via these
links. If the agent does choose to move against a ‘one-way’ link, the travel time will increase significantly
because of the link length.

The results of the one-way movement are described in Appendix F. The implementation of the tested
one-way movement scenarios is currently not recommended. The nodes proved to have a significantly
higher infection risk than the links and one-way movement specifically targets movement and thus
link locations. In general, this operational measure was explored but further model development and
research are required to justify the implementation of this measure.
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6.2.2. Capacity reduction
The second investigated operational measure is a general capacity reduction for both the crew and
guests. This measure was implemented through the adjustment of the activity schedule input. The
investigated capacity reductions are CR = [10, 20, 30, 40, 50, 60, 75]%or [2562, 2280, 1994, 1708, 1422,
1140, 711] agents. For every case, the required number of agents has been randomly removed from
the activity schedule while the guest-to-crew ratio is kept the same. The five RCM repetitions were
executed for one random population draw in order to decrease the total simulation and post-processing
time. It is important to note that a single random population draw might result in additional variation
besides the route choice model variation. Both the reduction percentages and the number of remaining
agents are given in all legends for the result figures.

Figure 6.24 presents the average infection risk for the reduced populations. The results are presented
in a figure with the capacity reduction on the x-axis rather than a table. The risk increases from CR =
20% to CR = 30% and the crew risk increase between CR = 50% and CR = 60% are probably related
to the randomness from the population draws and the RCM output. The sample case 1 and sample
case 2 results can be seen as horizontal lines. The first observation is that the average infection risks
decrease for higher capacity reduction. This was expected as fewer agents will result in higher social
distances and thus lower infection risk. However, the average infection risk decrease remains small
compared to the sample cases, even for higher capacity reductions. Take for example a 75% capacity
reduction, which means that there are only 175 crew members and 536 guests onboard. The total
average infection risk is 0.630%, only 22% lower than SC1 (conservative reference). The average
infection risks become smaller than SC1 after a 50% capacity reduction. The total average infection
risk for a 50% and 60% capacity reduction are 0.786%(-2.6%) and 0.755%(-6.5%) compared to SC1.
All capacity reductions result in lower average infection risks than the less conservative sample case
2. Compared to SC2, a 50% capacity results in a 25% risk reduction, CR = 60% leads to a 28% risk
reduction and CR = 75% gives a 40% risk reduction.

Figure 6.24: Average infection risk over capacity reduction

The average infection risk over time is given in Figure 6.25 and Figure 6.26. The results are presented
over two figures to increase the readability as the results lie close together for the majority of the time.
Figure 6.25 covers the capacity reductions from 10% up to 40%. The different cases present with
similar average infection risks over time related to the sample cases. In Figure 6.26, the average
infection risk for the higher capacity reductions is visualized. For a smaller amount of agents onboard,
the risk peak values decrease which in turn will lead to a lower total average infection risk as seen in
Figure 6.24.
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Figure 6.25: Average infection risk - capacity reduction 10%, 20%, 30% and 40%

Figure 6.26: Average infection risk - capacity reduction 50%, 60% and 75%

Figure 6.27 shows the agent average infection risk for the different capacity reductions. The results are
presented in percentages rather than absolute numbers because the cases all have different population
sizes. The frequency distribution moves left for increasing population reductions. This means that a
higher percentage of the population has a lower agent average infection risk. For capacity reductions
over 50%, the distributions come close to sample case 1 and for 75%, the distribution lies more left than
SC1. This observation matches the observations relating to the average infection risks over time.

In Figure 6.28, the agents with risks above 50% for 10% up to 40% capacity reductions are given. Just
like the average risk over time, the results have been presented in two separate figures. Figure 6.29
shows the 50%, 60% and 75% capacity reduction scenarios. Different from Figure 6.25, the ‘smaller’
capacity reductions do seem to affect the number of agents at high risk in Figure 6.28. For example,
the 20% and 40% capacity reductions decrease the peaks at 13:00. The 40% capacity reduction also
has a smaller percentage of high-risk agents around 12:00. It is important to note the fact that the
variation related to the RCM model input clearly influence the results in this figure. The 10% reduction,
for example, does show a decrease for second peak but is also shows an increase for the third and
fifth peak compared to the second sample case. And, when investigating the second 13:00 peak, a
20% reduction decreases the result while the 30% reduction result lies above the 20% result. This
is contrary to the general idea the a smaller population using the same layout will have more space
available and therefore smaller infection risks. This was seen for the average values in Figure 6.24
up to Figure 6.27. On a more local level, however, RCM model output variations might lead to less
predictable results as seen in Figure 6.28.
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Figure 6.27: Average infection risk distribution -
capacity reduction

Figure 6.28: Infection risk above 50% -
capacity reduction 10%, 20%, 30% and 40%

The final figure for the capacity reduction results is given in Figure 6.29 for 50%, 60% and 75% reduction
scenarios. In general, for larger capacity reductions the percentage of agents with a risk above 50%
reduces. This is specifically seen for the 10:15, 13:00 and 15:30 peaks when the reduction scenarios
are compared to the SC2.

Figure 6.29: Infection risk above 50% - capacity reduction 50%, 60% and 75%

Combining all the presented results for the capacity reductions, the following conclusions can be drawn.
First of all, a reduction in the amount of agents does decrease the average infection risk and the per-
centage of agents at high-risk. The size of the average risk reduction depends on the chosen reference.
Compared to CS1, it takes a 50% capacity reduction to achieve lower average infection risks than the
reference. However, compared to the less conservative sample case 2, a 50% reduction results in a
25% average infection risk reduction and all tested capacity scenarios have lower average infection
risks. A possible reason for the the fact that high capacity reductions are required to achieve aver-
age risk improvements compared to SC1, might be found in the initial densely populated environment
onboard.

Taking a high capacity reduction might be the best choice from an infection point of view but it is impor-
tant to realize that this operational measure has major consequences. For example, a cruise ship is
optimized to host a maximum number of guests and crew to increase and ensure profitability. Running
a cruise ship at lower capacity means that cruises become more expensive and for a 75% capacity
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reduction, the cruise ship might not be profitable at all. For a naval vessel, which is optimized in terms
of crew complement and operability, a capacity reduction can have far-reaching effects as there is less
personnel available to execute a certain mission or operate the systems onboard. Implementing a
high capacity reduction thus might not be a workable option when operability and profitability are taken
into account. It is therefore advised to consider a limited capacity reduction in combination with other
measures. To further investigate this option, section 6.4 presents six combination scenarios for layout
adjustments, behavioral and operational measures. The capacity reductions used for further testing are
a 50% reduction as this was the first scenario which presented with lower average risk results than SC1.
Also, a smaller 30% capacity reduction is tested in the combination scenarios. This capacity reduction
functions as a compromise between infection risk, profitability and operability considerations.

6.3. Behavioral measures
This section focuses on behavioral measures in order to decrease infection risk. In chapter 2, different
behavioral measures were described like social distancing, vaccinations, personal protective equip-
ment and personal hygiene. The measure analyzed in more detail is personal protective equipment in
the form of wearing a surgical mask. This behavioral measure was frequently implemented during the
COVID-19 pandemic. Three variations of this behavioral measure are modeled and described in the
subsections below.

6.3.1. Modeling mask wearing
Wearing is a mask can be conveniently covered by the implementation of an exhalation filtration effi-
ciency ηE and a respiratory filtration efficiency ηR. The exhalation filtration efficiency affects the quanta
production rate as presented in Equation 6.1. This efficiency covers the infector wearing a mask which
reduces the amount of infectious particles spread. The respiratory filtration efficiency affects the pul-
monary ventilation rate as given in Equation 6.2, representing the susceptible agent wearing a mask
and therefore inhaling fewer infectious particles. The adjusted pulmonary ventilation and quanta pro-
duction rates are implemented in the modified Wells-Riley Equation 3.3. Literature reports the filtration
efficiencies of surgical masks between 50% and 60% [102, 17]. In this research, the mask filtration
efficiency is chosen to be 50%. Listing G.1 shows the two filtration efficiencies and a third parameter
used to impose specific actions for either the guests or the crew.

qadjusted = q(1− ηE) (6.1)

padjusted = p(1− ηR) (6.2)

Masked agent movement
The first scenario is the situation where the guests wear a mask whenever they are moving. Movement
means that the agent has a state of 0, 2 or 3. The crew is assumed to wear a mask continuously over
the day. Listing G.2 shows the additional code to account for this masked movement scenario. This
code is implemented after Line 2 in Listing C.6.

Continuous mask wearing
In the second scenario, the guests are wearing a mask during movement and their activities. However,
wearing a mask at breakfast, lunch and dinner does seem rather impractical. The agents are therefore
not wearing a mask when they are eating in one of the restaurants. The node locations for these
restaurants are as follows: N330, N299, N297, N296, N293, N292, N290, N286, N105, N104, N79,
N45, N44 and N41. The crew is, again, assumed to continuously wear a mask. The code modifications
can be found in Listing G.3 and Listing G.4. Listing G.3 is added after Line 7 in Listing C.4 when the
agent is located at a node. Listing G.4 is inserted after Line 8 in Listing C.5 when the agent moves over
a link.

Mask wearing based on social distance
The final variation tested is social distance based mask wearing. In this situation, the crew and guests
are obliged to wear a mask when the social distance becomes smaller than a set safe distance. It is
assumed that all crew and guests are compliant with this behavioral measure. In real life, there are
probably agents who do not wear the mask even if the social distance becomes small. During the
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COVID-19 pandemic, the CDC recommended a 6ft social distance and in Europe a distance of 1 to 2
meters was recommended [11, 20]. The safe distance used for the simulations is set to 1.5 meters. The
guests will not wear a mask during breakfast, lunch and dinner, even if the social distance becomes
smaller than 1.5m. The model modifications are presented in Listing G.5 and Listing G.6. Listing G.5 is
inserted after Line 27 in Listing C.4 and Listing G.6 is implemented after Line 24 in Listing C.5.

6.3.2. Evaluation mask scenarios
The average infection risks for the scenarios with mask wearing can be found in Table 6.8. For all
scenarios involving face masks, the average total risk results are lower than both sample cases. When
guests only wear masks when they are moving, the average risk reduction is 2.4% compared to SC1
and 25% compared to SC2. In the movement scenario, the crew is continuously wearing a mask which
results in a significant decrease in the crew average infection risk. This crew risk reduction affects the
total average result as the guest risk does not show improvement. The fact that the guests are wearing
masks during movement in itself thus does not significantly improve infection risks.

The highest improvements are achieved for continuous and social distance(SD) based mask wearing
with average infection risk of 0.451% and 0.487%. This represents a 44% and 40% risk reduction
compared to SC1. The crew average risk in the SD based scenario is slightly higher compared to the
situations where the crew is continuously wearing a mask.

The guest infection risk for the second and third scenario variations lie close together. In both situations,
the guests are not wearing a mask when they are eating. For the rest of the day, there seems to be little
difference in risk for either continuous or social distance based mask wearing. One possible reason
could be that the social distance is smaller than the set safe distance for a majority of the time. This
means that guests in the social distance scenario are almost continuously wearing a mask which would
result in similar risk results.

Result [%] SC1 SC2 Movement Continuous SD based
Average IR 0.807 1.05 0.787 0.451 0.487
Average guest IR 0.730 0.935 0.925 0.478 0.481
Average crew IR 1.04 1.39 0.362 0.369 0.506

Table 6.8: Average infection risks sample cases and mask wearing cases

Figure 6.30 gives the average infection risk over time. The masked movement scenario follows a
similar trend to the conservative sample case 1 which is supported by similar total average infection
risk values in Table 6.8. The average infection risk for the continuous and SD based scenarios is lower
for the majority of the time. However, the 10:15 risk peak showcases interesting behavior as this peak
does not decrease, even for continuous or SD based mask wearing. This peak correlates with the
end of breakfast and can be explained by the fact that guests do not wear masks when they are eating.
Continuing on this reasoning, the end of lunch peak around 15:30 and end of dinner peak around 20:00
are also expected to show little risk improvement for the masked scenarios. The figure indeed shows
that for these timings there is little risk improvement for the tested cases compared to SC1. Contrary
to the meals, more pronounced risk decreases are recognized for the activities in between the meals
around 13:00, 17:00 and after 21:30 for the evening activity. This makes sense as the guests are
wearing masks during these activities either continuously or based on social distance.



6.3. Behavioral measures 75

Figure 6.30: Average infection risk - mask wearing

The frequency figures for the mask wearing scenarios are presented in Figure 6.31 and Figure 6.32.
For the second and third masked cases, the frequency distribution of the agent average infection risk
moves left as expected. The masked movement shows a slight improvement compared to the second
sample case. This improvement can be attributed to the crew, who are continuously wearing masks.
Looking at the number of agents with infection risks over 50%, continuous and social distance based
mask wearing result in significant improvement. The maximum number of agents with a risk above
50% is 6 agents for these two cases compared to 70 agents for SC2. The masked movement scenario
even results in 80 agents at high risk around 15:30. With the differences in when guests and crew are
wearing masks, it is useful to present two additional figures which show the amount of guests or crew
with an infection risk above 50%.

Figure 6.31: Average infection risk distribution -
mask wearing

Figure 6.32: Infection risk above 50% -
mask wearing

In Figure 6.33, the amount of guests at high risk is presented. For the masked movement scenario,
the results follow the same trend as the second sample case. The peak increase around 15:30 can
probably be assigned to variations in the RCM model input. In general, wearing a mask solely during
movement does not significantly improve the infection risks experienced by the guests. This figure
also shows that there are no guests with a risk above 50% for the two other scenarios involving masks,
except around 13:00. This is a major improvement. For the crew, a similar improvement can be seen
in Figure 6.34, especially with SC2 as a reference. The amount of at-risk crew members is significantly
reduced for all three mask wearing scenarios. The maximum number of crew members at high risk is
6 compared to 9 and 38 crew members for SC1 and SC2.
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Figure 6.33: Guest infection risk above 50% -
mask wearing

Figure 6.34: Crew infection risk above 50% -
mask wearing

Taking the presented results into account for both the crew and guests, the continuous and social
distance based mask wearing show the most potential. Choosing between these two behavioral mea-
sures, which show similar results in terms of infection risk, might instead be a question of preferred
policy. Continuous mask wearing as a measure provides more clarity as both guests and crew know
when to wear a mask. Also, it avoids the situation where agents are taking off and putting on the masks
multiple times. This might be unhygienic and decrease the efficiency of the masks itself. Instead, a
social distance based measure does help to create awareness around social distancing and crowded
spaces. Guests can choose a different activity or route based on how busy it is so that they do not
have to wear a mask.

Also, it would be interesting to investigate the effect of combined mask wearing measures, capacity
reductions and layout adjustments. The continuous and social distance based mask wearing measures
are combined with operational measures and layout adjustments in section 6.4 as they showed themost
potential.

6.4. Combined measures
The layout, operational and behavioral measures evaluated in the previous sections can also be im-
plemented in combinations. The N293 layout adjustment was proven to decrease local infection risk
and the N107 adjustment solves a categorization issue. The 50% capacity reduction is tested because
it presented the first CR with an average infection risk below the SC1. The 30% capacity reduction
represents a compromise between infection risk, economic and operational feasibility. The layout and
capacity interventions are combined with continuous and social distance based mask wearing. These
combinations have to potential to further decrease average infection risks and decrease the number of
agents at high risk. The combinations are presented in Table 6.9 and the average infection results are
given in Table 6.10.

Combination Layout adjustment Capacity reduction Mask wearing
C1 N107 & N293 CR = 30% -
C2 N107 & N293 CR = 50% -
C3 N107 & N293 CR = 30% Continuous mask wearing
C4 N107 & N293 CR = 50% Continuous mask wearing
C5 N107 & N293 CR = 30% SD based mask wearing
C6 N107 & N293 CR = 50% SD based mask wearing

Table 6.9: Specifications combined measures

Combination C1 and C2 do not feature mask wearing. Implementing the layout adjustments does result
in slightly better average infection values: 0.787% and 0.667% compared to 0.964% and 0.786% as
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presented in subsection 6.2.2. Combination C3 and C4 achieve the highest average risk improvements.
These combinations feature capacity reductions combined with continuousmask wearing. The average
infection risk decreases to 0.343% and 0.295%, with even lower crew infection risks. This presents a
57% and 64% risk reduction compared to SC1 while a 44% reduction was achieved for continuous
mask wearing as a stand-alone measure. For C3 and C4, the crew infection risk is smaller than the
guest infection risk because the crew is continuously wearing masks while the guests take off their
masks during meals. The risk reductions for C5 and C6 are slightly smaller than the reductions for
C3 and C4 which matches with the findings in section 6.3. Again, the crew and guest risks are similar
because both groups are wearing masks whenever the social distance is smaller than 1.5m. Evaluating
the capacity reductions, a 50% capacity reduction does decrease the infection risk compared to 30%.
However, these differences seem rather small compared to economic and operational impact which
a 50% reduction might have compared to a 30% capacity reduction. The results in Table 6.10 are
supported by Figure 6.35 which shows a significant decrease in average infection risk for C3 up to C6
after breakfast.

Result [%] SC1 SC2 C1 C2 C3 C4 C5 C6
Average IR 0.807 1.05 0.787 0.667 0.343 0.295 0.427 0.396
Average guest IR 0.730 0.935 0.724 0.624 0.377 0.324 0.432 0.397
Average crew IR 1.04 1.39 0.978 0.800 0.240 0.207 0.412 0.392

Table 6.10: Average infection risks sample cases and combined measures

Figure 6.35: Average infection risk - combined measures

Figure 6.36 shows that for C3 up to C6, almost 100% of the agent average infection risks are below
0.1%. This is a higher percentage of the population compared to Figure F.3 for capacity reduction as
a stand-alone measure. When the number of agents with a risk above 50% is calculated, it turns out
that for C3 and C5, there are no agents with a risk above 50%. For C4 and C6, there is only a single
moment in time, 10:30 (C4) and 14:15 (C6), where there are 2 agents with an infection risk above
50%. This shows a further improvement compared to Figure 6.33 and Figure 6.34 for mask wearing
scenarios without capacity reduction.



78 Chapter 6. Simulations

Figure 6.36: Average infection risk distribution -
combined measures

Figure 6.37: Infection risk above 50% -
combined measures

6.5. Conclusion
Table 6.11 visualizes an overview of the average infection risks for the measures and combinations
that showed the most potential. The N107 adjustment dealt with a categorization error, improving the
number of agents at a risk above 50%. The average infection risk for the N293 adjustment lies, like the
N107 adjustment, in between the sample cases which can be related to the randomness in the RCM
model. The N293 layout adjustment did provide local risk improvement without compromising adjacent
node locations and is therefore implemented in the combination cases.

Applied measure(s)
and adjustment(s)

Average IR com-
pared to SC1 [%]

Average IR com-
pared to SC2 [%]

Reduction number of
agents IR > 50%

Layout N107 + 14 - 12 Yes
Layout N293 + 26 - 3 No
CR = 30% + 19 - 8 No
CR = 50% - 3 - 25 Yes
Continuous mask wear-
ing

- 44 - 57 Yes

Social distance based
mask wearing

- 40 - 54 Yes

C3 - 57 - 67 Yes
C4 - 63 - 72 Yes
C5 - 47 - 59 Yes
C6 - 51 - 62 Yes

Table 6.11: Applied measures and adjustments results overview

For higher capacity reductions, the average infection risk and number of agents at high risk decreases.
However, implementing these high capacity reductions might introduce issues around economic and
operational feasibility which should be further investigated. Therefore, implementing a ‘lower’ capacity
reduction in combination with other measures could be preferable. Significant risk reductions were
achieved when crew and guests start wearing masks. The most promising results were realized for
continuous and social distance based mask wearing. With these mask wearing measures, four com-
binations were evaluated which showed large average risk reductions reducing the number of agents
with a risk above 50%. The highest average risk reductions were found for C3 and C4 combining con-
tinuous mask wearing with a capacity reduction. It was noted that the additional risk decrease, when
the capacity is reduced from 30% to 50%, is relatively small. This is relevant when a capacity reduction
is considered against non-infection risk related requirements like a feasible manning.
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Discussion

The integrated infection and crowd behavior model provides a proof of concept that implementing an
infection and movement model is possible while incorporating crew and guest circulation through a ship
layout. The integrated model was used to simulate COVID-19 infection risk for a selection of measures
and layout adjustments onboard a cruise vessel. Certain assumptions were required during the model
development and scenario evaluation in order to move forward. These general assumptions cover for
example the agent activity schedule, the ship layout and the selected parameters.

Next to these assumptions, the evaluated sample cases revealed the variation related to the route
choice model output. Sample case 1 presented relatively low infection risks without implementing any
layout adjustments or measures. Thus, a second sample case was generated, providing an additional
reference that showed higher infection risk results. SC1 is used as a conservative reference while
the second sample case provides a more average situation. These sample cases show that for the
same input parameters, there is RCM output variation even when the runs are repeated five times. For
the capacity reduction scenarios, additional variation is introduced by the random population draws.
The achieved variation is also a strength of the model because people movement is hard to predict
and should thus have some degree of randomness. If the RCM model would always provide similar
results, it would not realistically mimic crew and guest movement. In reality, implemented disease
prevention and control measures might have more effect during day A than they have during day B.
However, it is recommended to increase the number of route choice model repetitions and execute
additional population draws for the capacity reduction scenarios. This will further improve the quality
of the results even if it requires additional simulation time or increased computing power.

As mentioned in the scope of this research, ventilation and ventilation system design onboard large
passenger vessels has not been considered. In the literature review, it became clear that there is a
vast body of research focused on ventilation onboard large passenger vessels and its connections
to contagious disease spread. The research presented in this report should be complemented by
a ventilation study in order to provide a more complete perspective on contagious disease spread
onboard large passenger vessels.

Concerning the integrated infection and crowd behavior model, there are ample opportunities for further
model development. A selection of these opportunities is presented below. One should note that the
current choice for the combination of a mesoscopic route choice model and the modified Wells-Riley
infection calculation is based on the proposed set of requirements. If these requirements were to
change, the model combination choices should also be revised. For example, if the disease angle is to
be investigated further, a microscopic movement model might be a better fit in order to simulate disease
progression, multiple transmission modes and the number of infected cases. The disease state could
then be linked to the exact spatial location of the agents and it would be possible to model movement
through the ship layout in more detail.
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Parameter selection
The integrated model is based on a set of selected parameters which include both spacial and medical
parameters. The model will become even more realistic if these parameters are based on specific
circumstances. For example, the air change per hour is taken constant over the entire ship while the
air change rate could be space or time-dependent. The pulmonary ventilation rate is also assumed to
be constant for every agent. One could argue that this ventilation rate is agent-specific or even space-
related. A higher pulmonary ventilation rate can be justified for the crew members as they are working
and continuously moving around. The p-rate could also be related to a specific space like the gym or
stairs where the pulmonary ventilation rate increases.

When the various measures were tested, the compliance to these measures was assumed to be 100%.
An additional parameter covering measure compliance could be introduced to deal with this assump-
tion. Lastly, the number of infected agents per space is assumed to be one. For large restaurants and
activity spaces, a situation with multiple infectors might actually be more accurate. For further model de-
velopment, an occupancy-dependent number of infectors could be a possible parameter improvement
without moving to more complex infection models.

Activity schedule
The integrated model results are very much activity schedule dependent. It is relevant to note that
the implemented activity schedule is connected to the investigated ship type as a cruise ship activity
schedule differs from a schedule for a naval vessel. It would be beneficial if the agent activity schedule
was investigated in more detail and if possible improved. In an ideal case, field testing onboard the
investigated vessel should inform an activity schedule matching the actual movement of crew and
guests. It is noted, however, that such research is time-intensive and comes at a significant cost.

Transmission modes
The modified Wells-Riley infection model integrated in this research only assesses airborne infection
risk for COVID-19. Other modes of transmission like contract transmission might also play a role in
disease transmission onboard a ship. The transmission modes not included in the current model can
further increase the infection risk. Also, implemented control and prevention measures might prove
more or less useful when multiple transmission modes are taken into consideration. Next to the modes
of transmission, two additional considerations can be described which fall under the medical aspect of
this research. Firstly, the exposure time in the integrated model is reset every time an agent changes
spaces. The exposure time is thus purely based on the space an agent is in. If an agent happens
to move to another space together with the infector, the reset of this exposure time makes less sense.
Also, the current model does not account for the infectious particles, or ‘shadow’, that an infector leaves
behind after leaving a space. This ‘shadow’ decays over time. If further research means to take con-
siderations like these into account and model disease progression (agents getting infected), it might
be advised to transfer to an agent-based infection model. With these microscopic models, the location
of every agent can be linked to the disease state and disease progression can be visualized. In this
situation, the route choice movement model might require adjustments in order to provide spatial agent
locations.

One-way movement
When the one-way movement scenarios were evaluated, complications arose for the route choice
model. These one-way movement scenarios are specifically connected to the link locations. This
research, using the current integrated model, showed the main infection risks to be located at the
nodes. It was therefore decided not to investigate this measure in more detail. However, if there is
a specific interest in one-way movement modeling, the following considerations should be taken into
account.

The initial idea was to remove the links between certain nodes, creating a forced one-way route for the
agents to follow. However, removing the links resulted in issues with the RCM outputs. The choice was
then made to change the length of the links, discouraging agents from using them. In this situation, the
agents who still use the ‘removed’ links experience unrealistic travel times because of the increased
link length. The issues for the one-way movement scenarios are also connected to crew accommo-
dations modeling which leads to unfeasible crew movement behavior when the one-way routes are
implemented. For further research, the RCM should be adjusted so that links can be easily removed
and compliance with a one-way movement measure is taken into account.
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It is also important to note that the RCM does not simulate cross-flow in the corridors. The RCM in
its current state splits every corridor into two walking lanes: one link from location A to location B and
one from location B to location A. Cross-flow is the situation where the agents in these links (A-B) and
(B-A) interact with each other. This phenomenon is not modeled although it could be relevant when
investigating an operational measure like one-way movement. In general, the movement model and
ship layout should be further developed if one-way movement is to be investigated.

Social distance
The social distance calculation is an integral part of the infection risk calculation. The social distance is
based on the assumption that agents evenly distribute themselves over the available space and do not
group together. This way, the agents have the largest possible social distance in a space. Onboard a
real cruise vessel, however, agents might avoid certain areas in a space and group together, using the
available space less efficiently. This can result in smaller social distances and higher infection risks. A
more comprehensive social distance estimation would improve the infection risk results.

Ship layout
Finally, the ship layout used for the integrated infection and crowd behavior model features areas for
improvement. The SAFEGUARD cruise vessel layout used in this research was created for evacuation
model validation. During evacuations, the elevators are not in use and the elevators are therefore not
provided in the layout. These elevators are small spaces where agents stand close together, potentially
resulting in high infection risks. Also, the outside spaces like sundecks are currently modeled as if they
are inside spaces, overestimating the infection risk. A subsequent layout iteration could take both
elevators and outside spaces into account.

Additionally, the current layout does not model the crew accommodation. This can also be related to the
initial function of the SAFEGUARD layout as the crew is assumed to be trained during an evacuation
and the evacuation modeling is focused on the guests. The guest cabins in the layout are modeled in
large groups. This results in unexpected movement and infection risk before the agents start moving
and after they have finished their schedule. Additionally, all crew members spent their break time at
node 5 or 33, which are not appropriate locations to accommodate large groups of people. Adding
appropriate guest and crew accommodations to the layout would solve these issues. Also, it would be
interesting to implement a cabin infection risk indication covering the time crew and guests are in their
cabins. It is possible that the modified Wells-Riley infection model currently used, is not suitable for a
cabin risk calculation. This might require a different infection model and additional modification in the
implemented ship layout.
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Conclusions

This report aimed to develop an integrated infection and crowd behavior model which could be used to
investigate contagious disease spread onboard large passenger vessels. The integrated model could
then be applied to a cruise vessel evaluating COVID-19 infection risk for layout adjustments, operational
and behavioral measures. The research and integrated model development was structured around
seven research questions leading to the main research goal. This section therefore formulates the
conclusions based on the same seven research questions.

1. What is the state-of-the-art of contagious disease spread, contagious disease prevention and
contagious disease control in confined spaces such as a large passenger vessel?

Contagious disease spread can be described using four transmission modes: contact transmission,
airborne transmission, common vehicle transmission and vector-borne transmission. Onboard a large
passenger vessel, the densely populated environment, shared and confined spaces contribute to con-
tact transmission. Airborne transmission can be related to shared HVAC systems while common food
and water sources could cause common vehicle transmission. The transmission of a contagious dis-
ease can be prevented or controlled by various measures. These measures include operational mea-
sures like: restricted movement, embarkation requirements, improved onboard routines and disease
management covering monitoring and surveillance. Also, there are options for behavioral measures re-
lated to social distancing, vaccinations, PPE and personal hygiene. Lastly, the ship layout design itself
could support disease spread prevention and promote disease control if prevention fails. For example,
high-risk spaces could benefit from relocation and a re-configurable design might provide additional
medical facilities and isolation zones during a disease outbreak.

2. What are the requirements for an integrated infection and crowd behavior model, if this model
is used to investigate the effect of ship layout design, operational and behavioral measures on
contagious disease spread?

The formulated model requirements are directly linked to the scope and boundaries of the research.
Medical complexity and convergence requirements make sure that the infection risk results conver-
gence within a time frame acceptable for initial stage retrofit design. The investigated ship type is a
large passenger vessel with a population size requirement of 3000 up to 4000 individually modeled
agents. The preferred result of the model simulation is the limitation of contagious disease spread
covered by a disease performance requirement. Also, the model should provide options to implement
disease-specific parameters and thus take differences between contagious diseases into account. The
evaluation of Layout adjustments is supported by requirements linked to space occupancy and expo-
sure time. Space occupancy and exposure time are equally important when operational and behavioral
measures are investigated. Two key model specifications are the incorporation of crew and guest cir-
culation and the incorporation of movement through a ship layout. Five additional requirements form
the foundation for these key specifications connected to: individual movement, random movement,
multi-leg movement and layout incorporation with defined space capacity and flow limits.
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3. Which infection model and which crowd behavior model can be combined to fulfill the require-
ments of research question 2?

Various types of infection and agent movement models were investigated as a first step in finding suit-
able models for integration. The options for the movement models feature different levels of detail like
the macroscopic pipe flow model frequently used in ship evacuation modeling. Also, a mesoscopic
route-choice model and microscopic agent-based models were considered. The medical infection
model options include: compartment models, risk-based models and agent-based models. Twelve in-
fection and movement model combinations were constructed and tested against the requirements from
the second research question. A combined mesoscopic route choice model and modified Wells-Riley
infection model best matched the requirements. This combination is layout-dependent and provides
agent-based infection risk without being overly complex and time-intensive.

4. What is the architecture of the integrated infection and crowd behavior model?

The route choice model simulates the movement of all crew and guests based on a one-day activity
schedule. The output of the RCM is used as input for the infection risk calculation combined with a set
of start parameters. These start parameters include medical parameters, ventilation assumptions and
spatial parameters like node area and link length. The start parameters and RCM output are used to
calculate node occupancy and location specific ventilation rate. At this point, all information is available
for the agent infection risk calculation executed at every time step.

5. What are the infection risk results of a sample case scenario when the integrated infection and
crowd behavior model is applied?

The sample case scenario was defined by a cruise ship layout from the SAFEGUARD project, an activity
schedule for the crew and a schedule for the guests. Additionally, a sensitivity study was conducted
to investigate the effect of parameter variations on infection risk results and inform the final selection
of these parameters. The average infection risk for the sample case is 0.807%, variating between 0%
and 2.5% over the day. The average crew infection risk of 1.04% exceeds the 0.730% average guest
infection risk. Besides the average infection risk, the number of agents with an infection risk above
50% was calculated. For the sample case, three peaks were found around 11:30, 16:00 and 21:00 with
respectively 18, 7 and 14 agents at high risk.

6. How can the infection risk results from the integrated model be validated?

The sample case infection risk results were validated against similar cases from literature. Using the
day average infection risk for the sample case, a 15% attack rate was calculated for a 20-day COVID-
19 outbreak. This value can be compared against the 22% attack rate reported for a 20-day outbreak
onboard the DiamondPrincess cruise vessel. The slight difference is explained by the constant infection
rate and ‘perfect’ isolation of infected cases in the sample case. In real life, the infection rate increases
over an outbreak resulting in higher attack rates. The sample case was also validated for a single
office space, amulti-office space, an out-patient hospital building and a reception scenario. Focusing on
location specific infection risk, 20 waiting rooms in an out-patient hospital building were compared to the
20 highest risk locations in the sample case. A day average infection risk of 0.79% and an infection risk
range between 0.19% and 2.63% was reported for the hospital waiting rooms. For the 20 locations in
the sample case, a 1.49% average infection risk and a range between 0.75% and 3.58%was calculated.
Finally, a reception scenario was compared to one of the onboard restaurants in the sample case with
similar occupancy, space dimensions and three-hour exposure time. The restaurant presented a 3.18%
average infection risk versus a 1.6% average infection risk for the reception. These validations prove
the sample case to be sufficiently validated for application as a baseline when evaluating prevention
and control actions.

7. What are the infection risk results of selected prevention and/or control actions onboard a large
passenger vessel when the integrated infection and crowd behavior model is applied?

The integrated model was used to evaluate three small-scale layout adjustments, capacity reductions
and mask wearing scenarios. Investigating the high-risk locations in the layout, the node locations were
found to have significantly higher infection risks than the link locations. This can be explained by the
occupancy and extended exposure time when agents are located at a node. The layout adjustments
for the bar at N107 solved a categorization error, which resulted in a realistic local infection risk and
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decreased the number of agents with risks above 50%. The layout adjustment at the N293 restaurant
resulted in a local risk improvement from 2.67% to 1.57% without increasing risk for surrounding nodes.
The local infection risk improvements are too small to be detectable in the average infection risks for
the complete ship.

The evaluated operational measure is a general capacity reduction with fewer guests and crew onboard
the vessel. The average infection risk decreases with increasing capacity reductions. Risk improve-
ments compared to sample case 1 were seen for higher capacity reductions with an average infection
risk of 0.755% for CR = 60% and 0.630% for CR = 75%. The initial densely populated environment
might be a possible reason for the fact that large capacity reductions are required to achieve any aver-
age infection risk improvements. It should be noted that these large capacity reductions might result in
operational and economic feasibility issues.

Compared to the layout adjustments and the operational measures, the highest risk improvements were
achieved when the crew and guests started wearing masks. The average infection risk for continuous
and social distance based mask wearing is 0.451% and 0.487%, a risk reduction over 40% compared
to the sample cases. Additionally, significant improvements became visible for the number of agents
with infection risks above 50%.

Based on the results from the separately implemented measures, six combinations covering multiple
adjustments and measures were evaluated. Combining continuous mask wearing with a 30% or 50%
capacity reduction, the average infection risk was reduced with 57% and 63% compared to SC1. The
limited risk improvement between a 30% and 50% capacity reduction should be evaluated against non-
infection related considerations like sufficient manning. When continuous mask wearing is combined
with a 50% reduction there is a single moment when 2 agents have an infection risk above 50%. This
shows significant improvement compared to the sample cases.

Considering the infection risk results for the evaluated scenarios, the developed model has proven to
be a valuable tool when investigating contagious disease spread onboard a large passenger vessel. It
can be concluded that the research goal to: Investigate the effect of ship layout design, operational and
behavioral measures on contagious disease spread onboard large passenger vessels, by combining
an infection model with a crowd behavior model was accomplished.

Future research

In this report, the integrated model was applied to a cruise ship layout testing specific layout adjust-
ments and measures for COVID-19 infection risk. The measures tested were limited to: capacity re-
duction, mask wearing and small-scale layout adjustments. It would be relevant to also evaluate other
scenarios like significant activity schedule changes, implementing different zones or large-scale lay-
out adjustments. Additionally, further research might evaluate a feedback loop related to agents who
make different choices when certain measures are applied. For example, if agents know how crowded
spaces are beforehand, they could choose a different activity or time to move. Another example can
be found for mask wearing. In the current research, agents wear their masks in certain situations and
the activity schedule is kept unchanged. In reality, the behavioral measure (mask wearing) might lead
agents to change their activity schedule, thus introducing secondary effects.

Furthermore, the model could be used for other ship layouts like a ferry or a large naval vessel, investi-
gating infection risk under different circumstances and for other contagious diseases. A final research
suggestion moves beyond retrofit ship design, where the integrated model might be used during the ini-
tial design stage. In this design stage, the integrated model could determine infection risk performance
for a set of initial deck plans. This would provide infection risk insight before design decisions are made
and the ship design is finalized.
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A
Disease Prevention and Control

This appendix provides background information relating to disease prevention and control.

A.1. Ship layout design
A.1.1. HVAC
Preventing and controlling a disease outbreak can be achieved by limiting disease spread throughout
the ship. The first intervention which is frequently mentioned is the redesign of HVAC systems. For
example, negative pressure in certain isolation areas might prevent leakage of contaminated air [80].
Also, the total capacity of the ventilation system could be increased so that air in spaces is replaced
more often. An in-depth HVAC analysis and redesign lies beyond the scope of this research but it
remains an important design aspect to mention as it shows significant potential [49].

A.1.2. Layout
With respect to the accommodation and general shared spaces, the literature suggests certain layout
and design adjustments to limit disease spread. Rosca et al. conclude in their systematic literature
review that lower guest-to-space ratios lead to lower attack rates [78]. This attack rate is defined in
epidemiology as: “the risk of getting the disease during a specified period” and calculated by dividing
the number of new cases by the total population [66]. Rosca et al. also suggest that the cabins should
be spread out over multiple decks and more cabins should be available. This suggestion is supported
by a consistent dose-response relationship for cabins, where more guests per cabin lead to higher
attack rates [78]. Increasing the number of cabins will decrease the number of guests sharing a cabin
and therefore also decrease attack rates. An alternative could be to design a large passenger vessel
to accommodate fewer people [7]. In that situation, there can be larger cabins and guests will have
more personal space when they use shared areas like the restaurants or shops [7].

A.1.3. Movement
Design adaptions can also be related to how guests and crew move through the ship layout. The el-
evator hall is for example a commonly mentioned risk place where people meet in a small confined
space and wait close together [78]. Waiting lines because of (dis)embarkation processes, arranged
travel from/to the ship and tours onboard all present situations with a high risk of exposure [78]. Per-
haps design changes in the embarkation, disembarkation and reception areas are needed to decrease
waiting lines, improve movement flow and increase the space available for these processes. It could
also be possible to set up part of these processes on the dock instead. In general, it might be helpful
to create more alternative routes in the layout combined with additional staircases or elevators. This
way, guests and crew can take different routes to reach the same destination.
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A.1.4. Medical facilities
Large passenger vessels are often designed with limitedmedical and health facilities [58]. Li et al. found
that for the Diamond Princess cruise vessel COVID-19 outbreak, “non-traditional quarantine measures
such as classified isolation and batch transfer were not taken in time” because of insufficient medical
facilities [49]. Instead, the entire ship went into quarantine which might not always match the severity
of the situation and potentially put other people on the ship at risk [49]. Suppose there are only one
or two infected individuals, then it would be preferred to isolate or disembark these individuals and
execute contact tracing instead of quarantining the entire ship. These actions are only possible if the
medical and health facilities onboard meet the requirements for these situations. Referring to hospital
design resilience, it is suggested to have a partly re-configurable design “enabling it to adapt effectively
to changing future demands” [86]. In the design, some multi-functional spaces could be accounted for
[86]. These spaces can be used in case of an outbreak to set up basic medical or quarantine facilities.
It might also be possible to design part of the accommodation in a way that facilitates quarantine and
isolation when needed.

A.1.5. Zones
The WHO has, for cargo and navy ships, suggested a system based on four zones during the COVID-
19 epidemic. The zones were defined as follows: “potentially contaminated zones (1) where suspected
cases can be isolated, zones for interaction of crew members (such as mess rooms, the bridge, control
rooms, or shared cabins) (2), zones for encountering with shore personnel (3) and such where no
interaction takes place (like single cabins) (4)” [42]. The behavioral measures taken like mask wearing
or social distance are linked to the different zones. The use of (vertical) spatial zones is something very
familiar to the shipping industry as it is used in damage control in terms of fire zones and watertight
compartments. Zones could also be applied during an outbreak. For example, all accommodation in
vertical zone 1 on deck 4 is reserved for isolated individuals. They will stay within this zone and have
only limited contact with crew delivering basic necessities and medical care. The accommodation in
vertical zone 1 on deck 3 might hold suspected cases in quarantine and awaiting test results. The
layout design should take a potential zone plan for an outbreak into account so that sanitary facilities
are sufficient and isolated access routes are available.

A.2. Operational measures
A.2.1. Embarkation requirements
Embarkation requirements can be instituted to prevent infectious individuals from boarding the vessel.
For example, a cruise company could dissuade guests with known symptoms from boarding by arrang-
ing flexible cancellation or re-booking policies [36]. Also, the crew could do a screening at the gate, with
a checklist to avoid possible infectious individuals from boarding. There are suggestions in literature
concerning COVID-19 to require guests and crew to be vaccinated or tested before embarkation [62,
69, 38]. This requirement does raise questions regarding equal treatment and privacy which remain
the subject of public debate.

Another interesting concept applied onboard navy vessels, is the institution of a ‘preventive bubble’.
This means that, for example, the entire crew will form a 14-day bubble with none or very limited inter-
action with individuals outside the bubble [44]. In combination with testing and symptom surveillance,
this measure minimizes the risk of exposure [44]. The bubble could be maintained during the entire mis-
sion [44]. A bubble could also be applied on a cargo ship but has limited applicability for a cruise vessel
because guests stay onboard much shorter than the crew of a naval vessel or cargo ship. Additionally,
cruise ship guests might not want to isolate in a bubble before a cruise.

A.2.2. Onboard routines
Next to embarkation requirements, disease spread can be prevented and controlled by adjusting or im-
plementing certain operational routines onboard the vessel. For example, more frequent and thorough
cleaning and disinfecting can be implemented [69, 90]. Cleaning and disinfecting of touch surfaces
might hinder the disease transmission mode related to the contaminated intermediate host [54, 82].
Cleaning, sanitizing and executing checklists can help prevent disease transmission via the common
vehicle transmission route which is connected to food and water sources [54, 77, 36]. A report on
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Norovirus transmission onboard cruise ships suggests implementing paid sick leave for ill crewmay also
help to avoid contaminated food sources and person-to-person disease transmission [36]. Frequently
mentioned in literature are operational routines regarding increased ventilation and the application of
HEPA filters [6, 5]. Increased ventilation rates and filters can often be applied within the boundaries of
the current system so that no ship design adjustments are needed.

In section A.1 on ship layout design, it was proposed to alter the ship layout in an effort to limit exposure
during the (dis)embarkation processes, tours and travel from/to the ship [78]. There are also operational
measures that could limit exposure in these situations. For example, guests might receive scattered
boarding and disembarkation times which avoids waiting lines and crowded situations [78]. Taking this
idea of spreading the movement of people over time a step further; the crew could be given scattered
work schedules. Also, guests could be assigned a shift that corresponds to a certain time frame for
activities or meals. It might be possible to let guests sign up for certain time spots based on a maximum
occupancy and spread the movement of people in that way.

A.2.3. Management, monitoring and surveillance
In order to be prepared for infections onboard any ship, it is important to discuss and document proce-
dures and plans beforehand [42]. A disease management plan could prevent early infections leading
to an outbreak and it can help to control the situation if an outbreak does occur [42]. The plan can also
involve shore-based facilities and medical teams to assist the crew onboard when needed [90]. Several
institutions provide guidelines and inspections concerning public health on ships [62]. For example, the
EU Joint Action SHIPSAN “deals with the impact on maritime transport of health threats due to biolog-
ical, chemical and radiological agents, including communicable diseases” [19]. The project includes,
among others: a literature and legislation review, ship inspections according to EU standards, manu-
als, an upgraded information system to monitor and record outbreak information and training [19]. The
World Health Organisation issued the International Health Regulations and for ships, they published the
WHO guide to ship sanitation [62]. This guide aims “to present the public health significance of ships
in terms of disease and to highlight the importance of applying appropriate control measures” [96]. In
the US, there is the CDC Vessel Sanitation Program which “helps the cruise ship industry prevent and
control the introduction, transmission, and spread of GI illnesses on cruise ships” [65]. Integral parts
of these programs are inspections to ensure compliance, certificates, outbreak reporting and outbreak
investigations [62]. Outbreak investigations are necessary in order to find infection sources, monitor
the effectiveness of interventions and revise or expand regulations and guidelines when needed [62,
30].

Surveillance and monitoring are not only important after, but also before and during an outbreak [7, 88].
In order to identify cases, guests and crew might be asked to do a daily temperature check and actively
monitor if they notice symptoms [60, 7]. Surveillance onboard might also include regular preventive
testing and testing procedures for suspected cases [28, 78, 7]. When there is an infectious case
onboard, the medical crew needs to trace the contacts and manage the suspected cases that arise
from this investigation [62, 88]. The suspected or infected cases might need to isolate, disembark or
require medical care, which means management of the infected cases. Additionally, there should be
a guideline specifying when these individuals are no longer considered infected and can return to join
the rest of the population onboard.

A.2.4. Restricted movement
The last type of operational measures covers a (partial) restriction of guest and crew movement. The
most drastic type of restrictedmovement measures would be a total lockdown of the ship [60]. All guests
and crew stay onboard for a certain period and might be asked to isolate in their cabins. Essential crew
needs to maintain essential ship functions and provide basic necessities for the isolated guests and
crew like food and medical care. Other options include the evacuation of all crew and guests, the
evacuation of non-essential crew for ships without guests or a complete crew change-over [75, 100,
21].

Restricted movement measures also concern isolation and quarantine measures which are frequently
mentioned in literature [36, 5, 62, 28, 49]. Infectious individuals or individuals who might be infected
are isolated from the rest of the population to contain the situation and delay disease spread [88]. As
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the disease spread slows down, there is a possibility that these measures prolong the overall length
of the outbreak [59]. However, a longer outbreak might be preferred to a shorter outbreak with a
high number of infections at its peak [59]. Isolation and quarantine measures are only possible when
monitoring and surveillance measures are also implemented. Testing helps, for example, to determine
who needs to isolate, if suspected cases are infected and it might inform the decision when someone
can exit isolation [29]. The choice can also bemade to evacuate infected cases as shore-basedmedical
facilities are better equipped or when isolation proves to be impossible to achieve onboard the ship [21].
It is important to consider the impact on the mental health of the individuals in isolation. Spending days
or even more than a week in a small space without social interaction can be challenging for anyone
[42]. ‘Fresh air’ time, physical activity and digital contact can help to make this isolation period more
tolerable.

The activities onboard and onshore could also lead to higher infection risk [78]. Therefore, manage-
ment might decide to restrict congregate events onboard and limit shore-based interactions [28, 4].
A “Research Report on Restart of Chinese Cruise Industry” even suggested a ‘cruise safety bubble’
where the population onboard a cruise vessel forms a small and secure environment detached from
the general situation [49]. This general situation could be a country or region that has not controlled the
disease outbreak yet [49]. Limiting or even completely eliminating interaction with the general situation
outside the ‘cruise safety bubble’ could help to limit the infection risk for those onboard. It should be con-
sidered that cruise guests might not be interested in this type of cruise as their movement is restricted
to the ship. Management could also restrict the maximum capacity of general areas and close certain
general areas [21]. During the Diamond Princess outbreak, for example, “public dining was replaced by
room service” to reduce the risk of infection [7]. A further implementation of reducing capacity beyond
specific spaces can be a total reduction of crew and guests allowed onboard. A paper on COVID-19
modeling public health interventions onboard a cruise ship concluded that for both a 7-day and 14-day
cruise voyage; a 40% guest and 20% service crew (high level of contact) reduction together with social
distancing (80% reduction in daily contact rate) showed significant potential [28]. Their model suggests
that more than 40% of the infection cases are averted compared to a non-intervention scenario [28].
They also conclude this set of measures to be more effective than testing and daily symptom screening
[28].

A.3. Behavioral measures
A.3.1. Personal protective equipment
In general, personal protective equipment (PPE), covers a range of different behavioral measures that
one can implement to protect oneself and aid the limitation of disease spread between individuals
[70, 21, 4]. The most frequently mentioned measure is mask wearing [60, 82, 5, 21, 4]. Wearing
a mask prevents infectious particles from spreading when you sneeze or cough and medical-grade
masks/respirators can also prevent inhalation of infectious particles by the one wearing the mask. The
quality of the mask or respirator (FFP2/FFP3) and the way it is used might influence the effectiveness
of this behavioral measure. Other personal protective equipment include: gloves, protective glasses,
a face shield or a gown.

A.3.2. Personal hygiene
Next to PPE, personal hygiene measures can help limit disease spread. Personal hygiene includes
hand washing, disinfecting and sneeze or cough etiquette [69, 82, 71, 36, 38, 40, 49, 29]. Additionally,
a paper written in 2016 on handshakes onboard cruise ships suggests using a ‘cruise tap’ to avoid
germ transmission and hand contamination because of handshakes [15]. This ‘cruise tap’ is a fist
bump where only the knuckles are touching. The paper suggests this alternative greeting because
they concluded that hand washing compliance was insufficient [15]. During the COVID-19 pandemic,
it was indeed common not to shake hands but to greet each other in some alternative way like a fist
bump or using your elbow.

A.3.3. Social distancing
Another well-documented behavioral measure is social distancing, as close contact is directly related
to a high risk of disease transmission [60, 82, 71, 40, 93, 21, 84, 4, 29, 28]. Keeping a social distance
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means that the number and length of close contacts is limited as much as possible. This results in a
lower risk for disease transmission. The actual distance considered safe is always debated [84]. For
COVID-19, for example, the WHO defined a close contact as anyone who “had physical contact (face
to face contact within 1 meter for more than 15 min) or were in a closed environment with a suspected
or confirmed COVID-19 case” [4]. Social distancing onboard a ship can be a challenging measure. For
example, corridors might not be wide enough to accommodate social distancing when people move
past each other and sleeping accommodations or working spaces can be too cramped to keep a safe
distance.

A.3.4. Vaccinations
A final behavioral measure is vaccinations [69, 38, 62]. Vaccinations have already been discussed
as an operational option where crew and guests are required to vaccinate before boarding the vessel.
Vaccination is also mentioned as a behavioral measure when people decide to vaccinate not because of
an obligation per se but as a measure to protect themselves and the population they are part of.





B
Movement and Infection Models

This appendix investigates three different types of movement models and three different types of med-
ical infection models. The search terms for the literature on movement models included: people move-
ment model, ship, evacuation model, agent-based model and circulation. With respect to the various
infection models, the following search terms were used: infection model, infection probability, transmis-
sion, disease model, COVID-19, pandemic, outbreak and compartment model.

B.1. Crowd behavior movement models
B.1.1. Macroscopic models
Pipe flow models are used to inform early-stage layout design while incorporating evacuation regu-
lations [41]. These types of flow models are classified as macroscopic models [46]. IMO specifies a
simplified pipe flowmodel in Annex 2 of MSC.1/Circ.1533 where the layout of a vessel is represented by
a hydraulic network [37]. Figure B.1 shows an example of a schematic hydraulic network for staircase
A during day operation. In this hydraulic network, corridors and staircases are modeled as pipes and
doors are modeled as valves [37]. The basic principle of this method is that gas or liquid flow behaves
similarly to pedestrian flow [46]. This model is useful in early-stage design because of its simplicity.
However, the model does not account for the behavior of individual agents and it is not possible to add
variations in the characteristics of the agents itself [12]. Also, the IMO pipe flow model makes several
assumptions. For example, counter flow is not modeled and all guests start evacuating at the same
time [37].

Figure B.1: Hydraulic network schematisation stairs A in day operation [35]

B.1.2. Mesoscopic models
This model is presented in subsection 3.2.1.

B.1.3. Microscopic models
The last category of movement models are microscopic agent-based movement models. Examples of
microscopic movement models are: social force models and cellular automata models. [12]. A social
force model is a continuous model where the movement of the agent is influenced by received infor-
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mation about its surroundings. This surrounding information is presented as a vector quantity which
affects the agent [43]. Basic forces are for example: separation (which avoids agent collision), obstacle
avoidance and gradient following ( which allows agents to find an alternative route avoiding an obsta-
cle) [43]. All vector forces are summed and the agent will be impacted by the vector at its location [43].
Figure B.2 shows a possible vector map with summed vector forces, an obstacle and two agents.

Figure B.2: Social force model vector map [43]

The dynamic cellular automata model is a second example of a microscopic agent-based movement
model [12]. This model features discrete spaces, times and states [12]. Cellular automata “is named
after the principle of automata (entities) occupying cells according to localized neighborhood rules of
occupancy” [43]. The total available space is divided into square cells and each cell can be occupied by
one entity [43]. The agent chooses the adjacent cell to move to according to a specified function. This
function represents pedestrian goals like avoiding collisions or minimizing the distance traveled [43].
Both social force and cellular automata models can simulate the behavior of individual agents in great
detail [41]. In these models, it is also possible to simulate heterogeneity in the population and give each
agent their own set of parameters like age, gender and behavior characteristics [12]. For example, Li et
al. used an agent-based route choicemodel to investigate passenger behavior during a ship evacuation
[50]. In their model, the spatial location of all agents is known, contrary to the route choice models
discussed in subsection 3.2.1. The focus of the research was to investigate: “passengers who are not
familiar with the ship layout and passengers who have family members or friends with them” [50]. This
example showcases the value of agent-based modeling as guest characteristics can be modeled and
investigated. The simulation of individual behavior produces detailed results but also requires more
computing power than a macroscopic model [41].

B.2. Medical infection models
B.2.1. Compartment models
Compartment models are deterministic models where every agent in the population has a certain state.
The transfer of individuals from one state to another is based on probability. The probabilistic nature
of disease spread is addressed by the transmission rates between states [70, 2]. Well-known deter-
ministic models are “SIS and SIR models, and consist of systems of first-order differential equations
describing the progression from susceptible (S) to infectious (I) individual” [70]. The third (R) state is
either susceptible or recovered. The recovered compartment also includes infected cases resulting
in death. Compartment models are known for their simplicity and thus require a short computational
time and low computational capacities [27]. However, this simplicity comes at a cost as significant as-
sumptions are required. For example, the population modeled is assumed to be homogeneous, which
means that there are no differences in age, sex and behavior. Additionally, these compartment models
assume a confined space and constant population size [101, 70]. Mobility patterns are not taken into
account because the population is assumed to be well-mixed [76]. Every individual in the population
has an equal chance to have contact with any other individual in the population. Because of these as-
sumptions, compartment models might be less useful at the start of an epidemic as stochastic effects
(contact patterns) are more important [33]. The transmission rates in compartment models are gener-
ally complex and are therefore often fitted using epidemiological data from real-life cases [92].

Most compartment models are based on the research from Wells and Riley et al [70]. The basic SIR
model is presented in Equation B.1 to B.4 with S: susceptible individuals, I: infected individuals, R:
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recovered individuals, N: total population, β: contact rate susceptible-infected, γ: recovery/removal
rate and t: time [70].

dS

dt
= −βSI (B.1)

dI

dt
= βSI − γI (B.2)

dR

dt
= γI (B.3)

S + I +R = N (B.4)

Wells developed the ‘quantum’ theory related to the dose of infectious particles needed to cause a
person to transfer to the infected state [22]. A quantum is “the number of infectious airborne particles
required to infect 63% of individuals in an enclosed space” [6]. This 63% comes directly from the
assumption that infection chance follows a Poisson distribution (1 − (1/e) ≈ 63.2%) [22, 70]. Riley et
al. published what became known as the Wells-Riley equation for steady-state quanta levels as seen
in Equation B.5 [70]. The parameters are defined as follows; C: new cases, I: number of infectors,
p: pulmonary ventilation rate of susceptible individuals [m3/s], q: quanta production rate per infected
individual [quanta/s], A: ventilation rate and V : space volume [m3]. The Wells-Riley equation indicates
more new cases and therefore a higher transmission probability when susceptible individuals are in
“contact with infectious individuals for a cumulative period” [2].

C = S(1− e−
Ipqt
AV ) (B.5)

There are several variations on the basic SIR model integrating more or new states like: vaccinated,
dead, symptomatic and asymptomatic [31, 33]. An important adjustment has been the addition of an
‘exposed’ state which accounts for an incubation period before an individual moves to the infected
state [70]. This model is called the SEIR model. The SEIR model is presented in Equation B.6 to B.10
with E: exposed individuals and α: progression rate exposed-infected. This presented SEIR model
also includes the work from Gammaitoni and Nucci who linked the infection rate to room ventilation for
unsteady exposure in an indoor environment [70]. This unsteady exposure is related to an increased
total quanta level in a space when the ventilation stays constant and the quanta production increases
with new cases. The original SIR model only accounted for steady-state quanta levels in the space.
Comparing Equation B.1 and B.2 to Equation B.6 and B.7 one can recognize the definition of β as
presented in Equation B.11.

dS

dt
= − pq

V A
SI (B.6)

dE

dt
=

pq

V A
SI − αE (B.7)

dI

dt
= αE − γI (B.8)

dR

dt
= γI (B.9)

S + E + I +R = N (B.10)

β =
pq

V A
(B.11)
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B.2.2. Risk based models
The second type of infection models are risk-based models. These models do not provide results like
the number of infections or who is infected but instead give results in terms of infection risk. Specifically,
two models found in the literature will be discussed: the EXPOSURE model and a modified Wells-Riley
model [76, 84]. This modified Wells-Riley model gives COVID-19 infection risk based on the original
Wells-Riley model while introducing a social distance index and a ventilation index [84].

EXPOSED model
Ronchi and Lovreglio noticed that policies adopted during pandemics such as COVID-19 are often
based on macroscopic models which do not account for mobility patterns [76]. They argue that “It is
therefore crucial to develop a general occupant exposure model which could be used to retrofit any type
of microscopic crowd model and that is able to produce quantitative outputs for risk assessment” [76].
This general occupant exposure model is called EXPOSED and this model quantifies every exposure
in a confined environment; when combined with a microscopic movement model. An exposure is
defined as one agent that is within a set radius from another agent [76]. For every agent i in the
simulation, a matrix Et is created as presented in Equation B.12. Every column is a time step with
t = [t0, t1, · · · , tq, · · · , tf ] and every row represents an agent [1, · · · , i, · · · , n] [76]. From this matrix,
relevant information for each agent can found: exposure times, maximum number of agents exposed
at each time step and the distribution of exposure time over the different agents [76].

Ei
t =



e1t0 . . . e1tq . . . e1tf
...

. . .
...

. . .
...

eit0 . . . eitq . . . eitf
...

. . .
...

. . .
...

ent0 . . . entq . . . entf

 (B.12)

To provide more insight into this method; an example has been provided in Equation B.13 with [1− 3]
agents in a simulation for t = [0 − 3]. Equation B.13 is the exposure matrix for agent 1. This matrix
shows that the first row only holds zeros as the agent itself will not be exposed to ‘itself’. For the entire
simulation, agent 1 is exposed to agent 2 and there is only exposure to agent 3 for t = 2. By summing
the rows, one can see that the longest exposure time is 4 time steps to agent 2. By summing the
columns, the maximum number of agents that agent 1 is exposed to is 2 agents at t = 2.

E1
0−3 =

0 0 0 0
1 1 1 1
0 0 1 0

 (B.13)

Modified Wells-Riley model
This model is presented in subsection 3.2.2.

B.2.3. Agent-based models
The final category of medical infection models covers the agent-based models. This category is rather
broad as several different and complex models exist [68]. The agent-based models do have two main
characteristics: the spatial location of each agent is known and infection or infection risk is individually
calculated based on individual characteristics and movement [68]. The agent-based infection models
go further than the risk-based models as it is possible to track which agents become infected and how
they infect other agents using probabilities. In contrast, the risk-based models stop at the risk or proba-
bility indication and do not show individuals becoming infected, infecting others or even recovering. In
a paper on tracking infectious disease spread, Tsui et al. mention a model that estimates the infection
probability for each individual separately [68]. This probability is based on the contacts an individual
has each day. The individual approach means that time, intensity and proximity of these contacts can
be taken into account [68]. Additionally, it becomes possible to assign specific groups, like seniors,
higher infection probabilities than younger groups [68]. Agent-based models can also feature simula-
tions where agents are assigned states (like susceptible, infected and recovered). These states can
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be used to calculate infection probabilities based on contacts with agents in a certain state [68]. For
example, being within a certain proximity of an infected agent for a certain time causes that agent to
change states from susceptible to infected. Then, it becomes possible to visually show the progression
of the disease spread on an individual level.

Another agent-based modeling example can be found in research from Harweg et al [31]. They “in-
troduce an agent-based social force model for tracking the spread of infectious diseases by modeling
aerosol traces and concentration of virus load in the air” [31]. This model is used in a multi-day sim-
ulation for an airport building [31]. Their approach to infection risk is not based on close contacts but
the authors model the localized viral load in the entire airport [31]. Each infected individual will leave
an aerosol trail as they move around. When a susceptible individual moves to a certain location, the
virus concentration can be calculated taking into account the respiratory rate, local viral load and the
time spent at that location. The moving agent will accumulate viral load exposure over time and this
total viral load can be compared with a threshold. The agent becomes infected when the total viral load
exceeds the threshold and the agent itself starts spreading viral load on its trajectory. The threshold is
related to the contagiousness of the virus; a low threshold for a very contagious disease means that a
small amount of viral load already causes infection [31].





C
Listings Integrated Model

Architecture

Listing C.1: Delayed agent simulation start
1 #Retrieve first non-zero value From-Nodes
2 m = Fnode_data_DF.ne(0).idxmax()
3

4 #Convert DataFrame 'm' to Numpy array
5 m = m.to_numpy(dtype=int)
6

7 #Create empty vector
8 No = np.empty(Number_of_agents,dtype=int)
9

10 #For all agents, store first none-zero From-Node in vector 'No'
11 for a in range(0,Number_of_agents):
12 No[a] = Fnode_data[m[a],a]

Listing C.2: Node occupancy
1 #Create empty node occupancy matrix
2 Node_occupancy = np.empty((run_time,Number_of_nodes),dtype=int)
3

4 #Run nested loop for time and number of agents
5 for i in range(0,run_time):
6 for j in range(0,Number_of_agents):
7

8 #Calculate node occupancy for state = 1 (activity) and for state = 4 (end schedule)
9 if State_data[i,j] == 1 or State_data[i,j] == 4:
10 #Implement delayed agent simulation start location
11 if Fnode_data[i,j] == 0:
12 #Define location
13 Local_fnode = No[j]
14 #Add to occupancy at location
15 Node_occupancy[i,Local_fnode] = Node_occupancy[i,Local_fnode] + 1
16

17 else:
18 #Define location
19 Local_tnode = Tnode_data[i,j]
20 #Add to occupancy at location
21 Node_occupancy[i,Local_tnode] = Node_occupancy[i,Local_tnode] + 1
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Listing C.3: Exposure time
1 #Create empty infection risk matrix
2 Infection_risk = np.empty((run_time,Number_of_agents))
3

4 #Run nested loop for number of agents and time
5 for j in range(0,Number_of_agents):
6 #Reset exposure time
7 t_exp = 1
8

9 for i in range(0, run_time):
10 #Reset exposure time when changing spaces
11 if Tnode_data[i,j] != Tnode_data[(i-1),j]:
12 t_exp = 1
13 #Reset timer when agent starts activity (location data itself does not change)
14 if State_data[i,j] == 1 and State_data[(i-1),j] == 0:
15 t_exp = 1

Listing C.4: Social distance index - using node occupancy
1 #Using node occupancy (state = activity or end activity schedule)
2 if State_data[i,j] == 1 or State_data[i,j] == 4:
3 #Implement delayed agent simulation start location
4 if Fnode_data[i,j] == 0:
5 Local_tnode = No[j]
6 else:
7 Local_tnode = Tnode_data[i,j]
8

9 #Set social distance index to zero for occupancy = 0 or 1 (no infectors)
10 if Node_occupancy[i,Local_tnode] <= 1:
11 P_d = 0
12

13 #Calculate social distance index
14 else:
15 #Account for node area index zero; while there is no node 0
16 Local_tnode_A = Local_tnode - 1
17 #Average node social distance
18 d = Node_area[Local_tnode_A] / Node_occupancy[i,Local_tnode]
19 #Social distance index
20 P_d = ((-18.19*np.log(d))+ 43.276)/100
21

22 #Compensate for social distance > 10.8m is outside scope modified Wells-Riley
model

23 if P_d <= 0:
24 P_d = 0
25

26 #Define location node area
27 Local_area = Node_area[Local_tnode_A]

Listing C.5: Social distance index - using link occupancy
1 #Using link occupancy (state = wayfinding, walk, wait)
2 else:
3 Local_fnode = Fnode_data[i,j]
4 Local_tnode = Tnode_data[i,j]
5

6 #Determine link ID number
7 Local_link = np.where(np.logical_and(Link_id_FN == Local_fnode,
8 Link_id_TN == Local_tnode))[0]
9

10 #Set social distance index to zero for occupancy = 0 or 1 (no infectors)
11 if Link_occupancy[i,Local_link] <= 1:
12 P_d = 0
13

14 #Calculate social distance index
15 else:
16 d = Link_length[Local_link] / Link_occupancy[i,Local_link]
17 P_d = ((-18.19*np.log(d))+ 43.276)/100
18

19 #Compensate for social distance >10.8m - outside scope modified Wells-Riley model
20 if P_d <= 0:



109

21 P_d = 0
22

23 #Define location link area
24 Local_area = Link_area[Local_link]

Listing C.6: Infection risk
1 #Calculate location-specific ventilation rate per second
2 Q = (ACH*Local_area*H_c)/3600
3

4 #Calculate infection risk
5 Infection_risk[i,j] = 1-np.exp((-1*P_d*I*q*p*t_exp/(Q*E_z)))
6

7 #Update exposure time
8 t_exp = t_exp + 1

Listing C.7: Find relevant indices
1 #Find first index where state = 0
2 m = State_data_DF.eq(0).idxmax()
3 m = m.to_numpy(dtype=int)
4 #Find first index where state = 4
5 mm = State_data_DF.idxmax()
6 mm = mm.to_numpy(dtype=int)

Listing C.8: Assume zero infection risk
1 # ATR - put IR to zero first run, simulation not started for agent
2 if Fnode_data[i,j] == 0:
3 P_d = 0
4 # ATR - Put IR to zero, agent not moving yet or simulated ended for that agent
5 if i < m[j] or i > mm[j]:
6 P_d = 0





D
Ship Layout

Figure D.1: SAFEGUARD data-set 2 cruise ship layout - deck 12 [23]

Figure D.2: SAFEGUARD data-set 2 cruise ship layout - deck 11 [23]

Figure D.3: SAFEGUARD data-set 2 cruise ship layout - deck 10 [23]

Figure D.4: SAFEGUARD data-set 2 cruise ship layout - deck 9 [23]
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Figure D.5: SAFEGUARD data-set 2 cruise ship layout - deck 8 [23]

Figure D.6: SAFEGUARD data-set 2 cruise ship layout - deck 7 [23]

Figure D.7: SAFEGUARD data-set 2 cruise ship layout - deck 6 [23]

Figure D.8: SAFEGUARD data-set 2 cruise ship layout - deck 5 [23]

Figure D.9: SAFEGUARD data-set 2 cruise ship layout - deck 4 [23]

Figure D.10: SAFEGUARD data-set 2 cruise ship layout - deck 3 [23]
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Figure D.11: SAFEGUARD data-set 2 cruise ship layout - deck 2 [23]

Figure D.12: SAFEGUARD data-set 2 cruise ship layout - deck 1 [23]





E
Sample Case Parameters

Agents & layout Time & repetition Chosen route choice model Path sep-
aration

agent_data = [2850] simulation_time = 100000 R_C_M = mixed logit path1 = 0
network_data = [390][390] time_step = 1 turn_penalty = 2 path2 = 0
number_of_agents = 2848 number_of_runs = 5 angular_penalty = 5 path3 = 0
number_of_nodes = 389 double gamma = 1
number_of_links = 484 draws = 200

direction_angular_threshold = 5

Table E.1: Start parameters route choice model

Parameter Description Assigned value Unit
Number of links Amount of connections between

locations in the layout
968 [-]

Number of nodes Amount of locations in the ship lay-
out

389 [-]

Number of agents Amount of agents in the simula-
tion

2848 [-]

Partial time simulation Decision to run a full or limited cal-
culation

1 (full) or 0 (limited) [-]

Simulated time Define time steps for partial simu-
lation

0 - 86400 [s]

I Number of infectors 1 [-]
p Pulmonary ventilation rate of sus-

ceptible individuals
8.333 ∗ 10e− 5 [m3/s]

q Quanta production rate per in-
fected individual

0.238 [quanta/s]

ACH Air changes per hour 15 [-]
Hc Average ceiling height 2.35 [m]
Qz Ventilation index 1 [-]

Table E.2: Start parameters for integrated model
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F
One-Way Movement

F.1. Mid and fwd staircases
The first scenario is constructed around the forward and mid main staircases. The staircase midships
for decks 9,10,11 and 12 only allows for movement to a higher deck. The staircase forward for decks
9,10 and 11 only allows for movement to a lower deck. With this one-way movement, agents will
theoretically use the midships staircase to move up and they can use the forward or any of the other
staircases to move down. The smaller staircases, which often only cover one or two decks, are kept
unchanged. Table F.1 provides the links which cover opposite movement and are thus set to 200m.
The midships and forward staircases can also be recognized in Appendix D.

From-node To-node Description From deck To deck
256 258 Mid stairs 10 9
302 256 Mid stairs 10 9
301 302 Mid stairs 11 10
349 301 Mid stairs 11 10
348 349 Mid stairs 12 11
383 348 Mid stairs 12 11
276 275 Fwd stairs 9 10
275 315 Fwd stairs 9 10
315 313 Fwd stairs 10 11
313 369 Fwd stairs 10 11

Table F.1: Link list set to 200m

F.2. N296 restaurant
The second scenario relates to the main restaurant at deck 10 with a floor area of 510m2 and this
restaurant can host up to almost 700 people [26]. The deck 10 layout at the main restaurant can be
seen in Figure F.1. From the midships staircase there are three main routes to the main restaurant:
two routes over PS and one over SB. For this scenario, the PS corridor becomes the entry route to the
restaurant. Agents can leave or move forward over deck 10 via the PS and SB seating areas but they
are discouraged, by the link length, to use these routes to move aft. Table F.2 provides the links for
which the length is set to 200m.
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Figure F.1: Deck 10 layout at node 296 (location 13 in drawing) [23]

From-node To-node From To
296 (13) 298 (15) Main restaurant Corridor PS
297 (14) 298 (15) Seating area PS Corridor PS
297 (14) 296 (13) Seating area PS Main restaurant
297 (14) 300 (17) Seating area PS Corridor PS of stairs
298 (15) 297 (14) Corridor PS Seating area PS
298 (15) 300 (17) Corridor PS Corridor PS of stairs
299 (16) 296 (13) Seating area SB Main restaurant
303 (20) 299 (16) Corridor SB of stairs Seating area SB

Table F.2: Link list set to 200m

The average infection risk results for the one-way movement simulations are given in Table F.3. The
N296 restaurant scenario shows average infection risks which lie between SC1 and SC2. The one-
way stairs simulation presents a lower average guest infection risk of 0.636% and a higher 2.09% crew
average infection risk compared to the sample cases. This guest and crew risk compensate each other
which leads to a total average infection risk similar to the sample cases. The high crew average infection
risk could be related to the assumptions around the crew accommodations. For example, the crew is
assumed to have their break at node 33 or node 5. Node 5 is located close to the midships staircase
at deck 1. With the one-way staircase scenario, the crew is discouraged from using the midships
staircase to move down between decks 9 and 12. Something similar happens for N33, located in front
of the fwd staircase on deck 2, as agents are discouraged from traveling upwards after their break via
the fwd staircase between decks 9 and 11. This might lead the crew to choose inconvenient routes
and increase the waiting times as a significant part of the crew has the same destination at the same
time.

Result [%] SC1 SC2 Mid and fwd stairs N296 restaurant
Average IR 0.807 1.05 0.996 1.01
Average guest IR 0.730 0.935 0.636 0.897
Average crew IR 1.04 1.39 2.09 1.36

Table F.3: Average infection risks sample cases and one-way movement

Figure F.2 visualizes the average infection risk over time for the sample cases and one-way movement
scenarios. The N296 restaurant scenario gives a similar results to SC2. However, the one-way stairs
scenario has a higher risk peak around 13:00 with an average infection risk above 3%. The average
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IR also stays high for a longer period after 13:00 compared to the sample cases. This could be caused
by congestion when agents have finished their first activity and are moving to lunch. Agents need to
take different routes to reach their lunch destination because they can not move down via the midships
staircase. Certain links might reach their maximum flow and this means that agents have to wait before
they can move. If agents therefore remain at their activity location where they have already built up
risk for a longer time, the average risk increases. Additionally, the new movement patterns could lead
to high occupancies at nodes with a limited area as agents are waiting before they can move. Later in
the simulation, the average infection risk peaks seem flattened for the one-way stairs simulation. The
average risk values are lower than the sample cases and there are wide humps instead of sharp peaks.
The stairs simulation is also significantly longer than the other simulations as it takes more time for all
the agents to reach their final destination. As mentioned before, the unfeasible crew quarter modeling
might result in congestion at the end of the crew shifts around 21:00 and 00:00 when the crew tries to
reach N5 or N33. This could be a potential reason for the prolonged high average infection risk after
22:00 which is not visible for the other cases.

Figure F.2: Average infection risk - one-way movement

The frequency distribution for the agent average infection risk is given in Figure F.3. The one-way
stairs scenario has results close to sample case 1 and the N296 restaurant scenario lies close to SC2.
Figure F.4 shows the number of agents with an infection risk above 50%. The one-way N296 case has
similar results as the second sample case. There is one moment in time where there is a difference
in the number of at-risk agents. This moment is 13:00 where the second sample case reached 70
agents with a risk above 50% against 51 agents for the one-way N296 scenario. The question remains
if this is an improvement because of one-way movement or if it is related to the variation in the RCM
outcomes.

The one-way stairs scenario presents with very different results in Figure F.4, compared to the sample
cases and the other one-way movement scenario. There is a peak at 13:00 with 127 agents who have
an infection risk above 50%. This peak coincides with the peak in Figure F.2. Besides this peak, the
number of agents with a risk above 50% is lower than SC2 and the N296 simulation. Again, looking at
SC1, it remains hard to conclude that these lower values are the result of the one-way movement or
within the range of RCM outcomes.
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Figure F.3: Average infection risk distribution -
one-way movement

Figure F.4: Infection risk above 50% -
one-way movement

Taking both the average infection risks and the frequency figures into account, the application of one-
way movement requires more research. The N926 restaurant scenario might show a reduction in the
number of agents with a risk above 50% around 13:00, but it does not show significant improvements
for the total average infection risks. The one-way stairs scenario results in an average risk reduction for
the guests but an average risk increase for the crew. Additionally, there is an increase in the number
of at-risk individuals at 13:00.

The integrated model is relevant when measures like one-way movement are analyzed because it
provides results based on the actual movement of agents. This is different from a general one-space
population infection risk calculation where specific movement is not accounted for. However, in order
to conclude that the tested one-way scenarios do or do not work; the RCM model should be developed
further. For example, it would be beneficial for the results if the crew quarters were modeled realistically
and if the RCM model allows links to be removed. If the links can be removed, the behavior of agents
who do not follow the one-way movement is no longer an issue. One could argue that some agents will
not adhere to the one-way movement directions, and removing the links does not allow for this situation.
Another option could be to alter the RCM model to include some additional utility terms specific to one-
way movement. This term could be changed to account for one-way movement without changing the
length.

At this time, it is not recommended to implement the tested one-way movement measures as model
development and additional research is required. Also, in section 6.1 the node locations presented
with significantly higher infection risks than the links. The one-way movement measures target the
reduction of infection risks at link locations and in this research, it is therefore not pertinent to adjust
the integrated model and further investigate this operational measure.



G
Listings Behavioral Measures

Listing G.1: Additional start parameters
1 agentID_firstcrew = 2148 # agent ID for the first crewmember in the simulation
2 eta_E = 0.5 # exhalation filtration efficiency surgical mask
3 eta_R = 0.5 # respiratory filtration efficiency surgical mask

Listing G.2: Model adjustment mask wearing during movement
1 if j < agentID_firstcrew: # Guests
2 if State_data[i,j] == 1 or State_data[i,j] == 4: # Activity state
3 q_adjusted = q # No mask
4 p_adjusted = p # No mask
5 else: # Wayfinding, walk, stay state
6 q_adjusted = q*(1-eta_E) # Wearing a surgical mask
7 p_adjusted = p*(1-eta_R) # Wearing a surgical mask
8

9 else: # Crew
10 q_adjusted = q*(1-eta_E) # Wearing a surgical mask
11 p_adjusted = p*(1-eta_R) # Wearing a surgical mask

Listing G.3: Model adjustment continuous mask wearing - node
1 if j < agentID_firstcrew: # Guests
2 if Local_tnode == 330 or Local_tnode == 299 or Local_tnode == 297 or Local_tnode == 296

or Local_tnode == 293 or Local_tnode == 292 or Local_tnode == 290 or Local_tnode ==
286 or Local_tnode == 105 or Local_tnode == 104 or Local_tnode == 79 or Local_tnode
== 45 or Local_tnode == 44 or Local_tnode == 41:

3 q_adjusted = q # No mask
4 p_adjusted = p # No mask
5 else:
6 q_adjusted = q*(1-eta_E) # Wearing a surgical mask
7 p_adjusted = p*(1-eta_R) # Wearing a surgical mask
8 else: # Crew
9 q_adjusted = q*(1-eta_E) # Wearing a surgical mask
10 p_adjusted = p*(1-eta_R) # Wearing a surgical mask

Listing G.4: Model adjustment continuous mask wearing - link
1 q_adjusted = q*(1-eta_E) # Wearing a surgical mask
2 p_adjusted = p*(1-eta_R) # Wearing a surgical mask
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Listing G.5: Model adjustment social distance based mask wearing - node
1 if j < agentID_firstcrew: # Guests
2 if Local_tnode == 330 or Local_tnode == 299 or Local_tnode == 297 or Local_tnode == 296

or Local_tnode == 293 or Local_tnode == 292 or Local_tnode == 290 or Local_tnode ==
286 or Local_tnode == 105 or Local_tnode == 104 or Local_tnode == 79 or Local_tnode
== 45 or Local_tnode == 44 or Local_tnode == 41:

3 q_adjusted = q # No mask
4 p_adjusted = p # No mask
5 else:
6 if d < safe_distance: # check if social distance
7 q_adjusted = q*(1-eta_E) # Wearing a surgical mask
8 p_adjusted = p*(1-eta_R) # Wearing a surgical mask
9 else:
10 q_adjusted = q # No mask
11 p_adjusted = p # No mask
12 else: # Crew
13 if d < safe_distance: # check if social distance
14 q_adjusted = q*(1-eta_E) # Wearing a surgical mask
15 p_adjusted = p*(1-eta_R) # Wearing a surgical mask
16 else:
17 q_adjusted = q # No mask
18 p_adjusted = p # No mask

Listing G.6: Model adjustment social distance based mask wearing - link
1 if d < safe_distance: # check if social distance
2 q_adjusted = q*(1-eta_E) # Wearing a surgical mask
3 p_adjusted = p*(1-eta_R) # Wearing a surgical mask
4 else:
5 q_adjusted = q # No mask
6 p_adjusted = p # No mask
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