
Investigation of a string-based topology

finding framework for structured surface

patterns using computer algorithms

Tohma Kobayashi

Master Thesis in Structural Engineering

Faculty of Civil Engineering and Geosciences

TU Delft

Matriculation number 5850916

Supervisor Dr. Robin Oval

Advisor Dr. Charalampos Andriotis and Dr. Trayana Tankova

6th December 2024



Tohma Kobayashi:
Investigation of a string-based topology finding framework for structured surface
patterns using computer algorithms
Master Thesis, Technical University of Delft, 2024.



Declaration of Independence

I hereby certify, Tohma Kobayashi,

1. that I complete this work independently and without unauthorized help

and sources other than those specified.

2. I also declare that I have provided the university with a simple

usage agreement right for the purpose of checking using plagiarism

software.

Delft, 6th December 2024

Tohma Kobayashi

iii





Abstract

This research addresses the implementation of learning algorithms and generat-

ive design in string-based topology exploration methods. It aims to generate

diverse structural patterns for shells and surface structures that align architec-

tural, engineering, and construction objectives. By integrating reinforcement

learning (RL) and quad-mesh grammars, surface topology is explored through

quantitative metrics, demonstrating the strength and generality of this approach.

The research ultimately promotes creative exploration during the conceptual

stages of structural design, emphasizing collaboration between form-designers

and form-analyzers to harness emerging computational techniques.

The quad-mesh grammar was first formulated within a Markovian decision

framework to integrate with open-source RL Python packages. States, actions,

and rewards were defined with sufficient generality to avoid over fitting while

evaluating the RL agent’s ability to navigate between two specified string-action

sequences and their associated mesh layouts. Initially, simple tasks involving

four design steps were tested, followed by more generalized target terminal

states with longer design sequences. The impact of different reward structures

and varied model parameter setups on convergence and accumulated rewards

was also analyzed.

The findings indicate that reward functions based solely on topological and

grammatical characteristics did not fully guide the agent from an initial coarse

mesh to a target state. However, extended design episodes demonstrated poten-

tial for improved RL outcomes. The DQN struggled with non-optimal policies

due to negative rewards and sparse positive reinforcement, suggesting that

customized model architectures or alternative RL algorithms could enhance

performance. The exploration phases yielded suboptimal but diverse mesh

configurations, highlighting the need for additional structural and geometric

parameters, as well as more complex grammar operations to improve diversity

while mitigating computational challenges. These insights underscore the im-

portance of balancing feasibility, exploration, and optimization in computational

design workflows.

v





Acknowledgements

Cameron, thank you for teaching me how to dream with purpose. 

Arja, thank you grounding me in reason when clarity was hard to find. 

Valentin, thank you for the endless supply of coffee and inspiration.

Mom, Dad, and Mei, thank you for always supporting me and the quiet strength of your love. 

Robin, thank you for your patience and the care you've given me through every step.

To all of you, and many others, my gratitude runs deep –your presence has shaped me in 

vii

 ways I'll carry forever.





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Integrated tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Digital search methods . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.6 Research question and thesis outline . . . . . . . . . . . . . . . . 6

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Design of patterns . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Tessellation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Structural design . . . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Singularity . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.4 Geometry and Topology . . . . . . . . . . . . . . . . . . 13

2.2 Computational methods . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Theoretical background . . . . . . . . . . . . . . . . . . 19

2.2.2 Generative structural design . . . . . . . . . . . . . . . . 22

2.2.3 Machine learning . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4 Reinforcement learning . . . . . . . . . . . . . . . . . . 30

3 Markovian Decision Framework . . . . . . . . . . . . . . . . . . . 37
3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.1 Quad-mesh grammar . . . . . . . . . . . . . . . . . . . . 38

3.1.2 RL algorithms . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Simplified model . . . . . . . . . . . . . . . . . . . . . . 47

4 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1 Sequential exploration . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Forward & Backward approaches . . . . . . . . . . . . . 56

4.1.2 Hyperparameter tuning . . . . . . . . . . . . . . . . . . 57

4.1.3 One-step . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.4 Two-steps . . . . . . . . . . . . . . . . . . . . . . . . . . 63

ix



4.1.5 Three-steps . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.6 Four-steps . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Generalized target state . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.1 ’APTPA’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.2 ’ATAATA’ . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2.3 ’ATPTTPTA’ . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.4 Hybrid reward function . . . . . . . . . . . . . . . . . . 90

4.3 Compatability in a design workflow . . . . . . . . . . . . . . . . 94

5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.1 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Recommendation for future work . . . . . . . . . . . . . . . . . 100

5.3 Afterword: approaching design . . . . . . . . . . . . . . . . . . 102

6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

x Contents

7 Bibliography  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121



1
Introduction

Global challenges present significant constraints on structural design, requir-

ing solutions that ensure safety, durability, and sustainability while balancing

material efficiency with ecological and aesthetic considerations. Computational

methods have revolutionized this process, allowing engineers to navigate com-

peting objectives and achieve designs that are both elegant and practical. A

pivotal aspect of these advancements is the strategic use of patterns, which estab-

lish structural relationships within complex geometries and efficiently organize

forces and materials to meet the ever-increasing demands of modern building

practices. This research explores how the convergence of patterns and computa-

tional intelligence has driven a paradigm shift in structural design, enabling the

creative and efficient exploration of solutions that address the pressing needs of

a changing world.

1.1 PAT TERNS

Patterns are omnipresent, shaping both organic and artificial systems. Whether

in crystal lattices, genetic compositions, or architectural designs, patterns or-

ganize basic units into structured, repeated arrangements that provide clarity

and order as seen in Fig. 1.1. Their wide use and identification across innumer-

able branches of knowledge, at varying hierarchies on micro and macro scales,

allude to their fundamental role in shaping our collective experience. These

patterns not only underpin our cognitive frameworks for understanding the

natural world but also play a critical role in organizing engineering and design

principles, particularly within structural systems.

In structural design, patterns extend beyond mere visual repetition; they

define the relationships between vertices, edges, and faces, altogether composing

the geometrical and topological elements of structures, embodying material

systems, force equilibrium, and surface maps for certain typologies [36]. These [36] Oval. 2019. Topology Finding
of Patterns for Structural Design.

arrangements directly impact crucial performance factors such as mechanics,

sustainability, and cost efficiency, as well as fabrication and assembly methods.

In transforming patterns into physical structures, designers engage in a balance

1



between internal forces, a fundamental principle in form-finding techniques and

structural optimization.

Figure 1.1: Organic and Inorganic Patterns, adapted book spread from

©2020/2021 Lars Müller Publishers, Zurich, and Daniel López-Pérez.

1.2 INTEGRATED TOOLS

As design problems grow increasingly interdisciplinary, computational strategies

have an amplified role in bridging the gap between conceptual ideas and their

physical manifestations. Traditionally, the separation of form-giving and form-

analyzing tasks has restricted early-stage collaboration between designers,

where the involvement of structural engineers often comes later in managing

construction details once the peak of design freedom has passed, as illustrated

in Fig. 1.2. Mueller mentions how the separation of assignments is further ac-

centuated by the existing computational design tools; architects typically use

geometry-based software that allows inquisitive and arbitrary manipulation

of form, while engineers rely on analysis-based programs that often require a

technical expertise and predefined geometries, thus limiting their applicability

during the conception of form [29].[29] Mueller. 2014. Com-
putational Exploration of

the Structural Design Space.

However, digital tools, such as Karamba3D, BHoM, and Tekla, attempt to

dissolve these barriers by integrating geometrical form and structural behavior,

enabling the synthesis of elegant and materially efficient designs using a trans-

disciplinary model, organizing data sets under a single framework to embrace

collaboration. Modeling strategies such as AiCAD embrace this philosophy by

2 1 Introduction



utilizing a single integrated model within a CAD environment, compressing

information for all necessary purposes, and facilitating both pre- and post-

processing [6]. Besides the separation of domains, Mirra and Pugnale, [27], have [6] Block et al. 2016. Integrated

design and analysis of structural

membranes using the Isogeomet-

ric B-Rep Analysis.

[27] Mirra and Pugnale. 2023.

Enhancing interactivity in

structural optimisation through

Reinforcement Learning: an

application on shell structures.

remarks on inhibitors that also exist at the interface between the human and

machine during the prototypical form development process using computer

models and simulated environments:

“[However] computational and performance-oriented design work-

flows based on classical parametric modeling and optimization al-

gorithm disrupt rather than support the spontaneous and mostly

unconscious humans process of synthesis. . . Human designers do

not need an explicit and analytic definition of design spaces to be

able to explore and test formal solutions within such spaces. . . The

processes of human thoughts are complex and flow more like a river

than follow a set of instruction.”

While geometric variation and performance are crucial elements that must

be meticulously examined through the integration of structural principles into

the conceptual design of architecture, the fluid interaction between the abstract

concepts and quantitative analysis requires specific proficiency and expertise

that cannot be overlooked. This highlights the need for computational tools

that not only support but also enhance human creativity, enabling designers

to interact fluidly with formal solutions without the constraints of predefined

parameters.

Figure 1.2: Relationship between design freedom and design knowledge in build-

ing design projects. Adapted from (Mueller, 2014).

1.2 Integrated tools 3



1.3 DIGITAL SEARCH METHODS

The exploration of structural design increasingly relies on digital search methods

to address the complexities of modern design challenges. As sustainability and

efficiency take precedence, these methods empower designers to iteratively

explore equilibrium solutions that define the geometrical and topological ar-

rangement of structural systems while meeting the intricate demands of project

specifications, building codes, buildability, and aesthetics. While parametric

models allow for real-time manipulation of geometric and spatial configura-

tions, they often fail to consider topological connectivity as a parameter. This

limitation constrains the flexibility of design exploration, particularly within

discretized systems, where adaptable and innovative connectivity solutions

are crucial. Addressing this gap presents a significant opportunity to identify

alternative workflows in structural design.

Classical optimization approaches in structural design rely on smooth gradi-

ents and well-defined parameters, inherently restricting exploration to pre-

defined search spaces. While effective for deriving unique solutions within a

fixed scope, these methods limit the potential for exploring diverse design altern-

atives. Grammar-based generative approaches present compelling alternatives,

operating on rule-based frameworks that do not require predefined perform-

ance criteria. Their combinatorial nature enables the generation of diverse

and unexpected solutions, bypassing the restrictions of deterministic methods

and facilitating the exploration of unstructured design spaces that lack clear

boundaries.

However, as the design space generated by grammar-based methods expands

exponentially with the number of adopted rules, selecting an appropriate search

method becomes essential for effectively navigating and evaluating design altern-

atives. Combining grammar-based approaches with advanced techniques such

as machine learning (ML)—particularly reinforcement learning (RL)—offers a

powerful strategy for optimizing within expansive, combinatorial design spaces.

RL’s capacity to balance exploration and exploitation enhances the discovery

of novel and effective solutions while systematically guiding the search toward

desired performance criteria. The potential of RL is underscored by its significant

breakthroughs in the domain of games, exemplified by DeepMind’s AlphaGo,

which has cemented games as powerful benchmarks in the field [44]. The stra-[44] Silver. 2016. Mastering the

game of Go with deep neural

networks and tree search.

tegic complexity of games not only provide a robust platform for evaluating

RL performance across different scenarios but also offers well-defined rules,

objectives, and rewards that align seamlessly with the RL learning process. This

synergy highlights the applicability of RL in navigating similarly structured yet

complex design spaces in structural exploration.

4 1 Introduction



1.4 PROBLEM STATEMENT

This thesis aims to contribute to contemporary research on computer-aided

workflows at the heart of architectural and engineering design by exploring

a generative framework for topology exploration of quad meshes in shell-like

structures. The focus is on string-coded operations of formal grammars, which

encode rule-based algorithms into alphabetic characters. This study builds dir-

ectly on Robin Oval’s proposal to investigate whether a computational algorithm

can effectively produce structured surface patterns with greater flexibility [36].

Current stages of development have produced an encoding strategy; however,

no machine process has yet integrated it.

The proposed encoding strategy involves a carefully crafted grammar tailored

to the design space of quad meshes, promoting exploration by incorporating

sufficient knowledge to modify and maneuver the topology of a predefined mesh.

The quad mesh grammar used in this project generates string-coded sequences

based on a set of rules, aligning with the iterative nature of RL, where actions are

performed sequentially. While innovative, this design approach faces limitations

due to the lack of isomorphism between string representations and quad mesh

topologies in addition to the absence of context-sensitive operations. RL’s ability

to balance exploration and exploitation will be crucial for discovering novel and

effective rule combination, while fine-tuning the reward function will help guide

the agent towards generating outputs that meet specific performance criteria.

1.5 OBJECTIVES

The overarching objective of this thesis is to analyze the role of generative design

in facilitating exploration of solution spaces for quad-mesh patterns in shell-like

structures. This work deliberately excludes considerations of geometrical and

mechanical characteristics to narrow its focus on establishing a simplified model

that integrates RL concepts with quad-mesh grammar. By critically evaluating

current state-of-the-art ML strategies and implementations, the project seeks to

provide the first milestone toward developing a comprehensive framework for

optimizing structural pattern topologies through RL. The scope of the research

is limited to quad-mesh patterns, chosen for their unique ability to harmon-

ize geometric form and topological representation with structural behavior in

surface structures. While constrained by the time available for the Master’s

program, this thesis investigates a streamlined workflow to explore how RL can

effectively navigate and optimize topological characteristics. The outcomes of

this study aim to serve as a starting point for future work in generating diverse

and high-performing patterns in this domain.

1.4 Problem statement 5



1.6 RESEARCH QUESTION AND THESIS OUTLINE

How can reinforcement learning be effectively integrated with quad-mesh grammar
and what method can be applied to explore diverse structural patterns?

• How can the quad-mesh grammar be used to define the various com-

ponents that formulate a Markov decision process that promotes the

development of an optimal policy?

• What training strategies and parameters are effective for integrating quad-

mesh grammar with reinforcement learning and how will their effective-

ness be assessed?

• Can a generalized computational model be constructed that encourages

greater diversity in the solutions generated?

The concept of ’gamifying task’ applies to the present work, where tailoring

the quad-mesh grammar and fine-tuning its constitutive functions, such as

reward functions, becomes an intricate game in itself. The outlined questions will

help guide the investigation on the tools to use and how they can be effectively

applied to ’gamify’ the task in two main phases.

1. Phase 1: Development of a framework

a) Selection of suitable algorithm

b) Develop necessary scripts

c) Establish compatibility of quad mesh grammar and RL

2. Phase 2: Application

a) Adjustment of hyperparameters

b) Train and evaluate model

c) Attempt generalization

6 1 Introduction



1.6 Research question and thesis outline 7



“Nature has a very basic pattern governing frequencies and energy 
event magnitudes.”

“Nature has mathematic behaviors.”

“There is nothing in Nature but Structure.”

From Nature, Fuller and Applewhite

8 1 Introduction



2
Literature Review

2.1 DESIGN OF PAT TERNS

2.1.1 TESSELLATION

Tessellations, or tilings, subdivide an entire plane into non-overlapping modules

without gaps. Their origins are deeply intertwined with the development of

art, religion, and culture throughout civilization, as well as with the mathem-

atical explorations in the pioneering works of Kepler [16]. The Archimedean [16] Grünbaum and Shephard.

1987. Tilings and patterns.
tilings, illustrated in Fig. 2.1, showcase three distinct examples of elementary

monohedral units and their recombination into semi-regular tessellations. Both

regular polygonal tilings —such as triangles, squares, and hexagons— and more

complex irregular tessellations —like Kagome and Voronoi patterns— are ap-

pealing for civil and material engineering purposes as templates for assembling

topologically interlocked systems as seen in Fig. 2.2 [52]. These patterns serve [52] Williams and Siegmund.

2021. Mechanics of topologically

interlocked material systems

under point load: Archimedean

and Laves tiling.

as a foundation for discussing the material and geometrical properties that

emerge when translating them into physical and non-Euclidean dimensions, a

process that involves the retention of topological regularity and the loss of some

geometrical regularity [36].
[36] Oval. 2019. Topology Finding
of Patterns for Structural Design.

2.1.2 STRUCTURAL DESIGN

Transforming geometrical patterns into physical structures involves an energetic

counterpart, characterized by the equilibrium of tensile and compressive forces.

This balance underpins design procedures like form-finding, and its inverse,

driven by the feedback between the shape and the internal stress distribution [6]. [6] Block et al. 2016. Integrated

design and analysis of structural

membranes using the Isogeomet-

ric B-Rep Analysis.

Patterns also play a crucial role in the digital realization of complex free-form

surfaces. When a surface is projected into a distinct parameter domain, discret-

ization occurs in the form of meshes that map the surface. This technique has

numerous applications, including spline surfaces and finite element analysis

(FEA) [13]. [13] Floater and Hormann. 2005.

Surface Parameterization: a

Tutorial and Survey.

9



Figure 2.1: Regular and semi-regular 2D Tessellations (Oval, 2019).

MESH PARAMETERS

Meshing is a subdivision technique that affects the accuracy, convergence, and

efficiency of finite element model (FEM) simulations. While most commercially

available software operate as black boxes, user typically have control over a few

key parameters, including the mesh density and element shape. Mesh density

determines the size of the stiffness matrix and the level of detail captured in the

simulation. For complex geometries, finer mesh sizes are recommended, though

they come with increased computational demands. Consequentially, sensitivity

analyses are often conducted to find the optimal balance for the convergence of

a solution.

The shape feature, which defines the repeated geometrical unit and meshing

mechanism used in the discretization, also plays a crucial role. Common geo-

metric forms of mesh elements are illustrated in Fig 2.3 and their selection have

implicit impacts on solution accuracy, numerical stability, and mesh organiza-

tion. For instance, quadrilateral elements create structured grids that are easier

to generate and handle, while triangular elements are preferred in unstructured

meshes due to their flexibility in accommodating complex shapes [32]. Creating[32] Okereke and Keates. 2018.

Finite Element Applications.

10 2 Literature Review



effective meshes involves decisions that align with the specific goals of the

simulation while minimizing inherent errors in the program.

Figure 2.2: Idealized structural elements: (a) bars/trusses, (b) beams, (c) pipes, (d)

webbed section, (e) shear panel elements (Okereke and Keates, 2018).

Figure 2.3: Finite elements shapes used in the FEM process: (a) 1D, (b) 2D, (c)

3D (Okereke and Keates, 2018).

MESH GENERATION

Meshing also refers to the intricate set of rules and commands encoded within

an algorithm that governs the subdivision process. Delaunay triangulation is

often employed to efficiently define a 3D system with a minimal number of

triangular elements [10]. In physical problems, sharp edges, notches, interfaces, [10] Edelsbrunner. 2001. Geo-
metry and Topology for Mesh
Generation.

and holes are often local regions of interest for designers, as these locations can

be prone to potential failure mechanisms like stress concentration. A technique

known as mesh refinement can be applied at these discrete locations to improve

local mesh resolution and achieve simulation convergence. However, this spatial

transition can inject irregular vertices into the tessellation, complicating the

matrix. It’s important to note the challenge of incorporating manual interaction

into automated meshing methods, as manually editing connectivity is rarely an

intuitive task [7]. [7] Bommes et al. 2013. Quad-

Mesh Generation and Processing:

A Survey.

2.1 Design of patterns 11



2.1.3 SINGULARITY

Singularities imply a breaking of preexisting patterns, which impacts the rela-

tionship between local and global orders. These irregularities are not merely

theoretical; they emerge across diverse domains, such as in biological morpho-

genesis, where they shape evolutionary trajectories, and in crystalline struc-

tures as dislocations, influencing the overall properties and behavior of organic

materials [19]. The presence of a singularity is critical to the discussion of[19] Isaeva et al. 2012. Topolo-

gical singularities and symmetry

breaking in development.

the topological construction of 3D spaces and objects, including the design of

buildings and infrastructures; local irregularities in material systems, when un-

controlled, dictate the flow of forces and can lead to inefficiencies or undesirable

complications. However, harnessing and controlling singularities provides a

powerful means to introduce flexibility in design, enhancing both mechanical

and material efficiency, as well as aesthetic innovation.

Figure 2.4: Vector field on a surface: (a) singularities on a sphere, (b) field without

singularities on a torus (Isaeva et al., 2012).

Pier Luigi Nervi’s ribbed system, for instance, eliminated structural redund-

ancy and optimized stability in his concrete structures by controlling local force

flows. Nervi’s floor design for the Gatti Wool Factory incorporates repeated

modular elements achieved through pre-fabrication. The singularities reveal

themselves at the intersection of the ribbed stiffeners that follow the isostatic pat-

terns of the principle bending moment, as seen in Fig. 2.5 [4]. While his reliance[4] Billington et al. 2013.

The Ribbed Floor Slab Sys-

tems of Pier Luigi Nervi.

on labor-intensive form work renders his approach less economically practical

today, the advent of digital fabrication techniques offers unprecedented control

over complex patterns. These techniques enable the precise customization of

unique structural elements, allowing designers to automate segments of con-

struction that were once only feasible through intensive manual processes [2].[2] Ayres et al. 2024. Fabricate.

Thus, controlling singularities is not just a matter of mechanical efficiency but

also a pathway to re-imagining the scope of architectural expression in the

digital age.

12 2 Literature Review



Figure 2.5: Gatti Wool Factory floor plan: isostatic lines (Nervi, 1966)

2.1.4 GEOMETRY AND TOPOLOGY

Further investigation of pattern application in structural design reveals the en-

twined nature of topology and geometry. In the previous discussion of FEM ap-

plications, the geometrical aspects included the whole object and its subdivided

parts, while the topology was demonstrated by their connectivity. Together,

these aspects define the precise form and interrelationship between components,

providing the foundation for a coherent structural system.

SURFACE STRUCTURES

Surface structures, characterized by their curved surfaces, carry loads primarily

through in-plane forces, minimizing bending and resulting in a high strength-

to-weight ratio. The inherent strength of this structural typology stems from

its geometry, which efficiently distributes internal loads along paths that align

with the structure’s natural shape, offering fundamental stability against buck-

ling. Historically, these forms have been central to significant architectural

achievements across many of the world’s civilization, such as the Hagia Sophia

and the Pantheon (Fig. 2.6), serving not only religious and symbolic purposes

but also responding to the need for large, open spaces that accommodate mass

gatherings. Their endurance over centuries speaks to the durability of this struc-

tural archetype. Visionaries like Gaudi, Candela, and Isler expanded on these

favorable characteristics by developing a deep understanding of the mechanical

principles behind similar structures, often utilizing physical models to guide

their designs [15]. [15] Gohnert. 2022. Shell Struc-
tures: Theory and Application.

2.1 Design of patterns 13



Today, a resurgence of interest in similar typologies and other antique forms,

such as vaults, is driven by advancements in computational design and digital

fabrication technologies, which have made the realization of non-standard geo-

metries far more feasible. However, designing and fabricating these structures

presents significant challenges due to the intricate relationship between struc-

tural analysis and physical realization. The highly statically indeterminate

behavior of shells complicates force distribution, making accurate discretiza-

tion essential to capturing both their geometry and behavior. A well-chosen

discretization pattern ensures that the model closely approximates the shell’s

curvature, essential for precise simulations. Factors like mesh regularity, density,

and placement of singularities are critical to achieving computational efficiency,

especially in localized regions. This precision not only optimizes for mater-

ial usage and structural performance but also for ensuring the practicality of

fabrication.

Figure 2.6: Historical precedents: Armadillo Vault (Rippman et al., 2016),

Pantheon ("Pantheon (Rome) - Right side and front" by NikonZ7II,

licensed under CC BY-SA 4.0.), Deitingen Süd Raststätte

("File:Deitingen Sued Raststaette, Schalendach 03 09.jpg" by ,

licensed under CC BY-SA 3.0.), Hagia Sophia (image by author).

14 2 Literature Review



Heinz Isler’s meticuluous approach, as explained by himself in [30], exempli- [30] Nordenson. 2008. Seven
Structural Engineers: the Felix
Candela Lectures.

fies the complexities involved. Although time consuming, Isler calculated precise

forms, defining hundreds of coordinates to achieve the desired shape, with no

two curves alike in asymmetric constructions. In one particularly challenging

project, he had to manage 400 points, where adjusting a single point affected

all the others. Using specialized measuring devices, Isler derived curvature

data from physical experiments, transferring these measurements directly to

the construction site. One such completed structure is illustrated in Fig. 2.6.

While Isler relied on painstakingly manual calculations to define and translate

curvature data into construction-ready forms, modern tools provide a much

more streamlined workflow.

The Armadillo Vault by the Block Research Group (BRG) exemplifies how

contemporary digital tools extend and transform the principles pioneered by

engineers like Isler. The tessellation of the structure, shown in Fig. 2.7, begins

with a computationally optimized thrust surface derived from local force flow.

The design aligns the tessellation pattern with the trajectories of internal forces,

ensuring stability and load-bearing efficiency. The quad-mesh representation

of this surface serves to guide the layout of the tessellation but also identifies

areas of singularity where the force trajectories converge or diverge.

Unlike Isler’s monolithic shells, the discretization of surface structures in the

Armadillo Vault serves a dual purpose: enhancing the understanding of struc-

tural performance and improving construction feasibility. By experimenting

with these patterns, the designers can adjust spacing and alignment to balance

material efficiency with structural performance. Contemporary technology also

enabled the direct translation of digital designs into fabrication-ready compon-

ents. Unlike Isler’s labor-intensive process of deriving curvature data, BRG

used a combination of automated and manual workflows to generate geodesic

curves and precise joint geometries for the tessellation [41]. These patterns were [41] Rippmann et al. 2016. The

Armadillo Vault: Computational

Design and Digital Fabrication of

a Freeform Stone Shell.

further refined to ensure a staggered, interlocking configuration of voussoirs.

Near singularities, digital tools facilitated nuanced modifications to the patterns,

allowing the structure to respond dynamically to localized force flows without

disrupting the overall visual rhythm. The vault’s tessellation patterns are a result

of integrating computational design, structural analysis, and digital fabrication

constraints, exemplifying a modern approach to the timeless interplay between

form, function, and aesthetic.

2.1 Design of patterns 15



Figure 2.7: Armadillo Vault tessellation patterns (Rippman et al., 2016).

QUAD-MESH

The most common polygonal mesh representation for surfaces are triangles

and quadrilaterals, with the choice between them depending on the specific

application. This section highlights some of the benefits and disadvantages of

using quad-meshes in the context of designing shell-like structures.

By definition, a quad-mesh is a tessellation composed entirely of quadrilaterals.

However, there is a continuum of variations within this category, including semi-

regular and unstructured quad-meshes, as illustrated in the top row of Fig. 2.8.

In a regular quad-mesh, verticies typically have a valence of four. Three types of

regular boundary vertices can be identified: regular non-corner boundary (three

valence), convex corner boundary (two valence), and concave corner boundary

vertex (four valence). The paths of edges connecting an irregular vertex to either

another singularity or to the boundary are referred to as separatrices (integral

lines), shown in the bottom row of Fig. 2.8 [7].

One advantage of quad-mesh is their bidirectional nature, which align well

with cross fields that have two parameterization directions, such as principal

curvatures and principal stresses. In contrast, triangle meshes require an arbit-

rary third direction [36]. Additionally, triangular meshes are always flat and

16 2 Literature Review



convex, supporting linear interpolation of discrete functions defined at vertices

and easily projected onto a plane [7]. For numerical analysis, such as FEM,

approximation using isometric quads is computationally more efficient as it

reduces the total number of elements needed compared to triangular meshes [7].

However, a disadvantage of using quad-meshes is that they can be more challen-

ging to generate and manipulate, particularly when creating complex geometries.

This complexity can lead to difficulties in maintaining a regular mesh struc-

ture, potentially resulting in irregularities that complicate both the design and

subsequent analysis.

Figure 2.8: Top row: Quad-mesh categories: (a) regular, (b), semi-regular, (c)

valence semi-regular, (d) unstructured (e) unstructured and irregular.

Bottom row: Left: Three separatrices, stemming from a valency 3

singularity; Right: Five separatrices, stemming from a valency 5

singularity (Bommes et al., 2013).

Another significant difference between triangular and quadrilateral meshes is

their fabrication feasibility, especially in steel and glass gridshells. Triangular

elements are inherently planar, which simplifies their fabrication and assembly.

In contrast, quadrilateral elements are often non-planar, especially when used

in complex geometries, which increases the fabrication cost due to the need

for curved or twisted elements. Additionally, the use of triangular glass panels,

which are typically cut from quadrilaterals, can introduce redundancy due to

the need to accommodate the quadrangular shapes [30].

2.1 Design of patterns 17



PERFORMANCE METRIC

The quad-mesh framework not only informs the tesselation layout but also serves

as a foundation for evaluating the relationship between topological patterns and

structural performance. The arrangement of singularities, edge connections, and

face orientations within these patterns plays a critical role in determining how

efficiently forces are distributed across the structure. This insight underscores

the importance of performance metrics in the design process.

Assigning specific performance metrics to design patterns is essential for

evaluating their effectiveness across various objectives. This flexible and versatile

approach allows designers to apply these metrics to a wide range of structural

forms and criteria. By systematically assessing how changes in topology and

geometry influence overall performance, this method opens up new possibilities

for search and optimization techniques in the generative design of singularities

in structural patterns [31].[31] Nourian et al. 2023. Gen-

erative Design in Architecture:

From Mathematical Optimization

to Grammatical Customization.

Figure 2.9: Performance evaluation and comparison of varying quad-mesh pat-

terns for the gridshell of the British Museum (Oval et al., 2023).

18 2 Literature Review



In previous works, the gridshell of the Great Court Roof at the British Museum

was used as a case study to examine the impact of topology on multi-objective

trade-offs, as shown in Fig. 2.9 [37]. The steel beams and glass were arranged in [37] Oval et al. 2023. A vector

encoding for topology finding of

structured quad-based patterns

for surface structures.

a quad-mesh pattern, with various grammar rules used to generate variations of

the original layout. The goal was to create distinctly different patterns in terms of

topology and performance, emphasizing the influence of pattern topology on the

examined objectives. Structural performance was evaluated using FEA software,

focusing on weight minimization and both ultimate (ULS) and serviceability

(SLS) requirements. This included second-order analysis for stiffness, strength,

and stability, alongside fabrication objectives such as average panel curvature,

skewness, and edge length standard deviation. The six performance metrics

were normalized and visualized using a color gradient from red (worst) to green

(best). The study concludes that no single design excelled in all metrics, leaving

the designer to explore the Pareto front of trade-offs to select the most suitable

design.

2.2 COMPUTATIONAL METHODS

Computational methods have revolutionized the way designers and engineers

approach complex problems, enabling the exploration of innovative solutions

that were previously unattainable. These methods have their roots in design

sciences, which formalize the theoretical and methodological foundations of hu-

man reasoning. Building on these principles, computational tools like generative

design have opened new frontiers in structural design, allowing for the auto-

mated generation and optimization of complex structures. This section explores

these key aspects, beginning with a theoretical background of automated reas-

oning systems, followed by machine learning applications in structural design

and an examination of the role of reinforcement learning in modern structural

design workflows.

2.2.1 THEORETICAL BACKGROUND

COMPUTER-AIDED DESIGN FOUNDATIONS

The evolution of computational methods in structural engineering during the

20th century was marked by significant milestones, beginning with the develop-

ment of numerical analysis techniques such as the finite difference and finite

element methods. The advent of digital computers and programming languages

enabled numerical solutions to complex problem, laying the groundwork for

the application of computational design on a larger scale with greater precision.

In parallel to the emergence of structural optimization techniques, the 1960s

saw rise of geometry-based computer-aided design (CAD) systems powered by

2.2 Computational methods 19



advancements in graphical displays. Digital 2D drawings and basic 3D wire-

frame modeling emerged as practical tools, evolving by the late 1970s and early

1980s to include sculptured surfaces defined by B-splines, Bezier splines, and

other parametric surface descriptions [45]. The capability to represent complex[45] Smithers. 1985. AI-based

versus geometry-based design

or Why design cannot be

supported by geometry alone.

geometries, significantly broadened the utility of CAD in structural engineer-

ing, however, these geometry-focused systems remained limited in addressing

higher-level design aspects, such as the interplay of structural features or the

integration of functional and behavioral constraints.

MODELING CONTEXTUAL REASONING PROCESSES

Incorporating reasoning about structural behavior into purely geometry-based

computational models required bridging multiple levels of abstraction to expli-

citly define collective features and their sub-features in structural design. This

challenge aligned with the emergence of early AI techniques, which sought con-

ceptually and computationally efficient knowledge-encoding frameworks, mark-

ing a transition toward methods capable of richer structural descriptions [45].

According to Smithers, the early successes of AI-based approaches, grounded in

mathematical optimization and constraint satisfaction, spurred their evolution

along three interdependent trajectories. The first focused on modular organiza-

tion of diverse knowledge sources, enabling the representation, and reasoning of

domain-specific knowledge. This led to innovations such as blackboard systems,

expert systems based on production rules, and structured object representation

systems, which supported interactive inferencing, logical rule coordination,

and hierarchical organization of design information, respectively [45]. The

second trajectory aimed to transcribe the cognitive problem-solving procedures

to automate reasoning, emphasizing heuristic knowledge inherent in engin-

eering design. The third trajectory explored integrated system architectures,

coupling diverse reasoning systems, automating their control, and facilitating

human interaction, marking a significant advance toward comprehensive design

support systems. Together, these developments underscore the foundational

role of early AI in transforming computational tools for engineering design.

Building on these early advancements, knowledge-based models (depicted in

Fig. 2.10) in structural engineering began to emerge, offering targeted solutions

to specific design and analysis challenges. For example, SACON, adapted from

the EMYCIN framework, acted as a consultation agent to guide finite element

analysis [3]. By assisting users in decomposing structures into substructures and[3] Bennett et al. 1978. SACON:

A Knowledge-Based Consult-

ant for Structural Analysis.

estimating stresses and deflection, it recommended analysis strategies tailored

to engineering tolerances. Similarly, systems like HI-RISE facilitated preliminary

design for high-rise buildings, focusing on lateral and gravity load-resisting sys-

tems, while SPERIL extended expert systems to earthquake damage assessment,

incorporating uncertainties in structural damage evaluation [24] [20]. Although[24] Maher. 1985. HI-RISE

and beyond: directions for

expert systems in design.

[20] Ishizuka et al. 1982. Rule-

based damage assessment

system for existing structures.

20 2 Literature Review



Figure 2.10: Workflow of expert systems (Ishizuka et al., 1982).

these systems were limited in their capabilities —providing basic solutions that

often required refinement by experienced designers— they highlighted the po-

tential of structured knowledge bases and rule-based reasoning to automating

aspects of complex design processes. However, their broader impact was con-

strained by the technological limitations of the era, including underdeveloped AI

techniques and challenges in extracting and integrating expertise from human

professionals. Despite these obstacles, these prototypes laid crucial groundwork,

serving as precursors to advanced systems that followed in later decades.

The 1990s introduced neural networks (NN) and creative design frameworks

as new paradigms for addressing the complexity of reasoning in design through

pattern recognition techniques. For example, Sun et al. applied NNs to simple

tasks such as concrete beam design and plate analysis, noting their potential for

tackling more difficult or time-intensive engineering problems [48]. Gunarat- [48] Sun and Vanluchene. 1990.

Neural Networks in Structural

Engineering.

nam and Gero shifted the focused to discovering conceptual relationships that

inform preliminary design decisions, emphasizing the need for computational

models to support not only solution searches but also exploratory processes

that restructure knowledge [17]. Geo further argued that design is not merely [17] Gunaratnam and Gero. 1994.

Effect of Representation on the

Performance of Neural Networks

in Structural Engineering

Applications.

problem-solving but an evolving, goal-driven process influenced by physical

realities, designer perceptions, and computational limitations [14]. By fram-

[14] Gero. 1994. Towards a model

of exploration in computer-aided

design.

ing design variables as structure, behavior, and function, he underscored the

importance of integrating these dimensions into computational models to re-

flect the dynamic and contextual nature of design [14]. This set the stage for

the transition into the 21st century, where models increasingly aimed to cap-

ture the complexity, creativity, and adaptability required by modern structural

engineering applications.

2.2 Computational methods 21



2.2.2 GENERATIVE STRUCTURAL DESIGN

While computational tools have demonstrated significant potential for accel-

erating design exploration, digitalizing the design process alone is insufficient

to ensure the generation of truly novel configurations or to fully explore the

design space [18]. Generative design addresses this limitation by combining[18] Ioannis and Corentin.

2020. Design space ex-

ploration through force-

based grammar rule.

computational rigor with creative flexibility, transforming the art and science

of design to tackle modern design challenges with greater accessibility and

relevance.

Given the diverse interpretations of generative design across multiple discip-

lines —each emphasizing distinct goals, processes, and technologies ranging from

algorithm exploration and optimization to creativity and design automation—

this work adopts Nourian et al.’s definition as applied in the architectural domain.

Their definition frames generative design as a spectrum of systematic approaches

for exploring, synthesizing, and deriving design configurations using mathem-

atical, grammatical, and gamified processes, illustrated in Fig. 2.11 [31]. These

methods enable systematic navigation from abstract functional requirements to

concrete forms by mapping design spaces and their performance duals using

tailored simulations for optimization, customization, or participatory needs.

Figure 2.11: Generative design spectrum (Nourian et al., 2023).

MATHEMATICAL DERIVATION FOR OPTIMIZATION

Mathematics-based approaches discover optimal configurations of discrete vari-

ables using numerical and gradient-based derivations. Shape optimization, for

instance, leverages Dirichlet energy integrals to minimize energy states refining

the material usage, while topology optimization redistributes materials within

planar or volumetric boundaries under governing load cases to achieve desired

structural behavior [31]. Designs reveal themselves as objective functions that

minimize cost or maximize utility converge based on the selected performance

criteria and constraints. For example, Isozaki and Sasaki performed evolution-

ary structural optimization and shape-analysis techniques to design the Qatar

22 2 Literature Review



National Convention Centre [21]. Laarman applied similar mechanics-based [21] Januszkiewicz and

Banachowicz. 2017. Nonlinear

Shaping Architecture Designed

with Using Evolutionary Struc-

tural Optimization Tools.

techniques, developed in the automobile industry, to sculpture his Bone Chairs

to achieve both functional efficiency and aesthetic innovation [22]. These applic-

[22] Laarman. 2017. Joris Laar-
man Lab.

ations, illustrated in Fig. 2.12, demonstrate one of many capabilities of modern

computational tools to generate efficient, high-performance solutions tailored

to diverse design challenges.

Figure 2.12: Qatar National Convention Centre (”IMG_6478” by trevor.patt,

licensed under CC BY-NC-SA 2.0) and Bone Chair ("Laarman Bone-

Chair 01" by Saimmad, licensed under CC BY-SA 4.0)

Despite the strength of numerical models at optimizing measurable perform-

ance metrics, they often struggle to formulate subjective or intangible criteria

—such as aesthetic, culture, and comfort–– as explicit mathematical functions.

This disadvantage is exacerbated during early conceptual phases where the

argument for the construction of space and volumes lacks. When a set of de-

scriptions are decided, reliance on explicit parameters can inadvertently narrow

the focus of optimization, excluding broader considerations like design diversity

or user experience [1]. Additionally, gradient-based methods, especially in to- [1] Adeli. 1986. Artificial intelli-

gence in structural engineering.
pology optimization, involve time-consuming, resource-intensive calculations.

While effective for single-objective solutions, they struggle with multi-objective

scenarios, often converging to local optima. The relaxation of discrete variables

can also necessitate further post-processing for practical use. Moreover, math-

ematical derivation limits creative exploration, prioritizing unique solutions

over diverse design alternatives, making it difficult to tackle open-ended design

problems that value exploration and customization. Combining these methods

with generative approaches, such as grammatical or gamified systems, can help

balance optimization with creativity [31].

2.2 Computational methods 23



GRAMAMTICAL ITEMIZATION

Grammatical itemization, lying at the opposite end of the spectrum in generat-

ive design, uses rule-based frameworks to flexibly explore and produce diverse

ranges of design alternatives. Rule-based design is built from the concept of

formal grammars, introduced by Chomsky in the 1950s, which applies a fi-

nite set of rules to words, allowing for the creation of an infinite number of

sentences [9]. Lindenmayer’s L-systems expanded on formal grammars to al-[9] Chomsky. 1956. Three models

for the description of language.
gorithmically describe the growth of plants with iterative rules that generate

corresponding shapes, as shown in Fig. 2.13, depicting the potential for geometry

generation [40]. Stiny and Gips’ introduction of the shape grammar formalism,[40] Prusinkiewicz et al. 1997.

L-systems: from the Theory

to Visual Models of Plants.

to encode a language of shapes to the alphabet of symbols used in formal gram-

mars, inspired subsequent derivatives that embedded structural knowledge in

the rules [46]. These examples include the shape annealing approach for 2D[46] Stiny and Gips. 1972.

Shape Grammars and the

Generative Specification

of Painting and Sculpture.

trusses, trans-typological exploration of bridge designs, as well as force grammar

approach that incorporated graphic statics to generate 3D spatial structures

(Fig. 2.14) [43] [29] [23].[43] Shea et al. 1997. A Shape

Annealing Approach to Op-

timal Truss Design With Dy-

namic Grouping of Members.

[29] Mueller. 2014. Com-
putational Exploration of

the Structural Design Space.

[23] Lee et al. 2016. Automatic

generation of diverse equilibrium

structures through shape

grammars and graphic statics.

Figure 2.13: Application of L-systems to the modeling of plants (Prusinkiewicz

et al., 1997).

24 2 Literature Review



While grammar-based methods do not require predefined performance cri-

teria, its effectiveness depends on the quality and completeness of the defined

rule sets. The rules embed constraints directly into the grammar, ensuring that

all generated designs meet basic requirements, such as constructability or ad-

herence to specific-geometric parameters. If these rules are poorly conceived or

inflexible, the resulting combinatorial design space is predisposed to undesirable

outcomes [29]. Grammars with numerous or overly flexible rules can lead to

a combinatorial explosion of alternatives, making it difficult for designers to

evaluate or navigate the space of possibilities as well. Without additional tools

for filtering or prioritizing designs, the process risks becoming unmanageable

or under-explored. Additionally, the lack of integration of performance criteria

necessitates supplementary analysis tools to assess performance metrics [23].

Although algorithmic search or AI-driven exploration can mitigate these chal-

lenges, they require sophisticated implementations that may add complexity to

the design workflow.

Figure 2.14: 3D Spatial structure generated using force grammars (Lee et al.,

2016).

2.2.3 MACHINE LEARNING

Machine learning (ML) is a subset in AI that has gained torrential prominence in

recent years for their ability to recognize patterns within data under conditions

of uncertainty. They have found broad scientific application, including structural

engineering, to predict and assess structural conditions and performance [47]. [47] Sun et al. 2021. Machine

learning applications for building

structural design and perform-

ance assessment: State-of-the-art

review.

Furthermore, ML algorithms enhance and refine generative design solutions

efficiently by identifying patterns in structural performance or user preferences,

thereby accelerating innovation and improving outcomes.

2.2 Computational methods 25



DEEP ARCHITECTURE

Their current popularity across a wide variety of disciplines can be attributed to

Deep Learning (DL), a technique developed in the breakthrough of computer

vision alongside advancements in processing capabilities for larger models. In

2012, AlexNet outperformed contemporary ML techniques in ImageNet, a large-

scale classification challenge, by using convolutional neural networks as opposed

to fully connected neural networks. Neural networks (NNs) are graph-based

decision-making models composed of a vast array of computational relationships

that connect the input and output layers through multiple layers that attempt to

replicate the structures of biological neurons found in the brain; the term ‘deep’

commonly referring to the depth, or number of hidden layers, ranging from a

single digit to thousands, depending on the complexity of the given task [39]. The[39] Prince. 2023. Under-
standing Deep Learning.

strength of convolutional networks was its superior inductive bias that embodied

prior knowledge in its architecture; it exploited spatial relationships between

nearby pixels and processed local image regions independently, using shared

and fewer parameters across the whole image [39]. Although there was a general

trend in the following years to keep improving the performance of classification

tasks by increasing the depth of hidden layers, as shown in Fig. 2.15, subsequent

experiments began to reveal that indefinite depth increments over-complicated

the system making them difficult to train. This led to modifications in the form of

residual connections and normalization layers, eventually catalyzing application

of DL models in a broader range of topics, such as object detection through the

application of transfer learning [39].

Figure 2.15: ImageNet performance (Prince, 2023).

Malaga (2022), [25], provides a thorough review of the historical development[25] Málaga-Chuquitaype. 2022.

Machine Learning in Structural

Design: An Opinionated Review.

of AI’s integration into structural design, which he defines as:

26 2 Literature Review



"...the process by which the number, distribution, shape and size of

structural elements and their connectivity is determined so that a

given design objective is achieved while meeting several constraints

and serviceability and resistance."

According to Malaga, AI has the potential to streamline the often-time-consuming

process of searching for solutions, where engineers frequently settle for the

first sub-optimal design that satisfies all hard constraints. This design process

typically involves managing hundreds of structural sections and referencing

thousands of pages of building codes, which can be overwhelming and inefficient.

In such contexts, ML algorithms are particularly beneficial to civil engineers as

they allow access to complex, multi-dimensional spaces that are defined by the

multiple objectives, often far beyond what human cognition alone can manage.

However, despite the proven benefits of AI, Malaga highlights that there are

still limited efforts to use these tools to fully automate structural design. Most

existing implementations tend to focus on optimizing individual structural sub-

assemblies, without fully considering the building structure as a cohesive and

integrated unit. He also identifies significant challenges in the parameterization

of entire building structures, which require larger datasets and considerable

processing power to account for the numerous possible element positions, sizes,

and connection types within interconnected systems. In contrast, shells, vaults,

and other spatial structures have provided fertile ground for design optimization,

as these forms can be comparatively easier to discretize and are typically single-

layered, making parameterization much more straightforward.

In the sections that follow, examples that emphasize the potential roles of

‘engineering intuition’ and ‘creativity’ in applying ML to the design of spatial

structures are reviewed. These examples explore integrated computational

strategies with state-of-the-art workflows that encourage rethinking traditional

design approaches through the use of meta-heuristics, showcasing the potential

for ML to transform the field of structural design.

EXAMPLE 1: DESIGN SUBSPACE LEARNING (DANHAIVE AND
MUELLER, 2021)

Danhaive and Mueller highlight the inefficiencies of manual editing and op-

timization in parametric design, which often fail to effectively explore design

variations or address qualitative aspects critical in architectural and structural

design. To address this, they propose integrating generative modeling and AI,

specifically conditional variational auto-encoders (VAEs), within a performance-

driven framework to enhance creativity without constraining designer decisions.

Their methodology employs an iterative sampling algorithm that prioritizes

high-performing samples through filtering gates while maintaining diversity for

2.2 Computational methods 27



downstream exploration. By using surrogate models to approximate nonlinear

data manifolds and iteratively refining samples based on true objective functions,

this approach ensures a balance between exploration and exploitation of the

design space, guided by performance thresholds and growth rates.

Once a dataset is collected, a performance-conditioned VAE creates a reduced,

continuous latent space for intuitive exploration of design variations. The

VAE employs NNs for encoding and decoding, minimizing reconstruction loss

while conditioning on normalized evaluation scores to disentangle performance

contours. This enables designers to explore sub-optimal solutions that may

satisfy unformulated objectives while balancing ease of exploration and diversity

in design options. However, this approach requires large datasets, making it

most suitable for cases where thousands of solutions can be simulated.

Figure 2.16: Morphological and performance evolution of 4 designs in the latent

space as p increases from 0 to 1 (Danhaive and Mueller, 2021).

In a case study of a long-span roof, the algorithm evaluated design candidates

based on material efficiency relative to the structure’s footprint, using Kara-

mba3D for optimization and FEA for validation. The latent space captured

diverse roof configurations that met structural performance requirements, with

designs optimizing truss depth and maximizing efficiency in high-bending mo-

ment areas. The study demonstrates how AI-driven generative frameworks can

integrate qualitative and structural considerations, ensuring both creativity and

performance in design processes.

28 2 Literature Review



EXAMPLE 2: FORM FINDING AND EVALUATING THROUGH ML
(ZHENG, 2019)

Graphic statics is a geometry-based structural design and analysis method that

has gained renewed attention due to advancements in computational power.

Design variations can be generated under equilibrium, where the interior faces

of the polyhedral force geometries can be adjusted through subdivision rules to

modify the complexity of the form. Zheng’s work integrates aesthetic consider-

ations into the framework for exploring design variations by bridging graphic

statics to an architect’s subjective preferences through NNs to develop a ML

model [53]. Zheng analyzed the ML’s capability to detect hidden patterns that [53] Zheng. 2019. Form Finding

and Evaluating Through Machine

Learning: The Prediction of

Personal Design Preference in

Polyhedral Structures.

connect personal design choices to structural performance using a dataset of

400 force and form diagram pairs generated using randomized boundary tetra-

hedrons and iterative subdivision rules. Zheng adopted a scoring mechanism to

record the architect’s preferences, further simplifying the data collection process

by grouping the samples into 200 batches, each consisting six forms, to account

for variations during selection due to mood and patience. Two additional com-

parative tests were conducted, in which the tester selected the most complex

and the simplest forms from each batch to help quantify personal preferences

into more objective traits.

Figure 2.17: Form finding by the highest score for 3 random boundary conditions

(Zheng, 2019).

To train the model, a vector-based NN was used to map form-to-preference

scores. The polyhedral form data was encoded into 21 numbers, representing

the boundary tetrahedron coordinates and subdivision rules. The output was a

single real number reflecting the form’s score. The NN architecture comprised

of two hidden layers with 50 neurons each, using a sigmoid activation function.

The model was trained using a mean squared error (MSE) loss function to minim-

ize the gap between predicted and actual scores. The comparative models were

successfully verified, with the trained NN assigning appropriate scores to both

visually complex and simpler forms, demonstrating its ability to evaluate poly-

hedral designs. However, the preference model required additional validation

for taste, so the tester re-evaluated the forms using a scale from A to D, where A

represented perfection and D indicated dislike. After further investigation, the

2.2 Computational methods 29



NN successfully learned the specific architect’s design preferences, offering a

novel method for quantifying subjective preferences, which is often challenging

to articulate through numerical data alone.

2.2.4 REINFORCEMENT LEARNING

Reinforcement learning (RL) is a distinct subset of AI that differs from supervised

and unsupervised learning by focusing on training agents to map situations to

sequential decisions through interactions with their environment. Formally, this

process is framed as a Markov Decision Process (MDP), providing a mathematical

foundation for decision-making as shown in Fig. 2.18 [49].[49] Sutton and Barto. 2018.

Reinforcement learning: an
introduction, Second edition.

Figure 2.18: Markov decision process. Adapted from (Sutton and Barto, 2018).

This method aligns with generative design methods categorized under gami-

fied exploration in Fig. 2.11. Gamified exploration focus on participatory en-

vironments where designers iteratively navigate decision-making processes

using predefined rules and simulations to evaluate the consequences of their

actions [31]. Reinforcement learning enhances gamified exploration by integrat-

ing artificial agents that autonomously explore design spaces or assist human

participants in decision-making. However, the success of RL in such contexts

relies on carefully crafted game mechanics, scoring systems, and simulation

models, as well as the ability to balance abstraction and complexity. Combining

RL with other generative design approaches, such as grammatical itemization,

offers a promising pathway for addressing these challenges and expanding the

effectiveness of generative design across diverse applications.

STATES AND OBSERVATIONS

The state encompasses all relevant descriptions of the environment, whereas

an observation may convey an incomplete version of the state, omitting certain

information. The data relayed to the agent can take various forms, such as a

finite graph representing a planar truss [35], pixel-based image observations [28],[35] Ororbia and Warn. 2023.

Design Synthesis of Structural

Systems as a Markov Decision

Process Solved With Deep

Reinforcement Learning.

[28] Mnih et al. 2013. Play-

ing Atari with Deep Re-

inforcement Learning.

30 2 Literature Review



or numerical lists of vertices, edges, and faces for a shell structure [50]. [50] Tam et al. 2022.

Performance-informed pattern

modification of reticulated

equilibrium shell structures

using rules-based graphic statics,

CW networks and reinforcement

learning.

ACTION SPACES

The action space defines all possible move-sets available to the agent, with its

nature varying depending on the environment. In Atari games, for example, the

input is discrete and limited by the controller options, whereas, an autonomous

driving agent operates within a continuous action space, with an infinite number

of possible actions. Different design tasks prioritize specific characteristics, such

as high safety performance in intelligent transportation or high diversity and ac-

curacy in recommendation systems [54]. These varied requirements necessitate [54] Zhu et al. 2021. An Over-

view of the Action Space for

Deep Reinforcement Learning.

different algorithms tailored to the complexity of the actions performed.

For an agent to achieve its expected goal, all effective actions must be valid

and complete. If certain actions are not properly programmed, the agent may

face a higher probability of failure in completing the design task [54].

REWARD FUNCTION

The reward function is a critical component in the performance of any RL model,

as the agent’s goal is to maximize cumulative reward over its trajectory. In

RL, it is generally assumed that a predefined reward function exists, as is the

case in board games where performance is easily measured through outcomes

such as wins, losses, or points. Once the goal is defined, a key challenge lies in

how to allocate rewards. Shaped rewards offer incremental feedback for states

that progress toward the end goal, even if the policy has not yet reached a

complete solution. However, this approach can introduce bias into the learning

process. In contrast, sparse rewards provide feedback only at the goal state,

offering no intermediary rewards. Additionally, discounting can be employed to

regulate reward distribution across a sequence of actions, reducing the influence

of rewards from earlier actions.

POLICIES AND VALUE FUNCTIONS

A policy, π, either deterministic or stochastic, defines the learning agent’s beha-

vior, linking perceived states of the environment to actions to be taken when

in these states. The reward signal defines the short-term goals of how good

or bad an outcome is making it the primary basis for altering the policy. At

each time step, the environment sends to the agent a signal symbolizing the

immediate intrinsic desirability of an environmental state. On the other hand, a

value function specifies what is good in the long-run. The value of a state corres-

ponds to the total amount of reward an agent can expect to accumulate over the

future, by taking into account the states that are likely to follow initialization

2.2 Computational methods 31



and the rewards available in those states. Thus, making value functions harder

to determine. Both policy and value functions are the learning objectives in RL.

The value function of a state, s, under a policy, π, is the expected return when

starting in s and following the π thereafter:

vπ(s)=̇E[Gt|St = s] = Eπ[
∞∑
k=0

γkRt+k+1|St = s], s ∈ S (2.1)

The action-value function represents the value of taking action a in state s
under π:

qπ(s, a)=̇E[Gt|St = s,At = a] = Eπ[
∞∑
k=0

γkRt+k+1|St = s,At = a] (2.2)

The value functions vπ and qπ can be estimated from observation. If an

agent follows policy π and computes the average of actual returns following

each encountered state, this average will converge to the state’s value, vπ(s),
as the frequency of that state’s occurrence approaches infinity. Similarly, by

maintaining separate averages for each action taken in each state, these averages

will converge to the corresponding action values, qπ(s, a). Such estimation

methods are referred to as Monte Carlo methods, as they involve averaging over

numerous random samples of actual returns [49]. In scenarios with large number

of states, the agent can alternatively represent vπ and qπ as parameterized

functions and adjust these parameters to align with the observed returns.

The value function satisfies recursive relationship to describe the value of a

state, s, and its possible successor states, s’. When Eq.2.1 is decomposed into the

immediate reward and the discounted value of its successor states, the Bellman

equation is obtained, averaging over all the possibilities and weighting each by

its probability of occurring [49].

These mechanisms collectively enable behavior control and knowledge up-

dates, which are the distinctive characteristics of RL. This framework is concep-

tually intuitive, as it parallels human learning process. The following examples

serve to further showcase implementation of RL in the field of structural design.

EXAMPLE 1: EXPERTISE, PLAYFULNESS, ANALOGICAL
REASONING (MIRRA, 2023)

Mirra’s work explores playfulness in the autonomous development of design

strategies through free exploration. In this approach, agents were not informed

about precedents but instead learned to design through trial and error [26].[26] Mirra. 2023. Expertise,
playfulness, analogical reasoning.

The agent interacted with the design game using a Deep Q-Network, trained

to approximate the optimal policy determined by selecting the action with the

highest Q-value for each state.

32 2 Literature Review



The environment for this experiment was a virtual drawing board, where the

agent’s actions corresponded to placing structural nodes on a 32x32 canvas. Each

pixel on the canvas represented a discrete point on a 2D grid, allowing structural

nodes to be placed and connected to form a 2D frame structure. Initially, the

canvas contained two support nodes and one obstacle. The agent’s cursor started

at the first support node in the bottom-left corner, and at each time step, it moved

by a single pixel, progressively extending the frame.

Figure 2.19: Interaction of the DQN with the environment components to collect

design experiences in the form of state transitions and rewards

(Mirra, 2023)

To refine the model, the environment incorporated dynamic elements, includ-

ing agent laziness, collisions, and task completion. Small to medium negative

rewards were assigned for each action or when the cursor attempted to place

a node on a occupied position, encouraging exploration of new regions of the

canvas. Large negative rewards were given for collisions, either with the obstacle

or the canvas edges. A positive reward was awarded when the agent success-

fully reached the second support node. Crucially, structural rewards were only

allocated upon reaching this node, incentivizing the completion of meaningful

structural connections. Each sequence of state transitions resulting from the

agent’s actions was defined as a design episode. These episodes terminated if the

cursor collided with an edge or obstacle, reached the second support node, or

exceeded 300 actions. At the end of each design episode, the environment reset,

clearing the canvas, repositioning the cursor, and generating a new obstacle

defined by two opposite corners of a rectangle. This setup increased the com-

plexity of the task, exposing the agent to varying boundary conditions and

encouraging the development of more adaptable and resilient design strategies.

2.2 Computational methods 33



Mirra’s analysis highlights how the environment dynamics prompted the

agent to naively respond to the design task while also driving the convergence

of the training process. Notably, the definition of the reward function had a

profound influence on the policy learned by the agent. This conditioned the

agent’s exploration, rather than fostering genuine exploration, underscoring the

challenges of designing reward systems in reinforcement learning for creative

tasks.

EXAMPLE 2: ENHANCING INTERACTIVITY IN STRUCTURAL
OPTIMIZATION THROUGH RL (MIRRA AND PUGNALE, 2023)

In this second example, the workflow comprises: (1) a 3D modeling environment,

(2) a conversion process for constructing a structural model, and (3) a FEM solver

for structural performance analysis. The agent captures the 3D environment’s

state as a 2D depth map, which encodes the height of a complex surface, decoded

as a 8x8 matrix of values corresponding to the z-coordinates of equally spaced

control points used to construct a NURBS surface.

A different RL approach, policy gradients, was employed to handle the com-

plexity of the action space. Unlike the first example, the agent performs a

sequence of sub-actions characterized by a tuple of three elements: first, a

vector point P is selected from the 8x8 matrix of control points; second, the

agent determines the direction of translation d (either -1 or 1); and third, it

specifies a vector length from an array of 10 discrete values, defining the extent

of movement along the z-axis.

Figure 2.20: Interaction of the PPO with a 3D modeling simulator (Mirra and

Pugnale, 2023).

34 2 Literature Review



The structural model for FEM analysis was constructed from the updated

observations of the canvas. All mesh faces were converted into 5 cm thick

concrete shell elements, with the corners of the mesh used as fixed support

nodes. A uniformly distributed gravity load of 2kN/m2
was applied, and the

structural reward was derived from the maximum displacement of the concrete

shell.

The environment offered two distinct design tasks. When the canvas grid

was initialized as a flat shell, the task became entirely exploratory, as the agent

progressively deformed the shell to produce a structurally sound design. Altern-

atively, if the canvas grid was initialized with non-zero values, the agent refined

a predefined shell design to enhance its structural performance. This second

approach required the designer to create the input design using the same types

of actions available to the agent, which could be limiting. To accommodate the

increased complexity of agent actions in this scenario, the maximum number of

iterations was kept between 10 and 20. Simplifying the action space reduced

the need for extensive specification of environment dynamics and ensured the

design strategy learned by the agent was not overly conditioned by the setup.

At the end of each episode, structural rewards were redistributed into one-step

reward increments. This redistribution allowed the agent to observe the immedi-

ate impact of its actions, measuring how much a single design move contributed

to reducing the maximum displacement of the shell. in the context of the shell

design task, this approach provided the agent with a clearer understanding of

the relationship between specific design adjustments and structural performance

outcomes.

2.2 Computational methods 35





3
Markovian Decision Framework

This chapter examines the key concepts and computational characteristics of the

methods used to facilitate exploration of the topological design space of quad

meshes. It begins by outlining the specifics of the quad-mesh grammar, followed

by a discussion of a suitable RL algorithm for the study. To fully harness the

learning capabilities of the selected RL agent, the chapter addresses appropriate

knowledge representation strategies and establishes a preliminary generative

model within a Markovian framework. The components of the MDP are des-

ignated with particular emphasis on critical features, such as topological and

string properties, to intentionally reduce the complexity of the design problem

by disregarding specific loading and boundary conditions. The following chapter

will evaluate the extent to which the identified features are sufficient for the RL

agent to adopt policies that generate diverse mesh layouts through innovative

string-action sequences, as illustrated below.

Figure 3.1: General workflow depiction.

37



3.1 METHODS

3.1.1 QUAD-MESH GRAMMAR

The term quad-mesh grammar originates from one of Oval’s researched strategies,

which decouples the topology and geometry of a design by translating topolo-

gical modification and movement operations into a set of rules represented by

alphabetic letters. This approach, rooted in the bottom-up philosophy, leverages

the potential to generate a diverse array of mesh topologies through the infinite

combination of these letters.

The rules are applied at a coarse resolution on quad-meshes before the se-

quence of densification and geometrical processing begins. Its mechanism

operates on the strip structure which is defined by the relationship between

pairs of opposite edges across the quad-faces as shown in Fig. 3.2. This approach

offers an indirect way to control singularities by altering the connectivity, and

“is tailored for the exploration of a comprehensive design space constrained to

quad-meshes” [37].[37] Oval et al. 2023. A vector

encoding for topology finding

of structured quad-based

patterns for surface structures.

Figure 3.2: Strip structure (Oval, 2019).

A marker is constrained by the initial topology of the input coarse quad-mesh

with specified orientations. Each edge connecting two vertices produces a pair

of half-edges, oriented in opposite directions, as indicated by the blue arrows in

Fig. 3.3. These half-edges are also associated with an adjacent face on their left

side, which establishes directionality for any sequences of movement operations.

To perform string-based operations, a marker is first placed onto a vertex; it can

then perform two types of movement and two types of modification commands:

Turn (T) – moves the marker to the next edge on the leftward face with an

anticlockwise rotation, as depicted by the blue arrows.

Pivot (P) – rotates the marker clockwise to the next edge on the rightward face,

as indicated by the orange arrows.

38 3 Markovian Decision Framework



Add (A) – adds a strip along a sequence of edges.

Delete (D) – removes the strip perpendicular to the marker’s position.

Figure 3.3: Half-edge mesh data structure with edge and node orientation (Oval,

2019).

To illustrate using Fig. 3.3, performing two ’T’ commands from point 6, fol-

lowed by a ’P’ command and two additional ’T’ commands, moves the marker

to points 7, 4, 1, and finally to 0. These two movement operations enable the

selection of specific mesh elements for strip modification. To successfully add a

strip, in terms of computational operations, two ’A’ commands must be imple-

mented. The first toggles the collection of a polyedge, which refers to a sequence

of edges. After successive combinations of ’T’ and ’P’ the second ’A’ command

ends the collection and inserts a corresponding strip along its traveled path.

Additional parameters (*) and (◦) allow for the addition of strips with poles and

closed strips, respectively.

In Fig. 3.4, strip addition along the polyedge A-B-C introduces pairs of new

vertices, prime and double prime, which replace and are positioned on the left

and right sides of the original vertex, to establish a new quad-strip. The strip

addition also introduces singularities at non-boundary nodes B’ and B” with

corresponding valencies of five and three edges. Overlapping polyedges can

also be modified as demonstrated in Fig. 3.5.

Figure 3.4: Strip addition introducing singularities (Oval, 2019).

3.1 Methods 39



Two additional computational rules are mentioned here. Firstly, after the

application of each rule, the strip data is updated, changing the labels of the

vertices and faces to accommodate the topological modifications; however, the

labels of the strips are preserved to keep strip attributes and enable the combin-

ation of multiple rules, for instance. Secondly, before completing the deletion

maneuver, the marker is adjusted using pivot operations until it aligns with the

polyedge corresponding to the strip that will be collapsed. In Fig. 3.6, a deletion

operation is applied during polyedge collection before the second add operation.

The collected polyedge is updated, replacing and removing redundant vertices.

The edge [0,1] is collected with the first ’A’ command. When the subsequent strip

outlined by nodes 1,2,5,4 is deleted, the old polyedge is updated to [0,6]. Finally,

when the second addition is implemented, a new strip, outlined by 8,9,11,10, is

introduced.

Figure 3.5: Self-overlapping strip addition (Oval, 2019).

Figure 3.6: Update of vertices labeling when executing strip deletion during strip

addition maneuver (Oval, 2019).

40 3 Markovian Decision Framework



COMPAS_QUAD

The algorithms for the briefly introduced quad-mesh grammar have been de-

veloped as part of COMPAS, an open-source, python-based computational frame-

work, developed by BRG at ETH Zurich. It is a robust, fully-agnostic system that

integrates computer science libraries and packages into architectural workflows.

Its core data structure enables engineering calculations and fosters collaboration

across diverse academic backgrounds, programming skills, and computational

expertise. COMPAS facilitates cross-platform use and integration with external

tools, enhancing cooperation. This capability is exemplified in projects such

as the Striatus Bridge and Phoenix Bridge, where COMPAS was used to link

separate computational pipelines from ZHACODE and incremental3D [38]. [38] Parametric-Architecture.

2024. 66 - Philippe Block -

Computational Design, AI,

Compas, Digital Fabrication,

3D-Printing, BRG.

3.1.2 RL ALGORITHMS

OPTIMAL POLICIES AND VALUE FUNCTIONS

The Markov decision process (MDP) provides a mathematical model for decision

making:

M = (S,A,R, P, ρ0, γ) (3.1)

where: S = states

A = actions

R = rewards

P = state-transition probability

ρ0 = initial state distribution

γ = discount rate

An MDP is defined by a finite set of actions, states, and rewards, where the

dynamics depend on the sequence of previous interactions. The environment’s

dynamics are represented by the joint state-transition and reward probability:

p(s′, r|s, a)=̇Pr[St = s′, Rt = r|St−1 = s,At−1 = a] (3.2)

From this, the marginal state-transition probability (s’|s,a) can be obtained by

summing over all possible rewards r ∈ R. The expected reward for a state-action

pair is given by:

r(s, a)=̇E[Rt|St−1 = s,At−1 = a] (3.3)

The Bellman equation for the value function, vπ , is expressed as:

vπ(s)=̇E[Gt|St = s]

=
∑
a

π(a|s)
∑
s′,r

p(s′, r|s, a)[r + γvπ(s
′)] (3.4)

3.1 Methods 41



Similarly, the Bellman equation for the action-value function, qπ , is given by:

qπ(s, a)=̇E[Gt|St = s,At = a]

=
∑
s′,r

p(s′, r|s, a)[r + γqπ(s
′, a′)] (3.5)

For finite MDPs, the Bellman equations are extended to derive an optimal

policy that maximizes the expected cumulative return:

v∗(s) = max
a

∑
s′,r

p(s′, r|s, a)[r + γv∗(s
′)] (3.6)

q∗(s, a) =
∑
s′,r

p(s′, r|s, a)[r + γmax
a′

q∗(s
′, a′)] (3.7)

ON-/OFF-POLICY LEARNING

On-policy algorithms refer to approaches in which the policy used to interact

with the environment is the same policy that the agent is learning from. In

contrast, off-policy methods involve learning about an optimal policy or a

different target policy while using a separate behavior policy to explore the

environment in a suboptimal manner during training. The latter offers greater

flexibility in exploration, as they allow the agent to learn from data generated

by previously stored experiences enabling efficient use of past interactions.

MODEL-BASED VS. MODEL-FREE

In the classification of RL, selecting the most suitable algorithm often depends on

the learning objective—whether it involves evaluating the policy, value function,

action-value function, or environment model. The flow chart below, adapted

from OpenAI, presents a non-exhaustive taxonomy of the RL methods based

on broad categorization, with the first branching point being the type of model

employed [33].[33] OpenAI. 2018. Spinning Up:

A Taxonomy of RL Algorithms.
An environment model is a function that predicts all possible state transitions

and rewards, allowing the agent to plan ahead by evaluating different trajectories

and selecting the best course of action. A notable example is AlphaZero, which

uses a model of the game board to significantly improve sample efficiency over

other methods that do not rely on a model [44]. However, ground-truth models[44] Silver. 2016. Mastering the

game of Go with deep neural

networks and tree search.

of the environment are often unavailable, requiring the agent to learn from

experience. This approach can introduce challenges, such as learned biases

that may cause the agent to perform poorly in real-world scenarios due to over

fitting.

42 3 Markovian Decision Framework



Figure 3.7: RL Umbrella Adapted from (OpenAI, 2018).

Model-free methods are more common because they are easier to implement

and tune. These approaches do not require pre-defined state-transition probabil-

ity functions and instead learn policies directly through interactions with the

environment. While model distinctions are crucial and model-based methods

often lead to significant performance improvements, their adoption is limited

by the time and computational effort needed to define and utilize innumerable

state transitions.

POLICY OPTIMIZATION

Policy optimization is a class of techniques that directly adjusts the policy by

explicitly representing it as a parameterized function, πθ(a|s). The parameters,

θ, are adjusted to improve the performance objective, J(πθ), typically using

stochastic gradient ascent (SGA). This method is generally performed on-policy,

and an approximator is learned to guide the policy updates. Algorithms such

as Actor-to-Critic (A2C) use SGA to maximize performance, while Proximal

Policy Optimization (PPO) stabilizes learning by optimizing a surrogate objective

function [42]. This approach is particularly effective for high-dimensional and [42] Schulman et al. 2017.

Proximal Policy Optimization

Algorithms.

continuous action spaces, making it suitable for complex environments such as

advanced robotics and sophisticated games, including Dota 2 and Super Smash

Bros [12][34]. [12] Firoiu et al. 2017. Beating

the World’s Best at Super Smash

Bros. with Deep Reinforcement

Learning.

[34] OpenAI et al. 2019. Dota 2

with Large Scale Deep Reinforce-

ment Learning.

Q-LEARNING

Methods known as Q-learning refer to RL algorithms that focus on learning

the optimal action-value functions, based on the Bellman equations, to derive

the policy. The agent updates its estimates of q-values, and this optimization

3.1 Methods 43



is almost always performed off-policy. Notable algorithms include Deep Q-

Networks (DQN), which use NNs to approximate the q-values and are known

for their sample efficiency in comparison to policy optimization approaches.

Q-learning methods excel in scenarios with discrete action spaces, making them

ideal for small- to medium-sized problems such as grid-world environments

or Atari games [28]. The distinction between the two methods lie in their[28] Mnih et al. 2013. Play-

ing Atari with Deep Re-

inforcement Learning.

optimization targets. In Q-learning, the goal is indirectly optimized, which

increases the potential for failure modes but offers significant gains in sample

efficiency. Additionally, a range of algorithms exists that interpolate between

the two approaches, balancing the trade-off between principled logic and sample

efficiency.

Q-NETWORK LOSS

The key difference between the Q-learning and DQN lies in their representation

and update mechanism for the values of state-action pairs. Q-learning is a tabular

method, where the q-values (Eq. 3.7) are stored in a table, while DQN extends

this framework by incorporating NNs to approximate the q-values, enabling

the algorithm to handle large or continuous state spaces. In DQN, two NNs are

used: the online Q-network and the target Q-network.

The online Q-network (also called the policy network) outputs predicted

values for state-action pairs based on parameterized weights, θ. Given a current

state, s, and action, a, the network computes the q-value for all possible actions

as follows:

Q
pred

(s, a; θ) = Q
online

(s, a; θ) (3.8)

Its output reflects the agent’s expectation of the rewards available when

executing the next action in a sequence. The target Q-network has the same

architecture but uses a separate set of weights, θ−. This target network provides

stable reference values for the online Q-network. The target q-values are calcu-

lated using the immediate reward, r, and the discounted maximum future reward

for the next state s’, using the target network, by the following equation:

Qtarget(s, a) = r + γmaxQtarget(s
′, a′; θ−) (3.9)

The difference between the two networks lies in the update frequency of the

parameterized weights. While the online network updates frequently with new

incoming experiences, the target network’s updates are deliberately delayed

to provide stability during training. This delay ensures that the target values

remain consistent as a reliable reference point, preventing the q-values from

shifting too rapidly. In the DQN algorithm, the process alternates between

predicting q-values and updating them, using the target network to compute

stable target values.

44 3 Markovian Decision Framework



During the training process, the learning occurs when the weights of the

online networks are updated. This is done by minimizing the difference between

the predicted and target values, also known as the temporal difference (TD)

error or q-loss. The update rule improves prediction accuracy over time and is

governed by the following equation:

Q(s, a)← Q(s, a) + α(Qtarget(s, a)−Q(s, a)) (3.10)

where: α = learning rate

Qtarget(s, a)−Q(s, a) = TD error

The q-loss, is typically derived using mean squared error (MSE). However, in

stable-baselines3, Huber loss is used instead, as it is less sensitive to outliers,

which helps stabilize the training process. The Huber loss is defined as follows:

Lδ(x) =

{
1
2x

2
for |x| ≤ δ

δ(|x| − 1
2δ) for |x| > δ

(3.11)

The Huber loss for a batch is given by:

Loss =
1

N

N∑
i=1

Lδ(Qpred
(si, ai)−Qtarget(si, ai)) (3.12)

where: x = TD error

δ = Threshold between quadratic and linear loss transition

N = Batch size sampled from replay buffer

Huber loss behaves similarly to MSE for small errors, penalizing them quad-

ratically. For larger errors, its piecewise form transitions to a linear function,

reducing sensitivity to outliers. This helps prevent large TD errors from dis-

proportionately affecting the gradient updates, thereby supporting more stable

training. Once the loss is computed, the network weights are updated using

back propagation over batches of experience stored in the replay buffer.

LIMITATIONS

The strength of RL algorithms lies in their flexibility to adapt to diverse scenarios.

For example, multiple agents can be incorporated by assigning numerous reward

signals to the RL model, enabling exploration of spatial configurations in urban

environments [51]. However, developing the RL program can be time-intensive, [51] Veloso and Krishnamurti.

2020. An Academy of Spatial

Agents - Generating spatial

configurations with deep

reinforcement learning.

as real-world problems are often challenging to replicate virtually due to their

complex hierarchical relationships. Furthermore, simulation environments come

3.1 Methods 45



with high research costs and lengthy iteration times, which can hinder the

practical implementation of RL [54]. Even when an agent has access to a complete[54] Zhu et al. 2021. An Over-

view of the Action Space for

Deep Reinforcement Learning.

and accurate environmental model, it may not fully leverage this advantage due

to limitations in memory and computation per time step [49].[49] Sutton and Barto. 2018.

Reinforcement learning: an
introduction, Second edition. GYMNASIUM AND STABLE-BASELINES3

The primary Python libraries utilized for the RL algorithm are OpenAI’s Gym-

nasium and stable-baselines3. A custom training environment will be developed

in Gymnasium, which provides a flexible API for single-agent RL environments,

supporting key functions such as make, reset, step, and render. At the core of

Gymnasium is the Env class, a Python class representing an MDP. Although

pre-built environments such as Classic Control, Box2D, MuJoCo, and Atari exist,

a custom environment will be constructed for this project. Once initialized, the

environment is reset to produce the initial observation, which, can be either

predefined or generated with a randomized seed. The agent then takes actions

in the environment using the step function, causing the environment to update,

providing new feedback in terms of new observations and rewards at each time-

step. The environment keeps running until reaching a terminal state which

is defined, either, as a specified step count or completion of the design task.

When an episode ends, whether through task completion or truncation, the

environment is reset to prepare for the next run as shown in the following

Fig. 3.8.

Stable-baselines3 complements Gymnasium by providing a collection of mod-

ular components designed to integrate with the Gymnasium API. It offers an

open-source implementation of seven commonly used model-free deep RL al-

gorithms in PyTorch, simplifying the process of training, saving, loading, and in-

ferring actions from learned policies. Additionally, Weights and Biases (WandB)

includes scripts to log the agent’s training results, perform sweeps, and visualize

outcomes. Together, these tools streamline the development workflow, from

training RL agents to efficiently managing and analyzing their performance.

3.2 SYNTHESIS

The selection of RL algorithm for this task is model-free, as the state-transition

probabilities are unknown beforehand. A value-based learning approach, such

as DQN, is chosen to examine the suitability of off-policy methods in deriving

unexpected string-action maneuvers, with an emphasis on exploring design

spaces. This decision is further supported by the abundance of literature available

on DQN implementation.

To combine the available tools, the quad-mesh grammar must be successfully

translated into the various components of RL. The iterative nature of string-based

46 3 Markovian Decision Framework



Figure 3.8: Gymnasium Environment Workflow.

operations makes RL a more intuitive selection over other AI approaches, such

as genetic algorithms; however, challenges remain in translating key concepts

before initiating the learning process for a policy that constructs diverse and

efficient meshes.

The following sections outline the workflow for adapting the quad-mesh

grammar to an MDP framework, ensuring the design problem of this thesis

is appropriately programmed for the agent to learn effective strategies. The

feasibility of the thesis is assessed by verifying compatibility between the selected

Python libraries. A simplified methodology, which reduces model complexity,

is implemented by initially removing the focus from geometric and structural

variables, allowing the primary objective to be the successful integration of

compas_quad into the RL process.

3.2.1 SIMPLIFIED MODEL

An additional goal of the preliminary model is to determine whether the RL

agent can effectively explore the design space by using compas_quad to modify

an initial simple mesh topology, s0, in order to reach a specified terminal state,

sT , as shown in Fig. 3.9. The terminal state is characterized by both a different

mesh topology and its corresponding action string, which serves as the ground

truth during the training process. A custom mesh environment has been created

with a focus on fine-tuning the reward function and hyperparameters to guide

3.2 Synthesis 47



the RL agent toward the desired outcome. The output of the model can be post

processed with a circular boundary in equilibrium only under homogeneous

internal forces for visual purposes.

Figure 3.9: Latent space representation.

ACTION SPACE, A(t)

In this model, discrete action corresponds to the specific letters used in the quad-

mesh grammar. Each time step represents a successive stage of decision-making

event, where the agent executes a string-based operation. For simplicity, only

the ‘A’, ‘T’, and ‘P’ maneuvers are implemented, while the deletion action is

omitted.

Although the string encoding can generate an infinite combination of move-

ment and editing operations, the compas_quad algorithm itself cannot process

arbitrary heuristic combinations due to the computational rules discussed in

Section 3.1.1. To address this, truncation conditions for the learning process

have been defined to notify the agent that action sequences prone to failure

are inconsequential. With this approach, the agent is implicitly discouraged

from attempting such action combinations. For instance, this occurs for addition

sequences that conclude without any movement commands, such as ’AA’, or

during strip addition with purely pivot commands, such as ’APA’ and ’APPPA’.

Both produce a KeyError when tracking the marker position, returning ’None’

instead of an integer that should represent an existing node in the matrix of the

mesh.

It is noted here that extended operations during strip addition will be avoided

to prevent exponential growth in computational load. The extent of exploration

48 3 Markovian Decision Framework



will be controlled by specifying the number of design steps that can be taken

during each design episode.

STATE SPACE, S (t)

The state represents any relevant information that aids the RL agent in learn-

ing the decision-making process. The agent’s performance is dictated by its

observations; without this input, the agent would act blindly, unable to adapt to

or influence the environment. Hence, an appropriately structured observation

space is critical for reaching the terminal state or any goal in its designated task.

Although the mesh is constructed within a Cartesian coordinate system, in the

simplified model, details regarding the coordinates of the vertices, edge indices,

edge attributes, and face data required to fully describe the mesh have not been

introduced. Instead, two key parameters, organized in dictionary format, define

the observation space: the histogram of all nodes and the position of the marker

through which the agent can navigate and modify the topology of the mesh.

Figure 3.10: Singularity histogram.

At each time step, the agent receives an updated set of topological and posi-

tional data based on the string action it performs. The topological data includes

a histogram of all the vertices in the mesh, classified by the number of edges

they are connected to. This allows for the identification and comparison of

both regular nodes and singularities between the current and terminal mesh

layout. When the histogram of the current mesh topology matches that of the

terminal configuration, the episode is terminated as the specified end goal has

been reached. If the histograms do not match, the agent continues to execute

different actions until the maximum number of design steps specified for that

run is reached. Fig. 3.10 also illustrates multiple action-string sequences that pro-

3.2 Synthesis 49



duce the same histogram and mesh layout, highlighting the lack of isomorphism

between strings and meshes. This non-isomorphic relationship can influence

the RL agent’s ability to interpolate and effectively explore the design space of

strings and meshes.

The position of the marker, hereafter termed "lizard" based on the original

implementation of compas_quad, relays the associations between the design

spaces of the grammar and the mesh. The position information is structured as

the placement of the head, body, and tail of the lizard, which is used to identify

the trajectory along which the marker can operate when executing the action

commands, as shown in Fig. 3.11. For example, the ’T’ and ’P’ commands change

the referenced node locations, as opposed to no change when activating the

sequence of strip addition through the ’A’ command. These two observation

parameters enrich the observation space from which the RL agent must learn.

Figure 3.11: Lizard position.

REWARD, R(t)

For the quad-mesh environment, the reward function has been designed to

incentivize exploration and prevent stagnation through a combination of shaped

and sparse rewards based on the parameters used to describe the observation

space. Three distinct reward mechanisms will be independently investigated

to determine the most suitable methodology for guiding the RL agent to reach

the terminal state. These mechanisms include different definitions of a distance

metric that illustrate the closeness or proximity between the current iteration

and final mesh layouts in various design spaces, namely the histogram distance,

string distance, and mesh distance, illustrated in Fig. 3.12.

As previously mentioned, the histogram distance compares the current and

terminal mesh layouts relying on the topological information. This distance

metric can return an aggregated value or probability distribution describing the

50 3 Markovian Decision Framework



Figure 3.12: Example depiction of A to B operation.

likelihood of singularity degrees between two states. Hence, the primary driver

for the agent in exploring different actions will be to reduce the distance between

the topological states of the initial and terminal conditions. Regardless of the

selected distance metrics, the histogram information used in the observation

space will be employed to allocate a large positive sparse reward when the

histogram of all singularities in the current and terminal states match, indicat-

ing successful completion. For the simplified model, the difference calculated

between two histograms will be investigated using mean-squared error (MSE) .

This analysis will be conducted only for the the histogram distance because the

values returned by the other two methods are integers, which do not provide a

granular basis for comparison.

3.2 Synthesis 51



The two other measures of distances are associated with the terms "genotype"

and "phenotype," which Oval uses as synonyms to describe the string encoding

and mesh layout, respectively. These terms are used to discuss the lack of

string-to-mesh isomorphism in the computational methodology of the quad-

mesh grammar, a concept briefly mentioned earlier. The infinite nature of

recombination of alphabetic characters results in multiple distinct combinations

of movement and editing operations that can potentially result in the same quad-

mesh topology. This redundancy implies the lack of injection from the genotype

to phenotype, leading to “[a lack of] bijection. . . between the space of strings

and the space of quad mesh topologies” [36]. The string distance is a distance[36] Oval. 2019. Topology Finding
of Patterns for Structural Design.

parameter based on Levenshtein’s method for calculating the difference between

two string sequences, measured by the minimum number of single-character

edits required to transform one string into another. This metric, widely used in

computer science and information theory (e.g. text comparison tasks and DNA

sequence analysis), effectively describes the genotype attribute of the mesh.

For example, between the strings, ’kitten’ and ’sitting’, the distance is three, as

’kitten’ can be transformed into ’sitting’ by substituting ’k’ with ’s’, replacing ’e’

with ’i’, and appending ’g’.

Finally, the mesh distance measures the difference in the number of strips

or faces appended as a result of topology modification from the string actions.

While the number of additional faces embedded to the mesh layout can depend

on the resolution of the mesh input, each strip addition maneuver incorporates an

additional strip between the starting and ending points of the lizard, thus relaying

an additional layer of information that is neither at the space of the strings, nor

completely overlapping with the information gained through topological data

alone. Hence, the term mesh distance, as it provides feedback on the mesh-strip

connectivity during intervention.

Negative shaped rewards are also applied at every time step to encourage

exploration of the design space. Without these penalties, the agent can become

idle, accumulating no rewards and leading to stagnation. The shaped rewards

prevent the RL agent from exploiting sequences of inconsequential actions and

ensure that both modification and movement commands are actively pursued

throughout the learning process. Additionally, at the end of each design episode,

the topological histogram of the mesh structure will be compared to the terminal

mesh configuration to determine whether the agent has successfully implemen-

ted any modifications. Any original sequence that introduce deviations from the

original histogram will be rewarded, while identical configurations are penalized

using a negative sparse reward to notify that the agent has not been successful

at its task. The application of the three distance metrics in Fig. 3.12 and their

specific values are explained in the next chapter.

52 3 Markovian Decision Framework



IMPLEMENTATION

The DQN of the simplified model will be constructed using a fully connected NN

with two layers consisting of 64 neurons each, and a ReLU activation function

to determine the q-value for the three discrete actions (‘A’, ‘T’, P’). The stable-

baselines3 API stores the replay data of the RL agent using a replay buffer, in

which the estimates are derived following a greedy policy. Stable-baselines3

provides a comprehensive list of variables that can be adjusted to modify the

DQN parameters. For the numerical experiments, fine-tuning hyperparameters

is essential to optimize the model for the respective reward function set up. A

set of curated variables, beyond the elements mentioned in the previous section,

will be adjusted to achieve optimal performance.

The following pseudo code illustrates the implementation of the training

setup using stable-baselines3, which incorporates the custom quad-mesh en-

vironment created with the Gymnasium API. The source code can be accessed

at: https://github.com/tohmakobayashi1016/RL-StringOp. For non-commercial

uses only.

Algorithm 1 Training execution

Require: Initial/terminal coarse mesh, SB , and maximum step count, nmax

Ensure: Quad-mesh data structure and lizard position

1: Initialize custom environment, E , and step counter, n
2: Hyperparameters: DQN:(x,x,x...)

3: while Training not finished do
4: Modify initial mesh copy, SA

5: if n < nmax then
6: Perform mesh modification

7: Update to current mesh

8: truncated: n ≥ nmax

9: terminated: SA = SB

10: else if ValueError or TypeError then ▷ Robustness of the lizard

11: truncated = True

12: end if
13: Calculate reward

14: Reset E
15: end while

3.2 Synthesis 53





4
Numerical Experiments

This chapter evaluates the performance of the constructed simplified model, as

detailed in Section 3.2, by analyzing the influence of the chosen RL algorithm

reward function configuration, and hyperparameter on overall model efficacy.

The investigation begins with a set of simple initial and terminal states, examined

through the sequential application of the quad-mesh grammar. This preliminary

exploration is followed by a similar setup, where the defined terminal state is

generalized to evaluate the RL agent’s ability to handle complex string-action

sequences of varying lengths. Finally, the outcomes of the study are extended

by subjecting a mesh topology generated by the RL agent to a form-finding

workflow, which reintroduces structural engineering parameters to demonstrate

the potential of an extended, integrated workflow.

Figure 4.1: Interaction of the RL and environment components.

55



4.1 SEQUENTIAL EXPLORATION

Figure 4.2: Initial and terminal states

The sequential exploration employs a straightforward four-step action se-

quence, ‘ATTA’, serving as the ground truth for the RL model. The objective of

this initial investigation is to assess the RL agent’s proficiency in executing quad

mesh grammar commands to achieve the target action sequence and its corres-

ponding topological structure. This is done through an independent analysis of

different reward function configurations, utilizing the DQN algorithm.

4.1.1 FORWARD & BACKWARD APPROACHES

The four step action sequence, ‘ATTA’, is segmented into four distinct steps,

with performance assessed using both a forward and backward approach. In

the forward approach, the initial state begins with an empty action string and

a basic coarse quad mesh, characterized by an input mesh refinement level of

two -indicating the subdivision degree of the boundary edge. The initial state is

kept constant, and the target sequence is then progressively constructed and

defined: ‘A’, ‘AT’, ‘ATT’, ‘ATTA’. At each stage, the RL model must execute the

correct actions corresponding to the target action sequence and its associated

topological histogram.

In the backward approach, the four step action sequence is deconstructed in

reverse: ‘ATT’, AT’, ‘A’, ‘’. In this method, the goal is to reach the ground truth

sequence in reverse order, with the terminal state kept constant while the initial

environment state is modified. Consequently, the RL agent must develop an

understanding that an addition action is required to achieve the target terminal

state in the first deconstructed sequence. In the last step, the RL agent will start

with an empty action string to reach the terminal state in both the forward and

56 4 Numerical Experiments



Figure 4.3: Sequential exploration between two specified states.

backward approaches to reach the four-step action sequence and the results will

be used evaluate the model’s adaptability in executing the correct actions to

transition between any two specified states.

4.1.2 HYPERPARAMETER TUNING

Each training process involves executing 1,000 design episodes for each decon-

structed step, which has been observed to allow the rewards of the simplified

model to converge to a satisfactory level while maintaining reasonable compu-

tational efficiency. With each additional stage, the total number of design steps

increases proportionally, as the RL agent must perform a greater number of

actions within a single design episode. For hyperparameter tuning, 30 training

batches will be evaluated using Weights and Biases, aiming to determine the

optimal model configuration for each reward function setup at each stage. Given

that four distinct stages are analyzed across three different reward function con-

figurations in two directions, a total of 21 parameter sweeps will be conducted.

The selected hyperparameters for each problem configuration and outputs from

Weights and Biases are documented in the annex. For the DQN implementation,

the sweep objective was to minimize the Q-loss using a Bayesian optimization

approach.

The results presented are averaged over 10 runs, except for the one-step

scenario, which is based on 5 runs due to its straightforward nature that does

not necessitate complex decision-making skills. A Gaussian smoothing operation

with a moderate window size of 30 points was applied to obtain a representative

4.1 Sequential exploration 57



Figure 4.4: Python package dependencies

mean for the derivation of rewards and q-values in the figures and tables included

in this chapter. For clarity purposes, all additional graphs have been moved to

the annex.

4.1.3 ONE-STEP

The learning agent demonstrates a clear preference for selecting action ’A’

over actions ’T’ and ’P’. This pattern is consistent across both the forward and

backward approaches, as the terminal condition for the one-step scenario is to

reach specific action strings: ’A’ and ’ATTA’. This outcome aligns with the task

requirements to reach the target states.

Figure 4.5: Forward one-step: state 1 action q-values

The Q-network loss rapidly decreases during the initial training phase. This

early stage reduction is expected, as the model quickly learns and refines its

58 4 Numerical Experiments



value estimates for a single state. The loss subsequently stabilizes at a low level,

indicating that the DQN has converged, with limited further improvements in

the agent’s performance. The convergence to a low level suggests that the agent

has successfully learned that action ’A’ is the only viable option for reaching the

terminal state, indicating no need for further exploration adjustments.

Figure 4.6: Backward one-step: state 1 action q-values

The agent’s preference for action ’A’ is also evident in the q-value convergence

trends across all three reward function setups and both forward and backward

approaches in this one-step scenario. As shown in Fig. 4.5 and Fig. 4.6, the

q-values for action ’A’ converge positively, while the q-values for actions ’T’

and ’P’ converge negatively. The three reward mechanisms and their respective

actions are distinguished by color and line weights: yellow, red, and blue colors

represent the histogram-, mesh-, and string-based approaches, respectively. The

solid line represents action ’P’, the dash-dot line represents action ’A’, and the

dashed line represent action ’P’.

In DQN, the q-value represents the combination of immediate and expected

cumulative rewards for a particular action in a given state, followed by an

optimal policy. Since the one-step approach only includes a single step per

design episode, it is intuitive that the q-values converge to the reward associated

with that action, as it determines whether the terminal condition is met when

choosing among only three possibilities.

The reward function structure has been designed for flexibility, allowing for

application to any number of time-steps. The strength of the model is its general

purpose which includes a time-step penalty of -1 at each step to discourage

stagnation of the learning agent from settling into suboptimal policies. When

the agent successfully reaches the specified terminal state, a large positive

4.1 Sequential exploration 59



sparse reward of 10 is provided, representing successful application of the quad-

mesh grammar. For both forward and backward approaches, this reward is

only issued when there is an exact match in the singularity histogram between

the final state and the target state. Additionally, in the forward approach, an

action-string comparison between the current and terminal states is included.

Computationally, successful strip addition does not occur until after the third

step in the forward approach, as a pair of ’A’ actions with at least one turn

movement command is required. Since the terminal action strings for the first

three steps are ’A’, ’AT’, and ’ATT’, the singularity histogram remains unchanged

until the fourth step, warranting an inclusion of an action-string comparison

that rewards the agent only when it applies the correct action sequence.

Figure 4.7: Forward one step: episodic rewards

Separately, a supplementary reward system is implemented to encourage

alternative solutions introducing minor modifications to the mesh topology.

Upon episode termination or truncation, a comparison of the initial and final

singularity histogram is conducted. Episodes with no topological changes incur

a negative sparse reward of -2, while those with modifications receive positive

rewards that offset the time penalty and are proportional to the distance metric

used. Both Fig. 4.7 and Fig. 4.8 illustrates a gradual improvement in agent

performance over time, indicating progressive optimization of its policy. The

plateau suggests that the agent has converged to an optimal policy, relying

mainly on a single action.

The exploration rate, ϵ, for all models begins at 1.0 (pure exploration) and

linearly deteriorates to 0.01 at a rate of 0.5 as shown in Fig. 4.9. Although

the one-step scenario is relatively straightforward, this exploration strategy

justifies the gradual improvement in the running reward average observed in

60 4 Numerical Experiments



Figure 4.8: Backward one step: episodic rewards

the initial half of the training. The agent is encouraged to select alternative

actions throughout a substantial portion of the training to promote exploration

across all scenarios. Close inspection of the two reward plots reveals that the

running reward converges to three general values: 7, 10, and 12.8.

Figure 4.9: Epsilon decay

Across all reward mechanisms, each time step incurs penalty of -1. If no

change in the topological data is recorded, an additional penalty of -2 is applied.

Upon reaching the terminal state, a larger positive reward of 10 is distributed.

The sum of these rewards and penalties accounts for the convergence to a value

of 7 for all forward approaches. In the backward method, the reward function

structure leads to a convergence close to 12 for the mesh-distance metric, while

the string- and histogram-distances converge around 10.

The additional reward component for mesh-distance provides a shaped re-

ward, where successful implementation of the ’ATTA’ sequence yields a reward

composed of the time penalty, the large positive reward, the mesh distance, and

4.1 Sequential exploration 61



a reward for topological intervention. Specifically, a successful sequence results

in a reward of 12.8, calculated as follows:

Reward = ptime + rterminal + dmesh + (−ptime ∗ nmax + dmesh ∗ nmax)

= −1 + 10 + 1.4 + (−(−1) ∗ 1 + 1.4 ∗ 1)
= 12.8

(4.1)

For the histogram- and string-distances, successful implementation of the

quad-mesh grammar yields a reward of 10, as the avoidance of the time-step

penalty suffices, with the distance metrics contributing no additional value due

to convergence to zero. The difference between these two metrics and the mesh-

distance lies in their incentive structure: the former two encourage minimizing

the distance metric, whereas the mesh-distance is formulated as a positive

shaped reward, promoting behavior that successfully implements meaningful

action sequences at an intermediate level between string and topological spaces,

leveraging the grammar-based logic for strip insertion. Despite variations in

reward structure, all agent converge to the desired outcome due to the simplicity

of the one-step scenario.

62 4 Numerical Experiments



4.1.4 TWO-STEPS

Figure 4.10: Forward two-steps: action box plot

By introducing a second possible action, the complexity of the scenario in-

creases, and the learning agent begins to show early signs of difficulty in achiev-

ing the simple design task. The box plots in Fig. 4.10 and Fig. 4.11 summarize the

distributions of selected actions separated based on the forward and backward

approaches.

In the forward approach, the selection of actions ’A’ and P’ shows similar

trends, with lower occurrences compared to action ’T’. In contrast, in the back-

ward approach, a high occurrence of action ’A’ is observed, followed by the

selection of actions ’P’ and ’T’. This difference in recorded actions can be attrib-

uted to the directionality of the two-step scenarios, where the learning agent

initiates exploration from two different initial states: an empty state (”), and

’AT’. In the latter, selecting action ’A’ leads to strip addition, even though ’ATA’,

Fig. 4.15, does not perfectly align with the desired target outcome ’ATTA’. How-

ever, this alternative sequence positively impacts the distance metrics while

avoiding penalties for an unchanged mesh topology.

In the forward approach, all q-values converge negatively in the first state,

which is expected since the learning agent receives only time-penalties in the

initial step. The action-value functions illustrated in Fig. 4.12 indicate that actions

’A’ and ’P’ yield similar values across all the reward function setups, suggesting

4.1 Sequential exploration 63



Figure 4.11: Backward two-steps: action box plot

that selecting either action leads to comparable outcomes in terms of immediate

and potential future rewards. The convergence of action ’P’ shows a more

pronounced negative response in the string-distance method, a consequence of

the Levenshtein distance (L-distance): selecting ’A’ or ’T’ in the first step incurs

an L-distance of 1 to the terminal state, whereas ’P’ results in a distance of 2 due

to the additional substitution operation required to reach the target string, as ’P’

does not exist in the desired outcome. Fig 4.12 shows the q-value convergence,

in the forward approach, for action ’T’ as the least negative outcome, indicating

that the learning agent has identified this movement command as minimizing

immediate and future negative rewards.

In the second state of the forward approach, the action-value functions of

each actions exhibit substantial instability, reflecting the agent’s difficulty in

optimizing its policy based on available observations and reward structures.

For the histogram- and mesh-distance metrics, the failure penalty in the final

step results in -3, combining the time-step and no-change penalties. Due to the

limited length of the action-string meaningful interventions that would affect

the mesh topology are prevented. Conversely, the string-based metric has a

failure reward range between -4 and -5, as non-target states incur penalties from

recombination and substitution operations, in addition to the aforementioned

penalties. Upon successfully reaching ’AT’, the agent receives a reward of 7,

calculated as 10 plus the failure penalty of -3. The discrepancy between the

64 4 Numerical Experiments



Figure 4.12: Forward two-steps: state 1 action q-values

the recorded q-value convergence and the large positive sparse reward can be

explained by the high likelihood of action ’T’ to be selected in the first step,

denying the potential for better performing reward in the second step.

Figure 4.13: Forward two-steps: state 2 actions q-values

Both histogram- and string-distance methods converge to ’TT’ by the end

of the training period, while the mesh-distance metric retains a closer margin

for the q-value across all actions, resulting in alternating choices between ’TA’,

’TP’, and ’TT’. The number of successful design episode across different reward

mechanisms -54, 48, and 52, respectively- indicates that the limited heuristic

occurrences of the correct action-sequence did not significantly impact the

negative convergence trends. For these action strings, the histogram- and mesh-

4.1 Sequential exploration 65



based reward mechanisms yield episodic rewards of -2, while the string-based

rewards result in -3, as shown in Fig. 4.14.

Figure 4.14: Forward two-steps: episodic rewards

In all scenarios, the exploration rate decays uniformly over time. This setup

was chosen to encourage the agent to explore a range of randomized heuristic

action sequences, potentially leading to innovative solutions or serendipitous

discovery of the optimal sequence. However, the DQN system shows limited

ability to consistently recognize and reinforce the correct action sequences de-

rived through this exploration. This limitation may be attributed to the impact of

sparse positive rewards that are distributed only at the end of the design episode,

infrequently generating TD gradients that are potentially too large for the DQN

model to effectively handle, thereby complicating its interpretation of action

sequences. If the gradient of improvement is too steep, marked by a high TD

error, it may dis-incentivize the agent from learning the target policy, favoring

training stability over accuracy in replicating the optimal sequence. Although

the discount rate is set at 0.99, which should theoretically allow rare instances

of positive rewards to be effectively leveraged in the DQN’s experience replay,

the hyperparameter prioritization of minimizing the loss function between the

network and target policies could inhibit the emphasis on isolated positive re-

wards. Consequently, the agent’s policy is balanced based on the accumulated

history of experiences, the majority of which are instances of negative penalties.

When frequently exposed to negative rewards, the agent initially learns to avoid

actions associated with the most adverse outcomes. However, the predominance

of negative rewards, may lead the agent to converge on a biased policy that

minimizes negative outcomes without actively seeking sparse positive rewards.

66 4 Numerical Experiments



One additional factor destabilizing the q-value for action ’A’ is the truncation

condition triggered by sequences like ’AA’. The computational errors inherent

in the compas_quad algorithm impede the learning agent’s ability to correctly

apply action ’A’, resulting in its q-value being ranked low. This misinterpretation

is problematic, as action ’A’ is essential for the proper functioning of the quad-

mesh grammar. DQN estimates an action-value function to approximate a

deterministic policy that selects decisions based on the highest estimated q-

value at each state. This approach, aiming for convergence to stable q-values

for each state-action pair, may not align well with the nuanced, hierarchical

action structures present in the quad-mesh grammar, further inhibiting effective

learning.

In the backward approach, the q-value for action ’A’ shows a slightly positive

convergence in the first state compared to its forward counter part, partially due

to the possible alternative solution ’ATA’. The string method similarly aligns

with the forward approach, Fig. 4.16, where the q-value of action ’P’ is lower than

that of action ’T’ due to the L-distance. As action ’A’ shows the least negative

or most positive convergence, the plots highlights the reinforcement learning

agent’s tendency to converge to an unintended policy that constructs the mesh

layout illustrated in Fig. 4.15 rather than the targeted state.

Figure 4.15: Alternative mesh 1: ’ATA’

For both the mesh- and string-based methods the converged q-values slightly

resemble the rewards obtained in the first round of decision-making, which

can be referenced in Fig. 4.18, a schematic illustration of all possible string

combinations in the backwards two-step approach, alongside the final mesh

structures and their associated rewards. For the histogram-distance reward

function, however, all rewards available in the first state are identical, confirming

that the observed differences come from the expected rewards available in the

second state. This also applies to the minor deviations between q-values and

rewards observed for the other two methods.

4.1 Sequential exploration 67



Figure 4.16: Backward two-steps: state 1 actions q-values

In the second state, during the first half of the exploratory training process,

q-values for all actions are highly unstable as the DQN model’s exploration rate

decays. In Fig. 4.17, results show q-values for the mesh-based rewards improve

late into the training period, with the highest observation of approximately 4.5

for action ’A’. The same goes for the histogram-based method with a value of

2.5 for action ’A’, however, the range of difference across all three actions are

negligible. For the string-based method, the value for action ’A’ ranks visible

lower than the other two actions, suggesting high preference for action ’A’ in

the previous state, leads to decisions to select a different action to minimize the

string-distance in the second step. Despite the selection of action ’T’ minimizing

the string-distance in the second step, the positive rewards distributed when

reaching an alternative mesh layout neutralizes the difference between the

selection of actions ’T’ and ’P’, resulting in the same approximate q-value of 3.4.

The mesh-distance based rewards reveal that the second character in the

sequence remains invariant when action ’A’ is chosen in the first state. This

leads to policy convergence that favors the upper branch of the decision tree,

as the agent can consistently obtain positive rewards. Additionally, the mesh-

based rewards and q-value convergence for action ’A’ in state 1, as the only

positive selection across all cases, support this analysis. Although the maximum

reward is achievable with the sequence ’ATTA’, only 5.8% of the design episodes

successfully reached this target state. The mesh-distance model in the two-step

sequence predominantly converged on the action string ’ATAA’. Importantly,

the final ’AA’ in ’ATAA’ does not trigger a computational error because the last

action functions as an open addition sequence; thus the action string is better

interpreted as ’ATA’ followed by ’A’.

68 4 Numerical Experiments



Figure 4.17: Backward two-steps: state 2 actions q-values

The action strings ’ATAT’ and ’ATAP’ emerges as the converged result for the

string-based method, providing additional insight into the agent’s behavior. In

the first state, actions ’A’ and ’T’ offer equivalent rewards. Selecting ’A’ restricts

possible rewards in the upper branch to values of 2 and 3, while, selecting ’T’

allows for rewards in the middle branch to values either 11 or -4. Moreover, the

large sparse positive reward is accessible only with a one-in-three probability

following the selection of action ’T’ in the first state. Based on these reward

distributions and the convergence results for the string-action, the DQN agent

can be inferred to favor stable outcomes or higher probabilities of positive

rewards, rather incurring negative penalties by attempting the target action

sequence. The fluctuation in q-value convergence for actions ’T’ and ’P’ in

state 1 may be influenced by the existence of rewards 15.2 and 5.2, which are

available at a lower probability compared to those in the top branch of the final

state. The same interpretation holds for the histogram-based method, where

the string-action converges to ’ATAP’. The reward magnitude are similar for

both histogram- and string-based methods, with success rates of 6.1% and 5.8%,

respectively. The running reward average for the two steps, Fig. 4.19, for the

mesh-, string-, and histogram-based methods are approximately 2.5, 0.5, and 0,

respectively, aligning with the average total rewards obtained for each converged

string-actions.

4.1 Sequential exploration 69



Figure 4.18: Obtainable rewards and mesh structure in the backwards two-steps

Figure 4.19: Backward two-steps: episodic rewards

70 4 Numerical Experiments



4.1.5 THREE-STEPS

In the forward approach, the agent demonstrates a preference for action ’T’,

showing limited variance across all letters among the three reward structures in

Fig. 4.20. A breakdown of all action sequences performed by the learning agent

is illustrated in Fig. 4.21. Crossed-out pathways represent sequences that trigger

truncation conditions due to computational errors (e.g., ’AA’, ’APA’)

Figure 4.20: Forwards three steps: action box plot

In the first time-step, in Table 4.1, action ’T’ exhibits the highest q-value across

all reward mechanisms, with histogram- and mesh-based methods placing action

’P’ as second, followed by action ’A’, which shows the largest negative conver-

gence. The string-based rewards uniquely trend with action ’A’ as the second

least favorable choice compared to ’P’, as seen in previous cases. All action-value

functions outputs are negative, reflecting the time-penalty incurred during early

steps in the design task. In the three-step scenario, with an increased maximum

step count, the observed q-values become more nuanced, incorporating addi-

tional states that grow exponentially with each addition to the action string

length. This extended sequence length increases the likelihood of accumulat-

ing negative rewards and truncation instances through inconsequential action

strings, impacting the agent’s experience and q-values.

The magnitude of q-values in the first time step is similar for both the

histogram- and mesh-based reward functions, as both incur the same penalties.

4.1 Sequential exploration 71



The histogram-based distance metric is zero, due to the incomplete strip addi-

tion sequence in the target state, while the mesh-based reward function cannot

distribute intermediate rewards in the forward approach since the action string

in the initial state is empty, and a valid strip addition requires a minimum action

string length equal to the maximum steps specified for this set-up. However, the

L- distance used in the string-based reward function is the reason for its lower

convergence trends.

In the second time-step, the histogram- and mesh-based mechanisms show

action ’T’ as the least negative q-value, indicating a preference over action ’P’

and ’A’. Again, since the the current state is intermediary, the q-values reflect

the available immediate rewards and the expected future rewards that have

converged to a sub-optimal policy. The q-values for action ’T’ in the string-based

approach shows noticeable in the second state. The learning agent develops an

understanding that if actions ’A’ or ’T’ is selected in the first step, execution of

command ’T’ is preferable in the second stage since it minimizes the L-distance

to the target sequence, ’ATT’.

Figure 4.21: Forward three-steps action sequence diagram

72 4 Numerical Experiments



In the final time-step, the mesh-based method shows the smallest range of

q-values among the three actions, indicating marginal differences in action

selection. Across all reward structures, action ’T’ remains the most favorable. In

general, the learning agent behaves in a manner, that places an emphasis on the

letters chosen in earlier steps, as evidenced by the smaller q-value range across

all reward methods in the final steps.

The action sequences that converged across all three reward function setups

were ’TTT’ and ’PPP’ or the recombination of actions ’T’ and ’P’. The learning

agent was not able to boil down the final sequence to a single distinct policy,

resulting in different action sequences such as ’TPT’, ’PTT’, ’TTP’, ’TTA’, and

’ATT’ during the final stages of the training period. The success rate in reaching

target state ’ATT’ was 3.5%, 2.9%, and 3.1% for the histogram-, mesh-, and string-

based rewards, respectively -comparable to the theoretical 4% probability of

achieving the desired outcome in 1 out of 25 valid sequences. Notably, the

majority of these successful instances occurred in the first half of the training

process, when the exploration rate was higher. The probability of reaching the

simplest action string that introduced mesh modification, ’ATA’, was much lower,

with success rates of 1.03%, 1.3%, and 1.1% respectively, indicating a failure to

establish a desirable policy for the forward three-step approach.

Table 4.1: Forward three steps: final q-values for initial, intermediate, and final

states

Reward ’A’ ’T’ ’P’

State 1

Histogram -0.96 -0.69 -0.91

Mesh -1.05 -0.61 -1.06

String -3.1 -2.8 -3.6

State 2

Histogram -0.93 -0.68 -0.85

Mesh -1.4 -0.68 -0.85

String -3.05 -1.8 -3.4

State 3

Histogram -2.6 -2.5 -2.6

Mesh -2.4 -2.3 -2.4

String -4.4 -3.6 -4.5

The running reward average, shown in Fig. 4.22, converged to -1.6 and -1.65

for the histogram- and mesh-based rewards, respectively, and -3 for the string-

based reward. The first two values reflect the average of rewards accumulated

during a single design episode, where -1 and -3 are incurred in the first two steps

and final time-step, resulting in an overall mean of -1.67. For the intermediate

4.1 Sequential exploration 73



and terminal states of the string-based method, the following list defines the

range of possible rewards:

• Step 1: A, T: -3; P: -4

• Step 2: AT, TT: -2; AP, TA, TP, PT: -3; PA, PP: -4

• Step 3:

– ATP, APT, PTT, TTT: -4

– APP, TAT, TPT, TTA, TTP, PAT, PPT, PTA, PTP: -5

– TAP, TPA, TPP, PAP, PPA, PPP: -6

– ATA: 4; ATT: 7

For the converged string action ’TTT’, the average of the rewards -3, -2, and

-4, for each step, align with the final average reward value, confirming the

consistency of the results.

Figure 4.22: Forward three steps: episodic rewards

Similar to the forward approach, the agent shows a preference for actions

’T’ and ’P’ over ’A’ in the backward approach as seen in Fig. 4.23. Action ’T’ is

the most selected in the string-based method, with a mean of 2359.4 and a low

standard deviation of 55.5. On average, it was selected 1327.1 times in the mesh-

based method and 1304.9 times in the histogram method, both showing less

counts compared to the forward approach. Conversely, ’P’ is another frequently

chosen in both the mesh- and histogram-based methods with an average count

of 1378.4 and 1327.1, respectively, showing significant difference to 294.5 in the

74 4 Numerical Experiments



string method. The length of between the lower and upper quartiles also suggest

that this trend is consistent among all trials. ’A’ appears 346.1 times in the

string, 312.6 in the histogram, and 294.5 in the mesh. ’A’ is chosen infrequently

across all three reward function structures, and there remains higher variance

for action ’P’ and ’T’ in the histogram-based reward function.

Figure 4.23: Backwards three steps: action box plot

In the first state, the q-values in Table 4.2 vary across reward mechanisms.

Actions ’T’ and ’P’ show the least negative q-values, approximately -1.2, while ’A’

has nearly twice this magnitude in the mesh-based method. For the histogram-

based method, actions ’T’ and ’P’ have q-values around -2.6 and -2.8, with -3.8 for

action ’A’. For the string-based method, actions ’T’ and ’A’ are least negative at

around -2.8 and -3.2, with action ’P’ closer to -3.7. In the backward approach, the

initial state of the string action encompasses action ’A’, hence, the learning agent

identifies that an additional ’A’ is suboptimal due to its immediate triggering

of the truncation condition. Likewise, ’P’ is penalized as an initial action in the

string-based method.

While the q-values show high instability throughout training for the second

time-step, the average q-values did not change significantly from the previous

time-step across all reward mechanisms. The action value functions for ’T’ and

’P’ remain competitive, explaining why the learning agent frequently selected ’P’

in the histogram- and mesh-based methods. Immediate rewards across actions

4.1 Sequential exploration 75



are similar, largely reflecting only the time-step penalty, as modification checks

occur only in the final step of the design episode.

Table 4.2: Backward three steps: final q-values for initial, intermediate, and final

states

Reward ’A’ ’T’ ’P’

State 1

Histogram -3.5 -2.4 -2.4

Mesh -2.05 -1.2 -1.2

String -4.1 -2.8 -3.6

State 2

Histogram -3.5 -2.4 -2.4

Mesh -2.04 -1.1 -1.2

String -4.1 -2.7 -3.6

State 3

Histogram -3.5 -2.3 -2.3

Mesh -1.6 -0.79 -0.81

String -4.04 -2.7 -3.5

It should be noted that q-values in the final step exhibit high instability due

to the sparse rewards associated with terminal state checks, compounded by the

exploration fraction. Despite the high variance, the final q-values in all reward

structures remain consistent from step 1, and action ’T’ has the least negative

q-value, indicating it is the preferred action.

Across all actions, the agent converges toward the lower bounds of q-values,

rather than the upper bounds that represent successful instances of the design

episodes. This outcome is due to the scarcity of positive rewards, which are

available only at the final time step of each episode. Although the agent en-

counters these positive rewards during the exploration phase, the discount rate

does not sufficiently incentivize prioritization of these rewards. Instead, the

Q-network converges on minimizing immediate penalties, which highlights the

network’s focus on minimizing Q-network loss.

The q-values in Table 4.2 illustrate negative convergence trends suggesting

the agent is unable to consistently produce meaningful string actions, and

subsequent final rewards of -4 for the histogram-based method, -3 for mesh, and

-4, -5, or -6 for the string-based method. The differences in final penalties, due to

lack of mesh modifications, align with the varying q-value magnitudes observed

across the three reward mechanisms. Furthermore, across all reward structures,

the final action sequences are observed to converge to ’ATTT’, confirming the

argument.

76 4 Numerical Experiments



Figure 4.24: Backward three steps: episodic rewards

The histogram-distance metric consistently returns a negative shaping reward

in the backward approach, resulting in an intermediate reward state of -2 when

combined with the time-step penalty. If no changes to the mesh topology

are recorded, the final reward is -4. Conversely, sub-optimal action strings

that introduce alternative mesh layouts (e.g. ’ATA’) yield a reward of 4, while

reaching the specified target state results in a reward of 12. These two positive

rewards were achieved in only 7.01% and 2.2% of instances, respectively. The

converged action string, however, oscillated between ’ATTT’ and ’APPP’, both

of which produce a reward average of -2.67 ((-2-2-4)/3=-2.67), aligning with the

converged value of -2.66 in Fig. 4.24.

The mesh-based reward function also returned consistent values for interme-

diate (-1) and final states (-3) that did not include valid strip-addition sequences.

Of all design episodes, 7.1% successfully introduced alternative mesh states, with

a 2.4% success rate in reaching ’ATTA’. Similar to the histogram-based method,

the most common action strings during training were ’TTT’, ’TTP’, and ’PPP’

occurring 81.1% of the time. The reward averages for these action strings is

calculated as -1.67 ((-1-1-3)/3=-1.67), aligning with the converged value of -1.3.

Finally, the string-based reward structure offers a broader range of rewards, as

seen in the forward approach to the three-step scenario. Intermediate rewards

range from -2 to -4, based on the L-distance from the target action string ’ATTA’.

For alternative mesh solutions, a positive reward is assigned proportional to the

distance metric, alongside a penalty offset for the time-step penalty incurred.

This approach inadverdently caused valid action strings closer in L-distance

to the target sequence receiving lower rewards than those involving more

4.1 Sequential exploration 77



modification operations to resemble the desired state. Consequently, action

strings ’ATAA’, ’APTA’, and ’ATPA’ were rewarded with 4, while ’ATAT’ and

’ATAP’ received 6. Together, these reward value occurred in 8.9% of instances.

The target sequence and mesh structure associated with ’ATTA’ was reached

4.3% of the time, while the converged action sequence was, again, ’ATTT’. The

reward average for ’ATTT’ in the backward string-based reward structure is -3

((-3-2-4)/3=3), aligning with the converged value of -2.73.

4.1.6 FOUR-STEPS

The final process of the sequential exploration for the action string ’ATTA’ is

consistent across both the forward and backward approaches. The objective of

the learning agent is to reach the terminal state from an empty string, with a

total of 67 viable action strings and an approximate 1.5% probability of reaching

the target state. The challenge for the learning agent to achieve this outcome

further increases, as reflected in the results presented in this section.

Action ’T’, in Fig. 4.25, shows the highest preference across all three re-

ward mechanisms. However, substantial variability exists among runs for the

histogram-based method, with action ’P’ contributing to the observed high

outliers.

Figure 4.25: Four steps: action box plot

78 4 Numerical Experiments



Table 4.3: Step four: Mean and standard deviation of average action history

(µ, σ) ’A’ ’T’ ’P’

Histogram 700.1, 162.4 2130., 747.0 1170., 802.6

Mesh 655.3, 76.99 2103.9, 510.3 1242.8, 521.4

String 1372., 406.3 2156., 400.5 472.3, 69.59

Table 4.4: Step four: final q-values for initial, intermediate, and final states

Reward ’A’ ’T’ ’P’

State 1

Histogram -2.0 -1.7 -1.8

Mesh -1.1 -0.95 -0.99

String -4.0 -3.7 -4.6

State 2

Histogram -2.1 -1.7 -2.0

Mesh -1.2 -0.85 -1.1

String -3.3 -2.7 -3.8

State 3

Histogram -2.2 -2.1 -1.9

Mesh -1.2 -0.84 -0.99

String -3.2 -3.1 -3.7

State 4

Histogram -3.5 -3.5 -3.5

Mesh -2.6 -2.5 -2.6

String -3.4 -3.8 -4.1

Across all reward structures. q-values converge toward immediate penalties

incurred in intermediate steps. Similar to previous scenarios, the lack of conver-

gence to positive values -alongside consistent minimization of the Q-network

loss for all reward mechanisms- suggests that the agent has learned an optimal

policy focused on reward minimization. All figures are included in the annex.

In state 1 and 2, action ’T’ is preferred across all reward mechanism. By state 3,

the agent using the histogram-based reward structure shows a slight preference

for action ’P’. In the final state, preferences vary clearly: differences between

actions diminish in the mesh- and histogram-based methods, while action ’A’ in

the string-based method shows the least negative q-value.

The converged action strings and episodic reward averages are as follows:

• Histogram: ’TTTA’, ’TTTT’, and ’TTTP’; -2.5

• Mesh: ’TTTT’, ’PTTT’, and ’TTTP’; -1.5

4.1 Sequential exploration 79



• String: ’TTTA’ and ’TTAT’; -3.53

Figure 4.26: Four steps: episodic rewards

The histogram- and mesh-based reward functions do not effectively assist

the agent in navigating the design space. The absence of convergent strings

indicative of alternative mesh modifications, as well as limited execution of strip

additions, shows that these reward structures have minimal influence on the

learned action sequence. The action string ’ATTA’ was selected as a simplified

target to:

• Verify successful integration of the compas_quad and reinforcement learn-

ing algorithms, and

• Provide a straightforward test of the agent’s ability to transition between

specified states within the design space of quad-mesh grammars

Additionally, the reward structures for the application of quad-mesh grammar

were initially constructed with an emphasis on generalization to avoid overly

restrictive rewards that might lead to over-fitting to the specific target ’ATTA’

string.

However, the simplicity of the design problem, combined with these gener-

alized reward structures, may have adversely affected the four-step sequential

exploration due to the short length of the action string. This constraint signi-

ficantly impacted q-value and final action sequence convergence, particularly

in the histogram- and mesh-based methods in the final steps. As explained

earlier, the histogram-based approach uses MSE to calculate a distance metric

80 4 Numerical Experiments



based on differences between the current and target singularity histograms.

For the short action string ’ATTA’, with a histogram distance of 1 to a basic

mesh starting mesh, the incentive to minimize this value may have been insuffi-

cient. Furthermore, because a minimum of three actions is required to execute a

successful strip addition sequence, the four-step limit may have prevented the

mesh-distance reward function from adequately issuing positive intermediate

rewards to guide the agent in the correct direction.

4.2 GENERALIZED TARGET STATE

Fig. 4.27 illustrates the exploration of various target states beyond ’ATTA’. This

experiment builds on the results of the four-step sequential exploration and

aims to address the previously mentioned shortcomings. The same three reward

function structures will be used to reach target states ’ATPTA’, ’ATAATA’, and

’ATPTTPTA’ from an initial blank state, as shown in Fig. ??. Additionally, a hybrid

model that combines the three reward functions will be evaluated to determine

whether synthesizing the different parameters can assist the learning agent in

making more informed decisions. For the following experiments, the number

of designated episodes for training has been increased to 2000 to accommodate

convergence of model parameters due to increased lengths of action steps per

design episode.

Figure 4.27: Generalized exploration between two steps

4.2 Generalized target state 81



4.2.1 ’APTPA’

For the five step sequence, Fig. 4.28 and Table 4.5 reveal a general trend of

action ’T’ being the frequently selected option, followed by action ’A’ or ’P’,

depending on the reward structure. Specifically, in the histogram-based training,

the learning agent exhibited a preference for action ’P’, albeit with significant

variability. In contrast, the mesh- and string-based reward structures showed a

higher frequency of selecting action ’A’ over ’P’ on average.

Figure 4.28: Five steps: action box plot

Table 4.5: Step five: Mean and standard deviation of average action history

(µ, σ) ’A’ ’T’ ’P’

Histogram 1792., 474.4 5324., 974.0 2887., 1180.

Mesh 2289., 529.2 6026., 374.4 1687., 220.2

String 2569., 236.4 5623., 883.9 1809., 718.7

Across the first four states, the final converged q-values indicate that action ’T’

dominates across all reward functions. The moderate range of q-values suggests

that the learning agent encounters challenges in developing an optimal policy

that leads to the correct action sequence of the target state. While the mesh-based

method also favors action ’T’ in the final state, the histogram- and string-based

82 4 Numerical Experiments



Table 4.6: Step five: final q-values for initial, intermediate, and final states

Reward ’A’ ’T’ ’P’ ’A’ ’T’ ’P’

State 1 State 2

Histogram -4.9 -4.3 -4.5 -4.9 -4.5 -4.6

Mesh -2.2 -1.9 -2.1 -2.5 -2.1 -2.4

String -13.4 -12.0 -13.0 -11.6 -10.3 -11.2

State 3 State 4

Histogram -4.9 -4.4 -4.8 -5.7 -5.3 -5.6

Mesh -2.5 -2.2 -2.6 -3.2 -3.0 -3.4

String -9.5 -7.5 -9.8 -8.9 -7.9 -9.6

State 5

Reward ’A’ ’T’ ’P’

Histogram -6.7 -6.7 -6.2

Mesh -4.2 -3.0 -4.2

String -9.0 -10.4 -10.6

reward structures exhibit a notable decline in the q-value of action ’T’, resulting

in a shift towards favoring actions ’P’ and ’A’, respectively. It is important to note

that the neural network architecture in the DQN model functions as a blackbox,

where the internal weights adjustments made during training are generally

not easily interpretable compared to traditional tabular methods, especially

for complex decision-making processes. As the length of the design episode

increases, the complexity of tracing the changes in updated q-values back to

specific sequences of state-action pairs grows due to the compounded learning

from various transitions and experiences stored in the replay buffer. Although

the q-values presented in Table 4.6 may not precisely represent the immediate

and expected future rewards as comprehensible to humans, the converged action

sequences indicate the following outcomes across all three reward structures:

• Histogram: ’TTTTT’ and ’PPPPP’; -2.5

• Mesh: ’TTTT’, ’PTTT’, and ’TTTP’; -1.5

• String: ’TTTA’ and ’TTAT’; -3.53

All reward structures exhibit convergence towards non-essential action strings

primarily composed of actions ’T’ and ’P’, which fail to produce significant to-

pological transformations in the mesh layout. While the learning agent demon-

strates instances of successful attempts, particularly during the initial training

phase, the final convergence indicates that these sporadic developments of al-

ternative strategies do not suffice for the emergence of a novel policy. Despite

4.2 Generalized target state 83



the lack of success in learning an effective policy, the learning agent generates

interesting alternative mesh topologies that, while different from the target state,

are both visually and topologically unique, as illustrated in Fig. 4.29. Further-

more, isomorphic states are accurately identified, and rewarded during training,

as shown in Fig. 4.30.

Figure 4.29: Step five: alternative mesh

Figure 4.30: ATPTA isomorphism

4.2.2 ’ATAATA’

In the six step sequence, a more pronounced divergence in behavior among

the three reward mechanisms is observed. Fig. 4.31 illustrates that, under the

string-based reward structure, there is an unusual preference for action ’A’ over

action ’P’, a pattern not previously recorded. As detailed in Table 4.7, action ’A’

was selected, on average, more than twice as often as action ’P’, with minimal

variance across the ten runs, in contrast to the results from both the histogram-

and the mesh-based methods.

As the string length increases and convergence trends persist, only the epis-

odic rewards for the string-based show a decline, highlighting the magnitude of

84 4 Numerical Experiments



Figure 4.31: Six steps: action box plot

Table 4.7: Step six: Mean and standard deviation of average action history

(µ, σ) ’A’ ’T’ ’P’

Histogram 1805., 168.7 6355., 550.1 3839., 597.9

Mesh 1859., 357.4 6410., 799.0 3731., 901.2

String 4077., 414.7 6448., 232.7 1475., 270.7

Table 4.8: Step six: final q-values for initial, intermediate, and final states

’A’ ’T’ ’P’ ’A’ ’T’ ’P’ ’A’ ’T’ ’P’

Reward State 1 State 2 State 3

Histogram -4.5 -4.0 -4.5 -4.4 -4.0 -4.3 -4.6 -4.2 -4.7

Mesh -5.0 -4.1 -5.0 -4.4 -3.9 -4.5 -4.7 -3.9 -4.6

String -11.5 -10.6 -12.2 -10.1 -9.6 -10.8 -9.8 -9.6 -10.2

Reward State 4 State 5 State 6

Histogram -5.1 -4.5 -5.5 -5.3 -6.3 -4.3 -3.8 -5.9 -5.8

Mesh -5.8 -4.9 -5.7 -6.3 -7.3 -5.2 -6.1 -6.8 -5.7

String -9.8 -9.6 -10.1 -9.9 -10.0 -10.2 -10.3 -10.3 -10.5

4.2 Generalized target state 85



Figure 4.32: Six steps: episodic rewards

intermediate rewards obtained. The final episodic reward averages illustrated in

Fig. 4.32 for the string-based method reveals a sharp decline midway through

the training period. Analysis of the observation record indicates an extended

phase of truncated episodes, during which the agent frequently encounters

computational errors when executing the empty strip addition pair, ’AA’, at

the end of its six-step action sequence. Consequently, these episode fail to

conclude successfully, resulting in higher averages of negative rewards and a

subsequent dip in performance. The final converged action strings yield the

following outcomes:

• Histogram: ’TTTTPP’, ’TTTPPA’, and ’TPPPPP’; -2.53

• Mesh: ’TTTTPP’ and ’TTTTPA’; -1.29

• String: ’ATTTTT’ and ’PTTTTT’; -5.32

Similar to the five step scenario, the q-values for the first four states show a

preference by the learning agent for action ’T’. However, in states five and six, the

q-values across all reward structures begin to indicate alternative opportunities

for action selection. The sub-optimal meshes discovered for the action string

’ATAATA’ are depicted in Fig. 4.33. Qualitatively, the action strings ’ATTTTA’

and ’TPATTA’ results in modifications to the mesh layout that vary significantly,

leading to notable visual discrepancies. The addition of two faces into the

topology matrix in the former case can influence the form-finding process,

which will be explored further in Section 4.3.

86 4 Numerical Experiments



Figure 4.33: Step six: alternative mesh

4.2.3 ’ATPT TPTA’

In the final eight-step sequence, the selection of action ’P’ within the histogram-

based reward structure yields competitive results compared to the favorability

of action ’T’ as shown in Fig. 4.34. Although the mean selection of action ’A’

selection for the string-based method is comparable to that of action ’P’, the

pronounced differences observed during the six-step sequence are no longer

evident.

Figure 4.34: Eight steps: action box plot

4.2 Generalized target state 87



The q-values presented in Table 4.9 indicate a preference for action ’T’ up

to state 4, after which a more varied selection of actions is observed across

the three reward structures. Beyond six steps, the episodic reward averages

demonstrate that as the design episodes become longer, the significant positive

sparse rewards distributed at the final state becomes increasingly diluted. This

phenomenon is believed to cause the range of all q-values across the eight states

to be minimal when the policy converges to an inconsequential action. The

penalty for failing to modify the mesh layout is outweighed by the accumulation

of intermediate rewards and penalties, which are primarily influenced by the

initial inputs and the respective distance values defined by each reward metric.

Table 4.9: Step eight: final q-values for initial, intermediate, and final states

’A’ ’T’ ’P’ ’A’ ’T’ ’P’ ’A’ ’T’ ’P’ ’A’ ’T’ ’P’

Reward State 1 State 2 State 3 State 4

Histogram -10.1 -9.5 -9.5 -10.0 -9.1 -9.4 -9.7 -8.9 -9.7 -9.4 - 8.7 -8.9

Mesh -5.5 -4.7 -5.4 -5.2 -4.6 -5.2 -5.05 -4.4 -5.1 -4.8 -4.2 -5.0

String -21.2 -19.5 -20.0 -18.6 -17.2 -17.8 -16.3 -15.2 -15.5 -14.9 -14.0 -14.4

Reward State 5 State 6 State 7 State 8

Histogram -9.1 -8.7 -8.7 -9.5 -9.1 -9.0 -9.6 -9.2 -9.1 -9.6 -9.2 -9.2

Mesh -4.4 -4.2 -4.0 -4.1 -3.8 -4.2 -4.5 -4.9 -4.1 -4.3 -4.2 -4.0

String -14.2 -13.9 -14.0 -14.1 -14.2 -13.8 -14.2 -14.4 -13.9 -14.5 -14.2 -14.0

Figure 4.35: Eight steps: episodic rewards

For the string-based approach, as long as the learning agent develops a policy

that includes a moderate combination of actions ’T’ and ’P’ within its action

sequence regardless of whether a successful strip addition has occurred or not the

string-distance will be minimized. The mesh-based method similarly converges

88 4 Numerical Experiments



toward the time-penalty, while the histogram-based method converges toward

the mean squared error value of 2.0 between the initial and target state. The final

converged action strings and episodic reward averages, depicted in Fig. 4.35,

give the following results:

• Histogram: ’TTTTTTTT’, ’ATTTTTTT’; -2.53

• Mesh: ’TTTTTTPA’, ’TTATTTTT’, and ’TPPPPPPT’; -1.29

• String: ’TTTTTPPP’, ’TPTPTPPT’, and ’TPTPTPTP’; -5.32

As the string-length increases, the combinatorial nature of the quad-mesh

grammar becomes amplified, enabling the discovery of alternative sub-optimal

meshes that exhibit both qualitative and quantitative (histogram) diversity,

as shown in Fig. 4.36. Additionally, two distinct isomorphs, Fig. 4.37, of the

same string lengths were identified during the exploration phases of training,

providing first signs of success in generating novel mesh layouts. However, it is

also observed that in the eight-step scenario, the number of computational errors

encountered by the learning agent rises drastically, hindering the exploration

process due to interruptions in the algorithm. While the combinatorial nature of

the quad-mesh grammar aids in the exploration of a broader range of possibilities,

it simultaneously increases the proportion of inconsequential action strings.

Figure 4.36: Step eight: alternative mesh

4.2 Generalized target state 89



Figure 4.37: ATPTTPTA alternatives

4.2.4 HYBRID REWARD FUNCTION

The numerical experiments conducted for all sequential exploration scenarios

indicate that using a single distance metric that captures one aspect of the design

task is insufficient for assisting the learning agent in navigating the design space

effectively. A notable issue with both the histogram- and mesh-based distance

metrics is that they are shaped rewards, only distributed after the strip addition

sequence is completed, specifically when the second ’A’ action is executed. This

results in the agent frequently selecting action ’A’ , however, sequences such

as ’AA’ which lead to computational errors, complicate the learning process

and understanding of the consequences of each action. The hierarchy of ac-

tions required to effectively utilize the quad-mesh grammar, combined with

computational limitations, presents significant challenges in learning an optimal

policy. By combining the different distance metrics, the objective is to provide

the agent with multiple branches of knowledge. Nonetheless, as the hybrid

function aggregates all values, understanding how changes in reward signals

affect the learning process becomes increasingly difficult with each additional

layer of information.

Following the analysis of generalized terminal states in the five-, six-, and

eight-step scenarios, four combination schemes have been developed to integrate

the established reward function mechanisms. These schemes are structures as

follows:

Table 4.10: Hybrid reward function schemes

Histogram Mesh String

Hybrid 1 ✓ ✓
Hybrid 2 ✓ ✓
Hybrid 3 ✓ ✓
Hybrid 4 ✓ ✓ ✓

90 4 Numerical Experiments



These hybrid reward structures will be applied to the eight-step scenario to

facilitate a comparison with the results from the previous section. To address

the issue of sparse reward dilution, the magnitude of positive sparse rewards for

altering the mesh topology and matching the target state has been significantly

increased to ensure that the average episodic rewards remain positive. For hybrid

methods 1 to 3, when the mesh topology is successfully modified, a sparse reward

of 30 is distributed, from which negative distance metrics are subtracted to better

reward action sequences in close proximity to the target. Additionally, upon

reaching the target state, a larger sparse reward of 100 is applied. For hybrid

method 4, both rewards are further increased with a reward of 80 distributed

for successfully modifying the mesh topology and a sparse reward of 200 when

the target state is reached. These adjustments aim to investigate the impact of

enhanced sparse rewards on improving the average episodic rewards, as these

rewards are typically only obtained at the terminal state.

In Fig. 4.38, reward structure Hybrid 4 shows the most consistent results with

minimal variance between the lower and upper quartiles for all three actions

among its 10 runs.

Figure 4.38: Hybrid eight steps: action box plot

The final converged action strings and episodic reward averages, depicted in

Fig. 4.39, give the following results:

• Hybrid 1: ’TTPTPTPP’, ’TPTPTPTA’; -5.91

4.2 Generalized target state 91



Table 4.11: Hybrid step eight: Mean and standard deviation of average action

history

(µ, σ) ’A’ ’T’ ’P’

Hybrid 1 3582., 263.9 7996., 436.5 4421., 505.0

Hybrid 2 2736., 349.3 8213., 1502. 5051., 1633.

Hybrid 3 3243., 762.3 7811., 801.0 4946., 1368.

Hybrid 4 3820., 228.4 9281., 349.3 2898., 524.7

Figure 4.39: Hybrid eight steps: episodic rewards

• Hybrid 2: ’TTTTPTPP’, ’TTTTTPPT’; -3.45

• Hybrid 3: ’PTPTPTTP’, ’PPPPPPPP’, and ’PTTTTPPP’; -8.42

• Hybrid 4: ’ATTTTTTT’, ’TTTPPPPP’; -7.93

The following Table 4.12 summarizes the statistics of the successful design

episodes during training of the scenarios 5 through 8 using the independent

reward function metrics, and the same 8th scenario using the hybrid reward

function structures. Success rate is defined as the number of attempts the

learning agent was able to successfully modify the topology of the mesh layout,

no matter the insignificance of the magnitude at which the change is brought

forth.

Results from the eight-step investigation indicate that the two best-performing

reward structures are the string-based method and Hybrid 4, which incorporates

all three distance metrics. The success rate of all three independent reward

mechanisms also increased proportionally with the number of time steps per

design episode. However, the performance of Hybrid 1-3 reward structures did

92 4 Numerical Experiments



not show an improvement in the final episodic rewards or in the convergence

of action strings.

Table 4.12: Training results for steps 5+

Reward Median Mean Std. Success

5 steps: ’ATPTA’

Histogram 92.5 92.7 13.99 5%

Mesh 93 93.6 9.28 5%

String 112.5 111.7 11.58 6%

6 steps: ’ATAATA’

Histogram 115.5 116.8 11.32 6%

Mesh 128 121.5 17.15 6%

String 170 168.9 11.85 8%

8 steps: ’ATPTTPTA’

Histogram 141.5 138.4 22.08 7%

Mesh 155.5 157.1 13.52 8%

String 237.5 236.7 16.86 12%

Hybrid 1 164.5 161.7 21.28 8%

Hybrid 2 194 188.9 30.52 9%

Hybrid 3 163.5 171.6 22.16 9%

Hybrid 4 190.5 192.6 11.98 10%

4.2 Generalized target state 93



4.3 COMPATABILITY IN A DESIGN WORKFLOW

This final section will demonstrate how the generated meshes from the RL

algorithm can be post-processed via densification and form-finding, as illus-

trated in Fig. 4.40. The forced density method will be applied for form-finding,

upon which further illustrations and explanations will be included to showcase

potential applicability of the developed model as well as the intended workflow.

Figure 4.40: Proposed structural workflow

Although current stages of development of the reinforcement learning frame-

work excludes the post processing proceeding application of the rule-based

strip operation, idealistically, geometrical and structural factors should be imple-

mented to impart better navigation capabilities to the learning agent. However,

the investigation of an extended string operation, ’ATPTTPTTPTTPTA’, has

revealed that further computational limitations of the compas_quad algorithm

exists between the output of the RL model and the post-processor. Strip addition

sequnces that includes ’TP’ with no additional ’T’ after the ’P’ would incur

KeyErrors when mapping the topology of the coarse quad-mesh to a circular

boundary. Furthermore TypeError would also occur when a NoneType object is

detected in the data structure of the mesh matrix. Therefore, not all successful

mesh modification sequences were able to be utilized during post processing.

Figures 4.41 and 4.42 illustrates form-found results from the developed RL

model to a 14-character action string, showcasing the model’s capability to

generate structured design outputs. Form 20 represents the ground truth string

94 4 Numerical Experiments



of ’ATPTTPTTPTTPTA’. However, the final evaluation of compatibility within

the design workflow revealed that the alternative design options produced by the

model were relatively unremarkable. Furthermore, the workflow in its current

state closely resembles a purely randomized approach to mesh generation using

the quad-mesh grammar, a functionality already available within the COMPAS

framework. This highlights the need for future efforts to integrate domain-

specific knowledge into the Markovian framework, enabling the grammar to

realize its full potential for informed and purposeful design exploration.

Table4.13 lists the total strain energy of the system obtained by multiplying

the respective length and corresponding axial force of the mesh system.∑
i

li ∗ pi (4.2)

The summed value represents the work done by the internal forces in the

structure, providing insight into how forces are distributed and how efficiently

the structure uses material to resist loads. The applied load is a uniformly

distributed vertical load applied equally to all vertices in the system, with the

total load summing to 3 in the z-direction. The listed values have been normalized

to total strain energy of the ground truth form.

Table 4.13: Total strain energy of generated forms

Form Normalized strain Form Normalized strain

1 0.93 11 0.95

2 0.95 12 0.99

3 0.94 13 1.02

4 0.90 14 0.93

5 0.89 15 1.01

6 0.86 16 0.90

7 0.99 17 0.94

8 0.92 18 0.97

9 0.91 19 0.92

10 1.03 20 1.00

4.3 Compatability in a design workflow 95



Figure 4.41: Generated forms (front view)

Figure 4.42: Generated forms (top view)

96 4 Numerical Experiments



5
Conclusion

This research aimed to develop a computational design algorithm for exploring

the design space of quad-mesh patterns for shell-like structures. The meth-

odology combined grammar-based generative approaches, which define the

design space, with reinforcement learning to facilitate effective navigation and

optimization. This work contributes to bridging the gap between generative and

navigational approaches in structural design, offering a foundation for more

sophisticated exploration of quad-mesh structures.

5.1 RESEARCH QUESTIONS

How can reinforcement learning be effectively integrated with quad-mesh grammar
and what method can be applied to explore diverse structural patterns?

For the integration of quad-mesh grammar into a Markovian decision frame-

work, the observation space was constructed using topological performance

metrics and the position of the lizard to provide feedback on how actions within

the grammar’s design space affect outcomes in the quad-mesh design space.

Discrete actions were translated into corresponding characters that defined the

movement and modification commands executed to alter the topology of a given

mesh layout. Reward functions were designed using only topological informa-

tion to ensure that the learning agent could effectively use the given actions to

execute sequences leading to meaningful outcomes, while maintaining sufficient

flexibility to prevent over fitting to specific design tasks. Hyperparameters were

adjusted to facilitate the convergence of the DQN model. The training frequency

was calibrated to update the online Q-network at optimal intervals, thereby

preventing over fitting to recent transitions while maintaining a consistent

learning pace. Additionally, the learning rate was set to balance stable updates

and convergence speed during back propagation, enabling the agent to adapt

efficiently without risking instability. A higher discount rate was applied to en-

courage long-term planning, essential for tasks involving delayed rewards. The

extended exploration phase ensured the agent continued discover alternative

actions while preventing early convergence on non-optimal strategies.

97



The results indicate the need for balanced exploration of the appropriate

length of action sequences for the RL agent. In scenarios up to four steps, the

explored reward function mechanisms (histogram-, mesh-, and string-based

metrics) were insufficient to guide the agent from an initial coarse quad mesh to

a target state. This limitation was partly due to the restricted ability of the quad-

mesh grammar to modify the mesh topology with only four actions. The distance

between the initial and target states in such short sequences was not significant

enough to facilitate effective strip modifications, which require a minimum of

three actions. As discussed in the analysis of the hybrid reward structures, the

trend toward higher success rates at longer design episodes indicates potential

for further exploration of RL performance over extended sequences. However,

addressing or mitigating computational limitation is crucial, as the combinatorial

nature of the grammar approach exponentially increases both mesh diversity

and the occurrence of inconsequential action strings.

To enhance the integration of the quad-mesh grammar with RL, further

exploration of alternative RL algorithms and techniques is necessary. On-policy

algorithms such as PPO could potentially offer benefits by treating the design

task as continuous and better handling the hierarchical nature of the actions.

Additionally, DQN variants like Hindsight Experience Replay (HER) could be

valuable for prioritizing state-action pairs that lead to significant sparse rewards,

addressing the tendency of the agent to minimize negative penalties rather than

optimize for positive outcomes. The current model was constrained by the use of

pre-built RL algorithms designed for general applications; further customization

of the computational architecture specific to the design task could significantly

enhance performance.

The integration of the compas_quad library with RL algorithm presented here

is still incomplete. While the study’s use of purely topological and grammatical

information in quad-meshes is a step toward a more refined model, uncertainty

remains regarding strategies to further optimize the learning process. Poten-

tial improvements include incorporating structural and geometric parameters,

such as structural performance calculations of the output mesh based on spe-

cific boundary and loading conditions. Implementing a surrogate model could

alleviate the computational burden associated with complex operations like

FEA. Additionally, the current simplified setup excluded the deletion maneuver

(’D’), which could significantly enhance the agent’s ability to modify the mesh

through strip adjustments. The impact of incorporating this additional character

on overall model performance remains an open question.

The complexity of integrating quad-mesh grammar with an RL algorithm

underscores the intricacies involved in the design process and deepens the un-

derstanding of both systems. Applying RL to design tasks poses the unique

challenge of guiding the learning agent to perform tasks in alignment with

98 5 Conclusion



Figure 5.1: Revised design space representation

user expectations. Unlike human designers, learning agents lack preconceived 
notions of how input data should be utilized without explicit guidance. This 
dissonance between human and artificial intelligence fosters innovative solu-

tions, allowing the agent to ’break’ conventional expectations and leverage 
partial knowledge in novel ways. Similar to how a child might interact creat-

ively with a new toy, the learning agent’s exploratory behavior can subvert the 
creator’s assumptions, providing insights into alternative methods for achieving 
design goals. Through the examination of the design space via RL, a deeper 
understanding can be gained of how that space is constructed and how to nav-

igate it effectively, as illustrated in Fig. 5 .1. Without heuristic trial and error, 
the limitations and opportunities of the quad-mesh grammar might remain 
unexplored.

Q1: How can the quad-mesh grammar be used to define the various components 
that formulate a Markov decision process that promotes the development of an 
optimal policy?

Summary (Sub-question 1)

The observation space was constructed using topological metrics of 
the mesh and positional data of the lizard, while discrete actions 
were translated to string-actions to enable effective navigation and 
modification capabilities for the learning agent. Various reward 
functions were defined and attempted to promote successful learning 
of an optimal policy.

5.1 Research questions 99



Q2: What training strategies and parameters are effective for integrating quad-
mesh grammar with reinforcement learning and how will their effectiveness be
assessed?

Summary (Sub-question 2)

Constraint identification of both the compas_quad and reinforcement

learning algorithms lead to the development of three general distance

metrics that were used to describe the rewards. Hybrid combinations

of the histogram-, mesh-, and string-based mechanisms were addressed

to examine the most representative information that facilitated optimal

learning. Sweeps were conducted for every experimental set up to ensure

model convergence and appropriate conditions for the RL agent to arrive

to the desired outcome.

Q3: Can a generalized computational model be constructed that encourages
greater diversity in the solutions generated?

Summary (Sub-question 3)

The integration of quad-mesh grammar and RL facilitated the discovery of

suboptimal yet diverse mesh configurations, although incorporating ad-

ditional features such as deletion maneuvers and structural performance

metrics could further enrich solution diversity.

5.2 RECOMMENDATION FOR FUTURE WORK

Future research should address the challenges and limitations identified in this

study to further enhance the integration of quad-mesh grammar with reinforce-

ment learning (RL) algorithms. One critical improvement is the incorporation of

context-sensitive operations within the grammar. While the current framework

effectively encodes and navigates the design space, the lack of contextual aware-

ness limits its applicability to more complex scenarios. Adding such operations,

as acknowledged in prior research, could enable more targeted exploration and

reduce the likelihood of computational errors caused by the combinatorial nature

of the design problem, as shown in Fig. 5.2. Moreover, implementing robust

error-handling measures during grammar execution would further improve

reliability and scalability.

Another key consideration is the refinement of evaluation criteria for gen-

erated meshes. While the overarching goal is to produce diverse and high-

performing designs, the definition of what constitutes an optimal mesh remains

ambiguous. By incorporating specific case studies involving certain load com-

100 5 Conclusion



 Figure 5.2: Combinatorial explosion 

binations and boundary conditions, key geometrical features and structural

outputs from FEM analyses can be integrated into the reward signals to provide

valuable insights, as shown in Fig. 5.3. However, before integrating such complex

parameters, this research has illustrated the importance of establishing a clear

balance between maintaining flexible objectives that retain exploratory capacity

and incorporating context-specific parameters that aid in optimizing explored

solutions. Furthermore, as the application of post-processing operations has re-

vealed, incorporating additional layers of computational management is required

to mitigate errors at various points in the workflow. Addressing these challenges

will necessitate careful resource optimization and more efficient handling of

data structures.

The current framework has demonstrated the potential of combining Markovian

structures with quad-mesh grammar for structural design exploration, but fur-

ther advancements could be achieved by incorporating alternative RL algorithms

and techniques. Notably, RL algorithms such as DQN have been successfully ap-

plied to a wide range of games, from side-scrolling shooters to three-dimensional

car racing simulations. These applications highlight DQN’s ability to discover

relatively long-term strategies in certain scenarios. However, tasks requiring

more temporally extended planning continue to challenge existing RL agents,

including DQN [5]. Methods such as Proximal Policy Optimization (PPO) and [5] Billington et al. 2015. Human-

Hindsight Experience Replay (HER) offer promising avenues for e nhancing level control through deep 

learning efficiency and adaptability. Additionally, insights from RL ap plications reinforcement learning.

5.2 Recommendation for future work 101



Figure 5.3: Idealized computational workflow

in other fields could inform strategies for optimizing agent performance in this

complex design space. The implementation of RL concepts in this project relied

on open-source libraries and pre-built generalized classes, which facilitated

initial implementation but inherently limited customization. Adapting these

algorithms to better align with the specific requirements of the quad-mesh gram-

mar would significantly improve performance. Tailored modifications to RL

architectures, including adjustments to state representation, action selection,

and reward structures, would likely enhance the agent’s capacity to navigate

the intricate topological design space more effectively.

Ultimately, advancing the compatibility of the RL framework with broader

design workflows requires iterative improvements to both the grammar and RL

processes. By refining the criteria for mesh quality, enhancing the integration of

contextual operations, and dedicating time and patience to model development,

the full potential of the quad-mesh grammar for topological exploration can be

unlocked.

5.3 AFTERWORD: APPROACHING DESIGN

Civil engineering, at its core, is more than just laying down concrete and steel – it

embodies a deeper ethical commitment to understanding and evaluating complex

systems in their entirety. As Fuller described, the behavior of a whole system

cannot be predicted by analyzing its individual components alone. This holistic

perspective is crucial for civil engineers, who must address the breadth, depth,

and coherence of principles and values within the design process. Identifying and

102 5 Conclusion



framing a design problem requires a thoughtful evaluation of specific needs and

objectives, balancing factors like budget, time, and materials, and the interplay

between functionality, aesthetics, and structural integrity. The ability to thread

through these constraints depends fundamentally on the depth of engineering

judgment and intuition, where experience and insight guide critical decisions –

yet, with the advent of machine learning, these human faculties can be further

enhanced, preparing us for the complexities of future engineering endeavors.

Just as civil engineering draws upon a deep understanding of complex systems,

the development of AI, particularly in DL, demands not only technical expertise

but also a nuanced consideration of philosophical principles. The nature-nurture

dichotomy often emerges in debates between empiricism and nativism, reflecting

the tension between knowledge derived from sensory experience and knowledge

based on inherent reasoning structures. DL is typically aligned with an empiricist

perspective given its dependence on vast datasets and computational power to

model complex behaviors. However, the abstraction required in designing these

methods – such as the need for logical frameworks and well defined problems –

suggests that DL also incorporates nativist elements, especially in understanding

and embedding rationality within AI systems [8]. This intersection is evident in [8] Buckner. 2024. From Deep
Learning to Rational Machines.

the work of interdisciplinary researchers like Richard Evans from DeepMind,

who integrate philosophical principles from Kant’s Critique of Pure Reason,

to augment DL systems with logical reasoning, aiming to balance these two

perspectives [11]. The philosophical discourse surrounding DL reveals that while [11] Evans. 2020. Kant’s Cognit-
ive Architecture.

numerical approaches have driven significant advancements, they are not wholly

sufficient. Critics such as Richard Sutton, in his Bitter Lesson, underscores that

an over-reliance on computation may neglect the importance of domain-specific

knowledge and abstraction, which are crucial for achieving generalization and

human-like intelligence.

Building on the concinnity between civil engineering’s ethical grounding and

the philosophical dimensions of AI, it becomes clear that true innovation lies at

the intersection of these fields. In analyzing Evan’s work, Buckner highlights the

risks inherent in interdisciplinary projects, particularly those merging AI and

philosophy, warning of “falling between two stools” – neither staying true to

philosophical intentions nor contributing meaningfully to AI research. However,

Buckner suggests that the solution lies in “discarding the stool altogether” to

create “a more accommodating bench,” where a diversity of backgrounds and

expertise can thrive. This analogy extends to the relationship between structural

engineering and architecture, as well as between engineering and AI, emphas-

izing the urgency to fostering collaborative environments and communities

that embrace diversity to advance design methodologies for the built environ-

ment. By working together, thinkers and machine can unlock new perspectives

5.3 Afterword: approaching design 103



and innovations, making structural design both more dynamic and ethically

grounded.

While generating truly novel designs remains challenging, researchers are

persistently exploring ways to restructure algorithms, allowing them to navigate

design spaces that are not overly constrained. Though the integration of artificial

intuition and creativity into structural engineering is still in its early stages,

these technologies are not meant to replace the essential human elements; rather,

they enhance them, enabling designers to navigate the complexities of modern

engineering challenges with greater precision and imagination. As AI pushes

the boundaries of what is possible, it will be crucial to ensure that human values

and ethics remain central to the design process. By embracing the complexity

of whole systems and the role of human creativity, structural engineering can

evolve toward more resilient and efficient designs that also align with broader

societal values.

104 5 Conclusion



6.1 SWEEP RESULTS FOR HISTOGRAM METHOD

Appendix

6

105

Table 6.1: Selected DQN hyperparameters for histogram-distance method
Hyperparameter B L.R. T.U.I. T.F.

Step 1 (Forward)

Step 1 (Backward)
Step 2 (Forward)

Step 2 (Backward)

Step 3 (Forward)

Step 3 (Backward)

Step 4
Step 5

Step 6
Step 8

5000

5000
1000

1000

1000

5000

1000
2500

1000
10,000

0.01

0.01
0.005

0.01

0.001

0.001

0.0001
0.001

0.001
0.0001

8000

8000
5000

5500

9000

8000

9000
4000

6500
6000

5

3
5

5

3

5

1
7

6
8

Figure 6.1: DQN histogram method forward approach 1 step 



106 6 Appendix

Figure 6.2: DQN histogram method backward approach 1 step Figure 6.3: DQN histogram method forward approach 2 step 

Figure 6.4: DQN histogram method backward approach 2 step Figure 6.5: DQN histogram method forward approach 3 step 

Figure 6.6: DQN histogram method backward approach 3 step Figure 6.7: DQN histogram method 4 step sweep results

Figure 6.8: DQN histogram method 5 step sweep results Figure 6.9: DQN histogram method 6 step sweep results



107

Figure 6.10: DQN histogram method 8 step sweep results

6.2 SWEEP RESULTS FOR MESH METHOD

Table 6.2: Selected DQN hyperparameters for mesh-distance method

Hyperparameter B L.R. T.U.I. T.F.

Step 1 (Forward)

Step 1 (Backward)
Step 2 (Forward)

Step 2 (Backward)

Step 3 (Forward)

Step 3 (Backward)

Step 4
Step 5

Step 6
Step 8

10,000

10,000
10,000

5000

7500

5000

10,000
2500

2500
7500

0.001

0.01
0.001

0.0001

0.0001

0.005

0.001
0.001

0.001
0.005

8000

8000
6000

8000

8000

6000

4500
5000

2500
3000

2

6
8

4

3

3

3
6

6
7

Figure 6.11: DQN mesh method forward approach 1 step sweep Figure 6.12: DQN mesh method backward approach 1 step sweep 



108 6 Appendix

Figure 6.13: DQN mesh method forward approach 2 step sweep Figure 6.14: DQN mesh method backward approach 2 step sweep 

Figure 6.15: DQN mesh method forward approach 3 step sweep Figure 6.16: DQN mesh method backward approach 3 step sweep 

Figure 6.17: DQN mesh method 4 step sweep results Figure 6.18: DQN mesh method 5 step sweep results

Figure 6.19: DQN mesh method 6 step sweep results Figure 6.20: DQN mesh method 8 step sweep results



109

6.3 SWEEP RESULTS FOR STRING METHOD

Table 6.3: Selected DQN hyperparameters for string-distance method
Hyperparameter B L.R. T.U.I. T.F.

Step 1 (Forward)

Step 1 (Backward)

Step 2 (Forward)

Step 2 (Backward)
Step 3 (Forward)

Step 3 (Backward)

Step 4
Step 5

Step 6
Step 8

5000

5000

1000

5000
1000

5000

2500
5000

1000
7500

0.001

0.01

0.005

0.005
0.0001

0.005

0.0001
0.001

0.001
0.005

9000

6000

9000

6000
4000

5000

4000
5000

6500
6000

1

6

5

4
2

6

4
6

6
8

Figure 6.21: DQN string method forward approach 1 step sweep Figure 6.22: DQN string method backward approach 1 step sweep 

Figure 6.23: DQN string method forward approach 2 step sweep Figure 6.24: DQN string method backward approach 2 step sweep 



110 6 Appendix

Figure 6.25: DQN string method forward approach 3 step sweep Figure 6.26: DQN string method backward approach 3 step sweep 

Figure 6.27: DQN string method 4 step sweep results Figure 6.28: DQN string method 5 step sweep results

Figure 6.29: DQN string method 6 step sweep results Figure 6.30: DQN string method 8 step sweep results

6.4 SWEEP RESULTS FOR HYBRID METHOD

Table 6.4: Selected DQN hyperparameters for hybrid methods
Hyperparameter B L.R. T.U.I. T.F.

1: M + S

2: M + H
3: S + H

4: S + M + H

5000

5000
1000

1000

0.01

0.01
0.005

0.01

8000

8000
5000

5500

5

3
5

5



111

6.5 SEQUENTIAL EXPLORATION

6.5.1 ONE STEP

Figure 6.31: DQN hybrid method 1 sweep results Figure 6.32: DQN hybrid method 2 sweep results

Figure 6.33: DQN hybrid method 3 sweep results Figure 6.34: DQN hybrid method 4 sweep results

Figure 6.35: One-step: action box plot Figure 6.36: One-step: Q-Network loss



112 6 Appendix

Figure 6.37: Forward two-steps: Q-Network loss Figure 6.38: Backward two-steps: Q-network loss

Figure 6.40: Forward three steps: state 2 action q-values

Figure 6.41: Forward three steps: state 3 action q-values Figure 6.42: Forward three steps: Q-network loss

6.5.2 TWO STEPS

6.5.3 THREE STEPS

Figure 6.39: Forward three steps: state 1 action q-values



113

Figure 6.43: Backward three steps: state 1 action q-values Figure 6.44: Backward three steps: state 2 action q-values

Figure 6.46: Backward three steps: Q-network loss

Figure 6.47: Four steps: state 1 action q-values Figure 6.48: Four steps: state 2 action q-values

Figure 6.45: Backward three steps: state 3 action q-values

6.5.4 FOUR STEPS



114 6 Appendix

Figure 6.49: Four steps: state 3 action q-values Figure 6.50: Four steps: state 4 action q-values

Figure 6.52: Five steps: state 1 action q-values Figure 6.53: Five steps: state 2 action q-values

Figure 6.51: Four steps: Q-network loss

6.6.1 FIVE STEPS

6.6 GENERALIZED TERMINAL STATE



115

Figure 6.54: Five steps: state 3 action q-values Figure 6.55: Five steps: state 4 action q-values

Figure 6.57: Five steps: Q-network loss

Figure 6.58: Six steps: state 1 action q-values Figure 6.59: Six steps: state 2 action q-values

Figure 6.56: Five steps: state 5 action q-values

6.6.2 SIX STEPS



116 6 Appendix

Figure 6.60: Six steps: state 3 action q-values Figure 6.61: Six steps: state 4 action q-values

Figure 6.63: Six steps: state 6 action q-values

Figure 6.64: Six steps: Q-network loss

Figure 6.62: Six steps: state 5 action q-values



117

Figure 6.65: Eight steps: state 1 action q-values Figure 6.66: Eight steps: state 2 action q-values

Figure 6.68: Eight steps: state 4 action q-values

Figure 6.69: Eight steps: state 5 action q-values Figure 6.70: Eight steps: state 6 action q-values

Figure 6.67: Eight steps: state 3 action q-values

6.6.3 EIGHT STEPS



118 6 Appendix

Figure 6.71: Eight steps: state 7 action q-values Figure 6.72: Eight steps: state 8 action q-values

Figure 6.75: Hybrid: state 2 action q-valuesFigure 6.74: Hybrid: state 1 action q-values

6.6.4 HYBRID

Figure 6.73: Eight steps: Q-Loss



119

Figure 6.78: Hybrid: state 5 action q-values Figure 6.79: Hybrid: state 6 action q-values

Figure 6.81: Hybrid: state 8 action q-valuesFigure 6.80: Hybrid: state 7 action q-values

Figure 6.76: Hybrid: state 3 action q-values Figure 6.77: Hybrid: state 4 action q-values



Figure 6.82: Hybrid: Q-Loss

120 6 Appendix



Bibliography

[1] H. Adeli. 1986. Artificial intelligence in structural engineering. Engineering Analysis, 3, 3,

154–160. doi: 10.1016/0264-682X(86)90053-5 (cit. on p. 23).

[2] P. Ayres, M. R. Thomsen, B. Sheil and M. Skavara. 2024. Fabricate. UCL Press. isbn: 978-1-

8000863-5-7 (cit. on p. 12).

[3] J. Bennett, L. Creary, R. Englemore and R. Melosh. 1978. SACON: A Knowledge-Based

Consultant for Structural Analysis. doi: 10.5555/892194 (cit. on p. 20).

[4] D. Billington, A. Halpern and S. Adriaenssens. 2013. The Ribbed Floor Slab Systems of Pier

Luigi Nervi. IASS Symposium 2013 (cit. on p. 12).

[5] D. Billington, A. Halpern and S. Adriaenssens. 2015. Human-level control through deep

reinforcement learning. Nature, 518, 7540, 529–533. doi: 10.1038/nature14236 (cit. on

p. 101).

[6] P. Block, M. Breitenberger, D. I., R. Wüchner and K.-U. Bletzinger. 2016. Integrated design

and analysis of structural membranes using the Isogeometric B-Rep Analysis. Computer
Methods in Applied Mechanics and Engineering, 303, 312–340. doi: 10.1016/j.cma.2016.02

.003 (cit. on pp. 3, 9).

[7] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini and D. Zorin. 2013. Quad-

Mesh Generation and Processing: A Survey. Computer Graphics Forum, 32, 6, 51–76. doi:

10.1111/cgf.12014 (cit. on pp. 11, 16, 17).

[8] C. J. Buckner. 2024. From Deep Learning to Rational Machines. Oxford University Press.

isbn: 9780197653302 (cit. on p. 103).

[9] N. Chomsky. 1956. Three models for the description of language. IRE Transactions on
information theory, 2, 3, 113–124 (cit. on p. 24).

[10] H. Edelsbrunner. 2001. Geometry and Topology for Mesh Generation. Cambridge University

Press. isbn: 9780521793094 (cit. on p. 11).

[11] R. Evans. 2020. Kant’s Cognitive Architecture. PhD thesis. Imperial College of London,

Department of Computing (cit. on p. 103).

[12] V. Firoiu, W. F. Whitney and J. B. Tenenbaum. 2017. Beating the World’s Best at Super Smash

Bros. with Deep Reinforcement Learning. (2017). https://arxiv.org/abs/1702.06230

arXiv: 1702.06230 [cs.LG] (cit. on p. 43).

[13] M. S. Floater and K. Hormann. 2005. Surface Parameterization: a Tutorial and Survey.

Mathematics and Visualization, 157–186. doi: 10.1007/3-540-26808-1_9 (cit. on p. 9).

[14] J. Gero. 1994. Towards a model of exploration in computer-aided design. Formal Design
methods for Computer-Aided Design, 315–336 (cit. on p. 21).

[15] M. Gohnert. 2022. Shell Structures: Theory and Application. Springer International Publish-

ing. isbn: 9783030848071 (cit. on p. 13).

121

https://doi.org/10.1016/0264-682X(86)90053-5
https://doi.org/10.5555/892194
https://doi.org/10.1038/nature14236
https://doi.org/10.1016/j.cma.2016.02.003
https://doi.org/10.1016/j.cma.2016.02.003
https://doi.org/10.1111/cgf.12014
https://arxiv.org/abs/1702.06230
https://arxiv.org/abs/1702.06230
https://doi.org/10.1007/3-540-26808-1_9


[16] B. Grünbaum and G. C. Shephard. 1987. Tilings and patterns. W.H. Freeman and Company.

isbn: 9780716711933 (cit. on p. 9).

[17] D. Gunaratnam and J. Gero. 1994. Effect of Representation on the Performance of Neural

Networks in Structural Engineering Applications. Computer aided Civil Engineering, 9, 2,

97–108. doi: 10.1111/j.1467-8667.1994.tb00365.x (cit. on p. 21).

[18] M. Ioannis and F. Corentin. 2020. Design space exploration through force-based grammar

rule. archiDOCT, 8, 1, 50–64 (cit. on p. 22).

[19] V. V. Isaeva, N. V. Kasyanov and E. V. Presnov. 2012. Topological singularities and symmetry

breaking in development. Biosystems, 109, 3, 280–298. doi: 10.1016/j.biosystems.2012.05

.004 (cit. on p. 12).

[20] M. Ishizuka, K. Fu and J. Yao. 1982. Rule-based damage assessment system for existing

structures (cit. on p. 20).

[21] K. Januszkiewicz and M. Banachowicz. 2017. Nonlinear Shaping Architecture Designed

with Using Evolutionary Structural Optimization Tools. Materials Science and Engineering,

245, 8. doi: 10.1088/1757-899X/245/8/082042 (cit. on p. 23).

[22] J. Laarman. 2017. Joris Laarman Lab. August Editions. isbn: 978-1947359000 (cit. on p. 23).

[23] J. Lee, C. Mueller and C. Fivet. 2016. Automatic generation of diverse equilibrium structures

through shape grammars and graphic statics. International Journal of Space Structures, 31,

2, 147–164. doi: 10.1177/0266351116660798 (cit. on pp. 24, 25).

[24] M. Maher. 1985. HI-RISE and beyond: directions for expert systems in design. Computer-
Aided Design, 17, 9, 420–427. doi: 10.1016/0010-4485(85)90289-1 (cit. on p. 20).

[25] C. Málaga-Chuquitaype. 2022. Machine Learning in Structural Design: An Opinionated

Review. Frontiers in Built Environment, 8. doi: 10.3389/fbuil.2022.815717 (cit. on p. 26).

[26] G. Mirra. 2023. Expertise, playfulness, analogical reasoning. PhD thesis. University of Mel-

bourne, Faculty of Architecture, Building and Planning (cit. on p. 32).

[27] G. Mirra and A. Pugnale. 2023. Enhancing interactivity in structural optimisation through

Reinforcement Learning: an application on shell structures. IASS Symposium (cit. on p. 3).

[28] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M. Riedmiller.

2013. Playing Atari with Deep Reinforcement Learning. arXiv. http://arxiv.org/abs/131

2.5602 (cit. on pp. 30, 44).

[29] C. T. Mueller. 2014. Computational Exploration of the Structural Design Space. PhD thesis.

Massachusetts Institute of Technology, Department of Architecture (cit. on pp. 2, 24, 25).

[30] G. Nordenson. 2008. Seven Structural Engineers: the Felix Candela Lectures. New York:

Museum of Modern Art. isbn: 978-0-87070703-2 Check (cit. on pp. 15, 17).

[31] P. Nourian, S. Azadi and R. Oval. 2023. Generative Design in Architecture: From Math-

ematical Optimization to Grammatical Customization. Computational Design and Digital
Manufacturing, 1–43. doi: 10.1007/978-3-031-21167-6_1 (cit. on pp. 18, 22, 23, 30).

[32] M. Okereke and S. Keates. 2018. Finite Element Applications. Springer International Pub-

lishing. isbn: 978-3-319-67125-3. doi: 10.1007/978-3-319-67125-3 (cit. on p. 10).

[33] OpenAI. 2018. Spinning Up: A Taxonomy of RL Algorithms. Accessed: July, 2024. [website],
https://spinningup.openai.com/en/latest/spinningup/rlintro2.html (cit. on p. 42).

[34] OpenAI et al. 2019. Dota 2 with Large Scale Deep Reinforcement Learning. (2019). https:

//arxiv.org/abs/1912.06680 arXiv: 1912.06680 [cs.LG] (cit. on p. 43).

122 Bibliography

https://doi.org/10.1111/j.1467-8667.1994.tb00365.x
https://doi.org/10.1016/j.biosystems.2012.05.004
https://doi.org/10.1016/j.biosystems.2012.05.004
https://doi.org/10.1088/1757-899X/245/8/082042
https://doi.org/10.1177/0266351116660798
https://doi.org/10.1016/0010-4485(85)90289-1
https://doi.org/10.3389/fbuil.2022.815717
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1007/978-3-031-21167-6_1
https://doi.org/10.1007/978-3-319-67125-3
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680
https://arxiv.org/abs/1912.06680


[35] M. E. Ororbia and G. P. Warn. 2023. Design Synthesis of Structural Systems as a Markov

Decision Process Solved With Deep Reinforcement Learning. Journal of Mechanical Design,

145, 6, 1–43. doi: 10.1115/1.4056693 (cit. on p. 30).

[36] R. Oval. 2019. Topology Finding of Patterns for Structural Design. PhD thesis. Universite

Paris-ETS (cit. on pp. 1, 5, 9, 16, 52).

[37] R. Oval, R. Mesnil, T. Van Mele, P. Block and O. Baverel. 2023. A vector encoding for

topology finding of structured quad-based patterns for surface structures. International
Journal of Space Structures, 38, 4, 327–342. doi: 10.1177/09560599231207650 (cit. on pp. 19,

38).

[38] Parametric-Architecture. 2024. 66 - Philippe Block - Computational Design, AI, Com-

pas, Digital Fabrication, 3D-Printing, BRG. Accessed: October, 2024. [Online video], ht-
tps://www.youtube.com/watch?v=QfG52cINFqot=1182s (cit. on p. 41).

[39] S. J. Prince. 2023. Understanding Deep Learning. MIT Press. isbn: 9780262377102 (cit. on

p. 26).

[40] P. Prusinkiewicz, J. Hanan, M. Hammel and R. Mech. 1997. L-systems: from the Theory to

Visual Models of Plants. Plants to Ecosystems, 1–27 (cit. on p. 24).

[41] M. Rippmann, T. V. Mele, M. Popescu, E. Augustynowics, T. M. Echenagucia, C. J. Barentin,

U. Frick and P. Block. 2016. The Armadillo Vault: Computational Design and Digital

Fabrication of a Freeform Stone Shell. Advances in Architectural Geometry, 344–363. isbn:

978-3-7281-3778-4 (cit. on p. 15).

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov. 2017. Proximal Policy

Optimization Algorithms. arXiv. https://arxiv.org/abs/1707.06347 (cit. on p. 43).

[43] K. Shea, J. Cagan and S. Fenves. 1997. A Shape Annealing Approach to Optimal Truss

Design With Dynamic Grouping of Members. Journal of Mechanical Design, 119, 3, 388–394.

doi: 10.1115/1.2826360 (cit. on p. 24).

[44] e. a. Silver David. 2016. Mastering the game of Go with deep neural networks and tree

search. Nature, 529, 7587, 484–489. doi: 10.1038/nature16961 (cit. on pp. 4, 42).

[45] T. Smithers. 1985. AI-based versus geometry-based design or Why design cannot be

supported by geometry alone. Computer-Aided Design, 21, 3, 141–150. doi: 10.1016/0010-

4485(89)90068-7 (cit. on p. 20).

[46] G. Stiny and J. Gips. 1972. Shape Grammars and the Generative Specification of Painting

and Sculpture. Information Processing, 71, 1460–1465 (cit. on p. 24).

[47] H. Sun, H. Burton and H. Huang. 2021. Machine learning applications for building struc-

tural design and performance assessment: State-of-the-art review. Journal of Building
Engineering, 33. doi: 10.1016/j.jobe.2020.101816 (cit. on p. 25).

[48] R. Sun and R. Vanluchene. 1990. Neural Networks in Structural Engineering. Computer
aided Civil Engineering, 5, 3, 207–215. doi: 10.1111/j.1467-8667.1990.tb00377.x (cit. on

p. 21).

[49] R. S. Sutton and A. G. Barto. 2018. Reinforcement learning: an introduction, Second edition.

The MIT Press. isbn: 9780262352703 (cit. on pp. 30, 32, 46).

[50] K.-M. M. Tam, D. Kudenko, M. Khosla, T. Van Mele and P. Block. 2022. Performance-

informed pattern modification of reticulated equilibrium shell structures using rules-based

graphic statics, CW networks and reinforcement learning. IASS Symposium (cit. on p. 31).

[51] P. Veloso and R. Krishnamurti. 2020. An Academy of Spatial Agents - Generating spatial

configurations with deep reinforcement learning. eCAADe: Anthropologic, 191–299. doi:

10.52842/conf.ecaade.2020.2.191 (cit. on p. 45).

Bibliography 123

https://doi.org/10.1115/1.4056693
https://doi.org/10.1177/09560599231207650
https://arxiv.org/abs/1707.06347
https://doi.org/10.1115/1.2826360
https://doi.org/10.1038/nature16961
https://doi.org/10.1016/0010-4485(89)90068-7
https://doi.org/10.1016/0010-4485(89)90068-7
https://doi.org/10.1016/j.jobe.2020.101816
https://doi.org/10.1111/j.1467-8667.1990.tb00377.x
https://doi.org/10.52842/conf.ecaade.2020.2.191


[52] A. Williams and T. Siegmund. 2021. Mechanics of topologically interlocked material sys-

tems under point load: Archimedean and Laves tiling. International Journal of Mechanical
Sciences, 190. doi: 10.1016/j.ijmecsci.2020.106016 (cit. on p. 9).

[53] H. Zheng. 2019. Form Finding and Evaluating Through Machine Learning: The Prediction

of Personal Design Preference in Polyhedral Structures. DigitalFUTURES, 169–178. doi:

10.1007/978-981-13-8153-9_15 (cit. on p. 29).

[54] J. Zhu, F. Wu and J. Zhao. 2021. An Overview of the Action Space for Deep Reinforcement

Learning. 4th International Conference on Algorithms, Computing and Artificial Intelligence,

119, 1–10. doi: 10.1145/3508546.3508598. (cit. on pp. 31, 46).

124 Bibliography

https://doi.org/10.1016/j.ijmecsci.2020.106016
https://doi.org/10.1007/978-981-13-8153-9_15
https://doi.org/10.1145/3508546.3508598.

	Introduction
	Patterns
	Integrated tools
	Digital search methods
	Problem statement
	Objectives
	Research question and thesis outline

	Literature Review
	Design of patterns
	Tessellation
	Structural design
	Singularity
	Geometry and Topology

	Computational methods
	Theoretical background
	Generative structural design
	Machine learning
	Reinforcement learning


	Markovian Decision Framework
	Methods
	Quad-mesh grammar
	RL algorithms

	Synthesis
	Simplified model


	Numerical Experiments
	Sequential exploration
	Forward & Backward approaches
	Hyperparameter tuning
	One-step
	Two-steps
	Three-steps
	Four-steps

	Generalized target state
	'APTPA'
	'ATAATA'
	'ATPTTPTA'
	Hybrid reward function

	Compatability in a design workflow

	Conclusion
	Research questions
	Recommendation for future work
	Afterword: approaching design

	Appendix
	Sequential exploration
	PPO





