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Summary

Autonomous mobile robots, once limited to structured settings like warehouses, are
now operating in dynamic, human-centered environments such as hospitals, streets,
and homes, where interaction with humans is unavoidable. This shift introduces
significant challenges for the local motion planning of the robot. The robot must
navigate complex environments where human behavior is difficult to predict and
influenced by the robot’s actions. Additionally, the robot’s movements must priori-
tize safety, adapt to changing conditions, and adhere to social norms. Consequently,
local motion planners must be interaction-aware, safe, socially compliant, and adap-
tive. Motion planning in human-centered environments, particularly navigation,
is typically addressed from two complementary perspectives: collision-free motion
planning and socially compliant navigation. Collision-free motion planning aims
to avoid collisions with static and dynamic obstacles while handling uncertainty in
both the environment and robot dynamics. Methods like Model Predictive Control
(MPC) provide constraint guarantees, while Reinforcement Learning (RL)-based
approaches focus on interaction rather than strict constraint satisfaction. However,
these methods typically rely on a cost or reward function that prioritizes task com-
pletion, often neglecting how the robot’s behavior is perceived by the surrounding
humans. Socially compliant navigation emphasizes human-robot interaction, aiming
for socially acceptable movements and interaction awareness, which can be achieved
by learning the cost/reward function or directly the policy using Imitation Learning
(IL). However, such approaches may lack safety guarantees. In addition to safety,
interaction awareness, and social compliance, the ability to adapt to long-term envi-
ronmental changes, such as structural modifications or evolving navigation patterns,
is often overlooked, as addressing these other challenges is already highly complex.

This thesis thus explores the key limitations in existing local motion planning ap-
proaches and presents solutions to address these challenges. It develops methods
that enable safe, interaction-aware, socially compliant, and adaptive local motion
planning for robots operating in human-centered environments. To this end, this
thesis presents an approach to represent human-robot interaction in an MPC frame-
work, leveraging the Social Force Model (SFM) to model pedestrian responses
(Chapter 2), develops safety filters for learning-based policies, such as those learned
through IL (Chapter 3), and introduces a self-supervised continual learning frame-
work for the online adaptation of policies learned from observations (Chapter 4).

We first examine the standard approach of splitting local motion planning into
two subproblems: predicting human trajectories and solving constrained trajectory
optimization to avoid collisions. While this approach provides safety guarantees and

ix



X Summary

can handle uncertainty through robust and stochastic formulations, it neglects the
interactions between the robot and the humans. In Chapter 2, we address this by
formulating an MPC problem in which the robot’s action influences both its own
state and the human states. Focusing on navigation among pedestrians, we leverage
the interpretable and established SFM to model the human response dynamics to
robot actions. By accounting for the robot’s influence on pedestrian behavior during
planning, we demonstrate that the robot can guide pedestrian behavior through a
well-crafted cost function. However, this approach relies on expert knowledge to
design a cost function that not only encourages desired behaviors but also prevents
the exploitation of pedestrian cooperation.

Next, we focus on the limitations of learning-based approaches that can address
social compliance, specifically IL. While IL enables the learning of socially compli-
ant behaviors from demonstrations or observations, the resulting policy lacks formal
safety guarantees. Safety filters based on, e.g., Control Barrier Functions (CBFs),
adapt control inputs to ensure safety and can be combined with IL policies. While
CBFs are an effective tool to certify safety, two challenges remain: constructing them
for complex systems with input constraints and accounting for model uncertainties.
In Chapter 3, we propose Robust Policy Control Barrier Functions, a method for
constructing robust CBFs that guarantees safety under worst-case bounded distur-
bances through policy evaluation of any policy. Furthermore, we present a practical
approximation and demonstrate its effectiveness in simulation and on a hardware
quadcopter platform, treating model errors as disturbances.

So far, we have discussed interaction awareness and have presented methods that
allow the use of potentially unsafe, socially compliant policies. Chapter 4, instead,
focuses on adaptability, specifically in data-driven pedestrian prediction models,
which are crucial for the decoupled prediction and planning approach. While ex-
isting models are trained offline on general datasets, they may not reflect the be-
havior of pedestrians in the robot’s environment. To address this, we propose a
self-supervised continual learning framework that refines models during deployment
using online data from the robot’s perception pipeline, preserving prior knowledge
through regularization and selective retraining. Experiments show improved perfor-
mance compared to naive online training. Although this chapter focuses on pedes-
trian prediction, the approach could extend to other methods applying learning-
from-observations.

In conclusion, in this thesis, we first explore how interaction awareness can be in-
tegrated into the standard decoupled motion planning approach by leveraging the
established SFM. We then develop components for a comprehensive framework to
address the challenges in local motion planning for human-centered environments.
This includes a practical approach for defining safety filters for learning-based poli-
cies, addressing the aspect of safety. Additionally, we introduce a self-supervised
continual learning framework that addresses the aspect of adaptability, enabling
robots to learn and adjust to new observations online. To integrate all four aspects,
the developed safety filter could be combined with a socially compliant, interaction-
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aware policy learned from observations, and adapted online using the self-supervised
continual learning framework. This combination could pave the way for local motion
planning that is interaction-aware, safe, socially compliant, and adaptive.






Samenvatting

Autonome mobiele robots, die in het verleden beperkt waren tot gestructureerde
omgevingen zoals magazijnen, opereren nu in dynamische, mensgerichte omgevingen
zoals ziekenhuizen, straten en huizen, waar interactie met mensen onvermijdelijk is.
Deze verschuiving brengt aanzienlijke uitdagingen met zich mee voor de lokale be-
wegingsplanning van de robot. De robot moet navigeren door complexe omgevingen
waarin menselijk gedrag moeilijk te voorspellen is en wordt beinvloed door de acties
van de robot. Daarnaast moeten zijn bewegingen de prioriteit geven aan veilig-
heid, zich aanpassen aan veranderende omgevingen en voldoen aan sociale normen.
Het is daarom van essentieel belang dat lokale bewegingsplanners rekening houden
met interactie, veiligheid, sociale acceptatie en aanpasbaarheid. Bewegingsplanning
in mensgerichte omgevingen, met name navigatie, wordt doorgaans benaderd van-
uit twee complementaire perspectieven: obstakel-ontwijkende bewegingsplanning en
sociaal acceptabele navigatie. Obstakel-ontwijkende bewegingsplanning houdt reke-
ning met onzekerheid in zowel de omgeving als de dynamiek van de robot om stati-
sche en dynamische obstakels te vermijden. Methoden zoals Model Predictive Con-
trol (MPC) bieden garanties met betrekking tot de opgelegde restricties, terwijl op
Reinforcement Learning (RL) gebaseerde benaderingen zich richten op interactie in
plaats van strikte naleving van restricties. Deze methoden vertrouwen echter meestal
op een kost- of beloningsfunctie die gericht is op taakvoltooiing, waarbij vaak wordt
verwaarloosd hoe het gedrag van de robot wordt waargenomen door de omringende
mensen. Sociaal acceptabele navigatie legt de nadruk op mens-robot-interactie en
streeft naar sociaal acceptabele bewegingen en interactiebewustzijn, wat kan worden
bereikt door het leren van de kost-/beloningsfunctie of direct vanuit demonstraties
door middel van Imitation Learning (IL). Dergelijke benaderingen kunnen echter
een gebrek aan veiligheidsgaranties hebben. Naast veiligheid, interactiebewustzijn
en sociale acceptatie wordt de aanpassing aan langdurige veranderingen in de omge-
ving, zoals structurele wijzigingen of veranderende navigatiepatronen, vaak over het
hoofd gezien vanwege de complexiteit van het aanpakken van de andere aspecten.

Deze thesis onderzoekt daarom de belangrijkste limitaties in bestaande lokale be-
wegingsplanningsmethoden en presenteert oplossingen om deze uitdagingen aan te
pakken. In deze thesis, zijn medthoden ontwikkeld die interactiebewuste, veilige,
sociaal acceptabele en aanpasbare lokale bewegingsplanning mogelijk maken voor
robots in mensgerichte omgevingen. Daartoe presenteert deze thesis een aanpak
om mens-robot-interactie te vertegenwoordigen in een MPC-kader door gebruik te
maken van het Social Force Model (SFM) om de reacties van voetgangers te mo-
delleren (Hoofdstuk 2), ontwikkelt het veiligheidsfilters voor op leren gebaseerde
strategieén, zoals die geleerd via IL (Hoofdstuk 3), en introduceert het een self-
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supervised continual learning framework voor de online aanpassing van strategieén
die zijn geleerd uit observaties (Hoofdstuk 4).

We onderzoeken eerst de standaardbenadering van het opsplitsen van lokale bewe-
gingsplanning in twee subproblemen: het voorspellen van menselijke trajecten en
het oplossen van geoptimaliseerde trajectbeperkingen om botsingen te vermijden.
Hoewel deze aanpak veiligheidsgaranties biedt en onzekerheid kan verwerken via
robuuste en stochastische formuleringen, negeert het de interacties tussen de robot
en de mensen. In Hoofdstuk 2 pakken we dit aan door een MPC-probleem te for-
muleren waarin de acties van de robot zowel de eigen toestand als die van de mens
beinvloeden. Door te focussen op navigatie tussen voetgangers, maken we gebruik
van het interpreteerbare en gevestigde SFM om de reacties van mensen op robot-
acties te modelleren. Door tijdens de planning rekening te houden met de invloed
van de robot op het gedrag van voetgangers, laten we zien dat de robot het gedrag
van voetgangers kan sturen via een goed geformuleerde kostfunctie. Deze aanpak
vertrouwt echter op expertkennis om een kostfunctie te ontwerpen die niet alleen ge-
wenst gedrag stimuleert, maar ook voorkomt dat de wegwillendheid van voetgangers
om samen te werken wordt misbruikt.

Vervolgens richten we ons op de beperkingen van geleerde benaderingen die sociale
acceptatie kunnen aanpakken, met name IL. Hoewel IL het mogelijk maakt om soci-
aal acceptabel gedrag te leren uit tele-operaties of observaties, mist het resulterende
veiligheidsgaranties. Veiligheidsfilters, geconstrueerd met behulp van Control Bar-
rier Functions (CBFs), passen de besturingsinvoer aan om veiligheid te garanderen
en kunnen worden gecombineerd met [L-strategieén. Hoewel CBFs effectief zijn voor
het garanderen van veiligheid, blijven er twee uitdagingen bestaan: de constructie
ervan voor complexe systemen met limieten op de invoer en het rekening houden met
modelonzekerheden. In Hoofdstuk 3 introduceren we Robust Policy Control Barrier
Functions, een methode om robuuste CBFs te construeren die veiligheid garanderen
onder worst-case verstoringen, door de uitkomst van een willekeurig strategie te eva-
lueren. Bovendien presenteren we een praktische benadering en demonstreren we de
effectiviteit ervan in simulaties en op een quadcopter-platform, waarbij modelfouten
als verstoringen worden behandeld.

In Hoofdstuk 2 and Hoofdstuk 3, hebben we interactiebewustzijn besproken en me-
thoden gepresenteerd voor het waarborgen van veiligheid bij mogelijk onveilige,
sociaal acceptabele strategieén. Hoofdstuk 4 richt zich in plaats daarvan op aanpas-
baarheid, met name in data-gedreven voetgangersvoorspellingsmodellen, die cruci-
aal zijn voor de gescheiden voorspelling- en planningsbenadering. Terwijl bestaande
modellen offline worden getraind op algemene datasets, kunnen ze mogelijk niet het
gedrag van voetgangers in de specifieke omgeving van de robot weerspiegelen. Om
dit aan te pakken, stellen we een self-supervised continual learning framework voor
dat modellen verfijnt tijdens implementatie met online gegevens uit de perceptie-
module van de robot, waarbij eerdere kennis behouden blijft via regularisatie en
selectieve hertraining. Experimenten tonen verbeterde prestaties in vergelijking met
naleve online training. Hoewel dit hoofdstuk zich richt op voetgangersvoorspelling,
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kan de aanpak worden uitgebreid naar andere methoden die die leren met behulp
van observaties.

Tot slot hebben we in deze thesis eerst onderzocht hoe interactiebewustzijn kan wor-
den geintegreerd in de standaard gescheiden bewegingsplanningsbenadering door ge-
bruik te maken van het gevestigde SFM. Vervolgens hebben we componenten ontwik-
keld voor een kader om de uitdagingen in lokale bewegingsplanning in mensgerichte
omgevingen aan te pakken. Dit omvat een praktische aanpak voor het definiéren
van veiligheidsfilters voor op leren gebaseerde strategieén, waarmee het aspect van
veiligheid wordt aangepakt. Daarnaast introduceert deze thesis een self-supervised
continual learning framework dat het aspect van aanpasbaarheid aanpakt, waardoor
robots online kunnen leren zich aan te passen aan nieuwe observaties.

Om alle vier de aspecten te integreren, an het ontwikkelde veiligheidsfilter gecombi-
neerd worden met een sociaal acceptabel, interactiebewust strategie geleerd vanuit
observaties via IL en online aangepast door een self-supervised continual learning
framework. Deze combinatie maakt het mogelijk voor lokale bewegingsplanning om
zowel interactiebewust, veilig sociaal acceptabel en aaanpasbaar te zijn.






Zusammenfassung

Mobile autonome Roboter, die zunéchst vorwiegend in strukturierten Umgebungen
wie Lagerhdusern eingesetzt wurden, operieren inzwischen vermehrt in dynamischen,
menschenzentrierten Umgebungen wie Krankenh&usern, Stralen und Wohnungen.
Hier sind Interaktionen mit Menschen unvermeidlich. Dieser Wandel bringt erhe-
bliche Herausforderungen fiir die lokale Bewegungsplanung des Roboters mit sich.
Der Roboter muss komplexe Umgebungen durchqueren, in denen das Verhalten der
Menschen schwer vorhersehbar ist und durch das Verhalten des Roboters beein-
flusst wird. Seine Bewegungen miissen sicher sein, sich an wechselnde Bedingungen
anpassen und soziale Normen einhalten. Folglich miissen lokale Bewegungsplaner
interaktionsbewusst, sicher, sozial angemessen und anpassungsfihig sein.

Die Bewegungsplanung, insbesondere die Navigation, in menschenzentrierten Umge-
bungen wird typischerweise aus zwei sich ergdnzenden Perspektiven betrachtet: kol-
lisionsfreie Bewegungsplanung und sozial angemessen Navigation. Die kollisions-
freie Bewegungsplanung hat das Ziel, statischen und dynamischen Hindernissen
auszuweichen. Dabei werden Unsicherheiten in der Umgebung sowie in der Dy-
namik des Roboters berticksichtigt. Methoden wie Model Predictive Control (MPC)
bieten Garantien fiir die Einhaltung von Zwangsbedingungen, e.g. keine Kollisionen,
wihrend Reinforcement Learning (RL) sich eher auf Interaktion als auf die strikte
Einhaltung der Zwangsbedingungen fokussiert. Diese Methoden basieren in der
Regel auf einer Kostenfunktion, die vorrangig darauf ausgelegt ist, die Aufgabe er-
folgreich zu erfiillen, jedoch oft auler Acht lisst, wie das Verhalten des Roboters von
Menschen wahrgenommen wird. Die sozial angemessene Navigation legt den Fokus
auf die Mensch-Roboter-Interaktion mit dem Ziel, Bewegungen zu generieren, die
von den Menschen akzeptiert werden und die Interaktionen zwischen Mensch und
Roboter berticksichtigen. Dies kann erreicht werden, indem entweder die Kosten-
funktion oder direkt die Steuerstrategie mittels Imitation Learning (IL) erlernt wird.
Allerdings fehlen solchen Ansétzen oft formale Sicherheitsgarantien. Neben Sicher-
heit, Interaktionsbewusstsein und sozialer Vertrédglichkeit wird die Anpassung an
Verdnderungen in der Umgebung, wie zum Beispiel sich wandelndes menschliches
Verhalten, aufgrund der Komplexitdt der anderen Aspekte hdufig vernachléssigt.

Diese Dissertation untersucht daher die zentralen Schwichen bestehender lokaler
Bewegungsplanungsanséitze und stellt Losungen zur Bewéltigung dieser vor. Es wer-
den Methoden entwickelt, die eine sichere, interaktionsbewusste, sozial angemessene
und anpassungsfiahige lokale Bewegungsplanung fiir Roboter in menschenzentrierten
Umgebungen erméglichen. Dazu présentiert diese Arbeit einen MPC-basierten
Ansatz, der mithilfe des Social Force Model (SFM) beriicksichtigt, wie die Ak-
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tionen des Roboters das Bewegungsverhalten der FuBlgénger beeinflussen. (Kapi-
tel 2), entwickelt einen Sicherheitsfilter fiir gelernte Steuerstrategien, (Kapitel 3),
und présentiert ein self-supervised continual learning framework das die fortlaufende
Verbesserung von Strategien ermdglicht, die aus Beobachtungen gelernt wurden
(Kapitel 4).

Zunéchst betrachten wir den géngigen Ansatz, die lokale Bewegungsplanung in zwei
Teilprobleme zu unterteilen: die Vorhersage des Bewegungsverhaltens der Men-
schen in der Umgebung und die Optimierung der Robotertrajektorie mit dem Ziel,
Kollisionen zu vermeiden und weitere Zwangsbedingungen einzuhalten. Wéahrend
dieser Ansatz Sicherheitsgarantien bietet und Unsicherheiten durch robuste und
stochastische Formulierungen bewéltigen kann, vernachldssigt er die Interaktion
zwischen Roboter und Menschen. In Kapitel 2 gehen wir dieses Problem an, in-
dem wir ein MPC-Problem formulieren, bei dem die Aktionen des Roboters sowohl
den Roboterzustand als auch den Zustand der Menschen beeinflussen. Im Kontext
der Navigation unter FuBligdngern nutzen wir das etablierte und interpretierbare
SFM, um die Reaktionen von FuBgingern auf Roboteraktionen zu modellieren. In-
dem wir den Einfluss des Roboters auf das Verhalten der Fufigdnger in die Planung
einbeziehen, zeigen wir, dass der Roboter das Fufigdngerverhalten durch eine gut
gestaltete Kostenfunktion steuern kann. Dieser Ansatz setzt jedoch Expertenwissen
voraus, um eine Kostenfunktion zu entwerfen, die nicht nur gewiinschte Verhal-
tensweisen fordert, sondern auch verhindert, dass die Kooperation der Fulgianger
ausgenutzt wird.

Als Néchstes betrachten wir Einschrinkungen daten-getriebener Ansitze wie IL.
Zwar ermoglicht IL das Erlernen sozial vertréglicher Verhaltensweisen aus Demon-
strationen, doch fehlen den resultierenden Steuerstrategien formale Sicherheitsgaran-
tien. Sicherheitsfilter, die beispielsweise mithilfe von Control Barrier Functions
(CBFs) konstruiert werden, passen Steuerbefehle an, um Sicherheit zu gewéhrleisten,
und koénnen mit IL-basierten Steuerstrategien kombiniert werden. Wéahrend CBFs
ein bewéhrtes Werkzeug sind, um Sicherheitsgarantien effektiv zu gewéhrleisten, gibt
es zwei wesentliche Schwierigkeiten: die Konstruktion von CBFs fiir komplexe Sys-
teme mit Eingangsbegrenzungen ist nicht trivial und die zuverlédssige Behandlung
von Modellunsicherheiten bleibt eine bedeutende Herausforderung. In Kapitel 3
schlagen wir Robust Policy Control Barrier Functions (RPCBs) vor, eine Meth-
ode zur Konstruktion robuster CBFs, die fiir begrenzte Storungen im schlimmsten
Fall Sicherheit garantiert. Die RPCB wird durch die Bestimmung der schlimmsten
Verletzung der Zwangsbediengungen unter einer beliebigen Steuerstrategie konstru-
iert. Dariiber hinaus présentieren wir eine RPCB Approximationen und demonstri-
eren deren Wirksamkeit in Simulationen und auf einer realen Quadcopter-Plattform,
wobei Fehler im Dynamikmodell als Storungen behandelt werden.

Bis jetzt haben wir die Roboter-Mensch Interaktionen beriicksichtigt und Metho-
den erarbeitet, die den Einsatz von Steuerstrategien ermoglichen, die zwar poten-
ziell unsicher, aber sozial vertriaglich sind. Kapitel 4 konzentriert sich hingegen auf
die fortlaufende Verbesserung, insbesondere von datenbasierten Vorhersagemodellen
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des Fulgéngerverhaltens. Diese Vorhersagemodelle sind fiir den entkoppelten Vor-
hersage- und Planungsansatz entscheidend. Wahrend bestehende Modelle offline
auf offentlich zugénglichen Datensétzen trainiert werden, spiegeln diese moglicher-
weise nicht das Verhalten der Fuflginger in der Umgebung des Roboters wider. Um
dieses Problem zu losen, schlagen wir ein self-supervised continual learning frame-
work vor, das Vorgersagemodelle wihrend des Einsatzes des Roboters mithilfe von
Sensordaten des Roboters verbessert. Dabei wird vorheriges Wissen durch Regu-
larisierung und selektives Retraining bewahrt. Experimente zeigen eine verbesserte
Performance im Vergleich zum naiven Online-Training. Obwohl sich dieses Kapitel
auf die Vorhersage von Fufigdngerverhalten konzentriert, konnte der Ansatz auch
auf andere Methoden erweitert werden, die von Beobachtungen lernen.

In dieser Dissertation haben wir untersucht, wie Interaktionsbewusstsein in den
standardméfigen entkoppelten Bewegungsplanungsansatz integriert werden kann,
indem das etablierte SFM genutzt wird. Anschlieflend entwickelten wir Kompo-
nenten fiir ein Framework, das die Herausforderungen der lokalen Bewegungspla-
nung in menschenzentrierten Umgebungen angeht. Dazu gehort ein praktischer
Ansatz zur Definition von Sicherheitsfiltern fiir Steuerstrategien. Dartliber hinaus
wurde ein self-supervised continual learning framework eingefiihrt, das es Robotern
erlaubt, ihr Verhalten online zu verbessern. Um alle vier Aspekte zu integrieren,
konnte der entwickelte Sicherheitsfilter mit einer sozial vertréglichen, interaktionsbe-
wussten Steuerstrategie kombiniert werden, die mithilfe von IL aus Beobachtungen
gelernt wurde und mithilfe des self-supervised continual learning frameworks on-
line verbessert wird. Diese Kombination schafft die Grundlage fiir die Generierung
lokaler Bewegungsstrategien, die interaktionsbewusst, sicher, sozial vertraglich und
anpassungsfahig sind.
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utonomous robots are gradually evolving from operating in structured, con-

trolled, and predictable environments like warehouses and factories to navi-
gating unstructured, dynamic, and uncertain human-centered spaces like hospitals,
restaurants, urban streets, and homes. Here, human-centered refers to environ-
ments specifically designed for humans. This shift is driven by the increasing de-
mand for automation due to population growth, aging societies, labor shortages,
and the need for greater efficiency and productivity [1]. For example, in hospitals,
robots can transport medication, samples, and supplies, perform cleaning tasks,
and handle repetitive laboratory duties, see Fig. 1.1a. Operating around the clock,
they reduce the workload of healthcare professionals, thus improving the quality of
care [2]. In urban environments, mobile robots, including autonomous vehicles, can
offer on-demand services like transportation and delivery, enhancing urban mobil-
ity and accessibility. These advancements offer new opportunities but also bring
significant technical challenges for robots, particularly in perception, localization,
motion planning, and control. While all these aspects, accurate perception, local-
ization, motion planning, and control, are essential, this thesis focuses specifically
on motion planning and the unique challenges it entails.

1.1 Challenges in Human-Centered Environments

Motion planning involves determining a sequence of actions that allows a robot
to move from its current pose to a desired goal pose while avoiding obstacles and
meeting specific constraints. The motion planning problem can be broadly divided
into two main components: global motion planning, which generates a rough path
from the start to the goal considering static obstacles, and local motion planning,
which focuses on following the path while dynamically avoiding obstacles. We will
focus on the local motion planning problem, as it directly addresses how robots
move in dynamic environments and respond to human movements. In the remainder
of this thesis, we will refer to the local motion planning problem simply as motion
planning and concentrate on the challenges it poses in human-centered environments

Unlike industrial settings, where robots operate in isolation under controlled con-
ditions and can follow pre-programmed paths, human-centered environments de-
mand more sophisticated motion planning capabilities. Adapting to these environ-
ments is particularly challenging due to the inherent uncertainty of human behav-
ior, the often highly dynamic setting, and the requirement to provide some form of
safety guarantees. Motion planning in human-centered environments finds itself at
the intersection between research on robot motion planning and (human-centered)
Human-Robot Interaction (HRI) [3]. While the former typically focuses on planning
safe trajectories for robots to efficiently operate in the environment, neglecting how
humans perceive their behavior, the latter focuses on operating in a for humans
acceptable and comfortable manner [4].

Even without considering how robot behavior is perceived, collision avoidance re-
mains a significant challenge. Robots must navigate complex, dynamic environments
and generalize to unpredictable situations. To ensure safe and effective operation,
they must reason quickly and adapt in real-time to changes in their surroundings [7].
In this context, the robot must account for the interactions with humans, recog-
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(a) Mobile manipulator operating in a (b) Pedestrians crossing the Shibuya

human-centered hospital laboratory [5]. Scramble Crossing in Japan [6], frequently
referred to as the busiest pedestrian cross-
ing in the world.

Figure 1.1: Examples for human-centered environments.

nizing that they are also decision-making entities with their own goals. Here, inter-
actions refer to any change in the behavior of a human or a robot resulting from
the presence of the other [3]. While similar challenges arise in scenarios where mul-
tiple robots operate or where humans enter environments designed for robotic tasks
(robot-centered), the focus shifts significantly in environments designed for humans
such as hospitals and urban streets, see Fig. 1.1b.

In human-centered environments, the interaction with humans becomes inevitable.
Therefore, not only are guarantees on the robot’s performance required, but the
robot’s acceptance by humans also becomes a key requirement. As discussed above,
achieving pure functionality is already a complex challenge. The same holds for
achieving acceptance, as it is challenging to specify quantitatively. For instance,
in addition to formal safety guarantees, the robot’s behavior must be perceived
as safe, which is difficult to define precisely. Furthermore, the robot should ad-
here to explicit high-level cultural conventions, e.g., walking on the right side of
a corridor, and move naturally, with low-level behavior patterns similar to human
behavior [3]. For example, a mobile robot navigating through a crowded hospital
entrance hall should maintain appropriate interpersonal distances, give the right of
way, and avoid situations like moving between people engaged in a conversation.
These social norms are not formally defined in some rulebook but are implicitly
understood by humans. In the following, we will refer to behaviors that adhere to
these goals as socially compliant behaviors. These socially compliant behaviors
make HRI more “convenient” for humans [4].

While the robot’s behavior is crucial, other factors like its appearance, voice,
and other non-verbal cues also significantly impact HRI. However, since this thesis
focuses on motion planning, we narrow our scope to the robot’s motion as a key
representation of desired behavior, precisely the motion required to complete the
task, such as navigating from one location to another. This approach contrasts the
broader focus typically found in the field of HRI, which also considers factors like
head movements and other social cues.

Another challenge lies in the dynamic nature of human-centered environments.
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As humans become more familiar with the robot, their behavior may evolve or vary
depending on the environment or cultural context. This evolving behavior requires
the robot to continuously adapt to changing conditions.

Despite the inherent challenges of motion planning in human-centered environ-
ments, robots are increasingly being deployed in roles such as delivering dishes in
restaurants, guiding visitors in museums, cleaning the floors in supermarkets, or as-
sisting in hospitals. However, their seamless integration into these settings remains
in its early stages. Currently, most robots operate in predefined, controlled settings
in human-centered environments, where they can follow pre-programmed paths and
stop/ or slowly move out of the way when encountering humans. However, as robots
move into more dynamic, unstructured environments, they must account for inter-
actions with humans, move safely among humans in a socially compliant way,
and must be able to adapt to changing conditions. Next, we describe methods that
address aspects of motion planning in human-centered environments.

1.2 Local Motion Planning in Human-Centered
Environments

Depending on the specific task, navigation, manipulation, or mobile manipulation,
the requirements for motion planning vary based on the complexity of the asso-
ciated configuration spaces. While some methods are versatile enough to apply
across tasks, others are tailored primarily to a single type of task. The remain-
der of this thesis will focus on navigation tasks, in which a mobile robot needs
to move efficiently between locations while avoiding collisions with obstacles and
demonstrating socially compliant behaviors. As discussed earlier, motion planning
in human-centered environments is typically addressed from two complementary
perspectives: planning safe trajectories which focuses on collision avoidance and
socially compliant motion planning which focuses on operating in a for humans ac-
ceptable manner. The following sections will review the related work in these areas
and examine their respective limitations.

1.2.1 Collision-Free Motion Planning

Various methods have been proposed to tackle the challenge of collision avoidance
in human-centered environments. These approaches can be broadly classified into
two main categories: reactive methods and predictive methods.

Reactive methods focus on real-time decision making based on the robot’s current
perception of the environment, typically with a short planning horizon limited to the
immediate next step. Examples include the Dynamic Window Approach [8], Velocity
Obstacles [9, 10], Elastic Bands [11], Potential Fields [12], and Social Forces [13].
These methods are computationally efficient and can handle dynamic environments.
However, they lack long-term planning and may lead to suboptimal trajectories,
especially in complex scenarios with multiple agents, i.e., robots or humans.

To address these limitations, predictive methods incorporate a longer planning
horizon which enables more informed decision-making, improving trajectory smooth-
ness and safety. A common strategy in such environments is to decompose the
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motion planning problem into two disconnected steps: a prediction step and a plan-
ning step. The prediction step relies on models to anticipate the future behavior of
the surrounding humans over the planning horizon. In contrast, the planning step
generates a trajectory that avoids the predicted human trajectories. The primary
challenge here stems from the inherent uncertainty in predicting human behavior,
both in forecasting their future trajectories and in planning robust trajectories that
account for this uncertainty. This motion planning approach paves the way for re-
search directions focused on enhancing prediction models and planning trajectories
that account for the uncertainty in these predictions [14]. Prediction models are
typically data-driven, designed to learn patterns and accurately predict the future
trajectories of humans, e.g., pedestrians or human-driven vehicles, often represented
as a distribution [15]. The research focuses on improving the accuracy of these mod-
els while accounting for the multimodal nature of human behavior. However, one
key limitation is their lack of adaptability over time: these models are typically
trained offline on standard datasets and struggle to adapt to new or unseen behav-
iors and environments. For instance, environments such as hospitals, rarely included
in training datasets, present a challenge, as the models have difficulty generalizing
effectively in such scenarios. This thesis addresses adaptability by continuously
updating pedestrian prediction models based on observations of the surrounding
pedestrians’ behavior. The adaptation is achieved using methods from Continual
Learning (CL), which are designed to handle learning in scenarios where the data
distribution evolves over time [16]. Based on the predictions, a trajectory is planned.

The planning step is typically formulated as an optimal control problem over a
finite horizon, where a cost function is minimized subject to constraints like collision
avoidance and system dynamics. The cost function encodes the desired behavior.
We refer to this in the following as decoupled trajectory optimization. Model Predic-
tive Control (MPC), also known as receding horizon control, is a widely used frame-
work for solving this problem by repeatedly optimizing a control sequence over the
planning horizon and executing only the first control input at each step. The MPC
problem can be solved using gradient-based optimization [17-19] or sampling-based
methods, such as Model Predictive Path Integral (MPPI) control [20-22]. However,
splitting motion planning into a prediction and a planning step does not account
for dynamic interactions between the robot and the humans. This can result in
overly defensive and opaque behaviors [23]. These behaviors arise because the ac-
tual decision-making processes of humans and robots are inherently coupled. For
instance, if a robot yields the right of way to a human, the human may adjust
their behavior accordingly, leading to a different outcome than if the robot had not
yielded. Therefore, it is crucial to account for these interactions to ensure more
effective and predictable behaviors.

To better model the interactions between robots and humans, an alternative
approach assumes that humans act rationally to minimize a defined cost function
rather than relying on open-loop or feedback behavior models. Dynamic noncoop-
erative game theory [24] presents a mathematical formulation for modeling interac-
tions between rational, self-interested agents, but it is computationally expensive,
especially in real-time applications. A practical approach that incorporates game-
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theoretic principles is model-predictive game-play, where the robot plans its future
trajectory in equilibrium with the anticipated trajectories of other agents in a re-
ceding horizon fashion. However, despite the receding horizon, it remains computa-
tionally demanding. Similarly, multi-agent optimization [25] can model interactions
between the robot and humans by optimizing a shared objective function. However,
these methods remain computationally intensive. A limitation of both approaches
is the assumption that the cost functions of other agents are known.

Other approaches implicitly account for interactions between agents and the
future effect of their actions on the environment. For instance, in a Reinforce-
ment Learning (RL) setting, the robot learns a policy—a decision-making strategy,
through interacting with the environment. By taking actions and receiving rewards
based on the outcomes, the robot adapts its behavior. In contrast, Imitation Learn-
ing (IL) focuses on imitating expert, i.e., human, behavior, inherently capturing the
interactions between decision-making agents. RL has shown impressive results in
various domains such as playing go, chess, or video games [26-28]. However, these
environments do not have an embodied agent, i.e., a robot, interacting with the en-
vironment. In these settings, making a wrong move might only result in losing the
game. In robotics applications, it can have far more serious consequences. While
RL has been applied to motion planning in robotics applications [29-31], several
challenges remain. RL, though computationally efficient during runtime, typically
requires extensive interactions with the environment during training. On one side,
training in simulation requires highly accurate representations of the real-world en-
vironment, including human behavior. Providing such a highly accurate simulation
environment is particularly challenging, as modeling human behavior, as described
before, is a significant area of research itself. Additionally, the ability to trans-
fer the learned policy to the real world is largely determined by the accuracy of
the simulation. Conversely, training in the real world is constrained by the large
number of required interactions with the environment that can strain hardware and
the absence of effective ways to integrate safety constraints during training. These
issues contribute to the difficulty in ensuring robust and reliable performance in real-
world applications. Furthermore, the resulting policy lacks formal safety guarantees,
whether training is done in simulation or the real world. IL, which is described in
more detail in the next section, also suffers from a lack of safety guarantees. This
is a main limitation of learning-based methods, as they often cannot provide formal
safety guarantees, limiting their applicability in safety-critical applications.

In human-centered environments, providing safety guarantees is crucial. How-
ever, in real-world applications, robots often encounter the challenge of making
decisions with incomplete knowledge of the environment or under conditions of un-
certainty. As a result, ensuring formal safety guarantees becomes challenging, as the
robot may not have access to all necessary information to accurately predict and
avoid potential risks. Thus, it has to be noted that guarantees can only be estab-
lished based on the assumptions and structure outlined in the problem formulation.
While learning-based methods can address the aspects of adaptability and interac-
tion awareness, they lack safety guarantees. To address this challenge, Safety Filters
(SFs) [32] and shielding [33] have been developed to make minimal adjustments to
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the learned control input if future constraint satisfaction cannot be guaranteed. SFs
can be defined either by leveraging MPC techniques [34] or by utilizing the concept
of control invariant sets. Control invariant sets refer to regions of the state space
where, if the system starts within the set, a feasible control input will always exist
to keep the system within the set. While MPC-based SFs have the advantage of not
requiring any additional formulation, as the constraints are already embedded in
the problem setup, they are limited by considering only a finite horizon or requiring
a control invariant terminal set. Additionally, they result in a significant computa-
tional increase, as the MPC problem must be solved at each timestep. Furthermore,
the problem may become infeasible if the initial state violates the constraints or if
the assumptions underlying the MPC formulation are incorrect. Control invariant
sets, on the other side, can be defined using either Control Barrier Functions (CBFs)
or Hamilton-Jacobi Reachability Analysis (HJRA), each with its own strengths and
limitations. The SF based on CBFs nicely trades off between safety and perfor-
mance, but there is no systematic method to construct CBFs, especially for systems
with input constraints. In contrast, HJRA provides a general approach to construct-
ing safe sets and can recover the maximal safe set. However, it suffers from the curse
of dimensionality, becoming computationally infeasible as the state space dimension
increases. Overall, the state-of-the-art methods for safety assurance have significant
limitations, particularly when applied to complex, high-dimensional systems with
input constraints. This thesis will introduce a practical approach to constructing
CBFs that addresses one of their key limitations.

1.2.2 Socially-Compliant Motion Planning

Most of the above-mentioned methods require defining the desired behavior through
a cost or reward function. In industrial settings, defining the cost/reward function
based on metrics such as time, energy consumption, and distance traveled is often
sufficient. However, in human-centered environments, the desired socially compli-
ant behavior is more challenging to define due to the complexity and variability of
social norms. Assuming that humans can demonstrate socially compliant behaviors
or that such behaviors can be observed, various methods have been developed to
either infer the underlying cost or reward function that captures human preferences
or directly learn a policy that replicates the observed behavior.

IL [35, 36] offers an intuitive way to define and transfer behaviors, making it
accessible even to non-experts in robotics. Similar to how humans learn through
demonstrations, corrections, or feedback, robots imitate demonstrated actions, by-
passing the challenge of designing an appropriate cost/reward function. Demonstra-
tions can come from a human operator via teleoperation, physical guidance, or by
observing human behavior. One approach involves learning the cost/reward func-
tion that best explains the observed behavior using Inverse Reinforcement Learning
(IRL) [37]. The reward function is commonly represented as either a linear com-
bination of reward features or through neural network architectures. While the
learned reward function provides a valuable basis even when the agent’s specifica-
tions change slightly, many expert demonstrations are required to learn the reward
function accurately. Furthermore, the reward function is often not unique. Addi-
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tionally, if the reward function is represented by a linear combination of features,
the features must be carefully selected to ensure the reward function is expressive
enough to capture the desired behavior.

An alternative approach is thus to directly learn a policy that replicates the desired
behavior, achieved through e.g. Behavior Cloning (BC) [38]. BC is a straightforward
approach where the robot learns a mapping from states to actions based on expert
demonstrations. However, it suffers from the problem of covariate shift, where the
training and test distributions differ, leading to poor generalization. Furthermore,
BC shares limitations with RL, such as the lack of safety guarantees and reliance on
the quality and quantity of demonstrations. Safety concerns can be addressed using
methods discussed earlier, and recent research focuses on making BC methods more
data-efficient and robust [39, 40].

Learning-based methods, such as those described above, play a crucial role in
achieving desired behaviors, but they also raise important concerns about general-
ization and safety. A fundamental challenge, therefore, is determining how to apply
such methods while ensuring formal safety guarantees in complex, dynamic settings.

1.3 This Thesis: Contributions and Outline

The previous sections highlighted the challenges in motion planning for autonomous
robots in human-centered environments and the limitations of existing approaches.
The challenges mainly arise from the complexity and uncertainty of human behavior
and the highly dynamic nature of the environment. The limitations of existing meth-
ods stem from the difficulty in accounting for interactions to enable more efficient
and predictable solutions, in ensuring safety, in providing socially compliant be-
haviors to enhance the robot’s acceptance, and in demonstrating adaptability to
changes in the environment. Notably, some aspects, such as safety, are more critical
for the actual deployment of robots in human-centered environments. In contrast,
others, such as social compliance, are key to the robot’s acceptance and integration
into these settings. However, they are not mutually exclusive as accounting for inter-
actions can improve safety and social compliance, and adaptability can enhance the
robot’s ability to handle uncertainty and dynamic changes. While various methods
have been proposed to address interaction-awareness, safety, social compliance, and
adaptability, none fully resolve them. Furthermore, many struggle to be applied
to more complex or uncertain systems or require domain-specific knowledge. This
thesis aims to address the key challenges of motion planning in human-centered
environments by enhancing existing methods and presenting approaches that simul-
taneously tackle multiple aspects. To this end, the goal of this thesis is:

To develop methods that enable safe, interaction-aware, socially compli-
ant, and adaptive local motion planning for robots operating in human-
centered environments.

Addressing this goal resulted in several scientific contributions, which will be dis-
cussed next.
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1.3.1 Thesis Contributions

We first consider the widely used approach of dividing motion planning into a sepa-
rate prediction step and planning step, resulting in a decoupled optimization prob-
lem, and focus on tackling the challenge of generating interaction-aware motion
plans. This leads to the following contribution:

Social-Forces-Informed Interaction-Aware Model Predictive Control.
In Chapter 2, we formulate the interactions as an underactuated system and
propose to leverage the Social Force Model (SFM) as the pedestrians’ response
dynamics. The SFM is a well-established model widely used for describing pedes-
trian behaviors. We thus preserve the simplicity of the approach and do not
require a learning-based model.

While formulating interactions as an underactuated system enables the robot to
influence other agents in a targeted manner and facilitates active information gath-
ering, it still requires specifying the desired behavior through a well-designed cost
function. As mentioned earlier, learning-based methods can be used to develop
policies that produce desired behaviors, but they lack formal safety guarantees.
To address this challenge, we propose a method for constructing SFs that address
the aspect of safety while allowing the use of learning-based approaches or other
potentially unsafe policies.

Robust Policy Control Barrier Functions. In Chapter 3, we propose the
concept of Robust Policy CBFs (RPCBFs), a practical method for construct-
ing CBF approximations that is easy to implement and yields to improved safety
compared to existing methods.

Next, we move towards the challenge of adaptability. As the environment the robot
is in might change over time, the robot must be able to adapt to these changes.
We specifically focus on the adaptability of pedestrian prediction models. However,
the framework could also be applied in a learning-from-observations setting. The
contribution of Chapter 4 is as follows:

A Self-Supervised Continual Learning framework. We introduce a self-
supervised continual learning framework to improve data-driven pedestrian pre-
diction models online utilizing the continuous stream of pedestrian observations
from the robot’s perception pipeline. This framework allows the prediction model
to adapt to behaviors and environments not seen in the initial training set.

With these contributions in mind, the outline below details the structure of this
thesis.

1.3.2 Thesis Outline

An overview of the thesis structure, highlighting the challenges addressed in each
chapter, is provided in Fig. 1.2. We begin by introducing the interaction-aware mo-
tion planner in the context of decoupled planning methods in Chapter 2. Next, in
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Chapter 3, we address the critical aspect of safety. Specifically, we focus on leverag-
ing CBFs to formulate safety through set invariance. We propose a method for con-
structing SFs that are robust to model errors and disturbances, utilizing RPCBFs.
In Chapter 4, we address the aspect of adaptability in the setting of pedestrian
prediction models by developing a self-supervised continual learning framework. Fi-
nally, Chapter 5 summarizes and discusses the thesis contributions and outlines
potential directions for future work.

In Appendix A, we present additional works, including papers published based
on master’s theses of supervised students, as well as a paper that, while related to
this thesis, does not fully align with its main narrative. Appendix A.l presents a
framework for simultaneously learning and verifying neural CBFs to address safety.
Appendix A.2 explores an alternative approach to safety through compliant control,
which enables the robot to adapt to interactions and mitigate collision impacts in
dynamic environments. Finally, Appendix A.3 addresses the challenge of motion
planning for multi-robot systems in close proximity. While this work focuses on
multi-robot systems rather than HRI and does not fully align with the thesis narra-
tive, it still provides valuable insights on motion planning among decision-making
agents.
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Figure 1.2: This thesis focuses on three key aspects of local motion planning in human-
centered environments: interaction awareness, safety, and adaptability. Each chapter ad-
dresses one or a combination of these aspects.






Interaction-Aware Autonomous
Navigation Among Pedestrians
Using Social Forces

In the Introduction, we discussed the challenges of local motion planning in human-centered
environments. Traditional decoupled trajectory optimization approaches to navigation as-
sume that the pedestrian behavior is independent of the robot’s actions. However, this
assumption neglects the interactions between the robot and pedestrians, often resulting in
overly conservative or inefficient navigation, particularly in crowded settings.

To address this, we model interactions as an underactuated dynamical system and use the
interpretable Social Force Model to capture the pedestrian response dynamics. By using
a Model Predictive Control framework, formal safety guarantees can be provided. This
formulation allows the robot to effectively leverage agent behaviors and, with a suitable cost
function, plan, e.g., motions that minimize its impact on surrounding pedestrians.
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2.1 Motivation and Related Work

The rise of autonomous mobile robots in our daily environments makes it essential
to ensure their safe and efficient interaction with pedestrians. This necessitates that
robots can accurately predict the behavior of the surrounding pedestrians. In recent
years, prediction models based on various deep neural network architectures have
demonstrated notable progress in both prediction accuracy and scalability [41-43].
Traditionally, these prediction models are used to forecast the future trajectories of
surrounding pedestrians. Subsequently, a planning step follows, during which the
robot plans its trajectory in response to these predictions. This invariably results
in the pedestrians being solely treated as moving obstacles, fostering a one-way
interaction where only the robot adjusts its behavior. This can give rise to overly
conservative or opaque navigation behaviors, see the left column in Fig. 2.1, and in
dense crowds, it may lead to the so-called Freezing Robot Problem (FRP) [44], even
when perfect predictions are considered. Hence, performing coupled prediction and
planning and, thus, joint collision avoidance is crucial for realizing decision-making
that is more interactive and akin to human behavior.

egocentric '(

X

} ~ exploiting
opaque behavior

SFM X generous

|

opagque behavior - iving way

CVM

Predict (CVM/SFM) then Plan Underactuated System (SFM as
Resonse Dynamics)

Figure 2.1: Robot (blue) navigating among pedestrians (orange). Crosses represent the
goals, respectively. Transparent circles indicate the future plan for the robot and the
predicted behavior of the pedestrians.

An important body of work addresses multi-agent interactions from a game-
theoretic perspective, specifically using general sum dynamic games [45, 46]. Since
each agent’s action depends on the decisions of the others, solving games presents
a considerable computational challenge, particularly with an increasing number of
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agents. The computational complexity of these models imposes constraints on their
applicability. The authors in [47] apply Model Predictive Path Integral (MPPI), a
parallelizable sampling-based Model Predictive Control (MPC) algorithm, assuming
knowledge of the other agents’ objective functions and predicting their goals using
the Constant Velocity Model (CVM). Nevertheless, the computational complexity
scales linearly with the number of agents if a constant number of samples is assumed
while the sample efficiency decreases.

A different approach is presented by [48], which bridges the gap between the
use of prediction models discussed previously and coupled planning. They utilize
predictions as an initial guess and incorporate an objective function to encourage
proximity to these predictions. To reduce the computational complexity, [49] formu-
late the interaction between human-driven vehicles and autonomous vehicles as an
underactuated dynamical system, meaning that the robot directly influences its own
state and indirectly the state of the humans. The dynamics model thus includes the
interaction dynamics between the agents. However, evaluating the dynamics model
still requires solving for the optimal human response. Additionally, it requires the
identification of the human objective function.

To address these issues, rather than estimating objectives explicitly and online,
[50] build on top of the pedestrian prediction literature and learn an interactive
multi-agent prediction policy. Using the policy they formulate the multi-agent mo-
tion planning problem as an optimization problem over only the ego agent’s action
sequence.

Instead of learning a multi-agent motion policy, we propose to use the Social
Force Model (SFM) [51]. The SFM is a widely used and well-established model for
describing the motion of pedestrians, e.g. in simulations for benchmarking [52]. It
offers several advantages: it provides a well-established and interpretable framework
for modeling pedestrian interactions, it does not require training and therefore does
not rely on available data of the considered context, and it can be easily adapted to
different environments. We solve the multi-agent underactuated motion planning
problem using MPPI.

2.2 Problem Formulation

2.2.1 Preliminaries
Social Force Model (SFM)

The SFM [51] is a widely used and well-established model for describing the motion
of pedestrians in 2D. It considers three main effects that determine the motion of a
pedestrian ¢: the attraction towards their destination fj_, the repulsive effects of

static obstacles ff ., and the repulsive effects of other agents féyn. At time ¢, the
dv’

SFM describes the change in velocity of pedestrian 4, that is, %,
composition of social forces:

as the result of a

dv’
dt

i i i i
=a = |:a:f:| = pdestfdest + pstaticfstatic + pdynfdyna
Yy
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where Ddest, Dstatic, a1d Pdynamic are weighting parameters implemented according to
PedSim!. We make use of the SFM formulation presented in [53]. When a pedestrian
encounters no disruptions, they move from their current position p towards their
goal position pg at a specific desired speed v9®. The destination force féest is
determined according to

. 1
félest = ;(,Udeseo - V)’

where €® = (p}, — p’)/||p, — p|| is the desired direction of motion, v is the current

velocity, and 7 is a relaxation time. The static obstacle repulsive force fi ;. is
defined by:

i _—di/b i
fstatic = ae €,

where d' is the orthogonal distance of the i-th pedestrian to the obstacle, €’ is
the unit vector pointing from the obstacle to the pedestrian, and a,b are scalar
parameters. The pedestrian interaction force fiyn is given by

N
fcllyn = Z féyn,j’ 2
§=0,ji
féynd- _4-d/B [ei(n/BoiJ‘)Qtij 4 6—(nBeij)2n} 7 (2.2)

where d” denotes the distance between two pedestrians ¢ and j, and #% denotes the
angle between the interaction direction t*/ and the vector pointing from pedestrian
i to pedestrian j. They are defined as follows:

a7 = [|a”[| = [[p” — p'll, (2.3)
DY = \(v' —v?) +d¥ /d"7, (2.4)
t7 = DY /|[DY]], (2.5)

B = ~|DY|], (2.6)

where A, v, n, n/, and A are model scalar parameters.

In this work, we make use of the SFM to represent the response dynamics of
pedestrians. We choose the SFM parameters according to [53] which are summa-
rized in Tab. 2.1. We do not consider static obstacles; however, they can be easily
incorporated if needed.

Model Predictive Path Integral Control Algorithm

MPPI can solve optimal control problems for discrete-time dynamical systems xx11 =
f(xg, 1) with state x, time step k, and noisy input @ with variance ¥ and mean
u. The mean input will be provided to the system. The algorithm generates M
input sequence samples U,, with m € [1, M] from a distribution A/ (uy,vX) over a
horizon K with v being a scaling factor. Using U,, and the dynamics model, the
state sequence is generated over a horizon K. For each sample, the cost consisting

1 https://github.com/srl-freiburg/pedsim_ros/tree/master
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of a stage and a terminal cost is computed. The input sequence U*, which approxi-
mates the optimal control input sequence, is computed using importance sampling.
For more information, we refer to [47, 54].

2.2.2 Problem Statement

We consider a scenario where a mobile robot, must navigate from an initial position
Po to a goal position pgy in the R? plane populated by N pedestrians, each also
navigating towards its respective goal position. The robot’s physical state at time
step k is denoted as x) € X*, while each pedestrian’s respective physical state is
denoted by xi € X for i e {1,...,N}.

Notation: We omit the indice when referring to the collection of variables over
the indice. For example, xj, = (x2,x}, ... ,xg) denotes the joint state of all agents
at time step k and x = (xp,X1,X2,...,Xx) the sequence of joint states over a
time horizon which spans K discrete steps. We use the superscript —¢ to denote a
collection of variables over all agents except agent 1.

At every time step k, each agent influences the next joint state by applying the
control input u}'c7 respectively. We refer to the joint control input at time step k
as ux. We assume that the joint state xj evolves dynamically according to the
discrete-time dynamics

Xp41 = f(Xp, W)

We seek to solve a motion planning problem for an underactuated system:

K-1
= arg min Z & (xr,ud) + % (xx) (2.8)

" k=0
st Xgt1 = f(xg, ug), (2.7a)
X0 = Zinit, (2.7b)
uy, = [u), a3, a7, (2.7¢)
@}, = arg min ¢}, (x, u}), (2.7d)

uj,

g9'(xx) <0, (2.7e)
Vie{l,...,N},Vk€{0,...,K — 1}, (2.7)
where x( denotes the joint state at the current time & = 0 and u® = (uj, ... ,u?(q)

is the sequence of robot control inputs. Collision avoidance constraints are imposed
by (2.7f). With u® the robot directly controls its state and indirectly influences
x 70 through (2.7d). The pedestrians’ plans become a function of the robot’s input.
In contrast to formulating the interactions as a joint optimization, each pedestrian
computes their best response to the other agents instead of trying to influence them.
Note, that this formulation assumes that the pedestrians can estimate the robot’s
future states.

While the cost c% is a design parameter, the cost functions ¢}, of the pedestrians
are typically unknown. In this work, we propose to use the well-known SFM to
provide analytical response dynamics instead of solving for the optimal pedestrian
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response @1;,. We consider a second-order point mass model for the dynamics of both
the robot and the pedestrians:

pi Vi

N

2.3 Social-Forces-Informed Interaction-Aware Model
Predictive Control

In this section, we introduce the Social-Forces-Informed Interaction-Aware Model
Predictive Control (SoFIIA-MPC) framework. Instead of solving for the optimal
pedestrian response at each iteration like [49], we make use of a response policy that
implicitly encodes the pedestrians’ cost function. Contrary to [50], we do not learn
a policy of the other agents but make use of the well-established SFM.

2.3.1 Overview

We assume that a parameterized approximation #}(xy) = arg min,; ct (xp,ul) of
the pedestrians’ response dynamics exists. This reduces the general multi-agent
interaction problem to a single-agent optimization problem:

K-1
0 = arg min Z A (xp,ul)) 4+ e (xx) (2.8)
i
st Xp41 = f(Xk, ug), (2.8a)
X0 = Tinit, (2.8b)
U = [u27ﬁ-llc7"' 711]];,]717 (28(3)
fl?c = fgi (Xp), (2.8d)
g1.(xx) <0, (2.8¢)
Vie{l,...,N}\Vke{0,...,K —1}. (2.8f)

We approximate 7} (x) using the SFM resulting in

’ﬁ-é (Xk) = Pdest féest (Xk) + pstaticfsitatic (Xk) + pdynféyn (Xk ) .

2.3.2 Cost Function

We consider two cost function designs: one part addresses the costs related to the
ego agent Cego, and the other part aims to influence the behavior of other agents
Caffect- We design ceqo to encourage the robot to reach its goal, to avoid collisions,
and to maintain a velocity limit. The cost terms are defined as follows:

Cego = Cgoal,0 T Cvel—limit T Ccollision (29)
Caffect = (wegocgoal,O + wotherscgoalﬂi)/N (210)

*+ Cvel—limit 1 Ccollision-
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Collisions between the robot and a pedestrian and velocities higher than a maximum
velocity vmax are penalized with a constant cost, i.e. Ceonision and Cyel—limit:

N

Ccollision — Ccollision Z l(dOZ S TO + Ti)v (211)
i=0

Cyel—limit = Cvelflimitl(HV” > Umax)- (212>

The indicator function 1(-) returns 1 if the condition inside the parentheses is true,
and 0 otherwise. The radii of the robot and the pedestrian i are given by r° and 77,
respectively. The goal cost of agent i is defined as

Cgoalii = ||} — Py II/1IP6 — P}, (2.13)

and the goal cost of the other agents —i is defined as

N
Cgoal—i = Z Cgoal,j- (214)
J#i

2.4 Results

We consider two versions of our planner: SoFIIA-MPC using ceq4o and SoFIIA-MPC-
affect using cqf fect. Specifically, we consider a case with wego = 0.8 and wothers = 1.
In this section, we compare our planners with the following baselines:

1. MPC-CVM: Predict-then-Plan approach. Assumes that the pedestrians con-
tinue moving with their current velocities and uses ccg4,,

2. MPC-SFM: Predict-then-Plan approach. The behavior of the pedestrians is
predicted using the SFM assuming that the robot also follows the SFM, uses

Cego-

We evaluate the different planners in simulation, with the pedestrian behavior
modeled using the SEM. The SFM parameters are chosen according to [53] and are
depicted in Tab. 2.1. While the current evaluations do not provide insights into
how well SOFITA performs in environments with real pedestrians, these experiments
offer valuable insights into the benefits of accounting for interactions in planning.
MPC-SFM incorporates the true model for the simulated pedestrians. However, an
assumption about the robot’s future behavior has to be made to predict the pedes-
trians’ future behaviors. To generate the SFM predictions, we assume that the robot

Table 2.1: Parameters

SFM A 4.5 SFM 7 0.54
SFM ~ 0.35 Horizon K 20
SFM n 2.0 Radius agents 0.3m
SFM n’ 3.0 Time step At 0.1s
SFM \ 2
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Figure 2.2: SoFIIA-MPC: Time to goal over different social weights pqy» for head-on
scenario with two agents.

behaves as an SFM agent. Since we consider the robot as an SFM agent, the SFM
predictions inherently account for interactions between the robot and the pedestri-
ans. The CVM was shown to outperform even state-of-the-art learning-based pre-
diction models [55] and was applied in many state-of-the-art motion planners [56].
We solve the MPC problem using the MPPI-torch implementation? [57] with a hori-
zon K of 20 time-steps, and a step-size At = 0.1s. Furthermore, we evaluate how
the cost function can be used to adapt the behavior.

2.4.1 Comparative Analysis of Motion Planning:
Non-Reactive vs. Reactive Agent Models

We first show that by considering the interactions the robot applying SoFIIA-MPC

can exploit the other agents, see Fig. 2.2. The achieved time to goal for the robot

decreases with increasing socialness of the other agent. Furthermore, we compare

the navigation metrics over 10 random scenarios. We consider the following metrics:

o Traveled Distance Ratio: Distance to the goal divided by the straight line
distance to the goal,

e Time to goal ratio: Time to goal divided by the time required to reach the
goal in a straight line with maximum speed,

e Minimum distance: The minimum distance between agents.

The results, presented in Fig. 2.3, show that the Traveled Distance Ratio of the
robot decreases as the planner accounts more for interactions. Furthermore, the
variance in goal-reaching times decreased, which may be attributed to a reduction
in erratic behaviors, e.g., as seen in the top left corner in Fig. 2.1. The distance to
the pedestrians did not change significantly. This is expected, as the pedestrians

2 https://github.com/tud-airlab/mppi_torch/tree/main
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Figure 2.3: Metrics over 10 random scenarios. We show each metric for the different
planners separated by agent type, i.e., robot/ego-agent and other agents. For the other
agents we consider the mean value.



22 2 Interaction-Aware Autonomous Navigation among Pedestrians

are also goal-directed and tend to maintain a certain separation from others due to
the repulsive interaction forces in the model.

2.4.2 Exploiting Interactions for Desired Agent Behaviors

By explicitly considering the interactions, it is possible to influence the other agents
to certain behaviors. While previous works in the autonomous driving field [49]
demonstrate that cars can be slowed down or influenced to merge into another lane,
these strategies are not directly applicable in the social navigation context. This is
because the considered driving scenarios are more structured, e.g., by considering
lanes. Thus, we set the robot’s objective to navigate while trying to reduce its
influence on the other agents. In Fig. 2.3 it can be seen that we were able to decrease
the Time to Goal ratio for the other agents. However, these are preliminary results,
which have to be further evaluated for a higher number of scenarios.

2.5 Conclusion & Future Work

In this work, we addressed the challenge of enhancing interaction in multi-agent mo-
tion planning while maintaining computational efficiency. Specifically, we formulate
the interactions as an underactuated system and leverage the Social Forces Model
(SFM) to represent pedestrians’ response dynamics. Since our aim was to evaluate
the effect of accounting for interactions, we assumed the parameters of the SFM as
well as the pedestrians’ goals to be known. How the parameters can be estimated
remains to be explored. Future work will focus on further validating our approach
in more diverse scenarios including static obstacles and in real-world scenarios.



Constructing Safety Filters
Robust to Model Error and
Disturbances via Robust Policy
Control Barrier Functions

In Chapter 2, we discussed an approach that considers the robot’s impact on pedestrians but
not vice versa and requires a carefully designed cost function to avoid exploiting pedestrians.
Imitation learning bypasses the need for a cost function, implicitly accounting for interac-
tions but lacking safety guarantees. Safety guarantees for potentially unsafe controllers can
be provided by safety filters, such as those based on Control Barrier Functions (CBFs), but
constructing CBF's for high relative degree systems with input constraints is challenging,
and their effectiveness depends on an accurate model.

This chapter introduces Robust Policy CBF (RPCBF), a practical method for construct-
ing CBF approximations that are easy to implement and robust to disturbances. We demon-
strate its effectiveness in simulation and show how RPCBFs compensate for model errors
on a hardware quadcopter platform by treating these errors as disturbances.

This chapter is a copy of the accepted work: Interaction
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3.1 Motivation and Related Work

In the realm of autonomous systems, providing safety guarantees is crucial, es-
pecially in critical applications such as autonomous driving [58] and healthcare
robotics [59]. Control Barrier Functions (CBFs) [60, 61] have proven to be an
effective tool to maintain and certify the safety of dynamical systems. In particular,
they can be applied as a Safety Filter (SF) that minimally modifies arbitrary con-
trol inputs to ensure safety, making them especially valuable when integrated with
learning-based controllers, see Fig. 3.1.

Despite their theoretical advantages, significant challenges remain in the practical
application and construction of Control Barrier Functions (CBFs). First, construct-
ing CBFs is non-trivial, specifically for high relative degree systems with input con-
straints. Second, the safety guarantees of CBF-based controllers depend on having
an accurate system model, which is rarely the case for systems in real life. This can
result in the safety of these controllers being sensitive to model uncertainties.

Nom|na| 1: Policy 7 Evaluation
— PCBF 7~ Undisturbed Cl
Robust Cl
RPCBF opust €1
&
X
ol Avoid Set A with h > 0
ylindarica e h
Obstacle ‘ VAT OV

2: Safety Filter with CBF-QP

Undisturbed CI

Robust Cl
vhr <

Avoid Set A with h > 0

Figure 3.1: We propose the Robust Policy Control Barrier Function (RPCBF), which
approximates the value function V"™ of a system under bounded disturbances for policy
7 online. The zero sublevel set of the RPCBF is a robust controlled-invariant set (CI) and
can be used online as a RPCUBF safety filter to ensure safety for any unsafe nominal policy.
We demonstrate its superior performance compared to a safety filter using a safety
filter on a quadcopter platform with model errors treated as disturbances.

3.1.1 Learning Control Barrier Functions

To minimize reliance on extensive domain knowledge, a recent trend is to learn
neural CBFs that approximate CBFs using Neural Networks (NNs) [62-70]. Lever-
aging the flexibility of Neural Networks (NNs), neural CBFs have been successfully
applied to high-dimensional systems, including multi-agent control scenarios [68,
71]. Furthermore, they have been extended to handle parametric uncertainties [72]
and obstacles with unknown dynamics [73]. Although utilizing NNs as CBFs offers
universal approximation capabilities, it requires their certification as CBF to pro-
vide safety guarantees and limits their interpretability. Furthermore, using a naive
approach of learning neural CBFs by minimizing a loss that encourages the CBF
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conditions can lead to a small or even empty forward-invariant set. Thus, [65]
presents a method to construct CBFs using policy evaluation of any policy. They
show that the policy value function is a CBF and learn an NN approximation of
it. In this setting, the policy value function represents the maximum-over-time con-
straint violation and is generally a measure of how good a particular state is for a
system following a specific policy over infinite time. However, their approach does
not consider uncertainties in the system dynamics.

3.1.2 Robust Safety

Controllers robust to disturbances in the real world are important for safe au-
tonomous systems. This has been studied before in robust CBFs [72, 74, 75] which
guarantee safety under bounded disturbances. However, constructing robust CBFs
is inherently more difficult than standard CBFs, especially under input constraints.
Hamilton-Jacobi reachability analysis [76] can be used to compute robust control-
invariant sets, which can then be subsequently used for constructing robust CBFs
[77-80]. However, reachability analysis in itself is challenging, with grid-based Par-
tial Differential Equation solvers being limited to state dimensions less than 5 [81],
while deep learning-based solvers [82-85] require subsequent neural-network verifica-
tion to check for solution accuracy. Moreover, both learning-based CBF approaches
and deep learning-based reachability solvers rely on predefined disturbance assump-
tions that cannot be easily adapted as new information emerges, limiting their flex-
ibility once deployed. While [86] train a value network with the avoidance set and
disturbance bounds as inputs, this increases training data requirements and com-
plicates evaluating how well the learned network represents the true value function.

As an alternative to robust safety, other works focus on risk-aware safety, which
aims to ensure safety with high probability by modeling disturbances probabilisti-
cally and incorporating risk measures [87, 88]. Unlike robust methods, which ensure
constraint satisfaction for all disturbances within a bounded set but may be overly
conservative, risk-aware approaches typically rely on knowledge of the disturbance’s
probability distribution. In this work, we focus on robust safety.

3.1.3 Contributions

‘We propose a practical approach for constructing a CBF approximation at runtime,
which can be derived for any system dynamics and disturbance bounds without
requiring (re)training. We establish conditions under which the resulting CBF ap-
proximation qualifies as a valid CBF. Our method constructs CBFs by evaluating
the value function of any policy, which has been shown to be a valid CBF in [65].
By leveraging finite-horizon policy rollouts, we enable a more detailed analysis of
safety guarantees than NN approximations. We apply this approach to construct
approximations of robust CBFs. We summarize our contributions as follows.

1. We propose a method of constructing (robust) CBFs using the (robust) policy
value function and a real-time approximation that can be used at runtime.

2. We demonstrate real-time performance and the benefits of our robust CBFs on
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a hardware quadcopter, where robustness to model errors is key for collision
prevention.

3.2 Preliminaries
3.2.1 Problem Statement

We consider a disturbed continuous-time, control-affine dynamical system of the
form
Xt = f(Xt7 dt) + g(Xt, dt)ut7 (31)

with state x; € X C R™, control input uy € &Y C R™ and unknown, bounded,
smooth disturbance dpin < dy < dpax With dimin, dmax € RY (e.g., estimated from
empirical data). Note that d; can be time-varying. The functions f and g are
assumed to be locally Lipschitz continuous. Let A C & denote the set of states to
be avoided. In this chapter, we address the following Safety Filter (SF) synthesis
problem:

Problem 1 (Safety Filter Synthesis). Given a dynamical system (3.1) and an avoid
set A C X, find a control policy wg, : X — U that ensures the system state remains
outside the avoid set A while staying close to a performant but possibly unsafe nom-
inal policy Tpom : X — U:

min ||7Tﬁlt - 7rn0m||
T

s.t. Xy = f(x¢,de) + g(x¢, de ) Tare (%), (3.2)
Xt % A, Vit Z 0,

where ||-|| is some distance metric.

We focus on solving Prob. 1 using (zeroing) CBFs [89].

3.2.2 Safety Filters using Control Barrier Functions

We begin by providing a standard definition of a CBF in the non-robust case, which
we extend to the robust case for Policy Control Barrier Functions (PCBFs) in the
next section. Define the undisturbed system to be a particular case of the disturbed
system (3.1) without disturbances (d = 0), by

Xt = f(x¢,0) + g(x¢,0)u. (3.3)

Let B : X — R be a continuously differentiable function, with C = {x € X' | B(x) <
0} as its O-sublevel set. Let a : R — R be an extended class-ro, function®. Then,
B is a CBF for the undisturbed system (3.3) on X [60] if

B(x) >0, V¥x € A, (3.4a)
B(x)<0= Lllrel{( LyB(x)+ LyB(x)u < —a(B(x)), (3.4b)

1 Extended class-koo is the set of continuous, strictly increasing functions o : (—oo0,00) —
(—00,00) with a(0) = 0.
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with L;B == VBT f and L,B := VBTg. It then follows that any control input
u € K.,¢ with

chf(X) = {u celu | LfB(X) + LgB(x)u + OZ(B(X)) < O}

renders C forward-invariant [60]. In other words, there exists an u € U such that
any trajectory starting within C remains in C. Asymptotic stability of C can be
achieved by extending (3.4b) to hold for all x € X [89]. Since the right-hand side of
condition (3.4b) is linear in u, given a CBF B where (3.4b) is satisfied, we can solve
Prob. 1 for (3.3) using the following Quadratic Program (QP)-based controller:

UCBrF_Qp =arg IL?lOGIZI/{l [ — Tom (%)) (CBF-QP)

s.t. LyB(x) + LgB(x)u < —a(B(x)).

While CBFs can be applied to guarantee safety for a known undisturbed system,
two major challenges remain:

1. How do we synthesize a valid CBF that satisfies (3.4b) for high relative degree
systems with input constraints?

2. How do we synthesize a robust CBF that ensures safe control for the disturbed
system?

3. How can we efficiently derive a CBF at runtime for different system dynamics
and disturbance assumptions?

3.3 Robust Policy Control Barrier Functions

To address the above challenges, we leverage the insight from [65] that CBFs can
be constructed by deriving the policy value function through the evaluation of any
policy. Rather than approximating the policy value function with an NN as in [65],
we propose an alternative that avoids NNs by instead performing a finite-horizon
numerical approximation. We further extend this approach to the robust case and
introduce Robust Policy CBFs (RPCBFs). Robust Policy Control Barrier Functions
(RPCBEFS) enable the reactive adjustment of assumptions made on the disturbances
as new information emerges. In contrast, robust extensions of neural CBFs [72]
require disturbance assumptions to be predefined before training, preventing any
adaptation once deployed. Next, we revisit the formulation of PCBFs and describe
our extensions and approximations.

3.3.1 Constructing CBFs via Policy Evaluation

Based on [65], we first derive the PCBF formulation for the undisturbed system
n (3.3). Assume that the avoid set A can be described as the super-level set of a
function h : X — R (e.g., the negative distance to the constraint):

A={xeX|h(x)>0}. (3.5)
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We denote by x] the resulting state at time ¢ when starting from the initial state
%o and following policy 7 : X — U. Furthermore, we define the mazimum-over-time
value function for the undisturbed system in (3.3) as

VT (x0) == sup h(xT). (3.6)
>0

As stated in [65, Theorem 1], the policy value function V™ is a CBF for the undis-
turbed system in (3.3) for any 7, since V™ satisfies the following two inequalities
Vx e X

VET(x) > h(x),
VVETx)T (f(x) + g(x)7(x)) <0,

which imply (3.4a) and (3.4b). For details, we refer to [65]. The key intuition here is
that V™ provides an upper bound on the worst future constraint violation ~ under
the optimal policy since the optimal policy will do no worse than 7. Thus, CBFs
can be constructed via policy evaluation of any policy. We refer to m as the design
policy, noting that the nominal policy 7o differs from the design policy.

3.3.2 Finite Horizon Approximation of PCBFs

A key challenge with the value function V™ is that its definition requires an infinite-
horizon. While [65] tackles this problem by using an NN to learn V2™ with a loss
derived using dynamic programming, we take a different approach and perform a
finite-horizon approximation that can be computed without the use of NN, enabling
a more in-depth analysis of the resulting safety guarantees. Expanding V27

Vggﬂ(xo):max{ sup h(xg),vggﬂ(x;)} (3.9)
0<t<T
~ sup h(xF) = V)" (x0), (3.10)
0<t<T

where the approximation is made by dropping the V27 (x7) “tail”. The question
is then whether the finite-horizon approximation V{f '™ is a CBF and has safety
guarantees.

We can at least answer this in the affirmative when the approximation in (3.10)
is an equality, i.e., the maximum occurs in [0,7]. We state this in the following
theorem.

Theorem 1. Suppose that for all xg € X,

VP (x0) <0 = sup h(x]) > VI (xF). (3.11)
0<t<T

Then, V™ is a CBF.

Proof. Since V™ (x) > h(x) by definition, (3.4a) is satisfied by V/*™. Moreover,
by (3.11), V"™ (x0) = V2™ (x0) when V"™ (x0) < 0. Hence, since V™ is a CBF,
(3.4b) holds for V2™ and thus also holds for V™. Thus, V;*™ is a CBF. O
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This enables us to prove the following corollary.

Corollary 1. Suppose there exists a T' < inf such that

argmax h(x]) < T, Vxo where V"™ (x¢) < 0 (3.12)
>0

Then, V;f’” is a CBF for T > T.
Proof. (3.12) implies (3.11) for T > T. The proof then follows from Theorem 1. [

The value of T depends on the chosen policy 7. In principle, any policy m can
be selected, which may result in a conservative Control Invariant (CI) set. If 7 is
chosen as a controller that steers the system towards a safe, steady state within a
finite horizon T Corollary 1 holds, thus lef '™ is a CBF.

If VTh "T(xg) = 0, then applying the design policy 7 exactly guarantees that the

system will remain safe for at least the time horizon 0 < ¢t < T, even if VTh T(xg) <
Voié’ﬂ- (Xo).

Remark 1 (Connections to Backup Controller / CBFs). Since the zero sublevel set
of V™ is a controlled-invariant set under 7, (3.9) can also be seen as Backup CBF
[90, 91] with backup controller 7. Unlike this (and other similar approaches [92]), our
approach replaces the need for a known forward-invariant set with the requirement
of a sufficiently long horizon T'. Thus, the design policy 7 can be chosen arbitrarily
and is not required to steer the system into a CI set. Furthermore, we demonstrate
that the naive approximation of i over a time-discretized state trajectory introduces
gradient errors. To address this, we present an improved time-discretization using
cubic splines in Sec. 3.3.3.

Remark 2 (Connections to Model Predictive Control (MPC)). The finite-horizon
approximation here is closely related to the use of MPC by practitioners. More pre-
cisely, although a terminal constraint set is often required to theoretically guarantee
recursive feasibility of finite-horizon MPC [18, 93|, practitioners often apply MPC
without the use of such a terminal constraint set to wide success [94-97]. Our de-
cision to drop the VO@’T(X’}) term can be viewed as being similar to dropping the
terminal constraint set. Another similarity is the choice of horizon T. Namely,
recursive feasibility holds in MPC given a sufficiently large horizon [98], similar to
Corollary 1. However, the MPC horizon length is limited, as it requires solving a po-
tentially nonlinear and non-convex optimization problem online, with computational
complexity typically scaling cubically with 7' [99]. A key advantage of PCBF-SFs is
that they only solve the simpler (CBF-QP), whose computation time is unaffected
by T, see Section 3.4.4.

Remark 3 (Connections to Predictive Safety Filter (PSF) [100]). The finite-horizon
approximation is closely related to the PSF, which implicitly represents the safe set
via a finite-horizon MPC problem with terminal constraints or long horizons for
recursive feasibility. Unlike PCBF-SFs, the PSF requires solving a potentially non-
linear and nonconvex optimization problem online with complexity scaling cubically
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in T' [99]. PCBF-SFs only require solving the simpler (CBF-QP). However, while
the PSF may find a locally optimal solution, the conservativeness of the PCBF-SF
depends on .

3.3.3 Time Discretization of Policy Control Barrier Functions

Another challenge lies in how to compute the maximum in (3.10). The states xJ
can be solved numerically using an Ordinary Differential Equation solver, resulting
in a time-discretized state trajectory. It is tempting to then consider taking the
maximum h over this trajectory, i.e., for time discretization At,

h,m T
VAT (x0) % i A(xfa). (3.13)

However, the gap between (3.10) and (3.13) is particularly disastrous when com-
puting the gradient. We illustrate this in the following example for the Double
Integrator (DI).

Example: Gradient Error on the Double Integrator. Consider a DI with
positive velocity vy > 0 decelerating with 7(x) = a = —1. The dynamics are
defined by p = v, ¥ = a with initial state xo = [po, vo] and constraints h(x) = p < 0.
For the continuous-time case, the gradient can be derived as

_ apmax

VVET(x0) = oxe = [1,vo]. (3.14)

After (exact) time discretization with timestep At, the time-discretized states can
be computed as

Pk = po + vokAt + 0.5a(kAt)?, (3.15a)
vE = vg + akAt. (3.15b)

We now show that the gradient of V™ depends on At and denote by VVOZ’WM the
resulting gradient. Let 7 be the integer time step k at which the maximum position
is reached. The maximum position is then given by

VI = Pmax = Po + voTAt + 0.5a(rAt)?, (3.16)
with % = 7At, which is a function of 7. Although 7 also depends on vy,

it is piecewise constant and has zero derivative since it only takes integer values.
Comparing the gradients of V2™ with Vi’lt in Fig. 3.2, we see a large error between
the two with discontinuities in the discrete-time gradient in At. This is particularly
problematic when the gradient is used in a gradient-based optimization algorithm
such as (CBF-QP).

Improved Time-Discretization using Cubic Splines. To reduce the error in
the time-discretized value function approximation (3.13), we propose to approximate
h(x}) by fitting a cubic spline to the points {h(x}A,)}i-,'. The max over the cubic
spline can then be computed in closed-form by solving the roots of a quadratic

to yield a better approximation of supy<, 7 h(x]) than the naive maximization
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Figure 3.2: Value Function Gradient Error for Discrete-Time Double Inte-
grator. We highlight the discretized trajectory (top) and corresponding gradient error
(bottom) for three different choices of At ( , purple, red). The gradient of the naive
discrete-time approximation has large errors and varies with the choice of At. Taking the
maximum of the cubic spline leads to much smaller errors.

(3.13). Intuitively, this resolves the gradient error due to integer-valued 7 from the
previous example because the maximum of the cubic spline can now happen between
timesteps. We can also formally quantify the error in both the cubic spline value
and its gradient. Let A : [0,00) — R denote the cubic spline approximation of &
as a function of time, and let VOZ:WM(XO) ‘= sup;~, h(t). Using [101, Chapter 5], we
obtain the error bounds

C hn 1 a
HVOZ’ - Voo,At S EAtZl I?Zag( ah(Xt) 3 (3173,)
va’wr _vihm |l < Lag ) (3.17b)
o so. At = gy B0 T g X '

In the previous example of the DI, since h is exactly quadratic, applying cubic
splines results in zero gradient error (Fig. 3.2). If d*/dt h(x;) can be bounded, the
bounds (3.17) can then be used to suitably modify the QP (CBF-QP) to guarantee
safety. A larger At will therefore result in a more conservative SF

3.3.4 Robust Extension of PCBFs
In this subsection, we now consider a robust extension of PCBF to handle distur-

bances. Defining the robust value function equivalent of (3.6) as

VT (%) == sup sup h(xT), (3.18)
>0 d(-)

it can be shown with similar proof [65, 102] that V2™ is a robust CBF [103], i.e., it
satisfies (3.4a) and, for B(x) < 0,

sup inf VBT (f(x,d) + g(x,d)u) < —a(B(x)). (3.19)
dep ueu




32 3 Constructing Safety Filters Robust to Model Error and Disturbances

1: Sample Disturbances 2: Compute Max with Cubic Spline 3: Robust Safety Filter via CBF-QP
Cubic Spline Max

h ",I.FI V"h.ﬁ

Policy 7 wip -)
Obstacle

Figure 3.3: Summary of RPCBF Algorithm. Given a policy m, we sample distur-
bance trajectories, then compute the maximum h with cubic splines to obtain V™™ and
VV"™™ (using autodiff). This is used in a CBF-QP to obtain a robust safety filter.

Time

Algorithm 1 Robust Policy CBF (RPCBF)

1: Input: Initial State xg, Policy m, Constraint function h, Horizon 7' = HAt , Number of
disturbance samples N
:fori=1:N do
Sample disturbance trajectory {d;C
Rollout the policy 7 on disturbed system (3.1)

2

3

4 .

5: Compute supg<; 7 h(x}) using cubic splines
p <

7

8

H-1
}k:l

: end for
: Compute V;f’;\;(xo) according to (3.20)

: Compute the gradient VV;’K, (x0) using automatic differentiation

Solving for robust controls that satisfy (3.19) renders the zero sublevel set robust
forward-invariant [74]. However, deriving the worst-case disturbance is generally in-
tractable because it requires evaluating all possible disturbance trajectories. Instead,
we propose to only consider N disturbance trajectories and take the worst-case out
of the IV samples, resulting in the following practical RPCBF approximation.

VT (x0) = VT (x0) = max  sup h(x}), (3.20)
’ =1, ,N 9g<¢<T
x' = f(x',d%) + g(x*,d")u’. (3.21)

We summarize our approach in Alg. 1 and Fig. 3.3. Note that Alg. 1 must be
executed once per control loop to obtain the value lef v and gradient VV;f v for
the current state for use in the CBF-QP (CBF-QP). Different approaches can be
implemented to perform informed sampling of disturbances. For bounded distur-
bances, the worst-case scenario often occurs at the vertices of the disturbance set
(e.g., for disturbance-affine dynamics). Consequently, we choose to sample from
a mixture of the uniform distribution U (dmin, dmax) and the uniform distribution
over the vertices. This can be extended to better optimizers to approximate the
worst-case samples which we leave as future work.

While the finite-sample approximation does not guarantee robustness to any dis-
turbance, it does ensure robustness to the specific sampled disturbances within the
finite horizon. As the number of informed samples approaches infinity, the approx-
imation increasingly captures the true worst-case scenarios. For the simulation and
hardware experiments, we use PCBF and RPCBF to refer to their time-discretized
finite-horizon and finite-sample approximations as described in this section.
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3.4 Simulation Experiments

To study the performance of PCBF and RPCBF, we perform a series of simulation
experiments on high relative degree systems under box control constraints.

Baselines
We compare against the following SFs that also do not use NNs in their approach.

o Handcrafted Candidate CBF (HOCBF) [104, 105]: We construct a
candidate CBF via a Higher-Order CBF on h without considering input con-
straints.

o Approximate Nominal MPC-based Predictive SF (MPC) [100]: A
trajectory optimization problem is solved, imposing the safety constraints
while penalizing deviations from the nominal policy. We consider the undis-
turbed system and do not assume access to a known robust forward-invariant
set and hence do not impose this terminal constraint.

Systems

We consider four systems: a DI, a Segway, an F-16 fighter jet (ground collision
avoidance problem) [106, 107], and AutoRally [108], a 1/5 autonomous vehicle. On
the DI, we consider position bounds (|p| < 1), while the Segway asks for an upright
handlebar and considers position bounds (|| < 0.3, |p| < 2), At = 0.1. For
the F-16, safety is defined as box constraints on states like altitude. Since this
system is not control-affine in the throttle, we leave the throttle as the output of a
P controller, resulting in a 16-dimensional state space and a 3-dimensional control
space. In AutoRally, a crash occurs when the car stops after hitting the track
boundary, while a collision involves contact without stopping. For each system, we
define J continuously differentiable constraint functions h; tailored to the problem
at hand. For example, for the DI system we set hg = p—1 and hy = —(p +
1). From these we derive J corresponding CBFs, which yield to J constraints in
(CBF-QP). For the DI and the Segway, we assume unknown but bounded time-
varying disturbances on the mass, for the F-16, unknown but bounded matched
disturbances (d = 1), and for the AutoRally, additive truncated Gaussian noise.
Keep in mind that our approach does not require designing/learning a new CBF for
different systems, disturbance assumptions, or input constraints, but simply requires
swapping the dynamics, specifying the disturbance, and constraints. During testing,
we consider a constant zero-control nominal policy for the DI, maximum acceleration
for the Segway, a PID controller for the F-16, and Model Predictive Path Integral
(MPPI) control [109] for AutoRally.

3.4.1 Influence of Horizon Length on Segway

While the infinite-horizon policy value function is a CBF, we use a finite-horizon
approximation, making the SF performance horizon-dependent. To illustrate this,
we assess the impact of different horizon lengths on the PCBF-SF, see Fig. 3.4. We
plot the state space from where myom, can influence the output of the SF (Filter
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Figure 3.4: Filter Boundary and Safe Region for PCBFs with varying Horizon
T on the Segway. We plot the states where the nominal policy can influence the output
of the safety filter (Filter Boundary) and the initial states from which the safety filter can
preserve safety over a horizon T = 30s (Safe Region). A trajectory from an initial state
inside the filter boundary marked by a black dot (e) is displayed. If the horizon is too
short, the filter boundary is overapproximated, resulting in an unsafe trajectory.

Boundary) and from where the SF preserves safety (Safe Region). For CBF-based
filters, the filter boundary is defined by the CBF’s zero level set. The safe region
is determined for a muem by solving (CBF-QP) and rolling out the system over
a horizon T = 30s. For a short PCBF horizon, i.e., T = 5s, the true CI set is
overapproximated. Consequently, the SF fails to preserve safety, as illustrated by
the resulting unsafe example trajectory. In contrast, a longer horizon of T' = 10s
provides a much closer approximation of the true CI set. This is evident when
comparing it to an even longer horizon, such as T" = 30s, which does not result in a
visibly smaller safe region, indicating that T' = 10s is already sufficient.

3.4.2 Behavior on Disturbed Double Integrator and Segway

We explore the robustness of different SFs, examining the filter boundary and safe re-
gion, derived for one sampled disturbance trajectory per state, as shown in Fig. 3.5.
We visualize rolled-out trajectories for N sampled disturbance trajectories (uni-
formly sampled and on the vertices) from selected initial states within the filter
boundary. On the DI, only the RPCBF-SF achieves safety for all N sampled dis-
turbance trajectories. Since the RPCBF accounts for the worst-case among the
N sampled disturbances, the filter boundary is more conservative. On the Seg-
way, MPC violates the safety constraints in all cases and hence has an empty filter
boundary and safe region. Only the RPCBF-SF achieves safe trajectories for all
considered samples. Next, we evaluate the (R)PCBF-SFs at uniformly distributed
initial states, see Fig. 3.6. The RPCBF-SF achieves safety for all evaluated states
within its zero-level set and the sampled disturbances, while the PCBF overapprox-
imates the safe set.



3.4 Simulation Experiments

35
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(a) T =6.4s, N =100 and T = 15s.
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Figure 3.5: Comparison of Filter Boundary and Safe Region on the Double
Integrator (a) and Segway (b). The true unsafe region for the undisturbed system is
shaded in gray for the double integrator. PCBF-based methods use a horizon T" and N
samples to derive the policy value function. The Safe Region is determined for a horizon

T. Trajectories from selected initial states for N = 25 sampled disturbance trajectories

are displayed. Red dotted lines and green solid lines indicate unsafe and safe trajectories,

respectively. The nominal trajectory is shown in black.
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Figure 3.6: Robust Safety Evaluation. We plot the zero level set of the CBFs. Green
dots indicate safe rollouts for all N = 25 sampled disturbance trajectories, while red crosses
indicate a failure in at least one trajectory. RPCBF achieved safety for all states within
its zero level set for the sampled disturbances.

3.4.3 Simulations on AutoRally

Finally, to assess the safety improvements brought about by the proposed PCBF
and RPCBF, we integrate the HOCBF and the proposed methods with Shield-
MPPI [108, 110], and evaluate their performance on AutoRally. The Fig. 3.7 shows
that Shield-MPPI using RPCBF generates the safest trajectories, while other con-
trollers generate trajectories that collide and crash more often. The statistics of the
safety performance of the controllers are shown in Tab. 3.1.

— Standard MPPI
~—— SMPPI-HOCBF

SMPPI-PCBF
—— SMPPI-RPCBF

Figure 3.7: Trajectory Comparisons on AutoRally. We visualize the trajectories
for each controller, where SMPPI-RPCBF (in blue) leads to the tightest spread of states
inside the track.
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Table 3.1: Collision and Crash Rate on AutoRally. The standard MPPI leads to
most collisions and crashes. While Shield-MPPI with HOCBF and PCBF significantly im-
proves safety, Shield-MPPI using RPCBF achieves the lowest rate of collision and crashes.

Controller Mean Collisions per Lap Crash Rate
MPPI 4.53 0.80
SMPPI-HOCBF 1.38 0.15
SMPPI-PCBF 1.23 0.12
SMPPI-RPCBF 1.13 0.09
100- * —e— Total Time (DI) —e— Evaluate V (DI)
Evaluate V Gradient (DI) —e— Solve QP (DI)
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Figure 3.8: Per-Timestep Computation Times for Double Integrator and F-16.
Computation times for the total and individual components for varying H (N = 64) and N
(H = 50), including mean and standard deviation across initial conditions and timesteps.
The black box highlights the settings considered in the hardware experiments.

3.4.4 Comparison of Computation Times

Figure 3.8 shows the real-time feasibility of RPCBF-SF on the DI and F-16, high-
lighting how (component) computation times scale with increasing 7' and N, eval-
uated on a laptop CPU.

3.5 Hardware Experiments

We conduct hardware experiments on the Crazyflie platform to determine whether
the proposed RPCBF can be robust to disturbances encountered in the real world
(see Fig. 3.1). We use the onboard position PID controller on the Crazyflie, treating
the system as a DI, and assume that the position setpoints are converted into ac-
celerations onboard. The error between this simple model and the true dynamics is
treated as an acceleration disturbance. We randomly generate a nominal trajectory
and treat the corresponding positions as the nominal control. A circular obstacle
is placed at the densest part of the nominal trajectory to encourage collisions. We
use a T = 5s (50 steps at At = 0.1s) and sample 64 disturbance trajectories. The
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RPCBF-SF controller runs at a frequency of 100 Hz on a laptop.

We first run the PCBF and RPCBF controllers with o = 5 on 6 different nominal
trajectories and plot the results from 3 of the random trajectories in Fig. 3.9. The
RPCBF maintains safety in all cases, while the PCBF collides in all cases. We next
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Figure 3.9: Hardware Traces. RPCBF maintains safety while following the unsafe
nominal trajectory despite error between the modeled and true Crazyflie dynamics. On
the other hand, PCBF assumes the modeled dynamics are perfect and collides with the
obstacle.

vary the choice of the class-x function a and plot the results in Fig. 3.10. While the
non-robust PCBF does not collide with the obstacle when « is sufficiently small,
this requires fine-tuning and is difficult to know beforehand. On the other hand,
RPCBEF is safe for all values of a we tested, allowing a to be used as a parameter
that controls the behavior without also simultaneously affecting safety.

3.6 Conclusion & Future Work

In this work, we proposed the Robust Policy Control Barrier Function (RPCBF), a
method for constructing robust CBFs using the robust policy value function derived
from rolling out a design policy. Subsequently, we introduced a real-time approxima-
tion that can be derived online, with conditions for its validity as a CBF. Simulation
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Figure 3.10: Safety with different values of a. @ We plot the minimum distance
to the obstacle, over 6 random nominal trajectories. Although PCBF is safe when « is
sufficiently small, this requires fine-tuning and is difficult to know beforehand. RPCBF is
safe for all values of o we tested.

experiments demonstrate that a safety filter constructed using the RPCBF yields
improved safety and more accurate estimation of the robust control-invariant set
compared to existing methods. Hardware experiments on a quadcopter highlight
the importance of accounting for model errors to ensure safety.

Future work will focus on analyzing the safety guarantees of the RPCBFs approx-
imation, considering the finite-horizon, time-discretization, and sampling-based ap-
proach. Additionally, while the RPCBF acts as a CBF for any design policy if a long
enough horizon is considered, conservativeness depends on the design policy. Deriv-
ing a policy to reduce conservativeness while maintaining infinite horizon guarantees
is an important research direction. Moreover, extending our method to time-varying
constraints and integrating real-time onboard perception are important directions
for future work.







Improving Pedestrian
Prediction Models with
Self-Supervised Continual
Learning

The previous chapters discussed various approaches for ensuring interactive and safe local
motion planning. However, these methods are generally designed offline and may struggle
to adapt to changing environmental conditions and the resulting shifts in expected behaviors.

This chapter focuses on the adaptability aspect in the context of pedestrian prediction mod-
els. It proposes a self-supervised continual learning framework to refine pedestrian pre-
diction models during deployment using online pedestrian data from the robot’s perception
pipeline. The framework preserves prior knowledge through reqularization and selective re-
training. Fxperiments on real and simulated data show enhanced performance compared to
naive online training. While this chapter considers pedestrian prediction models, the ap-
proach extends to other methods applying learning from observations. It can then be used
in conjunction with the safety filter presented in Chapter 3.
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4.1 Motivation and Contribution

Autonomous mobile robots increasingly populate human environments, such as hos-
pitals, airports and restaurants, to perform transportation, assistance and surveil-
lance tasks [111]. In these continuously changing environments robots have to nav-
igate in close proximity with pedestrians. To efficiently and safely navigate around
them, robots must be able to reason about human behavior [112]. Predicting pedes-
trian trajectories is challenging, especially in crowded spaces where humans closely
interact with their neighbors. This is the case, since the occurring interactions are
complex, often subtle, and follow social conventions [113]. Furthermore, humans are
influenced by the robot’s presence [114], features of the static environment, such as
its geometry or obstacle affordance, and various internal stimuli, such as urgency,
which are difficult to measure [115, 116].

A large amount of research has been done on pedestrian prediction models [115].
Recently, the focus has mainly been on data-driven models which do not rely on
hand-crafted functions and thus allow to capture more complex features and leverage
large amounts of data. They address various aspects of pedestrian behavior such
as stochasticity [117] and multi-modality [18, 118]. Moreover, they consider the
influence of static obstacles [112], interactions among pedestrians [113] and the
robot’s presence [119]. However, these models are trained offline using supervised
learning and thus do not adapt to unseen behaviors or environments and may fail
if the testing data distribution differs from the training data distribution.

These limitations can be overcome by continuously training pedestrian prediction
models on new streams of data. Hurdles in applying supervised continuous learning
to existing prediction models are the slow and expensive creation of labeled data
sets or the lack of supervision [16]. Robots operating in the same environment as
pedestrians can autonomously collect training examples based on the robot’s never-
ending stream of observations. If a robot can efficiently and autonomously collect
examples, its internal prediction models can be updated on the fly and the robot
can effectively adapt its behavior. However, neural networks are prone to forget
previously learned concepts while sequentially learning new concepts [16]. This
phenomenon is referred to as catastrophic forgetting. To overcome catastrophic
forgetting, we use a regularization strategy, namely Elastic Weight Consolidation
(EWCQ) [120], to selectively slow down learning for important model parameters, in
combination with rehearsing a small set of examples from previous tasks.

The main contribution of this chapter is therefore the introduction of a self-
supervised continual learning framework that uses online streams of data of pedes-
trian trajectories to continuously refine data-driven pedestrian prediction models,
see Fig. 4.1. Our approach overcomes catastrophic forgetting by combining a regu-
larization loss and a data rehearsal strategy. We evaluate the proposed method in
simulation, showing that our framework can improve prediction performance over
baseline methods and avoid catastrophic forgetting, and in experiments with a mo-
bile robot, showing that our framework can continuously improve a prediction model
without the need for external supervision.
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Figure 4.1: Self-supervised Continual Learning (SCL) framework used to continuously
improve data-driven pedestrian prediction models online across various scenarios.

4.2 Related Work

In this section, we describe relevant approaches for pedestrian motion prediction
and continual learning.

4.2.1 Pedestrian Motion Prediction

There has been a vast amount of work devoted to pedestrian trajectory predic-
tion [115]. Early works are mainly model-based, such as the well-known Social Force
Model (SFM) which uses attracting and repulsive potentials to model the social be-
haviors of pedestrians [121], and the velocity-based models which compute collision-
free velocities for trajectory prediction [122, 123]. A limitation of these model-based
approaches is that they only utilize handcrafted features, thus not being able to
capture complex interactions in crowded scenarios. To overcome the limitation, Re-
current Neural Networks (RNNs) have been used for human trajectory prediction,
which allows representing complex features and leverage large amounts of data [124].
Building on RNNs, [113] utilized Long Short-Term Memory (LSTM) networks to
model time dependencies and employed a pooling layer to model interactions. [119]
proposed a network model that is aware of the environment constraints. In addition,
other network models have been developed to predict pedestrian trajectories, includ-
ing Generative Adversarial Networks (GANSs) [118, 125] and Conditional Variational
Autoencoders (CVAEs) [126, 127]. Albeit being efficient, these models are usually
trained and evaluated using (offline) bench-marking datasets [128-131], which limits
their online adaption to unseen scenarios. In this chapter, we propose an approach
to improve these models online by introducing a self-supervised continual learning
framework.
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4.2.2 Continual Learning

Continual Learning (CL) addresses the training of a model from a continuous stream
of data containing changing input domains or multiple tasks [132]. The goal of CL is
to adapt the model continually over time while preventing new data from overwriting
previously learned knowledge. Existing CL approaches that mitigate catastrophic
forgetting for neural network-based models can be divided into three categories:
architecture-, memory- and regularization-based [16, 133].

Architecture-based approaches change the architecture of the neural network by
introducing new neurons or layers [134-136]. Intuitively, these approaches prevent
forgetting by populating new untouched weights instead of overwriting existing ones.
However, the model complexity grows with the number of tasks.

Memory-based approaches save samples of past tasks to rehearse previous con-
cepts periodically [16]. There are two types of memory-based methods that differ
in the way they memorize past experiences: rehearsal methods explicitly saving ex-
amples [137] and pseudo-rehearsal methods saving a generative model from which
samples can be drawn [138]. The data stored in the memory of rehearsal methods
can be randomly chosen or carefully selected [137, 139]. Some methods require task
boundaries [137] while other methods can be applied to the task free setting [139].
Since memory-based approaches require a separate memory, they can become un-
sustainable with an increasing number of tasks.

Regularization-based approaches add a regularization term to the loss to pre-
vent modification of model parameters. This can be done using basic regulariza-
tion techniques, such as weight sparsification, early stopping, and dropout, or with
more complex methods which selectively prevent changes in parameters that are
important to previous tasks [16]. [120] introduced FElastic Weight Consolidation
(EWC), a regularization approach limiting the plasticity of specific neurons based
on their importance determined from the diagonal of the Fisher Information Matrix
(FIM). To compute the FIM, clear task boundaries are required. Other regular-
ization approaches focus on relaxing this assumption by automatically inferring
task-boundaries [140], or by calculating the importance in an online fashion over
the entire learning trajectory [141]. In contrast to other categories of approaches,
these regularization-based methods do not require much computational and mem-
ory resources. However, one downside of regularization-based approaches is that
an additional loss term is added, which can lead to a trade-off between knowledge
consolidation and performance on novel tasks.

Most of the time, combining different continual learning strategies results in bet-
ter performance [16]. Hence, in this chapter, we employ the EWC regularization
technique combined with a data rehearsal strategy to achieve continual learning to
improve pedestrian prediction models.

4.3 Problem Formulation

Throughout this chapter, we denote vectors, x, in bold lowercase letters, matrices,
M, in uppercase letters, and sets, X', in calligraphic uppercase letters.

We address the problem of continuously improving a trajectory prediction model
online using streams of pedestrian data. This data includes the position and ve-
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locity of all n tracked pedestrians over time, and an occupancy map of the static
environment S§. The position, velocity, and the surrounding static environment of
the i-th pedestrian at time ¢ are denoted by pj = [p% ;,p} ], vi = [vL,, 0! ], and
Ofnv’i C &, respectively. The sub-scripts x and y indicate the x and y direction
in the world frame. The super-script ¢ denotes the query-agent, i.e., the pedestrian
whose trajectory we want to predict.

Denote by X} the observations acquired within a past time horizon t.ps for pre-
dicting pedestrian i’s future trajectory, which typically includes its own states, the
states of the other pedestrians and environment information. Further, denote by )A);
the predicted trajectory of pedestrian i over the future prediction horizon tpreq.

We seek a data-driven prediction model )A)Z = fo(X}), with parameters 0, that
best approximates the true trajectory )} across the entire previous stream of states
for every tracked pedestrian i € {1,...,n}. The true trajectory J? will only become
available in hindsight after observing the trajectory taken by pedestrian ¢ during
tpred- Thus, we formulate the problem of continually learning a data-driven predic-
tion model from past observations at time ¢ as a regret minimization problem:

n t
melnz Z gpred(Ai’yi)’ (4'1)

1=1 T=t—this

where ty,;s is the entire elapsed time until ¢ and .Zpred()}i, Vi) is the regret at one
past time step 7 for pedestrian ¢, which will be described in later sections.

4.4 Self-Supervised Continual Learning Framework

In this section, we introduce the Self-Supervised Continual Learning (SCL) frame-
work, an online learning framework to continually improve pedestrian prediction
models. Sec. 4.4.1 presents the overall structure of SCL, Sec. 4.4.2 the prediction
network architecture, Sec. 4.4.3 the data aggregation and Sec. 4.4.4 the model adap-
tion.

4.4.1 Framework Overview

The SCL architecture, consisting of two phases: a task aggregation and a model
adaptation phase is presented in Fig. 4.2. Firstly, we use a prediction model which
was pre-trained on publicly available datasets [128, 129] and aggregate new training
examples using the surrounding pedestrians as experts (task aggregation) for a pe-
riod of time 7. Then, we update the prediction model using the aggregated data of
the current task and a small constant sized coreset, which contains examples from
previous tasks (model adaptation). During the model adaption phase, we apply
an EWC loss to preserve the prediction performance on previous tasks. The two
phases run alternately over time to create a continuous learning autonomous robot.
During the task aggregation phase, we associate a new task to a new environment
on which the model was previously not trained on. To distinguish between tasks, we
will refer to the currently considered task as taskg. The previous tasks are referred
to as taskg.x_1 where the subscript 0 refers to the initial task.
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Figure 4.2: Schematics of the SCL framework. The aggregation dataset is collected by
extracting examples from the stream of tracked surrounding pedestrians (task aggregation).
The prediction model is trained using the aggregated dataset and a separately saved coreset
applying an EWC regularization to prevent catastrophic forgetting (model adaption).

4.4.2 Prediction Network Architecture

To evaluate our online learning framework we use a data-driven pedestrian predic-
tion model building on [112]. Please note that our approach does not depend on
which network model we use. However, the memory requirements scale linearly with
the number of tasks and model parameters. Figure 4.3 shows the network model
which uses three streams of information. The first input is the query-agent’s ve-
locity over an observation time window tobs, Vi_, , .;, which enables the model to
capture the pedestrian’s dynamics. The second input is the occupancy grid informa-
tion Oy’ . that contains information about the static obstacles centered on the
query-agent. In contrast to [112], the third input is a vector containing information

about the relative position and velocity of surrounding pedestrians OsoClall This
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Figure 4.3: Pedestrian motion prediction model architecture.
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adaption was done because the model using an angular pedestrian grid, presented
n [112], has shown difficulties learning social interactions [127]. For one neighbor
pedestrian j the vector including the relative measurements to the query-agent i at
time ¢ is o

2,7 — [

J i J i
€ P! — P;, Vi — Vil.

Thus, the information vector at time t is defined as

social,i i,1 i,i—1 4,441 i,n
O =le; ,...,e0 e e

Hence, the information used for trajectory prediction of pedestrian i is
i i env,i social,i
X = (thtobsztu tft;bsztvot tobs:t t)s

and the prediction model is given by

Vit = JO(Viego 0 fﬂ;lbs taOiO?j:: ),
where the trajectory predictions are represented by a sequence of velocities, i.e.
yt = V! it tprea We use the permutation invariant sort function as an atten-
tion mechanism by sorting the relative vectors of surrounding agents by Euclidean
distance [142]. To handle a variable number of pedestrians, only the closest n pedes-
trians are considered. For situations with fewer than n surrounding pedestrians, the
relative vector of the closest pedestrian is repeated.

4.4.3 Task Aggregation
For each task k, SCL saves the inputs of the prediction model,

i i env,i social,i
Xy = (Vt—tobs:ta Ot—tobs:t7 Ot—tobszt)v

in a buffer for each time step t = {—tpus,...,0}, see Fig. 4.2. Then, for each time
step t, the ground truth velocity sequence vi, ., Ftpreq 18 extracted in hindsight from
the buffer and the corresponding input to the prediction model X} (red arrows in
Fig. 4.2). We aggregate the velocity vectors (Target) together with the correspond-
ing model inputs (Input) and store them in the aggregated task dataset Dy is an
example. The examples are aggregated as a sequence. As we use a recurrent pre-
diction model and train the model with truncated back-propagation through time
tibptt, We only aggregate sequences of examples with a length of thug = tpred +tebptt-
We collect training examples for T" seconds.

4.4.4 Model Adaption

We present the overall SCL procedure in Algorithm 2. For each task, we aggregate
a dataset Dy over T seconds. Then, the model is adapted using Dy and a set
containing examples of previous tasks referred to as coreset Deoreset- Lhe Coreset
Rehearsal strategy is applied to mitigate forgetting. Thus, the training dataset is
defined as follows:

jj =Dy U Deoreset -
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Algorithm 2 The Self-Supervised Continual Learning (SCL) Framework

1: Load pretrained model: fo

2: Load map: S

3: Initialize coreset: Deoreset < 0

4: for k=0 to oo do

5: Initialize the empty task dataset: Dy < 0

6: Aggregate examples for T' seconds as follows:

7: for t =0to T do

8: Process pedestrian positions p, velocities v, and the occupancy grid O;’nv’i to

model inputs X} and save them to a buffer for i € {1,...,n}

9: Get examples from buffer: & = {(X},V1),..., (X, V8)}
10: Update task dataset: Dy, < Dy |J &
11: end for

12: Combine coreset and task: D < Dy, (U Deoreset
13: Train prediction model fg on D using EWC
14: Save EWC importances Fj and the updated parameters 0y of tasks

15: Update coreset Deoreset With M random examples from Dy
16: Clear Dy, D from memory
17: end for

In the model adaptation phase, SCL uses the training dataset D to train the network
for @ epochs. The training loss is composed by a prediction loss and a regularization
loss to avoid catastrophic forgetting: Zirain = Lored+-Lreg- We define the prediction
loss as the average norm between the predicted velocity sequence and the ground
truth:

1 t+tpred
Lorea(Vs, Vi) = > ViR (4.2)
pred T=t+1

We employ EWC [120] as regularization loss method to preserve prediction per-
formance on the previous tasks (taskg.x—1) and overcome catastrophic forgetting.
EWC penalizes the distance between the new model parameters, 8, and the previ-
ous task parameters, 6.1, depending on their importance to keep the knowledge
of previous tasks. After learning each task, EWC computes the corresponding im-
portance parameter by using the diagonal elements of the FIM F', which are defined

as:
2
, (4.3)
0:9;

where k£ and j represent the task and parameter number, respectively, Dy is the
training data containing trajectories from task k, fg(X') is the predicted output of
the network with parameters @ given data X € Djy. The importance measure Fy
is saved together with the network weights 6. Based on Fy.x—1 and 6g.;_1 the

_ 1 dlog fo(X)

XeDy,
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following regularization term is added to the loss function:

k—1

Fral0) = 5 35 B~ 0))°, (14)

=0 g

where 0 is the current set of weights for the current task k and A is the hyperparam-
eter that dictates how important not forgetting the old task is compared to learning
the new one.

After the model adaptation phase is completed, we update the coreset with M ex-
amples of the latest task (tasky). Importantly the new examples replace existing
ones to ensure the coreset remains of constant length N. We randomly select which
examples to drop to update the coreset. After training, the data sets Dy and D are
cleared.

4.5 Results

In this section, we present quantitative and qualitative results in both simulation
and real-world experiments.

4.5.1 Experimental Setup

The prediction model parameters are displayed in Fig. 4.3. We pre-train the pre-
diction model on the ETH and UCY pedestrian datasets [128, 129] for 60 epochs.
Our online learning framework will improve this pre-trained model based on the
behavior of surrounding pedestrians. The applied hyperparameters are summarized
in Tab. 4.1. Note that although t,,s = 0, the past states are implicitly taken into ac-
count through the internal memory of the LSTMs. First, we evaluate our framework
in simulation assuming full knowledge of the map and current states of all pedes-
trians. The pedestrian behavior is simulated using the SFM [121] and Reciprocal
Velocity Obstacle (RVO) model [9]. We train the prediction model incrementally
on arbitrary orders of these environments. To evaluate how well our framework
scales to complex scenarios with more pedestrians we rerun the above experiments
in simulation with an increased number of pedestrians.

Then, we apply SCL in real-world experiments. Here, the true pedestrian behavior
differs from the models assumed during simulation. To eliminate the perception-
related errors as much as possible, we first test our framework with an optical

Table 4.1: Hyperparameters.

timestep 0.2s # training epochs @ 250

task length T 200s learning rate 2 X
10~3

buffer size tpug 6s L2 regularization 5 %
10—

predict. time tpreq 3s EWC parameter A 1 x 108

tbptt time tippts 3s coreset size N /update | 100/ 20

size M
observ. time typg Os validation set size L, 100
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tracking system (Optitrack) that provides pose information of all tracked pedestri-
ans. We set up three scenarios to replicate the simulation environments. Finally,
we evaluate our framework in an uncontrolled hall using only the on-board sensing
and, a detection and tracking pipeline.

Baseline Methods

We evaluate our method against three baseline approaches in both simulation and
real-world experiments:

1. Offline: The prediction model is trained offline on all tasks. This baseline
represents a performance upper-bound assuming that all data is available.

2. Vanilla: The prediction model is trained using only the aggregated data and
standard gradient descent without any regularization loss.

3. EWC: The prediction model is trained using only the aggregated data with EWC
regularization, but without coreset rehearsal.

Tasks
In simulation, we additionally consider the following baselines:

e Coreset: The prediction model is trained using the aggregated data and
coreset data.

e CV: The human behavior is predicted using the Constant Velocity (CV)
model, no learning is applied.

The CV model was added since it was shown to outperform state-of-the-art data-
based prediction models [143] and to enable robust navigation around humans [144].
A limitation of the CV model is that it does not consider obstacles.

Since our focus is on applying continual learning strategies to improve pedestrian
prediction models on the fly without forgetting, we only change the learning strategy
across baselines and keep the prediction network architecture fixed. Similar to other
works on pedestrian prediction models, we use the Average Displacement Error
(ADE) and Final Displacement Error (FDE) as performance metrics [127, 142].

We consider three distinct environments, i.e., tasks, displayed in Fig. 4.4:

1. Square: An infinite corridor setting with three pedestrians walking clockwise
and three anticlockwise.

2. Obstacles: Pedestrians walking towards each other in an obstacle filled space.

3. Hall: Pedestrians walking towards each other in a hall while behaving coop-
eratively.

The scenarios were selected since they include encounters typically experienced in
everyday situations. The specific environments were chosen to investigate social
interactions (Hall), obstacle interactions (Obstacle) and semantic knowledge of the
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Figure 4.4: The considered simulation environments consist of (A) Square, (B) Obstacle,
and (C) Hall environments.

map (Square). To additionally evaluate our framework in scenarios with more inter-
acting agents we consider the above environments with 10 and 20 pedestrians. For
the obstacle-free environments, we use the open-source pedsim simulation frame-
work! employing the Social Force Model (SFM) [121] to simulate the pedestrian
behavior. For environments with static obstacles, we employ the RVO method [9]?
as pedestrians following the SFM may still collide with obstacles.

4.5.2 Simulation Results

We evaluate the prediction performance of the network model trained with our
method (SCL) versus the baselines on different sequences of environments (square,
obstacle, hall) starting from a pre-trained model. Each environment is observed for
T seconds to create the aggregated dataset on which the model is trained. Thus, each
environment corresponds to a new task. To compute the ADE/FDE performance
metrics, we collect a validation set for each environment including L, examples not
used during training.

Table 4.2 reports the mean and standard deviation (std) of ADE/FDE evaluated
at the end of the sequence on all three environments, under the columns denoted by
seq. end. The columns denoted by forgotten report the mean and std of ADE/FDE
increase of the prediction model on previous environments after training on new
environments. It can be seen that SCL outperforms Vanilla. The significant in-
crease in mean forgotten ADE/FDE for Vanilla indicates that naive online training
over changing environments using standard gradient descent results in catastrophic
forgetting. Our method is independent of sequence order, arriving at within £0.02
of the same mean ADE/FDE for all orders. To gain insight into where catas-
trophic forgetting occurs, we save the models trained for the sequence (square —
obstacle — hall) after each training step and apply them to the validation set of the
square scenario only. Figure 4.5 compares the performance of the different training
methods on the square scenario validation set at each training step. By evaluating
a single environment over time, we can clearly visualize when and how much the
models degraded in prediction performance in the respective environment. For ease

1 https://github.com/srl-freiburg/pedsim_ros
2 https://github.com/sybrenstuvel/Python-RV02
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Table 4.2: Quantitative results of the CV prediction and Vanilla, EWC, Coreset and SCL
training approaches for four environment sequences. The results for the dense scenarios
are included as SCL-10 and SCL-20. The table lists the meantstandard deviation (std) of
ADE/FDE, for all environments at the sequence end under seq. end and the mean+tstd of
the forgotten ADE/FDE, which refers to the average increase in ADE/FDE on previous
environments across the learning sequence. All error measures are presented in meters.

square  obstacle - hall obstacle - square - hall hall -, obstacle - square obstacle - hall  square
Method forgotten seq. end forgotten seq. end forgotten seq. end forgotten seq. end
Lo (meanzstd) (meanstd) (meanzstd) (meanzstd) (meanzstd) (meanzstd) (meanzstd) (meanzstd)
ov +0.00 £0.00/ | 112+ 1.18/ +0.00 £0.00/ | 1.25+1.29/ +0.00 £0.00/ | LI12+1.17/ +0.00 £0.00/ | 1.26+ 1.31/
+0.00 + 0.00 1.09 + 1.69 +0.00 + 0.00 1.10 £ 1.65 +0.00 + 0.00 1.16 £1.91 +0.00 + 0.00 1.24 +£1.92
Vanill +0.12 4 0.29/ 0.21+0.31/ +0.10 4 0.23/ 0.21+0.27/ +0.20 4 0.27/ 0.27 +0.26/ +0.18 4 0.20/ 0.26 +0.21/
anifia +0.31 £ 0.74 0.49 £ 0.79 +0.27 + 0.62 0.47 £ 0.63 +0.51 + 0.62 0.62 £ 0.58 +0.52 + 0.51 0.63 £ 0.51
EWC +0.10 £ 0.25/ 0.19i020/ +0.05+£0.13/ 0.17+0.13/ +0.12+£0.17/ 0.224+0.16/ +0.10 £ 0.18/ 0.21 +£0.19/
g +0.28 £ 0.67 0.46 =+ 0.61 +0.12 £ 0.37 0.37 £ 0.35 +0.33 £ 0.44 0.51 £+ 0.41 +0.27 £ 0.47 0.48 +0.45
Coreset +0031009/ 0.16 £ 0. 12/ +0.05 4+ 0.11/ 0.17 +0.14/ +0.03 4+ 0.10/ 0.17 +0.13/ +0.04 +0.09/ | 0.19+0.15/
orese +0.09 £ 0.27 0.36 £ 0.3 +0.12 + 0.29 0.38 + 0.34 +0.08 + 0.25 0.36 £ 0.28 +0.12 £0.24 0.40 + 0.31
scrL +0.02 £0.10/ | 0.16 + 0. 14/ +0.01+0.08/ | 0.15+0.12/ || +0.03+0.08/ | 0.17+ 0. 12/ +0.04 £0.09/ | 0.17 +0.13/
+0.07 £ 0.29 0.36 + 0.4 +0.04 £ 0.20 0.34 £ 0.27 +0.07 £ 0.20 0.37 £ 0.3 +0.08 £ 0.21 0.36 £ 0.28
SCL-10 +0.00 + 0.10/ 0.20 £ 0. 17/ 40.01 +0.12/ 0.20 £+ 0.16/ +0 001008/ 0.20i0.15/ +0 011010/ 0.20 +0.14/
g +0.00 £ 0.23 0.45 £ 0.40 +0.03 £ 0.25 0.44 £ 0.37 01 +0.19 0.45 £ 0.33 01 £ 0.26 0.44 £ 0.33
SCL-20 .04 +0.12/ 0.22 £0. 19/ +0.02 & 0.10/ 0.20 +0.16/ +0.04i0.11/ 0.21 4 0.18/ +0 03 4 0.12/ 0.22 +0.18/
g .10+ 0.31 0.49 + 0.42 +0.05 + 0.25 0.46 + 0.37 +0.08 + 0.26 0.47 £ 0.40 .06 + 0.28 0.50 £ 0.41
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Figure 4.5: Prediction performance of models trained on square — obstacle — hall
sequence evaluated on only the square scenario. Shows ADE (top) and FDE (bottom)
of all training methods on the validation set of the square task, while learning new tasks.
Note that the offline model is added for comparison purposes only.
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Table 4.3: Statistical Significance Analysis using the Mann-Whitney U test. Comparison
of SCL’s performance (i.e., ADE and FDE) against all baselines on each environment for
the obstacle hall square sequence. Significant results are displayed in bold considering a
5% confidence-level.

obstacle hall square
Method ADE FDE ADE FDE ADE FDE
CvV p = 0.00 | p = 0.00 p = 0.00 | p = 0.00 p = 0.00 | p = 0.00
Vanilla p=0.00 | p=0.00 || p=0.00 | p=0.00 p = 0.97 p = 0.53
EWC p=006 | p=0.02 || p=0.04 | p=0.01 p = 0.65 p=0.71
Coreset p = 0.29 p = 0.09 p = 0.63 p = 0.68 p = 0.22 p = 0.33

of comparison, the offline trained model is also plotted as a constant line. In the
first section, all models are trained on the aggregated dataset of the square sce-
nario and, as expected, the error measures decrease for all online learning methods
reaching better performance than offline trained prediction model due to overfitting.
However, when changing from the square environment to the obstacle environment,
the ADE/FDE performance quickly and drastically degrades for the Vanilla base-
line (red arrow). It can be seen that using EWC to selectively slow down learning
on important parameters helps to significantly mitigate the magnitude of the loss
in ADE/FDE. Nevertheless, after two subsequent tasks, the EWC baseline per-
formed ~ 30% worse on FDE and ~ 20% worse on ADE. Rehearsing a set of past
examples enables to retain more knowledge after two subsequent tasks than ap-
plying EWC. Combining EWC and the coreset rehearsal as done in SCL helps to
further mitigate forgetting. SCL was able to train in two subsequent scenarios while
retaining knowledge of the initially experienced scenario.

We performed pair-wise Mann-Whitney U tests between our proposed method and
each baseline to evaluate the statistical significance of the presented results. Tab. 4.3
shows the p-values comparing the performance results (i.e., ADE and FDE) on
each scenario for the obstacle — hall — square sequence. SCL significantly out-
performs CV on all environments, the Vanilla baseline on all past environments,
and EWC on one environment. Rehearsing alone achieves marginally worse re-
sults than SCL. Please note that the presented results consider a limited set of
environments with limited complexity. We expect that as the number of scenarios
and complexity increase, differences in performance between the baselines become
significant.

4.5.3 Dense Scenarios

To evaluate how well our framework scales to complex scenarios with more pedes-
trians we employ the above simulation environments with increased numbers of
pedestrians (n = {10,20}). The results are presented in Tab. 4.2. It can be seen
that SCL scales well to dense scenarios with more agents achieving similar perfor-
mance for 10 and 20 pedestrians. The forgotten ADE/FDE even decreases for some
sequences, indicating that observing more pedestrians can improve the preservation
of past experiences.
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Table 4.4: Quantitative results of Vanilla, EWC and SCL on real-world data collected
using an optical tracking system. The table lists the meantstandard deviation (std) of
ADE/FDE, on all environments at the sequence end under seq. end and the meantstd of
the forgotten ADE/FDE, which refers to the average increase in ADE/FDE, on previous
environments across the learning sequence. All error measures are presented in meters.

square — obstacle - coop. obstacle - square - coop.
Method forgotten seq. end forgotten seq. end
etho (mean#std) | (meantstd) (mean+tstd) | (meanzstd)
Vanill +0.244+0.28/ | 0.46+0.29/ +0.214+0.26/ | 0.45+0.29/
amiiial| 10.5840.67 | 0.97+0.66 || +0.50+0.64 | 0.9440.63
EWC +0.1940.29/ |0.431+0.27/ +0.124+0.23/ |0.41+0.25/
+0.42+0.67 0.8610.61 +0.31+£0.58 0.87+0.56
SCL +0.04+0.21/ | 0.36+0.23/ || +0.05+0.22/ | 0.40+0.28/
+0.13+0.50 |0.73+0.56 +0.114+0.50 | 0.80+0.60

4.5.4 Real-world Results

We first evaluate our method in real-world experiments assuming perfect perception
capabilities by using an external high-precision Optitrack tracking system. Secondly,
we use the robot’s on-board sensing capabilities combined with a detection and
tracking pipeline.

Perfect Perception

To evaluate our framework using the Optitrack system, we set up three environments
to replicate the ones considered in simulation (i.e., square, obstacle, cooperative).
Each environment is observed for T seconds. Table 4.4 reports quantitative results
on two different sequence orders similar to Tab. 4.2. Our framework significantly
outperformed the Vanilla baseline on both metrics indicating that we can not only
learn a prediction model from real human motion but also that we need to consoli-
date the learned knowledge. SCL was able to improve prediction performance and
learn certain concepts, such as avoiding crashing into walls, pillars, or fences. Fig-
ure 4.6 shows a qualitative example of the experiment, where our framework learns
to avoid both static obstacles and pedestrians.

On-board Perception

We now evaluate our framework in an uncontrolled hall environment using the
robot’s detection and tracking pipeline (i.e., LiDAR and cameras). In Fig. 4.7
we show qualitative results of the experiments with a moving robot. The fact that
the robot is constantly moving reduced the average collected trajectory length of
the interacting pedestrians making the prediction problem harder. Thus, employ-
ing SCL in more dense environments is expected to further improve the resulting
prediction performance. Nevertheless, the prediction model learned online when
pedestrians are likely to take corners, by observing how real pedestrians walk in
the environment. Note that the ETH and UCY datasets, on which our model was
pre-trained, contain almost no interactions with static obstacles, yet our framework
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Figure 4.6: Real-world validation using an Optitrack system that streams the pedestrian
states. The predicted pedestrian trajectories are depicted as green and blue disks.

Figure 4.7: Map view of the real-world application of SCL on moving robot using on-
board perception. The green and blue disks depict the predicted trajectories employing the
pre-trained model and the SCL-trained model, respectively. The red dotted lines depict the
pedestrians’ past trajectories. The pedestrians’ and robot’s future trajectories are shown
as solid red lines.

autonomously learns obstacle interactions. Furthermore, the occupancy map shown
in Fig. 4.7 is generated by the robot itself using the depth information from its Li-
DAR. Thus, our framework can continuously learn in new and unseen environments
autonomously.

4.6 Conclusion & Future Work

This chapter introduces a Self-Supervised Continual Learning (SCL) framework
to improve pedestrian prediction models using online streams of data. We com-
bined Elastic Weight Consolidation (EWC) and the rehearsal of a small constant
sized set of examples to overcome catastrophic forgetting. We showed through ex-
periments that SCL significantly outperforms vanilla gradient descent and performs
similarly to offline trained models with full access to pedestrian data in all considered
environments. Additionally, we showed in real-world experiments that our pedes-
trian prediction model can learn to generalize to new and unseen environments over
time. Future work can investigate different methods to determine when the model
should be updated, how different pedestrian behavior types could be integrated into
our framework and the integration of our approach with a motion planner to improve
the interaction-awareness between pedestrians and the robot.
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ooming out, this final chapter reflects on the broader picture by summarizing
the key contributions of the thesis, discussing their significance, and outlining
potential directions for future research.

5.1 Conclusion
5.1.1 Summary

This thesis was motivated by the challenges faced in local motion planning for
autonomous robots in human-centered environments, i.e., environments specifically
designed for humans. These challenges arise from the complexity and unpredictabil-
ity of human behavior, stringent safety requirements, the desired adherence to so-
cial norms, and the ability to adapt to ever-changing environments. While safety
is generally a fundamental aspect of local motion planning and interaction aware-
ness is important when navigating among decision-making agents such as robots
or humans, human-centered environments demand an additional focus on socially
compliant behavior that is comfortable and acceptable to humans. Additionally,
adaptability is key, as humans often adjust their behavior over time in response to
the robot. Altogether, the key elements of local motion planning in these environ-
ments can be summarized as interaction awareness, safety, social compliance,
and adaptability.

Existing approaches to motion planning lack several key features. On the one
hand, there are optimization-based approaches such as Model Predictive Control
(MPC), which generate control inputs by solving an optimization problem subject
to explicit constraints. While optimization-based methods can offer safety guaran-
tees, the common approach of splitting motion planning into trajectory prediction
and trajectory planning often results in behaviors that are opaque and hard to pre-
dict. Additionally, game-theoretic approaches, while modeling interactions, do not
scale well to scenarios involving many agents. On the other hand, learning-based
methods implicitly capture interactions. Reinforcement Learning (RL) methods, al-
though effective during runtime, lack safety guarantees and, like optimization-based
methods, require the desired behavior to be defined explicitly through a cost/reward
function. Imitation Learning (IL) methods eliminate the need to explicitly define a
cost function, but they typically lack formal safety guarantees.

Thus, we raised the question: How can we achieve interaction-aware, safe, so-
cially compliant, and adaptive local motion planning for robots in human-centered
environments? We can now provide answers based on the findings of this thesis:

Interaction Awareness. Initially, we considered the decoupled motion plan-
ning approach, which separates the tasks of trajectory prediction and trajectory
planning. Focusing on navigation among pedestrians, we leverage the interpretable
and established Social Force Model (SFM) to model the human response dynamics
to robot actions. While this approach allows the robot to be aware of its influence
on the other agents in the environment, it still requires a formulation of the desired
behavior. If the cost is formulated to reach the goal as fast as possible, the robot
will exhibit behaviors that exploit the cooperation of the pedestrians, which can be
perceived as unnatural or even dangerous by humans.
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Social Compliance and Safety. This led us to ask: How can we design mo-
tion planning systems that integrate socially compliant and interaction-aware be-
haviors while maintaining safety guarantees? IL offers a way to achieve socially
compliant and interaction-aware behaviors by through learning from demonstrated,
interaction-aware behaviors. However, IL, specifically approaches that directly learn
a policy, lack formal safety guarantees, making them unsuitable for safety-critical
environments. To address this, we introduced Robust Policy Control Barrier Func-
tions (RPCBFs), a practical framework for constructing Control Barrier Function
(CBF) approximations used to define a Safety Filter (SF). We demonstrated through
simulations and real-world experiments that our approach enhances safety and pro-
vides a more accurate estimation of the robust control-invariant set.

Adaptability. Lastly, we tackled the problem of adaptability in changing envi-
ronments. For instance, when a robot operates in a new environment or lacks prior
data on the present pedestrian behavior, it must be able to adapt to the new set-
ting. We specifically considered the scenario of pedestrian prediction models, which
are typically trained offline on commonly available datasets and do thus not adapt
to unseen behaviors. To overcome this limitation, we proposed a self-supervised
continual learning framework that leverages observed pedestrian behavior from the
perception pipeline to refine and improve the prediction models iteratively. Our
framework combines regularization techniques with a rehearsal strategy to miti-
gate catastrophic forgetting, a phenomenon which refers to Neural Networks forget-
ting previously acquired knowledge while learning new concepts. Our experiments
showed that using our framework, the pedestrian prediction model can progressively
generalize to new and unseen environments, showing its capability to adapt. While
we looked at the problem from a perspective focusing on pedestrian prediction, the
proposed framework is general and can be applied to other tasks that require contin-
ual learning. For instance, the framework can be used to improve the performance
of IL policies by continually learning from new observations.

5.1.2 Discussion

Reflecting on Fig. 1.2 and Chapter 1, this thesis has addressed various challenges
in motion planning within human-centered environments, tackling key aspects both
individually and in combination. However, the explicit consideration of social com-
pliance has not been directly addressed. While IL is a promising approach to learn-
ing socially compliant behavior, this thesis instead focused on ensuring that poli-
cies learned from demonstrations can be applied safely. Additionally, this thesis
did not propose a comprehensive framework that seamlessly integrates interaction
awareness, safety, social compliance and adaptability. Nonetheless, the methods
developed in this work lay the groundwork for such a holistic approach. The SF
offers a practical and interpretable approach to address safety and can be used
to modify potentially unsafe policies learned from demonstrations. The continual
learning framework enables the system to dynamically adapt to new environments
and tasks. Together, these components form a solid foundation for the future devel-
opment of an integrated framework capable of addressing the multifaceted demands
of human-centered motion planning. While this work focused on the problem from
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a navigation perspective, the proposed approaches to SFs and continual learning are
general and can be applied to other tasks. This opens the door for future research to
explore the application of these methods in other domains, such as manipulation or
mobile manipulation tasks. The following section discusses this and other directions
for future work.

5.2 Future Work

The goal of this thesis was to advance the application of autonomous robots in
human-centered environments, transitioning the field from its infancy to a more
mature and practical stage. However, motion planning in human-centered environ-
ments remains an ongoing challenge. Below, we outline some of the key challenges
that remain and suggest potential directions for future research:

A holistic framework: As discussed before, this thesis provides components for
a holistic framework that integrates interaction awareness, safety, social compli-
ance, and adaptability. Future work should focus on developing a comprehensive
framework that seamlessly integrates these components to address the multifaceted
demands of human-centered motion planning.

Safety: As mentioned, providing safety guarantees is always contingent on the
assumptions made in the problem formulation. Future work should focus on de-
veloping methods that provide safety guarantees under more general assumptions.
Additionally, the introduced Robust Policy Control Barrier Function (RPCBF) is
only an approximation of the true Control Barrier Function (CBF), as are neural
network-based CBFs. While these approximations provide a practical approach to
addressing safety in dynamic environments, a more rigorous analysis of the pro-
vided safety guarantees is needed. Future work could explore a deeper evaluation of
the safety assurances provided by RPCBFs and the development of more informed
strategies for sampling disturbance trajectories. For instance, by updating the as-
sumptions on the disturbances based on the observed behavior. Furthermore, it
should be investigated how the policy used for evaluation should be selected to en-
sure that the resulting SF is a valid CBF while reducing conservativeness. Other
future work could focus on addressing safety beyond collision avoidance, improving
the efficiency of verification tools for neural network-based CBFs and developing
methods that integrate learning-based and model-based safety approaches.

Other Applications: This thesis addressed the problem from a navigation per-
spective, as does much of the existing work. Future work should explore applying
the proposed methods to other domains, such as mobile manipulation tasks.

Evaluation of Socially-Compliant Behaviors in Real-World Scenarios: The
lack of comprehensive evaluation frameworks hinders research on socially compliant
behaviors. While benchmark datasets are available in fields like computer vision,
evaluating autonomous robots in real-world environments presents challenges, in-
cluding the need for ethics approval, reliable localization, and perception systems.
As a result, many approaches are typically evaluated in controlled lab environments,
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limiting the scope and applicability of the findings. Future work should focus on
developing a comprehensive evaluation framework that enables easier testing of au-
tonomous robots in human-centered environments. Furthermore, closer collabora-
tion between researchers from robotics and human-robot interaction fields is needed
to develop standardized evaluation metrics that can be used across different research
groups.







But that is another story and shall be told another time.
Michael Ende, The Neverending Story
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Complementary Projects

A.1 Simultaneous Synthesis and Verification of Neural
Control Barrier Functions

Chapter & introduced a practical, interpretable method for constructing approxima-
tions of robust CBFs. In contrast, neural CBFs leverage the universal approxima-
tion capabilities of neural networks to learn CBFs candidates. However, this requires
their certification as valid CBFs, which is the focus of this work. Unlike Chapter 3,
this paper does not account for disturbances.

We leverage bound propagation techniques and the Branch-and-Bound scheme to
efficiently verify that a neural network satisfies the conditions to be a CBF over
the continuous state space. To accelerate training, we present a framework, see
Figure A.1, that embeds the verification scheme into the training loop to synthesize
and verify a neural CBF simultaneously. In particular, we employ the verification
scheme to identify partitions of the state space that are not guaranteed to satisfy the
CBF conditions. We then expand the training dataset by incorporating additional
data from these partitions, referred to as counter-examples (CE). The neural network
is then optimized using the augmented dataset to meet the CBF conditions. We
show that our framework can efficiently certify a neural network as a CBF for a
non-linear control-affine system and render a larger safe set than state-of-the-art
neural CBF works. We further employ our learned neural CBF to derive a safe
controller to illustrate the practical use of our framework.

This appendix is based on the peer-reviewed publication:

X. Wang, L. Knoedler, F.B. Mathiesen, and J. Alonso-Mora. "Simultaneous Synthesis and Veri-
fication of Neural Control Barrier Functions Through Branch-and-Bound Verification-in-the-Loop
Training”, In 2024 European Control Conference (ECC). IEEE.

Statement of contributions: XW conducted this work as part of his master’s thesis, with LK
proposing the topic and serving as the daily supervisor. FBM provided additional guidance, and
JAM oversaw the research.
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Figure A.1: A schematic overview of the presented Branch-and-Bound Verification-in-
the-Loop Training.
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A.2 Current-Based Impedance Control for Interacting
with Mobile Manipulators

While Chapter 8 and Appendixz A.1 address safety through set invariance using SFs
based on CBFs, an alternative approach is compliant control. Unlike motion control,
which requlates a robot’s movement, compliant control focuses on controlling the ap-
plied forces to achieve safer interactions with the environment. The work presented
here adapts impedance control for mobile manipulators consisting of off-the-shelf
components without the use of force or torque sensors.

A calibration method is designed that enables estimation of the actuators’ cur-
rent /torque ratios and frictions, used by the adapted impedance controller, and
that can handle model errors. The calibration method and the performance of
the designed controller are experimentally validated using the Kinova GEN3 Lite
arm. Results show that the calibration method is consistent and that the designed
controller for the arm is compliant while also being able to track targets with five-
millimeter precision when no interaction is present. Additionally, this paper presents
two operational modes for interacting with the mobile manipulator: one for guiding
the robot around the workspace through interacting with the arm and another for
executing a tracking task, both maintaining compliance to external forces, see Fig-
ure A.2. These operational modes were tested in real-world experiments, affirming
their practical applicability and effectiveness

This appendix is based on the peer-reviewed publication:

J. de Wolde, L. Knoedler, G. Garofalo, and J. Alonso-Mora. "Current-Based Impedance Con-
trol for Interacting with Mobile Manipulators.”, In 2024 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE.

Statement of contributions: JAW conducted this work as part of his master’s thesis, with LK
proposing the topic and serving as the daily supervisor. GG provided valuable feedback, and JAM
oversaw the research.
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Guidance
~ Mode

Figure A.2: Compliance-enabled operational modes implemented on mobile manipulator
without force/torque sensors. Guidance mode: mobile manipulator is led through inter-
action with arm. Tracking mode: end-effector (green circle) tracks target (red dot) while
being compliant with user interactions
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A.3 Multi-Robot Local Motion Planning Using
Dynamic Optimization Fabrics

In contrast to the previous works, this study addresses multi-robot local motion plan-
ning in close proximity. While there are parallels to motion planning in human-
centered environments, assuming the motion policies of the other robots are (partly)
known is a valid and simplifying assumption. This allows us to focus on the com-
plexities of systems with many degrees of freedom (DOF). We approach this using
geometric fabrics, extended to multi-robot systems.

Geometric approaches, like Riemannian Motion Policies and geometric fabrics, offer
better scalability than optimization-based methods like Model Predictive Control.
By integrating components like collision avoidance with Riemannian metrics, fabrics
enable symbolic pre-computation, reducing computational costs. They also promote
asymptotic stability, making them ideal for reactive motion planning. While suc-
cessful in single-robot applications, fabrics are prone to local minima, which can
lead to deadlocks in multi-robot scenarios.

This work develops an online local motion planning algorithm for multiple high-DOF
manipulators in shared workspaces, focusing on geometric fabrics for close-proximity
pick-and-place tasks (see Figure A.3). We introduce Rollout Fabrics (RF), which
simulates multi-robot fabric motion over a prediction horizon to detect and resolve
deadlocks by adapting goal-reaching parameters.

This appendix is based on the peer-reviewed publication:

S. Bakker*, L. Knoedler*, M. Spahn, W. Béhmer, and J. Alonso-Mora. "Multi-Robot Local Motion
Planning Using Dynamic Optimization Fabrics", 2023 International Symposium on Multi-Robot
and Multi-Agent Systems (MRS). IEEE.

* The authors contributed equally.

Statement of contributions: SB and LK developed the method and co-authored the paper. SB
implemented Rollout Fabrics, while LK focused on deadlock detection and resolution, as well as
conducting the experiments. MS provided expertise on Fabrics, and JAM supervised the research.
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Figure A.3: Multi-robot pick-and-place scenario in close proximity. Franka Emika Pan-
das pick cubes avoiding collisions.



[10]

[11]

Bibliography

S. Schaal. “The new robotics—towards human-centered machines”. In: HFSP
journal 1.2 (2007), pp. 115-126.

G. Fragapane, H.-H. Hvolby, F. Sgarbossa, and J. O. Strandhagen. “Au-
tonomous mobile robots in hospital logistics”. In: IFIP International Con-

ference on Advances in Production Management Systems. Springer. 2020,
pp. 672-679.

T. Kruse, A. K. Pandey, R. Alami, and A. Kirsch. “Human-aware robot
navigation: A survey”. In: Robotics and Autonomous Systems 61.12 (2013),
pp. 1726-1743.

K. Dautenhahn. “Socially intelligent robots: dimensions of human-robot in-
teraction”. In: Philosophical transactions of the royal society B: Biological
sciences 362.1480 (2007), pp. 679-704.

ABB. ABB demonstrates concept of mobile laboratory robot for Hospital of
the Future. 2019. URL: https://new.abb.com/news/detail/37301/abb-
demonstrates-concept-of-mobile-laboratory-robot-for-hospital-
of-the-future (visited on 05/29/2025).

D. Grozdev. Tokyo Shibuya crossing during rush hour. 2018. URL: https:
//www .youtube.com/watch?v=Bi6lue_cpMY (visited on 05/29/2025).

W. Schwarting, J. Alonso-Mora, and D. Rus. “Planning and decision-making
for autonomous vehicles”. In: Annual Review of Control, Robotics, and Au-
tonomous Systems 1.1 (2018), pp. 187-210.

D. Fox, W. Burgard, and S. Thrun. “The dynamic window approach to col-
lision avoidance”. In: IEEE Robotics & Automation Magazine 4.1 (1997),
pp- 23-33.

J. Van den Berg, M. Lin, and D. Manocha. “Reciprocal velocity obstacles for
real-time multi-agent navigation”. In: 2008 IEEE international conference
on robotics and automation. leee. 2008, pp. 1928-1935.

J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart.
“Optimal reciprocal collision avoidance for multiple non-holonomic robots”.
In: Distributed autonomous robotic systems: The 10th international sympo-
stum. Springer. 2013, pp. 203-216.

S. Quinlan and O. Khatib. “Elastic bands: Connecting path planning and
control”. In: [1993] Proceedings IEEE International Conference on Robotics
and Automation. IEEE. 1993, pp. 802-807.

73


https://new.abb.com/news/detail/37301/abb-demonstrates-concept-of-mobile-laboratory-robot-for-hospital-of-the-future
https://new.abb.com/news/detail/37301/abb-demonstrates-concept-of-mobile-laboratory-robot-for-hospital-of-the-future
https://new.abb.com/news/detail/37301/abb-demonstrates-concept-of-mobile-laboratory-robot-for-hospital-of-the-future
https://www.youtube.com/watch?v=Bi61ue_cpMY
https://www.youtube.com/watch?v=Bi61ue_cpMY

74

Bibliography

[12]

[13]

[23]

[24]

O. Khatib. “Real-time obstacle avoidance for manipulators and mobile robots”.
In: The international journal of robotics research 5.1 (1986), pp. 90-98.

G. Ferrer, A. Garrell, and A. Sanfeliu. “Robot companion: A social-force
based approach with human awareness-navigation in crowded environments”.
In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. IEEE. 2013, pp. 1688-1694.

F. Leon and M. Gavrilescu. “A review of tracking and trajectory prediction
methods for autonomous driving”. In: Mathematics 9.6 (2021), p. 660.

C. Zhang and C. Berger. “Pedestrian behavior prediction using deep learning
methods for urban scenarios: A review”. In: IEEFE Transactions on Intelligent
Transportation Systems 24.10 (2023), pp. 10279-10301.

T. Lesort, V. Lomonaco, A. Stoian, D. Maltoni, D. Filliat, and N. Diaz-
Rodriguez. “Continual learning for robotics: Definition, framework, learning
strategies, opportunities and challenges”. In: Information Fusion 58 (2020),
pp. H2-68.

W. Schwarting, J. Alonso-Mora, L. Paull, S. Karaman, and D. Rus. “Safe
nonlinear trajectory generation for parallel autonomy with a dynamic vehicle
model”. In: IEEE Transactions on Intelligent Transportation Systems 19.9
(2017), pp. 2994-3008.

B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora. “Model predictive con-
touring control for collision avoidance in unstructured dynamic environments”.
In: IEEFE Robotics and Automation Letters 4.4 (2019), pp. 4459-4466.

0. De Groot, L. Ferranti, D. M. Gavrila, and J. Alonso-Mora. “Topology-
driven parallel trajectory optimization in dynamic environments”. In: IEEE
Transactions on Robotics 41 (2024), pp. 110-126.

G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou.
“Aggressive driving with model predictive path integral control”. In: 2016
IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2016, pp. 1433-1440.

G. Williams, A. Aldrich, and E. A. Theodorou. “Model predictive path inte-
gral control: From theory to parallel computation”. In: Journal of Guidance,
Control, and Dynamics 40.2 (2017), pp. 344-357.

J.Yin, Z. Zhang, E. Theodorou, and P. Tsiotras. “Trajectory distribution con-
trol for model predictive path integral control using covariance steering”. In:
2022 International Conference on Robotics and Automation (ICRA). IEEE.
2022, pp. 1478-1484.

D. Sadigh, N. Landolfi, S. S. Sastry, S. A. Seshia, and A. D. Dragan. “Plan-
ning for cars that coordinate with people: leveraging effects on human actions
for planning and active information gathering over human internal state”. In:
Autonomous Robots 42 (2018), pp. 1405-1426.

T. Bagar and G. J. Olsder. Dynamic noncooperative game theory. SIAM,
1998.



75

[26]

[27]

[36]

[37]

L. Streichenberg, E. Trevisan, J. J. Chung, R. Siegwart, and J. Alonso-Mora.
“Multi-agent path integral control for interaction-aware motion planning in
urban canals”. In: 2023 IEEFE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2023, pp. 1379-1385.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et al. “Mastering the Game of Go
without Human Knowledge”. In: ().

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al. “Mastering chess and
shogi by self-play with a general reinforcement learning algorithm”. In: arXiv
preprint arXiv:1712.01815 (2017).

G. Lample and D. S. Chaplot. “Playing FPS games with deep reinforcement
learning”. In: Proceedings of the AAAI conference on artificial intelligence.
Vol. 31. 1. 2017.

K. Zhu and T. Zhang. “Deep reinforcement learning based mobile robot navi-
gation: A review”. In: Tsinghua Science and Technology 26.5 (2021), pp. 674—
691.

Y. F. Chen, M. Liu, M. Everett, and J. P. How. “Decentralized non-communicating

multiagent collision avoidance with deep reinforcement learning”. In: 2017
IEEE international conference on robotics and automation (ICRA). IEEE.
2017, pp. 285-292.

D. Han, B. Mulyana, V. Stankovic, and S. Cheng. “A survey on deep re-
inforcement learning algorithms for robotic manipulation”. In: Sensors 23.7
(2023), p. 3762.

K.-C. Hsu, H. Hu, and J. F. Fisac. “The safety filter: A unified view of
safety-critical control in autonomous systems”. In: Annual Review of Control,
Robotics, and Autonomous Systems 7 (2023), pp. 47-72.

S. Li and O. Bastani. “Robust model predictive shielding for safe reinforce-
ment learning with stochastic dynamics”. In: 2020 IEEFE International Con-
ference on Robotics and Automation (ICRA). IEEE. 2020, pp. 7166-7172.

K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger. “Probabilistic
model predictive safety certification for learning-based control”. In: IEEE
Transactions on Automatic Control 67.1 (2021), pp. 176-188.

T. Osa, J. Pajarinen, G. Neumann, J. A. Bagnell, P. Abbeel, J. Peters, et
al. “An algorithmic perspective on imitation learning”. In: Foundations and

Trends® in Robotics 7.1-2 (2018), pp. 1-179.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. “A survey of robot
learning from demonstration”. In: Robotics and autonomous systems 57.5
(2009), pp. 469-483.

A.Y. Ng, S. Russell, et al. “Algorithms for inverse reinforcement learning.”
In: Ieml. Vol. 1. 2. 2000, p. 2.




Bibliography

[41]

[42]

[43]

[44]

[45]

M. Bain and C. Sammut. “A Framework for Behavioural Cloning.” In: Ma-
chine Intelligence 15. 1995, pp. 103-129.

P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi,
M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner, et al.
“Relational inductive biases, deep learning, and graph networks”. In: arXiv
preprint arXiv:1806.01261 (2018).

R. Pérez-Dattari, C. Della Santina, and J. Kober. “PUMA: Deep Metric
Imitation Learning for Stable Motion Primitives”. In: Advanced Intelligent
Systems 6.11 (2024), p. 2400144.

J. Gu, C. Sun, and H. Zhao. “Densetnt: End-to-end trajectory prediction from
dense goal sets”. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2021, pp. 15303-15312.

K. Mangalam, Y. An, H. Girase, and J. Malik. “From goals, waypoints &
paths to long term human trajectory forecasting”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2021, pp. 15233~
15242.

Y. Yuan, X. Weng, Y. Ou, and K. M. Kitani. “Agentformer: Agent-aware

transformers for socio-temporal multi-agent forecasting”. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. 2021, pp. 9813~
9823.

P. Trautman and A. Krause. “Unfreezing the robot: Navigation in dense,
interacting crowds”. In: 2010 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. IEEE. 2010, pp. 797-803.

D. Fridovich-Keil, E. Ratner, L. Peters, A. D. Dragan, and C. J. Tomlin.
“Efficient iterative linear-quadratic approximations for nonlinear multi-player
general-sum differential games”. In: 2020 IEEFE international conference on
robotics and automation (ICRA). IEEE. 2020, pp. 1475-1481.

S. Le Cleac’h, M. Schwager, and Z. Manchester. “Lucidgames: Online un-
scented inverse dynamic games for adaptive trajectory prediction and plan-
ning”. In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 5485-5492.

L. Streichenberg, E. Trevisan, J. J. Chung, R. Siegwart, and J. Alonso-Mora.
“Multi-agent path integral control for interaction-aware motion planning in
urban canals”. In: 2023 IEEFE International Conference on Robotics and Au-
tomation (ICRA). IEEE. 2023, pp. 1379-1385.

Y. Chen, S. Veer, P. Karkus, and M. Pavone. “Interactive joint planning for
autonomous vehicles”. In: IEEE Robotics and Automation Letters (2023).

D. Sadigh, N. Landolfi, S. S. Sastry, S. A. Seshia, and A. D. Dragan. “Plan-
ning for cars that coordinate with people: leveraging effects on human actions
for planning and active information gathering over human internal state”. In:
Autonomous Robots 42 (2018), pp. 1405-1426.



7

[51]

[52]

[53]

J. L. V. Espinoza, A. Liniger, W. Schwarting, D. Rus, and L. Van Gool.
“Deep interactive motion prediction and planning: Playing games with mo-
tion prediction models”. In: Learning for Dynamics and Control Conference.

PMLR. 2022, pp. 1006-1019.

D. Helbing and P. Molnar. “Social force model for pedestrian dynamics”. In:
Physical review E 51.5 (1995), p. 4282.

N. Tsoi, A. Xiang, P. Yu, S. S. Sohn, G. Schwartz, S. Ramesh, M. Hussein,
A. W. Gupta, M. Kapadia, and M. Vazquez. “Sean 2.0: Formalizing and
generating social situations for robot navigation”. In: IEEE Robotics and
Automation Letters 7.4 (2022), pp. 11047-11054.

M. Moussaid, D. Helbing, S. Garnier, A. Johansson, M. Combe, and G.
Theraulaz. “Experimental study of the behavioural mechanisms underlying
self-organization in human crowds”. In: Proceedings of the Royal Society B:
Biological Sciences 276.1668 (2009), pp. 2755-2762.

G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou.
“Information-theoretic model predictive control: Theory and applications
to autonomous driving”. In: IEEE Transactions on Robotics 34.6 (2018),
pp. 1603-1622.

C. Scholler, V. Aravantinos, F. Lay, and A. Knoll. “What the constant ve-
locity model can teach us about pedestrian motion prediction”. In: IFEE
Robotics and Automation Letters 5.2 (2020), pp. 1696-1703.

B. Brito, M. Everett, J. P. How, and J. Alonso-Mora. “Where to go next:
Learning a subgoal recommendation policy for navigation in dynamic envi-
ronments”. In: IEEE Robotics and Automation Letters 6.3 (2021), pp. 4616
4623.

C. Pezzato, C. Salmi, M. Spahn, E. Trevisan, J. Alonso-Mora, and C. H.
Corbato. “Sampling-based model predictive control leveraging parallelizable
physics simulations”. In: arXiv preprint arXiv:2307.09105 (2023).

J. Betz, A. Heilmeier, A. Wischnewski, T. Stahl, and M. Lienkamp. “Au-
tonomous driving—a crash explained in detail”. In: Applied Sciences 9.23
(2019), p. 5126.

T. Haidegger. “Autonomy for surgical robots: Concepts and paradigms”. In:
IEEE Transactions on Medical Robotics and Bionics 1.2 (2019), pp. 65-76.

A.D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. “Control barrier function
based quadratic programs for safety critical systems”. In: IEEE Transactions
on Automatic Control 62.8 (2016), pp. 3861-3876.

P. Wieland and F. Allgéwer. “Constructive safety using control barrier func-
tions”. In: IFAC Proceedings Volumes 40.12 (2007), pp. 462—467.

C. Dawson, S. Gao, and C. Fan. “Safe control with learned certificates: A
survey of neural lyapunov, barrier, and contraction methods for robotics and
control”. In: IEEE Transactions on Robotics 39.3 (2023), pp. 1749-1767.




78

Bibliography

[63]

[66]

[67]

[74]

A. Peruffo, D. Ahmed, and A. Abate. “Automated and formal synthesis of
neural barrier certificates for dynamical models”. In: International confer-
ence on tools and algorithms for the construction and analysis of systems.

Springer. 2021, pp. 370-388.

L. Lindemann, H. Hu, A. Robey, H. Zhang, D. Dimarogonas, S. Tu, and N.
Matni. “Learning hybrid control barrier functions from data”. In: Conference
on robot learning. PMLR. 2021, pp. 1351-1370.

O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and C. Fan.
“How to train your neural control barrier function: Learning safety filters for
complex input-constrained systems”. In: 2024 IEEE International Confer-
ence on Robotics and Automation (ICRA). IEEE. 2024, pp. 11532-11539.

A. Robey, H. Hu, L. Lindemann, H. Zhang, D. V. Dimarogonas, S. Tu, and
N. Matni. “Learning control barrier functions from expert demonstrations”.
In: 2020 59th IEEE Conference on Decision and Control (CDC). IEEE. 2020,
pp. 3717-3724.

M. Saveriano and D. Lee. “Learning barrier functions for constrained mo-
tion planning with dynamical systems”. In: 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2019, pp. 112—
119.

S. Zhang, O. So, K. Garg, and C. Fan. “Gcbf+: A neural graph control
barrier function framework for distributed safe multi-agent control”. In: arXiv
preprint arXiv:2401.14554 (2024).

M. Srinivasan, A. Dabholkar, S. Coogan, and P. A. Vela. “Synthesis of con-
trol barrier functions using a supervised machine learning approach”. In:
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE. 2020, pp. 7139-7145.

X. Wang, L. Knoedler, F. B. Mathiesen, and J. Alonso-Mora. “Simultaneous
synthesis and verification of neural control barrier functions through branch-
and-bound verification-in-the-loop training”. In: 2024 European Control Con-
ference (ECC). IEEE. 2024, pp. 571-578.

Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan. “Learning safe multi-agent
control with decentralized neural barrier certificates”. In: arXiv preprint
arXiw:2101.05436 (2021).

C. Dawson, Z. Qin, S. Gao, and C. Fan. “Safe nonlinear control using ro-
bust neural lyapunov-barrier functions”. In: Conference on Robot Learning.
PMLR. 2022, pp. 1724-1735.

H. Yu, C. Hirayama, C. Yu, S. Herbert, and S. Gao. “Sequential neural
barriers for scalable dynamic obstacle avoidance”. In: 2023 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS). IEEE. 2023,
pp- 11241-11248.

M. Jankovic. “Robust control barrier functions for constrained stabilization
of nonlinear systems”. In: Automatica 96 (2018), pp. 359-367.



79

[75]

[36]

[87]

M. H. Cohen, C. Belta, and R. Tron. “Robust control barrier functions for
nonlinear control systems with uncertainty: A duality-based approach”. In:
2022 IEEFE 61st Conference on Decision and Control (CDC). IEEE. 2022,
pp. 174-179.

I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. “A time-dependent Hamilton-
Jacobi formulation of reachable sets for continuous dynamic games”. In: IEEE
Transactions on automatic control 50.7 (2005), pp. 947-957.

J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert. “Robust
control barrier—value functions for safety-critical control”. In: 2021 60th IEEE
Conference on Decision and Control (CDC). IEEE. 2021, pp. 6814-6821.

K. P. Wabersich, A. J. Taylor, J. J. Choi, K. Sreenath, C. J. Tomlin, A. D.
Ames, and M. N. Zeilinger. “Data-driven safety filters: Hamilton-jacobi reach-
ability, control barrier functions, and predictive methods for uncertain sys-
tems”. In: IEEE Control Systems Magazine 43.5 (2023), pp. 137-177.

S. Tonkens and S. Herbert. “Refining control barrier functions through Ha-
milton—Jacobi reachability”. In: 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE. 2022, pp. 13355-13362.

S. Tonkens, A. Toofanian, Z. Qin, S. Gao, and S. Herbert. “Patching Neural
Barrier Functions Using Hamilton-Jacobi Reachability”. In: arXiv preprint
arXiv:2304.09850 (2023).

i. m. mitchell ian m. “the flexible, extensible and efficient toolbox of level set
methods”. In: journal of scientific computing 35 (2008), pp. 300—-329.

S. Bansal and C. J. Tomlin. “Deepreach: A deep learning approach to high-
dimensional reachability”. In: 2021 IEEFE International Conference on Robotics
and Automation (ICRA). IEEE. 2021, pp. 1817-1824.

K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac. “Safety and liveness
guarantees through reach-avoid reinforcement learning”. In: arXiv preprint
arXiv:2112.12288 (2021).

M. Ganai, S. Gao, and S. Herbert. “Hamilton-jacobi reachability in rein-

forcement learning: A survey”. In: IEEE Open Journal of Control Systems
(2024).
0. So and C. Fan. “Solving stabilize-avoid optimal control via epigraph
form and deep reinforcement learning”. In: arXiw preprint arXiv:2305.14154
(2023).
A. Lin, S. Peng, and S. Bansal. “One Filter to Deploy Them All: Robust

Safety for Quadrupedal Navigation in Unknown Environments”. In: arXiv
preprint arXiv:2412.09989 (2024).

M. Ahmadi, X. Xiong, and A. D. Ames. “Risk-averse control via CVaR, bar-
rier functions: Application to bipedal robot locomotion”. In: IEEE Control
Systems Letters 6 (2021), pp. 878-883.




80

Bibliography

[88]

[90]

[91]

[95]

[96]

[99]

[100]

[101]

S. Liu and C. A. Belta. “Risk-Aware Adaptive Control Barrier Functions for
Safe Control of Nonlinear Systems under Stochastic Uncertainty”. In: arXiv
preprint arXiw:2503.19205 (2025).

X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames. “Robustness of control
barrier functions for safety critical control”. In: IFAC-PapersOnLine 48.27
(2015), pp. 54-61.

A. Singletary, A. Swann, Y. Chen, and A. D. Ames. “Onboard safety guaran-
tees for racing drones: High-speed geofencing with control barrier functions”.
In: IEEFE Robotics and Automation Letters 7.2 (2022), pp. 2897-2904.

Y. Chen, M. Jankovic, M. Santillo, and A. D. Ames. “Backup control barrier
functions: Formulation and comparative study”. In: 2021 60th IEEE Confer-
ence on Decision and Control (CDC). IEEE. 2021, pp. 6835-6841.

D. R. Agrawal, R. Chen, and D. Panagou. “gatekeeper: Online safety verifi-
cation and control for nonlinear systems in dynamic environments”. In: IEEE
Transactions on Robotics (2024).

D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert. “Constrained
model predictive control: Stability and optimality”. In: Automatica 36.6 (2000),
pp. 789-814.

D. Kim, J. Di Carlo, B. Katz, G. Bledt, and S. Kim. “Highly dynamic
quadruped locomotion via whole-body impulse control and model predictive
control”. In: arXiv preprint arXiv:1909.06586 (2019).

E. Alcald, V. Puig, J. Quevedo, and U. Rosolia. “Autonomous racing using
linear parameter varying-model predictive control (LPV-MPC)”. In: Control
Engineering Practice 95 (2020), p. 104270.

Z. Wang, O. So, J. Gibson, B. Vlahov, M. S. Gandhi, G.-H. Liu, and E. A.
Theodorou. “Variational inference MPC using Tsallis divergence”. In: arXiw
preprint arXiv:2104.00241 (2021).

0. So, Z. Wang, and E. A. Theodorou. “Maximum entropy differential dy-
namic programming”. In: 2022 International Conference on Robotics and
Automation (ICRA). IEEE. 2022, pp. 3422-3428.

A. Boccia, L. Griine, and K. Worthmann. “Stability and feasibility of state
constrained MPC without stabilizing terminal constraints”. In: Systems &
control letters 72 (2014), pp. 14-21.

C. Kirches, L. Wirsching, H. G. Bock, and J. P. Schléder. “Efficient direct
multiple shooting for nonlinear model predictive control on long horizons”.
In: Journal of Process Control 22.3 (2012), pp. 540-550.

K. P. Wabersich and M. N. Zeilinger. “A predictive safety filter for learning-
based control of constrained nonlinear dynamical systems”. In: Automatica
129 (2021), p. 109597.

C. De Boor. “A practical guide to splines”. In: Springer-Verlag google schola
2 (1978), pp. 4135-4195.



81

[102] A. Altarovici, O. Bokanowski, and H. Zidani. “A general Hamilton-Jacobi
framework for non-linear state-constrained control problems”. In: ESAIM:
Control, Optimisation and Calculus of Variations 19.2 (2013), pp. 337-357.

[103] Q. Nguyen and K. Sreenath. “Robust safety-critical control for dynamic
robotics”. In: IEEFE Transactions on Automnatic Control 67.3 (2021), pp. 1073~
1088.

[104] Q. Nguyen and K. Sreenath. “Exponential control barrier functions for en-
forcing high relative-degree safety-critical constraints”. In: 2016 American
Control Conference (ACC). IEEE. 2016, pp. 322-328.

[105] W. Xiao and C. Belta. “Control barrier functions for systems with high rela-
tive degree”. In: 2019 IEEE 58th conference on decision and control (CDC).
IEEE. 2019, pp. 474-479.

[106] P. Heidlauf, A. Collins, M. Bolender, and S. Bak. “Verification Challenges
in F-16 Ground Collision Avoidance and Other Automated Maneuvers.” In:
ARCH@ ADHS 2018 (2018).

[107] B.L. Stevens, F. L. Lewis, and E. N. Johnson. Aircraft control and simulation:
dynamics, controls design, and autonomous systems. John Wiley & Sons,
2015.

[108] J. Yin, C. Dawson, C. Fan, and P. Tsiotras. “Shield Model Predictive Path
Integral: A Computationally Efficient Robust MPC Method Using Control
Barrier Functions”. In: IEEE Robotics and Automation Letters 8.11 (2023),
pp- 7106-7113. po1: 10.1109/LRA.2023.3315211.

[109] J. Yin, Z. Zhang, E. Theodorou, and P. Tsiotras. “Trajectory Distribution
Control for Model Predictive Path Integral Control using Covariance Steer-
ing”. In: 2022 International Conference on Robotics and Automation (ICRA).
2022, pp. 1478-1484. pOI: 10.1109/ICRA46639.2022.9811615.

[110] J.Yin, P. Tsiotras, and K. Berntorp. Chance-Constrained Information- Theoretic
Stochastic Model Predictive Control with Safety Shielding. 2024. arXiv: 2408.
00494 [cs.RO]. URL: https://arxiv.org/abs/2408.00494.

[111] W. He, Z. Li, and C. P. Chen. “A survey of human-centered intelligent robots:
issues and challenges”. In: IEEE/CAA Journal of Automatica Sinica 4.4
(2017), pp. 602-609.

[112] M. Pfeiffer, G. Paolo, H. Sommer, J. Nieto, R. Siegwart, and C. Cadena.
“A data-driven model for interaction-aware pedestrian motion prediction in
object cluttered environments”. In: 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE. 2018, pp. 5921-5928.

[113] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese.
“Social Istm: Human trajectory prediction in crowded spaces”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016,
pp. 961-971.


https://doi.org/10.1109/LRA.2023.3315211
https://doi.org/10.1109/ICRA46639.2022.9811615
https://arxiv.org/abs/2408.00494
https://arxiv.org/abs/2408.00494
https://arxiv.org/abs/2408.00494

82

Bibliography

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

P. Trautman and A. Krause. “Unfreezing the robot: Navigation in dense,
interacting crowds”. In: 2010 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. IEEE. 2010, pp. 797-803.

A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and
K. O. Arras. “Human motion trajectory prediction: A survey”. In: The In-
ternational Journal of Robotics Research 39.8 (2020), pp. 895-935.

R. Lohner. “On the modeling of pedestrian motion”. In: Applied Mathematical
Modelling 34.2 (2010), pp. 366-382.

B. Ivanovic and M. Pavone. “The trajectron: Probabilistic multi-agent trajec-
tory modeling with dynamic spatiotemporal graphs”. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2019, pp. 2375—
2384.

J. Amirian, J.-B. Hayet, and J. Pettré. “Social ways: Learning multi-modal
distributions of pedestrian trajectories with gans”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops. 2019, pp. 0-0.

M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart. “Pre-
dicting actions to act predictably: Cooperative partial motion planning with
maximum entropy models”. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE. 2016, pp. 2096-2101.

J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. “Over-
coming catastrophic forgetting in neural networks”. In: Proceedings of the
national academy of sciences 114.13 (2017), pp. 3521-3526.

D. Helbing and P. Molnar. “Social force model for pedestrian dynamics”. In:
Physical review E 51.5 (1995), p. 4282.

S. Kim, S. J. Guy, W. Liu, D. Wilkie, R. W. Lau, M. C. Lin, and D. Manocha.
“Brvo: Predicting pedestrian trajectories using velocity-space reasoning”. In:
The International Journal of Robotics Research 34.2 (2015), pp. 201-217.

A. Bera, S. Kim, T. Randhavane, S. Pratapa, and D. Manocha. “GLMP-
realtime pedestrian path prediction using global and local movement pat-
terns”. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). IEEE. 2016.

S. Becker, R. Hug, W. Hubner, and M. Arens. “Red: A simple but effective
baseline predictor for the trajnet benchmark”. In: Proceedings of the European
Conference on Computer Vision (ECCV) Workshops. 2018, pp. 0-0.

A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi. “Social gan:
Socially acceptable trajectories with generative adversarial networks”. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition. 2018, pp. 2255-2264.



83

[126]

[127]

[128]

[129]

[130]

[131]

[132]

133

[134]

[135]

[136]

[137]

N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker.
“Desire: Distant future prediction in dynamic scenes with interacting agents”.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2017, pp. 336-345.

B. Brito, H. Zhu, W. Pan, and J. Alonso-mora. “Social-vrnn: One-shot multi-
modal trajectory prediction for interacting pedestrians”. In: 2020 Conference
on Robot Learning (CoRL). 2020.

S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool. “You’ll never walk
alone: Modeling social behavior for multi-target tracking”. In: 2009 IEEE
12th International Conference on Computer Vision. IEEE. 2009, pp. 261-
268.

A. Lerner, Y. Chrysanthou, and D. Lischinski. “Crowds by example”. In:
Computer graphics forum. Vol. 26. Wiley Online Library. 2007, pp. 655-664.

H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krish-
nan, Y. Pan, G. Baldan, and O. Beijbom. “nuscenes: A multimodal dataset
for autonomous driving”. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2020, pp. 11621-11631.

M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D.
Wang, P. Carr, S. Lucey, D. Ramanan, et al. “Argoverse: 3d tracking and
forecasting with rich maps”. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2019, pp. 8748-8757.

M. Delange, R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G.
Slabaugh, and T. Tuytelaars. “A continual learning survey: Defying forget-
ting in classification tasks”. In: IEEFE Transactions on Pattern Analysis and
Machine Intelligence (2021).

G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter. “Continual
lifelong learning with neural networks: A review”. In: Neural Networks 113
(2019), pp. 54-71.

J. Yoon, E. Yang, J. Lee, and S. J. Hwang. “Lifelong Learning with Dy-
namically Expandable Networks”. In: International Conference on Learning
Representations. 2018.

C.-Y. Hung, C.-H. Tu, C.-E. Wu, C.-H. Chen, Y.-M. Chan, and C.-S. Chen.
“Compacting, picking and growing for unforgetting continual learning”. In:
Advances in Neural Information Processing Systems 32 (2019).

X. Li, Y. Zhou, T. Wu, R. Socher, and C. Xiong. “Learn to grow: A contin-
ual structure learning framework for overcoming catastrophic forgetting”. In:
International Conference on Machine Learning. PMLR. 2019, pp. 3925-3934.

S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert. “icarl: Incremental
classifier and representation learning”. In: Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition. 2017, pp. 2001-2010.




84

Bibliography

[138]

[139]

[140]

[141]

[142]

[143]

[144]

H. Shin, J. K. Lee, J. Kim, and J. Kim. “Continual learning with deep gen-
erative replay”. In: Advances in neural information processing systems. 2017,
pp. 2990-2999.

R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. “Gradient based sample
selection for online continual learning”. In: Advances in neural information
processing systems 32 (2019).

R. Aljundi, K. Kelchtermans, and T. Tuytelaars. “Task-free continual learn-
ing”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2019, pp. 11254-11263.

F. Zenke, B. Poole, and S. Ganguli. “Continual learning through synaptic in-
telligence”. In: International Conference on Machine Learning. PMLR. 2017,
pp. 3987-3995.

A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, and
S. Savarese. “Sophie: An attentive gan for predicting paths compliant to
social and physical constraints”. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, pp. 1349-1358.

C. Scholler, V. Aravantinos, F. Lay, and A. Knoll. “What the constant ve-
locity model can teach us about pedestrian motion prediction”. In: IEEE
Robotics and Automation Letters 5.2 (2020), pp. 1696-1703.

C. I. Mavrogiannis, W. B. Thomason, and R. A. Knepper. “Social momen-
tum: A framework for legible navigation in dynamic multi-agent environ-
ments”. In: Proceedings of the 2018 ACM/IEEE International Conference
on Human-Robot Interaction. 2018, pp. 361-369.









Acknowledgments

I approached these acknowledgments by staring at a blank page for a very long
time, reminiscing about the past four years filled with challenges, growth, incredible
people, countless tea breaks, and memories I will keep forever. Having tackled
the hardest part, the first sentence, I am now ready to thank everyone. After
all, acknowledgments are about recognizing that this journey was never truly mine
alone. I will also take this opportunity to capture my favorite memories to make
sure I don’t forget them. Please bear with me if these acknowledgments run a little
long!

First and foremost, I would like to thank my supervisor and promotor, Javier, for
giving me the chance to do a PhD surrounded by such kind and supportive people.
I have felt truly lucky to be part of the Autonomous Multi-Robots (AMR) lab.
Thanks for your support and the many opportunities you have provided me with. I
am also sincerely grateful to my (co-)promotor, Robert, for his guidance throughout
this journey. I truly appreciated your thoughtful advice and the insightful, in-depth
discussions on my propositions. My sincere thanks also go to my PhD committee,
Martijn Wisse, Vanessa Evers, Chuchu Fan, Omiir Arslan, and Hans Hellendoorn,
for their time, thoughtful feedback, and (hopefully) engaging discussion.

I am also incredibly grateful to the H2020 Harmony project, which funded my PhD
and allowed me to be part of something bigger. Through it, I had the chance
to visit Zirich, Twente, Vasteras, Lisbon, and Edinburgh, each trip brought new
collaborations, perspectives, and memories. Thank you to everyone involved for the
shared work and effort, especially in making the final demo a success. Special thanks
to Stefano, Aftab, and Fabio for bridging the gap between academic research and
the ROS2 demo. Thanks Gianluca, for your input on impedance control. Thanks
also to Nicky, Matteo, Haofei, Mohammad, Paula, Francesco, Giulio, Jen Jen, and
Lionel for making the integration weeks in Vésteras such a great experience. We
may forever wonder when the pizzaiolo will actually show up. I also appreciated
the insights from Hideki, Jan, and Bob on human-robot interaction. Some personal
highlights: hiking the Highlands with Paula and Francesco, and listening to fado in
Lisbon.

Next, I would like to thank Chuchu for warmly welcoming me into the Reliable
Autonomous Systems Lab at MIT (REALM) and the entire REALM group for
making my three-month stay so enjoyable. Special thanks to Oswin for being a
fantastic coauthor. I learned so much from you. Thank you to Weichao for our
many shared lunches, and to Kunal for taking me to the free pizza Thursdays. It
was a pleasure getting to know Songyuan, Eric, Jake, Yue, Ruixiao, Yongchao, and

87



88 Acknowledgments

Ben. I especially enjoyed the bubble tea outing with the REALM girls, Anjali,
Yilun, Mingxin, and Yingke, as well as the Blue Hills hike and post-hike dinner
with the group. A big thank you to Laurence for making my start in Boston so easy
and for filling my stay with endless activities: swing dancing, karaoke, museum
trips, raclette, a 100 km Cape Cod bike ride, visiting Providence and more. You
made my time there truly unforgettable. I'm also grateful to Maxi for bringing a
bit of TU Delft to Boston and for sharing the experience of watching the Boston
Red Sox game in the rain. Thanks also to David and Marco for being great lunch
buddies, to Adrien for taking Magda and me sailing, and to my roommates Molly
and Smita. Finally, I thank Het Cultuurfonds Wetenschapsbeurzen for supporting
my stay financially.

Starting my PhD in a new country during a global pandemic was challenging, which
made the friendships I found at Leeghwaterstraat all the more valuable. I cherished
the evening walks, Chinese meals, and weekend bike rides with the “bike trips”
group, thank you Xiaohuan, Jing, Desong, Yifei, Tianlong, Sahar, Fatemeh, and
Laura. Special thanks to the “bike trips survivors”, Til, Leon, Yujie, Ensieh, and
Saeed, for the great adventures, especially the memorable Texel trip with Til, Leon,
and Yujie. Although Yujie will be mentioned multiple times throughout these ac-
knowledgments, I want to take a moment to express how much sharing this PhD
journey with her has meant to me. Yujie, you were the first person I met in Delft,
and I am deeply grateful for your friendship and support. I'll always cherish our
time together, from long hours in the office and a rainy bike ride with Fatemeh, to
mildly spicy hotpot dinners and your joy over pork skewers in Athens. I’'m so happy
we finally made our trip to Greece together, and I look forward to visiting you and
Hai in China and to many more years of friendship ahead.

When we were finally allowed to work from the office, I felt very lucky to have
such wonderful office mates. Thank you, Elia, for inviting us over for homemade
pizza; Yujie, for bringing interesting Chinese snacks; and Maxi for introducing me
to bubble tea (I'm trying to limit the number of bubble tea mentions in these ac-
knowledgments, but let’s just say we’ve shared quite a few in New York, Boston, and
Delft). Anna, thanks for the great times collecting Sagar’s puns, cooking meatballs,
baking Béarentatzen, and more. Khaled, thank you for taking me to the gym and
patiently explaining where I should feel the exercises, though somehow, I still felt
everything in my biceps. And Nils, thanks for joining our office outings, even when
the only vegetarian options were edamame and fries. Later on, Saray (Replacement
Nils) joined our office, and I was glad she became part of roommates in F-2-140. We
shared an amazing trip to MRS in Boston, as well as adventures in New York and
Toronto. Thank you for always inviting me over, for being my “only Dutch friend”,
and for taking Yujie and me to visit your family in Limburg. I'm already looking
forward to our trip to China, and maybe a visit to Stockholm next? I also want to
thank our honorary office mate, Julian, for the amazing cakes and motivating me to
go bouldering every week. Beyond office life, I really appreciated all F-2-140 office
events we shared: go-karting, countless dinners, movies, skiing, and I want to thank
everyone who joined. Thanks as well to everyone who spent time with us in the



Acknowledgments 89

office, even briefly, Domenico, Riccardo, Shaohang, Tom&s, Dennis, and others.

Next, I want to thank all former and current members of the AMR group. Bruno,
thank you for guiding me through my first year and first paper deadline, and for
the dinners and board game nights during those early weeks, they meant a lot. It
was great to reconnect in Boston, twice!, share tacos, and celebrate your wedding
in Porto. Thanks, Hai, for being the notation expert, and Xiaoshan, even though
we never met, for collaborating on the task assignment paper. I also want to thank
the postdocs Andrés, Xinwei, and Daniel. Maximilian K, thank you for reminiscing
about the Liand; Alvaro, for the long discussions on bike rides home after work; Max
S, for valuing reproducible code and being yourself; Oscar, for helping me with the
Jackal demo, and Max L, for restructuring gym environments together. Dennis,
I’ll never forget our peanut butter sandwiches on top of the Empire State Building
during those four hours we sat there to avoid paying the sunset fee! It was great
having you join the office at the end, too. Thanks to Lasse, for bringing structure
to the group, sharing your research advice, leading by example, and always being
available to help, and to Clarence for being a great new office mate. Andreu, thank
you for joining our office and for sharing your wide-ranging knowledge from Japanese
knives and finance to AirPods and art. Sihao, thank you for always being there for a
chat, and Ahmad, thank you for your interest in Control Barrier Functions. Thank
you to Diego, I'm grateful to be your coauthor and glad our paths crossed again
in Stockholm. I also want to thank my master students Denesh, Sunny (Xinyu),
and Jelmer for the enthusiasm and effort they put into their theses. I really enjoyed
working with you. And thanks to Chadi for collaborating with me to turn your
thesis into a paper.

Outside F-2-140 and the AMR group, I'd like to thank everyone at CoR for the
shared lunches, tea and cake breaks, and faculty drinks that made everyday life
more enjoyable. Thanks to Tasos for letting Anna and me use your oven; Italo and
Lorenzo for being great roommates when visiting Melanie (read in Lorenzo’s voice);
Giovanni for always sharing his opinions; and Rodrigo for continuing the dinner and
board game tradition, and for teaching me about imitation learning. Thank you,
Linda, for being my roommate in Philadelphia and now again in Stockholm. Thanks
Chris, I really appreciated your (career) advice. Thanks also to Corrado, Chadi,
and Cong for the fun RoboHouse Fridays, and to Carlos, Jihong, Sagar, Ashwin,
Jelle, Alex, Tomads, Mariano, Forough, Fiorella, Gustavo, Manuel, Ebrahim, and
everyone else who made CoR such a friendly and supportive place. Finally, thanks
to André, Maurits, Thomas, and Kseniia for your help, whether building the Jackal
sensor setup or working on the Dingo.

Outside of work, I enjoyed being part of the Blue Falcons Floorball Association.
Playing for the Ladies team, The Falconites, Los Falconites, and playing in Arosa.
Thanks to everyone from the Blue Falcons for the great time, and especially Ana for
our many trips to Utrecht. I also want to thank my friends from home and everyone
who visited me in Delft, it meant a lot to be able to share my beautiful new home
with you. Thanks Lisa, Sarah, Andrea, Anne, Kathrin, Kerstin, Salehah, Theresa,



90 Acknowledgments

Vera, Annette, Marion and Andy.

Finally, I want to thank my family for their unwavering support throughout my life.
Thanks to my extended family for showing interest in what I am doing, although it is
difficult to grasp. Thanks to my sister Frida for exploring Delft and the Netherlands
together. I'm really proud of you and always enjoy our time together. Thank you to
my parents for always being there for me, especially for your patience and support,
even in those moments during childhood (and still now?) when I got frustrated
because things didn’t work out immediately. Danke, Mama und Papa!

Luzia
Stockholm, July 2025



List of Publications

Journal Articles

Y

X. Bai, A. Fielbaum, M. Kronmiiller, L. Knoedler, and J. Alonso-Mora. "Group-
based distributed auction algorithms for multi-robot task assignment." IEEE Trans-
actions on Automation Science and Engineering (T-ASE) 20.2 (2022): 1292-1303.
T-ASE Best Paper Award 2024.

L. Knoedler*, C. Salmi*, H. Zhu, B. Brito, and J. Alonso-Mora. "Improving Pedes-
trian Prediction Models with Self-Supervised Continual Learning." IEEE Robotics
and Automation Letters 7.2 (2022): 4781-4788.

D. Martinez-Baselga, O. de Groot, L. Knoedler, L. Riazuelo, J. Alonso-Mora,
and L. Montano. "SHINE: Social homology identification for navigation in crowded
environments." The International Journal of Robotics Research (IJRR) (2025).

L. Knoedler*, O. So*, J. Yin, M. Black, Z. Serlin, P. Tsiotras, J. Alonso-Mora, and
C. Fan. "Safety on the Fly: Constructing Robust Safety Filters via Policy Control
Barrier Functions at Runtime." IEEE Robotics and Automation Letters (2025).

Conference Papers

D. Martinez-Baselga, O. de Groot, L. Knoedler, J. Alonso-Mora, L. Riazuelo, and
L. Montano. "Hey Robot! Personalizing Robot Navigation through Model Predictive
Control with a Large Language Model." 2025 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2025.

J. de Wolde, L. Knoedler, G. Garofalo, and J. Alonso-Mora. "Current-Based
Impedance Control for Interacting with Mobile Manipulators." 2024 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS). IEEE, 2024.

X. Wang, L. Knoedler, F.B. Mathiesen, and J. Alonso-Mora. "Simultaneous
Synthesis and Verification of Neural Control Barrier Functions Through Branch-

and-Bound Verification-in-the-Loop Training." 2024 European Control Conference
(ECCQC). IEEE, 2024.

S. Bakker*, L. Knoedler*, M. Spahn, W. Bohmer, and J. Alonso-Mora. "Multi-
Robot Local Motion Planning Using Dynamic Optimization Fabrics." 2023 Interna-
tional Symposium on Multi-Robot and Multi-Agent Systems (MRS). IEEE, 2023.

Workshop Papers

]

L. Knoedler, N. Wilde, and J. Alonso-Mora. "Interaction-Aware Autonomous Nav-
igation Among Pedestrians Using Social Forces Response Dynamics." In Workshop
on Unsolved Problems in Social Robot Navigation at Robotics: Science and Systems
(RSS), 2024.

91



92 List of Publications

D. Martinez-Baselga, O. de Groot, L. Knoedler, L. Riazuelo, J. Alonso-Mora, and
L. Montano. "Learning Social Homologies for Navigation." In Workshop on Unsolved
Problems in Social Robot Navigation at Robotics: Science and Systems (RSS), 2024.

L. Knoedler, B. Brito, M. Everett, J.P. How, and J. Alonso-Mora. 'Learning a
Guidance Policy from Humans for Social Navigation." In Social Robot Navigation:
Advances and Evaluation Workshop at IEEE International Conference on Robotics
and Automation (ICRA), 2022.

B Included in this thesis.
¥ Won a best paper award.
* Authors contributed equally.



Curriculum Vitae

Luzia Knoedler

PERSONAL DATA

Place and Date of Birth:  Stuttgart, Germany | 10 June 1996

Email: luzia.knoedler@gmail.com

EpucAaTIiON

2021 - 2025
Aug. - Oct.

2024
2017 - 2020
2018 - 2019
2014 - 2017

Ph.D Robotics, Delft University of Technology, The

Netherlands.

Topic: Motion planning for mobile robots in human-centered
environments.

Supervisor: Javier Alonso-Mora.

Visiting PhD, Massachusetts Institute of Technology, USA.

Topic: Robust Policy Control Barrier Functions.
Supervisor: Chuchu Fan.

M.Sc. Engineering Cybernetics, University of Stuttgart,

Germany.

Specialization: Control Engineering & Autonomous Systems and
Control.

Thesis: Human Driver Modeling during Acceleration Processes.

Erasmus Semester, Chalmers University of Technology, Sweden.
Topics: Discrete Event Systems, Advanced Topics in Control,
Automotive Systems.

B.Sc. Medical Engineering, Univ. of Stuttgart & Tiibingen,

Germany.
Specialization: Nanotechnology & Control Engineering.
Thesis: Finite Element Simulation of Breast Tissue.

93


mailto:luzia.knoedler@gmail.com




