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ABSTRACT

Quantum Markov Semigroups (QMS) describe the evolution of a quantum system by evolv-
ing a projection or density operator in time. QMS are generated by a generator obeying the
well-known Lindblad equation. However, this is a difficult equation. Therefore, the result that
the Lindblad form greatly simplifies in the case of the generator commuting with the modular
automorphisms group, is useful. Unfortunately, the proof only works for finite dimensional
Hilbert spaces, which is why the aim of this thesis is to generalise this result to countably in-
finite dimensional Hilbert spaces. To this end, the Lindblad equation is derived from both a
mathematical and physical perspective. Where the former relies on rigorous proof and the
latter relies on approximations.

In the rigorous case the theory of unital completely positive maps is used. Furthermore, mul-
tiple topologies are considered which put less stringent conditions on the operators of inter-
est than the norm topology. Additionally, the Haar measure is used on the unitaries of the
bounded linear operators to construct the explicit Lindblad form.
To derive the result by employing physical assumptions the interaction picture is used. The
physical derivation starts from the Von Neumann equation and uses multiple assumptions
to obtain the final Lindblad form. The most important physical assumptions are: the Born
approximation, the Markov approximation and the rotating wave approximation.

Furthermore, the main result is the generalisation of the simplified Lindblad form. This sim-
plified form holds for generators commuting with the modular automorphisms group in case
the Hilbert spaces are countably infinite dimensional. However, this requires the domain of
the generator to be restricted to trace class operators with the identity operator artificially
added. Additionally, the generator needs to map strongly convergent sequences to weakly
convergent sequences. It also needs to be self-adjoint with respect to the Hilbert-Schmidt
inner product. Lastly, the generator is assumed to be self-adjoint with respect to the Gelfand-
Naimark-Segal (GNS) inner product 〈X ,Y 〉 = Tr(σX ∗Y ) for σ a density operator. This last
assumption implies that the generator commutes with the modular automorphisms group,
which is the symmetry we are considering. Hence, the two previous assumptions are the ad-
ditional requirements needed to generalise the result, besides the restriction of the domain.
Therefore, it is recommended for further research to generalise the result for the domain ex-
tended to the bounded operators B(H). It should be noted that the proof heavily relies on
the Hilbert space structure induced by the Hilbert-Schmidt inner product. Consequently, the
generalisation for the bounded operators would probably require a different approach. An-
other recommendation is to try and lift the sequence and self-adjoint requirements on the
generator. In addition, it is interesting to investigate which physical systems actually have the
symmetry of generators commuting with the modular automorphisms group.
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INTRODUCTION

In the first half of the 20th century renowned mathematician and physicist John von Neumann
developed the theory of operator algebras as a mathematical foundation to understand the
theory of quantum mechanics: the theory of the smallest particles and length scales, which
exhibits many counter-intuitive phenomena. For instance the way a particle exhibits both
particle-like and a wave-like properties, depending on which way it is measured. Quantum
physics theory was first developed by some of the most famous people in physics, Paul Dirac,
Erwin Schrödinger, Niels Bohr and so many others. Von Neumann expanded the theory and
since his the time many physicists and mathematicians have advanced the field of quantum
mechanics and it has found widespread applications in electronics, imaging and communica-
tions. However, there are still open questions and one of the interesting directions still being
researched is the theory of open quantum systems. This theory describes systems that not
only have an internal time evolution, but can also interact in some way with an environment.
Usually, the environment is taken to be a heat bath, with which the system of interest can in-
teract by absorbing or emitting energy.

To describe such systems, usually the density matrix formalism is used. The density ma-
trix contains all probabilities and information regarding the statistical distribution of states
within a given system. For a closed system, the density matrix evolves in time according to
the Von Neumann equation, which is dependent on the Hamiltonian of the system. However,
for an open quantum system the density matrix evolves along an operator called the Lindbla-
dian, which incorporates both internal evolution and external influences. This Lindbladian
generates a Quantum Markov Semigroup, which is the solution to the differential equation
dρ/dt = Lρ, where L is the Lindbladian and ρ a density operator. Hence, we call the Lindbla-
dian a generator. One of the major advances in the theory of open quantum systems came
in 1975, when both Lindblad [16] and Gorini, Kossakowski and Sudarshan [11] derived the
equation describing the generators of the Quantum Markov Semigroups of open quantum
systems. However, this equation is rather difficult. Hence, immediately after the paper was
released physicists, as they often do, tried to exploit symmetries to better understand and
possibly simplify the Lindblad form, which is the equation describing the generator. In 1976
Alicki [1] managed to make use of the commutation with the modular automorphisms group,
which describes time evolution of an operator or density matrix in quantum mechanics, to
greatly simplify the Lindblad form. His proof was generalised by Carlen and Maas in 2017 [6],
but this form was only valid for finite dimensional Hilbert spaces. Hence, the main aim of this
paper is to first derive the Lindblad equation from basic principles from both the mathemat-
ical and physical perspective. After that we investigate how to generalise Carlen and Maas’
result to countable infinite Hilbert spaces.

To obtain the final result we have split this dissertation into multiple parts. In Chapter 1 we
introduce the framework of quantum mechanics and Quantum Markov Semigroups (QMS)
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INTRODUCTION 2

with their generators. Here, some key theorems and notions related to generators are stated
and proven to introduce the reader to the background required for the rest of the thesis. Fur-
thermore, in Chapter 2 we consider two important theorems: the Kadison-Schwarz inequality
and the Russo-Dye theorem. These two theorems are then used to derive the relation between
dissipative operators and generators of QMS. Additionally, in Chapter 3 we prove the Lind-
blad equation from both the mathematical and physical perspective. For the mathematical
perspective we follow the original paper as published by Lindblad [16], while for the physical
perspective we do not consider the original paper, but rather a newer and cleaner version of
the derivation as shown by Manzano [18]. Lastly, in Chapter 4 we introduce a new class of
operators called the Hilbert-Schmidt operators with the Hilbert-Schmidt inner product. This
inner product is crucial in making the trace class operators a space with Hilbert space struc-
ture. Furthermore, we introduce the modular automorphisms group. Finally, we use the trace
class operators with the Hilbert-Schmidt inner product and the Hilbert-Schmidt operators to
prove the simplified form of the Lindblad equation under the assumption that the generator
commutes with the modular automorphisms group.



NOMENCLATURE

The following list describes a set of symbols and notations used in the dissertation.

Mathematical operations

〈·, ·〉 The inner product.

‖·‖ The norm.

⊕ The direct sum.

⊗ The tensor product.

Tr(·) The trace.

TrB (·) The partial trace over subspace B.

∗ The adjoint, for finite dimensional matrices X ∗ = X
T

.

Number theory

N The natural numbers, {1,2,3, . . . }.

R The real numbers.

C The complex numbers, {a +bi : a,b ∈R}.

Spaces

Mn(C) The n ×n square matrices over the complex numbers.

H A Hilbert space.

L(H) The linear operators on Hilbert space H.

B(H) The bounded linear operators on a Hilbert space H.

L1(H) The trace class operators on a Hilbert space H.

L2(H) The Hilbert-Schmidt operators on a Hilbert space H.

L3(H) L2(H)′⊕{λI :λ ∈C}, withL2(H)′ the trace class operators with a special inner product.

L4(L3(H)) L2(L3(H))⊕ {λI :λ ∈C} with a special inner product.

Notation

v Small letters denote vectors.

X Capital letters denote operators.

3



1
NOTIONS ON QUANTUM MECHANICS

AND MATHEMATICAL PRELIMINARIES

In this chapter we introduce several important concepts from quantum mechanics. Further-
more, concepts and theorems related to the theory of completely positive maps are presented.
Lastly, semigroups and their generators are discussed. All of these are fundamental notions,
meaning that a more thorough exploration of particular topics can be found in the literature
that will be referred to throughout the chapter.

1.1. DENSITY OPERATORS
In this section we introduce density operators through a discussion about quantum states and
ensembles. We also briefly mention the postulates that form the basis of quantum mechan-
ics, whilst also explaining the difference between the Heisenberg and Schrödinger picture of
quantum physics.

1.1.1. VECTOR NOTATION AND THE DENSITY OPERATOR
Definition 1.1. A complete, normed vector space H endowed with an inner product 〈·, ·〉 :
H×H→C is called a Hilbert space.

Usually we will let our Hilbert space H be given by Cn . One of the most common examples of
this particular Hilbert space is for instance the spin state of an electron which is represented
as a vector in C2. We have the following identification for states of a system: given a vector
ψ ∈H, if

∥∥ψ∥∥ = 1, then the vector is a unit vector. Unit vectors in a Hilbert space represent
states of the underlying physical system. Now that we have defined a vector, we can define its
adjoint in the adjoint vector space H∗.

Definition 1.2. The adjoint of a vector ψ ∈H is a linear functional ψ∗ : H→ C thus ψ∗ ∈H∗,
defined by:

ψ∗(φ) := 〈
ψ,φ

〉 ∀φ ∈H. (1.1)

4



1.1. DENSITY OPERATORS 5

This notation is important, because it will allow us to represent the vectors and adjoint vec-
tors in a mathematical way. Next, we continue with some important notions.

Definition 1.3. A basis {ei }n
i=1 for H is orthonormal if

n∑
i=1

ei e∗i = I and ‖ei‖ = 1 ∀ i = 1, . . . ,n. (1.2)

In this equation I is the identity operator.

An orthonormal basis gives us the following natural representation of a vector in H:

ψ=∑
i

〈
ψ,ei

〉
ei . (1.3)

Furthermore, this notation allows us to define an important object: the density operator.

Definition 1.4. Given an ensemble of states
{
ψi

}
with observation probabilities{

pi : pi the probability to observe state ψi
}

the density operator is defined as

ρ =∑
i

piψiψ
∗
i . (1.4)

A natural consequence of this definition is the following.

Definition 1.5. A state is called pure if the density operator ρ can be written as ρ =ψψ∗ for
some ψ ∈H with

∥∥ψ∥∥= 1.

The density operator encodes the essential information about the underlying statistical en-
semble of states in the system. Which states can be observed and with what probability.

1.1.2. POSTULATES OF QUANTUM MECHANICS
To continue our discussion of quantum mechanics, we now consider the postulates related to
the quantum mechanics. These postulates form the framework in which the rest of quantum
mechanics is built. To define the proper postulates we will follow the definitions of Nielsen
and Chuang [21] (pages 102-103).

Postulate 1. The state space associated to an isolated physical system can be represented by
a complex Hilbert space H. The system is completely described by its density operator, which
is a positive operator ρ > 0 with Tr

(
ρ
)= 1.

The notation ρ > 0 represents the following fact: for any x ∈ H with x 6= 0 we have that〈
x,ρx

〉 > 0, this notation will be used from now on. To continue our discussion on the pos-
tulates of quantum mechanics, we now consider dynamics. To describe the dynamics of a
single state system the Schrödinger equation is used, however in the case of density operators
we have the following postulate:

Postulate 2. The evolution of a closed quantum system is described by a unitary transforma-
tion. That is, the state ρ of the system at time t1 is related to the state of the system at time t2

by the unitary operator U , which depends only on t1, t2,

ρ′ =UρU∗. (1.5)
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In this definition the ∗ denotes the conjugate transpose of the operator. If the system is de-
scribed by a Hamiltonian H and H is time independent, the operators U can easily be derived
from the Schrödinger equation to be given by U (t ) = e−i H t/ħ. Now that the dynamics of the
system have been described, we move on to measuring the system.

Postulate 3. Quantum measurements are described by a collection of measurement opera-
tors {Mi }i=one of the outcomes. Given that the system is in state ρ immediately before the mea-
surement, we have that the system right after the measurement is in state

MiρM∗
i

Tr
(
M∗

i Miρ
) . (1.6)

here the state has been normalised by the probability pi that we observe state i . This proba-
bility is given by

pi = Tr
(
MiρM∗

i

)= Tr
(
M∗

i Miρ
)
. (1.7)

where the permutation property of the trace has been used, i.e. Tr(AB) = Tr(B A) which can
be shown by a rather trivial computation. The given measurement operators must satisfy the
completeness equation to be called a set of measurement operators:

n∑
i=1

M∗
i Mi = I . (1.8)

The last postulate considers combining physical systems and describing the joint state.

Postulate 4. The state space of a composite physical system is the tensor product of the state
spaces of the component physical systems. Moreover, if we have systems numbered 1 through
n, and the system number i is prepared in the state ρi then the joint state of the total system
is given by ρ1 ⊗·· ·⊗ρn .

If the reader is not familiar with tensor products, we refer to Appendix A. Furthermore, the
postulate on combining physical systems is important because it gives us the opportunity to
combine or seperate (if possible) physical systems. This seperation can be achieved by tracing
out the system we are not interested in. This is done using the partial trace operation.

Definition 1.6. Let systems A and B be described by the density operators σ and ν respec-
tively. The combined system is then represented by density operator ρ = σ⊗ν. The partial
trace over system B is then defined as TrB : A⊗B → A given by

TrB (ρ) = TrB (σ⊗ν) =σTrB (ν) =σ. (1.9)

This equation can be extended linearly for any convex combinations of ρ’s representing states
in the systems.

1.1.3. DIFFERENT PICTURES OF QUANTUM MECHANICS
In quantum physics there are two views concerning the evolution of quantum systems. Look-
ing back at the previous part, we note that the postulates of Nielsen and Chuang are formu-
lated in the Schrödinger picture. This way of viewing quantum mechanics implies that states
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are evolving with time and operators are time-independent. The time dependence of the
states in the system can be see in equation 1.5. Additionally, notice that the measurement
operators are independent of time i.e. the observables do not change in time. This descrip-
tion is powerful, because it lets us map density matrices to density matrices using trace pre-
serving completely positive maps. However, as is often the case in mathematics and physics,
another description could be more powerful. The other description in this case is given by
the Heisenberg picture, which is concerned with unital completely positive maps. Notice that
unital and trace preserving are switched when switching between the two descriptions. In
the Heisenberg picture states remain fixed, but operators change with time. This is physically
more appealing, because of the time dependence of quantities like momentum and position.
Hence, there are advantages to both pictures, but it actually turns out that the Heisenberg
description is much more powerful because of some key theorems. Furthermore, these two
pictures actually turn out to be each others dual. To fully understand why this is the case we
require the language of completely positive maps, which is covered in the next section.

1.2. UNITAL COMPLETELY POSITIVE MAPS
We have introduced the fundamental concepts and notations of quantum mechanics. How-
ever, to properly understand and derive the Lindblad Master equation we need to understand
the language of unital completely positive maps. We will do this by following the notes by
Paulsen [12] (pages 3-30).

1.2.1. COMPLETE POSITIVITY
This part is used to introduce some important definitions concerning positivity and to intro-
duce some useful notation.

Notation 1.7. For any matrix M we will also denote the matrix as (Mi j ) for convenience.

Another important notation is the way we denote the linear operators on a space.

Notation 1.8. The linear operators on a Hilbert space H are denoted by L(H).

In this thesis we will restrict our discussion to finite dimensional Hilbert spaces until the last
chapter. Hence, until we explicitly state it, H is finite. We now introduce the notion of com-
plete positivity. By defining the following

Definition 1.9. For any linear mapΦ :L(H1) →L(H2), we define the mapΦ(n) : Mn(L(H1)) →
Mn(L(H2)) byΦ(n)((Wi j )) := (Φ(Wi j )) for a matrix (Wi j ) ∈L(H1).

Definition 1.10. A linear mapΦ :L(H1) →L(H2) is called n-positive if for any (Wi j ) ∈ Mn(L(H1))
with (Wi j ) ≥ 0 we have that (Φ(Wi j )) ≥ 0. We say that Φ is completely positive (CP) if Φ is n-
positive ∀n ∈ N we then also write that Φ ∈ CP(L(H1),L(H2)). If L(H1) = L(H2) we simply
write CP(L(H1)). Additionally, if Φ also preserves the identity element, i.e. if I is the iden-
tity in L(H1), then Φ(I ) is the identity in L(H2), the map Φ is then called a unital completely
positive map or UCP.

1.2.2. CHOI-KRAUS THEOREM
The definitions in the preceding section may seem very abstract at first, however Choi and
Kraus proved a theorem which states that there is an easier identification of CP maps. We
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state the theorem and its proof. Additionally, we also discuss the Stinespring dilation theo-
rem. Furthermore, this identification will show a nice correspondence between measurement
operators and the UCP maps.

Theorem 1.11 (Choi-Kraus Representation). Let Φ : Mn → Md be a linear map. Then the
following are equivalent.

i) Φ is completely positive

ii) There exist B1, . . . ,Bk ∈ Md ,n , such thatΦ(X ) =∑K
k=1 Bk X B∗

k for all X ∈ Mn .

Proof. We will first proof the converse. To this end, let m ∈N arbitrary and let (Xi j ) ∈ Mm(Mn)
be positive. Then

Φ(m)((Xi j )) = (Φ(Xi j )) =
(

K∑
k=1

Bk Xi j B∗
k

)
=

K∑
k=1

(Bk Xi j B∗
k ) ≥ 0. (1.10)

In this equation the last equality follows from the linearity of matrix addition. The last in-
equality follows from the fact that the sum of positive semidefinite matrices is positive semidef-
inite. Hence,Φ is CP.
We will now prove the implication. Let z ∈N be arbitrary and let A := (Ei j ) ∈ Mz (Md ), where
the Ei j are the matrices with zeros everywhere except for ei , j := 1. Then proceeding as follows

Q∗ = (Ei j )∗ = (E∗
j i ) = (Ei j ) =Q. (1.11)

This implies that Q is an Hermitian matrix. Furthermore,

Q2 =
(

n∑
k=1

Ei k Ek j

)
=

(
n∑

k=1
Ei j

)
= (

nEi j
)= nQ. (1.12)

Where again we have again used linearity and the fact that the Ei j are identically zero ev-
erywhere except on element ei , j = 1. We now want to find the eigenvalues λ of Q. Hence,
consider that for all eigenvectors x of Q we have that

λ2x =Q2x = nQx = nλx ⇐⇒ λ ∈ {0,n}. (1.13)

Since we now have that all λ ≥ 0 =⇒ Q ≥ 0. Thus, Q is a positive semidefinite matrix. By
n-positivity of Φ this implies that Φ(z)(Q) ≥ 0. This is an zd × zd matrix. Therefore, there
exist vectors v1, . . . , vK ∈Czd such thatΦ(z)(Q) =∑K

k=1 vk v∗
k by the Spectral Theorem of Linear

Algebra. Here we have taken the eigenvalues into the vectors.
Since

vk ∈Czd =⇒ vk =


hk

1
...

hk
z

 , with hk
i ∈Cd ∀i ∈ {1, . . . , z}. (1.14)
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we can define Bk = (hk
1 . . .hk

z ), which is a d × z matrix. Additionally, notice that

vk v∗
k =


hk

1
...

hk
z

(
hk∗

1 . . . hk∗
z

)

=


hk

1 hk∗
1 . . . hk

1 hk∗
z

...
. . .

...
hk

z hk∗
1 . . . hk

z hk∗
z


= (hk

i hk∗
j ) ∈ Mz (Md ).

Now we obtain the following identification Φ(z)(Q) = (Φ(Ei j )) = ∑K
k=1

(
hk

i hk∗
j

)
, which in turn

implies that Φ(Ei j ) = ∑K
k=1 hk

i hk∗
j for all 1 ≤ i , j ≤ n. Let us return to the predefined Bk ’s. We

will consider what these Bk ’s do to the Ei j matrices. If we know this we automatically know
the behaviour for any X ∈ Mn , since X =∑n

i , j=1 xi j Ei j . To this end, consider the following

Bk Ei j B∗
k = (Bk Ei i )Ei j (E j j B∗

k ) (1.15)

= (
0 . . . 0 hk

i 0 . . . 0
)

Ei j



0
...
0

hk∗
j

0
...
0


= hk

i hk∗
j .

The last matrix hk
i hk∗

j is a d ×d matrix and is thus contained in Md . Now for our final step we

have

Φ(Ei j ) =
K∑

k=1
hk

i hk∗
j =

K∑
k=1

Bk Ei j B∗
k . (1.16)

■
It should be noted that the Choi-Kraus representation is not unique. The proof for this can
be found in [12]. Additionally, the Choi-Kraus representation is not the only identification of
CP maps. Stinespring [24] showed a similar way of writing CP maps, without the requirement
of the maps being restricted to finite dimensional matrices. The statement is captured in the
following theorem.

Theorem 1.12. Let A,B ⊂ B(H), both A,B unital and let Φ : A → B be a CP map. Then there
exists a Hilbert space K , a bounded map V : H→ K and a ∗− homomorphism π : A → B(K )
such that,

Φ(X ) =V ∗π(X )V. (1.17)

Moreover, ‖V ‖2 ≤ ‖Φ‖.
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Note that π is usually called a representation. Additionally, the fact that π is a ∗−map implies
that π(X )∗ = π(X ∗) for all X ∈ B(H). It should be noted that the proof is well known and
therefore we will not prove this theorem. However, for the interested reader we recommend
Stinespring [24] and Caspers [7] (pages 44-45). The theorem itself is required to prove the final
part of the Lindblad derivation in Chapter 3.
We continue on with the Choi-Kraus decomposition, by using this theorem we can prove the
following identification of trace preserving completely positive maps. If a map is TPCP, then
these are the measurement operators as mentioned earlier. Before we can prove this corollary,
we need the following lemma.

Lemma 1.13. Given Y ∈ Mn then Tr(X Y ) = Tr(X ) for all X ∈ Mn if and only if Y = In .

The proof is rather trivial and shall be omitted here. We continue on with the following result.

Corollary 1.14. LetΦ : Mn → Md be a linear map. ThenΦ is a TPCP map if and only ifΦ(X ) =∑K
k=1 Bk X B∗

k with
∑K

k=1 B∗
k BK = Id .

Proof. We begin with the direct implication. By the Choi Kraus theorem there are Bk such that
Φ(X ) =∑K

k=1 Bk X B∗
k . Then we obtain the following

Tr(Φ(X )) = Tr

(
K∑

k=1
Bk X B∗

k

)
(1.18)

=
K∑

k=1
Tr

(
Bk X B∗

k

)
=

K∑
k=1

Tr
(
X B∗

k Bk
)

= Tr

(
X

K∑
k=1

B∗
k Bk

)
.

Using the previous lemma and setting
∑K

k=1 B∗
k Bk = Y implies that

∑K
k=1 B∗

k Bk = Y = In . For
the converse, we have that by Choi-Kraus Φ is a CP map. Taking the trace yields again the
above equation. Notice that the last term in the equality evaluates to Tr(X ), if

∑K
k=1 B∗

k Bk =
Id . ■
As mentioned in subsection 1.1.3 these TPCP maps are part of the Schrödinger picture. To
derive the duality between the Schrödinger picture and the Heisenberg picture of UCP maps,
we require the following definition and proposition from Caspers’ notes [7] (page 68).

Definition 1.15. LetΦ : Mn(C) → Mn(C) be any linear map. Then we setΦ∗ : Mn(C) → Mn(C)
as the unique map determined by

Tr
(
Φ∗(X )Y

)= Tr(XΦ(Y )), ∀X ,Y ∈ Mn(C). (1.19)

We can then formulate the following proposition showing the equivalence

Proposition 1.16. In the setting of the previous definition we have that Φ is trace preserving
(respectively unital) if and only ifΦ∗ is unital (respectively trace preserving).
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Proof. Suppose thatΦ is trace preserving. Then let X ,Y ∈ Mn(C) which implies

Tr
(
Φ∗(I )Y

)= Tr(IΦ(Y )) = Tr(Y ). (1.20)

Therefore, Φ∗(I ) = I . Conversely, suppose that Φ∗ is unital. Then again let X ,Y ∈ Mn(C),
which implies

Tr(Φ(Y )) = Tr(IΦ(Y )) = Tr
(
Φ∗(I )Y

)= Tr(Y ). (1.21)

which concludes the proof. ■
This proposition shows that we can use either UCP maps or TPCP maps. Hence, we can use
both the Heisenberg and Schrödinger picture. As mentioned before, because of ease of use,
we prefer the Heisenberg picture.

1.3. SEMIGROUPS AND GENERATORS
In this section we will discuss the notion of dynamical semigroups and their generators. We
will first define a dynamical semigroup and then derive some elementary and useful results.
Additionally, the Hille-Yosida theorem concerning the existence of generators is discussed.

1.3.1. SEMIGROUPS
In this part we will define a semigroup and the regular setting in which we will be working.

Definition 1.17. The set of bounded linear operators on a Hilbert space H denoted by B(H)
is given by all operators which have a finite operator norm. i.e.

B(H) = {X : ‖X ‖ <∞, X ∈L(H)}. (1.22)

In this equation the norm is given by

‖X ‖ = sup
ψ∈H\{0}

∥∥Xψ
∥∥
H∥∥ψ∥∥
H

. (1.23)

where the second norm is the norm on H induced by the inner product, defined as∥∥ψ∥∥
H =

√〈
ψ,ψ

〉
. (1.24)

In the rest of the paper it will always be clear which norm will be used. Hence, we will drop
the H. However, for this definition we noted it explicitly for clarity. Additionally, it should
be noted that the general definition of the operator norm on a Banach space is given by the
following definition

Definition 1.18. Let X : A → B for A,B Banach spaces. Then the norm on X is defined as

‖X ‖ = sup
ξ∈A

‖X ξ‖
‖ξ‖ . (1.25)

To properly define the axioms that make up a semigroup, we need to define what kind of
continuity and convergence we require. However, in the case of complex valued finite dimen-
sional matrices the different topologies are all equivalent, so in this case the type of topology
does not matter. Nevertheless, to keep ourselves aligned with the derivation of Lindblad we
will require the following topologies aside from the regular norm topology.
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Definition 1.19. The strong operator topology on B(H) often abbreviated as SOT is the topol-
ogy with a subbasis given by

O(X , x,ε) = {A ∈ B(H) : ‖(A−X )x‖ < ε}. (1.26)

We have that An → X in the SOT if and only if for all x ∈H ‖An x −X x‖ → 0 i.e. An x → X x
strongly.

Definition 1.20. The weak operator topology on B(H) often abbreviated as WOT is the topol-
ogy with a subbasis given by

O(X , x, y,ε) = {
A ∈ B(H) :

〈
(A−X )x, y

〉< ε}. (1.27)

Now An → X in the WOT if and only if for all x ∈H and y ∈H 〈
(An −X )x, y

〉→ 0 i.e. An x → X x
weakly.

It turns out that the weak operator topology is weaker than the strong operator topology,
which is again weaker than the norm topology. Lastly, we define the weak∗ or ultraweak topol-
ogy, which is the topology induced by the dual space. We will begin by defining the dual of the
B(H). To this end consider the trace class operators.

Definition 1.21. A bounded operator X ∈ B(H) is called trace class if its modulus |X | = |X ∗X |1/2

has finite trace. We denote the entire set of trace class operators with L1(H).

In this definition it should be noted that in functional calculus the square root f of a func-
tional g is defined as g (x) = f ( f (x)), i.e. composition, for all x in the domain of g . Further-
more, it is a well known fact from functional calculus that every positive operator X has a
unique square root S such that S2 = X , for the interested reader we would recommend Van
Neervens notes [26] (pages 266-269). Additionally, an important fact about L1(H) is that it is
a Banach space, with norm ‖X ‖ = Tr(|X |). Furthermore, there is a duality between B(H) and
L1(H). More precisely we have that B(H) 'L1(H)∗, this is a well known fact from functional
analysis, which can be found in for instance Murphy [19] (pages 125-126). This dual space
of trace class operators induces a topology on B(H) called the weak∗ topology defined in the
following definition.

Definition 1.22. Let (Xn)∞n=1 ⊂ B(H) converges weak∗ to X ∈ B(H) if

Tr(X Y ) = lim
n→∞Tr(XnY ) for all Y ∈L1(H). (1.28)

This implies that the topology is generated by the semi-norms

X 7→ |Tr(X Y )| Y ∈L1(H). (1.29)

It should be noted that the weak∗ topology is actually stronger than the WOT, which there-
fore has a bit of a confusing naming scheme. Additionally, we have a specific requirement
regarding the strong operator topology.

Definition 1.23. An operator Φ : B(H) → B(H) is called normal if it is strongly continuous on
the unit ball in B(H).
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Kossawaki [14] defined the quantum dynamical semigroup as follows

Definition 1.24. P(Φ) = {Φt : t ≥ 0} of linear endomorphisms on B(H) is called a quantum
dynamical semigroup if

i) Φt is positive.
ii) Φt is unital.

iii) Φt ·Φs =Φs+t .
iv) limt→0+ ‖Φt − I‖ = 0. I.e. Φt is norm continuous.
v) Φt is normal.

1.3.2. INFINITESIMAL GENERATORS OF DYNAMICAL SEMIGROUPS
In this section we will define the infinitesimal generator of a quantum dynamical semigroup
and derive several key theorems and results. These results include the denseness of the gen-
erator in the range of the semigroup. Furthermore, we will show that the exponential formula
of the generator yields the entire semigroup. To define these concepts we will use some proofs
of Hille and Philips [13] (pages 306-308 and 310-312).
Let us first define a generator.

Definition 1.25. Given a quantum dynamical semigroupP(Φ) = {Φt : t ≥ 0} defined on Hilbert
space H. We define the infinitesimal generator L as η→ 0+ of

LηX = 1

η

[
Φη− I

]
X ∀X ∈ B(H). (1.30)

We say that X ∈ D(L) or X is in the domain of L if the above defined limit exists. Furthermore,
by the assumption that P(Φ) is actually norm continuous, we know that the generator is a
bounded linear mapping. This implies that we can replace our definition with the following
requirement

lim
t→0+

∥∥∥∥L− (Φt − I )

t

∥∥∥∥= 0 (1.31)

Currently, the definition does not tell us why L is called a generator. This will become apparent
after we have derived the exponential formula. However, to achieve this result we first prove
that D(L) is dense in {Φt [B(H)] : t ≥ 0}, hereΦt [B(H)] represents the image of B(H) underΦt .

Theorem 1.26 (Hille-Yosida). IfΦt is strongly continuous and L is the infinitesimal generator
ofΦt then D(L) is dense in {Φt [B(H)] : t ≥ 0} = B(H).

Proof. We need to prove that ∀X ∈ B(H), there exists a sequence {Xn}∞n=1 ⊂ D(L) such that
Xn → X as n →∞. To this end, let X ∈ B(H). In this case there exists a t ≥ 0 and a Y ∈ B(H)
such thatΦt Y = X . Now let α,β be given as α<β= t . Claim: the element given as

xα,β =
∫ β

α
ΦτY dτ (1.32)

is part of D(L). We have that

Lηxα,β =
1

η

∫ β

α
(Φη− I )ΦτY dτ
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= 1

η

∫ β

α
(Φη+τ−Φτ)Y dτ

= 1

η

∫ β+η

α+η
ΦσY dσ− 1

η

∫ β

α
ΦσY dσ

= 1

η

∫ β+η

β
ΦσY dσ− 1

η

∫ α+η

α
ΦσY dσ

→ [Φβ−Φα]Y η→ 0+.

Where the last convergence is convergence in norm. This can be seen as follows let ε> 0 then
by strong continuity ofΦt there exists a δ such that if

∣∣σ−β∣∣< δwe have that
∥∥(Φσ−Φβ)Y

∥∥<
ε. Using this fact notice that∥∥∥∥ 1

η

∫ β+η

β
ΦσY dσ−ΦβY

∥∥∥∥=
∥∥∥∥ 1

η

∫ β+η

β
(Φσ−Φβ)Y dσ

∥∥∥∥
≤ 1

η

∫ β+η

β

∥∥(Φσ−Φβ)Y
∥∥dσ

< ε.

Hence, xα,β ∈ D(L). Now consider the case with α<β= t , then

xα,t

t −α = 1

t −α
∫ t

α
ΦτY dτ→Φt Y = X as α→ t . (1.33)

We have thus found the sequence converging to X . Since this X was arbitrary we have that
D(L) = B(H). ■
This denseness was part of the proof provided by Hille and Yosida about infinitesimal gener-
ators and is required to properly use L as the generator of the semigroup. Moving on to the
following lemma.

Lemma 1.27. IfΦt is strongly continuous for all t ≥ 0, then for all X ∈ D(L) we have

dΦt

dt
X = LΦt X =Φt LX . (1.34)

I.e. the generator and the operators commute. The proof is easy to see by using the definition
of the derivative and Lη. This important lemma allows us to state the following theorem.

Theorem 1.28. If ‖Φt‖ ≤ 1 i.e. P(Φ) is a contraction semigroup andΦt is strongly continuous
then for all X ∈ B(H)

lim
η→0+

e tLηX =Φt X . (1.35)

Where we defined the operator exponential for any operator X to be given by

e X = I +X + 1

2
X 2 +·· ·+ 1

k !
X k + . . . . (1.36)
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Proof. Notice that

e tLη = e t
Φη−I
η = e−

t
η e

tΦη
η . (1.37)

Furthermore, one could notice then that∥∥e tLη
∥∥≤ e−

t
η e‖Φη‖ t

η = e−
t
η e

t
η = 1. (1.38)

We know that e(t−τ)LηX is a differentiable function if X ∈ D(L). Addtionally, it can be deduced
that

d

dτ

(
e(t−τ)LηΦτX

)= e(t−τ)Lη

(
dΦτ
dτ

X −LηΦτX

)
= e(t−τ)Lη

(
ΦτLX −LηΦτX

)
. (1.39)

Here, we used lemma 1.27 to switch the derivative with Φt L. Then we use the following iden-
tification

Φt X −e tLηX =
∫ t

0

d

dτ

(
e(t−τ)LηΦτ

)
X dτ. (1.40)

Which yields ∥∥∥∥∫ t

0

d

dτ

(
e(t−τ)LηΦτ

)
X dτ

∥∥∥∥≤
∫ t

0

∥∥e(t−τ)Lη
∥∥∥∥LX −LηX

∥∥‖Φτ‖dτ (1.41)

≤
∫ t

0

∥∥Lx −LηX
∥∥dτ

= t
∥∥LX −LηX

∥∥→ 0 as η→ 0+.

This result is true for any X ∈ D(L), but also note that limt→0+Φt X = X by the requirements
of a semigroup. Which gives us B(H) = B(H). By theorem 1.26 we know that D(L) = B(H).
Hence, this formula holds for all X ∈ B(H). ■
This proof shows us why L is called the generator of P(Φ), it gives us the natural identifica-
tion exp(tL)X = Φt X . This is useful, because it allows us to work with generators instead of
unwieldy infinite sets. Furthermore, for L to generate the norm continuous semigroup as de-
fined by in definition 1.24 we require L to be ultraweakly or weak∗ continuous, which is a
result we will not prove, but is required in later chapters.



2
DISSIPATIVE OPERATORS

In this chapter we consider dissipative operators. These are discussed in two parts. First,
we consider two key theorems: The Kadison-Schwarz inequality and the Russo-Dye theorem.
Initially we look at the Kadison-Schwarz inequality, which is a generalisation of the Cauchy-
Schwarz inequality for 2−positive maps. After this we state and prove the Russo-Dye theorem,
which lets us rewrite the supremum of the operator norm into a supremum only depended
on unitary elements. In the second part of the chapter we both define completely dissipa-
tive operators and show the equivalence of Kadison-Schwarz and Russo-Dye for contraction
semigroups. Lastly, we discuss a theorem concerning the fact that the dissipation function
determines the generator of a group of CP maps up to a Hamiltonian. This shows a physical
equivalence to the mathematics proposed in this chapter.

2.1. TWO KEY THEOREMS
In this section we discuss the Kadison-Schwarz inequality and the Russo-Dye theorem. These
two results are important and well known results in the theory of linear maps and in our case
specifically the theory of completely positive maps.

2.1.1. KADISON-SCHWARZ INEQUALITY
The Kadison-Schwarz inequality will play a key role in the derivation of the Lindblad equation
later on, which is why it is treated here.
We start off by noting that Mn(C) has a unitary element, namely the identity operator I . Using
this fact we can derive the Kadison-Schwarz inequality.

Theorem 2.1 (Kadison-Schwarz). LetΦ : Mn(C) → Mn(C) be 2-positive, then

Φ(X ∗)Φ(X ) ≤ ‖Φ(I )‖Φ(X ∗X ), ∀X ∈ Mn(C). (2.1)

Proof. By rescaling, we can assume that ‖Φ(I )‖ = 1. Furthermore, let X ∈ Mn(C) after which
we consider the following matrix:

K =
(

I X
0 0

)
.

16
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We then have that K ∗K is positive

K ∗K =
(

I X
X ∗ X ∗X

)
≥ 0. (2.2)

Using this matrix and setting I2 to be the identity matrix of size 2×2. We then have

0 ≤ (Φ⊗ I2)(K ∗K ) =
(
Φ(I ) Φ(X )
Φ(X ∗) Φ(X ∗X )

)
≤

(
I Φ(X )

Φ(X ∗) Φ(X ∗X )

)
. (2.3)

The last inequality simply states that 〈Φ(I )ξ,ξ〉 ≤ 〈ξ,ξ〉 = ‖ξ‖2. This can be proved as follows:
first we can, without loss of generality, assume that the vectors have unit length. We then have

〈Φ(I )ξ,ξ〉 ≤ sup
ξ,η∈H

∣∣〈Φ(I )ξ,η
〉∣∣≤ ‖Φ(I )‖‖ξ‖∥∥η∥∥= ‖Φ(I )‖ = 1. (2.4)

In this equation we used the Cauchy-Schwarz inequality to derive an upper bound on the
absolute value.
Employing the fact that the last matrix is a positive matrix yields that it must also be positive
when taking the inner product with the vector given as

(
Φ(X )∗ −1

)∗
. This yields

0 ≤ (
Φ(X )∗ −1

)( I Φ(X )
Φ(X ∗) Φ(X ∗X )

)(
Φ(X )
−1

)
=Φ(X ∗X )−Φ(X ∗)Φ(X ). (2.5)

Which completes the proof. ■
The Kadison-Schwarz derivation initially requiredΦ to be CP. However, in 1972, Choi [8] sim-
plified the result to only require 2-positivity, which is the proof shown above. Furthermore,
Stinespring [24] proved that if the matrix algebra is abelian then every positive map is com-
pletely positive. This means that the Kadison-Schwarz inequality also holds if Φ is positive
and we only consider the elements with X X ∗ = X ∗X , which are ususally called normal ele-
ments.

2.1.2. RUSSO-DYE THEOREM
In this part we cover key results from Russo and Dye, which will mainly focus on simplifying
the operator norm defined in equation 1.23 and having another useful identification of posi-
tivity, which is required later on.
Russo and Dye [22] proved in their paper that the convex hull of the unitary operators of B(H)
are dense in the unit sphere of B(H). This result also yields that any operator X ∈ B(H) has
a decomposition in terms of unitary operators, since we can span the entire space B(H) by
considering linear combinations of the unitary elements. In particular, any operator can be
written as a linear combination of four unitary operators. We will use this fact to derive the
Russo-Dye theorem. However, to start of we first define the following norm.

Definition 2.2. Suppose X ∈ Mn(C) then X has a non unique unitary decomposition X =∑n
i=1λiUi . We then define the unitary norm as

‖X ‖U = inf
n∑

i=1
|λi |. (2.6)

Where the infimum runs over all decompositions X =∑
i λiUi with the Ui ’s unitary.
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Carrying on our discussion, we continue with the following lemma.

Lemma 2.3. For all X ∈ B(H), we have that ‖X ‖ = ‖X ‖U .

Proof. Suppose that ‖X ‖ = 1, we can then employ the theorem to note that a convex combi-
nation of unitary operators yields X . This implies that for each ε > 0

∥∥ 1
2+εX

∥∥
U ≤ 1. We then

have that 1
2‖X ‖U ≤ ‖X ‖. Furthermore, let X = ∑n

i=1λiUi for Ui unitary. Then we have by the
triangle inequality that

‖X ‖ ≤
n∑

i=1
|λi |‖Ui‖ =

n∑
i=1

|λi |. (2.7)

Now taking the infimum over all representations we get the result ‖X ‖ ≤ ‖X ‖U . We thus obtain
1
2‖X ‖U ≤ ‖X ‖ ≤ ‖X ‖U . Therefore, the norms are equivalent. Applying the density of convex
combinations of unitary operators in the unit sphere, we can generate a sequence of opera-
tors (Xn)∞n=1 with ‖Xn‖U = 1 and converging to X . Hence, by this convergence we also know
‖X ‖U = 1. We thus have in general that ‖X ‖ = ‖X ‖U , since we can write any operator X as

X = ‖X ‖
(

X
‖X ‖

)
. The operator X

‖X ‖ has norm smaller or equal than one. ■

To make our lives more convenient we will use the following notation.

Notation 2.4. Given a set of operators on a Hilbert space H denoted by M , we will write MU

to denote the unitary operators.

We now move on to the result commonly referred to as the Russo-Dye theorem.

Theorem 2.5 (Russo-Dye). For a linear mapΦ : Mn(C) → Mn(C) we have that

‖Φ‖ = sup
U∈Mn (C)U

‖Φ(U )‖.

Furthermore, ifΦ is unital thenΦ is positive if and only if ‖Φ‖ = 1.

Proof of the first part of the theorem. Let X ∈ B(H) then X has a unitary decomposition given
as X =∑

i λiUi for Ui unitary for all i . Hence, ‖Ui‖ = 1 for all i . Then we have that

‖Φ(X )‖ ≤∑
i
|λi | sup

U∈Mn (C)U

‖Φ(U )‖

= ‖X ‖U sup
U∈Mn (C)U

‖Φ(U )‖

= ‖X ‖ sup
U∈Mn (C)U

‖Φ(U )‖.

In this equation we have applied the previous lemma to obtain the final equality. Dividing the
norm of X to the other side and taking the supremum yields the required equality.

■
To prove the second part of the theorem we need to introduce a definition regarding a state
on the bounded operators. It is important to note that this is different from the quantum state
we defined before.
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Definition 2.6. A state on B(H) is a linear functional ω ∈ B(H)∗ such that ω(X ∗X ) ≥ 0 for all
X ∈ B(H) i.e. ω is positive and we additionally require ‖ω‖ = 1.

Notice that positivity for X ∗X implies that ω is positive for all X ≥ 0, by the fact that any el-
ement X ≥ 0 has a decomposition as X = A∗A. Additionally, it should be noted that this is
actually a more general definition of a quantum state, to see this let ω(X ) = 〈ξ, X ξ〉 for ξ ∈H
with ‖ξ‖ = 1 for some Hilbert space H and X ∈ B(H) then ω defines a state. Furthermore,
by definition ω(X ) = 〈X 〉 = 〈ξ, X ξ〉 on the quantum state ξ. Hence, the functional state corre-
sponds to the quantum state by the inner product. Additionally, for density matrices we have
that 〈X 〉 = Tr

(
ρX

)
, which can be seen by simple computation. Furthermore, we have that

Tr
(
ρX

)= n∑
i=1

pi Tr
(
ξiξ

∗
i X

)= n∑
i=1

pi Tr
(
ξ∗i X ξi

)= n∑
i=1

pi 〈ξi , X ξi 〉 . (2.8)

Hence, Tr
(
ρX

)
also defines a state. This shows the correspondence between quantum me-

chanical states of a system encoded in ρ and the general state definition.
To see that functional states actually help us prove the second part of the Russo-Dye theorem
we require the following lemma which is adapted from Caspers [7] (Theorem 5.4).

Lemma 2.7. Letω ∈ B(H)∗. Thenω≥ 0 if and only if for the sequence with en = I for all n ∈N,
we have ‖ω‖ = limn→∞ω(en).

Proof. In this entire proof we will again use the fact that we can re-scale the operator to as-
sume ‖ω‖ = 1.
For the forward implication, consider ω ≥ 0. By the fact that ω is positive, which makes
ω(en)∞n=1 increasing, and bounded by 1, we can apply the monotone convergence theorem
to conclude that the limit of n →∞ exists. Let X ∈ B(H) a contraction, i.e. ‖X ‖ ≤ 1. Now we
define an inner product on B(H) by setting 〈A,B〉 = ω(B∗A) for A,B ∈ B(H). Notice that this
results in a Cauchy-Schwarz inequality for the operator∣∣ω(A∗B)

∣∣2 ≤ω(A∗A)ω(B∗B). (2.9)

Which yields the following

|ω(X en)|2 ≤ω(X ∗X )ω(e2
n) ≤ ‖X ‖2ω(en) ≤ω(en). (2.10)

In the last inequality we applied the fact that X is a contraction. If we take the limit in n
we obtain |ω(X )|2 ≤ limn→∞ω(en). Since ‖ω‖ = 1, we have 1 ≤ limn→∞ω(en). Therefore,
limn→∞ω(en) = 1.
For the backward implication, let (en)∞n=1 = I with limn→∞ω(en) = 1. Then we will write
ω(X ) =α+ iβ with α,β ∈ R for X ∈ B(H) with X a contraction and self-adjoint. Assume β≤ 0
(for β> 0 the proof goes similarly) and let m ∈N then

lim
n→∞ω(X − i men) =ω(X )− i m =α+ iβ− i m. (2.11)
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Additionally, we can derive that

‖ω(X − i men)‖2 ≤ ‖ω‖2‖X − i men‖2

= ‖X − i men‖2

= ‖(X + i men)(X − i men)‖
= ∥∥X 2 +m2e2

n − i m[X ,en]
∥∥

≤ 1+m2 +m‖[X ,en]‖.

Where we used the triangle inequality and the fact that X is a contraction. Furthermore,
limn→∞[X ,en] = 0 by definition of the approximate unit. Combining these results with 2.11
yields

α2 +β2 −2mβ+m2 = ∣∣α+ iβ− i m
∣∣2 ≤ 1+m2. (2.12)

Therefore, −2mβ ≤ 1−β2 −α2, which cannot hold for large m unless β = 0. Thus for self-
adjoint elements ω is real. Now let X ∈ B(H) be a positive contraction. Then ‖en −X ‖ ≤ 1
by positivity of X , notice that en − X is a self-adjoint element. Hence, ω(en − X ) ≤ 1 and real.
Furthermore,

1−ω(X ) = lim
n→∞ω(en −X ) ≤ 1.

Thus ω(X ) ≥ 0, which completes the proof. ■
We can now move on to the second statement, i.e. Φ(I ) = I then Φ is positive if and only if
‖Φ‖ = 1.

Proof of the second part of the Russo-Dye theorem. For the forward implication we apply the
shorter and more efficient proof proposed by Bhatia [2] (pages 40-41). To this end, consider
the following matrix for an arbitrary contraction operator ‖U‖ ≤ 1, U ∈ B(H)

Û =
(

U −(I −UU∗)1/2

(I −U∗U )1/2 U∗
)

. (2.13)

This is a unitary element in M2(B(H)). Furthermore, if we define Ψ to be the mapping that
is the restriction to the top left hand corner, i.e. Ψ(Û ) = PÛ P =U , where P is the projection
to the first coordinates. Then Ψ is positive and trivially unital. This can be seen as follows,
assume Û ≥ 0 then

(ξ1,ξ2)∗
(

U −(I −UU∗)1/2

(I −U∗U )1/2 U∗
)

(ξ1,ξ2) ≥ 0. (2.14)

In this equation ξ1,ξ2 ∈H, which yields after taking the inner product

〈ξ1,Uξ1〉−
〈
ξ1, (I −UU∗)1/2ξ2

〉+〈
ξ2, (I −U∗U )1/2ξ1

〉+〈Uξ2,ξ2〉 = 〈ξ1,Uξ1〉+〈ξ2,Uξ2〉
≥ 0.

Since this is true for every ξ1,ξ2, we must have that U ≥ 0. Hence, Ψ ≥ 0. Because of the fact
that this is a unitary element, it is also normal. Hence, we can apply the Kadison-Schwarz
inequality on the mapΦ◦Ψ, which is unital and positive. This yields

(Φ◦Ψ(Û ))(Φ◦Ψ(Û∗) ≤Φ◦Ψ(I ).

Φ(U )Φ(U∗) ≤ I .
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Which shows that ‖Φ(U )‖ ≤ 1 whenever U is a contraction, by taking the norm on both sides
of the previous equation. Therefore, ‖Φ‖ = 1.

For the backward implication let ξ ∈H be a state in the quantum mechanical sense, i.e. ξ is
a unit vector. Then ω(X ) = 〈Φ(X )ξ,ξ〉 is a linear functional with norm = ‖Φ‖ = 1 and value 1
at I . Hence, by the previous lemma, this is a state. Therefore, X ≥ 0 forces ω(X ) ≥ 0, which
impliesΦ(X ) ≥ 0. Hence,Φ is positive. ■

2.2. COMPLETELY DISSIPATIVE OPERATORS
In this section we discuss the dissipative operator and show the equivalence of a generator
being dissipative and its induced map obeying the Cauchy-Schwarz inequality. Furthermore,
we will note a very important result regarding the domain of the dissipative operator, which
determines the generator up to a Hamiltonian.
In this part we will use the identification of semi groups as made stated in 1.28 where for
some generator L we set Φt = e tL . Furthermore, we assume that Φ(I ) = I , i.e. our semi
group is unital. Additionally, for the extension to CP maps, we consider Ln = L ⊗ In with
Φ(n)

t =Φt ⊗In = e tLn , where we used the definition of the exponential to obtain the final equal-
ity.

2.2.1. EQUIVALENCE BETWEEN KADISON-SCHWARZ AND RUSSO-DYE
Using the previously mentioned assumptions we start the discussion on dissipative operators.
We define the type of operators and prove the equivalence of generators being dissipative op-
erators and the induced map obeying the Kadison-Schwarz inequality. This section is partially
adapted from Lindblad [16].
To this end, take into consideration the Kadison-Schwarz inequality, which after taking the
derivative with respect to t yields

d

dt

∣∣∣∣
t=0

(Φt (X ∗X )−Φt (X ∗)Φt (X )) ≥ 0

Lne tLn X ∗X −Lne tLn X ∗e tLn X −e tLn X ∗Lne tLn

∣∣∣∣
t=0

≥ 0

Ln(X ∗X )−Ln(X ∗)X −X ∗Ln(X ) ≥ 0. (2.15)

In this equation we used the fact thatΦ(n)
t (I ) = I . Furthermore, we define the following

Definition 2.8. If a bounded map L : B(H) → B(H) satisfies L(I ) = 0 and L(X ∗) = L(X )∗ for
all X ∈ B(H) (L is a ∗−map) and the function D(Ln ; X , X ) ≥ 0 for all X ∈ Mn(B(H)) and for all
n ∈N. For D(L; X ,Y ) the dissipation function defined as

D(L; X ,Y ) = L(X ∗Y )−L(X ∗)Y −X ∗L(Y ). (2.16)

Then L is said to be completely dissipative, which we denote as L ∈ CD(B(H)).

Additionally, note that in our case derived before L ∈ CD(B(H)), since Φt (I ) = I and Φt ∈
CP(B(H)) implies Ln(I ) = 0 and Ln(X ∗) = Ln(X )∗. This identification is actually more general,
which is contained in the following proposition.
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Proposition 2.9. Let L : B(H) → B(H) be a bounded ∗-map and let Φt = e tLn . Then the fol-
lowing are equivalent:

a) Φt (X ∗X ) ≥Φt (X ∗)Φt (X ) for all X ∈ B(H) andΦt (I ) = I .

b) D(L; X , X ) ≥ 0 for all X ∈ B(H) and L(I ) = 0.

As noted before the statement of the proposition, by the previous discussion we have already
shown a =⇒ b. Hence, we are only left with b =⇒ a. To this end, note that Lumer and Philips
[17] proved the following identification

Lemma 2.10. A bounded operator L on B(H) generates a semi-group of contraction operators
if and only ifΘ(L) ≤ 0 with

Θ(L) = lim
t→0+

‖I + tL‖−1

t
. (2.17)

This is a similar definition to equation 1.31, however, it is less general since this only works
for operators of the form e tL with

∥∥e tL
∥∥≤ 1. This theorem will be our main tool in proving the

other implication.

Proof of proposition 2.9. Recall theorem 2.5 which implies ‖I + tL‖ = supU∈B(H)U
‖(I + tL)U‖.

By assumption we have that equation 2.15 yields

‖U + tL(U )‖2 ≤ ∥∥I + t (L(U∗)U +U∗L(U ))+ t 2L(U∗)L(U )
∥∥

≤ ∥∥I + tL(I )+ t 2L(U∗)L(U )
∥∥

≤ ∥∥I + t 2L(U∗)L(U )
∥∥

≤ 1+ t 2‖L‖2.

Furthermore, √
1+ t 2‖L‖2 ≤ 1+ t 2‖L‖2.

Which implies that

‖I + tL‖ ≤ 1+ t 2‖L‖2

‖I + tL‖−1

t
≤ t‖L‖2 → 0 (in norm), t → 0+.

Hence, under the assumption we have that L generates a contractive semigroup by lemma
2.10. Notice that in this case we have that Φt (I ) = I by the L(I ) = 0 assumption. Moreover,
since Φt is a contraction ‖Φt‖ ≤ 1, but by Φt (I ) = I we have that ‖Φt‖ = 1. Therefore, by the
Russo-Dye theorem we have that Φt ≥ 0. This argument can be repeated for L ∈ CD(B(H)) to
obtainΦ(n)

t ≥ 0, i.e. Φt ∈ CP(B(H)). We can now define the following function

Sλ =λ
∫ ∞

0
e−λtΦt dt λ> 0. (2.18)

Setting Φt = e tL yields that Sλ = λ(λ−L)−1 and by positivity of Φt , this is a positive function.
By applying the Russo-Dye theorem again, we see that ‖Sλ‖ = 1. Notice that choosing λ= n/t
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for some n ∈N gives

(Sn/t )n =
(

n

t

(n

t
−L

)−1
)n

=
(
1− Lt

n

)−n

.

Sending n →∞ yields e tL which is precisely what we wanted. However, we have not yet ob-
tained the Cauchy-Schwarz inequality. To this end let Y = (λ−L)−1X for some X ∈ B(H). Then
we have

Sλ(X ∗X ) ≥ Sλ(λ2Y ∗Y −λ(L(Y ∗)Y −Y ∗L(Y ))+L(Y ∗)L(Y ))

≥ Sλ(λ(λ−L)Y ∗Y )

=λ(λ−L)−1λ(λ−L)Y ∗Y

=λ2Y ∗Y

=λ2(λ−L)−1X ∗(λ−L)−1X

= Sλ(X ∗)Sλ(X ).

Hence, we have obtained
Sλ(X ∗)Sλ(X ) ≤ Sλ(X ∗X ). (2.19)

Since this is true for all λ, by continuity and sending n →∞ it is also true for e tL which com-
pletes the proof. ■
Applying this proposition to the extensions Ln andΦ(n)

t yields the following corollary.

Corollary 2.11. Let L : B(H) → B(H) be a bounded map ∗-map and let Φt = e tL . Then Φt ∈
CP(B(H)) withΦt unital if and only if L ∈ CD(B(H)). Furthermore,Φt is norm continuous if L
is ultraweakly continuous.

2.2.2. DETERMINATION OF A CD-GENERATOR
In this subsection we consider the dissipation function of the a completely dissipative gener-
ator L. We do this in two parts. Firstly, we define the Haar measure. Secondly, we prove that
D(L) determines L up to Hamiltonian.

THE HAAR MEASURE

In this part we define the Haar measure and its properties. We begin with defining a topolog-
ical group.

Definition 2.12. A topological space (A,τ) endowed with a group operation ◦ : A× A → A is a
topological group if

1. Group multiplication (g ,h) 7→ g h of X ×X → X is continuous

2. Group inversion g 7→ g−1 of X → X is continuous.
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In the rest of this thesis we will assume a topological group to also be Hausdorff. Additionally,
to illustrate this concept consider the following example

Example 2.1. The spaceS1 = {
e iθ : 0 ≤ θ < 2π

}
endowed with the regular e-power multiplica-

tion
◦ :S1 ×S1 →S1, (e i t ,e i s ) 7→ e i (t+s) (2.20)

and the regular inversion
−1 :S1 →S1, e i t 7→ e−i t (2.21)

is a topological group.

To actually define the Haar measure, we also need to define the generalisation of the Lebesgue
measure, called the Radon measure. The Radon measure is defined as

Definition 2.13. A Radon measure is a measure µ defined on a Haussdorf topological space,
which has the following two properties:

1. µ is locally finite.

2. µ is inner regular.

The Radon measure is a measure, which respects and takes into account the topology of a
topological space. The Hausdorffness is required to obey the first property. Namely

Definition 2.14. A measure µ :Σ→ R for Σ some σ−algebra of a Hausdorff topological space
(A,τ) is said to be locally finite if:

1. τ⊂Σ.

2. For all x ∈ A, there exists an open neighborhood Ux ∈ τ such that µ(Ux ) <∞.

Additionally, we need to define what inner regular means. This property has to do with ap-
proximating measures of arbitrary sets in the σ−algebra with compact sets. It is defined as

Definition 2.15. Consider the same setup as in the previous definition. Then a measure µ :
Σ→R is said to inner regular if:

1. τ⊂Σ.

2. ∀X ∈Σwe have that

µ(X ) = sup
{
µ(K ) : K is compact ,K ⊂ X

}
. (2.22)

As an example, the Lebesgue measure is a Radon measure. Since we have now defined the
Radon measure, we can move on to the Haar measure, which Folland [9] (pages 36-40) defined
as

Definition 2.16. Let G be a locally compact topological group. Let Σ be the σ−algebra of
subsets of G , where we require that it contains the Borel subsets. A Radon measure µ : Σ→ R

is called a left invariant Haar measure on G is µ(g E) =µ(E) for every Borel set E ⊂G and every
g ∈G .
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This is a clear definition regarding the topological group G . However, to construct integrals,
we will need more formalism. To this end consider the following set of continuous functions
on a locally compact group G

Cc (G) = {
f : f −1({0}c ) is compact

}
. (2.23)

This set is called the space of compactly supported continuous functions, since the set where
f is non zero has to be compact. Furthermore, we have that in Folland [9] the following theo-
rem is proved.

Theorem 2.17. Every locally compact group G possesses a left invariant Haar integral defined
on Cc (G). Where the Haar integral is given with respect to a Haar measure µ by∫

G
Lg f dµ=

∫
G

f dµ. (2.24)

In the equation Lg is defined to be operating as Lg f (x) = f (g−1x), where g ∈ G . For right
invariance we would simply write the same integral with Rg f (x) = f (xg ).

We will not prove this fact, but it is important to note, because it allows us to claim that this
integral exist, whenever we have a locally compact group. This will be used later in the proof
of the Lindblad equation.

DETERMINING A GENERATOR FROM THE DISSIPATION FUNCTION

In this section we consider the dissipation function D(L; X ,Y ) of a generator L ∈ CD(B(H)).
We prove the following theorem proposed by Lindblad [16].

Theorem 2.18. The dissipation function D(L; X ,Y ) for L ∈ CD(B(H)) determines L up to
Hamiltonian.

This theorem is fundamental in giving physical significance to the concepts introduced thus
far. However, to prove it, we will first need to introduce the definition of a derivation and prove
an auxiliary lemma proved by Nayak [20].

Definition 2.19. A derivation D : B(H) → B(H) is a linear transformation that obeys the Leib-
niz rule, i.e.

D(AB) = AD(B)+D(A)B , for all A,B ∈ B(H). (2.25)

The simplest example of a derivation is the derivative on the continuous space of functions,
which obeys the product rule. The product rule in this case is identical to the Leibniz rule,
hence by linearity of the derivative this is a derivation. The definition leads to the following
lemma often called the derivation theorem.

Lemma 2.20 (Derivation theorem). Let D be a derivation on Mn(C). Then there exists a
matrix Z ∈ Mn(C) such that D(A) = [Z , A] for all A ∈ Mn(C). Additionally, Z is unique up to
translation with a scalar matrix. Letting Mn(C)U the compact group of unitary matrices with
the left-invariant Haar measure on Mn(C)U denoted by dU . We have that Z is given by

Z =αI +
∫

Mn (C)U

D(U )U−1dU . (2.26)
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In this lemma we stated that Mn(C)U is a compact topological group. To see this let Mn(C)U be
endowed with the regular matrix multiplication. Since this is polynomial in all the entries, we
have that this multiplication is continuous in the norm topology. Furthermore, note that con-
jugate transposition is a continuous operation in the 2-norm ( ‖·‖2) and because all norms are
equivalent on finite dimensional spaces, we have that conjugate transposition is also a norm
continuous operation. Furthermore, we know that conjugate transposition is inversion for
unitary matrices. Hence, this actually proves that Mn(C)U is a topological group. Addition-
ally, compactness follows from the fact that the following functions are both continuous and
both map to the identity matrix

f1 : Mn(C) → Mn(C), U 7→U∗U = I

f2 : Mn(C) → Mn(C), U 7→UU∗ = I .

Since these two functions are continuous and Mn(C)U can be written as

Mn(C)U = f −1
1 ({I })∩ f −1

2 ({I }). (2.27)

We have that Mn(C)U is a closed and bounded set of an Euclidean space, hence it is compact.
Here, the boundedness stems from the fact that ‖U‖ = 1 for all unitary matrices. Thus we
have that Mn(C)U is a compact topological group. We now move on to the proof of the lemma
provided by Nayak [20].

Proof of lemma 2.20. Define the following function

ψU (X ) :=U XU−1 +D(U )U−1, for U ∈ Mn(C)U . (2.28)

We can then study the composition, hence let U ,V ∈ Mn(C)U and X ∈ Mn(C) then

ψV ◦ψU (X ) =VψU (X )V −1 +D(V )V −1

=V (U XU−1 +D(U )U−1)V −1 +D(V )V −1

= (V U )X (V U )−1 + (V D(U )+D(V )U )(V U )−1

= (V U )X (V U )−1 + (D(V U ))(V U )−1

=ψV U (X ).

In the second to last equality we used the Leibniz rule to derive the result. Thus our composi-
tion yields that for any U ,V ∈ Mn(C)U we have thatψU ◦ψV =ψUV . Note that for any matrix X
this function is a continuous function on the compact group, hence ψU (X ) ∈Cc (G) for some
fixed X . This allows us to define

Z :=
∫

Mn (C)U

ψU (X )dU . for some fixed X ∈ Mn(C). (2.29)

Now let V ∈ Mn(C)U then we have by linearity that

ψV (Z ) =ψV

(∫
Mn (C)U

ψU (X )dU

)
=

∫
Mn (C)U

ψV ◦ψU (X )dU

=
∫

Mn (C)U

ψV U (X )dU .
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But the Haar measure was defined to be left invariant, which yields∫
Mn (C)U

ψV U (X )dU =
∫

Mn (C)U

LV ψV U (X )dU

=
∫

Mn (C)U

(V (V −1U ))X (V (V −1U ))−1 + (D(V (V −1U )))(V (V −1U ))−1dU

=
∫

Mn (C)U

ψU (X )dU

= Z .

Hence, for all U ∈ Mn(C)U we have thatψU (Z ) = Z . We then obtain that U ZU−1+D(U )U−1 =
Z ⇐⇒ U Z +D(U ) = ZU , but this means that D(U ) = [Z ,U ]. As mentioned before any op-
erator has a decomposition into unitary operators, since derivations are linear, we have that
D(A) = [Z , A] for any A ∈ Mn(C). Additionally, if both Z1 and Z2 obey the equation for D, i.e.
[Z1, A] = [Z2, A]. Then this implies that [Z1 − Z2, A] = 0. Which means that Z1 = αI + Z2 for
some α ∈C. Hence, we are done. ■
Using this lemma, we can prove theorem 2.18.

Proof of theorem 2.18. If L ∈ CD(B(H)) then D(L; X ,Y ) ≥ 0 for all X ,Y ∈ B(H). Let us first con-
sider the case D(L; X ,Y ) = 0. Then L is a derivation and we can immediately apply the previ-
ous lemma to conclude that L(X ) = [Z , X ], where Z is given as in equation 2.26. Additionally,
we know that L is a ∗− map. Hence, L(X )∗ = L(X ∗). This implies

L(X )∗ = (Z X )∗− (X Z )∗ = X ∗Z∗−Z∗X ∗ = L(X ∗) = Z X ∗−X ∗Z . (2.30)

Hence, Z = i H for H self-adjoint. Given this fact Φt (X ) = e tL(X ) = e i H t X e−i H t . Which is pre-
cisely the time evolution of operators considered in the Heisenberg picture. Conversely, if L
generates a semi group of CP maps, then both L and −L have D(L; X , X ) ≥ 0 and D(−L; X , X ) ≥
0. Hence, D(L, X , X ) = 0, thus L = i [H , X ]. In the case where D(L; X ,Y ) 6= 0, we thus have a lack
of reversibility. Hence, no Hamiltonian equivalence. ■



3
THE LINDBLAD MASTER EQUATION

During this chapter the Lindblad master equation is derived using the previously built for-
malism. This derivation yields a general form for the generators of UCP maps. Additionally, a
derivation from the microscopical point of view is discussed. Both these derivations yield the
Lindblad master equation, which describes the evolution of a system interacting with a heat
bath. This equation is of utmost importance in studying the physics of these evolutions.

3.1. THE LINDBLAD EQUATION FROM THE MATHEMATICAL SIDE
In this section we derive the Lindblad master equation from the mathematical principles we
have developed so far in addition to the concept of hyperfiniteness, which will be discussed
in the first part of this section, whilst the second part is used to derive the master equation.

3.1.1. HYPERFINITENESS
During this part we discuss the concept of hyperfiniteness and its use based on the discussion
that the unitary elements of the finite Mn(C) form a compact topological group.

In the previous section we have defined the Haar measure, which is useful due to it being left
invariant. However, to use the Haar measure we require a compact topological group. The
topological group we want to study is that of the unitary operators in B(H). We begin with
proving that the unitary operators actually form a topological group.

Proposition 3.1. The unitary operators B(H)U form a topological group.

This can immediately be seen in the case of finite dimensional operators, in which case we
can simply use the identification Mn(C) ' B(H) and use the proof for Mn(C)U given in the
proof of lemma 2.20. However, it can more generally be proven in the SOT, which does not
require that assumption.

Proof. We start off with the composition. To this end let ε> 0 and let x ∈H. Additionally, we
consider (U ,V ) 7→UV . Then using equation 1.26 we define an open set O around UV as

O(UV , x,ε) = {A ∈ B(H)U : ‖(UV − A)x‖ < ε}. (3.1)

28
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Now set W ((U ,V ), x,ε) = {
(B ,C ) ∈ B(H)U : ‖(U −B)C x‖ < ε

2 ,‖(V −C )x‖ < ε
2

}
. Then

‖(UV −BC )x‖ ≤ ‖(UV −UC )x‖+‖(UC −BC )x‖
= ‖U (V −C )x‖+‖(U −B)C x‖
= ‖(V −C )x‖+‖(U −B)C x‖
< ε

2
+ ε

2
= ε.

Hence, we have found an open set in the pre-image, thus composition is continuous. To prove
continuity of the inverse, consider the following set

O(U∗, x,ε) = {
A∗ ∈ B(H)U :

∥∥(U∗− A∗)x
∥∥< ε}. (3.2)

Define W (U , x,ε) = {
B ∈ B(H)U : ‖(U −B)U∗x‖ < ε}. Then for A ∈ W (U , xε) and setting y =

U∗x we have ∥∥(U∗− A∗)x
∥∥= ∥∥y − A∗U y

∥∥= ∥∥Ay −U y
∥∥< ε.

Hence, the inverse is also continuous. Therefore, we can conclude that B(H)U is a topological
group. ■
We now have obtained two approaches, which both show that B(H)U is a topological group.
However, we still require that it is compact to be able to use the Haar measure. To show this
we require the notion of hyperfiniteness, which will allow us to construct B(H) out of finite
sets. The definition of hyperfiniteness requires the weak∗-topology and is defined by Sakai
[23] (page 204) as

Definition 3.2. Let M be the dual of a Banach space. Then if M is a Banach algebra with
an involution ∗ and ‖X ‖2 = ‖X ∗X ‖ for X ∈M is called a hyperfinite factor if there exists an
increasing sequence of type In(p) subfactors

{
Mp

}
with n(p) <∞ such that the weak∗ closure

of
⋃∞

p=1Mp is M.

In this definition we have an increasing sequence, which implies that Mp ⊂Mp+1. Further-
more, the type In(p) subfactor is defined by Topping [25] (page 81) in the following way.

Definition 3.3. A type In(p) subfactor Mp is isomorphic to Mn(p)(C) and I ∈Mp . Here I is
the identity operator.

This definition is convenient, because if a space of operators is a hyperfinite factor, we can
split it up into finite pieces

{
Mp

}
. These finite pieces all contain unitary elements, which

form a closed and bounded set, hence by Bolzano-Weierstrass we immediately have that this
is a compact set for every p. Since we already proved that the unitary elements formed a
topological group, we now have a compact topological group. This fact allows us to define an
invariant mean Np defined by the Haar measure for every p on the unitary elements of Mp .

3.1.2. DERIVATION OF THE MASTER EQUATION
This part we derive the Lindblad equation by stating and proving the two most important
propositions of Lindblads paper.
To obtain the master equation we require the mean Np as discussed above, this allows to
propose the following proposition from Lindblad [16].
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Proposition 3.4. Suppose L ∈ CD(B(H)), with L weak∗ continuous. Then there is a Ψ ∈
CP(B(H)) and a self adjoint H ∈ B(H) such that for all X ∈ B(H) we have

L(X ) =Ψ(X )− 1

2
{Ψ(I ), X }+ i [H , X ]. (3.3)

In this equation {A,B} = AB +B A, i.e. the anticommutator.

Proof. By Topping [25] (pages 91-92) we know that B(H) is actually a hyperfinite factor. Hence,
we can define an invariant mean Np as discussed before. Additionally, we define Kp ∈ B(H)
as Kp =Np (L(U∗)U ), which immediately implies that

∥∥Kp
∥∥ ≤ ‖L‖. We can now use the left

invariance for any unitary V ∈Mp to obtain

Np (L(V U∗)U ) =Np (RV [L(V U∗)U ]) =Np (L(V (UV )∗)UV ) =Np (L(U∗)UV ) = KpV. (3.4)

Recall that Np is an invariant integral over the unitary elements of Mp , i.e. independent of
V . This implies that we can pull V out of the integral to derive the last equality. Thus invoking
the fact that any operator can be written as a finite linear combination of unitaries, we deduce
that Np (L(XU∗)U ) = Kp X . Using this fact we can consider the dissipation function (equation
2.16) of L for any X ,Y ∈Mp as follows

Np (D(L;U X ,U Y )) =Np (L((U X )∗U Y )−L((U X )∗)U Y − (U X )∗L(U Y ))

= L(X ∗Y )−Np (L(X ∗U )U )Y −X ∗Np (U∗L(U Y ))

= L(X ∗Y )−Kp X ∗Y −X ∗Y K ∗
p .

Where we assumed that our Haar integral has unit volume for the unitary elements in Mp ,
which can be done by rescaling. We defineΨp : B(H) → B(H) by

Ψp (X ) = L(X )−Kp X −X K ∗
p . (3.5)

Note that because L was picked in CD(B(H)) we have that for every X ∈ Mp ΨP (X ∗X ) =
Np (D(L;U X ,U X )) ≥ 0. Due to the fact that the dissipation function is non-negative and
the integral of a non-negative function is again non-negative. Thus we have that Ψp ≥ 0
on Mp , since X ∗X ≥ 0 for all X ∈ B(H). Applying the same argument to Mn(Mp ) we find
Npn(Ln(U∗)U ) = Kp⊗In , whereNpn is the invariant mean on the unitary elements in Mn(Mp ),
which implies that Ψp

∣∣Mp ∈ CP(Mp ,B(H)). Hence, Ψp defined in this way is completely
positive when restricted to Mp for each p. We can now generalise to obtain aΨ on the entire
space B(H).
LetΨK = L(X )−K X −X K ∗ and define the following set

Γp = {
K ∈ B(H) :Ψ

∣∣Mp ∈ CP(Mp ,B(H)), ‖K ‖ ≤ ‖L‖}. (3.6)

Γp is precisely those K that yield a function similar to equation 3.5. The only part that remains
is proving that there is at least one element K for which we can define ΨK such that it CP on
the entire space. To this end, note that Kp ∈ Γp , i.e. Γp 6= φ for all p. Furthermore, due to
the fact that we either increase or keep the amount of unitaries the same when comparing p
and p +1. Every K that makes ΨK |Mp+1 CP must also make ΨK |Mp CP. Hence, Γp+1 ⊂ Γp .
Furthermore, Γp is weakly closed. To see this assume that (Kn)∞n=1 ⊂ Γp with Kn → K in the
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WOT. Then we need to prove that K ∈ Γp . Firstly, note that if Φn ≥ 0 and Φn →Φ in the WOT,
thenΦ≥ 0. This can be seen as follows, convergence in the WOT is given by

〈Φnξ,ξ〉→ 〈Φξ,ξ〉 ∀ξ ∈H. (3.7)

Since convergence in the WOT holds for any pair ξ,η ∈H, it must definitely hold for ξ,ξ ∈H.
Thus since 〈Φnξ,ξ〉 ≥ 0 we must have 〈Φξ,ξ〉 ≥ 0. Apply this result to the fact that Kn → K
weakly, which means thatΨKn →ΨK weakly. Therefore, by using the same argument as before
with Ln and Mn(Mp ) we obtain thatΨK is CP on Mp . Secondly, let x ∈H a unit vector then

|〈K x, x〉| = lim
n→∞ |〈Kn x, x〉| ≤ liminf

n→∞ ‖Kn‖ ≤ ‖L‖. (3.8)

Which after taking the supremum over all unit vectors x yields ‖K ‖ ≤ liminfn→∞ ‖Kn‖ ≤ ‖L‖.
Therefore, Γp is weakly closed for all p.
Furthermore, by the Banach-Alaoglu theorem the unit ball in B(H) is weak∗ compact. Addi-
tionally, the weak∗-topology and the weak topology coincide on the unit ball (for details see
[19] theorem 4.2.4. and theorem 4.2.7), thus Γp is weakly-compact. Hence, Γ = ⋂∞

p=1Γp 6= φ.
Thus, choose a K ∈ Γ. Then Ψ = ΨK is CP on

⋃∞
p=1Mp . As L is weak∗ continuous we can

now conclude thatΨ is CP on the weak∗−closure of
⋃∞

p=1Mp . This follows from the fact that

we can approximate any positive element X ∈⋃∞
p=1Mp in the weak∗-topology with a positive

sequence Xn ∈⋃∞
p=1Mp (this fact is mainly a result from the Kaplansky theorem which is the-

orem 4.3.3. in Murphy [19]), which by weak∗ continuity of L implies, using the previous rea-
soning, that L(X ) ≥ 0 and thusΨ is CP on the closure. Furthermore, note thatΨ(I ) =−K −K ∗.
Then set H = i

2 (K ∗−K ). It follows that

L(X ) =Ψ(X )+K X +X K ∗

=Ψ(X )+ 1

2
((K +K ∗)X + (K −K ∗)X )+ 1

2
(X (K +K ∗)+X (K ∗−K ))

=Ψ(X )+ 1

2
((K +K ∗)X +X (K +K ∗))+ 1

2
((−K ∗+K )X −X (−K ∗+K ))

=Ψ(X )− 1

2
((−K −K ∗)X +X (−K −K ∗))+ i

2
(i (K ∗−K )X −X i (K ∗−K ))

=Ψ(X )− 1

2
(Ψ(I )X +XΨ(I ))+ i (H X −X H)

=Ψ(X )− 1

2
{Ψ(I ), X }+ i [H , X ]

as required. ■

This is a powerful proposition, because it gives a general form for completely dissipative gen-
erators. However, we are not done yet, since we also want to go in the other direction. Suppose
we have aΨ which is CP and a self-adjoint H ∈ B(H), does this yield a CD generator? It turns
out that the answer to this question is actually yes, as captured in the following proposition.

Proposition 3.5. LetΨ ∈ CP(B(H)) and H ∈ B(H) self-adjoint. Then L written as

L(X ) =Ψ(X )− 1

2
{Ψ(I ), X }+ i [H , X ] (3.9)

has L ∈ CD(B(H)).
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Proof. To obtain the result, we utilise the Stinespring dilation as given in theorem 1.12, which
states that if Ψ ∈ CP(B(H)) we can write Ψ(X ) = V ∗π(X )V , for some ∗-homomorphism π.
Furthermore, we have that L(I ) =Ψ(I )− 1

2 {Ψ(I ), I }+ i [H , I ] = 0 and

L(X ∗) =Ψ(X ∗)− 1

2

{
Ψ(I ), X ∗}+ i [H , X ∗] =Ψ(X )∗− 1

2

{
Ψ(I )∗, X

}∗+ i [H∗, X ]∗ = L(X )∗. (3.10)

Furthermore,

D(L; X , X ) = L(X ∗X )−L(X ∗)X −X ∗L(X )

=Ψ(X ∗X )− 1

2

{
Ψ(I ), X ∗X

}+ i [H , X ∗X ]−Ψ(X ∗)X + 1

2

{
Ψ(I ), X ∗}

X − i [H , X ∗]X

−X ∗Ψ(X )+ X ∗

2
{Ψ(I ), X }− i X ∗[H , X ]

=Ψ(X ∗X )−Ψ(X ∗)X −X ∗Ψ(X )

− 1

2

[
Ψ(I )X ∗X +X ∗XΨ(I )−Ψ(I )X ∗X −X ∗Ψ(I )X −X ∗Ψ(I )X −X ∗XΨ(I )

]
+ i

[
H X ∗X −X ∗X H −H X ∗X +X ∗H X +X ∗X H −X ∗H X

]
=Ψ(X ∗X )−Ψ(X ∗)X −X ∗Ψ(X )+X ∗Ψ(I )X .

Additionally, for the Stinespring dilation we can choose π(I ) = I which yields

Ψ(X ∗X )−Ψ(X ∗)X −X ∗Ψ(X )+X ∗Ψ(I )X =V ∗π(X ∗X )V −V ∗π(X ∗)V X −X ∗V ∗π(X )V +X ∗V ∗V X

=V ∗π(X ∗)π(X )V −V ∗π(X ∗)V X −X ∗V ∗π(X )V +X ∗V ∗V X

= (V ∗π(X ∗)−X ∗V ∗)(π(X )V −V X )

= (π(X )V −V X )∗(π(X )V −V X ) ≥ 0,

which completes the proof. ■
Notice that for the general form of L given in equation 3.3 we can apply the Choi-Kraus de-
composition to obtain

L(X ) =
n∑

i=1
(V ∗

i X V − 1

2

{
V ∗

i Vi , X
}
)+ i [H , X ]. (3.11)

This is the general form for the Lindblad master equation and it allows us to state the following
theorem and main result from Lindblad [16].

Theorem 3.6. L ∈ CD(H), with L weak∗ continuous if and only if it is of the form

L(X ) =
n∑

i=1

(
V ∗

i X Vi − 1

2

{
V ∗

i Vi , X
})+ i [H , X ], (3.12)

where Vi ∈ B(H),
∑

i V ∗
i Vi ∈ B(H) and H ∈ B(H) is self-adjoint.
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This theorem states the master equation in the Heisenberg picture. For the Schrödinger pic-
ture we can simply find the dual by letting ρ a density operator, then

Tr

([
n∑

i=1
(V ∗

i X Vi − 1

2

{
V ∗

i Vi , X
}
)+ i [H , X ]

]
ρ

)
=

n∑
i=1

Tr
(
(V ∗

i X Vi )ρ
)− 1

2
Tr

({
V ∗

i Vi , X
}
ρ
)+Tr

(
i [H , X ]ρ

)
=

n∑
i=1

Tr
(
X ViρV ∗

i

)− 1

2
Tr

(
XρV ∗

i Vi +X V ∗
i Viρ

)
+Tr

(
i XρH − i X Hρ

)
= Tr

(
X

[
n∑

i=1
ViρV ∗

i − 1

2
(ρV ∗

i Vi +X V ∗
i Viρ)− i [H ,ρ]

])
.

Which yields that the general form for the Schrödinger picture Lindblad equation is given by

L∗(ρ) = 1

2

(
n∑

i=1
2ViρV ∗

i −ρV ∗
i Vi −V ∗

i Viρ

)
− i

[
H ,ρ

]
= 1

2

(
n∑

i=1

[
Viρ,V ∗

i

]+ [
Vi ,ρV ∗

i

])− i
[
H ,ρ

]
. (3.13)

Equation 3.13 is the most general form for the Lindblad equation in the Schrödinger picture.
Both equation 3.13 and equation 3.11 lets us describe the generators of dynamical semigroups
explicitly. The physical significance of which is discussed in the next part.

3.1.3. PHYSICAL INTERPRETATION
In equation 3.11 we have found a general form for the generators of semigroups. However,
what is the physical significance of this form? Why is it useful? These two questions will be
answered during this part by considering a system in connection with a heat bath and deriving
the evolutionary dynamics of the system.
Consider a system S in connection to a heat bath R, we can describe the entire system with
a density operator ρT = σ⊗ρ. Then for any operator O(t ) acting on the entire sytem, we can
define its expectation value by

〈O(t )〉 = Tr
(
O(t )ρT

)= TrS (TrR (O(t )ρ)σ) = Trs (Õ(t )σ). (3.14)

Notice that Õ(t ) is now an operator on the system S, since the heat bath has been traced out.
Furthermore, its expectation on system S can be calculated by multiplying with the density
matrix of the system σ and tracing over the system. Hence, in the Heisenberg picture the
development of S for a particular operator X ∈ B(HS )

X 7→ TrR (U∗(X ⊗ I )Uρ) =Φ(X ). (3.15)

In this equation the ⊗I represents the fact that the initial operator X acts on S and leaves the
bath R alone. Furthermore, the U is a unitary operator which describes the time evolution
according to a Hamiltonian as described in section 1.1.2. It turns out that this mapping is ac-
tually completely positive. We will prove this fact by using the partial trace in the Schrödinger
picture.
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Proposition 3.7. If ρT = σ⊗ ρ is the density operator of a combined system consisting of
system S with a heat bath R. Then the partial trace TrR : ρT →σ is a completely positive map.

Proof. To prove this let (ei )i and ( f j ) j be basis of HS and HR the Hilbert spaces describing the
system S and bath R. Let Ka = Is ⊗ f ∗

a , these will be the Kraus operators for the Choi-Kraus
decomposition specified in the Choi-Kraus theorem 1.11. Now write ρT =∑

i , j ,k,h λi j khei e∗j ⊗
fk f ∗

h , which has that TrR (ρT ) =∑
i j kha λi j khei e∗j ⊗ f ∗

a ( fk ) f ∗
h ( fa) =∑

i j a λi j aei e∗j . Then we find

that

∑
a

KaρT K ∗
a =∑

a
IS ⊗ f ∗

a

( ∑
i , j ,k,h

λi j khei e∗j ⊗ fk f ∗
h

)
IS ⊗ fa = ∑

i j a
λi j aei e∗j = TrR (ρT ). (3.16)

Because the partial trace has a Kraus decomposition it is a CP map. ■
The fact that the partial trace is a CP map was first proved by Kraus. However, the proof above
is a more eloquent version presented by Lidar [15] (pages 27-29). Notice that the mapping Φ
defined in equation 3.15 is unital. Furthermore, Lindblad [16] also proved the converse, hence
if we have such a CP operator it actually describes some sort of system evolution.

Proposition 3.8. IfΦ ∈ CP(H1) andΦ(I ) = I then there is an isometric operator V on H1⊗H2,
where H2 is some Hilbert space such that for all ρ density operators on H2 we have

Φ(X ) = Tr2(ρV ∗(X ⊗ I2)V ). (3.17)

Where I2 is the identity on H1.

Proof. We know that we can decomposeΦ by the Choi-Kraus decomposition theorem 1.11 as

Φ(X ) =∑
i

V ∗
i X Vi ,

∑
i

V ∗
i Vi = I . (3.18)

Furthermore, suppose H2 is infinite dimensional. Then there are isometries in H2 such that
W ∗

i W j = δi j I , which leads us to define V =∑
i Vi ⊗Wi . Then we have that

V ∗(X ⊗ I )V =∑
i

V ∗
i X Vi ⊗W ∗

i Wi =Φ(X )⊗ I . (3.19)

This leads to
Tr2(V ∗(X ⊗ I )V ) = Tr2(Φ(X )⊗ I ) =Φ(X ). (3.20)

Hence, we are done. ■
We have now found that CP maps describe the evolution of a system in connection to a heat
bath. By applying the result that a generator L yields a one-parameter semigroup of operators
e tL we have immediately found the use of L. The semigroup describes the system at a time t
and L generates this semigroup. This can also be seen by considering the evolution of the sys-
tem in the Schrödinger picture, as captured in the following differential equation for a density
operator ρ

dρ

dt
= Lρ. (3.21)
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The solution to this differential equation would be the one-parameter semigroup as discussed
earlier. Notice that this is a little bit an abuse of notation, since previously L∗ was the operator
acting on the density matrix.
It is important to consider the different parts of the master equation. To this end consider
the time evolution of a closed quantum system under Hamiltonian H . The evolution of the
density operator ρ obeys the Von Neumann equation given as

dρ

dt
=− i

ħ
[
H ,ρ

]
. (3.22)

This equation is easy to solve as

ρ(t ) = e i H t/ħρe−i H t/ħ. (3.23)

Notice that this closed evolution is also contained in the Lindblad equation. However, the
interesting physics is captured in the so-called dissipative part of the Lindblad equation

1

2

(
n∑

i=1
[Viρ,V ∗

i ]+ [Vi ,ρV ∗
i ]

)
=∑

i
ViρV ∗

i − 1

2
ρV ∗

i Vi − 1

2
V ∗

i Viρ =∑
i

ViρVi − 1

2

{
V ∗

i Vi ,ρ
}
. (3.24)

The Vi , which were our Kraus operators, are often referred to as quantum jump operators
or Lindblad operators. The V ∗

i ρVi describes the different jumps, whilst the other terms nor-
malise the equation in the case no jumps occur.

3.2. MICROSCOPICAL DERIVATION
The mathematical derivation of the Lindblad equation is an airtight proof of the general form
for generators of one-parameter semigroups. However, it is interesting to note that this equa-
tion can also be derived physically by making several assumptions that are physically valid,
instead of abstract requirements. These assumptions should be such that we eventually de-
rive the same equation. In this section we do exactly that: derive the master equation from
physical principles and assumptions. To this end we will follow derivations by Manzano [18]
and Brasil et al. [3].

3.2.1. THE REDFIELD EQUATION
In this section we are interested in studying the behaviour starting from a total system de-
scription given by the Von Neumann equation and obtaining the reduced dynamics of a sys-
tem within this total system as described by the Redfield equation. To derive this equation we
discuss the Markov and Born approximations which are required to obtain the result.
So far we have studied systems either in the Schrödinger of Heisenberg picture. However, to
study interactions it is convenient to study the dynamics using the interaction picture, which
is a hybrid of both Heisenberg and Schrödinger. In this picture the operators evolve with
the separate Hamiltonians of the system and its environment, whilst the Schrödinger or Von
Neumann equation contains the interaction Hamiltonian. To make this concrete consider the
system S coupled to a heat bath R, which will be represented by Hilbert spaces HS and HR

respectively. In this case the total system will be given by HS ⊗HR with a total Hamiltonian
defined by

H(t ) = Hs ⊗ IR + IS ⊗HR +αHI . (3.25)
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In this equation we defined a coupling parameter α which determines the strength of the
interaction described by the interaction Hamiltonian HI . In the interaction picture we would
now define a time dependent operator as

Ô(t ) = e i (HS⊗IR+IS⊗HR )t/ħOe−i (HS⊗IR+IS⊗HR )t/ħ (3.26)

where O ∈ B(HS ⊗HR ). Let ρT = σ⊗ρ describe the total density operator of the combined
system then this step would reduce the Von Neumann equation as follows

dρT

dt
(t ) =− i

ħ
[
H(t ),ρT (t )

]→ dρ̂T

dt
(t ) =− iα

ħ
[
ĤI (t ), ρ̂T (t )

]
. (3.27)

This equation is the starting point for the rest of the derivation. To this end consider that
without loss of generality we can decompose HI = ∑

n Sn ⊗Rn , where Sn ∈ B(HS ) and Rn ∈
B(HR ). Furthermore, we can assume that at t = 0 the total density operator can be written as
ρT (0) =σ(0)⊗ρ(0). This can be achieved by not having the system interact with the heat bath
beforehand. These two assumptions lead to the following lemma.

Lemma 3.9. Let ρ(0) be the initial state of the heat bath. Then for operators Rn as given in the
decomposition of HI we can always redefine the total Hamiltonian H(t ) such that

〈Rn〉 = Tr
(
Rnρ(0)

)= 0. (3.28)

Proof. Suppose that this is not already the case, then we can redefine the total Hamiltonian
as

H(t ) = (
Hs +αTrR (HIρ(0))

)⊗ IR + IS ⊗HR +α(
HI −TrR (HIρ(0))

)
=

(
Hs +α

∑
n
〈Rn〉Sn

)
⊗ IR + IS ⊗HR +α∑

n
Sn ⊗ (Rn −〈Rn〉).

Hence, the total Hamiltonian remains unchanged, but we have shifted parts. This implies the
statement of the lemma, because

〈
R ′

n

〉= 〈Rn −〈Rn〉〉 = 0. ■
It turns out that in a lot of physical systems TrR

(
Rnρ(0)

)= 0 automatically. However, if this is
not the case we can apply the previous lemma. Furthermore, to actually derive the Lindblad
equation we need two important assumptions or approximations: The Markov and Born ap-
proximation. These two assumptions not only play a crucial role in this derivation, but often
show up in physics to simplify results. We start with the Born approximation which consid-
ers the correlation of the environment and the system. We know that due to the interaction
Hamiltonian correlations will appear between the system and the reservoir. However, we can
make the strong assumption that the correlation time and the relaxation time of the system
are much smaller than the time scale of the system. We can only assume this in the weak
coupling regime α¿ 1, but even in this case it is still a strong assumption, which implies that
ρT (t ) =σ(t )⊗ρ(0). Hence, we have decoupled the system and the reservoir and assumed the
reservoir is always in its initial state. This is the case if we for instance assume the reservoir to

be a thermal state ρ(0) = e−HRβ

Tr
(
e−HRβ

) , where β= 1/kB T . This is an assumption that is often used

and we will assume it in the rest of the derivation as well. Apart from the Born approximation
we must also consider the Markov assumption. This assumption concerns the fact that we
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want our system to be memoryless, i.e. the evolution of a state can only depend on the state
the system is currently in. Previous times are not allowed to be part of the equation. Using
these two assumptions we can state the following lemma.

Lemma 3.10. Under the Born and Markovian assumption it is possible to describe the density
operator of the system of interest (σ(t )) with the Redfield equation

dσ

dt
(t ) =−α

2

ħ2

∫ ∞

0
TrR

([
ĤI (t1),

[
ĤI (t − t1), σ̂(t )⊗ ρ̂(0)

]])
dt1. (3.29)

Proof. Starting from equation 3.27 we can integrate to obtain

ρ̂T (t ) = ρ̂T (0)− iα

ħ
∫ t

0

[
ĤI (t ), ρ̂T (t1)

]
dt1. (3.30)

Which after recombination with equation 3.27 yields

dρ̂T

dt
(t ) =− iα

ħ
[
ĤI (t ), ρ̂T (0)

]− α2

ħ2

∫ t

0

[
ĤI (t ),

[
ĤI (t1), ρ̂T (t1)

]]
dt1. (3.31)

To obtain the dynamics of the density operatorσ for system S, we must apply the partial trace,
in turn tracing out the degrees of freedom of the heat bath. Furthermore, we can apply the
Markov approximation to obtain the following

TrR

(
dρ̂T

dt
(t )

)
= dσ̂

dt
(t )

=− iα

ħ TrR
([

ĤI (t ), ρ̂T (0)
])− α2

ħ2

∫ t

0
TrR

([
ĤI (t ),

[
ĤI (t1), ρ̂T (t1)

]])
dt1.

Let us for the moment focus on the first term, which evaluates to

TrR
([

ĤI (t ), ρ̂T (0)
])=∑

n
TrR

([
Ŝn(t )⊗ R̂n(t ), σ̂(0)⊗ ρ̂(0)

])
=∑

n
Ŝn(t )σ̂(0)TrR

(
R̂n(t )ρ̂(0)

)− σ̂(0)Ŝn(t )TrR
(
ρ̂(0)R̂n(t )

)= 0.

Where the last equality follows from the previous lemma and properties of the trace function.
Furthermore, by applying the Born assumption we then obtain

dσ̂

dt
(t ) =−α

2

ħ2

∫ t

0
TrR

([
ĤI (t ),

[
ĤI (t1), σ̂(t1)⊗ ρ̂(0)

]])
dt1. (3.32)

Lastly, by applying the Markov assumption, we can replace t1 in σ̂(t1) with a t . Switching the
variables t1 7→ t − t1 yields

dσ̂

dt
(t ) =−α

2

ħ2

∫ t

0
TrR

([
ĤI (t ),

[
ĤI (t − t1), σ̂(t )⊗ ρ̂(0)

]])
dt1. (3.33)

Additionally, we can increase the upper limit of integration to infinity, without changing the
outcome since we assume that the the system has no memory. Thus any effects different
from t1 = t will decay quickly enough that increasing the limit has no effect which yields the
Redfield equation.

dσ̂

dt
(t ) =−α

2

ħ2

∫ ∞

0
TrR

([
ĤI (t ),

[
ĤI (t − t1), σ̂(t )⊗ ρ̂(0)

]])
dt1. (3.34)

■
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3.2.2. THE EIGENBASIS OF [HS , ·]
During this part we re-express the interaction Hamiltonian in the eigenbasis of [HS , ·] and use
this to find a new expression of the Redfield equation.
Note that we are considering a finite dimensional system. Furthermore, by the self-adjointness
of HS there is a basis such that HS is diagonal. Then by the spectral theorem the eigenvectors
form a complete basis of B(HS ), i.e. there are operators Si (ω) ∈ B(HS ) such that

[HS ,Si (ω)] =−ωSi (ω)
[
HS ,S∗

i (ω)
]=ωS∗

i (ω). (3.35)

In this equation the ω are the eigenvalues of [HS , ·]. Hence, we can decompose the operators
of the interaction Hamiltonian as Si = ∑

ω Si (ω) Additionally, if in the infinite dimensional
case the Hamiltonian can also be written as a diagonal operator, we can obtain the same re-
sult. Furthermore, we must expand the exponential operators in Ŝn . Therefore, consider the
following proposition.

Proposition 3.11. The interaction Hamiltonian ĤI =∑
n Ŝn⊗R̂n can be rewritten in the eigen-

basis of HS to
ĤI (t ) = ∑

n,ω
e−iωt/ħSn(ω)⊗ R̂n(t ). (3.36)

In this equation the ω are the eigenvalues of the operator [HS , ·]. Additionally, we can also
rewrite the interaction Hamiltonian as

ĤI (t ) = ∑
n,ω

e iωt/ħS∗
n(ω)⊗ R̂∗

n (t ). (3.37)

Proof. First note that the operator Ŝn(t ) = ∑
ω e i t HS /ħSn(ω)e i t HS /ħ. To derive the result of the

proposition consider first the following

Sn H k
S = ([Sn , HS ]+HS Sn)H n−1

S = (ωI +HS )(Sn H k−1
S ) = ·· · = (ωI +HS )k Sn . (3.38)

Utilising this result yields

ĤI (t ) =∑
n

Ŝn(t )⊗ R̂n(t )

= ∑
n,ω

∞∑
k=0

(−i t )k

k !ħk
e i t HS /ħSn(ω)H k ⊗ R̂n(t )

= ∑
n,ω

∞∑
k=0

(−i t )k

k !ħk
e i t HS /ħ(ωI +HS )k Sn(ω)⊗ R̂n(t )

= ∑
n,ω

e−iωt/ħSn(ω)⊗ R̂n(t )

■
This proposition is important because it allows us to to rewrite the Redfield equation as shown
in the next lemma.
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Lemma 3.12. The Redfield equation can be rewritten to give the following

dσ̂

dt
(t ) = α2

ħ2

∑
ω,ω′k,l

(
e i (ω′−ω)t/ħΓkl (ω)

[
Sl (ω)σ̂(t ),S∗

k (ω′)
]+e i (ω′−ω)t/ħΓ∗l k (ω′)

[
Sl (ω), σ̂(t )S∗

k (ω′)
])

.

(3.39)
Where Γkl (ω) is given as

Γkl (ω) :=
∫ ∞

0
e iωt1/ħ TrR

(
R̂∗

k (t )R̂l (t − t1)ρ̂(0)
)
dt1. (3.40)

Proof. First we expand the commutators in the Redfield equation to obtain

dσ̂

dt
(t ) =− α2

ħ2 TrR

[∫ ∞

0
ĤI (t )ĤI (t − t1)σ̂(t )⊗ ˆρ(0)dt1

−
∫ ∞

0
ĤI (t )σ̂(t )⊗ ρ̂(0)ĤI (t − t1)dt1

−
∫ ∞

0
ĤI (t − t1)σ̂(t )⊗ ρ̂(0)ĤI (t )dt1

+
∫ ∞

0
σ̂(t )⊗ ρ̂(0)ĤI (t − t1)ĤI (t )dt1

]
.

Deriving the result relies on using the representations found for ĤI (t ) in the previous propo-
sition, we will use the equation 3.36 for ĤI (t − t1) in term 1 and 3, whilst using equation 3.37
for term 2 and 4. Furthermore, we fill in equation 3.37 for ĤI (t ) in term 1 and 3, whilst using
equation 3.36 for term 2 and 4. Which results in

dσ̂

dt
(t ) =− α2

ħ2 TrR

[∫ ∞

0

( ∑
k,ω′

e iω′t/ħS∗
k (ω′)⊗ R̂∗

k (t )

)(∑
l ,ω

e−iω(t−t1)/ħSl (ω)⊗ R̂l (t − t1)

)
σ̂(t )⊗ ρ̂(0)dt1

−
∫ ∞

0

(∑
l ,ω

e−iωt/ħSl (ω)⊗ R̂l (t )

)
σ̂(t )⊗ ρ̂(0)

( ∑
k,ω′

e iω′(t−t1)/ħS∗
k (ω′)⊗ R̂∗

k (t − t1)

)
dt1

−
∫ ∞

0

(∑
l ,ω

e−iω(t−t1)/ħSl (ω)⊗ R̂l (t − t1)

)
σ̂(t )⊗ ρ̂(0)

( ∑
k,ω′

e iω′t/ħS∗
k (ω′)⊗ R̂∗

k (t )

)
dt1

+
∫ ∞

0
σ̂(t )⊗ ρ̂(0)

( ∑
k,ω′

e iω′(t−t1)/ħS∗
k (ω′)⊗ R̂∗

k (t − t1)

)(∑
l ,ω

e−iωt/ħSl (ω)⊗ R̂l (t )

)
dt1

]

=− α2

ħ2 TrR

[∫ ∞

0

∑
k,l ,ω,ω′

e i (ω′−ω)t/ħe iωt1/ħ(
S∗

k (ω′)Sl (ω)σ̂(t )
)⊗ (

R̂∗
k (t )R̂l (t − t1)ρ̂(0)

)
dt1

−
∫ ∞

0

∑
k,l ,ω,ω′

e i (ω′−ω)t/ħe−iω′t1/ħ(
Sl (ω)σ̂(t )S∗

k (ω′)
)⊗ (

R̂l (t )ρ̂(0)R̂∗
k (t − t1)

)
dt1

−
∫ ∞

0

∑
k,l ,ω,ω′

e i (ω′−ω)t/ħe iωt1/ħ(
Sl (ω)σ̂(t )S∗

k (ω′)
)⊗ (

R̂l (t − t1)ρ̂(0)R̂∗
k (t )

)
dt1

+
∫ ∞

0

∑
k,l ,ω,ω′

e i (ω′−ω)t/ħe−iω′t1/ħ(
σ̂(t )S∗

k (ω′)Sl (ω)
)⊗ (

ρ̂(0)R̂∗
k (t − t1)R̂l (t )

)
dt1

]
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=α
2

ħ2

∑
k,l ,ω,ω′

e i (ω′−ω)t/ħ
[
− (

S∗
k (ω′)Sl (ω)σ̂(t )

)∫ ∞

0
e iωt1/ħ Tr

(
R̂∗

k (t )R̂l (t − t1)ρ̂(0)
)
dt1

+ (
Sl (ω)σ̂(t )S∗

k (ω′)
)∫ ∞

0
e−iω′t1/ħ Tr

(
R̂∗

k (t − t1)ρ̂(0)R̂l (t )
)
dt1

+ (
Sl (ω)σ̂(t )S∗

k (ω′)
)∫ ∞

0
e iωt1/ħ Tr

(
R̂l (t − t1)ρ̂(0)R̂∗

k (t )
)
dt1

− (
σ̂(t )S∗

k (ω′)Sl (ω)
)∫ ∞

0
e−iω′t1/ħ Tr

(
ρ̂(0)R̂l (t )R̂∗

k (t − t1)
)
dt1

]
Notice that the first and third term combine to be equal to∑

k,l ,ω,ω′
e i (ω′−ω)t/ħΓkl (ω)

[
Sl (ω)σ̂(t ),S∗

k (ω′)
]
. (3.41)

Whilst the second and third term combine to be equal to

∑
k,l ,ω,ω′

e i (ω′−ω)t/ħ[
Sl (ω), σ̂(t )S∗

k (ω′)
]∫ ∞

0
e−iω′t1 Tr

(
R̂∗

k (t − t1)ρ̂(0)R̂l (t )
)
dt1. (3.42)

Recall that the reservoir was in a thermal state. Therefore, the Hamiltonian and ρ̂(0) commute.
Hence, ρ̂(0) = ρ(0) and we have that∫ ∞

0
e−iω′t1 Tr

(
R̂∗

k (t − t1)ρ̂(0)R̂l (t )
)
dt1 =

∫ ∞

0
e−iω′t1 Tr(e i HR (t−t1)/ħR∗

k e−i HR (t−t1)/ħ

ρ(0)e i HR t/ħRl e−i HR t/ħ)dt1

=
∫ ∞

0
e−iω′t1 Tr

(
e−i HR t1/ħR∗

k e i HR t1/ħρ(0)Rl

)
dt1

=
(∫ ∞

0
e iω′t1 Tr

(
R∗

l e i HR t1/ħRk e−i HR t1/ħρ(0)
)
dt1

)∗
= Γ∗lk (ω′).

Which completes the proof. ■

3.2.3. THE ROTATING WAVE APPROXIMATION
In this section we derive the Lindblad equation by applying the rotating wave approximation.
Which, combined with the propositions and lemmas of the previous section, results in the
required Lindblad equation.
One of the approximations that is utilised a lot in physics, for instance in optics, is the rotating
wave approximation. It states that any frequency difference that is too great (i.e.

∣∣ω−ω′∣∣ >
α2), oscillates too fast to be able to contribute on the timescales that are being considered.
Hence, we only want to consider frequencies ω′ = ω. To do this we add a δ(ω−ω′) into the
expression. This simplification applied to lemma 3.12 yields

dσ̂

dt
(t ) = α2

ħ2

∑
k,l

(
Γkl (ω)

[
Sl (ω)σ̂(t ),S∗

k (ω)
]+Γ∗lk (ω)

[
Sl (ω), σ̂(t )S∗

k (ω)
])

. (3.43)

This is the final approximation of this derivation. Hence, we can now state the final lemma.
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Lemma 3.13. The evolution of the system from the Redfield equation can be written as

dσ

dt
(t ) =−i [H + α2

ħ2 HLS ,σ(t )]+ α2

ħ2

∑
k,l
γkl (ω)

(
Sl (ω)σ(t )S∗

k (ω)− 1

2

{
S∗

k Sl (ω),σ(t )
})

. (3.44)

In this equation the γkl are all Hermitian and HLS is the Lamb shift Hamiltonian.

Proof. To derive this expression we simply decompose the Γkl into a Hermitian and non Her-
mitian part as follows

Γkl (ω) = 1

2
γkl (ω)+ iπkl (ω), (3.45)

πkl :=− i

2
(Γkl (ω)−Γ∗kl (ω)), (3.46)

γkl := Γkl (ω)+Γ∗kl (ω). (3.47)

This implies that

dσ̂

dt
(t ) =α

2

ħ2

∑
k,l

1

2

(
γkl (ω)+ iπkl (ω)

)[
Sl (ω)σ̂(t ),S∗

k (ω)
]+ 1

2

(
γkl (ω)− iπkl (ω)

)[
Sl (ω), σ̂(t )S∗

k (ω)
]

=∑
k,l

[
α2iπkl

ħ2

([
Sl (ω)σ̂(t ),S∗

k (ω)
]− [

Sl (ω), σ̂(t )S∗
k (ω)

])]

+ α2

ħ2

1

2
γkl (ω)

([
Sl (ω)σ̂(t ),S∗

k (ω)
]+ (ω)

[
Sl (ω), σ̂(t )S∗

k (ω)
])

=− i

[∑
k,l

α2

ħ2 (πkl S∗
k Sl , σ̂(t )

]
+∑

k,l

α2

ħ2 γkl

(
Sl (ω)σ̂(t )S∗

k (ω)− 1

2

{
S∗

k (ω)Sl (ω), σ̂(t )
})

=⇒ dσ

dt
(t ) =−i [H +HLS ,σ(t )]+

∑
k,l

α2

ħ2 γkl

(
Sl (ω)σ(t )S∗

k (ω)− 1

2

{
S∗

k (ω)Sl (ω),σ(t )
})

.

Where the last equality follows from transitioning back to the Schrödinger picture and defin-

ing the Lamb shift Hamiltonian to be given by HLS = ∑
ω,k,l

α2

ħ2 πkl S∗
k Sl . This Hamiltonian is

there to renormalize the energy levels after interaction with the environment. ■
This equation already looks like the Lindblad equation, however by employing the fact that
that γkl is Hermitian, we know that we can diagonalize the (γkl ) in some basis, i.e. there exists
a unitary operator O such that O(γkl )O∗ is a diagonal matrix. Therefore, we can write the
master equation in a diagonal form yielding

dσ

dt
(t ) =−i [H +HLS ,σ(t )]+

∑
n

α2

ħ2

(
Ln(ω)σ(t )L∗

n(ω)− 1

2

{
L∗

n(ω)Ln(ω),σ(t )
})

. (3.48)

Which is exactly the same master equation we derived before using rigorous mathematics.
Hence, we see that using several physically motivated approximations, which can be em-
ployed in most circumstances, we obtained a similar answer. Thus we can conclude that
if our assumptions are valid we have a description that agrees with the mathematics and is
therefore at least mathematically valid.
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3.3. EXAMPLE: TWO LEVEL SYSTEM
In this short section we will consider an example of the form of the Lindblad equation of a
two level system coupled to an energy bath. This energy bath must contain a collection of
incoherent oscillators with a continuum of frequencies, which can for instance be phonons
close to the qubit.

To start off recall the spin up, spin down basis represented by e0 = [
0 1

]T
the ground state

and e1 =
[
1 0

]T
the excited state of a spin 1/2 particle. Furthermore, we have the Pauli ma-

trices given in the following definition.

Definition 3.14. The Pauli matrices are defined as σ1,σ2,σ3.

σ1 =
(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.49)

Additionally, the following operators can be defined using the Pauli matrices.

σ+ = e∗1 e0 =
(
0 1
0 0

)
= 1

2
(σ1 + iσ2), σ− = e∗0 e1 =

(
0 0
1 0

)
= 1

2
(σ1 − iσ2). (3.50)

These operators can be thought of as increasing or decreasing the amount of energy in the
system by changing the state of the system. Usually the two level system comes with the
Hamiltonian H = 1

2ħωσ3, where ω > 0. With this Hamiltonian the interpretation of the σ+
and σ− is immediately obvious. Furthermore, the Pauli matrices obey

[σi ,σ j ] = 2iεi j kσk ,

where εi j k is the Levi-Cevita symbol (for further reading see Nielsen and Chuang [21] pages
77-78). Using this framework we can now follow an example as shown in Breuer and Petruc-
cione [5] (pages 146-149).

Proposition 3.15. The Lindblad equation for the two level system is given as

dρ

dt
=− i

ħ
[
H ,ρ(t )

]+γ1

(
σ−ρ(t )σ+− 1

2
σ+σ−ρ(t )− 1

2
ρ(t )σ+σ−

)
+γ2

(
σ+ρ(t )σ−− 1

2
σ−σ+ρ(t )− 1

2
ρ(t )σ−σ+

)
. (3.51)

Where the γi > 0.

Proof. Note that the operators σ− and σ+ are the eigenfunctions of H . This can be seen by
employing the previous commutation relation.

[HS ,σ+] = 1

4
ħω([σ3,σ1]+ i [σ3,σ2]) =ħωσ+ (3.52)

[HS ,σ−] = 1

4
ħω([σ3,σ1]− i [σ3,σ2]) =−ħωσ−. (3.53)
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Which yields the Lindblad operators. Hence, setting ρ as the density matrix of the system we
have that the Lindblad equation is given as

dρ

dt
=− i

ħ
[
H ,ρ(t )

]+γ1

(
σ−ρ(t )σ+− 1

2
σ+σ−ρ(t )− 1

2
ρ(t )σ+σ−

)
+γ2

(
σ+ρ(t )σ−− 1

2
σ−σ+ρ(t )− 1

2
ρ(t )σ−σ+

)
. (3.54)

Here, the γi ’s represent the coupling to the energy field and also include the spontaneous
emission rate and can actually be derived to be given by

γ1 = γ0(P (ω)+1)

γ2 = γ0P (ω).

In these equations P (ω) is the Planck distribution and γ0 is the spontaneous emission rate.
This can be seen when using the optical version of the Master equation, which we will not
look into further (for the interested reader see [5] pages 141-146). ■
Note that we only consider one frequency ω in our Hamiltonian, hence, we set P = P (ω) for
convenience. To see how our system actually behaves we want to solve for the density matrix.
To this end consider a convenient way of writing the density matrix, which can easily be seen
by writing out the terms.

ρ(t ) = 1

2
(I +〈~n(t )〉 ·~σ). (3.55)

Where, ~n(t ) is usually called the Bloch vector. Furthermore, it is easy to prove that 〈σi 〉 =
Tr

(
σiρ

)= ni . This implies that

ρ(t ) = 1

2
(I +〈~σ(t )〉 ·~σ(t )) =

( 1
2 (1+〈σ3(t )〉) 〈σ−(t )〉

〈σ+(t )〉 1
2 (1−〈σ3(t )〉)

)
. (3.56)

Using this form of the density matrix we can expand on the example by Breuer and Petruc-
cione [5] (pages to figure out the steady state solution of the system. Given in the following
proposition.

Proposition 3.16. The steady state solution for the density matrix of a two level system is
given as

1

2

(
1− 1

2P+1 0
0 1+ 1

2P+1

)
. (3.57)

In this equation we neglected the non-dissipative part of the Lindblad equation, because the
interesting evolution is contained in the interaction terms.

Proof. For now, only consider the dissipative part of the Lindblad equation. Hence, at the
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moment we leave out the non-dissipative part

dρ

dt
=γ0(P +1)

(
σ−ρ(t )σ+− 1

2
σ+σ−ρ(t )− 1

2
ρ(t )σ+σ−

)
+γ0P

(
σ+ρ(t )σ−− 1

2
σ−σ+ρ(t )− 1

2
ρ(t )σ−σ+

)
=γ0(P +1)

((
0 0
0 1

2 (1+〈σ3(t )〉)
)
− 1

2

( 1
2 (1+〈σ3(t )〉) 0

〈σ+(t )〉 0

)
− 1

2

( 1
2 (1+〈σ3(t )〉) 〈σ−(t )〉

0 0

))
+γ0P

(( 1
2 (1−〈σ3(t )〉) 0

0 0

)
− 1

2

(
0 0

〈σ+(t )〉 1
2 (1−〈σ3(t )〉)

)
− 1

2

(
0 〈σ−(t )〉
0 1

2 (1−〈σ3(t )〉)
))

=
(
−γ0

2 − γ0(2P+1)
2 〈σ3(t )〉) −γ0(2P+1)

2 〈σ−(t )〉
−γ0(2P+1)

2 〈σ+(t )〉 γ0
2 + γ0(2P+1)

2 〈σ3(t )〉

)
.

To properly solve the equation for steady state, we must also consider the non-dissipative
part. To this end we calculate the commutator as follows

− i

ħ
[
HS ,ρ(t )

]=− iω

2

[
σ3,ρ(t )

]
=− iω

2

(( 1
2 (1+〈σ3(t )〉) 〈σ−(t )〉
−〈σ+(t )〉 − 1

2 (1−〈σ3(t )〉)
)
−

( 1
2 (1+〈σ3(t )〉) −〈σ−〉

〈σ+(t )〉 − 1
2 (1−〈σ3(t )〉)

))
=

(
0 iω〈σ−(t )〉

−iω〈σ+(t )〉 0

)
The combination of the dissipative and non-dissipative part of the Lindblad equation leads
to

dρ

dt
=

−γ0
2 − γ0(2P+1)

2 〈σ3(t )〉)
(
iω− γ0(2P+1)

2

)
〈σ−(t )〉(

iω− γ0(2P+1)
2

)
〈σ+(t )〉 γ0

2 + γ0(2P+1)
2 〈σ3(t )〉

 . (3.58)

These matrix equations immediately lead to the following differential equations.

d〈σ1(t )〉
dt

=
(
iω− γ0(2P +1)

2

)
〈σ1(t )〉 (3.59)

d〈σ2(t )〉
dt

=
(
iω− γ0(2P +1)

2

)
〈σ2(t )〉 (3.60)

d〈σ3(t )〉
dt

=−γ0((2P +1)〈σ3(t )〉+1). (3.61)

Which under the steady state assumption yield the solution as proposed above as 〈σ1(t )〉 =
〈σ2(t )〉 = 0 and 〈σ3(t )〉 =− 1

2P+1 . Sinceγ0,ω and P are all real, we cannot solve iω−γ0(2P+1)
2 = 0,

thus we require 〈σ1(t )〉 = 〈σ2(t )〉 = 0. ■
Finding the steady state solution for the entire equation is the first step in the direction of
driven dynamical analysis of a such a system. For times shorter than the time it takes to reach
steady state, we still have coherence, which can be seen by solving equations 3.59:3.61 exactly.
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This yields the following result

〈σ1(t )〉 = exp

{(
iω− γ0(2P +1)

2

)
t

}
(3.62)

〈σ2(t )〉 = exp

{(
iω− γ0(2P +1)

2

)
t

}
(3.63)

〈σ3(t )〉 = 1

2P +1

(
exp

{−γ0(2P +1)t
}−1

)
. (3.64)

In these equations we have replaced e · with exp{·} to make the equations more readable. The
results in equations 3.62:3.64 in turn give us the density matrix

ρ =
( 1

2 (1+〈σ3(t )〉) 〈σ−(t )〉
〈σ+(t )〉 1

2 (1−〈σ3(t )〉)
)

=
 1

2

(
1+ 1

2P+1

(
exp

{−γ0(2P +1)t
}−1

)) 1
2 exp

{(
iω− γ0(2P+1)

2

)
t
}

(1− i )
1
2 exp

{(
iω− γ0(2P+1)

2

)
t
}

(1+ i ) 1
2 (1− 1

2P+1

(
exp

{−γ0(2P +1)t
}−1

)
)

 . (3.65)

As we can see, for times that are small enough, there is still coherence. That is, the off-diagonal
components of the density matrix are still non-zero. However, after sufficient time all coher-
ence of the system dies out in the standard measurement basis, which is expected for systems
connected to a heat bath. Coherence "leaks" away to the environment. In this case the com-
bined state of system and environment is still pure, but the system itself has now become a
mixed state. Hence, in theory it is possible to reverse the process and obtain the initial state
of the system. However, in practice this is impossible due to the size of the environment. This
is the reason why the part of the Lindblad equation that does not contain the Hamiltonian is
called the dissipative part, i.e. the part of the time evolution that is irreversible.



4
SIMPLIFICATION OF THE LINDBLAD

EQUATION

This section covers the derivation of the Lindblad equation in the case of a certain symmetry,
namely the commutation of the generator with a member the group of modular automor-
phisms on B(H). It turns out that in this case the Lindblad equation simplifies a great deal
as Carlen and Maas [6] showed in 2017 for finite dimensional matrix algebras. We further
investigate whether the same result holds for infinite dimensional Hilbert spaces under the
right assumptions. Hence, from this moment on we will not assume that H is finite anymore.
Furthermore, this chapter is cut into four sections. The first section considers the Hilbert-
Schmidt operators. These are used to generalise the Lindblad form of Carlen and Maas in
section two to an infinite dimensional form by considering the trace class operators with
Hilbert-Schmidt norm instead of all bounded operators B(H). In section three we consider
the modular automorphisms group, which describes time propagation. Furthermore, we de-
fine a new inner product and consider self-adjointness with respect to this inner product. It
turns out that in this case the generators defined so far commute with the modular automor-
phisms. Lastly, in section four we prove our main result: the general form of the Lindblad
equation in case this symmetry holds and show that it greatly reduces the complexity of the
form.

4.1. HILBERT-SCHMIDT OPERATORS
In this section we define Hilbert-Schmidt operators and prove several key norm inequali-
ties for the trace and Hilbert-Schmidt norm. Additionally, we show a nice correspondence
with the trace class operators L1(H). Furthermore, we prove the cyclicity of the trace, i.e.
Tr(UV ) = Tr(V U ) which holds exactly for these operators. The fact that this does not hold in
general is due to the countably infinite dimension of the Hilbert space .This theory is crucial
for the next chapter, where we will generalise results pertaining to a nicer form of the Lindblad
equation.

46
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4.1.1. DEFINITION AND INEQUALITIES
This part considers the definition of Hilbert-Schmidt operators, whilst also stating and prov-
ing multiple inequalities regarding the Hilbert-Schmidt and trace class norms. Additionally,
the famous polar decomposition is discussed and proven.
To begin we define the Hilbert-Schmidt norm as in Murphy [19] (pages 59-66) and follow his
reasoning to show some elementary statements.

Definition 4.1. Let X be a linear operator on a Hilbert space H and let E denote the set of
orthonormal basis vectors. Then the Hilbert-Schmidt norm is given as

‖X ‖2 =
( ∑

x∈E
‖X x‖2

)1/2

=
( ∑

x∈E
〈X x, X x〉

)1/2

= Tr
(
X ∗X

)1/2. (4.1)

If an operator X has ‖X ‖2 <∞ we call X a Hilbert-Schmidt operator. Furthermore, the space
of Hilbert-Schmidt operators is denoted L2(H). It turns out this norm is actually independent
of the choice of basis.

Proposition 4.2. The Hilbert-Schmidt norm is independent of the choice of basis.

To prove this statement we require the following formalism for working with infinite sums. Let
(x j ) j∈J ⊂H, then let J denote the set of all finite subsets of J . We say that (x j ) j∈J is summable
if and only if supF∈J

∑
j∈F x j <∞ in this case∑

j∈J
x j = sup

F∈J

∑
j∈F

x j . (4.2)

Using this formalism we can prove the proposition.

Proof. Let E and E ′ both be bases for a Hilbert space H. Then let F ⊂ E be a finite. It follows
that for a linear Hilbert-Schmidt operator X∑

y∈F

∥∥X y
∥∥2 = ∑

y∈F

∑
z∈E ′

∣∣〈X y, z
〉∣∣2

= ∑
z∈E ′

∑
y∈F

∣∣〈X y, z
〉∣∣2

≤ ∑
z∈E ′

∥∥X ∗z
∥∥.

We thus have obtained
∑

y∈E

∥∥X y
∥∥2 ≤∑

z∈E ′ ‖X ∗z‖2. Employing the fact that X ∗∗ = X symme-
try then implies ∑

y∈E ′

∥∥X y
∥∥2 = ∑

z∈E
‖X z‖2 = ∑

z∈E

∥∥X ∗z
∥∥2. (4.3)

■
This proposition therefore also implies that ‖X ‖2 = ‖X ∗‖2. One important example of this
quadratic trace norm is the following. Suppose we have an orthonormal basis (en)∞n=1 of a
Hilbert space H and let X ∈ B(H) then we can define an,m = 〈X en ,em〉, which implies that

‖X ‖2 =
√ ∑

m∈N

∑
n∈N

∣∣an,m
∣∣2. (4.4)
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Which means that any infinite dimensional matrix representation needs to have quadratic
absolute summability if the operator is Hilbert-Schmidt. Additionally, we have the following
properties of the Hilbert-Schmidt norm.

Proposition 4.3. Let U ,V ∈ B(H) and let λ ∈C then

1. ‖U +V ‖2 ≤ ‖U‖2 +‖V ‖2 and ‖λU‖2 = |λ|‖U‖2.

2. ‖U‖ ≤ ‖U‖2.

3. ‖UV ‖2 ≤ ‖U‖‖V ‖2 and ‖UV ‖2 ≤ ‖U‖2‖V ‖.

Proof. The first point is trivial using the triangle inequality and monotonicity of the square
root. For the second point it should be noted that this is also rather easy to prove. Let x ∈H
be a unit vector, then there is an orthonormal basis E such that x ∈ E . Hence,

‖Ux‖2 ≤ ∑
y∈E

∥∥U y
∥∥2 = ‖U‖2

2. (4.5)

The final point can be proven by taking E an orthonormal basis of H, which then implies that

‖UV ‖2
2 =

∑
y∈E

∥∥UV y
∥∥2 ≤ ‖U‖2

∑
y∈E

∥∥V y
∥∥2 = ‖U‖2‖V ‖2

2. (4.6)

Employing the same reasoning we can obtain the other inequality, which completes the proof.
■

It is interesting to note that the second point implies that if an operator is Hilbert-Schmidt
it is automatically part of B(H). However, if an operator is part of B(H) it is not necessarily
Hilbert-Schmidt. Aside, from Hilbert-Schmidt operators we can also recall definition 1.21,
which stated that an operator was trace class if and only if ‖X ‖1 = Tr(|X |) <∞. Notice that we

can write Tr(|X |) = ∥∥|X |1/2
∥∥2

2. This fact will be used later on, but first note that a similar variant
of proposition 4.3 holds for the trace class norm.

Proposition 4.4. Let U ,V ∈ B(H) and let λ ∈C.

1. ‖U +V ‖1 ≤ ‖U‖1 +‖V ‖2 and ‖λU‖1 = |λ|‖U‖1.

2. ‖U‖ ≤ ‖U‖1 = ‖U∗‖1.

3. ‖UV ‖1 ≤ ‖U‖1‖V ‖ and ‖UV ‖1 ≤ ‖U‖‖V ‖1.

Proof of the inequality. We will prove condition 2 and leave the rest as an exercise for the
reader. To this end, we require the result of condition 2 of proposition 4.3, which results in

‖U‖1 =
∥∥|U |1/2∥∥2

2 ≥
∥∥|U |1/2∥∥2 = ‖|U |‖ = ‖U‖. (4.7)

To prove the equality we require a bit more theory, which we introduce below. ■
In addition to the theory developed so far, we need the following definition and the lemma of
polar decomposition adapted from Van Neerven [26].
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Definition 4.5. A partial isometry V : H→H is a bounded linear operator which is an isom-
etry on the complement of its kernel. Hence, we can decompose the domain of V as H =
H0

⊕H⊥
0 , where V is an isometry on H0 and 0 on H⊥

0 .

To better understand this definition, consider an example.

Example 4.1. Let X be an operator given by

X =σ+ =
(
0 1
0 0

)
. (4.8)

Then the initial subspace, i.e. its domain without the kernel is given by {0}
⊕
C and its final

subspace, i.e. its codomain is given by C
⊕

{0}.

Lemma 4.6 (Polar decomposition). Consider a bounded linear operator X ∈ B(H) and set
|X | = (X ∗X )1/2, then X can be written as X =U |X |. In this decomposition U is a partial isom-
etry with initial subspace range(|X |) and final subspace range(X ).

Proof. We know that for any x ∈H we have

‖X x‖2 = 〈
X ∗X x, x

〉= 〈|X |x, |X |x〉 = ‖|X |x‖. (4.9)

This implies that U : |T | → T as a linear operator is well-defined and isometric on range(|X |)
to range(X ), which follows from the continuity of U . Furthermore, we can extend U to be zero
everywhere on range(|X |)⊥, yielding the required result. ■
The polar decomposition is in essence very similar to the way we write complex numbers,
since z ∈ C can be written as z = e i arg(z)|z|. Lemma 4.6 is very important in the remaining
proofs of this section.

Proof of the equality of proposition 4.4. Recall that we are proving ‖U‖1 = ‖U∗‖1. To this end,
let U =V |U | be the polar decomposition of U . Then,

∣∣U∗∣∣= (∣∣U∗∣∣2
)1/2

= (
UU∗)1/2

= (
V |U ||U |V ∗)1/2

= (
V |U |V ∗V |U |V ∗)1/2

=
((

V |U |V ∗)2
)1/2

=V |U |V ∗.

Which implies that∥∥U∗∥∥
1 = Tr

(∣∣U∗∣∣)= Tr
(
V |U |V ∗)= Tr

(
V ∗U

)= Tr(|U |) = ‖U‖1. (4.10)

This completes the proof. ■



4.1. HILBERT-SCHMIDT OPERATORS 50

In this proof we used the cyclicity of the trace. However, this does not hold for all operators
anymore, since we are working with infinite dimensional Hilbert spaces. Due to the fact that
the Hilbert space is countably infinite dimensional, the trace of an operator is not properly
defined for most operators. Hence, cyclicity need not hold, since this can yield a divergent
trace. Luckily, it does still work for Hilbert-Schmidt operators and trace class operators, which
we will prove later in this section. Furthermore, combining two Hilbert-Schmidt operators
U1,U2 into an operator V =U∗

1 U2 does not necessarily yield a Hilbert-Schmidt operator, but
this operator has the following nice property.

Lemma 4.7. Let U1,U2 ∈L2(H) and let E be an orthonormal basis of H. Set V =U∗
1 U2. Then∑

x∈E |〈V (x), x〉| <∞ and ∑
y∈E

〈
V y, y

〉= 1

4

3∑
k=1

i k
∥∥∥U2 + i kU1

∥∥∥2

2
. (4.11)

Proof. The first part of the proof can be proven by employing the fact that both U1 and U2 are
Hilbert-Schmidt operators. Letting F ⊂ E be non-empty yields∑

y∈F

∣∣〈V y, y
〉∣∣= ∑

y∈F

∣∣〈U2 y,U1 y
〉∣∣

≤ ∑
y∈F

∥∥U2 y
∥∥∥∥U1 y

∥∥
≤

√ ∑
y∈F

∥∥U2 y
∥∥2

√ ∑
y∈F

∥∥U1 y
∥∥2 <∞.

Where we used the Cauchy-Schwarz inequality for the last step and recognise that the last
terms are exactly the Hilbert-Schmidt norms of U1 and U2. We continue on with the second
part for which we require the polarisation identity, given as

〈
x, y

〉= 1

4

(∥∥x + y
∥∥2 −∥∥x − y

∥∥2 + i
(∥∥x + i y

∥∥2 −∥∥x − i y
∥∥2

))
= 1

4

3∑
k=0

i k
∥∥∥x + i k y

∥∥∥2
. (4.12)

This equation can be obtained by simply writing out each of the norms in terms of inner
products and cancelling out multiple terms. Furthermore, employing this identity∑

y∈E

〈
V y, y

〉= ∑
y∈E

〈
U2 y,U1 y

〉
= ∑

y∈E

1

4

3∑
k=0

i k
∥∥∥U2 y + i kU1 y

∥∥∥2

= 1

4

3∑
k=0

i k
∑
y∈E

∥∥∥(U2 + i kU1)y
∥∥∥2

= 1

4

3∑
k=0

i k
∥∥∥U2 + i kU1

∥∥∥2

2
,

as required. ■
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4.1.2. CORRESPONDENCE BETWEEN TRACE CLASS AND HILBERT-SCHMIDT OP-
ERATORS

This subsection concerns the nice correspondence between the trace class operators and
Hilbert-Schmidt operators. Furthermore, the cyclicity of the trace is proven for these two
classes of operators. Lastly, an example showcasing the fact that being trace class is a stricter
requirement is shown and explained.
We begin with the correspondence, which is captured in the following theorem.

Theorem 4.8. Let X be a linear operator on a Hilbert space H, then the following are equiva-
lent

1. X is trace class.

2. |X | is trace class.

3. |X |1/2 is Hilbert-Schmidt.

4. There exist Hilbert-Schmidt operators U1 and U2 on H such that X =U∗
1 U2.

Proof. As can be seen in the discussion above 1 =⇒ 2 and 2 =⇒ 3 are trivial by looking
at the definition of the trace norm. Furthermore, we can prove 3 =⇒ 4 by noting that tak-
ing U1 = U |X |1/2 and U2 = |X |1/2 with U a partial isometry as defined in lemma 4.6. Then

‖U1‖2
2 = Tr

(
(U |X |1/2)∗U |X |1/2

) = Tr
((|X |1/2

)∗|X |1/2
) = ∥∥|X |1/2

∥∥2
2. Therefore, by the assump-

tion it follows that U1 and U2 are Hilbert-Schmidt. Lastly, we have to prove 4 =⇒ 1.
To this end, assume X =U1U2 with U1,U2 ∈ L2(H). If we apply the polar decomposition we
obtain |X | =V ∗X =V ∗U1U2. Notice that∥∥V ∗U1

∥∥2
2 = Tr

(
(V ∗U1)∗V ∗U1

)= Tr
(
U∗

1 U1
)= ‖U1‖2

2. (4.13)

Thus by lemma 4.7 we have that ∑
y∈E

∣∣〈|X |y, y
〉∣∣<∞. (4.14)

Therefore, we also have regular convergence and we have that ‖|X |‖1 < ∞, thus X is trace
class. ■
The polarisation identity and previous theorem can be used to prove the cyclicity of the trace
as follows.

Proposition 4.9. Let U and V in B(H). Then Tr(UV ) = Tr(V U ) if either

1. U and V are both Hilbert-Schmidt operators,

2. or V is trace class.

Proof. We split the cases into two parts. For case 1 we can apply the polarisation identity
(lemma 4.7) to obtain

Tr(UV ) = 1

4

3∑
k=1

i k
∥∥∥V + i kU∗

∥∥∥2

2
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= 1

4

3∑
k=0

i k
∥∥∥(V + i kU∗)∗

∥∥∥2

2

= 1

4

3∑
k=0

i k
∥∥∥U + i kV ∗

∥∥∥2

2

= 1

4

3∑
k=0

i k
∥∥∥U + i kV ∗

∥∥∥2

2

= Tr(V U ).

In the second equality we applied the fact that ‖U‖2 = ‖U∗‖2 from proposition 4.2. If we now
consider case 2, we can apply the previous theorem, which implies that there exist operators
U1,U2 ∈L2(H) such that V =U1U2. This fact can then be used as follows

Tr(UV ) = Tr((UU1)U2) = Tr((U2U )U1) = Tr(U1U2U ) = Tr(V U ).

In this equation we applied the fact that a Hilbert-Schmidt operator multiplied with a bounded
operator is again Hilbert-Schmidt. This can be seen as follows by applying theorem 4.3,

‖UV ‖ ≤ ‖U‖2‖V ‖ <∞. (4.15)

■
Lastly, it should be noted that being trace class is a much stronger assumption than being
Hilbert-Schmidt. This can be seen in the following example.

Example 4.2. Let X be the operator defined as

X =



1
1
2

. . .
1
n

. . .

 , X ∗X = X 2 =



1
1
4

. . .
1

n2

. . .

 . (4.16)

Notice that Tr(|X |) = ∑∞
n=1

1
n , which diverges. While Tr(X ∗X ) = ∑∞

n=1
1

n2 < ∞. Hence, being
Hilbert-Schmidt does not ensure being trace class. Thus being trace class is a stronger as-
sumption than being Hilbert-Schmidt.

This can also be seen by the fact that theorem 4.8 implies that for every trace class operator
X there exist U1,U2 both Hilbert-Schmidt such that X =U∗

1 U2. Then, the product of Hilbert-
Schmidt operators is again Hilbert-Schmidt, which can be seen by applying proposition 4.3
as follows

‖X ‖2 =
∥∥U∗

1 U2
∥∥

2 ≤
∥∥U∗

1

∥∥
2‖U‖ ≤ ‖U1‖2‖U2‖2 <∞. (4.17)

4.2. GENERALISATIONS TO INFINITE DIMENSIONAL HILBERT SPACES
This section covers the derivation of the Lindblad equation in terms of the GKS matrix, for an
infinite dimensional Hilbert space. To generalise the Lindblad equation we will use a special
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case of the Hilbert-Schmidt operators, namely the trace class operators with Hilbert-Schmidt
norm, instead of the bounded operators, for which the Lindblad form is described in Chapter
3. The first part of this section considers the decomposition of an operator on the these op-
erators in terms of the GKS matrix and a generalisation of Choi’s theorem regarding the Choi
matrix, whilst the second part considers the derivation of the Lindblad equation for genera-
tors defined on this special case.

4.2.1. GKS DECOMPOSITION AND GENERALISATION OF THE CHOI-MATRIX THE-
OREM

This section covers the generalisation of the GKS decomposition for operators on a special
case of the trace class operators. Additionally, it covers the generalisation of the theorem of
Choi stating that the Choi matrix is positive if and only if the corresponding operator is CP.
To start let (ei )i∈J ⊂H be an orthonormal basis of H, where J is a, possibly countable infinite,
index set. Furthermore, to define a generator as we did before, where we required LI = 0 and
LX ∗ = (LX )∗, we need to add the identity operator artificially to the operators of interest. The
operators of interest in this case are the trace class operators with a Hilbert-Schmidt norm,
denoted L2(H)′. We take the trace class operators to prevent issues with the convergence
of the trace. This latter fact follows from example 4.2, where we saw that not every Hilbert-
Schmidt operator is trace class. Hence, adding in the identity operator would lead to infinite
traces after taking the inner product. Thus we define the new space as follows.

Definition 4.10. Let L3(H) be the space defined by

L3(H) =L2(H)
′ ⊕ {λI :λ ∈C}, (4.18)

where L2(H)
′

is defined by taking L1(H) and taking the closure with respect to the ‖·‖2 norm.
However, we will normally work with the dense subset L1(H)⊕{λI :λ ∈C}, such that the trace
is defined. Therefore, if we write L3(H) we usually mean the dense subset, the same holds for
L2(H)

′
, normally we will work with L1(H) with an inner product structure to make sure the

traces of operators are defined. Hence, we also endow L3(H) with an inner product defined
as follows

〈X ,Y 〉 =


Tr(X ∗Y ) X ,Y ∈L2(H)

′
,

0 X =λI and Y ∈L2(H)
′

or X ∈L2(H)
′

and Y =λI for λ ∈C,

λµ X =λI and Y =µI for λ,µ ∈C.

(4.19)

Notice that this inner product allows us to state that I is orthogonal with respect to L2(H)
′
.

This is because of the fact that we need to be able to pick an orthonormal basis for L2(H)
′
, but

this is not possible if the identity is part of the space. Since in this case any operator with non-
zero trace would not have a proper decomposition into orthonormal basisvectors of L3(H)
as soon as we set the first basisvector to be equal to I , which is required for the derivation.
Hence, this construction looks a little strange. As mentioned in the discussion of this thesis,
it must be looked at whether we can lift these restrictions on the inner product to obtain a
more "natural" inner product. Furthermore, we "normalised" the inner product for the case
that both X and Y are the identity. The reason we are defining the space in this way results
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from the fact that for the generator of a QMS we require LI = 0. However, the operators of
interest are not equal to the identity. Hence, to keep the two spaces separate and do a proper
derivation it is important to prevent operators moving from the regular inner product to the
identity, i.e. LX 6= I for all X ∈ L2(H)

′
. Thus, we need to check whether L preserves L2(H)

′
.

However, before we can do this, we need to redefine the space of operators in a similar way as
we defined L3(H). This follows from the fact that the space L2(L3(H)) also needs an identity
to prove the supporting results of this thesis. To this end consider the following definition.

Definition 4.11. Let L4(L3(H)) be defined by

L4(L3(H)) =L2(L3(H))⊕ {λI :λ ∈C}. (4.20)

We additionally define the following inner product analogously to the case L3(H) as follows

〈X ,Y 〉 =


Tr(X ∗Y ) X ,Y ∈L2(L3(H)),

0 X =λI and Y ∈L2(L3(H)) or X ∈L2(L3(H)) and Y =λI for λ ∈C,

λµ X =λI and Y =µI for λ,µ ∈C.
(4.21)

Hence, we again defined I to be orthogonal to the other operators in L4(L3(H)). It should be
noted that we only add the identity to prove an important claim later on, for which we need
to have defined the inner product properly. However, the final form of the Lindblad equation
for generators of QMS is of course never defined for L = I , since this case does not satisfy
one of the generator requirements (LI = 0). Hence, for most purposes the reader can think of
L4(L3(H)) as L2(L3(H)).
Now that we have the setting of the spaces in which we will be working, we check whether L ∈
L4(L3(H)) preserves L3(H) under the right assumptions. To this end, consider the following
proposition.

Proposition 4.12. Let L ∈L4(L3(H)) be an operator with LI = 0. Furthermore, assume that L
is self-adjoint. Then L preserves L2(H)

′
.

Proof. Let X ∈L2(H)
′
. Then we know that Tr(X ) <∞. Furthermore, we can write

Tr(LX ) = Tr
(
I∗LX

)= Tr
(
L∗(

I∗
)
X

)= Tr(L(I )X ) = Tr(0X ) = 0 <∞. (4.22)

Hence, every operator that was in L2(H)
′

remains in L2(H)
′

and the identity gets mapped to
the zero operator. ■
Thus if the generator of a QMS is self-adjoint, then it also preserves the space L2(H)

′
. It

should be noted that self-adjointness might not seem well-defined due to the redefinition
of the inner product. However, for both X ,Y ∈ L2(H)

′ 〈X ,Y 〉 is well-defined. Furthermore,
suppose X = I . Then 〈X ,LY 〉 = 〈I ,LY 〉 = 0, which should be the same as 〈LX ,Y 〉 = 〈LI ,Y 〉 =
〈0,Y 〉 = Tr(0Y ) = 0. Hence, this does not lead to any issues. With similar reasoning it can be
shown that this is also the case for Y = I . Additionally, suppose both X = I and Y = I , then
〈LX ,Y 〉 = 〈LI , I 〉 = 0 = 〈I ,LI 〉. Therefore, in all cases the self-adjointness works properly.
We have proven that L ∈ L4(L3(H)) with L self-adjoint and satisfying the requirements of
a QMS generator preserves L2(H)

′
. Besides this fact it is interesting to further investigate
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L4(L3(H)). It turns out that there is a nice identification between L4(L3(H)) and L3(H)⊗
L3(H). To prove this fact we make use of the basis for L3(H) as follows, we define Ei , j = ei e∗j
for any combination of i , j ∈ J , which is an orthonormal basis of L2(H)

′
, since it is a rank one

projection. To properly have a basis for the entire space L3(H) we add in the identity, which
yields an orthonormal basis of L3(H).

Definition 4.13. The operator #(A⊗B) :L3(H) →L3(H) for operators A,B ∈L3(H) is defined
as

#(A⊗B)(X ) = AX B , for all X ∈L3(H). (4.23)

Furthermore, notice that the trace is given as Tr(#(A⊗B)) = Tr(A)Tr(B) except for A = I or B =
I , since in this case the trace is divergent. To see this, consider the following: let A,B ∈L2(H)

′

then there are two ways to compute AX B for some X ∈ L2(H)
′
. We can either do the com-

putation directly or we can unravel X into a column vector X̂ . In the latter case we consider
(A ⊗B T )X̂ instead of AX B . After the operator (A ⊗B T ) has acted on X̂ , we can transform the
result from a column vector back to a matrix. The result of both these operations is the same.
However, the trace of A⊗B T is easily computed as

Tr
(

A⊗B T )= Tr(A)Tr
(
B T )= Tr(A)Tr(B). (4.24)

In the first equation we used the fact that the trace of the tensor product is given by the two
separate traces. Hence, this is a nice identification to get our required result. To see that this
other way of looking at the product AX B actually works we have written out the argument for
2×2 matrices in Appendix B. With this knowledge we can now state the first lemma.

Lemma 4.14. Let Fα and Gβ be two orthonormal bases for L3(H) such that F1 =G1 = I . Ad-
ditionally,

{
Fα⊗Gβ

}∣∣
α,β 6=1 ∪ {F1 ⊗G1} is an orthonormal set in L3(H)⊗L3(H). Then{

#
(
Fα⊗Gβ

)}∣∣
α,β 6=1 ∪ {#(F1 ⊗G1)} is an orthonormal set in L4(L3(H)).

Proof. We will first focus on the part of the basis of L2(H)
′
. Hence, we currently leave out the

identity or F1 and G1. This yields〈
#(Fα⊗Gβ),#(Fµ⊗Gν)

〉
L4(L3(H)) = Tr

(
#(Fα⊗Gβ)∗#(Fµ⊗Gν)

)
= Tr

( ∑
i , j∈J

(FαEi , j Gβ)∗(FµEi , j Gν)

)
= ∑

i , j∈J
Tr

(
(FαEi , j Gβ)∗(FµEi , j Gν)

)
.

We can pull out the summation, because the product of two Hilbert-Schmidt operators is
again Hilbert-Schmidt and all trace class operators are Hilbert-Schmidt:

‖UV ‖2 ≤ ‖U‖‖V ‖2 ≤ ‖U‖2‖V ‖2, (4.25)

by the norm inequality ‖U‖ ≤ ‖U‖2 and the identity ‖UV ‖2 ≤ ‖U‖‖V ‖2. Furthermore, we
know that the trace of trace class operators converges absolutely and the product of trace
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class operators is again trace class by proposition 4.4. Hence, interchanging order of summa-
tion is allowed. We continue on as follows by working out the adjoint and applying the cyclic
property of the trace for trace class operators∑

i , j∈J
Tr

(
(FαEi , j Gβ)∗(FµEi , j Gν)

)= ∑
i , j∈J

Tr
(
G∗
βE j ,i F∗

α (FµEi , j Gν)
)

= ∑
i , j∈J

〈
GνG∗

βe j ,e j

〉〈
F∗
αFµei ,ei

〉
= Tr

(
GνG∗

β

)
Tr

(
FµF∗

α

)= δν,βδµ,α.

Hence, the elements are orthonormal. However, we have not included the identity yet. Notice
that #(I ⊗ I ) = IL4(L3(H)). Hence, 〈#(I ⊗ I ), X 〉 6= 0 if and only if X = I by definition. Thus we
have added and extra element to the orthonormal set, which precisely covers I ∈L4(L3(H)).
Therefore, the union of this element with #(Fα⊗Gβ)

∣∣
α,β 6=(1,1) yields an orthornormal set of

L4(L3(H)). ■
Notice that the previous lemma nearly constructs an equivalence between orthonormal bases.

We have L2

(
L2(H)

′)'L2(H)
′ ⊗L2(H)

′
and IL4(L3(H)) ' IL3(H) ⊗ IL3(H). However, the parts of

the space defined by I ⊗L2(H)
′

and L2(H)
′ ⊗ I do not get identified with an element #(I ⊗X )

or #(X ⊗ I ) for X ∈L2(H)
′
. This has to do with the fact that these vectors are not orthonormal,

to the vectors stated in the lemma. This can be seen by considering the same derivation as in
the lemma. Recall the following identity〈

#(Fα⊗Gβ),#(Fµ⊗Gν)
〉
L2(L3(H)) = Tr

(
GνG∗

β

)
Tr

(
FµF∗

α

)
. (4.26)

Using this identity we can consider the case #(F1 ⊗Gβ) = #(I ⊗Gβ), where Gβ 6= I , then〈
#(I ⊗Gβ),#(Fµ⊗Gν)

〉
L2(L3(H)) = Tr

(
GνG∗

β

)
Tr

(
Fµ

) 6= δν,βδµ,α if Fµ is not traceless. (4.27)

We see that if Fµ is not traceless we do not have the same nice identification. Furthermore,

since we have defined I orthogonal to all elements in L2(H)
′

we cannot choose a basis that
has Fµ traceless for all µ 6= 1. Thus, we cannot use the identification of L2(L3(H)) and L3(H)⊗
L3(H) in this case. However, we would like to decompose operators into a sum of orthonor-
mal projections. To this end, suppose we have an arbitrary operator L ∈ L4(L3(H)), then let{
Fµ

}
be an orthonormal basis of L3(H). It is then easy to see that

{
F∗
µ

}
is also an orthonor-

mal basis of L3(H). Now if lemma 4.14 constructed an orthonormal basis instead of just an
orthonormal set, we could write an orthonormal decomposition as

L = ∑
α,β

cα,β#
(
F∗
α ⊗Fβ

)
. (4.28)

In this equation the cα,β =
〈

#
(
F∗
α ⊗Fβ

)
,L

〉
L4(L3(H)) i.e. the projection of L onto the basis vector

#
(
F∗
α ⊗Fβ

)
. This is very similar to decomposing a matrix as A as A = ∑

i , j Ai , j Ei , j . However,
notice that we have also included terms with

〈
#
(
I ⊗Fβ

)
,L

〉
, which are not orthonormal vec-

tors. Thus, the decomposition would not be a proper orthogonal decomposition. Hence, we
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set the elements c(1,1),β = cβ,(1,1) = 0 for all β, which allows us to just consider the orthonormal
set. It is not immediately obvious why we are allowed to do this, but it is convenient. Further-
more, it turns out that for the operators of interest this assumption is actually true. This will
be shown later on.

Definition 4.15. The operator cα,β with α,β ∈ J with cα,β = 〈
#
(
F∗
α ⊗Fβ

)
,L

〉
L4(L3(H)) is called

the GKS-matrix.

An important property of the GKS-matrix is that the expansion of L is unique, because it is
made up out of the projection of orthonormal vectors for the non-zero components. We can
now continue with the following lemma, which should immediately be recognised as a sym-
metry obtained from the fact that our generator is a ∗−map.

Lemma 4.16. Let L ∈ L4(L3(H)) and let {Fα} be an orthonormal basis of L3(H). Then the
GKS-matrix of L with respect to the basis is self-adjoint if and only if L is a ∗−map, i.e. L(X )∗ =
L(X ∗) for all X ∈L2(H).

Proof. Let L =∑
α,β cα,β#

(
F∗
α ⊗Fβ

)
defining L̃(X ) = (L(X ∗))∗ then yields

L̃(X ) =
(∑
α,β

cα,βF∗
αX ∗Fβ

)∗
= ∑
α,β

cα,βF∗
β X Fα = ∑

α,β
cβ,αF∗

αX Fβ. (4.29)

Because the expansion is unique, we have that L̃ = L if and only if cα,β = cβ,α, which completes
the proof. ■
To make further use of our GKS-matrix we would ideally like to define another operator, which
acts on L3(H) such that we can use that space, instead of our more complicated L4(L3(H)).
The following definition in combination with the next lemma is such a result.

Definition 4.17. The Choi matrix of a linear operator L ∈L2

(
L2(H)

′)
is given by

C(L) = ∑
i , j∈J

L(Ei , j )⊗Ei , j . (4.30)

Notice that in this definition leaves out the identity out of both L4(L3(H)) and L3(H). This
reduces both spaces back to proper Hilbert spaces. Hence, we can state the following lemma.

Lemma 4.18. Let L ∈ L2

(
L2(H)

′)
, and let C(L) be the Choi matrix. If we now identify H⊗H

with L2(H)
′
, i.e. we leave out the identity, by using v ⊗w 7→ ∑

i , j∈J vi w j Ei , j . Then, we have

that C(L) is an operator on L2(H)
′
, for all F,G ∈L2(H)

′
. Using this identification we can then

show
〈G ,C(L)F 〉L2(H)′ =

〈
#(G ⊗F∗),L

〉
L2

(
L2(H)′

) . (4.31)

Proof. Note that

〈G ,C(L)F 〉L2(H) = Tr
(
G∗C(L)F

)
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= Tr

(
G∗

( ∑
i , j∈J

L(Ei , j )⊗Ei , j

)
F

)

= Tr

(
G∗

( ∑
i , j∈J

L(Ei , j )⊗Ei , j

)( ∑
l ,p∈J

Fl ,p el ⊗ep

))

= Tr

(
G∗

( ∑
i , j∈J

∑
l ,p∈J

Fl ,p L(Ei , j )el ⊗Ei , j ep

))

=
〈 ∑

k,m∈J
Gk,mek ⊗em ,

∑
i , j∈J

∑
l ,p∈J

Fl ,p L(Ei , j )el ⊗Ei , j ep

〉
.

Where we defined Xi , j =
〈

ei , X e j
〉

for both F and G . Additionally, in the last equality we used
the fact that Tr(G∗F ) = 〈G ,F 〉. Furthermore, to pull out the infinite summations note that the
inner product is a continuous function with respect to the norm topology, since it is bounded.
This can be seen as follows, both G and F are Hilbert-Schmidt operators. Additionally, L is also
Hilbert-Schmidt, which implies that all products are also Hilbert-Schmidt by equation 4.25.
Hence, letting y, (xn)n∈N ∈H we can use the following equality〈

y,
∑

n∈N
xn

〉
=

〈
y, lim

N→∞

N∑
n=1

xn

〉
= lim

N→∞

N∑
n=1

〈
y, xN

〉= ∑
n∈N

〈
y, xn

〉
. (4.32)

The same reasoning also works for the first argument. This equation leads us to∑
k,m∈J

∑
i , j∈J

∑
l ,p∈J

〈
Gk,mek ⊗em ,Fl ,p L(Ei , j )el ⊗Ei , j ep

〉= ∑
k,m,i , j ,l ,p∈J

Gk,mFl ,p
〈

ek ⊗em ,L(Ei , j )el ⊗Ei , j ep
〉

= ∑
k,m,i , j ,l ,p∈J

Gk,mFl ,p
〈

ek ,L(Ei ,p )el
〉〈

em ,Ei , j ep
〉

= ∑
k,m,i , j ,l ,p∈J

Gk,mFl ,p L(Ei , j )k,l (Ei , j )m,p

= ∑
k,m,i , j ,l ,p∈J

Fl ,p (E j ,i )m,pGk,mL(Ei , j )k,l

= ∑
k,i , j ,l∈J

(
F E j ,i G∗)

l ,k L(Ei , j )k,l

= ∑
k∈J

∑
i , j∈J

∑
l∈J

(
GEi , j F∗)∗

l ,k L(Ei , j )k,l .

In these equations we used that
〈

x ⊗ y, v ⊗w
〉= 〈x, v〉〈y, w

〉
. Furthermore, because this is the

product of Hilbert-Schmidt operators, these sums are absolutely convergent. Hence, we can
interchange summations yielding

∑
k∈J

∑
i , j∈J

∑
l∈J

(
GEi , j F∗)∗

l ,k L(Ei , j )k,l = Tr

( ∑
i , j∈J

(
GEi , j F∗)∗L(Ei , j )

)
(4.33)

= 〈
(#G ⊗F∗),L

〉
L2

(
L2(H)′

) . (4.34)

This completes the proof. ■
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Notice that leaving out the identity of L4(L3(H)) is not a problem, since the operators of in-

terest have LI = 0, which the identity is surely not. Furthermore, the operators L ∈L2

(
L2(H)

′)
are not defined on the identity. Recall that for L to generate a norm continuous semigroup we
require L to be ultraweakly continuous. This in combination with LI = 0 yields that this exten-
sions is still CP, which follows from the fact that a sequence 0 ≤ Xn (for instance n ones on the
diagonal) with Xn → I ultraweakly and Xn → I weakly, implies that LXn → LI = 0 ultraweakly.

Furthermore, if we have a matrix (Xi , j ) ∈ Mk

(
L2(H)

′)
with one (or more) entry(ies) being Xn ,

then for increasing n ∈ N L(Xn) gets closer and closer to LI . Since L((Xi , j )) is positive for all
n ∈N, we must have that it is positive for the entry Xn replaced by I . Hence, the extension of
L to I is CP by the requirement that L is ultraweakly continuous on L3(H), which we always
assume to make the generated semigroup norm continuous.
By lemma 4.18 we know that by studying the GKS matrix of an operator L we obtain infor-
mation about L, one of the properties of interest is the complete positivity of L. The theorem
of the Choi matrix states, in the finite dimensional case, that an operator is CP if and only if
its Choi matrix is positive. Furthermore, a positive Choi matrix if and only if an operator is
CP is even more general; Friedland [10] proved that this fact can be generalised to countable
infinite dimensions. Unfortunately, this does require a stronger assumption on L. Namely,
L should map strongly convergent sequences to weakly convergent sequences. I.e. suppose
(Xn)n∈N ⊂ B(H) and L : B(H) → B(H), then if Xn → X in the SOT, we must have LXn → LX
in the WOT, from now on we will call this assumption STW (strong to weak). Under this as-
sumption Choi’s theorem can be generalised to countable infinite dimensions (theorem 4 in
Friedland [10]). To state:

Theorem 4.19. Let H be a Hilbert space with a countable infinite basis (en)n∈N and set Ei , j =
ei e∗j . Furthermore, denote Pm the projection ofH on span(e1,e2, . . . ,em) for all m ∈N. Assume

that L : B(H) → B(H) is a bounded linear operator which maps sequences converging in the
SOT to sequences converging in the WOT, i.e. L is STW. Then L is CP if and only if for each
n ∈N the matrix C(L) = (PnL(Ei , j )Pn)n

i , j=0 is positive.

Hence, a positive Choi matrix leads to a CP operator. Additionally, lemma 4.18 proves the
equivalence of the Choi matrix and the GKS matrix. Therefore, we can study the GKS matrix
and obtain information about the complete positivity of operators.

4.2.2. THE LINDBLAD FORM FOR TRACE CLASS OPERATORS
This section considers the derivation of the Lindblad form for the trace class operators with a
Hilbert-Schmidt inner product and shows that these types of operators are actually generators
of Quantum Markov Semigroups (QMS).
We know by proposition 4.12 that the considered operators preserve L3(H). Furthermore, it is
useful to split the GKS matrix into two parts. To this end, we will label our basis with a double
index. I.e. let

{
Fµ

}
be an orthonormal basis, with µ ∈ J × J , where J is again a countable index

set. Using this basis we define the reduced GKS matrix as follows.

Definition 4.20. Let L ∈ L4(L3(H)) such that L is self-adjoint, L is STW, LI = 0 and LX ∗ =
(LX )∗ for all X ∈L3(H). We now pick an orthonormal basis

{
Fµ

}
of L3(H), where we set F(1,1)

equal to the identity. Furthermore, we set cα,β to be the GKS matrix of L with respect to the
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{
Fµ

}
basis. Then the reduced GKS matrix is defined to be the matrix cα,β, where α,β ∈ A and

A = {
(i , j ) : i , j ∈ J and (i , j ) 6= (1,1)

}
.

The reason we are defining this quantity is because ideally we would like to remove any de-
pendence of our operator on I , because we would much rather work with just L2(L2(H)) in-
stead ofL4(L3(H)). The reduced GKS matrix is therefore a perfect tool to use, because we only
consider the projection of L onto the space L2(H)

′
. Additionally, for the requirements stated

L 6= I . Hence, the space of operators is reduced to the Hilbert-Schmidt operators. Further-
more, we would like to show that we can use the reduced GKS matrix of L to know whether
the semigroups generated by L are CP. To this end we introduce the following lemma.

Lemma 4.21. Let L ∈ L4(L3(H)) with L STW, L self-adjoint, LI = 0 and LX ∗ = (LX )∗ and set
Φt = e tL . Let

{
Fµ

}
be an orthonormal basis of of L3(H), with F(1,1) = I . Let cα,β be the GKS

matrix of L with respect to
{
Fµ

}
. Then Φt ∈ CP(L3(H)) for t ≥ 0 if and only if the reduced GKS

matrix of L is positive.

Proof. We begin with proving the forward implication. Hence, suppose first thatΦt as defined
is completely positive for t ≥ 0. We will use the the definition of a generator as defined in 1.31,
then

cα,β(L) = lim
t→∞cα,β

(
Φt − I

t

)
= lim

t→∞

(
cα,β(Φt )

t
− cα,β(I )

t

)
. (4.35)

Interchanging the limit and cα,β is allowed by the fact that Φt − I ∈L4(L3(H)), which follows
from

Φt − I = I + tL+·· ·+ (tL)n

n!
+·· ·− I = tL+·· ·+ (tL)n

n!
+·· · ∈L4(L3(H)). (4.36)

Where we know that the last expression is in L4(L3(H)) by the fact that L ∈L4(L3(H)). Addi-
tionally, we can split up the cα,β of Φt − I due to the fact that both Φt and I are in L4(L3(H))
by construction of L4(L3(H)). Furthermore, we know that cα,β(I ) 6= 0 only if α = (1,1) and
β = (1,1) due to the orthonormal "basis" or set we used to construct the GKS matrix. There-
fore, only considering the reduced GKS matrix of L is equivalent to only considering the re-
duced GKS of Φt

t . In particular, we need this to be positive to prove the claim. However, due
to lemma 4.18 we know that a CP operator has a postive GKS matrix. Hence, we can conclude
that the reduced GKS matrix of L is positive.
To prove the backward implication, suppose the reduced GKS matrix of L is positive. Then we
can expand the GSK matrix of every semigroup as

cα,β(Φt ) = cα,β(I )+ tcα,β(L)+O(t 2). (4.37)

For sufficiently small t ≥ 0 the reduced GKS matrix is positive, since cα,β(I ) = 0. Hence, since
the reduced GKS is positive,Φt is in CP. By the semigroup property of multiplication,Φt is CP
for all t ≥ 0, sinceΦtΦt =Φ2t . ■
Now that we know that our formalism works in describing Quantum Markov Semigroups, we
want to start simplifying the Lindblad equation for a generator L. However, we first need to
obtain a general form that incorporates the reduced GKS matrix. Therefore, we prove the
following proposition.
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Proposition 4.22. Let L ∈L4(L3(H)) such that L is self-adjoint, L is STW, LI = 0 and (LX )∗ =
LX ∗ for all X ∈L3(H). Let

{
Fµ

}
be an orthonormal basis of L3(H) such that F(1,1) = I . Let cα,β

be the GKS matrix of L with respect to
{
Fµ

}
. Then L is given by

LX = 1

2

∑
α,β 6=(1,1)

cα,β
(
F∗
α

[
X ,Fβ

]+ [
F∗
α , X

]
Fβ

)
. (4.38)

Notice that the summation sums over all entries except the indices associated with the iden-
tity I . Hence, the matrix in the summation is the reduced GKS matrix of L.

Proof. It should be noted that c(1,1),β and cβ,(1,1) forβ ∈ J are all 0. This can be seen by applying
the self-adjointness of L and the fact that LI = 0, which yields

c(1,1),β =
〈

#
(
F∗

(1,1) ⊗Fβ
)
,L

〉
L4(L3(H))

= Tr
(
F(1,1)LF∗

β

)
= Tr

(
L(I )F∗

β

)
= 0.

Notice that if β = (1,1) the first equation would immediately be zero by construction, this is
also the case in the next part. Similarly, we can write

cβ,(1,1) =
〈

#
(
F∗
β ⊗F(1,1)

)
,L

〉
L4(L3(H))

= Tr
(
FβLF∗

(1,1)

)
= 0.

This fact allows us to split up the normal GKS decomposition. Hence, by applying lemma 4.16
we know that cα,β is self-adjoint. Therefore, we can write for all X ∈L3(H)

LX = ∑
α,β

cα,βF∗
αX Fβ =G∗X +XG + ∑

α,β 6=(1,1)
cα,βF∗

αX Fβ. (4.39)

Where we defined G =∑
β c(1,1),βFβ. Furthermore, we can decompose G = K + i H , where both

K and H are both self-adjoint, since they are both 0. Hence,

LX =−i [H , X ]+K A+ AK + ∑
α,β 6=(1,1)

cα,βF∗
αX Fβ. (4.40)

Which for the case X = I simplifies to

LI = 2K + ∑
α,β 6=(1,1)

cα,βF∗
αFβ = 0. (4.41)

Thus K =− 1
2

∑
α,β 6=(1,1) cα,βF∗

αFβ, which immediately implies that

LX =−i [H , X ]+K A+AK+ ∑
α,β 6=(1,1)

cα,βF∗
αX Fβ =

1

2

∑
α,β 6=(1,1)

cα,β
(
F∗
α

[
X ,Fβ

]+ [
F∗
α , X

]
Fβ

)
, (4.42)

In the last equation we used the fact that G = 0, which implies that both K and H have to be
zero, thus the commutator drops out and we have the result as required. ■
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4.3. MODULAR AUTOMORPHISMS GROUP
This section covers the modular autmorphisms group, which describes time translation along
a particular Hamiltonian. We begin with its definition and certain properties. Additionally,
we define a new inner product. Furthermore, if a generator is self-adjoint with respect to this
inner product it commutes with the modular automorphisms group. Hence, the associated
QMS Φt = e tL is time invariant. This is the extra structure we want to apply to our generator
to derive a new and simplified version of the Lindblad equation. Lastly, we prove a theorem
that shows the special commutation of the GKS matrix with the eigenvalues of the modular
operator.
To study the symmetry that we actually want to obtain, we start of by defining the modular
autmorphisms group. However, we will first introduce some useful notation.

Notation 4.23. The invertible density operators of L3(H) are denoted S+.

Definition 4.24. Let σ ∈S+. We define ∆σ, also called the modular operator, to be the linear
operator on L3(H) that works on X ∈L3(H) as

∆σ(X ) =σXσ−1. (4.43)

Furthermore, the modular generator is defined to be the self-adjoint element in L3(H) by
functional calculus of the logarithm as

h =− log(σ). (4.44)

Lastly, the modular automorphism group αt on L3(H) is the group defined as

αt (X ) = e i th X e−i th , (4.45)

for t ∈C and e i th given by the operator exponential.

If we look carefully at equation 4.45 we see that this resembles unitary evolution of an operator
X in the Heisenberg picture with Hamiltonian h. However, we are interested in the operator
∆σ, which is the same as the modular automorphism group if t = i , which is not a physical
time. However, multiple results that we derive in this section apply toαt in general and hence
have a physical concept behind them.
Now that we have defined the modular operator, we can notice that it is positive and self-
adjoint with respect to the Hilbert-Schmidt inner product. Indeed, for all X ,Y ∈ L3(H) with
X ,Y 6= I we have

〈X ,∆σY 〉 = Tr
(
X ∗∆σY

)= Tr
(
σ−1X ∗σY

)= Tr
(
∆−1
σ X ∗Y

)= Tr
(
(∆σX )∗Y

)= 〈∆σX ,Y 〉 , (4.46)

and
Tr

(
X ∗∆σX

)= Tr
(∣∣σ1/2Xσ−1/2∣∣2

)
. (4.47)

For the identity cases we need different cases, but it is less work

〈I ,∆σY 〉 = 0 = 〈∆σI ,Y 〉 = 〈I ,Y 〉 , (4.48)

〈X ,∆σI 〉 = 〈X , I 〉 = 0 = 〈∆σX , I 〉 , (4.49)

〈I ,∆σI 〉 = 〈I , I 〉 = 1 = 〈∆σI , I 〉 , (4.50)
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and for the positivity we can see that this is true by the values that the inner product takes
in the different cases. Furthermore, the fact that ∆σ is a positive self-adjoint operator im-
plies that there exists and orthonormal basis of eigenoperators of ∆σ with strictly positive
eigenvalues. These can be written as eω since the exponential function is a continuous, sur-
jective function on the positive real numbers. Furthermore, we have ∆σ(I ) = I . Moreover,
∆−1
σ X ∗ = (∆σX )∗, which implies that if X is an eigenvector of∆σ with eigenvalue e−ω then X ∗

is an eigenvector with eigenvalue eω. Hence, we can state the following.

Definition 4.25. Let σ ∈ S+ be a density operator. Then there exists an orthonormal basis
called the modular basis of L3(H) with the following properties:

1. {F1, . . . } consists of eigenvectors of ∆σ.

2. F1 = I .

3. {F1, . . . } = {
F∗

1 , . . .
}
, i.e. if Fi is a eigenvector then F∗

i is also an eigenvector by the previ-
ous discussion.

Aside from the eigenbasis of ∆σ we require an additional inner product, parameterized by a
parameter s ∈ [0,1].

Definition 4.26. Letσ ∈S+ a density operator, which is non degenerate. For all X ,Y ∈L3(H),
define

〈X ,Y 〉s = Tr
((
σ(1−s)/2Xσs/2)∗(

σ(1−s)/2Y σs/2))= Tr
(
σs X ∗σ1−s Y

)
. (4.51)

This inner product allows us to specify the symmetry that will simplify the Lindblad equation.
Before we can state the symmetry theorem, we require the following lemma.

Lemma 4.27. For all X ,Y ∈L3(H) we have,

〈αi t X ,Y 〉s = 〈X ,Y 〉s−t = 〈X ,αi t B〉s . (4.52)

The proof is fortunately very straightforward.

Proof.

〈αi t X ,Y 〉s = Tr
(
σs(σt Xσ−t )∗σ1−s Y

)
= Tr

(
σs−t X ∗σ1−s+t Y

)
= 〈X ,Y 〉s−t

= Tr
(
σs X ∗σ1−s(σt Y σ−t ))

= 〈X ,αi t Y 〉 .

■
Hence, αi t is self-adjoint with respect to the inner product. Furthermore, this lemma is im-
portant in proving the next theorem.

Theorem 4.28. Let σ ∈S+ be a non-degenerate density operator and let s ∈ [0,1], s 6= 1
2 . Let

L ∈ L4(L3(H)) such that LX ∗ = (LX )∗ for all X ∈ L3(H). Furthermore, assume that L is self-
adjoint with respect to 〈·, ·〉s . Then L commutes with αt for all t ∈C.
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It should be noted that s = 1/2 is a special case for which the inner product 〈·, ·〉1/2 is called the
KMS inner product. We will not dive into the meaning and reasons why this is a special case.
However, for the interested reader we recommend Carlen and Maas [6] Appendix B and for
states associated with the KMS inner product one can read Brattelli and Robinson [4] (pages
76-144).

Proof. Let X ,Y ∈L3(H). Then〈
Lαi (2s−1)(X ),Y

〉
s = Tr

(
σs (L(σ2s−1Xσ1−2s ))∗σ1−s Y

)
= Tr

(
σs (σ2s−1Xσ1−2s )∗σ1−s L(Y )

)
L is self-adjoint in 〈·, ·〉s

= Tr
(
σsσ1−2s X ∗σ2s−1σ1−s L(Y )

)
= Tr

(
σs L(Y )σ1−s X ∗)

) Trace cyclicity

= Tr
(
σs (L(Y ∗))∗σ1−s X ∗)

LY ∗ = (LY )∗

= Tr
(
σs Y σ1−s L(X ∗)

)
L is self-adjoint in 〈·, ·〉s

= Tr
(
σs Y σ1−s (LX )∗

)
LY ∗ = (LY )∗

= Tr
(
σ1−s (LX )∗σs Y

)
Trace cyclicity

= 〈L(X ),Y 〉1−s .

In these equations the cyclicity is again justified by the fact that products of Hilbert-Schmidt
operators are Hilbert-Schmidt. Furthermore, notice that by applying lemma 4.27 we obtain

〈L(X ),Y 〉1−s = 〈L(X ),Y 〉s−2s−1 = 〈αi t (LX ),Y 〉s . (4.53)

Hence, by this logic we have 〈Lαi t (X ),Y 〉s = 〈αi t (LX ),Y 〉s . By the fact that both X and Y were
arbitrary we have that αi (2s−1)L = Lαi (2s−1). Hence, L commutes with αi (2s−1), in particular it
commutes with every polynomial in αi (2s−1). Therefore it commutes with every continuous
function in αi (2s−1). Specifically, this fact yields that L commutes with αt for all t . ■
We now know that self-adjointness of L with respect to 〈·, ·〉s along with our other assumptions
on L leads to it commuting with time translation along a Hamiltonian. Furthermore, Alicki [1]
concluded that every QMS Φt = e tL has L(X ∗) = (LX )∗ and thus Φt (X ∗) = (Φt X )∗. Hence, if
Φt is self-adjoint with respect to 〈·, ·〉1 for some σ ∈S+ a density operator, we have that

Φt (αt ′ X ) =αt ′Φt (X ) for all X ∈L3(H) and for all t ≥ 0, t ′ ∈C. (4.54)

Therefore, we have time invariance forΦt . Notice that in our discussion we set s = 1, which is
a special case called the GNS or Gelfand-Naimark-Segal innner product. This inner product
is closely related to the expectation value of an operator, i.e. Tr(σX ∗Y ) = 〈X ∗Y 〉 as discussed
in chapter 1.
To state the main theorem of this section, we first need to explicitly construct a proper mod-
ular basis with indices µ = (µ1,µ2) and their eigenvalues. To this end, consider the modular
generator h = − logσ for some density operator σ ∈ S+. Then let {x1, x2, . . . } be an infinite
countable basis of H consisting of eigenvectors of h and set λi to be the eigenvalue of eigen-
vector xi . We define Fµ = F(µ1,µ2) = xµ1 x∗

µ2
, which is similar to our previous Ei , j only now we

are not considering the standard basis of H. Furthermore, since σ= e−h we then obtain that

∆σFµ = eµ2−µ1 Fµ = e−ωµFµ. (4.55)
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It is clear that F∗
µ = Fµ′ with µ′ = (µ2,µ1). Consider

{
Fµ

}
, we see that, by setting F(1,1) = I and

taking into consideration the previous comment, this is a modular basis of L3(H).
Having constructed a modular basis, we can now exploit time invariance of a self-adjoint QMS
with respect to 〈·, ·〉s for some σ ∈S+ a density matrix, to state the following theorem, which
is the main result of this section.

Theorem 4.29. Let L ∈L4(L3(H)) self-adjoint be the generator of a QMS on L3(H) that is self-
adjoint with respect to the inner product 〈·, ·〉s for s ∈ [0,1] and s 6= 1/2 and for some σ ∈S+ a
density operator. Let

{
Fµ

}
be the modular basis of∆σ as previously constructed. Additionally,

let cα,β be the GKS matrix of L with respect to
{
Fµ

}
. Then for all α,β we have that

eωαcα,β = cα,βeωβ , (4.56)

and
cα,β = e−ωαcα′,β′ . (4.57)

In this equation the ωα are as defined in equation 4.55.

Proof. By the fact that L is a generator of a QMS, we have LX ∗ = (LX )∗ for all X ∈L3(H). Ad-
ditionally, LI = 0. Furthermore, by theorem 4.28 we have that L commutes with the modular
automorphisms group. Therefore, for all X ∈L3(H) we can apply this fact, the GKS expansion
and equation 4.55 to obtain

LX =σ−1(L
(
σXσ−1))σ= ∑

α,β
cα,βσ

−1F∗
ασXσ−1Fβσ= ∑

α,β
cα,βeωβ−ωαF∗

αX Fβ. (4.58)

This equation implies ∑
α,β

cα,βeωβ−ωαF∗
αX Fβ =

∑
α,β

cα,βF∗
αX Fβ. (4.59)

Since, the coefficients of the GKS expansion are unique, we now see cα,βeωβ = eωαcα,β. Hence,
we move on to the second claim.
First, we will derive a GKS decomposition for the adjoint. To this end, let X ,Y ∈L3(H), then
the product (LX )∗Y Hilbert-Schmidt, therefore the sum of coefficients converges absolutely
and allows us to take out the sum of the trace in a similar way to the proof of lemma 4.14.

〈LX ,Y 〉 = Tr
(
(LX )∗Y

)
= ∑
α,β

Tr
(
cα,βF∗

β X ∗FαY
)

= ∑
α,β

Tr
(

X ∗cα,βFαY F∗
β

)
= 〈

X ,L∗Y
〉

.

By lemma 4.16 we know that cα,β = cβ,α. Hence, L∗X =∑
α,β cβ,αFαX F∗

β
. Furthermore, we can

now compute what the adjoint of L would be in the 〈·, ·〉s inner product. Hence,

〈LX ,Y 〉s = Tr
(
(LX )∗σ1−s Y σs)

= Tr
(
X ∗L∗(σ1−s Y σs )

)
= 〈

X ,σ1−s L∗(σ1−s Y σs )σ−s〉
s .
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Hence, we obtain L∗Y = σ1−s L∗(
σ1−s Y σs

)
σ−s = LY , where the last equality follows from the

fact that L is self-adjoint with respect to 〈·, ·〉s . Thus, by combining our two previous results
we obtain

LX = ∑
α,β

cα,βF∗
αX Fβ

=σ1−s L∗(σ1−s Y σs )σ−s

= ∑
α,β

cβ,ασ
1−s Fασ

1−s Y σs F∗
βσ

−s

= ∑
α,β

cβ,α∆
1−s
σ FαY ∆s

σF∗
β

= ∑
α,β

cβ,αe(1−s)ωαe sωβFαY F∗
β .

The modular basis has that if Fµ is a basisvector with eigenvalue ωµ then Fµ′ = F∗
µ is a ba-

sisvector, with eigenvalue ωµ′ =−ωµ. Hence,∑
α,β

cβ,αe(1−s)ωαe sωβFαY F∗
β = ∑

α,β
cβ,αe(s−1)ωα′ e sωβ′ F∗

α′ X Fβ′ . (4.60)

Now, we can re-index by α′ ↔α and β′ ↔β, to obtain∑
α,β

cα,βF∗
αX Fβ =

∑
α,β

cβ′,α′e(s−1)ωαe sωβF∗
αX Fβ. (4.61)

Since the identity in equation 4.56 implies that cα,β commutes with powers of eωα in a partic-
ular fashion and by applying the fact that the GKS coefficients are unique, it follows that

e(1−s)ωαcα,βe sωβ = eωαcα,β = cβ′,α′ . (4.62)

Which completes the proof. ■
These two relations for the GKS matrix are helpful in proving the main result of this disserta-
tion, which is considered in the next section.

4.4. THE MAIN RESULT
This section contains the main result of this dissertation, the Lindblad form for generators
that are self-adjoint with respect to the GNS inner product for some density operator σ ∈
S+, for H a countable infinite dimensional Hilbert space. These generators have a Lindblad
form, which is greatly simplified in contrast to the general Lindblad form, which is shown in
theorem 4.30.
The main result of this dissertation is as follows.

Theorem 4.30. Let Φt = e tL be a QMS on L3(H), with L ∈L4(L3(H)) self-adjoint and L STW.
Suppose thatΦt is self-adjoint with respect to the GNS inner product for some σ ∈S+ a den-
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sity operator. Then for all X ∈L3(H) the generator L ofΦt is of the form

LX = ∑
j∈J

(
e−ω j /2V ∗

j

[
X ,V j

]+eω j /2[V j , X
]
V ∗

j

)
(4.63)

= ∑
j∈J

e−ω j /2
(
V ∗

j

[
X ,V j

]+[
V ∗

j , X
]

V j

)
(4.64)

with ω j ∈R for all j ∈ J and
{
V j

}
j∈J is a modular basis with the identity element removed, i.e.

V1 = I ∉ {
V j

}
j∈J . Conversely, if L ∈L4(L3(H)) is a self-adjoint and STW generator expressed in

a set
{
V j

}
j∈J that has the properties of a modular basis without the identity. Then L generates

a QMS that is self-adjoint with respect to the GNS inner product for some σ ∈S+ a density
operator.

Proof. First set
{
Fµ

}
to be a modular basis of L3(H) with respect to σ, we require that the

reduced GKS matrix is diagonal with respect to this basis. We are allowed to do this from the
fact that the GKS matrix is self-adjoint by lemma 4.16. Notice that by applying proposition
4.22 we can decompose L for all X ∈L3(H) as follows

LX = 1

2

∑
α,β 6=(1,1)

cα,β
(
F∗
α

[
X ,Fβ

]+ [
F∗
α , X

]
Fβ

)
. (4.65)

This is the first part of the Lindblad equation. Next consider the general GKS form and the
fact that Fµ′ = F∗

µ , which yields

LX = ∑
α,β

cα,βF∗
αX Fβ =

∑
α,β

cα,βFα′ X F∗
β′

= ∑
α,β

cβ′,α′FβX F∗
α

= ∑
α,β

cα,βeωαFβX F∗
α .

In the second to last inequality, we re-indexed by α↔β′ and β↔α′. Furthermore, in the last
equality we invoked theorem 4.29 to write cβ′,α′ = cα,βeωα . By applying proposition 4.22 again
we can write

LX = 1

2

∑
α,β 6=(1,1)

cα,βeωα
(
Fβ

[
X ,F∗

α

]+ [
Fβ, X

]
F∗
α

)
. (4.66)

By taking the average over both expressions of L we obtain

LX = 1

4

∑
α,β 6=(1,1)

cα,β
[(

F∗
α

[
X ,Fβ

]+ [
F∗
α , X

]
Fβ

)+eωα
(
Fβ

[
X ,F∗

α

]+ [
Fβ, X

]
F∗
α

)]
. (4.67)

By applying the fact that the reduced GKS matrix of L is diagonal with respect to the modular
basis we obtain a diagonal form, written as

cα,β =
∑

γ6=(1,1)
δα,γδβ,γdγ = 2

∑
γ6=(1,1)

δα,γδβ,γcγe−ωγ/2. (4.68)
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In the last equation we simply re-scaled the diagonal form constant. Applying this decompo-
sition yields the following expression

LX = 1

2

∑
γ6=(1,1)

cγ
[

e−ωγ/2
(
F∗
γ

[
X ,Fγ

]+[
F∗
γ , X

]
Fγ

)
+eωγ/2

(
Fγ

[
X ,F∗

γ

]
+ [

Fγ, X
]
F∗
γ

)]
. (4.69)

Now by symmetry we can assume that cγ = cγ′ , such that Vγ′ =V ∗
γ , where we have set Vγ = Fγ.

Which then yields,

LX = ∑
γ6=(1,1)

cγ
[

e−ωγ/2V ∗
γ

[
X ,Vγ

]+eωγ/2[Vγ, X
]
V ∗
γ

]
. (4.70)

If we use the diagonalization immediately in equation 4.65 we obtain the other form.

LX = ∑
γ6=(1,1)

cγe−ωγ/2
(
V ∗
γ

[
X ,Vγ

]+[
V ∗
γ , X

]
Vγ

)
. (4.71)

We can now set Vγ →p
cγVγ by the fact that the reduced GKS matrix is positive, therefore all

cγ are positive and thus the square root exists. Now take J = {
γ : γ 6= (1,1)

}
and we are done.

For the converse, assume that L has the specified form. We can take out the cγ by applying
the normalization and making all Vγ into an orthonormal basis, adding in the Vγ with cγ = 0
and the identity. Furthermore, it is obvious that LI = 0 from the decomposition and therefore
by lemma 4.21 L generates a QMS. Additionally, since the Vγ are eigenvectors of ∆σ, it follows
that the semigroup commutes with ∆σ. Now let X ,Y ∈ L3(H) with X ,Y 6= I (in this case the
next expression would be 0) and notice the fact that X ,Y and L are all Hilbert Schmidt opera-
tors, thus by the same argument we used many times before: the trace converges absolutely,
allowing us to interchange the summations. We then have

〈X ,LY 〉1/2 = Tr
(
∆1/2
σ

(
X ∗)

LY
)

=∑
γ

cγTr
(
∆1/2
σ

(
X ∗)

VγY V ∗
γ

)
GKS expansion

=∑
γ

cγTr
(
V ∗
γ ∆

1/2
σ

(
X ∗)

VγY
)

cyclicity of the trace

=∑
γ

cγTr
(
Vγ∆

1/2
σ

(
X ∗)

V ∗
γ Y

)
re-indexing

= Tr
(
L
(
∆1/2
σ

(
X ∗))

Y
)

= Tr
(
∆1/2
σ

(
LX ∗)

Y
)

commutation of L with ∆σ

= 〈LX ,Y 〉1/2 .

Hence, it turns out that L is self-adjoint with respect to the KMS inner product. According
to a generalisation of theorem 4.28, which can be found in Carlen and Maas [6], it turns out
that being self-adjoint with respect to an inner product with a particular value of s implies
self-adjointness for all other s. Hence, also for the case s = 1 and thus we are done. ■
Similar to what we did for the general Lindblad form, we can work out the adjoint for ρ a
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density operator to be given by

L∗ρ = ∑
j∈J

(
e−ω j /2

[
V jρ,V ∗

j

]
+eω j /2

[
V ∗

j ,ρV j

])
(4.72)

= ∑
j∈J

e−ω j /2
([

V jρ,V ∗
j

]
+

[
V j ,V ∗

j ρ
])

. (4.73)

The result shown in theorem 4.30 shows that if a generator is self-adjoint with respect to the
GNS inner product, STW and satisfies general generator conditions it has a simplified form.
However, we do not know why a generator would be self-adjoint with respect to the GNS inner
product. Therefore, it is interesting to figure out which which physical systems actually poses
this symmetry. Unfortunately, this question is outside the scope of this thesis, but can be
considered for further research.



5
CONCLUSION

In this thesis Quantum Markov Semigroups and their generators were studied. These semi-
groups describe the evolution of operators or density matrices of open quantum systems.
The generators of QMS have a general form described by the Lindblad equation, which was
derived from both a physical and a mathematical perspective. Furthermore, the result of
Carlen and Maas for a general form of a generator which commutes with the modular au-
tomorphisms group was generalised. This generalisation involved considering Hilbert spaces
of countably infinite dimension instead of Hilbert spaces with dimension n ∈ N. Further-
more, the modular automorphism group describes the time propagation of operators under
a Hamiltonian induced by a density operator. It turned out that under the commutation the
general form of the Lindblad equation simplified a great deal. However, we were only able to
do so under multiple assumptions on the generators and their domain. We will reiterate the
restrictions and mention what problems can be investigated by further research.
First of all, the general derivation of the Lindblad form for generators of QMS was done for the
domain given by B(H); the bounded operators, where H can be countably infinite. However,
in the generalisation of Carlen and Maas’ result we only considered the domain L3(H), which
was defined to be the trace class operators with the identity and a compatible inner product.
In this case the inner product defined on the trace class operators themselves was the regu-
lar Hilbert-Schmidt inner product and extended to the identity by defining it orthogonal to
the trace class operators and normalising the inner product of the identity with itself to one.
Unfortunately, this is a much more restrictive space than B(H). Hence, for further research
it is recommended to see if the results can be generalised for a more realistic inner product,
i.e. not assuming the added identity is orthogonal to all other operators. An even better re-
sult would be to generalise the result from L3(H) to B(H). However, it should be noted that
this probably cannot be done using the same proof tactics and techniques used in this thesis,
since these strongly relied on the Hilbert-Schmidt inner product and the Hilbert space struc-
ture induced by it on the Hilbert-Schmidt/trace class operators.
Another point of consideration is the symmetry we assumed the generator obeyed. Namely,
the self-adjointness with respect to the GNS inner product, which implied commutation with
the modular automorphisms group. For this symmetry it is interesting to figure out what kind
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of physical systems actually obey this particular requirement. That is which physical system
actually have QMS generators that obey the simplified form.
Furthermore, we restricted the generators L to be both self-adjoint with respect to the in-
ner product defined on L3(H) and with respect to the GNS inner product. Additionally, we
required L to be STW, or mapping strongly convergent sequences to weakly convergent se-
quences. These three requirements are complimentary to the conditions for L to be a gen-
erator of a QMS. However, only the self-adjointness with respect to the GNS inner product is
required for L to have the proposed simplified Lindblad form in the finite dimensional case.
Hence, for the infinite dimensional case we have two extra conditions. Both of these con-
ditions are used to prove certain results. Nevertheless, as mentioned in the first paragraph,
generalising the current result to B(H) would probably require a different approach than the
one taken in this thesis. Therefore, it is interesting to consider trying to lift the additional re-
quirements on L to make the result even more general.
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A
ELEMENTARY TENSOR PRODUCT

DEFINITIONS AND PROPOSITIONS

This section serves as an elementary introduction to tensor products, which only introduces
the notions required in this paper. For further reading we recommend the reader to look at

Definition A.1. Let V and W be vector spaces. A tensor product of V and W is a pair (V ⊗W,⊗)
of a vector space V ⊗W and a bilinear map

⊗ : V ×W →V ⊗W, (v, w) 7→ v ⊗w (A.1)

with the following universal property. For each bilinear mapβ : V ×W →U into a vector space
U , there exists a unique linear map β̃ : V ⊗W →U satisfying

β̃(v ⊗w) =β(v, w) for v ∈W, w ∈W. (A.2)

It can be shown that this particular product is unique, furthermore to show its existence we
use the following construction.

Proposition A.2. Let V and W be vector spaces and let F (V ×W ) be the vector space with
basis all Cartesian products (v, w) ∈V ×W . Let F ⊆F (V ×W ) be the linear subspace spanned
by the vectors.

(v,λw)−λ(v, w), (λv, w)−λ(v, w) (A.3)

(v1 + v2, w)− (v1, w)− (v2, w), (v, w1 +w2)− (v, w1)− (v, w2) (A.4)

Then we can define V ⊗W as F (V ×W )/F .

Considering the quotient we can deduce the following properties.

Property A.3. Let V and W be vector spaces then ∀v ∈V and ∀w ∈W we have the following:

(v1 ⊗w)+ (v2 ⊗w) = ((v1 + v2)⊗w) (A.5)

(v ⊗w1)+ (v ⊗w2) = (v ⊗ (w1 +w2)) (A.6)

(λv ⊗w) = (v ⊗λw) =λ(v ⊗w) (A.7)
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We will now state another couple of important properties. If the reader is interested in the
proofs for these particular properties, we refer them to

Property A.4. Let V and W be vector spaces and let L(V ) and L(W ) be the spaces of linear
operators on V ,W respectively. Furthermore, let A ∈ L(V ) and B ∈ L(V ) then we have the
following:

i) dim(V ⊗W ) = dim(V )·dim(W )

ii) (A⊗B)(v ⊗w) = Av ⊗B w ∀v ∈V and ∀w ∈W.

iii)
〈

v ⊗w, x ⊗ y
〉= 〈v, x〉V

〈
w, y

〉
W ∀v, x ∈V and ∀w, y ∈W .

iv) Tr(A⊗B) = Tr(A)Tr(B).

The last important property of the tensor product that needs to be discussed is the Kronecker
product. This is often used for products between linear operators that can be represented as
matrices. It is defined as follows.

Definition A.5. Let A,B be linear operators with a matrix representation. Then the Kronecker
product of A⊗B is defined as:

A⊗B =


a11B . . . a1nB
a21B . . . a2nB

...
. . .

...
an1B . . . annB

 (A.8)



B
DIFFERENT WAYS OF LOOKING AT

PRODUCTS OF MATRICES

Let A,B , X ∈ M2(C) then by employing the Kronecker product we can write

(A⊗B T ) =
(

a11 a12

a21 a22

)
⊗

(
b11 b21

b12 b22

)
=


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22

 . (B.1)

Then using this result we can write

(A⊗B T )X̂ =


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22




x11

x12

x21

x22



=


a11b11x11 +a11b12x12 +a12b11x21 +a12b12x22

a11b21x11 +a11b22x12 +a12b21x21 +a12b22x22

a21b11x11 +a21b12x12 +a22b11x21 +a22b12x22

a21b21x11 +a21b22x12 +a22b21x21 +a22b22x22

 .

This is the first result. Let us now move on to computing AX B

AX B =
(

a11 a12

a21 a22

)(
x11 x12

x21 x22

)(
b11 b21

b12 b22

)
=

(
a11 a12

a21 a22

)(
x11b11 +x12b12 x11b21 +x12b22

x21b11 +x22b12 x21b21 +x22b22

)
=

(
a11x11b11 +a11x12b12 +a12x21b11 +a12x22b12 a11x11b21 +a11x12b22 +a12x21b21 +a12x22b22

a21x11b11 +a21x12b12 +a22x11b21 +a22x12b22 a21x11b21 +a21x12b22 +a22x21b21 +a22x22b22

)
.

Reordering the terms in our last expression we see that these two operations yield the exact
same result. Hence, both ways of computing are just a different way of looking at the same
situation.
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