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Abstract — This paper presents a new method of automotive
MIMO radar self-calibration which uses targets of opportunity
embedded in road infrastructure, such as road signs and
traffic lights. While conventional offline calibration of a phased
array antenna requires accurate knowledge of the positions of
calibration targets relative to the radar, such information is not
available in a dynamic scenario. To compensate for this, we have
developed an estimation procedure based on an extended Kalman
filter (EKF) to address the challenge of simultaneous localisation,
mapping and calibration. Numerical simulations demonstrate the
possibility to decrease the sidelobes level and compensate the
steering bias of a MIMO radar with the proposed method.

Keywords — Radar, MIMO arrays, calibration, SLAM

I. INTRODUCTION

The growing field of automotive radars operating in
mm-waves (24 GHz, 77 GHz, 79 GHz bands) is highly
interested in the development and maintenance of low-cost
radars with high sensing performance. The current trend
is to employ multiple-input, multiple-output (MIMO) radar
systems, which combine instantaneous large-angle coverage
with high accuracy, ac hived by applying high-resolution
spectrum estimation techniques such as multiple signal
decomposition (MUSIC). These techniques are very sensitive
to calibration errors. Therefore, the proper calibration of
MIMO arrays is vital to the performance of automotive
radars. The presence of calibration errors degrade radar
performance, particularly the accuracy and target response
of (high-resolution) direction-of-arrival (DOA) estimation
techniques [1], [2], interference cancellation and target
detection.

Calibration of automotive radars has recently attracted
widespread interest [3]. These techniques consider that the
calibration is performed at the regular check of the auto, in
a well controlled environment using corner reflectors installed
at predefined locations [4] or more advanced systems form
joint calibration of different type of sensors [5]. Various type
of array imperfections (gain, phase, array element locations,
mutual coupling between elements, I/Q imbalance) can be
measured and compensated with a controlled calibration.
However, it does not account for external factors such as
temperature, humidity, aging, surface bend, etc. which can
affect the performance of the radar between the regular checks.
To tackle this problem auto-calibration is applied, which

typically deals only a restricted class of errors, determined
by a model with a finite number of unknown parameters [4].

Many auto-calibration methods developed to date are based
either on an extension of the MUSIC algorithm [6] or on
the maximum likelihood approach [7]. The key step in all of
these techniques is estimating the signal covariance matrix,
which requires the availability of a sufficient number of
independent data samples (snapshots). It assumes a constant
bearing of the measured targets over the observation time, yet
this can hardly be satisfied with an automotive radar moving
on the road. Non-negligible displacement of the car within the
data collection time implies variation in the targets’ angular
locations and the smearing of the MUSIC spectrum. Moreover,
the are developed for phased arrays calibration, and when
applied to MIMO radars, they do not exploit fully exploit the
structure of the data.

In this paper we propose a method for forward-looking
automotive MIMO radar auto-calibration in operational mode.
We focus on the estimation of the complex gains of antenna
elements of MIMO arrays. This study is the extension of the
study on phased array auto-calibration [8] to the case of MIMO
radar. We use some principles of simultaneous localisation and
mapping (SLAM) as a tool to extract the location of the sensor
and the targets (hereinafter called landmarks) in the scene,
necessary for proper array calibration. After formulating the
problem of simultaneous localisation, mapping and calibration,
we present an efficient solution for online sensor calibration
in a dense target environment.

Notations: Hereinafter we use lowercase boldface
letters for vectors, uppercase boldface letters for matrices,
and uppercase boldface calligraphic letters for sets. The
superscripts (·)T , (·)H and (·)∗ indicate matrix/vector
transpose, Hermitian transpose and complex conjugate,
respectively.

II. PROBLEM STATEMENT

To develop the auto-calibration method, we expand the
probabilistic formulation of the SLAM [9], [10] by including
there sensor calibration. First, notice that the calibration of
the phased array requires information about the (relative)
sensor and targets (hereafter called landmarks) locations
in order to form the expected target response [4]. In the
general case of a platform moving in unknown environment,
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Fig. 1. Measurement geometry with one landmark at (xi, yi); φi < 0

calibration problem can be written in a probabilistic way
by: P

(
γγγ[t]|ZZZ [0:t],XXX [0:t],m

)
which implies that in order to

estimate the calibration vector γγγ[t], the platform location1

XXX [0:t] = {x[0], . . . ,x[t]} and the map m should be known for
every measurement ZZZ [0:t] = {z[0], . . . , z[t]}. This motivates
the joint formulation of sensor auto-calibration with SLAM.

Combining the motivation above with the statistical
definition of SLAM [9], we aim to estimate at each time step
t the probability:

P
(
x[t], γγγ[t],m|ZZZ [0:t],UUU [0:t],x[0]

)
, (1)

which describes the problem of joint localisation – x[t],
calibration – γγγ[t] and mapping – m. This probability can
be calculated via a recursive Bayesian filter, similarly to
the original SLAM problem [9], [8]. The implementation of
this Bayesian filter requires the definition on the observation
(measurement) and dynamic (motion) models. The observation
model P (z[t]|x[t], γγγ[t],m) defines the probability of making
the observation z[t] for the given sensor and landmarks
locations. The motion model P (x[t]|x[t−1],u[t]) describes
sensor motion in terms of the state transition with possible
presence of control inputs UUU [0:t] = {u[0], . . . ,u[t]}. In
this study we assume that the map is stationary and that
the evolution of the calibration coefficients are defined by
P
(
γγγ[t]|γγγ[t−1]

)
.

In this paper we focus on online filter-based SLAM, which
estimates only the current position of the sensor (at time
instant t only, rather than the whole trajectory) and it describes
the map with a set of landmarks (targets). We demonstrate
the applicability of continuous calibration with EKF SLAM.
In general, calibration can be incorporated in other types of
feature-based SLAM in a similar manner.

III. DATA MODEL

The state vector contains the sensor and landmarks
parameters, essential to define the observation
model, which can be grouped into three parts:
s[t] = [x[t], γγγ[t],m1, . . . ,mI ]

T . For the localization in a plane,
the vehicle location (x, y), orientation θ and instantaneous
velocity v form the state subvector x[t] = [x, y, θ, v]T 2.

1It is assumed that the platform location corresponds to the radar location.
2To simplify the notations we skipped the time index for scalar variables.

The calibration coefficients are represented by their
real and imaginary parts the calibration γγγ[t] =
[γR1 , . . . , γ

R
K−1, γ̆

R
1 , . . . , γ̆

R
L−1, γ

I
1 , . . . , γ

I
K−1, γ̆

I
1 , . . . , γ̆

I
L−1]T ∈

R2(K+L−2)×1, essential for the estimation routing. Finally, the
map, assumed stationary, consists of I point-like landmarks
with Cartesian locations mi = [xi, yi]

T , i = 1, . . . , I .

A. MIMO array response

Consider a coherent MIMO radar with K transmit (Tx)
and L receive (Tx) channels arranged in uniform linear arrays
(ULA), which observes a point-like target at angle φi from the
array pointing direction, see Fig. (1). The target is characterised
by its complex back-scattering coefficient αi = |αi|ejϕi

with ϕi ∼ U(0, 2π), which comprises signal attenuation
due to two-way propagation and processing gain with no
loss of generality. The amplitude and phase distortion in the
k-th transmit element is characterised by a complex-valued
coefficient γk, k = 0, . . . ,K−1 and in the l-th receive element
by γ̆l, l = 0, . . . , L − 1. Then, the response of the i-th target
associated with the k-th transmit and l-th receive channel is
given by:

κk,l,i = αiγkγ̆l exp (ψk,l,i) + nk,l,i, (2)

where
ψk,l,i = −j2πdtk + drl

λ
sin(φi), (3)

λ stands for the carrier wavelength, dt and dr are
the inter-element spacing of the Tx and Rx arrays and
n′k,l,i ∼

(
0, σ2

n

)
represents the receiver noise. To remedy the

dependence on the target back-scattering coefficient αi, we
consider channel k = 0, l = 0 (another k and l can be used
with no loss of generality) as the reference point and remove it
from the measurements after normalization. This implies that
the calibration coefficients γ0 = 1 and γ̆0 = 1 are fixed and
KL− 1 normalized measurements are:

pk,l,i =
κk,l,i
κ0,0,i

= γkγ̆l exp (ψk,l,i) + n′k,l,i, (4)

k = 0, . . . ,K − 1, l = 0, . . . , L − 1, (k + l) ≥ 1. The noise
after normalization is n′k,l,i ∼

(
0, σ2

i

)
becomes a function of

landmark SNR: σ2
i =

(
|αi|2/σ2

n + 1
)−1

= (SNRi + 1)−1.

B. Observation model

Consider the geometry presented in Fig. 1. At time t
the radar observes N landmarks: z[t] = [zTi1 , . . . , z

T
iN

]T with
indexes {i1, . . . , iN} in the global map. We assume that the
data association problem is correctly resolved. The observation
vector of a point-like target consist of the measured range,
radial velocity (we assume that no velocity ambiguities
occurs) and the normalized response of the MIMO array zi =
[ri, vr,i, p

R
0,1,i, . . . , p

R
K−1,L−1,i, p

I
0,1,i, . . . , p

I
K−1,L−1,i]

T ∈
R2M×1. Similarly to the calibration coefficients, the complex
responses in MIMO channels are represented by their real and
imaginary parts. To simplify the notations, define an auxiliary
variable

φi = atan2 (yi − y, xi − x)− θ. (5)
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where atan2 (y, x) evaluates the angle of the vector in
the Euclidean plane, given its coordinates (x, y). Then the
measurement of the i-th target at time t defines the observation
model:

ri =
√

(xi − x)2 + (yi − y)2;

vr,i = v cos(φi);

pRk,l,i = a1 cos(ψk,l,i)− a2 sin(ψk,l,i);

pIk,l,i = a1 sin(ψk,l,i) + a2 cos(ψk,l,i);

(6)

where ψk,l,i was defined in (3) and[
a1 a2

]
=
[
γRk γ̆

R
l − γIk γ̆Il γRk γ̆

I
l + γIk γ̆

R
l

]
. (7)

The observation model (6) can be seen as a nonlinear
function of multiple variables g

[t]
i

(
s

[t]
i

)
in the EKF. The

corresponding Jacobian for the i-th target measurement G[t]
i ∈

R2KL×2(K+L+1) has a block structure:

G
[t]
i =

∂g
[t]
i

∂s
[t]
i

∣∣∣∣∣
s
[t]
i =s̄

[t]
i

=

[
Grv,x Grv,γ Grv,m

Gar,x Gar,γ Gar,m

]
, (8)

where we have skipped target i and time t indices of
submatrices. The first notation in subscript – rv and ar
– defines the set of measurement equations from (6) to
which the Jacobian is calculated: rv corresponds to range and
velocity measurements, while ar refers to the MIMO array
measurements. The second notation indicates the relevant part
of the state vector: the sensor location x = [x, y, θ, v]T — x,
the calibration coefficients γγγ — γ or the i-th landmark location
mi = [xi, yi]

T — m. The partial derivatives of [ri, vr,i]
T in

(6) over x gives sumbatrix Grv,x ∈ R2×4:

Grv,x

=
1

q

[
−√qδx −√qδy 0 0

−v sin(φi)δy v sin(φi)δx v sin(φi)q cos(φi).

]
,

(9)

where δx = xi−x, δy = yi−y and q = (xi−x)2 +(yi−y)2.
Range and velocity measurements do not depend on the MIMO
calibration, thus Grv,γ = 02×2(K+L−2). Finally, Grv,m ∈
R2×2 relates range/velocity measurements to the landmark
location via:

Grv,m =
1

q

[ √
qδx

√
qδy

v sin(φi)δy −v sin(φi)δx

]
. (10)

The submatrices of the Jacobian (8) which correspond to
the array measurements (6) can be given in a compact form
by noticing that location- and landmark-related state variables
contribute to the array response pRk,l,i, p

I
k,l,i only via ψk,l,i, see

(3), (5), (6). This leads to the expressions:

∂pRk,l,i
∂ξ

= (−a1 sin(ψk,l,i) + a2 cos(ψk,l,i))
∂ψk,l,i
∂ξ

;

∂pIk,l,i
∂ξ

= (a1 cos(ψm,i)− a2 sin(ψk,l,i))
∂ψk,l,i
∂ξ

,

(11)

valid for the platform location- and landmark-related variables
of the state vector: ξ ∈ {x,mi} = {x, y, θ, v, xi, yi}. The

partial derivative of ψk,l,i over the platform location variables
x gives 1× 4 vector:

∂ψk,l,i
∂x

= −2πm
d

λ
cos(ψk,l,i)

1

q

[
δy −δx −q 0

]
. (12)

Finally, the block of Jacobian Gar,x ∈ R2(KL−1)×4 is built
by stacking KL − 1 rows of (11) for real measurements in
channels k = 0, . . . ,K − 1, l = 0, . . . , L− 1, (k+ l) ≥ 1 and
their counterparts for the imaginary data.

Next, we find the partial derivative of ψk,l,i over the
landmark variables mi:

∂ψk,l,i
∂mi

= −2πm
d

λ
cosψk,l,i

1

q

[
−δy δx

]
(13)

and concatenate the rows related to real and imaginary
measurements of all channels in the similar order as above
to form Gar,m ∈ R2(KL−1)×2.

The last block Gar,γ ∈ R2(KL−1)×2(K+L−2) of the
Jacobian (8) corresponds to the partial derivatives of the MIMO
measurements pRk,l,i, p

I
k,l,i with respect to the calibration

coefficients γk, γ̆l. The measurement in each transmit-receive
pair depends only on two calibration coefficients in these
channels and thus the submatrix Gar,γ is sparse. The
derivatives can be calculated directly from (6), (8).

Finally, all of the measurements at time t associated with
the targets form the vector z[t], and the corresponding Jacobian
matrix G[t] is built [10]. The noise for every measurement is
defined by its real and imaginary parts and from (4) it follows
ωi ∼ (0, σ2

p,i), where σ2
p,i =

σ2
n

2(α2
i +σ2

n)
. Together with errors

in range and Doppler measurements, it forms ωωω ∼ N (0,R),
where Ri = diag

(
σ2
r , σ

2
vr, σ

2
p,i11×2(KL−1)

)
.

C. Dynamic model

The dynamic model describes the movement of the
platform and landmarks in time: s[t] = a[t]

(
s[t−1]

)
+u[t]. The

landmarks are assumed stationary – the common assumption
in SLAM [10]. The platform moves with a nearly constant
velocity model:

x[t] = x[t−1] + Tv[t−1] cos(θ[t−1]);

y[t] = y[t−1] + Tv[t−1] sin(θ[t−1]);

θ[t] = θ[t−1] + u
[t]
θ ;

v[t] = v[t−1] + u[t]
v ,

(14)

where T is the time interval between the measurements and
u

[t]
θ ∼ N (0, σ2

θ) and u[t]
v ∼ N (0, σ2

v) define the driving noise
of bearing and velocity. Time variation of real and imaginary
parts of the calibration coefficients in both Tx and Rx channels
are modeled by: γ{R,I},[t]{k,l} = γ

{R,I},[t−1]
{k,l} + w

{R,I},[t]
m , where

wRm,t, w
I
m ∼ N

(
0, σ2

w

)
and σw ∈ [10−6, 10−3].

Every measurement is then associated with an existing
landmark, or a new landmark is created. All of the
measurements associated with existing landmarks form the
measurement vector z[t], and the Jacobian matrix G[t] is built
from the corresponding blocks G

[t]
i (8) as e.g. in [10]. After

this data arrangement a standard EKF can be applied.
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a b c
Fig. 2. (a) Estimated trajectory with the true (blue) and estimated (red) map, (b) Array response before and after auto-calibration, (c) Peak-to-sidelobe level vs
number of scans.

IV. SIMULATIONS

To demonstrate the proposed approach we modified the
EKF-SLAM simulator created by Tim Bailey [11]. We
consider a MIMO radar operating at the frequency fc = 77
GHz with a dense Rx array of L = 4 elements and sparse
Tx array with K = 3 and dt = 2λ. The calibration errors are
modeled as γRk , γ̆

R
l ∼ N (1, σ2

γ) and γIk , γ̆
I
l ∼ N (0, σ2

γ), with
σγ = 0.2. SNR of all measurements is 20 dB, independently
on the range to the target.

The observation area of the radar is limited in range by
R ≤ Rmax = 50 m and in angle by |φ| ≤ φmax = 75o.
The platform moves with constant velocity v0 = 3 m/s, and
its control inputs have Gaussian error in velocity and heading
with σv = 0.3 m/s and σθ = 3o, respectively. The dynamic
noise of the calibration coefficients is set to σw = 10−5.

The simulated map is shown in Fig. 2, a in blue with
the trajectory of the vehicle and estimated map (in red). The
antenna pattern of uncalibrated array and its counterpart at the
end of the trajectory using the proposed approach and virtual
array calibration [8] are shown in Fig. 2, b. Both calibration
technique recovers the sinc-like pattern of a calibrated array
with a minor difference between them. The difference in
the maximum response on the array is due usage of the
constrain γ0 = 1 and γ̆0 = 1 rather than the norm of the
calibration vector. Further, we compare the performance of
the auto-calibration by evaluating the sidelobe level over 100
Monte-Carlo trials of the trajectory shown in Fig. 2, a. The
average (E) and the maximum over realizations peak sidelobe
level (PSL) as the function of number of measurements are
shown in Fig. 2, c. We noticed that for small to moderate
calibration errors (here σγ = 0.2) MIMO calibration converges
faster to the steady state compared to the full virtual array
calibration. With about 50 measurements, both techniques
converge to PSL ≈ −13 dB of a well-calibrated array.

V. CONCLUSION

In this paper we have proposed a novel technique
for forward-looking MIMO radar auto-calibration under
operational conditions. It was shown that the dynamic
calibration of automotive radar using targets of opportunity

can be realized jointly with sensor localisation and mapping.
The proposed MIMO auto-calibration converges faster to the
steady state compared to the full virtual array auto-calibration
in presence of small to moderate calibration errors.
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