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A Generalisable Stiffness Metric for Joint
Configuration Optimisation of Serial Manipulators

Thomas Hettasch

Abstract—There is growing demand for use of serial robotic manipulators in machining, as they are more flexible and affordable than
conventional CNC machines. Maintaining positional accuracy under load is crucial to ensure adequate process performance. Offline,
configuration-based stiffness optimisation can be used to achieve improved stiffness characteristics for a given process. A new stiffness
metric is proposed, which aims to predict how well a process will adhere to its positional tolerances under load for a given
joint-configuration. The proposed metric is validated for through-drilling using a Kuka LBR iiwa 14 R820 cobot. It is shown that the
metric correlates with the lateral controller tracking error (Spearman’s rank correlation coefficient of 0.93) and the hole diameter
(0.81). The correlations are better than those of existing metrics. The controller error can be decreased from a worst case of 380 µm
down to 68µm, a reduction of more than a factor of 5. A flexible software framework for performing these optimisations is also made
available.
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1 Introduction
Serial robotic manipulators are ubiquitous in the field of
automation and are widely used for tasks without significant
contact loads (e.g. painting). Due to their low cost and high
flexibility, there is growing demand for using these manip-
ulators in more demanding applications, where loads and
accuracy requirements are higher [1]. The field of interest here
is robotic machining, i.e. use of robots in machining processes
such as drilling, milling or grinding.

For example, during aircraft manufacturing, it is still oc-
casionally necessary for manual drilling to be performed.
Due to the scale and curvature of fuselage parts, traditional
computer numerical control (CNC) solutions, such as 3 axis-
mills, cannot be used. The added flexibility and reach of a
serial manipulator could possibly enable automation of the
drilling process.

A key reason why serial manipulators have not seen much use
in robotic machining, is their lack of accuracy, particularly
when compared to traditional CNC solutions. A dominant
source of this error is the deflection of the manipulator under
load [2]. For this reason, many researchers have looked into
improving the stiffness characteristics of serial robots and thus
the accuracy of the process [3]–[8].

Generally, these solutions depend on proprietary software
[3], [4], [8]–[10]. Many common machining processes have
been studied, including milling [4], [6], [9], [11]–[14], grind-
ing/polishing [14]–[18], drilling [5], [19], deburring [20] and
welding [21]. Each is approached separately and no generic
methodology is available.

The underlying premise used to improve a robot’s stiffness
behaviour lies in recognising that different joint configurations
of the robot yield different Cartesian stiffness. Thus, by
leveraging redundant degrees of freedom, improved stiffness

characteristics may be identified. Since the procedure does
not rely on force or torque sensors, it is applicable to both
industrial and collaborative robots (cobots).

Different metricsa may be used in optimising the stiffness
characteristics, however existing options are either highly
generic or overly restrictive. This report proposes a new
metric, which may be used to optimise stiffness for a process,
given its tolerances. The solution is implemented in a flexible
software framework to allow for further development and use
of the metric.

Section 2 outlines how the robot’s stiffness is modelled.
Stiffness metrics, including the newly proposed tolerance
metric, are discussed in Section 3. Then, an overview over
the software framework is provided in Section 4. Next, the
metric is experimentally verified. First, the joint stiffnesses
are determined (Section 5), then the metric is applied in a
robotic drilling application (Section 6). Finally, the results of
the experimental work are discussed and the applicability of
the developed metric assessed (Section 7).

2 Theory: Robot Model
To improve the stiffness of a robotic manipulator with the aim
of improving process accuracy, the stiffness behaviour at the
end-effector must be modelled. If a force (or more generally,
a wrench) is applied at the end-effector, there may be some
deflection of the end-effector. The Cartesian stiffness defines
the relationship between the wrench and the deflection, and is
affected by multiple factors.

Some of the deflection is mechanical in nature. The links
comprising the robot, the joints connecting the links, the base
of the robot and the end-effector itself are all susceptible to

a. The term metric is conceptually equivalent to a cost, evaluation
or reward function (with alterations to the sign where necessary)



deformation. Additionally, there may be deflection due to cor-
rections from the motor controllers, which have to compensate
for changes in loading, thus temporarily producing unwanted
deflection from the nominal pose.

It may be possible to model each effect in great detail, for
example by creating finite element models of the links, or
analysing the motor’s control systems in depth. In practice,
relatively simple models are often used, as these have fewer pa-
rameters and are thus more practical to use (see Section 2.2).

2.1 Generic Model
A stiffness model relates the Cartesian displacement δX and
applied wrench F at the end-effector of a robot. These 6-
dimensional vectors encode both the linear/translational and
angular/rotational components. Appendix A contains a more
complete description, including formulations for transforming
displacements and twists between coordinate frames.

A linear model can be expressed as follows, where Kx is a
6 × 6 matrix encoding the stiffness of the system. Often, it
is convenient to use the inverse of the stiffness matrix, i.e.
the Cartesian compliance matrix Cx. These matrices must be
positive semi-definite.

F = KxδX (2.1)

δX = CxF (2.2)

2.2 Virtual Joint Model
One means of computing the compliance matrix often used in
stiffness analysis of serial manipulators is the Virtual Joint
Modelling (VJM) method [3]–[5], [7], [11], [12], [14], [15],
[19], [22], [23]. It was first developed by Salisbury [24] and
later refined by Alici and Shirinzadeh [25]. Only the joint
compliances are taken into account. The significantly stiffer
links [26] are not considered.

For the simplified model [24], the Cartesian stiffness Kx at the
end-effector is:

Kx = J−TKqJ
−1 (2.3)

Where J is the robot Jacobianb and Kq is a diagonal matrix
of the joint stiffnesses.

Since the inverse operation may be time consuming to com-
pute, an inverse of the stiffness matrix is sometimes used
instead, namely, the compliance matrix (Cx) [11]. The diag-
onal joint stiffness matrix is replaced by the diagonal joint
compliance matrix Cq. This formulation is especially useful
for over- and under-actuated manipulators, since their non-
square Jacobians are not conventionally invertible. A deriva-
tion of this model is provided in Appendix B.

K−1
x = Cx = JCqJ

T (2.4)

This leads to a final expression for predicted robot deflection
of:

δX = JCqJ
TF (2.5)

b. Note that J−T represents the inverse of the transpose of the
robot Jacobian J

Note that the deflection and the wrench must be represented
in the robot’s base frame. The point at which the deflection
is measured is the tip of the kinematic chain (as expressed by
the Jacobian). The same is true for the point the wrench is
applied at. In some cases, an expression in a different frame or
at a different point may have to be considered. This may be
achieved using specialised transformation matrices, which are
derived in Appendix A.

The focus of this report lies primarily on the stiffness metric,
thus the suitability of more complex models is not explored
in detail. Due to its use in previous research, it is accepted
that the simplified VJM model is sufficient for stiffness op-
timisation and will be used throughout. Stiffness metrics
are explored next, which quantify the suitability of certain
stiffness behaviours.

3 Theory: Stiffness Metrics
In order to optimise the stiffness of a serial manipulator, some
means of comparing the suitability of one configuration to
another must be established. This metric may be considered
as a cost or reward function. In configuration-based stiffness
optimisation it takes the form f(q). It is common for this
function to be applied directly to the compliance matrix, in
other words f(q) = g(Cx(q)).

An overview of existing metrics is given below. Note that most
are either not parametrisable, or the relationship between
the parameters and the expected machining performance is
tenuous.

3.1 Existing Metrics
3.1.1 Eigenvectors and Eigenvalues
The Eigenvectors of the compliance matrix identify directions
in which compliance is uncoupled [27]. In other words, a force
acting along an Eigenvector of the compliance matrix will
result in a deflection along the same vector. The compliance
in this direction is given by the Eigenvalue. While this forms
a useful tool for understanding the compliance behaviour, it
does not directly offer a means of scoring or comparing the
behaviour.

3.1.2 Isometry
By computing the ratio between the maximum and minimum
Eigenvalues of the Cartesian stiffness matrix, a measure of
stiffness isometry is obtained [28]–[30]. If this ratio is close
to one, the stiffness behaviour is roughly uniform, i.e. the
same in all directions. This metric does not take into account
the actual stiffness, nor any directional information, thus it is
not expected to be particularly useful for robotic machining
applications.

3.1.3 Determinant
The determinant of the stiffness matrix has been used as a
stiffness metric [5], [14], [31], however its physical relevance
and mathematical rigour is lacking (the stiffness matrix is not
dimensionally homogeneous).
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3.1.4 Desired Stiffness Matrix
The actual stiffness matrix may be matched to a desired stiff-
ness matrix by use of the Frobenius norm [32]–[34], however
this may be overly restrictive in a scenario where there is only
limited capacity to alter the stiffness behaviour. Additionally,
there is the challenge of choosing a desired stiffness matrix in
the first place.

3.1.5 Screw Stiffness
The stiffness along a specific screw (direction, having both
a linear and angular component) may be found. This forms
a useful metric, since it is often valuable to only focus on
the stiffness in a process-relevant direction. However, this
metric cannot account for cases where the applied wrench and
unwanted deflection have different directions.

3.2 Tolerance Metric
In light of the shortcomings of existing metrics for scoring
robot stiffness, a new metric was developed, which captures
the requirements of a given process, allowing for it to be
tailored to a specific process, while remaining general enough
to be applicable to any process.

A key requirement common to all machining processes is ad-
herence to geometric and dimensional tolerances. Tool deflec-
tion during machining and the machining errors are related,
thus it would be reasonable to require the deflections (as
predicted by the stiffness model) to fall within some tolerance
bounds. Note that for comparing two cases, it would be useful
to not just obtain a binary pass/fail result, but rather a value
indicating how close a process is to falling within tolerance.

A simple, one-dimensional example is used to introduce the
workings of the tolerance metric. Then a two-dimensional
example is used to build on the concept. Finally, a generic
formulation will be shown.

3.2.1 An Introductory Example
A deflection δx from a nominal pose may be required to fall
between bounds of +ϵ and −ϵ. This may be expressed as:

|δx| ≤ ϵ (3.1)

This expression is equivalent to the following:

δx2 ≤ ϵ2 (3.2)

δx2

ϵ2
≤ 1 (3.3)

m =

√
δx2

ϵ2
≤ 1 (3.4)

Note that the smaller the term m, the closer the deflection is
to zero and is exactly at zero for m = 0. For a value of m = 1,
the deflection is exactly at the tolerance bound. If m exceeds
one, the deflection is not within tolerance.

3.2.2 Simple 2D Example
Consider a two dimensional case, where a vertical through
hole is drilled (Figure 3.1). Neither the top, nor the bottom of
the drillbit should veer more than some tolerance off its path
laterally. Let this tolerance be represented by ϵ.

Fig. 3.1: Drilling tolerance example

Then:

|δxbottom| = |δx| ≤ ϵ (3.5)

and |δxtop| = |δx− lδθ| ≤ ϵ (3.6)

Both these conditions must hold for the drill to be within
tolerance. These conditions can be rewritten as:

δx2

ϵ2
≤ 1 (3.7)

(δx− lδθ)
2

ϵ2
≤ 1 (3.8)

If the following holds, both of the above conditions must
necessarily hold too:

δx2

ϵ2
+

(δx− lδθ)
2

ϵ2
≤ 1 (3.9)

This combined tolerance can be rewritten in quadratic form
as: [

δx δθ
]  2

ϵ2 − l
ϵ2

− l
ϵ2

l2

ϵ2

δx
δθ

 ≤ 1 (3.10)

This combined tolerance may be visualised as an ellipse (see
Figure 3.2). Note that the tolerance bounds at the bottom of
the drill are denoted by Limit A, and the top of the drill is
denoted by Limit B. If a deflection is within the ellipse, it is
within tolerance.

3.2.3 The Full Expression
This concept may be generalised to 6-dimensional vectors, i.e.
full 6 degree of freedom deflections, as follows:

m =
√
(δXT )T (δX) ≤ 1 (3.11)

Where δX is the predicted Cartesian deflection, and T is a
6× 6 matrix encoding the specific process requirement.

In this way, positional tolerances at a point, angular toler-
ances, as well as combinations of the two may be expressed.
Appendix C contains more elaborate details. Two tolerances
may be added through simple summation, resulting in a
combined tolerance that is more conservative than either
individual tolerance. Finally, the point at which the tolerance
is applied can be chosen arbitrarily, allowing for a flexible, but
compact means of expressing engineering tolerances.
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Fig. 3.2: 2D drilling tolerance visualisation
(ϵ = 500µm, l = 10mm)

3.2.4 Additional Considerations
The method also has some drawbacks, such as always being
symmetrical around the nominal pose and becoming increas-
ingly restrictive under the addition of multiple tolerances.
Finally, it should be noted that this tolerance applies to the
relative positioning of the end-effector and does not necessar-
ily translate directly to the geometrical tolerances measured
on a machined workpiece.

For this to be used as a stiffness metric, it is necessary to
have some understanding of the wrench that is expected to
be applied at the end-effector. This wrench is then passed
through the stiffness model to obtain an expected deflection,
which can then be compared to the tolerance as described
above. Since the output is not purely binary, it may be
used in a gradient based optimisation algorithm. The full
computation is summarised in Figure 3.3.
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Fig. 3.3: Summary of metric computation

Note that any robot model δX(F ) may theoretically be used,
however a linear model (such as the simplified VJM), is
advantageous when dealing with uncertain process forces (see
Section 3.3.2).

3.3 Dealing with Uncertainty
The exact process forces under contact are very difficult
to predict and are affected by so many factors that exact

prediction of the instantaneous process force is futile in a real
world application. Two means of compensating for varying
process forces are provided, one for variations that can be
predicted and one for variations that cannot.

3.3.1 Known Variations
The process forces during machining may vary significantly
due to many factorsc. For example, the normal force experi-
enced during drilling may change drastically with feed speed
and tool wear. Some effects may be modelled using a mul-
tivariate normal distribution. Both the expected mean and
variation of the expected process wrench may be represented.
Couplings between directions can also be represented, namely
as covariances. This allows for modelling of effects such as the
changing axial moment due to changing normal forces.

While process wrenches may not be distributed normally,
the multivariate normal is nevertheless a useful modelling
tool, as it is closed under affine transformation. In other
words, if a multivariate normal wrench is fed into a linear
stiffness model, a multivariate normal deflection is returned. If
said deflection is then passed through the proposed tolerance
metric, a generalised chi-squared distribution is obtained. By
computing either its cumulative distribution function (CDF)
or expected value, the initial uncertainty of the wrench can be
accounted for in the final metric.

3.3.2 Unknown Variations
There may be cases where the absolute applied force is not
known and cannot be predicted with any amount of certainty.
If a linear stiffness model is used (such as the VJM model used
throughout this report), a rudimentary understanding of the
process force’s direction is sufficient for stiffness optimisation.
In other words, if the wrench direction uf is known, but its
magnitude ∥F∥ is not, the metric may be computed with
the direction uf . The metric mabsolute, computed using the
wrench F , and the metric mrelative, computed using the
wrench direction uf , are linearly proportional:

F = ∥F∥uf (3.12)

δX = Cx ∥F∥uf (3.13)

mabsolute =
√
uT
f C

T
x ∥F∥ T Cx ∥F∥uf (3.14)

mabsolute = ∥F∥
√(

uT
f C

T
x T Cxuf

)
(3.15)

mabsolute = ∥F∥ mrelative (3.16)

therefore mabsolute ∝ mrelative (3.17)

Knowing that the optimisation procedure merely searches for
an extremum of the stiffness metric, the relative tolerance
metric (mrelative) can be used for optimisation. Thus it is
sufficient to use the direction of the force for estimating the
deflection. Absolute claims about tolerance adherence can no
longer be made under these assumptions.

c. A full list is not relevant here, but may be required for detailed
analysis of the process forces.
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4 Software Framework
To study the efficacy of different stiffness metrics, as well as
finding optimal robot joint configurations, a flexible software
framework was developed and dubbed reflex (Flexible Robot
Evaluation Frameworkd). While the key scientific novelty
of this thesis is the tolerance stiffness metric, reflex will
hopefully enable researchers and engineers from academia and
industry to actually use stiffness optimisation and develop
the field further. A detailed description of the architecture
of reflex is available in Appendix G.

The reflex framework was developed to be as generic and
modular as possible, allowing for simple binding to existing
packages, such as MoveIt2 [35] and reach [36]. The core of
the framework does not depend on these external tools and
extensibility is implemented using plugins. This opens the
possibility of using the core functionality with different tools,
such as ROS(2), RoboDK or Blender.

Two applications of the framework are shown below, which
were used in preparing the experiment described in Section 6.

4.1 Displacement Visualisation
To gain an understanding into how the robot is expected to
displace under load, a visualisation pipeline was developed.
Figure 4.1 shows a screenshot from this visualisation (note
that the magnitude of the displacement is exaggerated for
clarity). The displacement prediction is updated in real-time,
responding to changes in the applied wrench or robot pose.

Fig. 4.1: Robot deflection prediction visualisation
(exaggerated)

4.2 Reachability Study
The reach tool is principally a reachability analysis tool,
however it can also optimise a given evaluation function for
a set of poses. It can thus be used to perform studies to choose
suitable regions of a robot’s workspace according to stiffness
metrics defined with reflex. This result can then be visualised
interactively as shown in Figure 4.2. The desired input poses
are represented by arrows, whose colour indicates what the

d. Available at https://github.com/thettasch/reflex_thesis

maximum achievable value of the evaluation function is for
that pose. Black arrows indicate unreachable poses. The user
can choose a pose and the interface immediately shows the
optimised inverse kinematics (IK) solution.

More stiff More compliant

Fig. 4.2: Reach visualisation example using tolerance metric

Using additional tooling, different metrics can be compared,
different target poses selected and evaluation function minima
can be shown.

The validity of the results from these analysis tools is explored
in Section 6. Before the analysis can be performed, the param-
eters of the model must be known.

5 Experiment: Joint Stiffness Identification
In order to use the robot stiffness model, some robot-specific
parameters must first be identified. A Kuka LBR iiwa 14 R820
was used for all experiments. The kinematics are available
from the manufacturer. The joint compliances (Cq) are not
given, thus they must be determined experimentally.

5.1 Procedure
To determine the joint stiffness behaviour, both the torque
at the joint and the joint displacement must be known.
Fortunately, the robot has joint torque sensors, allowing for
the simultaneous measurement of both values. It should be
noted that link and passive joint compliance is not measured
by these sensors. By applying various loads to the end-effector,
the stiffness behaviour can be studied. The exact magnitude
and direction of the applied wrench need not be known, since
the joint torques are known. The robot was configured to use
joint position control for all experiments.

Loads were applied by hand, by pushing on the robot’s end-
effector. Maximum joint torques were in excess of 20% of the
limits for each joint, such as to obtain sufficient displacement.
The lack of accuracy and repeatability in applying the loads
manually is of no concern, as both the independent and depen-
dent variables are measured. The length of the loading phase
was kept relatively short (below approximately 2 seconds),
to avoid excessive integral wind-up. Any individual loading
cycle was only applied from one direction and then released.
This was achieved by pushing on the robot with the palm,

5
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so that on release no ‘pulling’ forces are generated. Care was
taken to allow the robot to return to rest before applying the
next loading cycle. Finally, loads were applied in as many
directions as possible, to produce deflection at each joint. The
added variance from manual loading is beneficial in ensuring
robustness of the results.

Note that the external torque is computed internally by the
robot controller, and does not include the joint controller
output torque, as the name suggests. Gravity is compensated
for by using the initial sensor readings as the zero point. The
change in torques due to gravity under deflection is assumed
to be minimal.

5.2 Joint Controller Behaviour

Figure 5.1 shows how the joint controller responds to an exter-
nal disturbance. As the load is applied, the joint deflects and
as the load is released, it returns towards zero, but overshoots
due to integral wind-up. Eventually, the joint position error
returns to zero.
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Fig. 5.1: Joint 1 disturbance reaction

Figure 5.2 shows the relationship between the joint position
error and the externally applied torque (as measured by
the robot), for repeated loading and unloading cycles, in
both directions, for one joint. Figure 5.3 aims to clarify the
observed behaviour. During loading, the joint position error
proportionally increases with applied force. When the load is
removed, the error returns towards zero, but overshoots due to
the integral wind-up during the loading phase. Once the load
is completely removed, the joint error eventually gets driven
back to zero.

The maximum deflection is approximately linearly related
to the applied joint torque. The slope of this curve will be
referred to as the joint’s loading compliance, as it represents
the behaviour as a load is applied. It can be used to model the
maximum expected deflection under loading. There are two
main factors contributing to deviations from the ideal linear
behaviour.
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Fig. 5.2: External joint torque against joint position error,
with a linear approximation for the compliance under loading
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Fig. 5.3: Joint loading/unloading schematic

5.3 Deviation from Ideal Behaviour

Under pure proportional control (and zero mass), the
load/unload curve would be purely linear, however the ad-
dition of an integral component introduces the hysteresis
shown in Figure 5.3. The inertia of the links also affects the
behaviour.

Under rapid loading, the inertia of the links reduces the
maximum deflection. This effectively reduces the effective
compliance.

Under very slow loading or extended application of load, the
integral controller component drives the error lower. Note that
once again, the effective compliance is reduced.

In both cases, the effective compliance is less than the loading
compliance. Thus, the loading compliance can be used to
determine the maximum deflection.

Note that the instantaneous relationship between torque and
position error may exhibit higher or negative “compliance”,
especially during the recovery phase, due to lingering effects
of previously applied loads. This effect is not explicitly taken
into account.
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5.4 Computed Stiffness Parameters
Applying the above procedure to every joint, their maximum
compliances were determined. The loading compliance line
was chosen such that 90 percent of points during the loading
phase fall below it. This ensures robustness against outliers.
The values are shown in Table 5.1 (additional plots in Ap-
pendix D). The maximum allowable joint torque is also shown,
to illustrate how stronger joints are generally stiffer. The joint
compliance matrix Cq from Equation 2.4 can be constructed
as a diagonal matrix containing these values. Note that the
joints are numbered conventionally, i.e. from the base towards
the end-effector.

TABLE 5.1: Kuka LBR iiwa 14 R820 measured joint
stiffnesses and maximum joint torques

Joint Maximum
Torque

Minimum
Stiffness

Maximum
Compliance

[N m] [kN m rad−1] [µrad N−1 m−1]
1 320 13 80.
2 320 13 78
3 176 10. 100
4 176 6.2 160
5 120 5.4 190
6 40 3.5 280
7 40 4.2 240

5.5 Small Angle Assumption Validity
The VJM model relies on the small angle assumption sin(θ) ≈
θ. The following aims to show that this assumption is suffi-
ciently accurate given the expected deflections for the robot
in question.

The maximum expected joint deflection (under loading) may
be computed as:

δqmax = cqτmax (5.1)

Then, the maximum relative error of the small angle approxi-
mation can be calculated as follows:

rel err =
sin(δqmax)− δqmax

sin(δqmax)
(5.2)

Performing these calculations for all joints yields the results
shown in Table 5.2.

At most 0.13 o/oo of error is expected, in other words the
results should be shown to at most 3 significant figures.

Now that the parameters to the stiffness model are all estab-
lished, the stiffness optimisation can be applied. The following
section validates whether this yields meaningful results.

6 Experiment: Stiffness Metric Verification
The relationship between the stiffness metric and the actual
process performance must be established. If the metric is
found to reliably predict the process accuracy, the process
performance may be optimised through use of the stiffness
metric. More explicitly, if the relationship between a measure

TABLE 5.2: Maximum expected small angle approximation
error for each joint

Joint Maximum
Expected
Deflection

Small Angle
Approximation

Error
[mrad] parts per thousand

[o/oo]
1 25 0.11
2 25 0.10
3 18 0.051
4 28 0.13
5 20 0.070
6 11 0.021
7 9.6 0.015

of the process performance and the stiffness metric is mono-
tonically increasing, then improvements in the stiffness metric
(which can be analytically computed) directly translate into
improvements of the process performance measure.

This relationship is established for one example application,
namely through-hole drilling.

6.1 Experiment Setup
Drilling was chosen as a sample process, since it is straight-
forward to implement and a simple measure of performance
exists: measuring the hole diameter. Moreover, since the pri-
mary process force is axial and the tolerance is radial, direc-
tional stiffness is not expected to sufficiently capture process
performance. The exact methodology is provided below.

A custom robot cell was set up for this experiment. A conven-
tional hand-drill was used as the end-effector on a Kuka LBR
iiwa 14 R820 robot (see Figure 6.1). Note that the maximum
achievable accuracy of this setup will be fundamentally lim-
ited due to compliance in the mounting and play in the drill.
This is not deemed an issue, as the focus lies on the relative
performance, not the absolute.

Drill

Vice

Relay Unit

Kuka iiwa 14
R820 cobot

Workpiece

Fig. 6.1: Drilling robot cell
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Holes were drilled in 50 × 20 × 5mm aluminium blankse.
Figure 6.2 shows the workpiecef after drilling; notches are
used to keep track of individual samples. The material is soft
enough not to exceed the allowable load on the robot, while
still producing enough reaction force to cause measurable
deflection.

Fig. 6.2: Hole sample

6.2 Control Variables
In order to isolate the effect of the joint configuration on the
process performance, as many extraneous variables as possible
must be fixed. These pertain both to the drilling process, as
well as to the robot motion planning and execution.

6.2.1 Drilling
Drilling is performed in 5mm thick aluminium. The hole
diameter is arbitrarily fixed at 3mm. A high-speed steel (HSS)
twist drill bit is employed. It is not exchanged throughout
testing, to avoid the influence of variance between drill bits.
Wear is not expected to pose an issue, as relatively few holes
are drilled and aluminium is a relatively soft material (this
claim is validated by the results in Table 6.1). The drill’s speed
is set to its maximum of 1800 rev min−1 (no-load). The feed
speed is set to 2mm s−1, leading to an acceptable material
removal rate [37]. Finally, the drill battery is changed every
time the indicator reaches half full, to avoid a reduction in
speed and power of the drill.

6.2.2 Motion planning
For motion planning, the pilz_industrial_motion_planner in
the MoveIt! [38] framework was used. The drilling motions
are purely linear. The end-effector Cartesian speed is capped
at the feed rate. The exact motion planning pipeline is the
same for all scenarios. Different configurations are achieved by
seeding the motion plan differently, i.e. using different starting
configurations.

6.3 Independent Variables
The primary independent variable which affects the stiffness
behaviour is the joint configuration. Different joint configura-
tions are achieved through two means; by moving the vice and
workpiece to different locations/orientations and by choosing
different IK solutions.

The robot has seven joints, and rotation around the drill axis
can be regarded as an additional virtual joint, thus there are
two additional degrees of freedom that may be leveraged to
obtain different IK solutions. The vice holding the workpiece
can easily be repositioned, by using the grid of holes in the
table and quick locking bolts. The vice could be mounted

e. Technical term for the material before machining.
f. Technical term for the part during/after machining.

either horizontally or vertically on the table (see Figure 6.3),
allowing for a wide range of potential workpiece positions and
orientations.

(a) Horizontal (b) Vertical

Fig. 6.3: Vice mounting orientations

6.4 Tolerance Metric Parameters
Before stiffness metric values can be computed, values must
be chosen for the metric parameters. These are the positional
tolerance and the expected load. Both are modelled at the tip
of the drill bit, for convenience.

The position of the drill bit tip should fall within a cylin-
drical tolerance of the nominal centre axis of the hole. The
magnitude of the allowable deviation is somewhat arbitrarily
set to 0.5mm. Since a linear stiffness model will be used, the
magnitude is not important (see Section 3.3.2). The length
of the cylinder is set to 5mm, as this is the thickness of the
material used. The full tolerance matrix is then obtained using
Equation C.17.

The expected process force is chosen to be 50 ± 5N in the
axial direction. Once again, the magnitude is irrelevant, as
only relative claims are made. For simplicity, the moment
generated around the drilling axis is ignored.

Using these parameters a rough drilling tolerance metric is
established. This is then used for joint configuration selection,
and later validated against experimental results. From here on
out, any mention of m = ... will refer to this exact metric.

6.5 Joint Configuration Selection
A set of joint configurations was selected systematically. Poses
with a wide range of stiffness metric values were chosen,
with the aim of achieving as wide a spread of actual process
performance as possible. The reflex framework discussed in
Section 4 was used to find different poses near the maxima
and minima of the stiffness metric and randomised IK poses
were used to fill out the middle ground. Some candidate poses
had to be eliminated, since motion planning failed for some
(or all) of the five holes, due to collisions, singularities or joint
limits being violated (see Section 7).

Two sample joint configurations are shown in Figure 6.4. All
configurations are shown in Figure E.2 in Appendix E. These
joint configurations form the initial conditions from which the
motion planner then produces its trajectories.
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Drill

Vice

Drill bit

Robot

(a) More compliant pose
m = 11

(b) More stiff pose
m = 0.036

Fig. 6.4: Top view of two sample joint configurations

A total of 14 joint configurations were chosen and one drilling
sample (see Figure 6.2) produced for each. Eight workpiece
positions, each with one to three IK solutions were used. For
each sample, five holes were drilled, in order to control for
random variations.

6.6 Measuring Performance
Depending on the tolerance requirements of the part, the
performance may be measured differently.

For the purposes of this experiment, performance will be
measured in two manners, one focusing on the robot controller
performance and one on the actual hole.

6.6.1 Joint Trajectory Controller Performance
Firstly, the joint trajectory controller’s error is logged, to ob-
tain an understanding of how the force-induced displacement
evolves during the process. By performing forward kinematics
on both the desired and the actual joint states, the Cartesian
error at the end-effector can be estimated. Only the lateral
offset and the perpendicularity of the drill bit are of interest.
Any errors in axial position and rotation around the drill
axis do not affect the process. A sample plot of the lateral
controller error is shown in Figure 6.5 for two different config-
urations. Note the error during drilling, followed by the large
spike in error when the drill punches through the bottom of
the material. In one case the error is significantly larger than
the other, as predicted by the stiffness metric (a lower stiffness
metric value indicates better performance).

The maximum error can be used as an indication of the
performance, however the short duration of the spike with
respect to the sampling frequency may cause deviation from
the true maximum. For this reason, the 90th percentile of
the error was used as a more robust indication of the error
experienced during the process. This measure intentionally
does not account for kinematics errors and passive compli-
ances, since these are not modelled and can therefore not be
optimised for in any case. To ensure that the optimisation
result is valid despite these unmodelled effects, a performance
measure external to the robot is required.
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Fig. 6.5: Joint trajectory controller error during two drill
cycles, showing increased error for higher compliance

6.6.2 Hole Diameter
The hole diameter is measured to obtain a better under-
standing of the actual precision of the process. Larger hole
diameters indicate more undesirable wandering of the drill
bit during the process. Ideally, the holes should be as small as
possible (equal to the drill bit diameter). Absolute positioning
is once again ignored, as it is strongly affected by kinematics
errors.

The hole diameter was measured using a Mitutoyo MF-UF
Measuring Microscope with an M Plan Apo 7.5X objective
(Figure 6.6). The presence of burrs and frequent perpendic-
ularity errors introduced some difficulty in the measurement
process. Figure 6.7 shows macrographs of two holes. These
images are for illustration only, as the focal plane is set too
high to accurately perform measurements.

Fig. 6.6: Mitutoyo Measuring Microscope

Precautions were taken to obtain meaningful measurements.
The diameter of each hole was measured twice, using different
sets of points, to account for non-circularities to some degree.
Three point measurements were used, since the position of
the centre of the hole is unknown. The points could unfor-
tunately not be in the same positions for each hole, due
to burrs, occlusions and other artifacts. Measurements were
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(a) Hole without burrs (b) Hole with internal burr

Fig. 6.7: Sample hole macrographs

taken between 0.2mm and 0.6mm below the upper surface
(where the upper surface is the same as it was during drilling),
to avoid the chamfers introduced during manual deburring.
Perpendicularity of the holes was not measured; due to the
relatively low thickness of the material, obtaining accurate
measurements of the perpendicularity is infeasible.

6.7 Results
The results of the drilling tests for 70 holes are shown below.
Only two outliers had to be partially removed; these were both
confirmed to be results of user-error during the experiments.

Figure 6.8 shows the correlation between the lateral controller
error and the stiffness metric. Note that lower values of the
stiffness metric correlate with better performance, i.e. less
controller tracking error. Points are grouped based on the
workpiece position (WPP).
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Fig. 6.8: Tolerance stiffness metric vs joint trajectory
controller error, showing a strong positive correlation

between the two
(grouped by workpiece position)

The Spearman’s rank correlation coefficient between the stiff-
ness metric and the lateral controller error was found to be
0.93, indicating a strong positive correlation between the two
values. Values close to one indicate that the data is mono-
tonically increasing. This confirms that the stiffness metric
can be used to predict the controller tracking performance, at

least to some degree. The lateral error ranges from 380 µm to
68 µm. This indicates that there is indeed significant potential
to reduce tracking error purely by changing the initial joint
configuration.

Figure 6.9 shows the relationship between the stiffness metric
and the measured hole diameters. There is significant variance
of measured hole diameter for each sample, however the cor-
relation is nevertheless apparent. Note that larger diameters
indicate more deviation from the nominal hole size of 3mm,
i.e. worse performance.

0 2 4 6 8 10

Tolerance Stiffness Metric [1]

3.1

3.2

3.3

3.4

3.5

M
ea

su
re

d
H

ol
e

D
ia

m
et

er
[m

m
]

WPP 85

WPP 88

WPP 245

WPP 506

WPP 521

WPP 555

WPP 569

WPP 594

Fig. 6.9: Tolerance stiffness metric vs hole diameter, showing
a positive correlation between the two

(grouped by workpiece position)

Table 6.1 shows how well different stiffness metrics correlate
with the drilling performance. Plots for each evaluated metric
are shown in Appendix F. The following metrics are com-
puted: the proposed tolerance metric, the screw stiffness in
the axial direction and finally the isometry of the translational
component of the stiffness matrix. The correlation with the
distance between the workpiece and the robot base is also
shown. The correlation with the sequence number, encoding
the order the holes were drilled in, is also shown; the values
are low enough to conclude that wear of the drill-bit had no
significant impact on the data.

TABLE 6.1: Spearman’s rank correlation coefficient between
performance measures and various stiffness metrics

Metric Correlation
with

Tracking
Performance

Correlation
with Hole
Diameter

Toleranced 0.93 0.81
Axial Stiffness 0.60 0.59

Stiffness Isometry 0.84 0.70
Distance to Workpiece 0.76 0.59

Sequence Number 0.43 0.34

Note that the correlation is generally lower for the hole
diameter, as there are more factors introducing noise to this
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measurement. The proposed tolerance stiffness metric exhibits
the highest correlation with both measures of performance, in
other words, it is most suitable for performance optimisation.

7 Discussion
There are many subtleties to consider before applying the
above procedure to different processes.

7.1 Generalisability
The proposed stiffness metric is grounded in mathematical
rigour, and is not data-driven, thus it is expected to gen-
eralise well to other processes, where the expected contact
force (wrench) and the allowable tolerances are known. The
tolerances should be trivial to identify based on engineering
drawings of the final part. The expected wrench is more
difficult to characterise, however most machining processes
have been studied in detail, so obtaining an estimate should
usually be possible. In cases where the magnitude of the
expected load is unknown, the direction of the wrench can
be used to compute a relative metric, which may still be used
for optimisation (given that a linear stiffness model is used).

Beside the parameters of the stiffness metric, the robot model
is required to be meaningful in order for the final values to
have merit. Since these experiments were performed in joint
position control mode, the model should also be applicable to
a broad range of industrial robots, not just specialised cobots
with joint torque sensors. Note that the joint compliance
parameters are more easily measured for cobots, where for
industrial robots a different methodology from the one shown
here would be necessary.

The tolerance metric also suffers from two other flaws, which
may hinder generalisability. Firstly, the tolerances are sym-
metric around the nominal position, however occasionally,
asymmetric dimensional tolerances may be required by en-
gineering drawings of the final part. For example, in some
cases a deviation δx of a dimension x may be required to
be bounded as follows: 0 < δx < ϵ. While this may be
modelled using the tolerance metric by shifting the nominal
value of x to x + ϵ

2 (with a tolerance of ± ϵ
2 ), this is not

strictly equivalent to the intended tolerance. Secondly, un-
der addition of multiple tolerances, the combined tolerance
grows more and more conservative. In other words, certain
deflections may be considered to be out of tolerance, despite
their adherence to all component tolerances (see the white
region of Figure 3.2). This is a direct consequence of the use of
the quadratic form in expressing tolerances. In theory, higher
order polynomials may be used to more closely approximate
the union between component tolerances, however this cannot
be expressed neatly in matrix form (higher-order tensors
would be required) and would lead to a drastic increase in
number of parameters and computational cost.

7.2 Non-linearities
The actual robot stiffness behaviour is likely not purely lin-
ear. Large deflections, leading to significant displacement of
rotational joints will lead to deviations from the small angle
approximation (Section 5.5 shows this is not significant for
the robot used here). Additionally, material behaviours in

the robot structure may exhibit some non-linearities. Friction
and stiction effects in the joints also lead to inaccuracies
of the linear model. However, the final, largest contribu-
tor to non-linearity are the joint position controllers. These
controllers are inherently non-linear, due to factors such as
integral/derivative control and output/rate limits. There is
a trade-off to be made. More complex models may more ac-
curately predict robot behaviour, but require more extensive
robot parameter identification.

The proposed stiffness metric remains useable no matter the
complexity of the underlying robot stiffness model, since it
acts on the predicted displacement. The linear model is useful
for propagating uncertainty in the applied wrench, however
this is by no means a necessity.

7.3 Controller Overshoot
The largest controller errors during drilling were experienced
when punching through the bottom of the workpiece (Fig-
ure 6.5), due the sudden loss of normal force coupled with
a wound-up integral control component. The size of these
overshoot transients cannot be predicted with the modelling
tools presented here, as it is a function of time, amongst other
factors. Accounting for the exact overshoot behaviour would
significantly increase overall complexity of the model. The
stiffness metric is still expected to be useful for two reasons.
Firstly, the direction of the overshoot should align roughly
with the model prediction, thus if possible, the overshoot may
be directed so as to not influence the process. For through-
drilling, this means that the overshoot component should be
aligned to the drill axis, with minimal effect on hole tolerance.
Secondly, the vast majority of material removal occurs during
the main contact phase and the short duration of the over-
shoot may cause disproportionately little material removal,
leading to little actual impact on process performance.

7.4 Absolute Positioning Error
This report has been focused on the deflection of the end-
effector due to external load and disregarded errors due to
kinematics. However, kinematics errors during drilling were
found to be significant, up to 10mm with no loads applied.
This was the case despite kinematics calibration prior to
drilling. The kinematic error was not studied in detail, how-
ever it was likely in part due to sagging of the robot under
gravity.

In real-world applications the absolute position accuracy of
the tool is incredibly important, thus it is critical to also
take kinematics into account when designing actual robotic
machining setups. In certain cases, closed-loop control using
external positioning sensors may even be necessary. Stiffness
optimisation nevertheless remains relevant, as it may be used
to decrease the effort required from the controllers.

For example, one might follow the following procedure:

1) Identify robot stiffness parameters, expected loads during
the process and required tolerances

2) Use reachability/stiffness analysis to determine a suitable
position and orientation of the workpiece, as well as a
suitable joint-configuration
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3) Perform in-depth kinematics calibration in the region
around the chosen workpiece position/joint-configuration

4) Plan motions using calibrated kinematics

5) Execute motions (potentially using closed loop control for
improved positioning accuracy)

By integrating stiffness optimisation in the planning phase,
accuracy can still be improved and reliance on external sensors
and closed-loop controllers minimised.

7.5 Closing the Contact Loop
So far the model has been used to predict deflection under
some external force which is displacement invariant. For real
processes, the force will likely vary with displacement. For
example, once the drill bit enters a material, it too will resist
lateral displacement, in other words, it becomes self-centring.
In the case of drilling, the additional forces act to reduce
displacement, however this may not be the case for other
processes (e.g. climb-milling). Accounting for these additional
forces may then become necessary. Under partial constraints,
where the displacement is known in some directions, the
reaction forces due to the robot stiffness can be computed
(see Appendix A.6). Further research is required to establish
the validity of these predictions and their applicability to
predicting actual contact behaviour.

7.6 Restricted Workspace
Suitable stiffness optima (or near-optima) are only found in
some parts of the robot’s working envelope. Generally, serial
robots will be stiffest when working close to their base. This
naturally leads to a reduced useable workspace. The primary
appeal of robotic machining with serial manipulators lies in
their increased flexibility and large workspace. This conflict
is physically unavoidable, vastly limiting the potential appli-
cations of robotic machining. Nevertheless, it is still useful to
understand the stiffness behaviour of these robots, in order
to make informed decisions regarding their applicability to
solving a given problem.

7.7 Difficulty of Motion Planning
Optimising a robot’s joint configuration for any metric may
result in solutions that are near the boundary conditions of the
optimisation. These are the joint limits, kinematic singulari-
ties and collisions. During testing, it was found that optimised
stiffnesses tend to lie at these boundaries, leading to difficul-
ties in motion planning in the vicinity of these points. This is
partly an inherent problem of constrained optimisation, and
partly an effect of the VJM stiffness model predicting infinite
stiffness in certain directions when at singularity.

The current procedure of generating optimal starting poses
often returns solutions where motion planning fails, due to
proximity to the boundary conditions. To achieve consistently
successful planning, the motion planner itself would have to
be aware of the stiffness metric, so that the whole trajectory
and not just the initial pose may be optimised and adjusted.

7.8 Potential Future Work
Finally, some regions of potentially interesting future research
are summarised below.

Robot stiffness models may be improved and studied further:

• Experimental comparison between the joint and link deflec-
tions, to establish the accuracy of the VJM model.

• Verifying that the expression for partially-constrained stiff-
ness behaviour developed in Appendix A.6 is valid.

• Addition of link and tool compliances to the VJM model
through use of virtual, multi-degree-of-freedom joints.

• More elaborate modelling of the joint stiffness behaviours,
including time-dependent effects due to integral control.

The tolerance stiffness metric may be studied and the stiffness
optimisation procedure developed further:

• Experimentally confirming that the tolerance stiffness met-
ric is applicable to different processes (e.g. milling or grind-
ing).

• Verification that the absolute tolerance metric can predict
whether or not a process will comply to its tolerances.

• Integration of the metric into an optimising motion planner,
for more reliable planning.

• Development of a joint-compliance measuring procedure for
industrial robots.

• Studying the relationship between tool deflection and the
resultant material removal and thus dimensional error of
the workpiece.

• Establishing whether more accurate estimates of the process
force lead to better correlation between the metric and the
performance.

• Use of the metric during motion execution (i.e. within
the controllers), to alter joint-configuration or even joint-
stiffness, potentially incorporating joint-torque sensor read-
ings to estimate the wrench at the end-effector.

8 Conclusion
A new means of evaluating the suitability of robot joint con-
figurations for contact processes is proposed. First, the robot
joint stiffness behaviour is identified in order to predict the
displacements experienced under contact. Then, it was shown
that the proposed stiffness metric is strongly correlated with
the process performance for the specific case of through-hole
drilling. The process performance can thus be improved by
numerically optimising the stiffness metric over any additional
degrees of freedom of the overall system. These can stem from
an over actuated robot system, under-constrained end-effector
pose, and choices in end-effector, workpiece or robot mounting
positions. While the validation was performed only on drilling,
it is expected that the stiffness metric is applicable to any well-
understood contact process.

The stiffness metric may be useful in two situations. During
design of a robot cell, it may aid in selection of robot and/or
workpiece placement, as well as design of the end-effector for
best stiffness performance. Secondly, the metric may be used
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as a cost function during motion planning. In both cases, no
modification to existing robot hardware or control software
is required and thus improvements in process accuracy are
effectively free of cost. Some constraints and limitations ex-
ist, possibly limiting the maximum achievable improvement
in stiffness. Furthermore, a flexible software framework for
enabling these analyses and optimisations was created.

During experimentation, the joint trajectory tracking error
was found to vary by a factor of more than 5 between dif-
ferent joint configurations (see Figure 6.8). Additionally, the
proposed tolerance stiffness metric was found to have the best
correlation with both joint trajectory controller error and hole
diameter, when compared to existing methods. Combined,
these results confirm not only that the proposed stiffness
metric is meaningful for optimisation, but also that stiffness
optimisation can potentially significantly improve positioning
accuracy under load.
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Appendix A
Linear Compliance
A.1 Representing Wrenches and Deflections
In order to model the Cartesian stiffness behaviour of compli-
ant systems, there must be some structured way to represent
wrenches (forces and moments) applied to a system, as well
as the resulting deflection (both linear and angular). Screw
theory provides us with a convenient way to represent these
quantities, namely with a vector of length 6, containing first
the linear components, then the angular ones. Thus a wrench
can be written as:

F =
[
F M

]T
=

[
Fx Fy Fz Mx My Mz

]T
(A.1)

And a small deflection can be written as:

δX =
[
δX δΘ

]T
=

[
δx δy δz δθx δθy δθz

]T
(A.2)

It should be noted that these vectors are not dimensionally
consistent and that as a consequence, operations such as the
norm cannot be directly applied to them.

A.2 The Cartesian Compliance Matrix
The compliance of a point can be represented as a 6×6 matrix
Cx, to relate the wrench applied to the point with the resulting
displacement:

δX = CxF (A.3)

This model is incredibly powerful. It can be used to express
any linear stiffness behaviours. As an example, the model
could be used to express the behaviour at a point on an
idealised beam.

A.2.1 Combination
The compliance of two systems at one point can be combined.

To combine the compliance CA of one system and CB of an-
other, independent system, one must realise that the following
equations hold:

Fcombined = FA + FB (A.4)

δXcombined = δXA = δXB (A.5)

We can thus write:

Fcombined = C−1
A δXA + C−1

B δXB (A.6)

Fcombined =
(
C−1

A + C−1
B

)
δXcombined (A.7)

Finally:
C−1

combined = C−1
A + C−1

B (A.8)

A.3 Transforming Wrenches
A.3.1 Offsetting the application point
If wrench FA is applied at point A of some solid body, then
there must be some equivalent wrench FB , applied at point B
(on the same solid body), which has the same effect.

Let the vector pointing from A to B be:

rBA =
[
rx ry rz

]T
(A.9)

The forces FA and FB must be equal. The force at A generates
a moment around B, which must be accounted for in the
expression for FB . Specifically:

FB = FA (A.10)

MB = MA + FA × rBA = MA − rBA × FA (A.11)

Note that using the cross product matrix form of r

[r]× =


0 −rz ry

rz 0 −rx

−ry rx 0

 (A.12)

cross products may be written as matrix multiplication:

r × x = [r]× x (A.13)

x× r = − [r]× x (A.14)

Now we can express offsetting of the wrench as a simple
transformation:

wHBA =

 I 0

−[rBA]× I

 (A.15)

FB = wHBAFA (A.16)

A.3.2 Transforming between coordinate frames
It may be useful to express a wrench in different coordinate
frames. Let FC be a wrench expressed in coordinate frame
C and Let FD be the same wrench expressed in coordinate
frame D.

The Rotation from frame C to frame D can be expressed as
RDC , a 3x3 matrix. The offset between the two coordinate
frames does not affect the wrench, assuming it is still applied
at the same point.

The transformation can be expressed as:

HDC =

RDC 0

0 RDC

 (A.17)

FD = HDCFC (A.18)
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A.3.3 Combined transformation
Combining the two transformations, we get:

wH
DC
BA = HDC

wH
C
BA (A.19)

=

 RDC 0

−RDC [r
C
BA]× RDC

 (A.20)

The inverse of this transformation can be represented as:

wH
CD
AB =

(
wH

DC
BA

)−1
(A.21)

=

 RT
DC 0

[rCBA]×R
T
DC RT

DC

 (A.22)

A.4 Transforming Twists
Twists transform similarly to wrenches:

δXB = δXA + δΘA × rBA = δXA − rBA × δΘA (A.23)

δΘB = δΘA (A.24)

Thus the transformation matrix for an offset is:

δXB = xHBAδXA (A.25)

xHBA =

I −[rBA]×

0 I

 (A.26)

The combined transform for a twist is:

xH
DC
BA =

RDC −RDC [r
C
BA]×

0 RDC

 (A.27)

With the inverse being:

xH
CD
AB =

RT
DC [rCBA]×R

T
DC

0 RT
DC

 (A.28)

A.4.1 Relation to wrench transforms
It should be noted that wrench and twist transforms are
related as follows:

(
xH

DC
BA

)T
=

(
wH

DC
BA

)−1
(A.29)(

xH
DC
BA

)T
= wH

CD
AB (A.30)

A.5 Transforming Compliance Matrices
Compliance at point A in frame C is given as:

δXC
A = CC

AFC
A (A.31)

Thus the equivalent compliance at point B in frame D can be
computed as:

δXC
A = xH

CD
AB δXD

B = CC
AwH

CD
ABFD

B = CC
AFC

A (A.32)

δXD
B =

(
xH

CD
AB

)−1
CC

AwH
CD
ABFD

B (A.33)

δXD
B = xH

DC
BACC

AwH
CD
ABFD

B (A.34)

δXD
B = CD

BFD
B (A.35)

(A.36)

More simply:

CD
B =

(
xH

DC
BA

)
CC

A

(
wH

CD
AB

)
(A.37)

=
(
wH

CD
AB

)T
CC

A

(
wH

CD
AB

)
(A.38)

This transform may be used to obtain the compliance at an
arbitrary point on the end-effector, in any given coordinate
frame.

A.6 Partial Constraints
The compliance model accepts a wrench as an input, and
outputs the displacement. In some cases, the end-effector may
be rigidly constrained, thus some components of the displace-
ment and wrench are known, and some not. By reorganising
the rows of the wrench and displacement such that the known
and unknown terms are grouped, one can obtain the following
equation:

 δXknown

δXunknown

 =

Cku Ckk

Cuu Cuk

Funknown

Fknown

 (A.39)

Now it should be noted that the known wrench components
are necessarily equal to zero in the absence of friction. Under
this assumption, the above equation can be simplified to:

 δXknown

δXunknown

 =

Cku

Cuu

Funknown (A.40)

Since each unknown displacement is paired with a known
wrench component (and vice-versa), Cku must be square.
Thus:

Funknown = C−1
ku δXknown (A.41)

To simplify the row rearrangement, a matrix P can be em-
ployed, such that the following holds:
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PδX = δXknown (A.42)

F = PTFunknown (A.43)

Cku = PCxP
T (A.44)

Matrix P is simply an n × 6 matrix, where n is the num-
ber of known wrench components (or unknown displacement
components). It can be constructed by removing rows from an
identity matrix.

So finally, the reaction wrench can be computed from the
partially known displacement:

F = PT
(
PCxP

T
)−1

PδXpartial (A.45)

The full displacment can then simply be computed as usual:

δXfull = CxF (A.46)

A.6.1 Example
For example, if the tip of the robot is positionally constrained
using a ball joint, the P matrix is as follows. The rotational
components of the wrench are known to be zero, but the linear
forces are not.

P =


0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 (A.47)

The resulting extracted partial matrices are:

PδX = δXlinear = δX (A.48)

F = PTFlinear = PTF (A.49)

Ctran = PCxP
T (A.50)

Thus the linear reaction forces can be calculated from the
applied displacement as follows:

F = C−1
tranPδX (A.51)

Appendix B
Robot Model
B.1 Derivation of the simplified VJM
The robot Jacobian is defined as:

Ẋbase
tip = J(q)q̇ (B.1)

Where the Cartesian velocity (linear and angular) of the end-
effector, is Ẋ. The joint configuration is q and the speeds of
the joints is q̇.

Additionally, the jacobian can be used to equate the joint
efforts (torques or forces) τ to Cartesian space, i.e. the wrench
F :

τ = J(q)TF base
tip (B.2)

We assume that each joint is independent and behaves like a
linear spring, with a compliance of cq,n, thus:

δqn = cq,nτn (B.3)

δq = diag(cq)τ (B.4)

Where Cq = diag(cq) is a diagonal matrix of the joint
compliances.

Thus the joint displacement δq under load F is:

δq = CqJ(q + δq)TF base
tip (B.5)

δq ≈ CqJ(q)
TF base

tip (B.6)

The translational/rotational behaviour at the end-effector is:

Ẋbase
tip = J(q + δq)q̇ (B.7)

For small changes in q, the following approximation can be
made for the end-effector displacement:

δXbase
tip ≈ J(q)δq (B.8)

Thus:

δXbase
tip ≈ J(q)CqJ(q)

TF base
tip (B.9)

And finally:

Cbase
tip ≈ J(q)CqJ(q)

T (B.10)
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Appendix C
Representing Tolerances
This section contains further details about the formulation for
tolerances developed in Section 3.2.

C.1 Generic Formulation
A generic tolerance in 6 degrees of freedom may be represented
as follows:

m =
√
δXTTδX ≤ 1 (C.1)

T is a 6 × 6 symmetric matrix, which encodes the tolerance
requirement. The value m is a continuous, scalar measure of
the displacement with respect to the tolerance. The smaller
the value of m is, the less deviation there is from the nomi-
nal position. An optimisation procedure can be employed to
minimise m, thus establishing the best possible performance,
with respect to the necessary tolerances.

It is often convenient to consider m2 instead of m. Note that
both can be used for optimisation, since the following holds:

m1 > m2 ⇐⇒ m2
1 > m2

2 (C.2)

Also note that the radicand of Equation C.1 is always positive,
thus m2 = δXTTδX .

C.2 Combining Tolerances
Multiple tolerances can be combined to form a single toler-
ance. This follows from:

If Tcombined = T1 + T2 (C.3)

Then δXTT1δX + δXTT2δX = δXT (T1 + T2) δX (C.4)

∴ m2
combined = m2

1 +m2
2 (C.5)

It is known that:

m2
combined ≥ 0 (C.6)

m2
1 ≥ 0 (C.7)

m2
2 ≥ 0 (C.8)

m2
combined = m2

1 +m2
2 (C.9)

Thus:

m2
combined ≤ 1 =⇒ (m2

1 ≤ 1) ∧ (m2
2 ≤ 1) (C.10)

Note that converse does not hold:

m2
combined ≤ 1 ⇍= (m2

1 ≤ 1) ∧ (m2
2 ≤ 1) (C.11)

This means that the combined tolerance is more restrictive
than a union of the individual tolerances. This effect can be
seen in Figure 3.2: the combined tolerance does not completely
cover the union of the two component tolerances.

C.3 Full Drilling Example
The example of 2D drilling (Section 3.2.2) may be expanded
to 3D. The tip of the drill may not displace laterally by more
than ϵ:

δx2 + δy2 ≤ ϵ2 (C.12)

Or in matrix form:

[
δx δy δθx δθy

]

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0




δx

δy

δθx

δθy

 ≤ ϵ2 (C.13)

The same is true for some point a distance l up the drill bit.
This introduces terms for the rotation around the tip:

(δx+ lδθy)
2
+ (δy − lδθx)

2 ≤ ϵ2 (C.14)

Or in matrix form:

[
δx δy δθx δθy

]

1 0 0 l

0 1 −l 0

0 −l l2 0

l 0 0 l2




δx

δy

δθx

δθy

 ≤ ϵ2

(C.15)

These can be combined in matrix form as:

[
δx δy δθx δθy

]

2 0 0 l

0 2 −l 0

0 −l l2 0

l 0 0 l2




δx

δy

δθx

δθy

 ≤ ϵ2

(C.16)

The final tolerance matrix T is:

T =



2
ϵ2 0 0 0 l

ϵ2 0

0 2
ϵ2 0 −l

ϵ2 0 0

0 0 0 0 0 0

0 −l
ϵ2 0 l2

ϵ2 0 0

l
ϵ2 0 0 0 l2

ϵ2 0

0 0 0 0 0 0


(C.17)
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Note the additional rows and columns for the vertical dis-
placement δz and the axial rotation θz, both of which are not
penalised.

C.4 Transforming Tolerances
Much like wrenches and twists (Appendix A), tolerances may
be transformed between reference and application frames.

m2 =
(
δXC

A

)T
TC
A

(
δXC

A

)
(C.18)

m2 =
(
δXD

B

)T
TC
A

(
δXC

A

)
(C.19)

m2 =
(
xH

DC
BAδXC

A

)T
TD
B

(
xH

DC
BAδXC

A

)
(C.20)

m2 =
(
δXC

A

)T (
xH

DC
BA

)T
TD
B

(
xH

DC
BA

)(
δXC

A

)
(C.21)

Thus, a tolerance transforms as follows:

TC
A =

(
xH

DC
BA

)T
TD
B

(
xH

DC
BA

)
(C.22)

TC
A =

(
wH

CD
AB

)
TD
B

(
xH

DC
BA

)
(C.23)

C.5 Uncertain Input
If the deflection is uncertain, and can be represented as a
multivariate gaussian δ̃X , then the metric m̃2 is a generalised
chi-squared distribution.

Two useful means of condensing the uncertain metric into a
single value exist.

C.5.1 Cumulative Distribution Function
By computing the cumulative distribution function of the
uncertain metric for 1, the probability that the resulting
displacement is within (or at) tolerance can be found. If this
CDF value is 100%, then the displacement is certainly within
tolerance.

CDF
m̃2(1) = P

(
m̃2 ≤ 1

)
(C.24)

There is no closed form solution for the CDF of a generalised
chi-squared distribution [39], however reliable numerical solu-
tions exist, such as the algorithm described in [40].

C.5.2 Expected Value
A more computationally efficient solution is to merely com-
pute the expected value of the metric. It can be represented
as:

E
[
m̃2

]
= tr (TΣδX) + µT

δXTµδX (C.25)

Note that this alone is not sufficient to indicate that the
deflection is necessarily within tolerance.
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Appendix D
Joint Stiffness Behaviour Plots
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(b) Joint 2
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(c) Joint 3
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(d) Joint 4

Fig. D.1: Joint position error vs external joint torque for all joints (part 1)

21



20 10 0 10 20
External Joint Torque [Nm]

4

2

0

2

4

Jo
in

t P
os

iti
on

 E
rr

or
 [m

ra
d]

Measured data
Loading compliance

(a) Joint 5
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(b) Joint 6
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(c) Joint 7

Fig. D.2: Joint position error vs external joint torque for all joints (part 2)
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Appendix E
Joint Configuration Selection
Joint configurations were semi-randomly selected, so as to
produce a wide spread in tolerance stiffness metric values.
Samples were taken at three viable vice orientations, and dif-
ferent positions of the vice. For some vice positions, multiple
IK solutions could be used, however for some positions, only
limited variance in stiffness could be achieved, or collisions
or joint limits prevented planning for drilling at some IK
seed states. To aid in selection the reach tool was used to
find maxima and minima of the stiffness metric for different
vice positions. The results of the reach studies are shown in
Figure E.1. The grey circle is the base of the robot. Any black
points indicate unreachable poses. Note that all possible vice
positions are shown. In some cases these overhang over the
edge of the table (grey rectangle) due to the vice mounting.

All utilised seed joint-configurations are shown in Figure E.2.
The workpiece position, sample number and tolerance stiff-
ness metric are shown for each pose (for the centre hole).
Note that each sample number corresponds to a different joint
configuration, but some workpiece positions are repeated. The
stiffness metric values for all metrics is shown in Table E.1 (see
Appendix F for plots). Note that the table shows mean values
over all 5 holes, where the poses shown in Figure E.2 are for
the centre hole, leading to occasional minor discrepancies in
value. Also note that samples were randomly drawn from a
set of 22 numbered blanks, thus some sample numbers are
unused.

TABLE E.1: Stiffness metric values for all selected joint state
configurations (mean over all 5 holes)

(sorted from stiffest to most compliant)
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[1] [µm N−1] [1] [m]
88 19 0.072 39 1.7 0.46
245 11 0.079 27 1.7 0.48
85 9 0.089 37 1.6 0.46
521 2 0.21 31 3.9 0.70
85 15 0.39 44 1.9 0.46
88 8 0.71 41 1.8 0.46
506 7 1.4 67 14 0.79
555 12 3.4 74 14 0.85
555 6 4.3 77 8.4 0.85
555 4 6.0 84 20. 0.85
521 17 7.6 61 12 0.70
506 21 7.8 93 15 0.79
569 13 9.6 59 29 0.94
594 18 11 64 160 1.04
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(a) Horizontal vice
minima (most stiff)

(b) Horizontal vice
maxima (least stiff)

(c) Vertical vice
minima (most stiff)

(d) Vertical vice
maxima (least stiff)

(e) Rotated vertical vice
minima (most stiff)

(f) Rotated vertical vice
maxima (least stiff)
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Fig. E.1: Top view showing stiffness metric extrema for different vice orientations and positions
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(a) WPP 88
Sample 19
m = 0.072

(b) WPP 245
Sample 11
m = 0.079

(c) WPP 85
Sample 9
m = 0.089

(d) WPP 521
Sample 2
m = 0.19

(e) WPP 85
Sample 15
m = 0.39

(f) WPP 88
Sample 8
m = 0.72

(g) WPP 506
Sample 7
m = 1.4

(h) WPP 555
Sample 12
m = 3.4

(i) WPP 555
Sample 6
m = 4.3

(j) WPP 555
Sample 4
m = 6.0

(k) WPP 521
Sample 17
m = 7.6

(l) WPP 506
Sample 21
m = 7.8

(m) WPP 569
Sample 13
m = 9.6

(n) WPP 594
Sample 18
m = 11

Fig. E.2: All joint configurations used for drilling
(sorted by tolerance stiffness metric, from stiffest to most compliant)
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Appendix F
Performance Measure Correlation Plots
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(a) Tolerance metric vs lateral controller error
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(b) Tolerance metric vs hole diameter
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(c) Isometry metric vs lateral controller error
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(d) Isometry metric vs hole diameter

Fig. F.1: Various stiffness metrics vs measures of process performance (part 1)
(grouped by workpiece position (WPP))
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(a) Axial stiffness metric vs lateral controller error
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(b) Axial stiffness metric vs hole diameter
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(c) Distance from base vs lateral controller error
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(d) Distance from base vs hole diameter
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(e) Drilling sequence number vs lateral controller error
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(f) Drilling sequence number vs hole diameter

Fig. F.2: More metrics vs measures of process performance (part 2)
(grouped by workpiece position (WPP))

27



Appendix G
Software Architecture
This section outlines how the software architecture of reflex
was designed to retain maximum generality and flexibility.

The core is written in C++, using the linear algebra library
Eigen. Implementations can build on the core functionality,
to reduce the need for rewriting code when porting from one
system to another. Dependency inversion [41] was employed
to eliminate the need for recompiling executables when com-
ponent code changes. A simplified package dependency tree is
shown in Figure G.1; various utilities and minor dependencies
are omitted for brevity.

  ros dependent  ros independent

  interfaces

  executable

  external  abstract

  implementation

reflex_abstract

reflex_plugin_interface

reflex_plugins reflex_moveit reflex_reach

reflex_ros_tools reach_study

moveit_core reachpluginlib

reflex_core

  Legend Build dependency

Possible runtime dependency

Fig. G.1: Simplified reflex package dependency tree

Note that the executable components only depend on the
interfaces exposed by reflex and reach at runtime.

G.1 Plugin Framework
To compute the stiffness metric, three key components are
needed (see Figure G.2). First, the robot stiffness model,
which can be used to predict the compliance characteris-
tics of the robot. Next, the process requirements must be
formulated somehow. Finally, the stiffness metric combines
the two, yielding a scalar value, the stiffness metric. These
three components are loaded at runtime, allowing for simple
reconfiguration without recompilation. These components are
loaded from plugins.

Metric

robot_model

process_requirement_model

compute(): real

AbstractRobotModel

encodes robot behaviour

AbstractProcessRequirementModel

encodes process requirements

Fig. G.2: Core class structure

Upon loading, the objects are converted to the required type
using dynamic casting, with checks to ensure casting succeeds.

G.1.1 Robot Model
The behaviour of the robot must be understood to perform
evaluation. This includes computing the stiffness behaviour.
By leveraging inheritance, complex models can be constructed
from individual concepts. This leads to a hierarchy of models,
which can be chosen from for metric calculations. Figure G.3
shows an overview of the currently implemented robot hierar-
chy. Note that it can be extended simply by writing plugins
inheriting from existing models.

  Abstract

  Concrete

GenericStiffnessModel

Known number of joints

FrameModel
Coordinate frame transforms

between links known

NamedJointModel
Joints have names

LinearStiffnessModel

LinearFramedStiffnessModel VirtualJointModel

DifferentiableStiffnessModel

AbstractRobotModel
No assumptions

MoveitRobotModel
Implementation based on

moveit_core

FullVirtualJointModel

Fig. G.3: Robot model hierarchy

An instance of this plugin is implemented using MoveIt2,
which can be used to compute the robot Jacobian and trans-
formations between frames.

G.1.2 Process Requirement Model
Additional information external to the robot, but relevant to
metric calculation is encapsulated in the process requirement
model. For example, in the case of the tolerance stiffness
metric, the matrix T (as defined in Equation 3.11) forms part
of the process requirement model.

G.1.3 Metric
Finally, a metric interface is defined. It contains a robot
model and a process model. From these, it can compute the
scalar metric value. Depending on the metric, specific types
of robot and process models may be required. Compatibility
between the runtime-loaded plugins is checked based on the
requirements defined by the metric.
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