
Uncovering Secrets of the Maven Repository: Java Build Aspects
An empirical analysis

G.J.T. Bot1

Supervisor(s): Dr. S. Proksch1, M. Keshani1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: G.J.T. Bot
Final project course: CSE3000 Research Project
Thesis committee: Dr. S. Proksch, M. Keshani, S. Chakraborty

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
The Maven Central Repository1 hosts over 11 mil-
lion packages2. As Maven3 itself is a build tool
for Java, the majority of these packages are Java
archives.
This research aims to analyze these packages and
look into various build aspects of these projects (the
research questions): are Java modules used, what
Java versions are used and how is the compiler con-
figured? This is done by downloading a subset of
these packages and looking at both the final arti-
fact and the attached Project Object Model (Maven
configuration). Specifically, one version is ran-
domly selected from each distinct package hosted
on Maven Central and then analyzed.
This research helps inform Java language develop-
ers and library maintainers. It captures parts of the
build system evolution over a span of more than a
decade. Precisely, version adoption, reproducibility
and desirable build features are all important met-
rics for project maintainers in any software ecosys-
tem.
In the end, 473352 packages were analyzed.
Firstly, it was found that Java modules are rare:
only 6919 (1.69% of the artifacts with an archive)
of the packages use Java modules. Secondly, the
most common Java version used is Java SE 8
(182476 packages) representing almost half of all
analyzed packages. All long-term support versions
(Java SE 8, 11, 17 and 21) make up roughly half
of the available packages. Thirdly, only 54.98% of
artifacts configure the Maven compiler plugin with
the most used parameters being the source and
target Java versions. The most common additional
compiler flags are verbosity settings, providing
more feedback and code analysis from both the
linter and compiler.

Keywords: Java, Maven, Repository, Build
Cycle, Configuration

1 Introduction
Java is currently one of the most widely used programming
languages. It enables the creation of applications across di-
verse domains. As Java has grown increasingly popular over
time, understanding the trends and practices used by develop-
ers becomes increasingly important. Java is a programming
language designed to not be platform dependent. Famously,
the term write once, run anywhere coined by Sun Microsys-
tems - the creators of the Java programming language - de-
scribes this design philosophy. Furthermore, the language is
intended to be backwards compatible. This means that a mod-
ern Java Virtual Machine (JVM) can run Java code compiled

1https://repo1.maven.org/maven2/
2https://mvnrepository.com/repos/central/
3https://maven.apache.org/

to an older version. Concretely, this means developers have
virtually complete freedom in picking what version to use.
This flexibility poses an interesting question: how do devel-
opers build their projects?

In this research, various aspects of building projects with
Maven, a build tool for Java-based software projects, are ex-
amined. This is done in the form of an empirical analysis of
projects hosted on the largest publicly available Maven repos-
itory: Maven Central. This repository hosts millions of pack-
ages released over the past decade. Specifically, the research
questions are:

1. How commonly used are Java modules?

2. What are the popular Java versions used by libraries?

3. How is the compiler configured in the POM?

These research questions aim to provide an understanding
of some common practices of Java developers in the ecosys-
tem. This insight is valuable to Java language designers and
library maintainers, as it will allow them to make informed
decisions regarding feature adoption and version migration.

In this thesis, first, the related work is discussed. Next,
the approach for the analysis is explained. Then, the ethical
considerations are described. After that, the results from the
research are covered followed by reflection on these results.
Finally, the thesis is concluded with a swift reiteration of the
research and results.

2 Related work
Version control is an essential part of software development,
providing tools such as git to aid in single-project develop-
ment. Maven, apart from being a build tool, also provides a
repository specification to allow Java projects to build against
dependencies available on such repositories. The largest
publicly hosted repository is Maven Central, maintained by
Sonatype.

Kula et al. [1] have analyzed the adoption (or absence
thereof) of new releases for dependencies. On top of that
the latency between new releases and dependencies adopting
said releases is investigated. It was found that for existing
projects, only 59.63% of their dependencies are adopted us-
ing their latest versions. In contrast, when maintainers add a
new dependency to an existing project, in 81.16% of the cases
the latest version is adopted. An important reason initial de-
pendencies are not adopted with their latest version as often
is because of incompatibility and general unawareness of up-
dates, and adopting such versions takes time as a result. Note
that these causes are not exhaustive. Over time, adopting the
latest releases for dependencies is becoming more common.

Similarly, there has been research on the life cycles of li-
braries themselves. Kula et al. [2] have monitored library
usage for various popular Maven packages to study library
ageing. Library ageing was observed by looking at how many
packages use/depend on a given library over time. Almost all
libraries have a time of growth, a peak and then slowly de-
cay. It was observed that most (93.87%) monitored packages
have similar usage trends. More specifically, the trends can
fit a first-, second- or higher-order module, the latter one be-
ing the most common. Moreover, the emergence or absence

https://mvnrepository.com/repos/central/
https://maven.apache.org/

of rival libraries has an effect on the usage curves of exist-
ing libraries. The emergence of rival libraries often marks the
peak of existing libraries, starting their decay. Note, however,
that there is no significant reason for library migration at this
point, so the decay may be very slow.

The Java Apache ecosystem is a large group of libraries
provided by the Apache Software Foundation4. These li-
braries provide utilities in various areas such as math, log-
ging, collections and I/O. In this prior research [3], changes
in the ecosystem were analyzed. This includes (but is not
limited to) dependency graphs, project size, releases, and
active developers. Additionally, the behaviour of clients is
also looked at. Specifically regarding their willingness to mi-
grate to different versions and how much a client’s codebase
changes accompanying dependency version bump.

Unfortunately, not much research has been done on the
adoption of new features. Moreover, the adoption of new
(major) versions of a programming language is arguably more
important but researched less. Newly introduced language
features can aid software development and general produc-
tivity, let alone quality-of-life changes. On the other hand,
since Java runs on a virtual machine, it is possible for new
Java versions to improve run-time performance.

Not all versions add new features and tweak existing ones.
An important group of updates are vulnerability patches. Java
is also not free of vulnerabilities. The adoption of security
patches for Java is very important as such vulnerabilities po-
tentially affect a way larger group than vulnerabilities in sin-
gle packages, after all virtually all Java programs run on a
JVM.

Düsing and Hermann [4] have analyzed the adoption of li-
brary updates specifically for patching vulnerabilities. This
was done for multiple repositories, including repositories for
programming languages other than Java. It was found that
for Maven, roughly 50% of all vulnerabilities are patched be-
fore their date of disclosure. Furthermore, on average vul-
nerabilities are patched 188.2 days before the vulnerability is
published. Additionally, the majority of unpatched vulnera-
bilities are low and medium severity. Interestingly enough,
15.46% of artefacts released on Maven include dependencies
for which public security advisories are available.

There has also been (limited) research into compiler configu-
ration, but such research often prioritizes compiler optimiza-
tion rather than analysing non-performance-related configu-
ration flags.

Zhang et al. [5] propose a tool to detect and repair configu-
rations for both continuous integration (CI) infrastructure and
Java build tools (i.e. Maven and Gradle5). This tool is called
BuildSonic and it focuses on various (common) performance-
related configuration smells aiming to significantly decrease
build times. One such configuration smell is not allowing
Maven to fork the compiler plugin. Enabling this reduces the
performance overhead of garbage collection when compiling
a project with many source files. Others include not build-
ing separate Maven modules in parallel, providing not enough

4https://apache.org/
5https://gradle.org/

heap space for the build tool’s JVM and declaring reposito-
ries in non-optimal order for dependency resolution. Out of
the analyzed Java projects, it was found that 99.0% of these
projects had configuration smells. Furthermore, the projects
that implemented the proposed configuration changes had, on
average, a 12.4% build-time improvement. Note that Build-
Sonic does not detect (and repair) all identified configuration
smells as some require heavyweight analysis, which is against
its design philosophy: BuildSonic is a linter.

3 Methodology
This research is an empirical analysis of build aspects for
projects in the Java ecosystem. For this analysis, a large data
set is needed. Maven Central is the largest publicly hosted
repository of Maven projects and will function as a founda-
tion. Maven itself is widely used and has been around for
a long time, making it an adequate data set representing the
entire Java ecosystem. Furthermore, it has a policy that pub-
lished artifacts cannot be updated or deleted. This provides
solid historical data.

3.1 Data Selection
Due to the size of the central Maven repository, it is unprac-
tical to analyze everything uploaded to the repository, so in-
stead, a subset of the available artifacts is used.

First, the set of available artifacts is fetched. The Maven
Central repository is indexed6, i.e. there is a record resem-
bling a logbook available with all additions to the repository.
Unfortunately, there are no index records available for arti-
facts produced before 2011. The set of artifacts is stored in a
database.

Second, a subset is randomly selected from this set of avail-
able packages. To avoid skewing data in favour of packages
with more versions released, only one version per unique
group id and artifact id is used[6]. This is done because dif-
ferent releases for the same package have a large overlap. The
date of publishing is also important, as it places releases in a
historical context, most noticeably the available Java versions
at the time. The sample must have a similar trend of packages
released per year. To achieve this, a subset per year is used.
This is stratified sampling[7] and it ensures every year is rep-
resented. Importantly, note that the data selection process is
made reproducible by using a set seed for the random number
generation.

The resulting distribution can be seen in table 1.

3.2 Data Extraction
With the artifacts to analyze selected, every package is down-
loaded and opened. Additionally, every Maven project has
an associated pom.xml file. This is the Project Object Model
(POM): an XML file describing the Maven project itself. For
the purposes of this research, the POM is used to fetch the
compiler configuration. While most artifacts are Java code, it
should be noted that this is not a requirement for artifacts to be
hosted (or even built) by Maven. Furthermore, not all pack-
aging types are ZIP archives. The data extraction is based

6https://repo1.maven.org/maven2/.index/

https://apache.org/
https://gradle.org/
https://repo1.maven.org/maven2/.index/

Year Packages Sample Count
2011 278326 24796 (8.9%)
2012 136552 13711 (10.0%)
2013 178376 15385 (8.6%)
2014 237086 19536 (8.2%)
2015 345994 28037 (8.1%)
2016 514152 34919 (6.8%)
2017 728262 39897 (5.5%)
2018 920570 44539 (4.8%)
2019 1218375 53072 (4.4%)
2020 1404258 51530 (3.7%)
2021 1773855 58590 (3.3%)
2022 1791565 59908 (3.3%)
2023 805670 35995(4.5%)
Total 10333041 479915 (4.6%)

Table 1: The artifact distribution per year. (sample size: 100%, seed:
0.5, index date: June 6, 2023)

on the assumption that the artifact does, in fact, contain Java
(byte)code, and can be opened as a ZIP archive. Common
artifacts extensions (.jar, .war, .ear) are all formatted as
ZIP files. If the artifact is not openable as a ZIP file it is most
likely not a Java artifact and will be ignored, but the POM
will still be analyzed. If it is a ZIP file, determining whether
it is related to Java is out of the scope of this research; only
the presence of .class files (the file extension for files con-
taining Java bytecode) is checked.

Each research question (see section 1) has its own set of
data that needs to be extracted, described in the following
subsections for each research question. To provide context,
the following data is also available for each artifact:

1. The year of publishing (from the index file(s))

2. If the artifact could be opened (i.e. if it is a ZIP file)

3. The packaging type (from the index file(s))

Java Modules (RQ 1)
Java modules are defined by their respective module descrip-
tors. These descriptors are put in a single file (per module),
identifiable by its name: module-info.class. To check if a
given archive uses Java modules, iterating over all its entries
and checking if entries with this name exist is sufficient.

Java Versions (RQ 2)
There are two approaches to check what Java version a given
archive uses.

For the first approach, one can look at .class files inside
the archive. These are files containing Java bytecode. In their
headers, there is a two-byte major version number and a two-
byte minor version number. This indicates the Java Virtual
Machine specification the class files complies with. The ma-
jor version number corresponds directly to Java version re-
leases, e.g. Java SE 1.8 for major version 0x0034. Because
archives can have multiple classes, it is possible to have files
with different version numbers. Per artifact, a list of class
versions together with their number of occurrences is stored
if there is not just a singular Java class version.

The second approach uses the archive’s metadata file (if
present): META-INF/MANIFEST.MF. This text file contain-
ing metadata stores all sorts of information about the archive,
including version information. The relevant entries are:
Created-By, Build-Jdk and Build-Jdk-Spec. This ap-
proach comes with drawbacks, however. Firstly, none of
these fields are ’official’ (i.e. part of the Java specification),
they are just commonly included. As a result, it is expected
that a significant portion of archives does not have these en-
tries or put in unusable/irrelevant information. Secondly, hav-
ing built an archive using a given development kit version
does guarantee the artifact will have bytecode for that Java
version. The native Javac compiler can produce bytecode
compliant with different Java versions. Nevertheless, both
approaches are used for this research.

Additionally, the Multi-Release entry from the manifest
is stored, which identifies multi-release archives. This is a
language feature introduced in Java 9 designed to allow dif-
ferent class implementations for different Java versions to al-
low developers to use newer features without dropping sup-
port for older versions. These classes are located in their own
version-specific directory inside the JAR, unlike non-multi-
release archives. For these archives, the developer must en-
sure the Java virtual machine will never try to load class files
compiled in a newer version as this will cause errors.

Compiler Configuration (RQ 3)
Maven takes care of compiling source code, meaning the
compiler is configured in the project’s POM. The Apache
Maven ecosystem provides a compiler plugin: the Apache
Maven Compiler Plugin. This plugin allows the user to over-
ride the default compilation settings and add manual configu-
ration. Although it is possible for third-party plugins to han-
dle compilation, for the purposes of this research the focus is
on the Apache Maven Compiler Plugin.

In this research, the following parameters are considered:

• compilerArgs: additional command line parameters to
pass to the compiler.

• compilerId: the ID of the compiler, e.g. Javac.

• encoding: the character encoding for source files.

• source: the Java specification the source code should
comply with.

• target: the Java specification the bytecode should be
suitable for.

An example of the plugin configuration can be seen in listing
1. Note that not all fields are necessarily available.

Listing 1: Example plugin configuration.
<p l u g i n>
<g r o u p I d>org . apache . maven . p l u g i n s< / g r o u p I d>
< a r t i f a c t I d>maven− compi l e r − p l u g i n< / a r t i f a c t I d>
<v e r s i o n>3 . 1 1 . 0< / v e r s i o n>
<c o n f i g u r a t i o n>
<e n c o d i n g>UTF−8< / e n c o d i n g>
<s o u r c e>17< / s o u r c e>
< t a r g e t>17< / t a r g e t>

< / c o n f i g u r a t i o n>
< / p l u g i n>

With this approach, it is important to realize that projects
without actual Java code can still have compiler configura-
tions. A common example of this is a POM with packag-
ing type pom; these projects are essentially containers for
sub-modules which can inherit this configuration. Further-
more, since configurations are inheritable, both the plugins
and pluginManagement, and project parent configurations
are considered. Additionally, placeholders (entries of the
form ${x}) and the properties maven.compiler.source
and maven.compiler.target (the default values of the
source and target fields respectively) are resolved.

3.3 Implementation
The program is written in Java, using a PostgreSQL database
for storage. The implementation is available on GitHub7.

First, the IndexerReader reads repository index files and
stores a list of artifacts in the database. Then, a Selector
picks a sample from this list of artifacts to use for analysis:
one random version per group id and artifact id (listing 2), and
then taking a subset of the list of unique packages (listing 3).
The program ended up being efficient enough, that all unique
packages were analyzed, rather than a subset (i.e. the sam-
ple size is 100%). The seed used for the sample selection is
0.5. Next, the selected artifacts are downloaded from Maven
Central by the Resolver and passed to various Extractors.
An Extractor is a separate component that looks at the arti-
fact and collects data. The data collected by the extractors are
then stored in the database. The program diagram is seen in
figure 1. Note that, to increase performance, multiple runners
were run in parallel.

Figure 1: The application diagram.

Finally, a separate program8, takes the data and performs
7https://github.com/ashkboos/MavenSecrets/
8Module visualization-build-aspects

analysis, providing statistics and distributions.
In this program, the manifest entries Created-By,

Build-Jdk and Build-Jdk-Spec were parsed using the
grammar in listing 4. These entries were merged since, for
the purposes of this research, they serve the same purpose.
For example, via this grammar, inputs like 10 get matched
with Java SE 10, and inputs like 1.8.0 253 (Oracle) get
matched with Java SE 8 (with minor version 253). If multiple
entries are specified containing different versions, the most
recent version is picked.

In addition, the compiler arguments were sanitized as well:
• Strings containing whitespace characters likely contain

multiple arguments, so they were split into separate ar-
guments.

• @<filename> arguments are grouped under @.
• -A<key>[=<value>] arguments are grouped under -A.
• -J<option> arguments are grouped under -J.
• Arguments containing values (-<key>=<value> and
-<key>:<value>) are grouped under -<key>.

• Strings not starting with - or @ are assumed to be flag
parameters, so they are excluded.

Listing 2: Distinct selection query.
SELECT s e t s e e d (seed) ;
CREATE TEMP TABLE p a c k a g e l i s t d i s t i n c t AS
(SELECT DISTINCT ON (g roup id , a r t i f a c t i d) *

FROM p a c k a g e l i s t
ORDER BY group id , a r t i f a c t i d , random ()) ;

Listing 3: Sample query.
INSERT INTO s e l e c t e d p a c k a g e s
SELECT * FROM p a c k a g e l i s t d i s t i n c t
TABLESAMPLE BERNOULLI(s a m p l e s i z e)
REPEATABLE (seed)
WHERE DATE PART(’ y e a r ’ , l a s t m o d i f i e d) = year ;

Listing 4: Java version grammar.
j a v a v e r s i o n := d i g i t +

[p e r i o d d i g i t +]
[p e r i o d d i g i t +]
[u n d e r s c o r e d i g i t +]
[s p a c e p a r l (n o t p a r r)+ p a r r]
; major . minor . m i c r o p a t c h (t e x t)

d i g i t := U+0030 | U+0031 | U+0032
| U+0033 | U+0034 | U+0035
| U+0036 | U+0037 | U+0038
| U+0039 ; ’0 ’ − ’9 ’

p e r i o d := U+002E ; ’ . ’
u n d e r s c o r e := U+005F ; ’ ’
s p a c e := U+0020 ; ’ ’ (s p a c e)
p a r l := U+0028 ; ’ (’
p a r r := U+0029 ; ’) ’

4 Responsible Research
This section discusses the main ethical concerns with empir-
ical studies and how they are handled. Specifically, obtaining
the data and reproducing the results.

https://github.com/ashkboos/MavenSecrets/

Data Usage
All data for this research is downloaded from Maven Central.
To avoid disrupting their services, a large chunk (>2Tb) of
the repository had been downloaded over the period of mul-
tiple years9. This local copy is used as a cache to reduce the
number of download requests made. The downloaded arti-
facts are not outdated, as Sonatype’s (the maintainer of the
central repository) policy is that published resources cannot
be deleted or changed to remain consistent10. All downloaded
data is publicly available and does not contain sensitive infor-
mation. The method of data selection used is designed to
attempt to minimize bias to the best of the author’s abilities.

Reproducibility
The entire research is reproducible by design. All
code is open source11. By design, the data selec-
tion has a configurable seed (used for pseudo-random
data selection) and sample size. For this research,
seed 0.5 and sample size 100% were used. The re-
quired extractors are ArtifactExistsExctractor,
CompilerConfigExtractor, JavaModuleExtractor and
JavaVersionExtractor. The extracted and processed data
are available at Zenodo (DOI: 10.5281/zenodo.807712), in
addition to the index file used (retrieved on June 6, 2023).

5 Results
This section provides a comprehensive overview of the results
obtained. It begins by dissecting the data selection. Then,
each research question is addressed individually. For each
research question, the relevant data obtained are discussed.

Data Sample
From the index file, 1033341 different packages were read.
4.64% of the packages in this list are distinct (i.e. they have a
unique group id and artifact id). This means that one random
version was picked per package. All these packages were
selected for analysis. Most of the selected packages were
downloaded successfully, with only 1.37% of them failing
to be resolved. This is solely because of parent POMs not
being resolved. Upon manual inspection, this happens when
a project depends on a parent project that is not hosted on
Maven Central12. Out of the resolved artifacts, 86.64% have
ZIP formatted file. This is relevant for the research questions
looking at Java code. The sample is broken down in table 2.

How commonly used are Java modules? (RQ 1)
Out of all the analyzed packages with archive (410102 pack-
ages), 6919 (1.69%) use Java modules. Interestingly enough,
2021 (29.2%) of the artifacts using Java modules contain a
majority of class files compiled in a Java version prior Java
9, the version Java modules are introduced in. In these cases,
the module files are either generated during the build cycle
or compiled in a different Java version and included in the fi-
nal artifact. This is not an issue as the Java Virtual Machine
(JVM) prior to Java 9 will never try to load these files (which

9FASTEN project: https://fasten-project.eu/
10https://central.sonatype.org/publish/
11https://github.com/ashkboos/MavenSecrets/ (release: 1.0.0)
12
org.smarti18n:smarti18n-com:1.0-PRE4

Set Packages
Indexed packages 10333041 (100%)

Distinct 479915 (4.64%)
Sample size 479915 (4.64%)

Resolution fail 6563 (1.37%)
Resolution success 473352 (98.63%)

With archive 410102 (86.64%)

Table 2: Selection breakdown (sample size: 100%, seed: 0.5, index
date: June 6, 2023)

would cause errors), but can still load the normal class files.
Newer JVMs, however, will load and make use of the mod-
ules files.

What are the popular Java versions used by libraries?
(RQ 2)
The most common Java version is Java SE 8, with the long-
term support (LTS) versions (Java SE 8, 11, 17 and 21) mak-
ing up 51.2% of the archives (only packages with archive are
considered, 410102 packages). 48 (0.01%) of the artifacts use
the latest Java version (Java SE 20 as of June 25, 2023). Ad-
ditionally, note that old non-LTS versions (Java SE 5, 6 and 7)
have a way more significant presence compared to the other
non-LTS versions. The full distribution per major version is
seen in table 3. Note that this table lists the most common
Java version based on class file versions, and is grouped by
major release.

Furthermore, there is one artifact compiled in Java SE 2113.
As this Java version is not released yet, the published artifact
must have been built with an early-access version, and as such
is not guaranteed to be able to run on Java SE 21 once it re-
leases.

Looking at the Java version distribution per year (see table
2), LTS versions catch on relatively fast. Within two years
since the release of these versions, they become one of the
more common versions. Even though other LTS versions are
adopted significantly more than non-LTS versions, Java 8 is
by far the most popular version. Showing the release trends
of just a select few versions for the entire time period would
get rid of smaller (but still significant) versions per year, so
the full table is included in appendix A. Furthermore, the one
artifact compiled in Java 21 is not unique: in the past, there
have been other archives compiled in early-access Java ver-
sions, though uncommon. On the other end, there are still
packages being released in Java versions that are no longer
officially supported. This is the case for roughly 21000 pack-
ages. Note that this is an estimate; end-of-support dates for
old versions are not known, and if known these dates can dif-
fer per Java vendor by multiple years. Most older versions
contributing to a significant portion of releases have had their
usage dropping over time.

It is possible to have multiple different Java class file ver-
sions in the same archive, this happens in 16575 (4.04%)
archives. Out of these archives, only 700 (4.22%) are multi-
release archives. Interestingly, 370 (34.58%) of all multi-
release archives do not contain multiple class versions. By

13
org.infinispan:infinispan-commons-jdk21:15.0.0.Dev01

https://fasten-project.eu/
https://central.sonatype.org/publish/
https://github.com/ashkboos/MavenSecrets/

Java Version Packages
J2SE 1.2 1539 (0.38%)
J2SE 1.3 912 (0.22%)
J2SE 1.4 2154 (0.53%)
Java SE 5 27231 (6.64%)
Java SE 6 56824 (13.86%)
Java SE 7 33612 (8.2%)
Java SE 8 182476 (44.5%)
Java SE 9 1073 (0.26%)
Java SE 10 461 (0.11%)
Java SE 11 22406 (5.46%)
Java SE 12 243 (0.06%)
Java SE 13 196 (0.05%)
Java SE 14 302 (0.07%)
Java SE 15 336 (0.08%)
Java SE 16 390 (0.1%)
Java SE 17 4560 (1.11%)
Java SE 18 59 (0.01%)
Java SE 19 163 (0.04%)
Java SE 20 48 (0.01%)
Java SE 21 1 (0.0%)
Classless 73430 (17.91%)
Unknown∗ 1686 (0.41%)

Table 3: Java class version distribution. ∗ Older Java versions use
the same major class number and cannot be identified.

manual inspection, it was found that there are multiple rea-
sons for archives to contain multiple versions:

1. Third-party sources, which may have been compiled in
a different version, can be included in the archive14.

2. Module files are purposely included even though the rest
of the code is compiled in an older version15.

3. The project contains code for a different JVM language,
which ends up being compiled into bytecode for a dif-
ferent Java version16.

Note that in all these cases, there is no reason to set the multi-
release flag, which largely contributes to why so few archives
specify it. The multi-release feature is not intended to bundle
different class versions, but to allow multiple definitions of
the same class with different implementations per Java ver-
sion. This does not apply here.

The inspected manifest entries specify the Java Develop-
ment Kit (JDK) version used to compile the code. These are
specified in 268609 packages (65.5% of archives). Out of the
artifacts with multiple manifest entries defined (245653 pack-
ages), 65 artifacts have mismatching versions. In many cases,
this happens when one of the entries specifies the bytecode
version while another specifies the compiler version used to
create the code17. Note that entries that are not parseable by
the rules specified in section 3.3 are ignored (50.9%). In most
cases, the most common class file version matches the JDK
version used to compile the code (see table 4). In 37.26%

14
activesoap:jaxb-xalan:1.5

15
ai.swim:swim-codec:3.10.0

16
ai.h2o:xgboost4j:0.90.3

17
com.liferay:javax.servlet.jsp:2.3.3-b02.LIFERAY-PATCHED-5

Figure 2: Java class version distribution (LTS versions and 3 other
common versions). See appendix A for the full table.

cases, a more recent JDK version is used to compile the code,
meaning the developers had the option to compile to a more
modern version but chose not to. Curiously, in a few cases,
the class files are compiled in a more modern version than
the JDK version used to build the project. By manual inspec-
tion, it was found that this happens when the modern code is
not generated by the JDK version specified in the manifest18.
Note that for this analysis, only the packages with at least
one of the manifest entries matching the grammar described
in section 3 are considered (224526 packages).

Comparison Result Packages
Same 140617 (62.63%)
Newer 83668 (37.26%)
Older 241 (0.11%)

Table 4: JDK version compared to the most common class file ver-
sion.

How is the compiler configured in the POM? (RQ 3)
In many cases (213106 packages, 45.02%) the Maven com-
piler plugin is not configured. In 260246 packages it is.

The most common character set used is UTF-8, making out
25.0% of the configurations (see table 5). The overwhelm-
ing majority, however, does not define the character encoding
used (74.5%), instead using the build platform’s encoding.
This technically makes the build platform-dependent. In 241
cases, the POM contained a placeholder that could not be re-
solved (i.e. they are of the form ${x}).

If the Maven compiler plugin is used, both the source and
target version are specified 95.89% of the time (249542 pack-
ages) and in 10202 cases (3.92%) neither is specified. Inter-
estingly, even though by design it is possible to use differ-
ent source and release versions, in practically all cases where
both are specified, they are equal. A very small portion of
artifacts specifies different versions (385 packages, 0.15%).
This feature has its purposes but is rarely capitalized on. Only
specifying one of the two is rare: only 376 packages (0.14%)

18
org.bytedeco:tensorrt-platform:8.2-1.5.7

Character Encoding Packages
UTF-8 65058 (25.0%)
ISO-8859-1 997 (0.38%)
ISO-8859-15 65 (0.02%)
WINDOWS-1252 63 (0.02%)
ASCII 27 (0.01%)
GBK 26 (0.01%)
WINDOWS-31J 1 (0.0%)
Undefined∗ 193760 (74.5%)
Unresolved∗∗ 241 (0.09%)

Table 5: The source encoding distribution. ∗If left undefined, the
platform’s encoding is used. ∗∗Unresolved Maven placeholders.

solely specify the source version and 126 packages (0.05%)
specify just the target version. The source and target version
distribution is listed in table 6. As expected, they roughly
match the Java class version distribution seen earlier, but there
are significant deviations.

Java Version Source Target
JDK 1.0 1 (0.0%) 6 (0.0%)
JDK 1.1 0 (0.0%) 42 (0.02%)
J2SE 1.2 42 (0.02%) 47 (0.02%)
J2SE 1.3 535 (0.21%) 525 (0.2%)
J2SE 1.4 1855 (0.71%) 1861 (0.72%)
Java SE 5 21833 (8.39%) 21729 (8.35%)
Java SE 6 39568 (15.2%) 39593 (15.21%)
Java SE 7 36347 (13.97%) 36368 (13.97%)
Java SE 8 124923 (48.0%) 124774 (47.94%)
Java SE 9 801 (0.31%) 831 (0.32%)
Java SE 10 264 (0.1%) 264 (0.1%)
Java SE 11 18338 (7.05%) 18269 (7.02%)
Java SE 12 201 (0.08%) 201 (0.08%)
Java SE 13 161 (0.06%) 154 (0.06%)
Java SE 14 199 (0.08%) 200 (0.08%)
Java SE 15 219 (0.08%) 213 (0.08%)
Java SE 16 297 (0.11%) 293 (0.11%)
Java SE 17 4055 (1.56%) 4036 (1.55%)
Java SE 18 53 (0.02%) 36 (0.01%)
Java SE 19 171 (0.07%) 171 (0.07%)
Java SE 20 55 (0.02%) 55 (0.02%)
Undefined 10328 (3.97%) 10578 (4.06%)

Table 6: Source and target Java versions.

Furthermore, only 3141 (1.21%) artifacts deviate from us-
ing the standard Javac compiler, bundled with every JDK
(see table 7). One noteworthy compiler is a Groovy com-
piler, which is another JVM language. The other is frgaal, a
retrofit compiler, meaning modern Java features can be used
in source code, and the compiler makes it runnable on ver-
sions predating those features.

Only 32194 configurations specify additional compiler ar-
guments (12.4%). The most common additional flag is linter
configuration (-Xlint), which enables more verbose feed-
back from the linter, but additional compiler flags are rare in
general (see table 8). -Xlint arguments are present in 22629
configurations (70.3%). In fact, the vast majority of extra

Compiler Id Packages
groovy-eclipse-compiler 1189 (0.46%)
javac-with-errorprone 1173 (0.45%)
eclipse 483 (0.19%)
jdt 255 (0.1%)
javac 214 (0.08%)
tuscany-eclipse 32 (0.01%)
frgaal 9 (0.0%)
Undefined∗ 256891 (98.71%)

Table 7: The source encoding distribution. ∗If left undefined, javac
is used.

flags provide more feedback when compiling. Another note-
worthy flag is -parameters (7759 packages, 24.1%), which
makes the compiler store method and constructor parameter
names in the class file(s). Note that the same argument (key)
may be specified multiple times in a single package.

Command Line Argument Occurrences
-Xlint 32767
-Xep 18498
-parameters 7759
-J 3136
-Werror 1868

Table 8: Compiler flags (top 5). See appendix B for the full table.

6 Discussion
Java modules are uncommon, and even though they have been
available to use for 6 years, they have not caught on. Presum-
ably, this is because they are not required for Java develop-
ment, and as such are often ignored. Another possibility is
that similar solutions exist for project segregation, such as
Maven modules or multi-project Gradle builds. These solu-
tions predate Java modules. These patterns in feature adop-
tion are not unique to Java modules. Hartveld[8] also showed
a comparable pattern for asynchronous programming in C#.

With Java modules being so uncommon, one has to won-
der what other Java features are rarely adopted. Furthermore,
even if features are rarely used, it is worth investigating what
kind of projects do adopt these features. As an example,
according to the Java specification request JSR 37619, Java
modules are intended for libraries and large applications. It is
worthwhile for Java language designers to research whether
the target audience for this language feature actually adopts
it. Such research is also applicable for library maintainers, as
their newly introduced features are in turn adopted by projects
depending on these libraries.

The most common Java version used is Java 8, and even
though later LTS versions have been adopted too, a large por-
tion still uses years-old versions. In software development,
it is not uncommon for codebases to stick to a single version
and delay migration for years[9]. Nevertheless, Java 9 and
later (apart from LTS version) are barely present, especially
compared to non-LTS versions prior to Java 9.

19https://openjdk.org/projects/jigsaw/spec/

https://openjdk.org/projects/jigsaw/spec/

Perhaps the absence of newer versions is because these ver-
sions are still relatively new, but it should be noted that since
the release of Java 9, new Java versions have been released
twice a year20. This faster release cycle may have resulted in
Java releases of a way smaller scope than earlier releases. As
an example, Java 8 introduced lambdas, which is a large fea-
ture that drastically changed the way programmers write Java
code. It is also possible that the features included in more
recent versions are generally less desirable. Looking at past
releases, what kind of features they included is worth looking
into. Specifically, Java language designers can use such re-
search to revise the release cycle and to determine how long
versions should be supported.

To boot, there are packages released both for unsupported
and unreleased Java versions. The former can be blamed on a
large presence of systems running legacy software, but the lat-
ter stands out. Developing software on pre-release Java builds
can have its purpose, but publishing such software on Maven
Central is peculiar. Software built on development versions
is not guaranteed to be working when the full Java version
is released, and since packages on Maven Central cannot be
modified or removed once published, this may result in an un-
usable artifact. Why this software is released is unclear, but
worth looking into. Sonatype, the maintainer of the central
repository, has set virtually no requirements on the contents
of artifacts to be published21. This means these kinds of re-
leases are perfectly valid.

The Java compiler does not need to be configured in the
majority of cases. If it is, virtually all configurations specify
source and target versions. Compiler flags, however, are not
present as often. In most cases when flags are defined, they
are to help developers improve their software quality. This
is done purely because maintaining high code quality is good
practice since Maven Central does not have any form of qual-
ity control. Investigating the quality of artifacts published
on Maven Central can inform both consumers of the reposi-
tory to help decide what projects to depend on, and repository
maintainers, if some kind of submission review should be im-
plemented.

As for source encoding, most source code does not have
any special characters, just the Latin alphabet, digits, con-
trol characters, and characters like !@#$%ˆ&*(). As a result,
ASCII can be used in most cases. This implicitly means that
more modern character encoding like Unicode transformation
formats, Windows code pages, and the ISO 8859 family are
all valid as they extend from ASCII. In most cases, develop-
ers, do not need to worry about the source encoding even if it
makes their build platform-dependent, likely the source will
compile.

Limitations
Unfortunately, the approach is not without its limitations, be-
sides the Maven Central index being incomplete.

Firstly, Maven build cycles are inherently version-
dependent. For example, if a plugin is configured, but no plu-
gin version is specified, Maven tries to find the latest version.
This version depends on the Maven version used to build the

20https://java.com/releases/
21https://central.sonatype.org/publish/requirements/

project. Maven 3.x just considers RELEASE versions while
Maven 2.x also considers SNAPSHOT versions. Furthermore,
depending on plugin versions, there may be different parame-
ters, defaults, and properties used to configure these parame-
ters. Additionally, environment variables play a role and these
are not reproducible.

Secondly, Maven builds can both generate sources to in-
clude and include third-party sources in the final artifact.
Since it is the final artifact that is analyzed, these added
sources are not distinguished from the actual source.

Thirdly, the configuration is complex. Different execu-
tions, phases, goals, profiles, and inheritance makes predict-
ing the output difficult. All projects implicitly inherit from a
super-POM, which is also version-dependent. For the pur-
poses of this research, only the root configurations of the
plugin, pluginManagement and their parents are consid-
ered.

Fourthly, non-ZIP artifacts, third-party plugins, and non-
Java artifacts skew the results, however, these are not com-
mon as Maven is primarily used for Java programming (and
other languages that compile to Java bytecode).

Lastly, projects hosted in Maven repositories are not re-
quired to be built by Maven. These projects are still required
to upload a POM containing some information like group id,
artifact id, version. This means that there is no way to tell if
the POM was actually used to create the artifact hosted in the
repository.

7 Conclusion
In conclusion, the analysis of Maven Central projects sheds
light on the Java software ecosystem. Based on the analysis of
projects hosted on Maven Central, these are the key findings
regarding the usage of Java modules, popular Java versions,
and the configuration of the compiler.

For the analysis, one random version for each project
hosted on Maven Central was selected. This artifact was then
downloaded followed by extracting relevant data. The inter-
mediate data was then processed further to produce the results
described.

Firstly, it was observed that Java modules are rarely used,
accounting for less than 2% of the projects examined. The
adoption of Java modules has been minimal. Interestingly,
it was discovered that there are projects compiled in older
Java versions that still use Java modules. This is done by
generating the module-info files during the build process.

Secondly, Java SE 8 is the most widely utilized Java ver-
sion. Furthermore, it was found that long-term support ver-
sions make up the majority of releases (>50%). This im-
plies a preference for stable and well-supported Java versions.
Out of the other versions, the older versions (Java SE 7 and
below) are used significantly more than the newer versions.
Furthermore, there are projects released using early-access
Java builds and Java versions that are no longer officially sup-
ported.

Lastly, looking into the configuration of the Maven com-
piler plugin revealed that it is not used in roughly half of the
cases (45%). However, when the plugin is configured, it is
usually to specify the Java version to compile the code with.

https://java.com/releases/
https://central.sonatype.org/publish/requirements/

Additionally, the extra specified command line flags for the
compiler suggest a focus on code quality and standards.

References
[1] R. Kula, D. German, T. Ishio, and K. Inoue, “Trusting a

library: A study of the latency to adopt the latest maven
release,” 03 2015.

[2] R. G. Kula, D. M. German, T. Ishio, A. Ouni, and K. In-
oue, “An exploratory study on library aging by moni-
toring client usage in a software ecosystem,” in 2017
IEEE 24th International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), pp. 407–411,
Feb 2017.

[3] G. Bavota, G. Canfora, M. Di Penta, R. Oliveto, and
S. Panichella, “How the apache community upgrades de-
pendencies: An evolutionary study,” Empirical Softw.
Engg., vol. 20, p. 1275–1317, oct 2015.

[4] J. Düsing and B. Hermann, “Analyzing the direct and
transitive impact of vulnerabilities onto different artifact
repositories,” Digital Threats, vol. 3, feb 2022.

[5] C. Zhang, B. Chen, J. Hu, X. Peng, and W. Zhao, “Build-
sonic: Detecting and repairing performance-related con-
figuration smells for continuous integration builds,” in
Proceedings of the 37th IEEE/ACM International Con-
ference on Automated Software Engineering, ASE ’22,
(New York, NY, USA), Association for Computing Ma-
chinery, 2023.

[6] F. Dekking, A Modern Introduction to Probability and
Statistics: Understanding Why and How. Springer Texts
in Statistics, Springer, 2005.

[7] V. L. Parsons, Stratified Sampling, pp. 1–11. John Wiley
& Sons, Ltd, 2017.

[8] D. Hartveld, “An empirical evaluation of and toolkit for
asynchronous programming in c# windows phone apps,”
Master’s thesis, Delft University of Technology, August
2014.

[9] P. Capek, E. Kral, and R. Senkerik, “Towards an empiri-
cal analysis of .net framework and c# language features’
adoption,” in 2015 International Conference on Compu-
tational Science and Computational Intelligence (CSCI),
pp. 865–866, Dec 2015.

A Java Version Distribution

2011 2012 2013 2014 2015 2016 2017
J2SE 1.2 1176 (5.96%) 69 (0.6%) 43 (0.34%) 38 (0.22%) 67 (0.27%) 41 (0.13%) 28 (0.08%)
J2SE 1.3 721 (3.66%) 37 (0.32%) 30 (0.23%) 22 (0.13%) 31 (0.13%) 24 (0.08%) 9 (0.03%)
J2SE 1.4 1659 (8.41%) 151 (1.31%) 76 (0.59%) 51 (0.3%) 28 (0.11%) 28 (0.09%) 31 (0.09%)
Java SE 5 9175 (46.52%) 5227 (45.18%) 3452 (27.01%) 2193 (12.97%) 1789 (7.24%) 1755 (5.66%) 1037 (2.94%)
Java SE 6 2475 (12.55%) 4364 (37.72%) 6167 (48.25%) 7708 (45.58%) 7251 (29.36%) 7248 (23.36%) 6727 (19.05%)
Java SE 7 11 (0.06%) 133 (1.15%) 1149 (8.99%) 3436 (20.32%) 5870 (23.77%) 6107 (19.69%) 4855 (13.75%)
Java SE 8 - - 10 (0.08%) 599 (3.54%) 3538 (14.33%) 8261 (26.63%) 15137 (42.87%)
Java SE 9 - - - - - - 61 (0.17%)
Classless 3196 (16.2%) 1514 (13.09%) 1820 (14.24%) 2829 (16.73%) 6087 (24.65%) 7469 (24.08%) 7406 (20.98%)
Unknown∗ 1310 (6.64%) 75 (0.65%) 35 (0.27%) 35 (0.21%) 36 (0.15%) 88 (0.28%) 17 (0.05%)

Table 9: The Java class version distribution for packages released in 2011-2017. ∗ Older Java versions use the same major class number and
cannot be identified.

2018 2019 2020 2021 2022 2023
J2SE 1.2 23 (0.06%) 13 (0.03%) 21 (0.05%) 9 (0.02%) 6 (0.01%) 5 (0.02%)
J2SE 1.3 9 (0.02%) 10 (0.02%) 8 (0.02%) 4 (0.01%) 5 (0.01%) 2 (0.01%)
J2SE 1.4 44 (0.11%) 20 (0.04%) 31 (0.07%) 19 (0.04%) 12 (0.02%) 4 (0.01%)
Java SE 5 863 (2.21%) 582 (1.28%) 689 (1.58%) 196 (0.4%) 191 (0.38%) 82 (0.27%)
Java SE 6 4660 (11.92%) 4272 (9.42%) 2299 (5.27%) 1661 (3.35%) 1415 (2.82%) 577 (1.91%)
Java SE 7 3664 (9.37%) 3118 (6.88%) 1764 (4.04%) 1539 (3.11%) 1430 (2.85%) 536 (1.77%)
Java SE 8 19508 (49.88%) 27449 (60.53%) 28567 (65.46%) 33062 (66.71%) 29446 (58.7%) 16899 (55.83%)
Java SE 9 207 (0.53%) 199 (0.44%) 171 (0.39%) 269 (0.54%) 121 (0.24%) 45 (0.15%)
Java SE 10 253 (0.65%) 97 (0.21%) 46 (0.11%) 43 (0.09%) 17 (0.03%) 5 (0.02%)
Java SE 11 241 (0.62%) 1319 (2.91%) 2873 (6.58%) 4833 (9.75%) 8356 (16.66%) 4784 (15.81%)
Java SE 12 - 98 (0.22%) 110 (0.25%) 30 (0.06%) 2 (0.0%) 3 (0.01%)
Java SE 13 - 10 (0.02%) 145 (0.33%) 33 (0.07%) 8 (0.02%) 0 (0.0%)
Java SE 14 - - 149 (0.34%) 94 (0.19%) 45 (0.09%) 14 (0.05%)
Java SE 15 - - 59 (0.14%) 121 (0.24%) 127 (0.25%) 29 (0.1%)
Java SE 16 - - 2 (0.0%) 185 (0.37%) 112 (0.22%) 91 (0.3%)
Java SE 17 - - - 78 (0.16%) 1690 (3.37%) 2792 (9.22%)
Java SE 18 - - - 4 (0.01%) 46 (0.09%) 9 (0.03%)
Java SE 19 - - - - 50 (0.1%) 113 (0.37%)
Java SE 20 - - - - - 48 (0.16%)
Java SE 21 - - - - - 1 (0.0%)
Classless 9598 (24.54%) 8154 (17.98%) 6676 (15.3%) 7374 (14.88%) 7084 (14.12%) 4223 (13.95%)
Unknown∗ 39 (0.1%) 8 (0.02%) 29 (0.07%) 7 (0.01%) 3 (0.01%) 4 (0.01%)

Table 10: The Java class version distribution for packages released in 2018-2023. ∗ Older Java versions use the same major class number and
cannot be identified.

B Maven Compiler Plugin: Compiler Flags

Command Line Argument Occurrences
-Xlint 32767
-Xep 18498
-parameters 7759
-J 3136
-Werror 1868
-Xpkginfo 1709
-A 1114
-err 682
-XDignore.symbol.file 657
-Xplugin 581
-XDcompilePolicy 567
-proc 473
--add-exports 407
-XepExcludedPaths 267
-bootclasspath 247
-Xdoclint 208
-verbose 178
-warn 162
--enable-preview 124
-Xmaxwarns 121
-Xdiags 114
-h 112
-XepDisableWarningsInGeneratedCode 95
-implicit 87
-Xmaxerrs 65
-g 54
-XepOpt 51
--module-version 50
--add-modules 41
-XepAllErrorsAsWarnings 32
-XDenableSunApiLintControl 17
-profile 17
-Xbootclasspath/p 11
--add-opens 9
-extdirs 9
-XepAllDisabledChecksAsWarnings 9
-XepIgnoreUnknownCheckNames 6
-cp 5
-XepDisableAllChecks 4
-processor 4
--patch-module 4
-XX 4
-XprintProcessorInfo 3
-XprintRounds 3
-sourcepath 2
-deprecation 2
--add-reads 2
-XoutputDirectory 1
-O 1
-add-opens 1
-Xbootclasspath 1

Table 11: Compiler flags.

	Introduction
	Related work
	Methodology
	Data Selection
	Data Extraction
	Java Modules (RQ 1)
	Java Versions (RQ 2)
	Compiler Configuration (RQ 3)

	Implementation

	Responsible Research
	Data Usage
	Reproducibility

	Results
	Data Sample
	How commonly used are Java modules? (RQ 1)
	What are the popular Java versions used by libraries? (RQ 2)
	How is the compiler configured in the POM? (RQ 3)

	Discussion
	Limitations

	Conclusion
	Java Version Distribution
	Maven Compiler Plugin: Compiler Flags

