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SUMMARY

Flow patterns near conical stagnation points in supersonic flow have
been investigated on the basis of potential flow. Near the con%ca]
stagnation point the non-linear equation for the conical velocity
potential reduces to the equation of Laplace. Solution of the

equation of Laplace for incompressible plane flow are then used as a
guide to generate conical stagnation point solutions. Apart from known
types of streamline patterns, such as nodes and saddle points,new types
are found. Among them are oblique saddle points, saddle-nodes, topo-
logical nodes and topological saddle points.

They may be used to explain certain questions in a number of practical
conical flow problems. The.oblique saddle point may be used to describe
the inviscid flow associated with flow separation and also certain
features of the flow over an external corner. The saddle-node, being
structurally unstable, may fall apart into a saddle and a node. It may
then be used to interprete the 1ift-off phenomenon of the singularity
in the flow around a circular cone at incidence as a bifurcation.
Similarly, this may be done for the appearance of a dividfng streamline
in the same flow at still higher angles of incidence, such that a
vortex system is formed at the leeward side of the cone.
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1.

INTRODUCTION

In three-dimensional gasdynamics the notion of conical flow has been
frequently used, in particular in supersonic flows past conically
shaped bodies. In conical flow, the velocity and the conditions
defining the state of the gas (pressure, density and temperature) are
constant along rays emanating from a common point, the centre of the
conical flow field. A conical flow may then be represented on a unit
sphere around this centre. The velocity vector may be decomposed into
a radial component and a component normal to the radius. From the latter
a ve]o;ity vector field tangent to the unit sphere may be constructed.
Integration of this vector field yields lines on the unit sphere which
will be called conical streamlines. Points where the tangential
velocity component vanishes will be called conical stagnation points.
In conical flows with entropy gradients the entropy remains constant
along conical streamlines. Then, if in a conical stagnation point
various conical streamlines merge, an entropy singularity or vortical
singularity is formed in such a point. This idea was put forward by
Ferri (1951) in relation to the supersonic flow past a circular cone
at incidence for which he also introduced the concept of the vortical
layer near the cone surface. Later investigations of the flow near
conical stagnation points show an emphasis of interest in the possible
conical streamline patterns, and related pressure distributions near
such points. Melnik (1967) constructed some solutions of the exact
inviscid conical flow equations in the neighbourhood of a conical
stagnation point on a body surface. These solutions involve entropy
gradients in the flow. When the streamline pattern was related to the
corresponding pressure distribution on the body surface, no unique
correspondence was found. Bakker (1977) showed that for these c
solutions a unique correspondence may be obtained if the pressure
distribution normal to the body surface is also taken into account.
Both papers indicate that the presence of entropy gradients does not
affect the qualitative behaviour of the streamline pattern correspond-
ing to a given pressure distribution. This result is further confirmed
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in the special case of the conical stagnation points in the flow past
slender circular cones at high incidence, when calculating using
slender body theory (Smith 1972), or linearized theory {Bakker &
Bannink 1974).

In viewof this,inthe present report a further study is made of conical
stagnation points, using the assumption of potential flow. An advantage
of this approach is that the non-]inear’equations for conical flow
reduce to a single second order‘equation for the conical potential for
which solutions are simpler to obtain. Moreover, in a conical stagna-
tion point, this equation becomes the equation of Laplace, which is
also satisfied by the velocity potential for an imcompressible plane
flow. Stagnation point solutions for incompressible plane flows may
then be used as a guide to solutions near conical stagnation points.
Also, a comparison of the two types of flows may be made by tracing
systematically the influence of the existence of the radial velocity
component in the case of conical flow. The analysis in the present
report reveals both known streamline patterns as well as new types.
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2. POTENTIAL FLOW SOLUTIONS NEAR CONICAL STAGNATION POINTS

Consider an inviscid, non heat conducting, perfect gas with ratio of
specific heats y = é% . If the flow is jrrotational, a velocity

potential & = &(x, y, z) may be introduced, such that V¢ = q = (u, v,
w), where u, v and w are the components of the velocity g along the x,

y and z axes in a right handed cartesian co-ordinate system, respect-
ively, figure 2.1.
\

FIG. 2.1: COORDINATE SYSTEMé AND VELOCITY COMPONENTS.

From the conservation of mass and momentum and the isentropic law, it
may be derived that ¢ satisfies

2 2 2_ 2 . L2 .2
(a® - u) o+ (a7 - v) ny + (a° - w9) ¢, - 2uv Qxy

-2 uw o, ~ 2w Qyz = 0, : (2.1)
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where the speed of sound is related to the velocity by

2
af =3 (v - 1) (a5, - v2- V- W), (2.2)
and Inax is the maximum speed corresponding to the total enthalpy,
which we assume to be constant throughout the flow field. Equations
(2.1) and (2.2) allow velocities to be non-dimensionalized by dividing

them by Upaxs 25 @ result we put q =1 1n (2.2).

max

We will take the origin (0, 0, 0) in the centre of the conical flow
field and the positive x along the ray corresponding to the conical
stagnation point. Introducing in(2.1) the conical variables n = y/x
and ¢ = z/x and the conical potential F defined by ‘

® = x F(n, ©) | (2.3)

yields

2 2 2 2
[a°(1 + n°) - (v - un)7] an + 2 [ang - (v - un)(w —‘uc)] Fnc

£ [a8(1 + 28y - (w - up)d Fre = 0 s (2.4)

where

u=F- nFn -¢F., v=F , w=F_ .~ (2.5)

¢ n c

In the (n, z) plane the conical streamlines obey the equation-

2
dz W~ ug -zF + nan + (1 +°)F

NV -un

> &, | (2.6)
-nF + (1 + n%) Fn + nch

It is sometimes convenient to work with polar co-ordinates n = p cos o,
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C=psing, -»<@<x, p>0; then the velocity components become

1 . . 1
u=F-pF ,v=F coso-=F sino,w=F singo+=F cos o,
o p P TSI I

(2.7)
and (2.4) can be written as
a? (F +LF 41 F ) + [azp2 - {pF - (1+ 2) F }ZJF
PP DZW e e _ 0 p PP
1 1 1 7
Nel(l - - 1 Q.
+2{F (p+o)Fo}(prw ?Fw)Fm (;ZFW+DFD);2 ’
(2.8)
whereas the conical streamlines obey the equation
(1+0%) o?F -o%F
do _ . o 2.9
P- - (2.9)

0]

The direction of flow on a conical streamline may be obtained from

d . d

x?'tl=v-un,xa,%=w-ug, | (2.10)
or

do _ 2 - do _ 1

Xqe = (L+e) Fo-oF , xgp==F (2.11)

where t indicates time.

With the chosen co-ordinate system, the conical stagnation point is
located inn =7 = 0 and since v = w = 0 there, (2.4) yields

Fin(0s 0) + F (0, 0) =0 . (2.12)
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If the velocity components are assumed to be continuous in a neighbour-
hood of the origin, (2.12) shows that (2.4) in this neighbourhood is
approximately the equation of Laplace, which is also satisfied by the
velocity potential in incompressible plane flow. In polar co-ordinates,
stagnation point solutions for plane incompressible flow are given by

¢ =a, o" cos (ng + wn) s, n>1, (2.13)
where aps ¥, are constants. They represent flows in corners with opening
angles a = %; thus 0 < o < m. The streamline pattern is well known.

In analogy, we seek conical stagnation point solutions of (2.8) in the
form of the series expansion

F=Fy+o Flo) + 0" Fp(@) +o(e") , 1<n<m, - (2.14)

where F0 is a constant, which is irrelevant in plane flow. In conical
flow, however, FO, which equals the non-dimensionalized radial velocity
component Uy in the conical stagnation point {equation (2.5)), enters
in the conical streamline pattern (equation (2.6)). As a result,
depending on its magnitude, it may have a significant effect on this
streamline pattern. In th%s reportwe only consider supersonic conical
stagnation points, so that 3 < |F0| < 1, where ag is the speed of
sound in the conical stagnation point.

It may be useful to remark, that positive and negative values of FO

are allowed in the present analysis; in most practical flow situations,
however, F0 > 0.

If (2.14) is substituted into (2.8) and the result ordered with respect
to powers in p, the coefficient of the lowest order term appears to be
2

F; +n°F =0 (2.15)



with the solutions

Fn(w) =a_cos (ne + wn) s, h>1 ' (2.16)

n
where a, and Y, are arbitrary constants. Thus this term exactly equals
the stagnation point solution for plane flow (see (2.13)). We may use
the freedom, still existing in the choice of the co-ordinate system,
to rotate the co-ordinate system around the x-axis such that wn =0 in
(2.16). _

When the next higher order terms are written out; several cases for n
and m have to be distinguished. After equating the coefficient of the
next lowest order term to zero there follows ’

l<n<?
F'4emlF =0 | n<m< 3n-2
m m L] 3
: (2.17)
n 2 3 -2 -3 -2 12
Fp t Fp = n7(n-1) ag~ F, + n(n-1) a Fn(Fn) » M= 3n-2, (2.18)
n(n-1) F, [nz F2 (Fr'])z] =0 , m> 3n-2, (2.19)
with the solutions
Fm(w) = bm cos {mp + wm) ' -5 N<m<3n-2,(2.20)
n2a3 .
Fm(w) = bm cos (mp + wm) + cos ny , m= 3n-2, (2.21)

2
4a0(2n-1)
whereas (2.19) yields Fn(w) £ 0, which means that m > 3n-2 cannot occur.
In (2.20), (2.21) bm and b, are arbitrary constants.

n=2

u 2 :
Fatm Fm =0 » 2<m<4, (2.22)



with the solutions

F(®)

()

m=4, (2.
F [a2 c(Fo- k) (- ) (F)P=0,m>4 (2
2170 0 2 0 2 2 ? ? :
by, cos (mo + wm) ,2<m< 4, (2
ag Fo az(ag - FS - 4a§)
bm cos (mp + wm) - > - 5 - cos 2¢ ,
2a 6a
0 0

,m=4, (2.

whereas (2.24) yields Fz(w) = 0, which indicates that m > 4 cannot
occur. In (2.25), (2.26) by and v, are arbitrary constants.

n>?2 :
Fll + 2 F =0 n<mc«< n+2
m m ’ ’
" 2 F(Z)
0
2 2 _
n(n-1) (a0 - FO) F, =0 , M > n+2,

with the solutions

bm cos (mp + wm) , h <m<n+2,
(n-1) i
n(n-
b, cos (mo + yp) - %5 2, (1 - —§> cos ny,
m--n ag :
, M= n+2,

(2.

(2.

(2.

.25)

26)

.27)

28)

29)

30)

.31)
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whereas (2.29) yields Fn(w) = 0, which means that m > n+2 cannot occur.
In (2.30), (2.31) b, and b, are arbitrary constants. Figure 2.2 shows

the values of n and m for which it is possible to determine the functions
Fn(w) and Fm(w) in the expansion given by (2.14).

— N

FIG. 2.2: VALUES OF n AND m FOR WHICH Fal®) AND Fm(\P) EXIST.

With the aid of the Tisted solutions for the conical velocity potential
and (2.6) or (2.9) the conical streamline pattern near the conical
stagnétion point may be determined. The pressure distribution follows
from the relation

(%)T i ('_a_>2 1= (v e ud ’ (2.32)

where the zero subscript indicates conditions in the conical stagnation
point.
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3. FIRST ORDER SOLUTIONS NEAR CONICAL STAGNATION POINTS (FIRST ORDER
SINGULARITIES)

3.1. The equation of the conical streamlines

The conical streamline pattern near a conical stagnation point is
obtained by substitution of the solutions for Fn(m) and Fm(w) into the
differential equations (2.6) or (2.9).

Then, after expanding the conical potential (2.14) and its derivatives
in powers of p, we obtain '

-0 Fy 4 n o™ F (0) + (n-1) O™ F (@) + o™ Fylo) + o(s™")

gs

o" Fl(0) + 0" F () + ofo")

(3.1)
where m > n.
The correct order of terms in the numerater of (3.1) depends upon the
relative value of m + 1 with respect to n + 3, a knowledge which is not
present a priori.
Therefore in the following,n and m are assumed to have known values.
Now, if a parameter T is introduced, the qualitative behaviour of the
integral curves near p = 0 may be found by the investigation of (3.1)
as a system in the (p,p)plane, then

]

d 3- 3 -n+1 -+l
T=-0" " FytnpF (0) +(n-1) o° F (o) +m "R F(0) + oo™ )
do _ -n o -

L=F0) + 0" Foe) + oo™ . (3.2)

The singular points of this system at p = 0 are in ¢ = ® 5 where @ may
be determined if the functions‘Fn(w) and Fm(w) are specified.
The conical streamlines near p = 0 are governed by the solution of the
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system (3.2) in the vicinity of its singular points; this solution may
be obtained by local linearization. It may be shown (Andronov et al.
1973 p. 126) that for non vanishing real parts of the eigenvalues of
the coefficient matrix of the linearized system the higher order terms
do not modify the Tlocal character of the integral curves. These
particular solutions are called first order solutions and consequently
the corresponding conical stagnation points are defined as first order
singularities. ,

In the cases where one of the real parts of the eigenvalues is zero,
higher order terms have to be retained 1in the analysis; they will be
discussed in paragraph 4.

ObTique saddle points (1 <.n < 2)

Substitution of (2.16), (2.20), (2.21) into (2.14), and (2.14) into
(2.9) leads to the equation for the conical streamlines

na pn+1 cos ng - F0 p3 +()(p

m+1
n )

(3.3)

&ls
n

-na, pn sin ng +(7(pm)

Introducing a parameter T along the streamlines, we investigate (3.3)
as a system in the (¢, p) plane. Then

%}__’ = - sin np +O(™ ") ,
. (3.4)

0 3-n; m-n+l
o 00"

do

dt

= p COS ny -

The singular points of this system for p = 0 are in ¢ = %% (k =0, +1,

+ 2, ...), which appear to be saddle points for the Tocally linearized

system. It may be shown that the real parts of the eigenvalues of this
system are non zero, so the higher order terms do not modify the saddle
point character of these singular points. Retaining only the Towest
order terms in (3.4) yields, upon integration, the approximate shape




-12-
of the conical streamlines
n .
o sinng=2C, (3.5)

where C > 0 is a constant. It is well known that-(3.5) also represents
the streamlines in an incompressible stagnation point flow. Equation
(3.5) represents the streamline pattern for a fiow in a corner with an
including angle o = % , thus % <a<wforl<n< 2. Obviously, it is
not possible to fill out a full neighbourhood (0 < ¢ < 2w) of the
conical stagnation point with corner flows, such that the velocity is
continuous. The conical stagnation point can therefore only occur on a
body surface, with one or more streamlines coinciding with the body

surface.

From (2.7) and (2.14) the velocity components may be obtained as

| =
n

F0 - (n-1) a, pn cos ng +C)(pm),

B n-1 0 m-1
v=na o cos {n-1) o +0{p 7) (3.6)
n-1

W= -na p sin (n-1) ¢ +()(pm-1)-

The pressure distribution then follows from (2.32) and (3.6)

y-1 n? a2
(59-) =1 - — B2 O™ (3.7)
0 1-FS -

The pressure attains a maximum in the conical stagnation point, and the
isobars are to a first approximation concentric circles around the
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origin, as shown in figure 3.1 by the dashed lines. Also shown in figure
3.1 is the streamline pattern in a corner kr% << (k+1)-% . The direc-
tion of flow on these streamlines corresponds to a, cos km < 0; if

a, cos kr > 0 the f]ow direction should be reversed. This follows from
(2.11), (2.14), (2.16), (2.20), (2.21) which yield

dp _ n-1 _ m-1
X g = "3, p cos ny Fo 0 4—(7(0 ) . (3.8)

\Q“lines
w

TITTTTTVTTTTTTT77

w s ntin-1)
n

) isobars

FIG. 3.1 : OBLIQUE SADDLE [(1<n<2)

Oblique saddle points as stagnation points occur in the corner point of
the supersonic flow past an external axial corner. This type of flow
was treated numerically by Kutler & Shankar (1976). It was also ana-
lyzed by Salas & Daywitt (1978) on the basis of the assumption that

the velocity and pressure gradient at the corner point are regular.
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Equations (3.6), (3.7) show, however, that saddle point solutions are
possible with singular gradients if the including angle is between % T
and 7 rad. As a result, the Kutler-Shankar model for symmetric and
asymmetric flow past the corner is not necessarily based on a wrong
boundary condition at the corner, as stated by Salas & Daywitt (1978).
Moreover, the conclusions given by Salas & Daywitt (1978) for the flow
structure near the symmetric corner are hindered by the fact that in
their analysis the determinant of the Hessian matrix for the pressure
is incorrect, it should be divided by a s1'n2 8, which vanishes at the

conical stagnation point.

Nodes and saddle points (n = 2)

Substitution of (2.16), (2.25), (2.26) into (2.14) and (2.14) into (2.6)
leads to the equation for the conical streamlines

-(2a2+F0)g+(mFmsinw+F$cosw)pm'1+azp3sin¢£052w+0(pm+l)

dz _ , (3.9)
dn ' m-1,. 3 m+1
(2a,-F )+ (mF_cose-F_sing)p™ “+a,p° cosgcos2o+((o" )
2°0 m m 2
S22\ -1, -1 . .
where p = (n° + ¢“)%, o = tan ~ (n = z). When (3.9) is written as a

system and only the linear terms are retained, there follows

Pe(-1+2)n,

(3.10)
dc _
E.E = (-1 = 2>‘) n s

wheére A = a Fal, A may be identified with the value of the derivatives

1 dv 1%dw . . e .
Ea'aﬁ or U;'HE in the conical stagnation point.
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The eigenvalue of the coefficient matrix are

uy p = -1+ 2, (3.11)
From (3.11) we may conclude that for || = 1} the eigenvalues are zero
and consequently higher order singularities occur.

For |X| # 3 none of the eigenvalues H1,2 is equal to zero and the
solutions of (3.10) may be expected to give an approximation of the
streamline pattern near the conical stagnation point. Equations (2.25),
(2.26), however, show that for 2 <m < 3, 3 < m < 4 the function Fm(w)
is not periodic with period 2w, therefore it is not possible to fill
out alfull neighbourhood of the stagnation point, .such that the
velocity is continuous. For 2 <m< 3 and 3 <m < 4 parts of the
solutions between streamlines may be used to construct flows near
conical stagnation points on a body surface. If m = 3 or m = 4 the
behaviour of Fm(w) does not hinder the conical stagnation point to
appear in the flow field away from a body surface. If this remains to
be true when all higher order terms are added, the point can be
realized in the flow, and the character of the singularity in the
streamline pattern is determined by (3.10) (Coddington & Levinson 1955).
The singularity of (3.10) is a starlike node for A = 0, and a node
with two perpendicular approach directions for the streamlines for

0 < |A| < 3, whereas it is a saddle point with orthogonal separatrices
for |x| > }. It may be observed that a large value of |A| corresponds
to a value of Fo (FO = Uy = radial velocity in the conical stagnation
point), being small compared to ay, which is the stagnation point
solution in incompressible flow. The flow pattern then resembles that
which is also observed in incompressible plane flow. If |A| is
decreased, the radial velocity becomes more dominant and for [A| < }
the streamline pattern forms a node, which is not observed in incom-
pressible plane flow.
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Sketches of the conical streamline pattern are given in figure 3.2 for
FO > 03 for F0 < 0 the direction of the streamlines is reversed.

a. conical streamlines

-3>A -5 <A<0 A:0 0<h <i vl>%
* S
_ /\ /- Tl - _
0 > ( — R >
.1/ ) (\ p=p°+0(pg‘%) . - - -

FIG. 3.2 : MOGES AND SADDLES (n=2, m=30R 4, || %)

The direction may be obtained fr‘oni

x =2k - 1) n+ 0+ DY
(3.12)
x g = 2000+ 1) 0 +O(° + DY),

which may be derived from {2.10), (2.5), (2.14).
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From (2.7), (2.14) the velocity components may be obtained to be

2

u = F0 - a, p" cos 2¢ -~ (m-1) oM Fm + 0(pm) R

v = 2a, p cos ¢ + (mF_ cos w—F; sin o) pm-l + o(pm_l) , (3.13)
. . ' m-1 m-1

W = —2a2 o sin @ + (mFm sin ¢ + F cos ®) p +o(p 7).

The pressure distribution then follows from (2.32), (3.13)

y-1
Ea o Fh ) )
(Jl) =l-—— (A=) n"+ (A +13)° + o(p™) . (3.14)
Po 1-Fg

A sketch of the isobars is given in figure 3.2.

If |A] >}, thus when a saddle point singularity for the streamlines
occurs, the pressure attains a maximum in the conical stagnation point
and the isobars are to a first approximation concentric ellipses
around the origin. Again the similarity with the incompressible case
(and the case 1 < n < 2) is obvious. If 0 < |A| < 1 - the streamlines
then have a nodal singularity - the isobars are to a first approxima-
tion concentric hyperbolas with asymptotes given by

1
z =+ 2 $n . © (3.15)

In the regions within the acute angle between the asymptotes the

pressure is higher than in the conical stagnation point, whereas in the
other regions the pressure is lower. Comparison of the isobars with the
streamline pattern shows that in the direction along which an infinite
number of streamlines approach, the pressure has a minimum, whereas in
the direction along which only one streamline approaches,the pressure has
a maximum. For A = O the pressure does not change to the order %2% in




3.4.

-18-

the distance from thelconical stagnation point; this case actually
corresponds to n > 2 and will be further discussed later. The singular-
jties in the streamline patterns, discussed in this section belong

to the class of structurally stable singularities and consist of nodes
and saddle points. They are structurally stable in the sense that
small changes in the flow solutions, for instance, caused by small
changes in a parameter, such as the angle of incidence of a conical
body, leave the character of the singularity invariant. These nodes

and saddle points are mentioned in the conical flow literature at
various places; in fact they already appear in the first paper on this
subject (Ferri 1951). Particular attention has been given to the
conical stagnation point(s) in the leeward symmetry plane of the
supersonic flow past a circular cone at incidence. The change of the
nodal character in this point on the body surface with angle of
incidence up to moderate angles of incidence is discussed in several
references, i.e. Melnik (1967), Smith (1972), Bakker & Bannink (1974)
and Bakker (1977).

Starlike nodes n > 2

Substitution of (2.16), (2.30), (2.31) into (2.14),and (2.14) into (2.9)
leads to the equation for the conical streamlines

dp -FO p3 +nag pn+1 cos nY +O(pm+1)
d_ = n - m (3.16)
® -na o sin ng +()(p )

which, in fact, is equal to (3.3) for the case 1 < n < 2.

Comparison of (3.3) and (3.16), however, shows the more dominating
influence of the (radial) velocity component F, in the conical stag-
nation point in the case n > 2. Introducing the parameter t along

the streamlines we investigate (3.16) as a system in the (¢, o) plane,
where ¢ = pn—2 (o > 0), instead of p the variable o is used in order
to arrive at a system which is analytic in its leading terms.
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Then
m-n

do _ _ . n-

T = "N, sin no + C)(O' 2} , 1
' m-n 3.17

do 0 1+ n-

e -(n-2) F0 + n(n-2) a, o cos ne + o . -

The line o = 0 thus contains only regular points of (3.17), as a
result of which through any point of this line there exists a unique
integral curve of (3.17), figure 3.3.

1 N | ¥ ] L L] ¥ | IR AA MR}
(k-1IT kT {kellU ——» ny

HG.33:INTEGRAL CURVES IN THE (¢, o) PLANE [n>2)

Correspondingly, in the (n, ¢) plane, there is one and only one
streamline, approaching the origin in any direction within a sector
near the conical stagnation point. It is natural from (3.16) to
consider sectors w1th an opening angle, which is a multiple of o= %
rad, thus 0 < a < ? for n > 2. »

If n is not an integer, it is not possible to fill out a full neighbour-
hood of the conical stagnation point with these sectors, such that the
velocity is continuous. Such flowsmay therefore only be obtained near
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a conical stagnation point on a body surface. Conical stagnation points
away from a body surface can only occur if n is an integer. Sketches of
the streamline patterns are given in figure 3.4 (F0 > 0).

T .
tket) 5 (ke) T
1,370
< T L T
*

T T
k?; - kﬁ-

— — 1

a. conical streamlines b. isobars

FIG. 3.4: STARLIKE NODE (n>2)

Substituting (2.16), (2.30) into (2.14) and using (2.7), we obtain for
the pressure distribution, from (2.32)

v
-1 . 2F.(n-1) a _
(J'L) =1 =0 1" cos o + O(o") +0(0%™%) . (3.18)
- \Pg 1-Fg :

The isobar pattern resulting from (3.18) shows a saddle character and
is also sketched in figure 3.4.

Comparison with the incompressible plane stagnation point solution,
which is a saddle point type flow in a corner with opening angle less
than ©/2 rad, shows that the dominance of F0 makes such a flow
jmpossible in conical stagnation point flows. It should-be stressed,
however, that this result is obtained under the assumption of
potential flow and need not be valid in flows with entropy gradients.
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In fact, preliminary calculations show that such corner flows with
entropy gradients exist. In conjunction with ob]iqde saddle point
flows, they may probably be used to describe the structure of inviscid
flow near flow separation from a body surface such as the flow past a
circular cone at high angles of incidence. This structure was inves-
tigated by Fletcher(1975),Bannink & Nebbeling(1978),McRae & Hussaini
(1978),NebbeTing & Bannink(1978).

An example of the singularity for n >'2 is the conical stagnation point

in a parallel flow (then a, = 0).




4.

4.1.

-92-

HIGHER ORDER SOLUTIONS NEAR CONICAL STAGNATION POINTS (HIGHER ORDER

SINGULARITIES)

In the previous paragraph there was pointed out that higher order
singularities occur only in the case n = 2, because then, for (Al = 3,
one of the eigenvalues Hy,2 given by (3.11) is equal to zero and the
non-Tinear terms in (3.9) cannot be neglected when considering the
streamline pattern. From (3.9) it is clear that we should distinguish
two cases: 2 <m< 4 and m = 4.

Saddle-nodes, topological saddle points, topological nodes (2 < m < 4)

¥

For X = + } equations (2.14), (2.16), (2.25) show that the conical
potential may be written as

2

F=Fy[l+3p" cos 20+ %# o" cos (me + V) + o(e™1 , (4.1)

where u = ;;T . We restrict ourselves to A = -1; the case A = } may be
obtained by taking the minus sign in (4.1) and replacing ¢ and Y by

© +-§ and Yy - m-% , respectively. Substition of (4.1) into (2.9) leads
to the equation for the conical streamlines

o cos? o + 1 o™ L cos (mo + yy) +0(o°)
- m-2

4 (4.2)

sin @ cos @ - wp °sin (mp + Yy ) + O(Dm-z)

Using the parameter T along the streamlines, we investigate (4.2) as a
system in the (¢, o) plane, where o = pm'2 (o > 0). Then

do _ _. _ .
T = Sinwcos ¢ - uosin (mp + ¢m) + o(c) s

L (4.3)

do cos (myp + wm) +()<o )

dt

2 2

= =(m-2) o cos“ @+ (m-2) uo
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/}The singular points of this system for ¢ = 0 are in ¢ = 9, = am (2 =
0, +1, +2, ...). Expanding with respect to ¢ - @, and retaining on]y
terms up till second order yields from (4.3)

d 2
= ab+ (—a2 +6%)( - 9) - Ay 0 - 28(0 - 9,) - mB,(6 - )0

%% = -(m-2) b2 o + 2(m-2) ab(w - ©,) o+ (m-2) B, . (4.4)

where a = sin @, b = cos @5 Az = p sin (mml + ), B, = u.cos(mw2-+¢m).
There are two cases: % even, a = 0, b = 1 and % odd, a2 = 1, b = 0.
If (4.4) is linearized the eigenvalues of the coefficient matrix are

given by

up = -a% + b2, uy = =(m-2) b2 . (4.5)

If 2 is even, ¢ = > O = 0 is a saddle point, also for the non-linear
system (4.4). Sketches of the streamline pattern in the (¢, o) plane
are given in figure 4.1. The separatrices make the angle w with the

© -0, axis, where w = 0 or tan-l(m-l) Agl. The flow direction corres-
ponds to F0 > 0. It should be noted that only o > 0 is of interest for

the present investigation.

X A A
\ S

A’>0

FIG. 4.1 : PATTERN OF CONICAL STREAMLINES IN[¥,d)PLANE NEAR

P=@:=F1.0:022,24, ... (n=22<m<4, N=-1)
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If & is odd, (4.5) yields Wy o= -1, Hy = 0 and higher order terms cannot
be negiected. Expanding (4.3) and retaining only terms ti1l third order
yields

d
a%=-(<p-cp2)-Azo-mBQ(w-wl)c,

(4.6)

49 _ (n-2) B, o - (n-2)(0 - 0)% & - M(n-2) Aylo - 9y) o

For v = ¢, 0 = 0 system (4.6) has a multiple equilibrium point with
W+ Uy = -1 # 0. This permits us to follow the line of analysis given
by Andronov et al. (1973) and summirized in the Appendix.

Take first Al # 0. Then, by the change of variables ¢* = (¢ - wz) -
Al g, o* = —AQ o and T* = -1, we obtain from (4.6)

B B
9% e mgk or or 4 2(m1) g o <O + )P,
£ 2
(4.7)
B .
%
2 w2y o Ot )
from which follows that %%; = 0 on the curve
' By 2 Otox3
o* = fo*) = '2({"'1) —A—Q o+ +U(o*") (4.8)

and that on this curve
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do* K k1 By .2

IF = b4 o +()(o* ) = (m-2) K; o*" - (m-1)(m-2) o3 4 Cko*4)

(4.9)

For'B2 # 0, there follows k = 2, and, according to Theorem I in the
Appendix the equilibrium point is .a saddle-node. It has one parabolic
(nogal type) sector and two hyperbolic (saddle point type), sectors.
If-K—- <0 the hyperbolic sectors contain a segment of the positive o*
axis and if K” > 0 they contain a segment of the negative o* axis.

For B = 0, there follows k = 3, Ak < 0 and the equilibrium point is a
topo]ogica] saddle point, whose separatrices are directed along the o*,
o* axes.

For Al'# 0 the streamline pattern may now be sketched in the (¢, o)
plane, as is done in figure 4.2a. The separatrices include an angle w
with the ¢ - ¢, axis, where v = 0 or tan”! Ail, the latter value also
indicating the approach direction for streamlines in a nodal part of
the singularity. The flow directions in figure 4.%a correspond to

F0 > 0. It should be noted that only o > 0 is of interest for the
present investigation.

Now take A2 = 0. Since AE + BE = uz, and u = 0 cannot wccur in the
proposed expansion given in (4.1), AZ = 0 implies B2 # 0. Then, by the
change of variables ¢* = ¢ - @y> 0* = o and t* = -1, (4.6) becomes

g—(f; ('p*+mBJL (p* 0* R i

(4.10)

0% = -(2) B, % +O((e2 + ¥D)Y/?)
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Ay<0.B;>0 Ay=0,8)>0 A;>0,B;>0
/ ‘é
p
AI<O,B‘=0

A;<0.By<0 A)=0.B)<0 Ay>0,B)<0

a. conical streamiines

-
P W,

WA ) o T
— \ C S
B;<0 By=0 B;>0

b.isobars.

FIG. 4.2 : PATTERN OF CONICAL STREAMLINES AND ISOBARS IN

(¥, c)PLANE NEAR 9=9; = %1,1: +1,£3,........
(n=2,2<m<4, N =-13)
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from which fo]]ows that dw* = 0 on the curve

dt*
= f(o*) =0 , (4.11)
and that on this curve
%g; = B o%k +()(o*k+1) = -(m-2) B, 0*2-+(7(0*3) . (4.12)

Thus, since k = 2, the equilibrium point is a saddle-node. If Bz > 0,
the hyperbolic sectors contain a segment of the positive o* axis, if
B2 < 0 a segment of the negative o* axis. The streamline pattern for
2 = 0 is also sketched in the (¢, o) plane, figure 4.2a.
The possible streamline patterns near ¢ = ©y5 3s described above, may
now be used to determine the streamline patterns in the (n, ) plane.
Obviously, only in the case m = 3 the behaviour of Fm(@) does not
hinder the conical stagnation point to appear in a flow field away
from a body surface. If higher order terms permit so, we may then
derive the following streamline pattern for such a conical stagnation
point. We restrict the range of ¢ to 0 < ¢ < 2w, thus ¢ = 0, 9] = /2,
Wy =T 3 = %; If = @ (= 0) or @, (= m) there is only one
streamline approaching the stagnation point and for FO > 0 the stream-
Tine flows towards this point. If ¢ = o (= n/2) or ©3 (= 3%/2) there
are two possibilities: there is either only one streamline approaching
the stagnation point and for F0 > 0 this streamline flows away from
this point (B2
flowing towards the stagnation point (F >0, B < 0). Since, moreover,
for m = 3, B, = B4, there are three poss1b111t1es (i) By =0, B3 =03
(ii) B, >0, By < 0; (111) B, <0, Bs > 0.
It may be shown that the singular points of the system (4.3) are all
isolated. This means that each singular point has a neighbourhood

> 0), or there are an infinite number of streamlines

37
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containing no other singular points than itself.

The argumentation given above leads to two types of streamline patterns
in the (n, g) plane: 1) topological saddle points (B1 = B3 = 0); 2)
saddle-nodes (B1 #0, B3 # 0). Sketches of these flow patterns are given
in figure 4.3a; with flow directions corresponding to F0 > 0.

B,<0,B3>0 B,=0,B53:0 B4>0,83<0

) -
~N© O /N

a. conical streamlines

N7\
NN

b.isobars

FIG.4.3: SADDLES AND SADDLE - NODES {n=2,m=3, A=-"2)

If 2<m< 3, 3<m< 4, equation (4.1) shows that it is not possible
to fill out a full neighbourhood of the conical Stagnation point with
these solutions, such that the velocity is continuous. Parts of thése
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so]htions may be used, however, to construct flows near a conical
stagnation point on a body surface. It may easily be seen that the
maximum sector through which such a solution can be extended is equal
to %g ; without loss of generality we may take 0 < ¢ s-%; . From
figures 4.1 and 4.2 it may become apparent that four relevant
combinations of B1 and B3 can be made: (1) B1 <0, 83 > 05 (i) B1 >0,
B3 > 03 (id1) B1 < @0, B3 < 0; (iv) B1 > 0, B3 < 0. The corresponding
streamline patterns for Fo > 0 are shown in figure 4.4a.

They may be called a partial saddle-node, a partial saddle, a partial
node, and a parffa] saddle-node, respectively.

We now come to the determination of the isobars corresponding to the
established streamline patterns. From (2.7), (4.1) the velocity com-
ponents may be obtained to be

u=F, [1 + 30% cos 29 - 2 Bl o cos (mo + ) O(Om)] ,

1 cos {(m-l) 0+ Wm} . o(bm'l)], (4.13)

v = Fy [-p cos @ + 2u p™

W= Fy [p sin ¢ - 2p pm-l sin {(m-l) o+ wm} + O(pm_l)],

and for the pressure distribution there follows

13@‘1 2F5 .
_(po) =1- [ 6 (¢ p) + o(d") (4.14)

where G(y, p) = p2 cos2 ® - 2u pm [2 COS ¢ €OS {(m—l) @+ wm} + é
- 5 cos (mp + wm)] . v
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By<0 ~ By=0 "~ - By<0 ~
8320 B3<0 B3<0

a . conical streamlines

: \\V//

B1<0
53 0

b . isobars

FIG . 4.4 - PARTIAL SADDLE-NODES, - TOPOLOGICAL SADDLES
AND TOPOLOGICAL NGCDES [(n=2,2<m<3,
3<m<4, N=-12)
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The isobars.are, in first approximation, given by the Tines G = constant,
which are easier to analyse as solutions of the differential equation

36 m-1
(dp) - .0 _psinocos o+ pp - fp) , (4.15)
de G=constant_ %% cos® @-pm p""2 (o)
where
() = 2 cos o cos [(m-l) © + wm] —-% cos (mp + wm) . . (4.16)

Introducing a parameter T along the isobars we may investigate (4.15)
as a system-in the (p, o) plane, where ¢ = pm_2 (o > 0). Then

%% = cos2 @ -pumao flo) ,

(4.17)
do _ 2 . 2 2f' v
o (m-2) o sin ¢ cos ¢ + p(m-2) o (v) .
The singular points of this system for ¢ = 0 are in ® =0 = 2 %
(2 =+1, +3, ...). Expanding with respect to ¢ - @, and retaining

terms till the third order yields

d 2 2
El% Bg o+m A2 o (¢ - Lpl) + (¢ - cpz) - im(4-3m) B,Q, of{p - (02) s
(4.18)

do
dt

-(m2) Ay o - (m-2) (0 - @) + (m-2) (4-3m) B, o0 - @)

For B2 # 0 the eigenvalues of the linearized system are equal to zero
and, similarly as before, we will follow the line of analysis given in
Andronov et al. (1973), see Appendix, to investigate the integral paths
of (4.18). For the curve on which g% = 0 may be found
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'o‘=——B—1£(q)- +O( '@2' 3) s (4‘19)

and on this curve there is

g—i=Ak (w-wl}k+0{(w-w2)k+l} %%(co @) +O{w wl)}
. (4.20)

Hence, it follows that k = 3 and Theorem II (Appendix) may be applied.
As a result the equilibrium point appears to be a topological saddle
point. Sketches of the isobars in the (¢, o) plane are given in figure
4.2b.

For Bl = 0,(4.18) may be integrated to yield
2

m-2
(ZAQ o+ cp—goz) o

(0 - 9) =C, (4.21)
where C is a constant. The isobars for this case are also given in
figure 4.2b. The singularity involves six hyperbolix sectors and
separatrices along the ¢ axis, the ¢ axis and the line o = -A ( - wl)
(A, # 0,since B, = 0 and A2 4 B2 # 0). It should be noted that only

o >0 is of interest in th1s 1nvest1gation.

The isobar patterns in the (¢, o) plane near © = @), as described above,
may now be used to determine the isobars in the (n, r) plane. For m = 3
these isobar patterns are sketched in figure 4.3b, and two types are
encountered: (i) a topological saddle point (B1 = 83 = 0); (ii) a
degenerated saddle point (B1 #0, B3 # 0). For 2 <m< 4 (m# 3) the
jsobar patterns are sketched in figure 4.4b. In figures 4.3b and 4.4b
regions with a pressure higher than in the stagnation point are
indicated by a plus sign, whereas a lower pressure is indicated by a
minus sign.
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4.2. Topological saddle points, topological nodes (m = 4)

For A = + } equations (2.14), (2.16), (2.26) show that the conical
potential may be written as

F = FO [1 + 3 p2 cos 2y + p4 {% u cos (4o + w4) +

-gmid (1- 2M2) cos 2¢>} ro(eh  (4.22)

mb F
where u = ?Fm , and M0 = _Q is the Mach number in the conical stagnation

point. We restrict ourse]ves to A = -1, since .the results for A= +1 may
be obtained by replacing ¢ by ¢ + %. Substitution of (4.22) into (2.6)
leads to the equation for the streamlines

i -20m3—[-%(1+M2)+6B]n2c+60mC2+[%(1+M2)+ZB]€3+0((nz :2)3/2)

dn -2n-[g(1+7M )- 2s]n 6om z+[5 (1 Mz) -6B8Ing +2a£ +0((n +§2)3/2)
(4.23)
where a = p sin Ygs B = 1 cos by The point n = £ = 0 is a multiple

equilibrium point, which may be analyzed similarly as in previous cases.
Applying Theorem I of the Appendix we find that the point is a
topological node for B < - T% (1 + Mg) and a topological saddle point

for 8 > - T%,(l + Mg). For B = - T% (1 + MS) and o # 0, also a

topoligical saddle point occurs. The case g = - T% (1 + MS) and a = 0
cannot be considered without taking into account higher order terms in

the expansion for F.
The isobars are the integral paths of the differential equation

d n+( 78+ % 49 2)n3+15°‘” c-(-96+ I- %MS)HCZ_M ro((n242)¥/2)

dn - -5an +( 98+ % % Mg) §+3anc2-<8+ I% g I%)C +0((n +C2)3/2) g
(4.24) !
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Following again the Appendix Theorem II yields that for B < - 112 (1 + Mg)
and for B = - Tlf (1 + MO) but o # 0 the isobars form a topological saddle
point whereas for B8 > - —1—12 (1 + Mg) a centrepoint singularity occurs.,
Streamline patterns for F0 > 0 and isobars are sketched in figure 4.5.

1¢M2
B<—T‘O

a . conical streamlines.

N .
2/

S B

(D)
N

W/
Woe

FIG. 45 : TOPOLOGICAL kSADDLESI AND NODES.
(n=2.m=4, A=-1)
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4.3. Discussion of results

The higher order singularities, only occurring for n = 2 and Al = %,
discussed in the preceding sections of this paragraph are structurally
unstable. The singularities consist of saddle-nodes, topological saddles
and topological nodes. The structural instability will manifest itself
in such a way that small changes in a flow parameter cause bifurcation,
as a result of which the topological character of the streamline pattern
changes (Andronov et al. 1971).

For example, the 1ift-off phenomenon of the singularity occurring in the
supersonic flow field past a circular cone at high incidences leads the
attention to these singularities. The 1ift-off phenomenon may then be/
viewed as a bifurcation phenomenon. At the 1ift-off angle of incidence
the body conical stagnation point in the leeward symmetry plane would

be a saddle-node. The nodal paft would be formed by the streamlines
outside of the body surface. The saddle part would be found if the flow
around the body would be extended inside the body. Increasing the angle
of incidence beyond the 1ift-off angle makes the saddle-node fall apart
into a saddle point attached to the cone surface and a nodal point
moving away from the body surface. Decreasing the angle of incidence
below the Tift-off angle would leave a nodal point on the cone surface
and create a saddle point moving into the solution inside the cone. The
calculations made by Bakker & Bannink (1974) to investigate conical
stagnation points within the framework of slender body theory may be
used to support the bifurcation point of view of the 1ift-off phenomenon.
In experiments viscosity tends to obscure the 1ift-off phenomenon, which
starts at a point of the body surface, so that the boundary layer is
dominant. This may be observed i.e. in the experiments reported by
Bannink & Nebbeling (1978) and Nebbeling & Bannink (1978). In these
experiments the flow field past a cone with 7.5° semi-apex angle was
investigated at angles of incidence from 17° to 22° in a supersonic flow
with a Mach number of 2.94. It was observed that, at high incidences,
flow separation leads to the generation of a vortex system at the leeward
side of the cone. The appearance of a dividing streamline, separating
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the vortex system from the remainder of the flow field, may be explained
in terms of another bifurcation occurring in the flow field. A known
bifurcation of a saddle-node is its falling apart into either a saddle
and a node or its disappearance leaving no singularity at all. The
occurrence of the dividing streamline and the related saddle point in
the leeward symmetry plane, accompanied by a nodal conical stagnation
point higher above the cone surface may then be understood as a bifur-
cation from a saddle-node singularity éppearing in the flow field at
some angle of incidence between 179 and 22°.
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. CONCLUSIONS

The main results obtained in this report are summarized in the following:

Solutions of the Laplace equation, describing the incompressible plane
flow between two intersecting walls are useful as a guide to generate
solutions near conical stagnation points in a potential conical flow.
Conical stagnation point solutions may be subdivided into first order
structurally stable and higher order structurally unstable solutions.
In the class of first order singularities, conical streamline patterns
such as nodes and saddles, already knownin the literature, are found.
In addition an oblique saddle point flow pattern is found inside a
corner with an including angle between % and 7 rad. The first order
singularities are shown in figures 3.1, 3.2 and 3.4.

The oblique saddle point solution may be used to describe the inviscid
flow pattern associated with flow separation and it may also explain
certain features of the supersonic flow past an external corner.
Although the incompressible plane flow solutions suggest the exist-
ence of conical saddle point flow in a corner with an including angle
less than-% rad, the latter type of flow could not be established
within the framework of conical potential flow theory.

The class of higher order singularities consists of saddle-nodes,
topological saddles and topological nodes. These singularities are
structurally unstable in the sense that a slight deviation of a flow
parameter causes a bifurcation, as a result of which the topological
character of the singularity may change.

The higher order singularities are given in figures 4.3, 4.4 and 4.5.
The Tift-off phenomenon of the singularity in the supersonic flow past
a circular cone at incidence may be interpreted as a bifurcation of

a saddle-node into a saddle and a node. Similarly, this may be done
for the appearance of the dividing streamline in the same flow at

- still higher angles of incidence, such that a vortex system is formed

at the leeward side of the cone.
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APPENDIX

TOPOLOGICAL STRUCTURE OF A MULTIPLE EQUILIBRIUM STATE

Consider the system
d “d
T = Pooy) s = axy) (A.1)

where P(x,y) and Q(x,y) are analytic functions.

Let<)(0,0) be an isolated equilibrium state of this system at the
origin, so tHat there exists a neighbourhood of C)containing no other
equilibrium states than Cl and let P(0,0) = Q(0,0) = 0.

Suppose that the Taylor expansion of the functions P(x,y) and Q(x,y)
about the equilibrium state(X0,0) have the form

d
H% - ax + by + Po(x,y) , g% = x4 dy + Q,(x,y) (A.2)

where P2(x,y) and Qz(x,y) are analytic in the neighbourhood of the
origin and their series expansion involve only terms of at Teast
second order.

If the determinant of the coefficient matrix of the linearized system
A = ‘i 3' = 0 the structure of the equilibrium state may not be
identical with that of the linearized system and a multiple equilibrium

state is present.

The following discussion on multiple edui]ibrium states is restricted
to systems where the expansion of the right hand sides in the neigh-
bourhood of()(0,0) involves at Teast one first order term.
If A =0 one or both eigenvalues of the coefficient matrix (2 g) are
zero. In the next both cases will be considered separately.
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Multiple equilibrium state with one zero eigenvalue

Consider system (A2) with the assumptions
A=ad-bc=0, z=a+d#0

Under these assumptions there exists a non singular transformation
which reduces system (A.2) into the form

&= Py(xy) = P(xY) %% =y + Qp(%y) = Q(x.y) (A.3)

Let Z(x,y) = a aQ where P(x,y) and Q(x,y) are functions given in
(A.3). ,

The function Z(x,y) is continuous with £(0,0) = 1.

Because (J(0,0) is an isolated equilibrium state there exists a
sufficiently small neighbourhood U (C» of 0 where £(x,y) > 0. This
implies that U «3 contains ne1ther closed paths nor loops. Hence
there must ex1st integral curves that tend to the equilibrium po1nt

X

These integral curves are called semi paths of the system which tend
to()(0,0) is a definite direction 6* where

d
E% = % = tan 0% _ (A.4)
For the system (A.3) the directions in which semi paths tend to 0(0,0)
are then 0,-% , mand §§ rad.

To obtain the possible topological structures of the equilibrium state
consider the equation

Y+ Qy(xy) = 0 | (A.5)

This equation has a solution y = ¢(x) in a small neighbourhood of()(o,o)

such that ©(0) = 0, ©'(0)

horizontal directions (%%

0. The curve y = @(x) is an isocline of

0) .
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Define a function
W(x) = Po(x, 0(x)) (A.6)
L . . dx dy _
which describes the value of dc on the curve at = 0.

Because()(0,0) is isolated, y(x) cannot vanish identically and the
- series expansion of y(x) assumes the form

P(x) = A X7+ el (A.7)
where k > 2, Ay # O.”

The possible topological structure of an equilibrium state()(0,0) of
the system (A.3) is established by the following theorem.

Theorem I

Let()(0,0) be an isolated eqUilibrium state of the system (A.3). Let

y = o(x) be an solution of the equation y + Qz(x,y) = 0 in the neigh-

bourhood of()(o,o), and assume that the series expansion of the function

Y(x) = P2(x, @(x)) has the form y(x) = B X7+ , where k > 2,

Ak # 0. Then: v

1. If k is odd and A > O,()(0,0) is a topological node (figure A.1).

2. If k is odd and B < 0,(0(0,0) is a topological saddle point
(figure A.2), two of whose separatrices tend to()in the directions
0 and m, the other two in the directions n/2 and 3n/2.

3. If k is even,()(o,o) is a saddle-node, i.e. an equilibrium state
whose neighbourhood is the union of one parabolic and two hyperbolic
sectors.If by < 0 the hyperbolic sectors contain a segment of the
positive x-axis (figure A.3); if Ak > 0 they contain a segment of
the negative x-axis.

The proof of this theorem is given in Andronov et al. 1973, pp. 340-346.




FIG. A1 FIG. A2 FIG.A3

Multiple equilibrium state with zero eigenvalues

Now the system (A.2) is considered with the assumptions
A=ad-bc=0, Z=a+d=0, la|] + |b|] + [c]+|d #0

There exists a non-singular transformation which reduces the system
(A.2) to

dx d

T =Y Py s G = 0(xy) (A.8)
where Pz(x,y) and Qz(x,y) are analytic in the neighbourhood of()(0,0)
and their series expansion involve only terms of at least second order.

The topological structure of the equilibrium state()(0,0) of this
system follows by considering the solution y = @(x) of the equation

Y+ Py(xy) = 0 (A9

The curve y = @(x) is an isocline if vertical directions (%% = 0) .
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On this curve the functions

aQ

8P2 2
w(x) = Qy(x, o(x)) and I(x) = == (x, @(x)) + =y (% @(x))

may be expanded as follows

Y(x) = By xk S S > Z(x) = bn LTSN
where A and b, are the first non vanishing coefficients y(x) and £(x),
respectively. If I(x) = 0, then bn = 0. The topological structure of an
equilibrium state of the system (A.8) is established by the following

theorem.

Theorem I1
- Let the number k be odd, k = 2m + 1 (m > 1), and A = bﬁ + 4(m+l) Ay
Then if by > 0, the equilibrium state of system (A.8) is a topological
saddle point (figure A.4). But if A < 0, the point Ois
1. a focus or center if bn =0, or if bn #0and n>m, or if bn #0,
n=mand X <0 (figures A.5, A.6);
2. a topological node if bn # 0, n is even and n < m, or if bn #0,
n is even, n =mand X >0 (figure A.1);
3. an equilibrium state with an elliptic region if bn # 0, n is odd
and n <m, or if b, #0, nis odd, n=mand 1 > 0 (figure A.7).

- Let the number k be even, k = 2m (m > 1).
Then the equilibrium state()(0,0) is
1. a degenerate equilibrium state if bn =0, or bn 0and n>m
(figure A.8);
2. a saddle-node if b, # 0 and n < m (figure A.9).

The proof of this theorem is given in Andronov et al. 1973 (pp. 357-363).
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