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Introduction

Predicting the degradation and Remaining Useful Life (RUL) of Proton-exchange Membrane (PEM) fuel cells
is essential for ensuring their reliability and efficiency in various applications. As PEM fuel cells play a role in
clean energy technologies, understanding their degradation mechanisms and accurately forecast their per-
formance can enhance their operational lifetime and ensure safe operations.

This thesis explores advanced prognostic methodologies for PEM fuel cells, focusing on the integration of
data-driven techniques and empirical modelling to predict PEM fuel cell degradation and RUL. The study
leverages comprehensive datasets provided by the FCLAB Research Federation, which include experimental
data from durability tests conducted during the IEEE PHM 2014 Data Challenge. Specifically, the FC1 Dataset
consists of 1154 hr of static operational data, while the FC2 Dataset includes 1020 hr of data from quasi-
dynamic operational conditions. These datasets are crucial for developing and validating predictive models.

The proposed prognostic method employs Seasonal and Trend decomposition via LOESS (STL) to decompose
current and voltage time-series data into trend, seasonal, and residual components. This decomposition fa-
cilitates a more nuanced understanding of the underlying patterns and variations in the data. The study then
compares the performance of Long Short-Term Memory (LSTM) networks and Echo State Networks (ESNs)
in predicting the decomposed current time-series components. Notably, an ESN, optimised via Bayesian op-
timisation with Optuna, is utilised to iteratively forecast voltage components based on the predicted current
and previous voltage data. This approach is specifically tailored to achieve a Prognostic Horizon (PH) of 125
hr.

Additionally, empirical and semi-empirical models are used to assess membrane thickness degradation, us-
ing linear regression to minimise reliance on experimental data and refine the degradation predictions. The
integration of predicted voltage and membrane thickness data enables accurate RUL forecast, providing in-
sights into medium-term performance trends.

The results underscore the versatility and effectiveness of the proposed methods, demonstrating their ca-
pability to handle complex time-series data and deliver precise forecasts of PEM fuel cell degradation. This
thesis contributes to the field by offering prognostic tools and methodologies that can be applied to various
operating conditions, thereby advancing the understanding and management of PEM fuel cell performance.

This thesis report is organised as follows: In Part I, the scientific paper is presented. Part II contains the
relevant Literature Study that supports the research.
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Highlights
Remaining useful life prediction of proton-exchange membrane fuel cell tested under static and
quasi-dynamic operating conditions
Matthew Georgio Dekkers

• An Echo State Network (ESN) is proposed for iteratively predicting stack voltage degradation of Proton-exchange
Membrane (PEM) fuel cells, using current and voltage data from the previous time step. Seasonal and Trend
decomposition using LOESS (STL) is applied to decompose these time-series into trend, seasonal, and residual
components.

• The proposed ESN-based method for predicting stack voltage degradation is utilised to forecast the Remaining Useful
Life (RUL) of PEM fuel cells, achieving a Prognostic Horizon of 125 hr. This method meets the 𝛼−𝜆 accuracy metric,
demonstrating its effectiveness in medium-term RUL prediction.

• The research applies models for membrane thickness degradation using empirical and semi-empirical approaches,
revealing that averaging thickness across cells can lead to RUL overestimation.
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A B S T R A C T
Proton-exchange Membrane (PEM) fuel cells are essential systems for hydrogen-electric powertrains
in aviation, aiming to meet climate-neutral goals. However, their integration faces challenges,
particularly regarding power density, reliability, and durability. This research addresses PEM fuel cell
durability through Prognostics and Health Management to predict Remaining Useful Life (RUL) under
static and quasi-dynamic conditions. We propose a prognostic method utilising Echo State Networks
(ESNs) to manage the chaotic time-series data of PEM fuel cells, extending the Prognostic Horizon
(PH) to 125 hours. Our approach involves decomposing stack voltage and current time-series data
into trend, seasonal, and residual components via Seasonal and Trend decomposition using LOESS,
and predicting these iteratively with ESNs optimised through Bayesian optimisation using Optuna.
A comparative study found that ESNs perform best at predicting trends in single-input, single-output
forecasts of current time-series, while Long Short-Term Memory networks are better at capturing
seasonality and residuals. Additionally, while empirical and semi-empirical models assessed PEM
fuel cell membrane health, their effectiveness in predicting RUL in combination with predicted stack
voltage was limited by average degradation across cells. This study presents a robust and universal
prognostic approach for PEM fuel cells, facilitating their reliable integration into aviation applications.

1. Introduction
In the aviation industry, Proton-exchange Membrane

(PEM) fuel cells are considered a key system in hydrogen-
electric powertrains to meet climate-neutral goals [1, 2].
These PEM fuel cells are as essential to future aircraft as
conventional aircraft engines are to current aircraft. Their
integration is proposed for regional aircraft configurations
[3, 4, 5]. However, the implementation of PEM fuel cells in
regional aircraft faces challenges, particularly in achieving
required power density, reliability, and durability [6, 7, 8].
The durability of PEM fuel cells is a significant concern, as
their limited operational lifetime can pose economical risks
for aircraft operators [9]. Currently, PEM fuel cells have
an operational lifetime of 20,000 hr, without performing
maintenance activities [10]. This contrasts with traditional
aircraft engines, where maintenance activities play a crucial
role in extending their operational lifetime. For instance, the
Rolls-Royce AE 3007A engine, integrated into the Embraer
ERJ 135 regional aircraft, has an operational lifetime of 53
million hr due to regular maintenance [11]. Operational data
from aircraft engines are regularly analysed to assess the
health of the system and its critical components. Prognostics
and Health Management (PHM) is an important framework
that assists in predicting degradation, the Remaining Useful
Life (RUL) and maintenance activities of aircraft engines
[12, 13]. PHM plays an essential role in extending the oper-
ational lifetime of aircraft engines, preventing catastrophic
failures, and avoiding the use of components beyond repair.
Similarly, PHM has the potential to extend the operational
lifetime of PEM fuel cells through degradation and RUL
predictions on operational data and assist in scheduling
maintenance activities [14, 15].

Before a prognostic method can be applied to determine
the RUL of a PEM fuel cell, an appropriate health indicator
needs to be selected. This health indicator quantifies the level
of degradation of the system or an individual component
within the PEM fuel cell. For PEM fuel cells, the choice of
health indicator is influenced by the operating conditions,
which affect the observability of degradation [8]. These
operating conditions depend on the current demanded by
the load and can be categorised into three types: (1) static,
(2) quasi-dynamic, and (3) dynamic. Due to limited data
availability, this work focuses on static and quasi-dynamic
operating conditions, which represent stationary and vari-
able load conditions of an electric motor, respectively [16].
For these conditions, the voltage of all individual cells
combined, known as the stack voltage, is generally used as
the health indicator on system-level.

However, a system-level health indicator provides lim-
ited information to the operator regarding the causes of
degradation. Therefore, an additional health indicator on
component-level is required, especially for the most critical
component within a PEM fuel cell. According to Jouin et al.
[14], the membrane is the most critical component within a
PEM fuel cell, and its health can be assessed by analysing the
reduction in membrane thickness. Currently, degradation of
membrane thickness cannot be directly obtained by monitor-
ing a sensor’s output. However, a prognostic method can be
applied to analyse its degradation.

Generally, there are three types of prognostic methods
for degradation predictions of PEM fuel cells and its com-
ponents: (1) physics-based, (2) data-driven, and (3) hybrid
[15, 17]. Physics-based methods are limited to a specific
PEM fuel cell and require detailed specifications from the
manufacturer, limiting their universality for different PEM
fuel cells. Contrary, data-driven methods, leverage Artificial

Dekkers et al. Page 1 of 21



Intelligence (AI) techniques, particularly Recurrent Neural
Networks (RNNs), and experimental time-series data. This
time-series data, consisting of operational conditions over
time such as voltage, current, and air humidity, captures
the dynamic behaviour and degradation trends of PEM fuel
cells. Since these time-series data are universal for PEM
fuel cells and can be predicted by RNNs without requiring
physical laws, RNNs can be deployed across various PEM
fuel cells. Therefore, data-driven methods offer the potential
for a universal prognostic approach for PEM fuel cells.

Once an appropriate health indicator is selected, a thresh-
old must be defined to identify the critical point at which
the PEM fuel cell’s degradation becomes severe [18]. This
threshold can represent the moment when the PEM fuel
cell can no longer generate sufficient power, potentially
preventing a regional aircraft from taking off or leading
to unsafe operations. The point in time when the health
indicator crosses this threshold is considered the End of Life
(EoL) of the PEM fuel cell.

Prior to reaching the EoL, a PEM fuel cell remains
functional, requiring the prediction of the degradation of the
health indicator to estimate the RUL of the PEM fuel cell.
This approach is standard within PHM. However, previous
studies on the PHM of PEM fuel cells have often overlooked
this step [19, 20, 21]. Instead, they focus on predicting the
system-level health indicator up to a threshold and then
compare this predicted RUL to the actual RUL at EoL. There
is a need to understand, for each predicted time step of the
health indicator, how long the PEM fuel cell can continue
to operate. This understanding enables more accurate and
actionable RUL predictions, thereby ensuring operational
safety and enhancing maintenance planning.

The ability to accurately predict RUL over an extended
period is referred to as the Prognostic Horizon (PH) of
a prediction method. The RUL predictions must meet a
predefined limit to be considered accurate [22, 23]. Within
PHM, 𝛼 − 𝜆 accuracy is considered as a reliable evaluation
metric, which incorporates an error bound around the actual
RUL which narrows as the PEM fuel cell approaches its EoL.
RUL predictions can be categorised by PH into short-term
(up to 24 hr), medium-term (24 to 168 hr), and long-term
(beyond 168 hr) [15]. Although some studies claim to offer
long-term RUL predictions, they often rely on experimental
data during the prediction phase, which limits their actual
prediction horizon to the short-term category [20, 21, 24,
25]. This reliance undermines their ability to provide true
long-term forecasts. Extending the PH into the medium-
term range presents challenges due to the chaotic time-series
behaviour of the system-level health indicator. To address
this, an RNN capable of handling such chaotic behaviour is
required.

This research aims to investigate how Echo State Net-
works (ESNs) can handle chaotic time-series data from
durability datasets of PEM fuel cells and extend the PH into
the medium-term range. ESNs, first introduced in 2001 by
Jaeger [26], belong to the field of Reservoir Computing,

and have shown exceptional capabilities to generate accu-
rate predictions from chaotic time-series data. They have
been applied in Quantum Neuromorphic Computing [27],
Neuromorphic Hardware [28, 29], and Speech Recognition
[30, 31]. Their application to PHM of PEM fuel cells is
emerging and an active area of research [32, 33, 34]. In
addition, this research will combine existing empirical and
semi-empirical membrane degradation models to identify
membrane health with minimal use of experimental data [35,
36]. While applying these physics-based models provides
valuable insights, their application is constrained to PEM
fuel cells that meet specific model requirements, limiting
their universality.

Our methodology focuses on developing an ESN to
iteratively predict the degradation of stack voltage. By "it-
eratively," we mean that the ESN reuses its previous stack
voltage prediction to forecast the next time step. To en-
hance the accuracy of these predictions, we incorporate two
key approaches. First, we decompose the stack voltage and
current time-series into three components: trend, seasonal,
and residual, using Seasonal and Trend decomposition via
LOESS (STL) [37]. This decomposition method is com-
monly used in chaotic time-series predictions [38, 39, 40].
Second, the decomposed current signals are predicted by
an RNN. The previous current prediction is combined with
the previous stack voltage prediction to forecast the next
stack voltage time step using the ESN. The current provides
essential information about the degradation pattern of the
stack voltage, as the stack voltage multiplied by the current
represents the stack’s power. We conduct a comparative
study of current time-series predictions between the ESN
and another RNN, specifically an existing Long Short-Term
Memory (LSTM) Network [41]. The decomposed voltage
signals are then predicted by the ESN, and the original
voltage signal is reconstructed by combining the three com-
ponents. The hyperparameters of the ESN are optimised
using Bayesian optimisation with Optuna [42]. Finally, the
predicted stack voltage degradation and membrane thickness
are used to predict the RUL of the PEM fuel cell using linear
regression.

Our research is focused on answering the following
primary research question:

R1 How to quantify, assess, and forecast the medium-
term health of PEM fuel cells and their most critical
component tested under static and quasi-dynamic op-
erating conditions?

Our hypothesis for the primary research question is as
follows:

H1 Voltage degradation and membrane thickness can
quantify the health of a PEM fuel cell and its most
critical component, the membrane, under static and
quasi-dynamic conditions. A physics-based model can
assess the membrane’s health, and voltage degrada-
tion can be forecast with an RNN.
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The sub-questions that support the main research ques-
tion are:
R1.1 How to model medium-term degradation of the mem-

brane within PEM fuel cells?
R1.2 How to enhance the PH of a PEM fuel cell’s RUL into

the medium-term range?
Our hypothesis for the sub-questions are:

H1.1 A physics-based model can be applied to investigate
the impact of hydroxyl radical attack on the membrane
which can lead to a reduction in membrane thickness.

H1.2 An RNN with a high temporal memory capacity, e.g.
an ESN, can generate medium-term predictions on
voltage degradation based on previous information of
voltage and current. These medium-term predictions
can enhance the PH of RUL predictions.

The principal contributions of this work are outlined as
follows:

1. Utilised Seasonal and Trend decomposition via LOESS
to decompose current and voltage time-series data into
trend, seasonal, and residual components.

2. Evaluated and compared the performance of LSTM
and ESN models for predicting the decomposed cur-
rent time-series components.

3. Applied an ESN, optimised through Bayesian opti-
misation with Optuna, to iteratively predict voltage
components based on previous time step predictions
of current and voltage.

4. Implemented both empirical and semi-empirical mod-
els to assess membrane thickness degradation, incor-
porating linear regression to minimise reliance on
experimental data.

5. Integrated predicted voltage and membrane thickness
data to forecast RUL, achieving a 125 hr Prognostic
Horizon by focusing on voltage degradation predic-
tions, thus enabling medium-term forecasts.

This paper is structured as follows. Section 2 provides
an overview of data-driven prognostic methods, ESNs for
time-series prediction, and membrane degradation model-
ing. In section 3, we clarify the methodology by detailing
the durability datasets, health indicators, and the ESN ar-
chitecture. This section also explores the impact and opti-
misation of ESN hyperparameters, comparing them with an
existing LSTM. Additionally, the decomposition techniques
used and the application of ESN and LSTM for predicting
current and stack voltage are discussed. The empirical and
semi-empirical membrane degradation models and predic-
tion techniques are presented, followed by the prediction
of the RUL. Section 4 presents the results of the study,
accompanied by a discussion of the findings. Finally, sec-
tion 5 provides a summary of the conclusions drawn from the
research, and section 6 outlines recommendations for future
research directions.

2. Related Work
This section reviews data-driven prognostic methods for

PEM fuel cells, as detailed in subsection 2.1. It covers the
use of Echo State Networks for time-series forecasting in
subsection 2.2. Finally, subsection 2.3 addresses models for
membrane degradation.
2.1. Data-driven prognostics for PEM fuel cells

Data-driven prognostic methods rely on the availability
of durability datasets to train AI models that learn the
dynamic behaviour of health indicators. Significant progress
in this field has been made using two datasets from the
FCLAB Research Federation (FR CNRS 3539), obtained
during IEEE PHM 2014 Data Challenge, which contain
experimental ageing data [16]. These two datasets have been
used in the field of PHM to extend the PH by tackling the
difficulties of predicting chaotic time-series behaviour of
health indicators. This requires RNNs capable of handling
such complexity. Various RNNs have been applied to ad-
dress this issue, including Gated Recurrent Units (GRUs)
[24, 43, 44], Long Short-term Memory (LSTMs) Networks
[45, 46, 47], Convolutional Neural Networks (CNNs) [20,
48], Transformers [49, 50, 51], Echo State Networks (ESNs)
[8, 52, 53], and fusion models combining different RNNs
[19, 21, 25].

Zhang et al. [24] explored the use of GRUs in vari-
ous configurations, incorporating bidirectional elements and
stacked architectures, to predict long-term degradation and
RUL based on datasets from the IEEE PHM 2014 Data
Challenge. Despite being labeled as long-term, these pre-
dictions rely on short-term operational data, thus not truly
achieving long-term forecasting. They applied thresholds of
97% and 95% of the initial stack voltage to determine the
EoL under static and quasi-dynamic operating conditions,
respectively, with stack voltage predictions made one hr in
advance. Similarly, Zuo et al. [43] introduced an attention-
based GRU optimised via grid search for hyperparameter
tuning to predict long-term voltage degradation. However,
their approach also predominantly utilises short-term data.

Liu et al. [45] developed a LSTM using short-term data
to predict the voltage degradation. Wang et al. [54] created a
fusion prognostic strategy by incorporating a physics-based
approach to extract a PEM fuel cell’s health indicator and to
predict its degradation with an Adaptive Brownian Bridge-
based Aggregation (ABBA) LSTM, which expresses the
original data with reduced dimensionality. RUL predictions
were generated at 50 hr intervals, achieving a relative error
of 11.4%. Liu et al. [47] developed a residual-CNN-LSTM to
generate medium-term degradation predictions and achieved
a prediction horizon of 80 hr for quasi-dynamic operating
conditions.

Peng et al. [48] combined a CNN with an LSTM, limited
to short-term predictions. Benaggoune et al. [20] proposed
a dilated and conditional CNN with a multi-step ahead
prediction method, achieving significant accuracy for a 24
hr prediction horizon of stack voltage degradation.
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Lv et al. [49] applied a Transformer model for PHM of a
PEM fuel cell for the first time, achieving a prediction hori-
zon of 13.5 hr for degradation prediction, without generating
RUL predictions. They reapled the self-attention mechanism
in the Vanilla Transformer by a series-attention mechanism.
Although the work mentions long-term prognostics, its pre-
diction horizon stays within the short-term range. Tang et al.
[50] proposed a Transfer Learning Transformer Neural Net-
work with multiple input parameters, using only short-term
data to predict degradation and lacking RUL predictions.
Fu et al. [51] demonstrated the use of a Non-stationary
Transformer with one-step, three-step, and five-step ahead
degradation prediction and RUL prediction. However, they
found that the Transformer’s ability to handle multiple time
steps ahead predictions was limited.

Morando et al. [52] proposed a decomposition frame-
work using a wavelet filter to separate cell voltae data into
an approximation component, representing the degradation
trend, and a detailed component, capturing seasonality and
residuals. Both components were iteratively predicted by an
ESN. While the cell voltage’s trend was accurately predicted
over a prediction horizon of 1400 hr, the ESN presented
relatively large errors in predicting voltage recovery and
seasonality. Their ESN was tested on a 1700 hr durability test
with a dynamic mission profile.Vichard et al. [53] conducted
an open cathode durability test of 5000 hr under variable
temperature conditions. They proposed an ESN with three
input parameters: ambient temperature, operating time, and
output voltage from the previous prediction stage. Although
the model iteratively predicted voltage, it relied on short-
term ambient temperature data. Hua et al. [8] developed an
ESN with a single input iterative structure, which faced diffi-
culties in capturing the time-series dynamics. They also cre-
ated an ESN with a double input, incorporating a scheduled
stack current based on seasonal requirements. This approach
improved degradation trend accuracy and RUL prediction,
achieving a PH of 250 hr. However, its applicability to non-
stationary systems like aircraft is limited due to the non-
schedulable nature of the stack current.

Li et al. [19] developed a fusion model integrating bidi-
rectional LSTM-GRU with an ESN for voltage predictions,
using a Particle Swarm Optimisation (PSO) algorithm for
feature extraction. They achieved a prediction horizon of 100
hr with a sliding-window approach, resulting in an RUL pre-
diction error of up to 3% after 200 hours of training, which
represents 20% of the dataset. However, their fusion model
lacked RUL predictions for each predicted voltage time
step.Sahajpal et al. [21] tested six deep learning techniques,
including LSTMs, GRUs, and their combinations with 1-
D CNNs and bidirectional elements, using fuel cell stack
data from the IEEE PHM 2014 Data Challenge datasets. The
stack voltage was predicted 1 hr ahead, and a 96% initial
stack voltage threshold was used to determine the RUL,
aligning with thresholds used by Benaggoune et al. [20], Xia
et al. [25], and Li et al. [19]. Xia et al. [25] decomposed the
voltage signal into calendar aging and reversible aging com-
ponents using locally weighted regression (LOESS). They

predicted these components iteratively with an Adaptive Ex-
tended Kalman Filter (AEKF) and an LSTM with a sliding
window of 20, achieving a PH of 1 hr with a maximum RUL
error of 26 hr, without considering a RUL prediction for
each predicted stack voltage step. A Genetic Algorithm (GA)
optimised the hyperparameters of the LSTM.
2.2. Echo state networks for time-series

Echo State Networks have emerged as a powerful tool
for time-series prediction, leveraging their intrinsic memory
capabilities to model complex temporal patterns [55]. ESNs
have found applications across various fields, including volt-
age prediction, where they couple with Markov chains to
provide current profiles [56], enhancing prediction accuracy.

ESNs can extend their predictive horizons by iterating
over multiple steps. However, this iterative approach intro-
duces challenges, particularly in hyperparameter selection,
as the performance is highly sensitive to the chosen values
[57]. To address this, Valencia et al. [58] proposed an ESN
optimised with a Genetic Algorithm (GA) and a Separation
Ratio Graph (SRG) for multi-step time-series forecasting.
This model successfully identified the most suitable reser-
voir topology, demonstrating high performance on bench-
mark datasets from the NN3 and M3 Forecasting Compe-
titions, with predictions spanning six, eight, and eighteen
steps.

To boost ESN capabilities, Mezzi et al. [59] introduced
a Multi-Reservoir ESN for predicting the RUL of PEM fuel
cells. By coupling multiple reservoirs, each with different
hyperparameters, the model encapsulates crucial character-
istics of chaotic time-series data. Similarly, Mezzi et al.
[56] utilised Markov chains to replicate PEM fuel cell load
profiles, enhancing predictions of voltage degradation and
RUL.

Genetic Algorithms have been selected to optimise ESN
configurations further. Zhong et al. [60] developed a double-
reservoir ESN optimised with a GA for one-step ahead
turbofan engine time-series predictions. Deng et al. [33]
proposed a stacked ESN optimised via GA, leveraging short-
term data for degradation predictions.

Hyperparameter tuning remains critical for ESN perfor-
mance. Hua et al. [8] conducted a sensitivity analysis using
ANOVA to understand the influence of parameters like leak-
ing rate 𝛼, spectral radius 𝜌, and regularisation parameter
𝛽. They found optimal performance with a high leaking
rate, medium spectral radius, and medium regularization
parameter.

For enhancing prediction accuracy, Hua et al. [61] ap-
plied Discrete Wavelet Transform (DWT) to decompose
health indicators into multiple signals. Each decomposed
signal was then predicted by independent ESNs, which were
ensembled to provide final predictions. Additionally, Hua
et al. [62] integrated GA with DWT in ESNs, optimising
key parameters and demonstrating that the approximation
component coefficient sufficiently represents the original
signal for accurate predictions.

Innovative ESN architectures continue to push the bound-
aries of time-series prediction. Jin et al. [34] developed

Dekkers et al. Page 4 of 21



an ESN with a Cycle Reservoir with Jump (CRJ) and an
Adaptive Fuzzy Sampler (AFS), though it exhibited high
error in stack voltage degradation predictions. González-
Zapata et al. [63] optimised an ESN with Hindmarsh-Rose
neurons and Particle Swarm Optimisation (PSO), achieving
accurate predictions for up to 10,000 steps on chaotic time-
series datasets. Ando and Chang [64] demonstrated the
application of ESNs for road traffic forecasting, achieving
accurate predictions 600 steps ahead.

The literature underscores the versatility of ESNs in
generating accurate iterative predictions over extended hori-
zons. Key to their success are preprocessing steps to reduce
the complexity of chaotic time-series and careful hyperpa-
rameter optimisation.
2.3. Membrane degradation modelling

Understanding and modelling of membrane degradation
in PEM fuel cells is essential for effective health manage-
ment and predictions on RUL. Membrane degradation can
be classified into five main categories: (1) chemical, (2)
mechanical, (3) thermal, (4) shorting, and (5) contamination
[14].

Chemical degradation, the primary cause of limited
membrane life, involves membrane decomposition due to
chemical reactions and contamination [65]. Indicators in-
clude gas crossover rate and fluoride release rate, with degra-
dation characterised by membrane thinning and the release
of 𝐻𝐹 , 𝐶𝑂2, and 𝐻2𝑆𝑂4 [14, 66]. Recent advancements
include a semi-empirical model proposed by Chandesris
et al. [36], which links membrane thickness degradation to
fluoride release caused by hydroxyl radicals. This model
highlights how reactions with hydroxyl radicals and perox-
ide species contribute to membrane thinning, influenced by
factors such as cell voltage and metal impurities [67].

Mechanical degradation results from stresses, swelling,
and contraction due to operating conditions, leading to
micro-holes, tears, perforations, and blisters [68]. This type
of degradation is often caused by manufacturing defects
and prolonged operation [69]. Stress cycling and improper
humidity conditions during operation may aggravate these
effects, causing membrane shrinkage or swelling, which
influences cell performance and durability [70, 71]. A
comprehensive review by Qiu et al. [72] provides an in-depth
analysis of mechanical failure mechanisms, offering insights
into mitigation strategies and material properties to improve
membrane durability across its lifespan.

Thermal degradation is generally controlled by ther-
mal management systems within the PEM fuel cell stack,
maintaining temperatures between 60-80 °C [66]. However,
damage from freeze/thaw cycles can still occur. Kim et al.
[73] studied how diffusion media properties, such as stiffness
and thickness, affect Membrane Electrode Assembly (MEA)
damage during freeze/thaw cycles. The study revealed that
while stiffer diffusion media can reduce surface cracks, it
may also increase damage if not managed correctly.

Membrane shorting, considered a form of mechanical
degradation, is caused by direct electron movement from the

anode to the cathode, leading to micro-holes and membrane
melting [65].

Contamination occurs due to foreign species, often from
catalyst degradation or impurities in gases and humidifiers
[14, 74]. This can significantly reduce membrane conduc-
tivity.

Membrane thickness is a key indicator of membrane
degradation, as it correlates with gas crossover and fluoride
release rates. Decreases in membrane thickness can lead
to increased hydrogen crossover and potential cell failure
[35, 36]. A semi-empirical model developed by Karpenko-
Jereb et al. [35] integrates physico-chemical properties to
analyse degradation rates, while a Computational Fluid Dy-
namics (CFD) model simulates 3D cell performance. This
model demonstrates non-uniform in-plane degradation and
highlights the impact of relative humidity and temperature
on cell current density.

Recent modelling advancements have introduced com-
plex frameworks. Singh et al. [75] presented a transient 2D
model simulating hydroxyl radical attacks and membrane
degradation, validated against experimental data for accu-
racy. Macauley et al. [76] developed an empirical model
for predicting membrane lifetime in heavy-duty fuel cells,
considering factors like cell voltage and temperature. Fur-
thermore, Frühwirt et al. [77] proposed a zero-dimensional
kinetic framework that uses coupled chemical equations to
predict membrane lifetime based on fluoride emission rates,
also addressing the impact of metal impurities.

In summary, advances in modelling membrane degrada-
tion provide valuable insights into the various degradation
mechanisms and their impact on fuel cell performance. By
integrating different modelling approaches and empirical
research, the durability and reliability of PEM fuel cells can
be enhanced.

3. Methodology
This section outlines the methodology used in this study.

In subsection 3.1, the durability datasets are explained. The
health indicators utilised in this work are discussed in sub-
section 3.2. The fundamentals of the Echo State Network
are presented in subsection 3.3, followed by an explanation
of the applied Long Short-term Memory Network in subsec-
tion 3.4. All steps of the prediction method are discussed in
subsection 3.5. The models for modelling membrane degra-
dation are elaborated in subsection 3.6. Finally, the method
for predicting the Remaining Useful Life is described in
subsection 3.7.
3.1. Data PEM fuel cell durability

The availability of data is an essential element for en-
abling this work on predicting PEM fuel cell degradation
and RUL. Within this study, two datasets from FCLAB
Research Federation (FR CNRS 3539) are used which were
obtained during IEEE PHM 2014 Data Challenge and con-
tain experimental ageing data [16]. Both durability tests are
performed with a five-cell stack module of Proton Motor
Fuel Cell GmbH which have an active surface area of 100
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Figure 1: Static and quasi-dynamic operating conditions in
terms of current setting of FC1 Dataset and FC2 Dataset,
respectively.

(a) (b)

(c) (d)
Figure 2: Mission profiles in terms of current and the associated
voltage response: (a) static current, (b) static voltage, (c)
quasi-dynamic current, (d) quasi-dynamic voltage.

cm2. The first fuel cell is operated under static operating
conditions at a current setting of 70 A and is denoted as FC1
Dataset. The FC1 Dataset contains 1154 hr of experimental
data. The second fuel cell is operated under quasi-dynamic
operating conditions at a current setting of 70 A with a
triangular ripple current of 14 A oscillating at a frequency
of 5 kHz, and is denoted as FC2 Dataset. The FC2 Dataset
contains 1020 hr of experimental data. The static and quasi-
dynamic operating conditions are presented in Figure 1 and
the mission profiles in terms of current and voltage response
of FC1 Dataset and FC2 Dataset are provided in Figure 2.

FC1 Dataset and FC2 Dataset contain measurements
of various parameters, e.g. cell voltage, total stack voltage,
current, humidity, and incoming and outcoming pressure
of hydrogen. An overview of all measured parameters is
provided in Table 1 and the specifications of the PEM fuel
cell in combination with operating settings are presented
in Table 2. Throughout the durability test, the PEM fuel
cell’s condition was analysed multiple times by performing a
characterisation test and Electrochemical Impedance Spec-
tra (EIS).
3.2. Health indicators

The purpose of using a health indicator for a PEM fuel
cell is to express the health in a parameter that can clearly
be communicated to the end user, and it can assist in the
scheduling of maintenance tasks. At the system-level, the
health indicator for the FC1 Dataset and FC2 Dataset is

Table 1
Measured parameters within FC1 Dataset and FC2 Dataset
with their physical description [8, 16, 21].

Parameter Physical description
U1 - U5 Single cell voltage (V)
U𝑡𝑜𝑡 Total stack voltage (V)
I Current (A)
J Current density (A/cm2)
T𝑖𝑛H2 / T𝑜𝑢𝑡H2 Inlet/Outlet temperatures of H2 (°C)
T𝑖𝑛Air / T𝑜𝑢𝑡Air Inlet/Outlet temperatures of air (°C)
T𝑖𝑛Wat / T𝑜𝑢𝑡Wat Inlet/Outlet temperatures of water (°C)
P𝑖𝑛H2 / P𝑜𝑢𝑡H2 Inlet/Outlet pressure of H2 (mBar)
P𝑖𝑛Air / P𝑜𝑢𝑡Air Inlet/Outlet pressure of air (mBar)
D𝑖𝑛H2 / D𝑜𝑢𝑡H2 Inlet/Outlet flow rate of H2 (L/min)
D𝑖𝑛Air / D𝑜𝑢𝑡Air Inlet/Outlet flow rate of air (L/min)
DWat Flow rate of cooling water (L/min)
HrAIRFC Inlet humidity of air (%)

Table 2
Characteristics and experimental operating parameters of PEM
fuel cell from IEEE PHM 2014 Data Challenge [16, 66, 78].

Parameter Value
Gas diffusion layers thickness 400 𝜇m
Membrane thickness 15 𝜇m
Cell active area 100 cm2

Membrane Electrode Assemblies type GORE PRIMEA 5761
Membrane type GORE-SELECT®
Open circuit voltage 1 V
Nominal voltage 0.6 V
Rated power 30 W
Cell number 5
Manufacturer Proton Motor Fuel Cell GmbH
Relative humidity of anode and cathode 50%
Temperature 60 °C
Absolute pressure of anode and cathode 1.5 bar
Stochiometry ratio of anode and cathode 1.5-2 bar
Inlet Pressure of anode and cathode 1.3 bar

the total stack voltage. This parameter is monitored during
the operations of the PEM fuel cell. On the component-
level, only the membrane is analysed because it is identified
as the most critical component within the PEM fuel cell
[14]. The health indicator used on component-level is the
membrane thickness, assessed by an empirical and semi-
empirical model based on data from the FC1 Dataset and
FC2 Dataset.
3.3. Echo state network

This subsection introduces the Echo State Network, a
key element for predicting performance degradation within
this work. The ESN is a brain-inspired Recurrent Neural
Network, with the hidden layer being replaced by a large
randomly generated reservoir of neurons which are sparsely
connected that imitates the topology of a brain-like sys-
tem [8, 55]. These type of brain-inspired RNNs are called
Reservoir Computing (RC) methods. Within this section, the
architecture of an ESN is discussed in subsubsection 3.3.1.
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Figure 3: Architecture of Echo State Network.

Furthermore, an optimisation method is proposed in subsub-
section 3.3.2 for optimising ESN hyperparameters based on
Bayesian optimisation with Optuna [42].
3.3.1. Architecture of ESN

The architecture of an ESN consists of three distinct
layers. First, a sensing layer, which receives the input signals
and acts as a form of signal preprocessing. Second, the
reservoir, which is composed of sparsely connected neurons,
and preserves the dynamics of a chaotic time-series. Third,
the output layer, which integrates all the signals from the
reservoir to produce the network’s output. A visual repre-
sentation of this architecture is provided in Figure 3.

This architecture is a type of Reservoir Computing,
as defined by Verstraeten et al. [79]. Within the field of
machine learning and computational neuroscience, two RC
techniques were introduced which consisted of a different
neuron definition. Jaeger [26] introduced Echo State Net-
works with sigmoidal neurons for machine learning, while
Maass et al. [80] introduced Liquid State Machines (LSMs)
with Leaky Integrate-and-Fire (LIF) neurons, which are
derived from spiking neural networks used in computational
neuroscience. ESNs are particularly effective at learning
chaotic time-series data by only training the output weights,
as demonstrated by Schiller and Steil [81], who noted that
dominant weight changes occur in the output weights. ESNs
take advantage of this phenomenon by randomly generating
the input and internal weight matrices, and keeping these
weight matrices fixed, while training the output weight ma-
trix using linear regression or ridge regression.

Key hyperparameters of an ESN include the number
of neurons 𝑁𝑛 in the dynamic reservoir, spectral radius

𝜌 which represents the maximum eigenvalue of internal
weight matrix 𝑊 , leaking rate 𝛼 which represents dynamic
performance of the reservoir, regularisation parameter 𝛽,
and coefficients of input and internal weight matrices 𝑊𝑖𝑛and 𝑊 . Lukoševičius [57] has provided a detailed guide
on manual parameter settings of an Echo State Network.
For this study, the ESN was implemented using ReservoirPy
[82], a specialised library for developing and experimenting
with reservoir computing models.

The dynamics of the neurons inside the reservoir needs
to be optimised to obtain a balance between the stability
of the network and the computational complexity of the
output weights [8]. An optimal reservoir should preserve
fading memory and result in neurons with a considerable
level of dynamics. The level of dynamics of the reservoir is
expressed by the Echo State Property (ESP), and needs to be
considered carefully to obtain the aforementioned balance
in an Echo State Network. Jaeger [26] states that a leaky
integrator ESN has the Echo State Property if the initial
conditions are washed out at a rate that is independent from
the input. In practice, ESP is obtained when the effective
spectral radius |𝜆|𝑚𝑎𝑥(�̂� ) is smaller than 1 for zero inputs
and larger or equal to 1 for non-zero inputs [83]. This is
not the only condition to obtain ESP because the spectral
radius is depending on the characteristics of the input signal
and expected output signal [61]. Therefore, a spectral radius
larger than 1 could still maintain Echo State Property of the
reservoir in an ESN.

Several studies have identified that the leaking rate 𝛼,
spectral radius 𝜌, and regularisation parameter 𝛽, are the
most influential hyperparameters for the ESN performance
[32, 58, 84]. Therefore, other hyperparameters are kept
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fixed. The hyperparameter settings are based on practical
guidelines provided by Lukoševičius [57] and other works
[8, 19, 56]. In this study, the number of neurons 𝑁𝑛 is set to
500. The input scaling is fixed at 1.0, meaning the input is not
further scaled. Neuron connectivity is set to 0.1 to maintain
a sparsely connected reservoir, while input connectivity is
set to 0.2 to ensure that not all neurons in the reservoir are
constantly connected to the input. A random seed value of
2307 is used to ensure that all randomly generated input and
internal weights are consistent across the study.
3.3.2. Optimisation of ESN hyperparameters

Bayesian optimisation considers the past results of the
hyperparameters and their impact on the objective function
that is to be minimised. Thereby, an informed decision
is made and part of the search space that cannot lead to
improvements are ignored. Calls to the objective function
are limited by use of a surrogate function which analyses
the past objective function results and selected hyperparam-
eters values. The surrogate function maps the hyperparame-
ters in a high-dimensional space to the objective function’s
probability score. Therefore, the surrogate function can be
considered as an approximation of the objective function.
The selected surrogate function is Tree Parzen Estimator
(TPE). Exploration and exploitation are balanced by the TPE
algorithm, presented in Equation 1, during optimisation of
hyperparameter performance [85]. The acquisition function
guides the selection of the next set of hyperparameters to
test, with the median pruner being applied to eliminate less
promising candidates based on past performance. Optuna is
chosen for implementing Bayesian optimisation due to its
user-friendly integration and effective handling of complex
optimisation tasks. The algorithm of Bayesian optimisation
is explained step by step in Table 3.

TPE: 𝑙(𝐱) = 𝑝(𝑓 (𝐱) < 𝛾 ∣ 𝐱)
𝑝(𝑓 (𝐱) ≥ 𝛾 ∣ 𝐱)

(1)

3.4. Long short-term memory network
The LSTM architecture presented by Jakob Aungiers and

Christian Clauss [41] has been chosen for its effectiveness
in forecasting chaotic time-series data, particularly in the
financial market, where it demonstrated high accuracy in
predicting 50 to 80 steps ahead. This LSTM framework is
optimised for multi-step ahead predictions, making it suited
for handling complex and dynamic time-series datasets.
Given its performance in similar applications, this LSTM
model serves as a baseline for generating predictions from
the decomposed current time-series data of PEM fuel cells.

The selected LSTM consists of six layers, each chosen
to enhance the model’s ability to capture long-term depen-
dencies and manage sequential data effectively. The initial
layer of the LSTM network is an LSTM layer with 100 neu-
rons configured to return sequences. This design allows the
network to output a sequence of data points, maintaining the
temporal structure of the input data. By preserving sequence
information, this layer enables the model to learn and capture
the dynamics and patterns in time-series data. The first layer

Table 3
Bayesian optimisation implementation.

Algorithm: Bayesian optimisation
Input: Search space, objective function, number of iterations
Output: Optimal hyperparameters 𝛼, 𝜌, 𝛽
Step 1: Initialise the search space

Leaking Rate (𝛼): Range from 0.0001 to 0.2
Spectral Radius (𝜌): Range from 0.6 to 1.5
Regularisation Parameter (𝛽): Range from 1 × 10−5 to 1 × 10−1

Step 2: Select a random value of each hyperparameter
Sample initial hyperparameters

Step 3: Define the objective function
Define mean-squared error between predicted and true
time-series data to be minimised

Step 4: Choose a surrogate function
Use Tree Parzen Estimator (TPE) to approximate the objective function
presented in Equation 1

Step 5: Select optimal hyperparameters
For 𝑛 = 1 to 𝑁𝑖𝑡𝑒𝑟 = 100
Based on exploration-exploitation trade-off, select 𝐱𝑛 from 𝑆 using TPE

Step 6: Evaluate the objective function
Train the model and evaluate 𝑓 (𝐱𝑛)

Step 7: Update the surrogate function
Update the TPE model with the new results (𝐱𝑛, 𝑓 (𝐱𝑛))
Prune unpromising trials using the Median pruner function:
𝑚𝑏𝑒𝑠𝑡 = median({𝑓 (𝐱𝑖)|𝑖 < 𝑛})
Prune trial if 𝑓 (𝐱𝑛) > 𝑚𝑏𝑒𝑠𝑡

Step 8: Output the optimal hyperparameters
𝐱𝑜𝑝𝑡 = argmin 𝑓 (𝐱)

is followed by a dropout layer with a dropout rate of 0.2.
Dropout serves as a regularisation technique that randomly
deactivates a fraction of the neurons during training. This
helps prevent overfitting by ensuring that the model does
not become overly reliant on any specific neuron. The third
layer is an LSTM layer, also consisting of 100 neurons, that
continues to return sequences. The fourth layer is an LSTM
layer, featuring 100 neurons, which is configured to return
only the final output rather than sequences. This layer fuses
the information from the preceding layers into a fixed-size
representation. An additional dropout layer with a dropout
rate of 0.2 is introduced after the final LSTM layer. The final
layer of the network is a dense layer with a single neuron
and a linear activation function. This layer generates the final
prediction.

The model applies the Adam optimiser, known for its
efficiency and adaptive learning rates. Adam helps in faster
convergence and improved performance by dynamically ad-
justing the learning rates based on the gradients [86]. Mean
Squared Error (MSE) is utilised as the loss function, which
measures the average squared difference between predicted
and true values.

For each decomposed current time-series component, an
individual trained LSTM is used. For the FC1 Dataset, the
LSTM is trained on 525 hr of data to capture the dynamics
of the trend, seasonal, and residual components. For the FC2
Dataset, the LSTMs initially trained on the FC1 Dataset
current components are re-used to assess their ability to
perform predictions on a different dataset without additional
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training, effectively implementing transfer learning. During
training, the LSTM receives sequences of 125 data points
to learn how to predict the next 125 steps. In the prediction
phase, the LSTM receives the past 125 hr of experimental
data to predict the next 125 hr, and this process is repeated
until the end of the durability dataset is reached.
3.5. Method for predicting performance degradation

This subsection outlines the method to predict total
stack voltage degradation. The process consists of four main
stages. First, data preprocessing is discussed in subsub-
section 3.5.1. The data is initially downsampled and fil-
tered using a Savitzky-Golay filter to smooth out noise.
The current and total stack voltage time-series data from
the FC1 Dataset and FC2 Dataset are then normalised
to prepare them for decomposition. Second, Seasonal and
Trend decomposition via LOESS (STL) is discussed in
subsubsection 3.5.2. This step separates the trend, seasonal,
and residual components of the time-series data. Third, in
subsubsection 3.5.3, we explain the prediction method for
the current time-series components using LSTM and ESN.
Fourth, subsubsection 3.5.4 describes how the total stack
voltage components are iteratively predicted by utilising the
predicted components from the previous time step of the
current and total stack voltage.
3.5.1. Data preprocessing

The FC1 Dataset and FC2 Dataset contain varying
sampling rates and noise. To standardise the time steps
across the time-series and ensure compatability with the
LSTM and ESN models, we first downsampled the datasets.
This adjustment aligned the current time-series data to 1 hr
intervals, facilitating predictions of at least 100 hr ahead,
which corresponds to around 100 time steps—well within
the LSTM’s predictive capabilities. Following downsam-
pling, we applied a Savitzky-Golay filter with a window
length of 5 time steps to reduce noise while preserving es-
sential signal features. The filtered data was then normalised
to a range between 0 and 1 to prepare it for model training
and prediction. After the prediction phase of the current
time-series components, the current time-series components
were upsampled to a 15 min intervals. This upsampling
was necessary to match the sampling rate of the voltage
time-series, which was downsampled to 15 min to maintain
critical information. The decision to use a 15 min sampling
rate for the voltage data was informed by an analysis of
information gain, as shown in Figure 4. This analysis in-
dicated that significant information loss occurs with longer
sampling intervals beyond 15 min. Although downsampling
the current time-series to 1 hr may result in some information
loss, this trade-off is considered acceptable as the current
predictions are primarily used to support the total stack
voltage predictions. The impact of various downsampling
rates on the total stack voltage is illustrated in Figure 5,
which shows that downsampling beyond 15 min intervals
leads to a loss of critical information.

Figure 4: Impact of resampling rate on information gain of
total stack voltage of the FC1 Dataset.

Figure 5: Impact of resampling rate on total stack voltage of
the FC1 Dataset between 400 and 600 hr.

3.5.2. Data decomposition
Time-series decomposition using Seasonal and Trend

decomposition via LOESS, first introduced by R. Cleve-
land et al. [37], plays an essential role in the proposed
method. STL utilises Locally Weighted Scatterplot Smoot-
ing (LOESS), a non-parametric technique capable of decom-
posing complex time-series data into trend, seasonal, and
residual components. The STL procedure applies polyno-
mial regression at each time step of the time-series to capture
these components [38]. The procedure uses an eigenvalue
and frequency response analysis on the analysed time-series.
The STL approach involves an iterative process of detrend-
ing and updating the seasonal component from the resulting
sub-series. Each iteration generates weights based on the es-
timated irregular component, which are then used to down-
weight outliers in subsequent calculations. This iterative
process effectively captures both short-term fluctuations and
long-term trends, making STL a robust method for handling
time series with irregular or evolving patterns.

In our application, the STL decomposition was applied
to current and voltage time-series data sampled at 15 min
intervals. For defining the seasonal period, a value of 97 was
chosen, representing the number of 15 min intervals within
a 24-hour day.
3.5.3. Current degradation prediction

The current time-series data from the FC1 Dataset and
FC2 Dataset were decomposed using STL into trend, sea-
sonal, and residual components. Each component was then
predicted using a pre-configured LSTM and an optimised
ESN to compare their performance. The previous 125 hr
of experimental data were used to generate predictions 125
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Figure 6: Process of preprocessing current time-series data and predicting with Long Short-term Memory Network.

steps ahead, with each step representing 1 hr. For each
prediction phase of the FC1 Dataset, a new ESN was created
and trained using the past 125 hours to predict the next
125 hours. The final ESN, trained on the complete FC1
Dataset, was re-used for investigating transfer learning on
the FC2 Dataset. An overview of the preprocessing steps
and the current prediction steps with an LSTM is provided
in Figure 6.
3.5.4. Voltage degradation prediction

For the voltage time-series predictions, STL was again
utilised to decompose the time-series into trend, seasonal,
and residual components. The predicted current compo-
nents were used to assist in forecasting the voltage com-
ponents. Only the ESN was applied to predict the voltage
components, allowing for further analysis of the ESN’s
performance for stable iterative predictions with two input
parameters. Furthermore, transfer learning was not applied
for the voltage predictions to isolate the use of an ESN
for specific operating condition. For the FC1 Dataset, an
ESN was trained with 500 hr of experimental current and
voltage data and optimised with 153 hr of validation data.
For the FC2 Dataset, an ESN was trained with 200 hr of
experimental current and voltage data and optimised with
80 hr of validation data. The ESN then iteratively predicted
the voltage using the predicted current data from the last
time step and its previous voltage prediction. The iterative
predictions continued until the end of the durability test
without limiting the number of iterative predictions, with
each time step representing 15 min.
3.6. Membrane degradation models

This subsection discusses the degradation models to
assess the health of the membrane, the most critical PEM
fuel cell component. In subsubsection 3.6.1 an empirical
membrane model is introduced, based on oxygen crossover
rate, to determine degradation in membrane thickness. A
semi-empirical model, based on fluoride release rate, is
presented in subsubsection 3.6.2 to model the degradation
in membrane thickness.
3.6.1. Empirical membrane model

Karpenko-Jereb et al. [35] developed a new empirical
model that incorporates physico-chemical properties poly-
mer electrolyte membrane to assess the degradation rates
of the membrane thickness and conductivity in relation to
the oxygen crossover rate. This model is integrated with a
validated Computational Fluid Dynamics (CFD) model to
simulate three-dimensional cell performance. By coupling
these models, the study analyses the temporal behaviour

of the cell, revealing that membrane degradation is non-
uniform across the plane. The simulations also demonstrate
that cell current density decreases more rapidly with reduced
relative humidity and increased temperature. Input param-
eters for the model, specifically the degradation rates of
membrane thickness and conductivity, were acquired from
Yuan et al. [87, 88].

Chemical degradation in perfluorinated sulfonated mem-
branes, such as Nafion, is primarily driven by interactions
between hydroxyl radicals and the polymer chains. These
interactions lead to a reduction in membrane thickness and
conductivity, and the formation of pinholes and cracks.
Hydroxyl radicals are generated from hydrogen peroxide,
a byproduct of reactions involving oxygen and hydrogen
protons, with their concentration being proportional to the
oxygen concentration in the fuel cell. Consequently, a de-
crease in membrane thickness can significantly increase
hydrogen crossover current density.

Experimental data shows that the hydrogen crossover
rate varies with parameters such as temperature, pressure,
relative humidity, and membrane thickness. A mathematical
expression is proposed to estimate the hydrogen crossover
rate under different operating conditions. The study suggests
that the ratio of oxygen to hydrogen crossover flux through
the membrane remains relatively constant regardless of en-
vironmental conditions. This allows for simplification of
calculations related to oxygen crossover.

Experimental data indicates that the hydrogen crossover
rate is influenced by temperature, pressure, relative humid-
ity, and membrane thickness. A mathematical expression
is proposed to estimate the hydrogen crossover rate under
varying operating conditions. It is suggested that the ratio
of oxygen to hydrogen crossover flux through the mem-
brane remains relatively constant across different environ-
mental conditions, simplifying calculations related to oxy-
gen crossover.

Simulation results provide insights into the relationship
between oxygen crossover flux and cell voltage. A linear
fitting equation is used to describe how the oxygen crossover
flux changes with voltage. This relationship allows for the
calculation of degradation rates for membrane thickness
and conductivity, considering the impact of cell voltage
on oxygen crossover flux. The application of the empirical
model is presented in Figure 7. Detailed descriptions of the
mathematical expression to estimate hydroegn crossover rate
and oxygen crossover flux can be found in [35].
3.6.2. Semi-empirical membrane model

Chandesris et al. [36] developed a semi-empirical re-
lationship for determining membrane thickness based on
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Figure 7: Membrane empirical degradation model [35].

fluoride release. The process involves three main steps to
evaluate membrane thinning due to fluoride release.

First, the fluoride release rate is computed as a function
of operating conditions, as shown in Equation 2. Second,
the change in membrane thickness over time is calculated
by assuming that the membrane thickness is proportional
to the fluoride release rate times the volume of dry Nafion
corresponding to 1 g of fluoride, as shown in Equation 3.
This assumption holds because the fluoride release rate is
normalised by the geometric active surface area of the mem-
brane electrode assembly. Third, the updated membrane
thickness is computed using Equation 4. This process is
iterative.

Several assumptions are made when applying the model
to the FCLAB datasets. Since cell temperature is not avail-
able in the FCLAB datasets, the highest available tempera-
ture measurements, which is the outlet coolant temperature,
are used. It is expected that the actual cell temperature is
higher than the outlet coolant temperature.

The saturated pressure of water is calculated using the
Antoine equation, as shown in Equation 5. The parame-
ters 𝐴, 𝐵, and 𝐶 are obtained from the NIST Chemistry
WebBook [89]. The parameters provided by Stull [90] are
selected due to their applicable temperature range of -17 °C
to 100°C.
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𝑙𝑜𝑔10(𝑃𝑠𝑎𝑡) = 𝐴 − 𝐵
𝐶 + 𝑇𝑎𝑖𝑟

(5)

3.6.3. Membrane degradation prediction
The degradation in membrane thickness is modelled

by using an empirical and semi-empirical model based on
experimental data. For the FC1 Dataset, 653 hr of experi-
mental data are utilised, while the FC2 Dataset uses 600 hr
of experimental data. Linear regression is applied to predict
membrane thickness after modelling the degradation trend,
thus reducing the dependency on experimental data. The
membrane thickness degradation is evaluated for all five-
cells in the tested PEM fuel cell and averaged to understand
the overall degradation trend. Both empirical and semi-
empirical models are applied in this manner, and the average
of both models is used to understand the overall membrane
thickness degradation.
3.7. Remaining useful life prediction

For the FC1 Dataset and FC2 Dataset, two RUL forecast
are created for each dataset: one based solely on predicted
total stack voltage degradation and another incorporating
both predicted total stack voltage degradation and predicted
membrane thickness degradation. The RUL is dependent on
system and component degradation, thus it is expected that
both parameters are helpful in RUL predictions with the
linear regression technique. Determining the RUL requires
understanding of the EoL, which is based on a voltage
threshold, similar to methods used in other studies [8, 19,
59]. A voltage degradation threshold of 3.5% is selected for
determining the EoL of the PEM fuel cell, consistent with
thresholds used in literature [19, 20, 21]. The accuracy of the
RUL results is evaluated using the 𝛼−𝜆metric, with an initial
allowed error of 35% that reduces as the RUL decreases. This
ensures that the RUL forecast remains within an acceptable
range of accuracy.

4. Results & Discussion
This section discusses the results of the proposed prog-

nostic method. First, the predictions of the decomposed
current time-series are presented in subsection 4.1. Sec-
ond, the decomposed and reconstructed voltage time-series
prediction are shown in subsection 4.2. In subsection 4.3
the membrane thickness modelling and prediction results
are discussed. Lastly, the RUL forecast are presented in
subsection 4.4.
4.1. Decomposed current time-series prediction

The FC1 Dataset trend predictions are shown in Figure 8
and Figure 9, the seasonal predictions in Figure 10 and
Figure 11, and the residual predictions in Figure 12 and
Figure 13.

By analysing these predictions, several conclusions can
be drawn. For the current trend, the ESN captures the base-
line more accurately than the LSTM. Both models face
difficulties to predict the large deviation in the current trend
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at the end of the durability test. However, the ESN manages
to predict the baseline of the deviation, whereas the LSTM
fails to capture it. This demonstrates the ESN’s ability to
quickly adapt to the latest temporal data while maintaining
the overall dynamics of the time-series. In contrast, the
LSTM tends to return to the trend observed in its 1𝑠𝑡, 2𝑛𝑑 ,
and 3𝑟𝑑 prediction. Regarding current seasonal, the ESN
fails to capture the repeating pattern in the time-series with
its fluctuating amplitude, likely due to a failure in the hy-
perparameter optimisation process. Conversely, the LSTM
is able to capture the current seasonality quite well. For
the current residual, the LSTM also outperforms the ESN.
However, both struggle to predict the anomalies in the time-
series which is normal for predicting residual components
[38]. These anomalies are partly caused by interruptions in
the durability test due to scheduled characterisation tests
to inspect the degradation of the PEM fuel cell. These
characterisation tests cause a drop in current and lead to a
recovery in voltage, as shown in Figure 14. The performance
of both techniques on the FC1 Dataset are quantified in
terms of RMSE, as presented in Table 4.

The LSTM and ESN models trained on the FC1 Dataset
were directly applied to the FC2 Dataset to explore transfer
learning. Despite the quasi-dynamic operating conditions of
the FC2 Dataset compared to the static conditions of the
FC1 Dataset, it is valuable to assess how these networks
perform on different datasets without additional training. For
the FC2 Dataset, trend predictions are shown in Figure 15
and Figure 16, the seasonal predictions in Figure 17 and
Figure 18, and the residual predictions in Figure 19 and
Figure 20.

Similar to the trend prediction for the FC1 Dataset,
the ESN outperforms the LSTM in predicting the trend for
the FC2 Dataset, with only one out of seven predictions
failing to capture the trend. In contrast, the LSTM fails to
capture the baseline of the trend entirely. For seasonal and
residual predictions, the LSTM performs better than the
ESN, especially in capturing seasonality, which the ESN
misses altogether. Both networks struggle with predicting

Figure 8: Trend of FC1 stack current forecast 125 hours ahead
by Long Short-term Memory Network by applying previous 125
hour of experimental data.

Figure 9: Trend of FC1 stack current forecast 125 hours ahead
by Echo State Network by applying previous 125 hour of
experimental data.

Figure 10: Seasonality of FC1 stack current forecast 125
hours ahead by Long Short-term Memory Network by applying
previous 125 hour of experimental data.

Figure 11: Seasonality of FC1 stack current forecast 125 hours
ahead by Echo State Network by applying previous 125 hour
of experimental data.

Figure 12: Residual of FC1 stack current forecast 125 hours
ahead by Long Short-term Memory Network by applying
previous 125 hour of experimental data.

Figure 13: Residual of FC1 stack current forecast 125 hours
ahead by Echo State Network by applying previous 125 hour
of experimental data.

Figure 14: Impact of characterisation tests on voltage recovery
for FC1 Dataset.

the residual anomalies in the FC2 Dataset, partly due to
interruptions in the durability test caused by characterisation
tests. These characterisation tests cause a drop in current
and lead to a recovery in voltage as shown in Figure 21.
The performance of both techniques on the FC2 Dataset
is quantified in terms of RMSE, as presented in Table 4.
In summary, the ESN achieves higher accuracy for trend
predictions, while the LSTM achieves higher accuracy for
the seasonal and residual predictions. Therefore, the ESN’s
current trend predictions will be used to assist in voltage
trend predictions, while the LSTM’s predictions for current
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Figure 15: Trend of FC2 stack current forecast 125 hours
ahead by Long Short-term Memory Network* by applying
previous 125 hour of experimental data. *Trained LSTM on
FC1 Dataset is applied on FC2 Dataset to investigate transfer
learning.

Figure 16: Trend of FC2 stack current forecast 125 hours ahead
by Echo State Network* by applying previous 125 hour of
experimental data. *Trained ESN on FC1 Dataset is applied
on FC2 Dataset to investigate transfer learning.

Figure 17: Seasonality of FC2 stack current forecast 125 hours
ahead by Long Short-term Memory Network* by applying
previous 125 hour of experimental data. *Trained LSTM on
FC1 Dataset is applied on FC2 Dataset to investigate transfer
learning.

Figure 18: Seasonality of FC2 stack current forecast 125 hours
ahead by Echo State Network* by applying previous 125 hour
of experimental data. *Trained ESN on FC1 Dataset is applied
on FC2 Dataset to investigate transfer learning.

seasonality and residual will be utilised to assist in voltage
seasonality and residual predictions.
4.2. Decomposed and reconstructed voltage

time-series prediction
For voltage time-series predictions, STL decomposed

the data into trend, seasonal, and residual components. The
ESN, assisted by predicted current components, handled all
voltage predictions. The ESN iteratively predicted voltage
using the previous time step’s current data and its last voltage
prediction, with each step representing 15 min, continuing
until the test’s end. This resulted in 2004 iterative voltage
predictions for the FC1 Dataset and 2961 iterative voltage
predictions for the FC2 Dataset. It is important to note that
during the prediction phase, a time window of 125 hr of ex-
perimental current data was required to generate a prediction

Figure 19: Residual of FC2 stack current forecast 125 hours
ahead by Long Short-term Memory Network* by applying
previous 125 hour of experimental data. *Trained LSTM on
FC1 Dataset is applied on FC2 Dataset to investigate transfer
learning.

Figure 20: Residual of FC2 stack current forecast 125 hours
ahead by Echo State Network* by applying previous 125 hour
of experimental data. *Trained ESN on FC1 Dataset is applied
on FC2 Dataset to investigate transfer learning.

Figure 21: Impact of characterisation tests on voltage recovery
for FC2 Dataset.

Table 4
Root-mean-square error of predicted current degradation data
for decomposed signals of dataset FC1 and FC2 with Echo
State Network versus Long Short-term Memory Network.
*Trained ESN/LSTM on dataset FC1 is applied on dataset
FC2 to investigate transfer learning.

RMSE FC1 Dataset FC2 Dataset
Type of current signal ESN LSTM ESN∗ LSTM∗

Trend 0.14906 0.28514 0.23086 0.50714
Seasonality 0.05261 0.00326 0.08976 0.00010
Residual 0.05521 0.03211 0.11313 0.05814

for the next 125 hr of current time-series data. Additionally,
no experimental voltage data was used after validation was
completed. This means that after using 653 hr and 280 hr
of experimental voltage data of the FC1 Dataset and FC2
Dataset, respectively, no further experimental voltage data
was required by the ESN to predict the next voltage value
- only the previous voltage and current predictions were
needed.

For the FC1 Dataset, the voltage trend prediction in
Figure 22 demonstrates that the ESN effectively captures
the overall trend of the voltage degradation. While there are
some discrepancies between the true experimental data and
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Figure 22: Trend stack voltage degradation of FC1 Dataset
compared with predicted trend by optimised Echo State
Network.

Figure 23: Seasonality stack voltage degradation of FC1
Dataset compared with predicted seasonality by optimised
Echo State Network.

Figure 24: Residual stack voltage degradation of FC1 Dataset
compared with predicted seasonality by optimised Echo State
Network.

Figure 25: Total stack voltage degradation of FC1 Dataset
compared with predicted total stack voltage based on de-
composed voltage signal prediction of trend, seasonality, and
residual.

the predicted data, particularly in predicting voltage recov-
eries, the ESN remains stable and closely follows the final
trend of the experimental data even after performing 2004
iterative predictions. The seasonality of the FC1 Dataset,
presented in Figure 23, is accurately predicted by the ESN,
largely thanks to the LSTM’s predicted current seasonality,
as shown in Figure 10. Although the amplitude of the pre-
dicted seasonality does not always match the experimental
data perfectly, the ESN achieves a RMSE of 0.00038. The
final predicted voltage component, the residual of the FC1
Dataset, captures the baseline of the residual but not the
spikes in the time-series, which is expected as the residual is
the hardest component to be predicted. When all predicted
components are combined to reconstruct the original total
stack voltage time-series, as shown in Figure 25, the overall
trend is well-captured by the ESN. However, it faces diffi-
culties in predicting the voltage recoveries, partly due to the
characterisation tests which impact is presented in Figure 14.
Since voltage recoveries are infrequent, the ESN struggles
to capture this dynamic within the time-series, resulting in
a stable voltage trend prediction with few fluctuations. The
seasonal component helps introduce more fluctuations into

Figure 26: Trend stack voltage degradation of FC2 Dataset
compared with predicted trend by optimised Echo State
Network.

Figure 27: Seasonality stack voltage degradation of FC2
Dataset compared with predicted seasonality by optimised
Echo State Network.

Figure 28: Residual stack voltage degradation of FC2 Dataset
compared with predicted residual by optimised Echo State
Network.

Figure 29: Total stack voltage degradation of FC2 Dataset
compared with predicted total stack voltage based on de-
composed voltage signal prediction of trend, seasonality, and
residual.

the predicted total stack voltage, but its impact is limited, as
seen in Figure 25.

For the FC2 Dataset, the predicted voltage trend, shown
in Figure 26, has similar characteristics as the predicted
voltage trend of the FC1 Dataset. The ESN is able to capture
the overall trend and ends at the same voltage level as the ex-
perimental data after generating 2961 iterative predictions.
The seasonal component of the FC2 Dataset, depicted in
Figure 27, is well predicted by the ESN with a RMSE of
0.00056. Although the amplitude of the repeating pattern
is sometimes underpredicted, this is likely due to the stable
ESN model developed. For the final voltage component of
the FC2 Dataset, the residual, the ESN faces difficulties
in predicting the spikes in the time-series. However, the
overall time-series prediction remains a sufficient estimate.
In Figure 29, the total stack voltage prediction is compared
with the experimental time-series. This comparison shows
that the ESN can accurately predict the trend over 2961
iterative predictions. However, it has its limitations in terms
of predicting voltage recoveries. The RMSE of all individual
voltage components and total stack voltage predictions can
be reviewed in Table 5.
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Table 5
Root-mean-square error of predicted voltage degradation data
for decomposed and reconstructed signal of dataset FC1 and
FC2 with Echo State Network.

RMSE Dataset FC1 Dataset FC2
Type of voltage signal ESN ESN

Trend 0.01283 0.06576
Seasonality 0.00038 0.00056
Residual 0.00706 0.01597
Total 0.08063 0.06428

This approach has demonstrated that current and voltage
degradation in PEM fuel cells can be accurately predicted
125 hr in advance without the need for additional param-
eter measurements such as incoming hydrogen pressure or
coolant temperature. This simplifies the monitoring require-
ments for PEM fuel cells, as only the the current and total
stack voltage need to be tracked by internal sensors during
normal operations. By relying solely on current and voltage
measurements, this method is broadly applicable to various
PEM fuel cells.
4.3. Membrane thickness modelling and prediction

For the FC1 Dataset, the results of the empirical model,
semi-empirical model, and their average are presented in
Figure 30a, Figure 30b, and Figure 30c, respectively. The
initial membrane thickness is 1.5 × 10−5𝑚, which degrades
quadratically for the empirical model and linearly for the
semi-empirical model, resulting in a somewhat quadratic
trend for the average degradation. Similar results are ob-
tained for the FC2 Dataset, with corresponding results of the
empirical model, semi-empirical model, and their average
presented in Figure 30d, Figure 30e, and Figure 30f, respec-
tively.

The critical membrane thickness, defined as 1.5×10−6𝑚
(10% of the initial membrane thickness), is not reached in
either dataset. The membrane thickness degradation of the
FC2 Dataset within 1000 hr is comparable to that of the
FC1 Dataset within 1154, indicating slightly faster degra-
dation under quasi-dynamic operating conditions compared
to static conditions. Linear regression successfully predicts
the trend of membrane degradation, with small discrepancies
noted in the empirical model predictions, as shown in Fig-
ure 30a and Figure 30d. However, the largest discrepancies
between the modelled and predicted membrane degrada-
tion are observed in the semi-empirical model for the FC2
Dataset, as seen in Figure 30e, possibly due to the limitations
of the linear regression technique.
4.4. Forecast remaining useful life

The RUL results based solely on predicted voltage degra-
dation are presented in Figure 31a, which meet the 𝛼 − 𝜆
accuracy up to 125 hr ahead. Although the RUL prediction
crosses the 𝛼 − 𝜆 accuracy line at the EoL, this indicates
that a conservative estimation where the predicted RUL is
shorter than the actual RUL. For these predictions, voltage

(a) (b)

(c) (d)

(e) (f)
Figure 30: Membrane thickness degradation average of all five-
cells, obtained by degradation model and linear regression.
Degradation results obtained by: (a) Empirical model on
FC1 Dataset, (b) Semi-empirical model on FC1 Dataset, (c)
Average of both models on FC1 Dataset, (d) Empirical model
on FC2 Dataset, (e) Semi-empirical model on FC2 Dataset,
(f) Average of both models on FC2 Dataset.

(a) (b)

(c) (d)
Figure 31: Remaining Useful Life (RUL) initial allowed error of
35% to define 𝛼 − 𝜆 accuracy, and RUL prediction with linear
regression of: (a) FC1 Dataset based on forecast of voltage
degradation 125 hr ahead, (b) FC1 Dataset based on forecast
of membrane thickness and voltage degradation 125 hr ahead,
(c) FC2 Dataset based on forecast of voltage degradation 125
hr ahead, and (d) FC2 Dataset based on forecast of membrane
thickness and voltage degradation 125 hr ahead.

degradation is forecast 125 hr in advance, providing a PH
that is 25 hr longer than the most advanced method of Li et al.
[19]. However, the RUL that incorporate additional mem-
brane thickness degradation data do not achieve the same
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PH of 125 hr, as seen in Figure 31b. Despite the membrane
being the most critical component of the PEM fuel cell, these
predictions overestimate the RUL. This discrepancy may be
due to averaging the membrane thickness degradation across
all five cells into a single value. Not all cells experience the
same level of degradation; for example, Liu et al. [66] noted
that cell 1’s membrane thickness degradation is 2.0×10−6𝑚
greater than that of cell 5. Consequently, the impact of cell
1’s degradation on the total stack voltage is not accurately
reflected in the average membrane thickness value, leading
to underestimation of the actual severity of degradation. For
the FC2 Dataset, similar results are obtained, as shown in
Figure 31c and Figure 31d. However, there is a notable
discrepancy in Figure 31c, where the predicted RUL crosses
the 𝛼−𝜆 accuracy line close to the EoL with an error of 19.4
hr. This error is considered acceptable, but it raises questions
about whether the PH of 125 hr can be confidently applied
to the FC2 Dataset.

5. Conclusion
This study presents an approach for predicting the degra-

dation of Proton-exchange Membrane (PEM) fuel cells by
decomposing current time-series data from the FC1 and
FC2 Datasets into trend, seasonal, and residual components
using Seasonal and Trend decomposition via LOESS (STL).
These components were predicted using pre-configured
Long Short-term Memory (LSTM) Network and optimised
Echo State Network (ESN) models, enabling accurate fore-
casts 125 hr ahead. Our results show the ESN outperforms
in trend prediction, capturing the baseline and adapting
quickly, even under quasi-dynamic conditions. Conversely,
the LSTM is more effective for seasonal and residual predic-
tions. Both models struggled with anomalies from interrup-
tions in the durability tests due to characterisation tests.

For voltage predictions, the ESN was solely applied,
leveraging the predicted current components to forecast
voltage trends. The ESN effectively captured the overall
voltage degradation trend over extended iterative predictions
for both datasets, although it faced challenges in predicting
voltage recoveries. This approach required no additional
experimental voltage data after the initial training and vali-
dation phases, highlighting the ESN’s capability for iterative
prediction stability.

The study also explored membrane thickness degrada-
tion using empirical and semi-empirical models based on
experimental data. Linear regression was applied to predict
membrane thickness trends, which were averaged across
all five cells in the PEM fuel cell. The degradation trends
showed that the critical membrane thickness was not reached
within the test durations, and the quasi-dynamic conditions
of the FC2 Dataset led to slightly faster degradation com-
pared to static conditions.

Remaining Useful Life (RUL) forecasts were created
based on predicted total stack voltage degradation and com-
bined voltage and membrane thickness degradation. The
predictions based solely on voltage degradation met the 𝛼−𝜆
accuracy up to 125 hr ahead, offering a practical Prognostic

Horizon (PH) of 125 hr. However, incorporating membrane
thickness data led to overestimations, indicating the com-
plexity of modelling individual cell degradation dynamics.

In summary, this research demonstrates that current and
voltage degradation in PEM fuel cells can be accurately pre-
dicted up to 125 hr in advance using STL decomposition and
a LSTM coupled with an ESN, without additional parameter
measurements. This simplifies monitoring requirements and
provides a broadly applicable method for various PEM fuel
cells. Future work should focus on refining models to better
capture individual cell degradation dynamics and extending
the approach to other fuel cell types and operating condi-
tions, thereby enhancing the reliability and efficiency of fuel
cell systems.

6. Future Work
This study explored the use of Echo State Networks

(ESNs) for generating iterative predictions based on time-
series data from Proton-exchange Membrane (PEM) fuel
cells. The current predictions are constrained by the avail-
ability of only two datasets from the FCLAB Research Fed-
eration (FR CNRS 3539). To extend this work to degradation
predictions for PEM fuel cells used in regional aircraft, it is
crucial to conduct durability or accelerated stress tests under
relevant operating conditions.

Future research should focus on several key advance-
ments beyond conducting these tests. First, developing a
Generative Adversarial Network (GAN) to augment data
across static, quasi-dynamic, and dynamic operating con-
ditions is crucial. This GAN could be tailored to specific
mission profiles, enabling the generation of datasets that
align with current profiles. Additionally, a GAN could be
developed to create polarisation curves, building on the
approach of Morizet et al. [91], which would streamline the
fuel cell stack delivery process and reduce time-to-market.

Beyond data augmentation, the proposed methodology
should be expanded to provide actionable maintenance rec-
ommendations, including strategies for fuel cell recovery
through characterisation tests. On the ESN front, it is impor-
tant to apply multiple ESNs with varying hyperparameters
to assess prediction uncertainty and optimise hyperparam-
eter settings. By averaging predictions from different ESN
configurations, we can provide more accurate forecasts with
confidence intervals.

Regarding membrane degradation, while current mod-
els offer useful insights, they are limited by their assump-
tions. For PEM fuel cells utilised in different applications,
such as regional aircraft, developing tailored empirical and
semi-empirical models to better capture membrane thickness
degradation is advisable. If such specific applications are not
relevant, the impact of these efforts may be minimal.
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1
Summary

This report discusses how long-term prediction on the remaining useful life of proton-exchange membrane
(PEM) fuel cells can be further improved. Two main points of improvements are identified: 1) extended pre-
diction horizon of remaining useful life with a multi-step ahead prediction technique based on an echo state
network; 2) system and component health indicators that have a relationship to the remaining useful life.
Validated degradation models for the most critical components, the membrane and electrode, are explained.
Membrane thickness and electrochemical catalyst surface area are identified as health indicators for mem-
brane and electrode, respectively. Available durability datasets from ZAL and FCLAB are discussed. From
ZAL, a dataset of 8000 hr with static conditions on a single cell is available. From FCLAB, two datasets are
available of 1155 hr and 1021 hr with static and quasi-dynamic conditions, respectively.
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2
Introduction

In the aviation industry, hydrogen is regarded as one of the fuels that can be used to meet net-zero emissions
[1]. Hydrogen-electric powertrains are considered to be one of the solutions to meet climate goals related
to transportation vehicles [2]. One of the largest aircraft manufacturers, Airbus, has the ambition to bring
hydrogen-powered aircraft to the market by 20351. Next to Airbus, there are other companies such as Ze-
roAvia, Universal Hydrogen, H3Dynamics, ZAL2, which focus on applying hydrogen as an alternative fuel in
aircraft and drones. Hydrogen combustion and hydrogen fuel cells are regarded as the two propulsion sys-
tems for the various concepts.

These propulsion systems are not only new to manufacturers but also to airlines and drone operators. When
these systems are operational, it is essential that the operators understand how to perform maintenance and
when to perform it. Preventive and predictive maintenance are current techniques applied by airlines to un-
derstand when maintenance needs to be performed on aero-engines, among other components, according
to Stanton et al. [3]. Predictive maintenance can assist in prognosing the remaining useful life (RUL) of a
system or even a specific failure. Thereby, reducing safety risks and costs by preventing failures and use-
beyond-repair.

A proton-exchange membrane (PEM) fuel cell is considered most suitable and advanced for aviation com-
pared to other type of fuel cells according to the study from McKinsey & Company [? ]. However, a PEM fuel
cell has limited durability due to degradation of the components, impurities in fuel and oxidants, and operat-
ing conditions [4]. For instance in hydrogen-electric cars, a maximum lifetime of 4000-5000 hr was achieved
while a 8000 hr lifetime is the ultimate goal [5]. Predictive maintenance can play a critical role in enhancing
the reliability of PEM fuel cells by predicting the health of components and degradation trends of the overall
system [6]. Moreover, the integration of predictive maintenance strategies into PEM fuel cell systems holds
the promise of extending their lifespan, maximising energy efficiency, and ensuring optimal performance
throughout their operational lifecycle [7].

Current research is investigating three approaches to predict the remaining useful life of PEM fuel cells: 1)
physical models; 2) data-driven techniques; 3) hybrid - combination of physical models and data-driven
techniques [8]. Physical models are based on fundamental principles of physics and electrochemistry gov-
erning the operation of PEM fuel cells [9, 10]. These models describe the degradation behaviour of various
components such as membrane, electrodes, gas diffusion layers, and distribution plates [11, 12]. In some
cases, the models are validated by various experimental datasets [13]. These models enable the investigation
of specific degradation mechanisms of components. Uncertainties associated with parameter estimation,
boundary conditions, and simplifications in physical models can affect the accuracy of prognostic predic-
tions [14]. Data-driven techniques leverage historical operational data, sensor measurements, and perfor-
mance metrics to identify patterns, correlations, and trends which can indicate degradation in PEM fuel cells
[15]. These techniques can be used to build predictive models that forecast future performance degradation
based on observed data patterns. Data-driven techniques require sufficient historical data for training robust

1https://www.airbus.com/en/innovation/low-carbon-aviation/hydrogen/zeroe (accessed 03-01-2024)
2https://zal.aero/en/innovation-rt/rt/ (accessed 10-01-2024)
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predictive models, which may not always be available, especially for novel or custom fuel cell systems [16].
Hybrid prognostic approaches combine the strength of both physical models and data-driven techniques to
enhance the accuracy and reliability of prognostic predictions for PEM fuel cells. Combining physics-based
models with data-driven techniques may increase the computational time, particularly for real-time prog-
nostics [17].

Experimental data for PEM fuel cell prognostics can be obtained through laboratory-based durability tests
which offer controlled environments. Therefore, specific degradation mechanisms can be isolated and stud-
ied in detail. Accelerated stress tests, constant load cycling, and accelerated aging protocols are commonly
applied in a laboratory to simulate long-term operation and assess the durability of PEM fuel cells [18]. In
2014, IEEE and FCLAB released a durability dataset of two PEM fuel cells to accelerate research in prognostics
and health management for PEM fuel cells [19]. The PEM fuel cells operated under static and quasi-dynamic
current conditions. In static operating conditions, a PEM fuel cell maintains a constant load, ideal for scenar-
ios with consistent power demand like the cruise phase of drones or aircraft. This stability ensures efficient
and predictable performance without frequent adjustments. However, static conditions may not suit appli-
cations with fluctuating power needs. Quasi-dynamic conditions involve gradual load variations over longer
periods, adaptable to scenarios like an aircraft’s landing phase. Dynamic conditions, with rapid load changes,
demand quick response from the fuel cell system, critical for optimal performance in scenarios like vehicle
propulsion systems during rapid acceleration or deceleration.

The relationship between degradation indicators and remaining useful life of PEM fuel cells is often non-
linear and complex. Degradation may occur gradually over time, exhibiting nonlinear trends that are not
easily captured by simple correlations or a single health indicator. Moreover, the rate of degradation may vary
depending on operating conditions, environmental factors, and maintenance practices. However, current
advancements in remaining useful life predictions of PEM fuel cells are related to a single performance health
indicator [20][21]. In terms of predictive maintenance, this indicator does not provide useful information on
component degradation and the state of the components within the PEM fuel cell.

In recent years, significant advancements have been made in the development of prognostic techniques for
PEM fuel cells, enabling researchers and engineers to forecast the RUL with increasing accuracy and reliabil-
ity [22] [23]. However, the prediction horizon of RUL, which represents the time frame over which prognostic
models can reliably forecast the remaining useful life of PEM fuel cells, remains a limiting factor. Understand-
ing and extending the prediction horizon is essential for real-world applicability of prognostic solutions for
PEM fuel cells.

Based on the addressed lack of research, the following research question is proposed:

Research Question

How to quantify, assess, and forecast the long-term health of proton-exchange membrane fuel cells and
their critical components tested in a laboratory under static and quasi-dynamic operating conditions?

The sub-questions that support the main research question are:

Sub-research Questions

1. Which health indicator(s) is/are most suitable for expressing the degradation of PEM fuel cells
tested under static and quasi-dynamic conditions?

2. How to model long-term degradation of the membrane and electrode within PEM fuel cells?
3. How to enhance the prediction horizon of long-term predictions on the remaining useful life of

PEM fuel cells tested under static and quasi-dynamic conditions?
4. How can system and component degradation indicators be linked to the remaining useful life of

PEM fuel cells?

The main objective of this thesis is described by the following statement:
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Research Objective

This research aims to combine various degradation models and generate a multi-step ahead prediction
tool to enhance the prediction horizon of the RUL of PEM fuel cells and the interpretability of stack
degradation through component health indicators.

Report structure
The report is structured as follows. First, in chapter 3 background information is provided on hydrogen-
electric transportation, predictive maintenance and ZAL Centre of Applied Aeronautical Research. Then,
chapter 4 introduces the working principle of a PEM fuel cell, performance analysis techniques and cate-
gories of operating conditions. In chapter 5, the degradation modes and health indicators are explained and
the remaining useful life is introduced. As a basis for predictions, chapter 8 discusses data available from ex-
periments and simulations. Component degradation models, which can be applied with the available data,
are explained in chapter 6. Then, in chapter 9 the prediction horizon of various prediction techniques is pre-
sented. An overview of data-driven techniques with detailed information is provided in chapter 7. In chap-
ter 10 the research gap, research questions and research objective is discussed and the approach is explained
in chapter 11. The report is concluded in chapter 12. This work will provide a contribution to long-term pre-
dictions on the remaining useful life of PEM fuel cells by applying a multi-step ahead prediction technique.



3
Background

This chapter discusses the rise of hydrogen-electric transportation as a sustainable mobility solution. From
aircraft to maritime vessels, hydrogen-electric powertrains offer clean and efficient propulsion. Furthermore,
background information is provided on ZAL Centre of Applied Aeronautical Research.

3.1. Hydrogen-electric Transportation
Sustainable transportation solutions has driven the exploration and development of alternative energy sources,
with hydrogen-electric transportation emerging as a promising solution. Significant advancements have
been made in deploying hydrogen-electric powertrains across various modes of transportation, including
aircraft, drones, cars, buses, trains, and even maritime vessels. The increasing pressure to reduce the envi-
ronmental footprint in the aviation industry caused aircraft manufacturers and research institutions to initi-
ate projects towards a hydrogen-electric aerial vehicle. Even student team AeroDelft, located in Delft, started
in 2017 with proving and promoting liquid hydrogen as an alternative fuel in aviation. AeroDelft managed
to create a drone and manned aircraft with a hydrogen-electric powertrain which is yet in its testing phase.
The efforts by the student team serves as a statement to industry that if students are capable of building a
hydrogen-electric aircraft then so can industry. In Figure 3.1 the manned aircraft of AeroDelft is presented1.

Figure 3.1: AeroDelft’s Project Phoenix Full-scale: A two passenger kit aircraft from Sling Aircraft serving as a testbed for AeroDelft’s
hydrogen-electric powertrain.

1https://aerodelft.nl/project-phoenix/ (accessed 26-02-2024)
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A hydrogen-electric powertrain consists mainly of a hydrogen tank, a fuel cell and an electric motor. Com-
pressed or liquid hydrogen is safely stored in the tank until needed, then fed into the fuel cell where hydrogen
reacts with oxygen to generate electricity through electrolysis. This electricity powers the vehicle’s electric
motor, providing efficient and clean propulsion. The only byproduct of this process is water vapour, making
hydrogen-electric powertrains an environmentally friendly alternative to traditional fossil fuel engines.

3.2. ZAL Centre of Applied Aeronautical Research
ZAL Centre of Applied Aeronautical Research, located in Hamburg, Germany, represents an innovative tech
centre within the aerospace industry. From cutting-edge laboratories to advanced simulation environments,
ZAL provides a dynamic ecosystem for the conceptualisation, prototyping, and validation of groundbreaking
aerospace solutions. ZAL’s mission is to be a leading technological research and development platform for
civil aviation. The projects are related to the integration and industrialisation of innovative aviation tech-
nologies. There are three technical domains present within ZAL: 1) Advanced Materials; 2) Automation; 3)
Data & Power Networks. The third domain, "Data & Power Networks", works on developments related to fuel
cell and electrical power systems, among other things. A team of fuel cell engineers test and integrate fuel
cell systems into hydrogen-electric powertrains to be deployed in a drone. The level of expertise in fuel cell
systems within the team provides a supporting environment to conduct this thesis in combination with Delft
University of Technology.



4
PEM Fuel Cell

The various functions of each component within a proton-exchange membrane fuel cell are described. This
information forms a basis for understanding the impact of different degradation modes discussed in sec-
tion 5.1. Furthermore, the topics of polarisation curves, electrochemical impedance spectroscopy, and oper-
ating conditions of PEM fuel cells are explained.

4.1. Working Principle of PEM Fuel Cells
A polymer electrolyte membrane (PEM) fuel cell produces electricity from an electrochemical process with
hydrogen and oxygen from air. The fuel cell consists of a solid membrane and two electrodes which are called
the anode and cathode. Each electrode consists of one catalyst layer. At the anode side, hydrogen enters the
fuel cell through a flow channel, diffuses through a gas diffusion layer and reacts with the anode’s catalyst
layer as can be seen on the left in Figure 4.1. The reaction of hydrogen with a catalyst causes the hydrogen
molecules to split into protons and electrons. Only the protons, which are positively charged particles called
cations, can pass through the membrane and reach the cathode [24]. The electrons cannot pass through the
membrane because of the membrane’s high electric resistance [25]. Instead, the electrons are transported by
an electric circuit to the cathode. The flow of electrons creates an electric current which can be linked to a
load, such as a motor. At the cathode side, oxygen enters the fuel cell through a flow channel and diffuses
through a gas diffusion layer. The oxygen reacts with the transported protons, electrons and the cathode’s
catalyst layer to form water and heat.
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Figure 4.1: Architecture and working principle of a proton-exchange membrane fuel cell [25].

The performance of a PEM fuel cell is expressed in terms of voltage and current or voltage and current density.
For a reversible system there are no losses present and this describes the open circuit voltage, which is also
called electromotive force [24]. In this case, the electrical work equals the Gibbs free energy. However, during
normal operations there are several losses present. The losses can be categorised into four types which are ac-
tivation losses, fuel crossover and internal current losses, ohmic losses, and mass transport or concentration
losses.

The activation loss appears due to internal reactions that do not take place instantaneously. A portion of
the output voltage is required to start the chemical reactions and is therefore lost. This amount of voltage is
called overvoltage. The overvoltage can be described by the natural logarithm form of Tafel equation. This
formulation leads to an indication of the reaction speed. The overvoltage depends on exchange current den-
sity, current density and Tafel slope. The Tafel slope is dependent on the charge transfer coefficient which
represents the amount of electrical energy required to change the rate of the electrochemical reaction. A
reduction in overvoltage can be obtained by changing the exchange current density which has the largest
impact on overvoltage. The chemical reactions and its inverse are continuously taking place within a PEM
fuel cell. Thus, at zero current density the electrodes are active. This activity is represented by the exchange
current density.

4.1.1. Membrane
The membrane requires to conduct protons from anode to cathode side, insulate electrons, separate hydro-
gen and oxygen reactants, and be mechanically and chemically strong [18]. The thickness of the membrane
influences the membrane’s ability to conduct protons and be mechanically strong. A thicker membrane im-
proves electric insulation, and the chemical and mechanical bond, however, the protonic resistance is higher
which is not beneficial in terms of conductance and vice versa [26].

4.1.2. Electrode
The electrode consists of a catalyst layer and a carbon support. The catalyst is made of platinum (Pt) or
platinum metal compounds. The carbon support provides an electrical conductive porous structure and
distributes the catalyst nanoparticles. The functions of the catalyst are to transport the electrons and protons
[27], provide reaction sites, and to provide a flow path for reactants supply and products removal [28]. The
catalyst consists often of platinum and is supported by high-surface-area carbon particles.
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4.1.3. Gas diffusion layers
The gas diffusion layers not only diffuse the incoming hydrogen or oxygen gas. It also carries the reaction
product water away from the cathode, acts as a protective layer for the very thin layers of catalyst, and it forms
an electrical connection between the carbon-supported catalyst and distribution plates [24]. The functions
of the gas diffusion layers are to protect the catalyst layers as physical supports [25], transport the reactants
[29], remove the produced water [30], and to conduct the electrons [31][32]. Degradation impacts the ability
of the gas diffusion layers to fulfill its functions.

4.1.4. Distribution plates
The functions of distribution plates, also called bipolar plates, are to insulate reactants and coolant between
different cells, collect electrons and to distribute reactants homogeneously [24]. The material that is used to
perform these functions can be graphite, graphite composites or metals such as stainless steel, aluminium or
titanium. There are durability issues for graphite and graphite composites distribution plates when exposed
to a shock or an environment with vibrations. Although the material is a recommended candidate due to
its light weight, high corrosion resistance, and high electrical and thermal conductivity, it faces issues with
gaseous hydrogen permeability [33].

4.2. Polarisation Curve
The polarisation curve of a single proton-exchange membrane fuel cell is presented in Figure 4.2. The output
voltage is depending on the current density, which is the current normalised by the area of the fuel cells.
There are three sections within the polarisation curve due to the influence of activation losses, ohmic losses
and concentration losses.

Activation loss is present due to resistance of electrochemical reactions. To start the reaction of transferring
electrons and protons a certain level of electrons and protons is required. A portion of the voltage is used to
obtain this level and start the reaction. This part of the voltage is lost and is called activation loss. The reaction
slowness is mainly caused by the reactions in the catalyst layers and can be influenced by concentration,
electrode properties, pressure and temperature [34].

Ohmic loss is caused by transportation of electrons and ions through the fuel cell’s components. Reduction
in resistance can be achieved by improving electronic and ionic conductivity of the cell [34].

Concentration loss is an irreversible loss and influences the voltage due to concentration changes, flow rate
fluctuations of reactants in the catalyst layers, cell temperature and the structure of the catalyst layers and
gas diffusion layers [34].

Another irreversible loss is fuel crossover and internal current. The membrane acts as a barrier but small
amounts of electrons and reactants still pass through the membrane. This leads to a reduction in open circuit
voltage. This loss becomes negligible when sufficient amount of current is drawn from the fuel cell.
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Figure 4.2: Typical polarisation curve of a single proton-exchange membrane fuel cell with clarification of cell voltage drop as current
density increases [34].

4.3. Electrochemical Impedance Spectroscopy
Electrochemical impedance spectroscopy (EIS) is a technique used to analyse the electrical behaviour of pro-
ton exchange membrane fuel cells. In PEM fuel cells, hydrogen and oxygen are electrochemically converted
into water, releasing electrical energy in the process. EIS helps to understand and optimise this energy con-
version process. Through frequency sweeps, EIS systematically explores the impedance characteristics of the
fuel cell system across a spectrum of frequencies. This variation in frequency allows for the characterisation
of different electrochemical processes occurring within the fuel cell at various rates.

An electrochemical system is not only resistive. Impedance incorporates the different processes of the elec-
trode, such as diffusion, and the dependency on time and/or frequency. For an electrochemical system,
impedance is the alternating current response of the system when exposed to an alternating current sig-
nal. Measuring the alternating current impedance of an electrochemical system is called electrochemical
impedance spectroscopy [35]. The impedance is related to the voltage to current fraction which is a function
of time. Another way to describe the impedance is by rewriting it into Cartesian coordinates which results
into a real and an imaginary part. These components can be plotted into a so-called Nyquist plot. An exam-
ple of a Nyquist plot for a PEM fuel cell is provided in ??. The width of the semi-circle represents the charge
transfer resistance (Rct ) and the high-frequency part represents the membrane resistance.
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Figure 4.3: Electrochemical impedance spectra, Nyquist plot, of a single cell PEM fuel cell with a current density of 500 cm2 [36].

4.4. Operating Conditions
A PEM fuel cell operates under different conditions which depend on factors such as load demand, temper-
ature, and reactant flow rates. Depending on load demand, the operating conditions can be categorised into
static, quasi-dynamic, and dynamic operating conditions.

In static operating conditions, a PEM fuel cell operates at a constant load. This mode is ideal for scenarios
where power demand remains consistent over time, such as during the cruise phase of a drone or aircraft. The
stability provided by static conditions allows for efficient and predictable performance, enabling the fuel cell
system to maintain steady power output without the need for frequent adjustments. However, while static
conditions offer stability, they may not be well-suited for applications with fluctuating power demands.

Quasi-dynamic operating conditions involve gradual variations in load occurring over relatively longer pe-
riods compared to dynamic conditions. In those scenarios, the PEM fuel cell system can adapt to these
changes. Quasi-dynamic conditions are commonly encountered in applications where power demand fluc-
tuates gradually over time, such as in an aircraft that starts its landing phase.

Dynamic operating conditions present rapid and significant changes in load, requiring the PEM fuel cell sys-
tem to respond quickly to maintain efficient and stable operation. These conditions are common in ap-
plications where power demand varies rapidly, such as during rapid acceleration or deceleration in vehicle
propulsion systems. Effective control strategies and rapid response times are crucial for ensuring optimal
performance and preventing degradation under dynamic operating conditions.



5
Degradation and Health Indicators

This chapter discusses how degradation of each component in a proton-exchange membrane fuel cell can
be identified. Each component degrades in a different manner, and due to various causes. Therefore, the
various degradation modes are explained for the membrane, electrode, gas diffusion layers, and distribution
plates. Health indicators are introduced based on stack performance and component degradation. For stack
performance, three indicators are discussed: voltage, power, and relative power-loss rate. For component
degradation, two indicators are discussed: parametric model-based indicator and multi-scale hybrid degra-
dation index. In depth degradation models are applied for the multi-scale hybrid degradation index which
are further discussed in chapter 6.

5.1. Degradation Modes
Degradation modes can be classified into two main categories which are early stage degradation and late
stage degradation. Early stage degradation represents degradation due to incorrect assembly of the fuel cell
or other imperfections during the production phase that can influence the performance of the fuel cell at an
early stage. Late stage degradation represents degradation due to long-term operations of the fuel cell and is
influenced by e.g. cyclic loading or start-stop cycles [34]. This section discusses only late stage degradation
of the membrane, electrode, gas diffusion layers and distribution plates.

Component hierarchy from Jouin et al. [11] in Figure 5.1 presents the importance of membrane and electrode
degradation within the PEM fuel cell. Therefore, degradation of membrane and electrode are discussed in
more detail than the gas diffusion layers and distribution plates.

Figure 5.1: An overview of components and its importance on degradation of a proton-exchange membrane fuel cell [11].

5.1.1. Membrane
Membrane degradation can be divided into five main groups: 1) chemical degradation; 2) mechanical degra-
dation; 3) thermal degradation; 4) membrane shorting; 5) membrane contamination [11]. Thermal degrada-
tion is not a primary cause of membrane failure because of the presence of a thermal control system within
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a PEM fuel cell stack. According to Liu et al. [13] thermal control systems always maintain the inner tem-
perature of the stack between 60 and 80 °C. Membrane shorting is a form of mechanical degradation and is
caused by electrons directly moving from the anode to cathode instead of through the load [11]. It can lead to
micro-holes and melting of the membrane, according to Gittleman et al. [37]. It is caused by penetration of
external objects and membrane compression. It is hard to dinstinguish membrane shorting from mechanical
degradation and to model membrane shorting. Therefore, membrane shorting can be considered as a form
of mechanical degradation. Membrane contamination can occur due to the presence of foreign species due
to catalyst degradation or because of impurities from incoming gases or the humidifier tank [11]. The largest
impact is caused by catalyst degradation which can lead to foreign cations, such as cobalt cations, that re-
place hydrogen cations and thereby reduce conductivity [38]. Membrane contamination can be considered
to be part of chemical degradation.

Chemical degradation is considered the primary cause for limited lifetime of a membrane according to Git-
tleman et al. [37]. Chemical reactions and membrane contamination cause membrane decomposition.
Chemical degradation can be analysed by monitoring gas crossover rate and quantifying fluoride release
rate. Chemical degradation is characterised by membrane thickness degradation, and the release of HF ,
CO2, H2SO4 [11] [13]. To summarise, oxygen crossover rate and fluoride release rate are analysed to estimate
chemical degradation rate [11].

Mechanical degradation includes assembly stress, local stress, membrane contraction, swelling under chang-
ing operating conditions, differences in expansion between reaction and non-reactive zones, and chemical
degradation resulting in fluoride and membrane thickness losses [39]. Such degradation can lead to the for-
mation of micro-holes, tears, perforations, blisters, and membrane deformations [11]. Thereby, inreasing gas
crossover. These mechanical deteriorations can be present due to manufacturing defects and cause for in-
stance pinholes, cracks, and delamination [30]. Pinholes and cracks may develop due to reactant crossover,
while stress cycling can lead to membrane electrode assembly delamination [40]. Reactant crossover can
also disrupt thermal and water management systems. Furthermore, improper humidity conditions during
fuel cell operation may cause membrane shrinkage or swelling, resulting in in-plane tension or compression,
respectively. The effects of mechanical degradation generally become apparent only after thousands of hours
of normal operation [13]. Permanent membrane deformation can occur under high relative humidity, caus-
ing membrane expansion but potentially improving cell performance. However, a low swelling expansion
coefficient could enhance the cell’s durability [34].

Gas crossover, as discussed by Jouin et al. [11], involves the movement of hydrogen and oxygen across the
membrane to the opposite electrode. While oxygen crossover is less frequently addressed in literature, hy-
drogen crossover is known for causing significant failures, often resulting in stack shutdown. Large quantities
of hydrogen crossover can even cause a hazardous failure due to the presence of oxygen. De Bruijn et al. [41]
proposed an end-of-life threshold for the membrane subjected to hydrogen crossover, corresponding to a
crossover current of 10 mA/cm2.

Membrane thickness serves as an indicator due to its correlation with gas crossover and fluoride release rate.
The impact of gas crossover, particularly significant in cases of hydrogen crossover, can lead to combustion
and direct stack failure.

Karpenko-Jereb et al. [10] established a correlation between oxygen crossover rate and membrane thickness
reduction, especially evident in perfluorinated sulfonated membranes like Nafion, commonly used in fuel
cells. Membrane thickness degradation can arise from chemical reactions with hydroxyl radicals, formed as
byproducts from the reaction of hydrogen protons and oxygen at the anode and cathode [42].

5.1.2. Electrode
The health of an electrode can be indicated by the electrochemical catalyst surface area (ECSA) and reduces
due to catalyst and carbon support degradation [11]. A visualisation of the electrochemical catalyst surface
area of platinum particles is provided in Figure 5.2. Specifically, a reduction in ECSA can be caused by catalyst
isolation due to carbon support corrosion, catalyst isolation due to catalyst/ionomer interface loss, loss of
catalyst loading due to platinum detachment or dissolution, and coarsening of catalyst nanoparticles due to
mechanisms such as Ostwald ripening. According to Sharma et al. [43] degradation of ECSA is for 45% caused
by carbon support corrosion, 19% by catalyst/ionomer interface loss, 6% by platinum dissolution, and 30%
by platinum particle growth through Ostwald ripening. Degradation in electrochemical surface area can be
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measured through cyclic voltammetry. The electrochemical behaviour of a catalyst is analysed during cyclic
voltammetry by measuring its current response to a range of voltages. The resulting current-voltage curve is
known as a voltammogram. The area under certain peaks in the resulting voltammograms corresponds to
the ECSA.

Figure 5.2: Oxygen flux into membrane, i.e. ionomer phase, to reach electrochemical surface area of platinum particles [44].

Carbon support corrosion can be caused by oxidisation with water and oxygen at the cathode leading to
disintegration of the catalyst layer [11]. This effect can lead to a loss in electron connectivity [43]. Thereby,
influencing the electrochemical surface area of the electrode.

Catalyst/ionomer interface loss can only be determined by obtaining the total ECSA degradation and the im-
pact of carbon support corrosion, platinum dissolution, and Ostwald ripening. Sharma et al. [43] created two
experimental test set-ups to perform tests, such as cyclic voltammetry, to determine total ECSA degradation
and the impact of the four mechanisms on ECSA degradation. According to Gubler et al. [36] part of the in-
terface deterioration can be analysed by the diameter of the impedance half-circle in a Nyquist diagram. This
diameter relates to the charge transfer resistance which can be an indication of a reduced platinum surface
and an increase in platinum catalyst particles at the cathode.

Platinum dissolution is a process in which platinum particles are oxidised by both water and oxygen at the
cathode [45]. Platinum oxidation causes formation of platinum ions from a single platinum particle, which
can diffuse in the membrane, i.e. ionomer media, or also leave the cell with the produced water [9]. Thus,
platinum dissolution causes a reduction in platinum particle size as presented in Figure 5.3(a), under the as-
sumption that the overall particle number is unaffected. Thereby, leading to a reduction in electrochemical
catalyst surface area. According to Gubler et al. [36] formation of platinum oxide can be caused by continu-
ous operation at a constant current density. The platinum oxide at the cathode can be reduced by lowering
cathode potential.

Ostwald ripening is a process in which small dissolved platinum nanoparticles attach to a large platinum
nanoparticle. Thereby, inducing a reduction in particle number and an increase in single particle diameter as
presented in Figure 5.3(b) and Figure 5.4 which decreases the electrochemical catalyst surface area. Coales-
cence, a similar process to Ostwald ripening, relates to merging smaller platinum nanoparticles into a large
platinum nanoparticle. Defining a distinct difference between Ostwald ripening and coalescence is difficult.
Therefore, existing catalyst degradation models define Ostwald ripening and coalescence as a single process
and define this process as Ostwald ripening [44][9][14].
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Figure 5.3: Degradation mechanisms of catalyst layer in a PEM fuel
cell: (a) platinum dissolution and (b) Ostwald ripening [44].

Figure 5.4: Ostwald ripening process over time of platinum
particles in ionomer [44].

5.1.3. Gas diffusion layers
The gas diffusion layers serve a crucial role in facilitating reactions in fuel cells by allowing reactants to diffuse
to active sites, managing water within the cell, and ensuring electron transfer. Degradation of gas diffusion
layers can be noticed by three main changes [11]. First, changes in water behaviour due to degrdadation of
the carbon surface and its loss of hydrophobicity which affect water management within the membrane and
catalyst layer [40]. Radical species attack to the hydrophobic coating. This is only happening when the gas
diffusion layers have a hydrophobic binder. There are also gas diffusion layers without this type of binder.
This type of gas diffusion layers are called raw gas diffusion layers [34]. The reason for using a hydropho-
bic binder is to improve water management capabilities [46][47]. Second, structural changes due to carbon
corrosion which leads to a reduction in the pore structure of the gas diffusion layer, its hydrophobicity, con-
ductivity, and thereby the overall performance [48][30]. Third, electrical and thermal resistance degradation
which affects the overall conductivity and the efficiency of electron transfer [34].

5.1.4. Distribution plates
The degradation of distribution plates involves three main mechanisms according to Nguyen et al.[49]: corro-
sion, formation of a resistive surface layer, and deformations or fractures. Corrosion can lead to dissolution of
plate materials and is caused by the chemical environment in a PEM fuel cell. It can result in the production
of multivalent cations, such as cobalt, which can adversely affect the durability of the membrane and catalyst
layers by for instance membrane poisoning [38]. Formation of a resistive layer on the distribution plate can
result in a high ohmic resistance. This resistive layer is created over time and may form due to exposure to
reactive species or chemical reactions within the fuel cell environment. Deformations and possible factures
can be caused mechanical stresses due to operational factors such as thermal cycles, uneven temperature
distribution, or non-uniform currents [30].

5.2. Health Indicator
The purpose of a health indicator is to express the level of degradation in a quantitative or qualitative man-
ner. Various health indicators have been created to describe the state of health of a fuel cell stack. Either a
top-level or a bottom-up strategy is applied to indicate degradation. Top-level indicators are related to the
reduction in performance to the stack or a component, e.g. reduction in power over time, and are not related
to specific degradation modes. Thus, there is no understanding of the root cause that leads to the reduction
in performance. On the other hand, an indicator with a bottom-up strategy is linked to a specific degradation
mode of a component to express reduction in component performance, e.g. oxygen crossover rate through
the membrane. This section provides an overview of the various health indicators that have been created for
PEM fuel cells.

5.2.1. Voltage and Power
Degradation in voltage and power is considered as one of the most traditional health indicators with prog-
nosing the RUL of PEM fuel cells, especially for static and quasi-dynamic operating conditions [50]. Under
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these operating conditions there is a clear degradation trend present within the obtained data. Phenomena
that cause voltage recovery, such as rehumidification of the stack or polarisation tests, are well understood
and can therefore be taken into account during RUL prognosis. In Figure 5.5 the impact of voltage recovery
by characterisation tests is presented by applying power as a health indicator.

Figure 5.5: Power degradation of PEM fuel cell stack with 5 cells and an active area of 100 cm2 over 1750 hr under a constant current of
60A and planned polarisation tests [11].

5.2.2. Relative power-loss rate
A traditional health indicator, e.g. voltage, cannot be applied for expressing degradation of a fuel cell that
is operated under dynamic conditions. Fluctuations in voltage due to dynamic operating conditions make
it difficult to capture a monotone decreasing trend. Therefore, a different indicator is proposed by Hua et
al. [22] called the relative power-loss rate (RPLR), which can handle dynamic changes in load, and can be
computed by use of a polarisation curve and the measured electrical signal [21].

The RPLR indicator defines the reduction in power delivered by the stack with respect to the beginning of
life power at various current settings. The delivered power is not a single value but a curve that represent
power (W) versus current (A). The power output can be computed from stack voltage and stack current from
a polarisation curve. A beginning of life power curve is created by using experimental power data and the
Thrust-region optimisation method to fit a curve through the experimental data as presented in Figure 5.6.
The RPLR health indicator is linked to the RUL by a defined failure threshold as shown in Figure 5.7.

Figure 5.6: Beginning of life power curve for a PEM fuel cell tested
within project PROPICE [51].

Figure 5.7: Relative power-loss rate over time with defined failure
threshold to indicate remaining useful life [22].
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5.2.3. Parametric model-based indicator
Yue et al. [6] created a health indicator α that indicates catalyst degradation and membrane degradation
based on a parametric model of the fuel cell stack and cell voltage [52][11]. The parametric model considers
irreversible losses and for each type of loss a parameter is selected that can indicate component degradation.
The irreversible losses are activation, crossover, ohmic, and concentration losses as shown in Equation 5.1
[52][11]. Exchange current (i0) is selected for activation and crossover losses, and is a function of electrode
catalyst loading and catalyst specific surface area [6]. A decrease in exchange current is linked to a loss in ac-
tive area of the catalyst, thereby, causing catalyst degradation. Equivalent ohmic resistance (Req ) is selected
for ohmic loss. An increase in equivalent ohmic resistance includes an increase in electronic, contact, and
ionic resistance which is related to membrane degradation [11]. Limiting current at the cathode (iL) is se-
lected for concentration loss. A variation in limiting current at the cathode is related to gas diffusion layer
degradation. However, the thickness of gas diffusion layer cannot vary more than a few µm [11][53]. The
selected parameters are determined over time by fitting the parametric model with polarisation curves of
experiments. The fitted parameters and the resemblance of polarisation curves between experiments and
parametric model are presented in Figure 5.8 and Figure 5.9 respectively. Only exchange current (i0) and
equivalent ohmic resistance (Req ) vary over time with rather the same value. Therefore, a linear correlation is
assumed and a single health indicator α is introduced which describes the change in Req and i0 as shown in
Equation 5.2.

V f c = nVcel l = n (V0 −Vact + cross −Vohmic −Vconc )

Vcel l (i ) =V0 − RT

2aF
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(
iloss + i
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)
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1− i
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)
(5.1)

Req = Req, init · (1+α(t ))

i0 = i0, init · (1−α(t ))
(5.2)

Figure 5.8: Fitted component degradation parameters Req , i0, iL
over time by use of parametric model and experimental data.

Figure 5.9: Polarisation curves of a proton-exchange membrane
fuel cell from experiments and parametric model.

5.2.4. Multi-scale hybrid degradation index
A hybrid multi-scale degradation indicator is generated by Liu et al. [13] which combines various degra-
dation models of a membrane and electrode into a single health indicator. In total there are three indexes
which are computed from degradation models by the use of operational data from a PEM fuel cell. The op-
erational data is discussed in section 8.2. Membrane health is indicated by membrane thickness degradation
which is obtained by averaging an emperical and semi-emperical degradation model which analyses oxygen
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crossover rate and fluoride release rate, respectively. Electrode health is indicated by an ECSA degradation
index and a reduction in radius of catalyst particles index. The index for ECSA degradation is obtained by
averaging an ECSA emperical and mechanism degradation model. Then, all three indexes are normalised
and fused together into a single health indicator by use of weighted coefficients. The weighted coefficients
are determined by assuming a linear degradation curve and applying information on component degrada-
tion dependency on stack degradation. According to Liu et al. [13][54], 43% of degradation in the operational
dataset is caused by membrane and electrode of which 60% of degradation is due to electrode degradation
and 40% of degradation is due to membrane degradation. The coefficients of electrode health indexes are
obtained by applying the assumption on linear degradation. The process of applying various degradation
models on nano-scale and micro-scale, and obtaining a hybrid degradation index by fusing different indexes
is summarised in Figure 5.10 and Figure 5.11.

Figure 5.10: Constructing of multi-scale hybrid health indicator
from catalyst particle radius reduction index, ECSA degradation

index, and membrane thickness degradation index [13].

Figure 5.11: Multi-scale information of hybrid health indicator [13].
Images are from Franco [55], Yuan et al. [56], and Jouin et al. [11].

5.3. Remaining Useful Life
The remaining useful life (RUL) is the remaining time that a fuel cell stack can perform according to the
requirements of the government or user [5]. This requirement can be defined in multiple ways. One example
is that an airline requires the stack to deliver at least 80% of its maximum power output during its operational
lifetime due to take-off requirements. When the power output is below this threshold then the fuel cell does
not meet the operational requirement of the client and replacement or maintenance is required. Different
definitions on remaining useful life are mentioned in literature. The remaining useful life can for instance
be defined as the end-of-test or end-of-life. To ensure that the results can be compared among different
studies, the voltage degradation rate, in µV·h−1, at a reference current density is often mentioned within a
fuel cell study [18]. The key events that influence the degradation, and therefore the remaining useful life, are
start-stop cycles, high-power loading, load-changing cycles, and idle conditions [57].
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Degradation Models

This chapter discusses validated degradation models which can be applied to understand degradation of the
membrane and electrode. These two components have been identified as critical components and the degra-
dation can be indicated by membrane thickness and electrochemical catalyst surface area for the membrane
and electrode, respectively. Three validated degradation models are discussed for the electrode and two for
the membrane. At the end of this chapter an overview is provided on the various degradation models and
their mathematical equations.

6.1. Platinum dissolution model
Robin et al. [58] developed a platinum dissolution model to simulate the reduction in the average radius of
platinum particles as they age within the electrode. The modelling approach is based on a three-step process
of platinum dissolution at an atomic level. This involves removal of platinum from the crystal through plat-
inum sintering, platinum oxidation through electrochemical reactions, and desorption of oxidated platinum.
These processes are associated with the variation of free Gibbs energy ∆G . The modelling approach is sum-
marised in Figure 6.4(a) which is validated against two 2000 hr experimental aging tests. The novel method is
introduced to estimate the loss of equivalent active surface area during aging tests. While the computed elec-
trochemical catalyst surface area profile fits reasonably well with experimental measures from cyclic voltam-
metry, it underestimates the PEM fuel cell’s performance loss. To accurately predict performance degradation
observed in polarisation curves during aging tests, an equivalent active surface area is derived through model
inversion. This methodology successfully recovers the experimental cell voltage decay over time.

While the cathode catalyst material from Robin et al. [58] is P t3Co, the final estimation results remain unaf-
fected. The findings demonstrate that even if the catalyst material comprises of platinum metal compounds,
the model’s accuracy is not affected. Given that state-of-the-art PEMFC electrodes typically consist of a blend
of polycrystalline platinum metal compound nanoparticles supported on carbon and proton-conducting
membrane in a ratio of 70:30 (w:w) [43], this platinum dissolution model is applicable across various PEM
fuel cell configurations.

6.2. ECSA empirical degradation model
Moein-Jahromi et al. [44] developed a degradation model that determines ECSA degradation based on car-
bon corrosion and coarsening of particles in the catalyst by Ostwald ripening. Carbon corrosion is analysed
by an analogy with fatigue of carbon steel. Even though there might be other aspects of fatigue which are not
considered in this ECSA degradation model, the model provides ECSA degradation approximations within
an acceptable bound from experimental ECSA values from 26 studies involving various PEM fuel cells as pre-
sented in Figure 6.1. The empirical degradation model for ECSA accounts for temperature, relative humidity,
and current load effects. An outline of the model is provided in Figure 6.4(b). An observation from experi-
mental results presented that ECSA stabilises at a constant minimum value during degradation. Therefore,
parameter Smi n was introduced to assist degradation of ECSA towards this minimum value. The results indi-
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cate that the empirical degradation model ensures high precision across diverse PEM fuel cell applications.

Figure 6.1: Validation of normalised electrochemical catalyst surface area with 26 different experimental studies which contain various
PEM fuel cell configurations [13].

6.3. ECSA mechanism degradation model
Polverine and Pianese [9] developed a degradation model based on platinum dissolution and coarsening of
platinum particles through Ostwald ripening. A relation is created between the two degradation modes to
the output voltage of the stack and the remaining useful life of the system. The model enables estimation of
the electrochemical catalyst surface area and voltage degradation under constant and cyclic current loads.
This degradation model can be applied to various PEM fuel cell systems. The model was validated with 168
hr of experimental data from Wang et al. [59] . The approach from Moein-Jahromi et al. [44] to have a
minimum ECSA value is incorporated in this model due to initial model outputs that converged to zero which
is contradicting with real-world ECSA degradation. An overview of the ECSA degradation model is provided
in Figure 6.4-c.

6.4. Oxygen crossover rate basedmembrane empirical degradationmodel
Karpenko-Jereb et al. [10] developed a new semi-empirical model which takes physico-chemical properties
into account of a polymer electrolyte membrane to understand degradation rates of the membrane thick-
ness and conductivity depending on oxygen crossover rate. Furthermore, a validated CFD model is created
to compute 3D cell performance. The semi-empirical model and CFD model are coupled to analyse cell
behaviour as a function of time. The simulation presents that in-plane degradation of the membrane is non-
uniform and that cell current density decreases faster by lowering relative humidity and increasing tempera-
ture. The semi-empirical model requires degradation rates of membrane thickness and conductivity as inputs
which were acquired from Yuan et al. [56][60].

The chemical degradation of perfluorinated sulfonated membranes, such as Nafion, primarily occurs due to
the interaction of hydroxyl radicals with the polymer chains of the membrane. These reactions result in a de-
crease in membrane thickness and membrane conductivity, leading to the formation of pinholes and cracks.
Hydroxyl radicals are formed from hydrogen peroxide which is one of the products from the reaction with



6.5. Fluoride release rate based membrane semi-empirical degradation model 45

oxygen and hydrogen protons. The concentration of hydroxyl radicals correlates with oxygen concentration
in the fuel cell. A reduction in membrane thickness can cause a significant increase in hydrogen crossover
current density, as presented in Figure 6.2 and Figure 6.3.

Experimental data shows that the hydrogen crossover rate varies with parameters such as temperature, pres-
sure, relative humidity, and membrane thickness. A mathematical expression is proposed to estimate the
hydrogen crossover rate under different operating conditions. The study suggests that the ratio of oxygen
to hydrogen crossover flux through the membrane remains relatively constant regardless of environmental
conditions. This allows for simplification of calculations related to oxygen crossover.

Using simulation results, the relationship between oxygen crossover flux and cell voltage is analysed. A linear
fitting equation describes the relative change in oxygen crossover flux as a function of voltage. The degrada-
tion rate of membrane thickness and conductivity can be calculated considering the influence of cell voltage
on oxygen crossover flux.

Figure 6.2: Reduction in membrane thickness and formation of
pinholes [10].

Figure 6.3: Experimental data on time changes of hydrogen
crossover current density [10].

6.5. Fluoride release rate based membrane semi-empirical degrada-
tion model

Chandesris et al. [42] proposes a semi-empirical degradation model that relates membrane thickness degra-
dation to the release of fluoride from the membrane due to hydroxyl radicals reacting with the membrane.
The release of fluoride is an indication that the membrane is thinning due to e.g. reactions with hydroxyl rad-
icals. Hydroxyl radicals form from peroxide species in the presence of metal impurities. When oxygen crosses
the membrane and reaches the anode, oxygen can react with hydrogen to form these peroxide species. Also
the cell voltage influences the formation of peroxide and the concentration of iron ions according to Wong
and Kjeang [61].
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Figure 6.4: Modelling approach of (a) platinum dissolution model [58], (b) ECSA empirical degradation model [44], (c) ECSA
mechanism degradation model [9], (d) membrane empirical degradation model [10], and (e) membrane semi-empirical degradation

model [42]. Overview of degradation models obtained from Liu et al. [13]
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Prognostic Techniques

This chapter discusses various recurrent neural networks, especially Echo State Networks that were compared
in section 8.3. Different multi-step ahead prediction techniques are introduced and a general overview is
provided on long short-term memory networks and gated recurrent units.

7.1. Recurrent Neural Network
Recurrent neural networks do not work with traditional backpropagation. Instead, it uses backpropagation
through time (BPTT) which differs from traditional backpropagation by summing the error at each time step.
This takes place to support reinforcement learning by modifying the weights of parameters that are shared
across each layer. Complications of recurrent neural networks with exploding gradients or vanishing gra-
dients can be solved by reducing the number of hidden layers within the network. Thereby, reducing the
complexity of the neural network which diminishes issues of having an unstable neural network or a network
that no longer learns 1.

Theoretically a simple recurrent neural network is able to preserve all information from a long time-series
input, however, due to the vanishing gradient problem the network has difficulties with learning such long-
term dependencies [62].

7.1.1. Long Short-term Memory Network
The long short-term memory (LSTM) network is a type of recurrent neural network which is designed to
overcome the vanishing gradient problem in traditional RNNs [63]. A LSTM consists of memory blocks with
each memory block containing one or more cells with an input gate it , forget gate ft , and output gate ot . The
input gate determines to what extend new information is allowed within the memory of a cell. The forget gate
controls how old information is preserved or discarded from the memory cell. The output gate controls how
the current memory of the cell should be applied in order to compute the output. A visual representation of
a memory cell within a LSTM is presented in Figure 7.1.

1https://www.ibm.com/topics/recurrent-neural-networks (accessed 29-11-2023)
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Figure 7.1: Architecture of a single memory cell within a long short-term memory network [63].

According to the results of Sahajpal et al. a long short-term memory network presents the best overall perfor-
mance when it is deployed in transfer learning [63]. However, the transfer learning performance of a model
is dependent on the similarity between different datasets. Not only the stack characteristics and the loading
conditions play a role in transfer learning performance but also the set-up of the balance of plant around the
stack.

7.2. Gated Recurrent Unit
The gated recurrent unit (GRU) is another recurrent neural network which differs slighly from a LSTM in
respect to the memory cell. The configuration of the cell consists of an update gate zt , reset gate rt , and
output gate. The update gate represents the input gate and forget gate from a LSTM. The reset gate determines
to what extend past information needs to be forgotten or ignored. Therefore, the reset gate filters irrelevant
information from the past within the model. The memory content h in a GRU represents the information
from the previous time step and is updated by the update gate based on the input from the current time step.
The architecture of a GRU is presented in Figure 7.2.

Figure 7.2: Architecture of a single memory cell within a gated recurrent unit [63].

The presented LSTM and GRU architectures in Figure 7.1 and Figure 7.2 process the input only in a forward
direction. However, the input sequence can also be processed in a forward and backward direction by sep-
aration the neurons in the hidden layer into two sets which results in a bidirectional recurrent neural net-
work. The information from the two sets can be linked to the output layer to improve prediction performance
[64][65].

Gated recurrent units and long short-term memory networks can remember sequences of only 100 seconds,
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and is not able to remember sequences in the order of 1,000 seconds, 10,000 seconds or even longer se-
quences [62].

7.3. Echo State Network
The Echo State Network (ESN) is a type of Recurrent Neural Network (RNN). An Echo State Network consists
of an input layer, a reservoir and an output layer. Generally a recurrent neural network consists of a hidden
layer, however, in an Echo State Network the hidden layer is replaced by a reservoir. This reservoir is randomly
generated and contains sparse connected neurons. The architecture of an ESN can be reviewed in Figure 7.3.
The input, internal and feedback weight matrices are randomly generated. Only the output weights are train-
able. Schiller et al. [66] presented that during training of recurrent neural networks dominant weight changes
occur for the output weights. An Echo State Network takes advantage of this phenomenon by keeping the
input and internal weights fixed. This reduces the number of parameters that need to be trained. The output
weight matrix is trained by applying linear regression. The parameters that need to be defined are the num-
ber of neurons Nn in the dynamic reservoir, spectral radius ρ which represents the maximum eigenvalue of
internal weight matrix W , leaking rate α which represents dynamic performance of the reservoir, regularisa-
tion parameter β, and coefficients of input and internal weight matrices Wi n and W . According to Xu [62],
the activation function is one of the key hyperparameters when constructing the reservoir. The activation
function describes the behaviour of the reservoir units.

The dynamics of the neurons inside the reservoir needs to be optimised to obtain a balance between the
stability of the network and the computational complexity of the output weights [22]. Furthermore, an opti-
mised reservoir should preserve fading memory and result in neurons with a considerable level of dynamics.
The level of dynamics of the reservoir is expressed by the Echo State Property (ESP), and needs to be consid-
ered carefully to obtain the aforementioned balance in an Echo State Network. Jaeger [67] states that a leaky
integrator ESN has the Echo State Property if the initial conditions are washed out at a rate that is indepen-
dent from the input. In practice, ESP is obtained when the effective spectral radius |λ|max (Ŵ ) is smaller than
1 for zero inputs and larger or equal to 1 for non-zero inputs [68].

The parameters of an Echo State Network can be divided into three categories: assigned parameters, ad-
justable parameters, and a calculated parameter [22]. The assigned parameters are input, internal and feed-
back weight matrices (Wi n , W , W f b), and the dimension of the input and output signal (K , L). The adjustable
parameters are number of neurons Nn , spectral radius ρ, leaking rate α, and regularisation parameter β. The
calculated parameter is output matrix Wout . Lukoševičius [69] provide a detailed guide on manual parameter
settings of an Echo State Network.

Figure 7.3: Architecture of Echo State Network [22].
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7.3.1. SI-ESN and DI-ESN
Both single- and double-input Echo State Networks apply an iterative prediction procedure to generate multi-
step ahead predictions [22]. The only input for the single-input ESN is the health indicator RPLR and for the
double-input ESN the stack current is added as a second input parameter. A double-input ESN is only useful
for PEM fuel cells which are used with a scheduled current profile such as the µ-CHP applications for which
the load is related to seasonal changes.

A sensibility analysis is performed on the leaking rate α, spectral radius ρ, and regularisation parameter β,
to understand the influence of the parameters on the prediction performance and the interactions between
the parameters. An analysis of variance (ANOVA) is applied for this anaylsis which is a collection of statistical
models and procedures to compare the effects of different variables [70]. A low, medium and high range
of values were applied for each parameter; leaking rate α (0.3 for low level, 0.6 for middle level, and 0.9 for
high level), spectral radius ρ (0.5 for low level, 1.0 for middle level, and 1.5 for high level), and regularisation
parameter β (8 × 103 for low level, 8 × 102 for middle level, and 8 × 101 for high level). In total there were 27
test scenarios for which the root mean square error (RMSE) was analysed. The lowest RMSE was obtained by
applying a high leaking rate of 0.9, a medium spectral radius of 0.7, and a medium regularisation parameter
of 8 × 102.

7.3.2. DWT-EESN
Hua et al. [21] separated the relative power-loss rate signals into several layers by applying discrete wavelet
transform (DWT). This results into a decomposition of the health indicator into multiple signals as presented
in Figure 7.4. At each layer there is an approximation component c Ai and a detail component cDi , which
are of low-frequency and high-frequency, respectively. The approximation components can be utilised for
long-time intervals of the original signal and detail components for short-time intervals. The number of
decomposition layers were determined empirically, applying more layers for tests with a higher level of com-
plexity. Each decomposed signal, or sub-waveform, is normalised and then predicted by several indepen-
dent Echo State Networks with different dynamic parameters. The predicted results of each sub-waveform
are denormalised and ensembled into a final result. The remaining useful life is computed based on the new
relative power-loss rate. New measurements are not needed during the prediction phase because the relative
power-loss rate of the last step is used to predict the new relative power-loss rate by the ensemble Echo State
Network.

Figure 7.4: Wavelet transform for signal decomposition. This results into several layers containing an approximation component
coefficient c Ai and a detail component coefficient cDi . These components can be combined to reconstruct the original signal [20].

7.3.3. DWT-ESN-GA
A genetic algorithm is added to an Echo State Network with a discrete wavelet transform element [20]. The
genetic algorithm optimises three key parameters of the Echo State Network. Namely, the leaking rate α, the
spectral radius ρ and the regression coefficient γwhich is a different name for the regularisation parameterβ.
Only a single Echo State Network is applied to predict the approximation component coefficient of one layer.
A quantitative analysis, called relative wavelet energy, is performed to understand if important information
is lost by only incorporating this single approximation component coefficient for predicting the health indi-
cator. The energy of the approximation component coefficient is compared to the total energy. This analysis
showed that the detail component coefficients only contain 1×10−2−1×10−7 of the total signal energy. Thus,
the approximation component coefficient can be utilised as a decent representation of the original signal.
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7.4. Forecasting Approach
Multi-step ahead predictions can be divided into two categories: single output approaches and multiple out-
put approaches [71]. The iterative, direct, and DirRec approaches are single output approaches, and paral-
lel and multiple-input several multiple-outputs (MISMO) approaches are multiple output approaches. An
overview is provided in Figure 7.5.

Figure 7.5: Overview of multi-step ahead prediction techniques [72].

The general approach which is known for multi-step predictions is the iterative approach. A single model
is fine-tuned for one-step ahead predictions and the model used the predicted value for the next prediction
step until the prediction horizon is reached. The method is prone to propagation error due to the iterative
nature of the technique. Therefore, special care must be given to extended prediction horizons in order to
reach accurate results [72].

The direct approach consists of multiple models with each model generating a prediction at a specific predic-
tion horizon [72]. Furthermore, the same input data is used to generate a different single prediction. There-
fore, this approach is not beneficial when limited training data is required to generate long-term predictions.

DirRec approach, introduced by Sorjamaa and Lendasse [73], is a combination of a direct and recursive tech-
nique [74]. The difference between the DirRec approach and the iterative approach is the use of a model
which is updated based on the information that is predicted. The difficulties with error propagation is also
present within the DirRec approach because of the iterative nature [72].

The parallel approach is based on a single model which creates a prediction of multiple parameters simulta-
neoulsy. This approach requires less computing time compared to the direct approach because there is only
one model to be tuned.

The MISMO approach consists of multiple models each with a set of outputs determined by the input param-
eters. The number of models can be defined and when only a single model is applied then the approach is
similar to the direct approach.
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Experimental and Simulation Data

This chapter discusses available experimental datasets and a simulation tool from ZAL for prediction on the
remaining useful life of PEM fuel cells. There are three available datasets, one from ZAL and two from FCLAB,
which are based on durability tests and are applicable to the research. The operating conditions and moni-
tored data are discussed.

8.1. ZAL Experimental Data
Within ZAL there are two datasets available which contain 82.5 hr and 8000 hr of test data. The first dataset
contains test data of a 20kW Hydrogenics stack from 2005 which was used within a ground airport vehicle and
arrived at ZAL in 2018. No data is available before the arrival of the stack at ZAL. Furthermore, no detailed
documentation is present on the type of current profiles that were tested. Lastly, the total duration of the
test data does not aid in reaching the thesis objective of long-term predictions in the order of weeks because
82.5 hr of test data represents half a week of continuous operating time. The second dataset contains dura-
bility test data of a 9.75W single cell with a wet bonded FEP membrane (FEP-hp(wet)) and an active area of
30 cm2 tested at a constant current density of 500 mA/cm2 by Gubler et al. [36]. Access to the dataset was
provided by ZAL’s thesis supervisor and co-author Kuhn. Performance characteristics of the single cell were
monitored over time. Polarization curves were recorded at different intervals during the experiment. Electro-
chemical impedance spectra were recorded initially and at different run times to analyse cell performance.
Furthermore, cyclic voltammetry was performed at the end of the test to inspect the cathode electrode and
the membrane was inspected on potential cracks, discolouration, and other types of degradation.

An initial test plan was drafted to perform a durability test for 500 hr on a H3Dynamics Aerostack A1500 LV
with a dynamic current profile that represents a drone. However, due to an early malfunction within the fuel
cell stack the stack had to be returned to the manufacturer and the durability test was deemed impractical
within the timespan of this thesis.

8.2. IEEE PHM 2014 Data Challenge Datasets
The IEEE PHM 2014 Data Challenge Datasets [19] contains durability test data of two identical PEM fuel
cells which was publicly released to accelerate research in predicting remaining useful life of PEM fuel cells.
The PEM fuel cell is a 1.0kW five-cell stack, from manufacturer UBZM, with each cell having an active area
of 100 cm2 and a nominal current density of 0.70 A/cm2. Two experiments are conducted to two identical
fuel cells with a duration of 1155 hr and 1021 hr. One with a constant 70A load current and the other with
added high-frequency triangular ripples of 7A current. These experimental datasets are denoted as FCLAB-
1 and FCLAB-2 for the static and quasi-dynamic dataset, respectively. The current profiles applied during
experimental testing and the test bench are presented in Figure 8.1 and Figure 8.2, respectively. The dataset
with current ripples is an important test scenario because it represents the connection between a PEM fuel
cell and a power converter according to Sahajpal et al. [63] which is an essential component in a hydrogen-
electric powertrain.
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Figure 8.1: Static and quasi-dynamic current profiles
applied to two identical UBZM five-cell PEM fuel cell

stack within IEEE PHM 2014 Data Challenge [19].

Figure 8.2: Test bench of PEM fuel cell durability test from IEEE PHM 2014 Data
Challenge [19].

The data monitored during each durability test includes the aging time, the five cell voltages, the stack voltage,
the load current, the load current density, the inlet and outlet temperatures, the flow rates of hydrogen, air,
and cooling water, the inlet and outlet pressures of hydrogen and air, and the estimated relative humidity
of hydrogen and air were obtained during the experiments. An overview of the monitored data is provided
in Table 8.1. Weekly characterisation tests and electrochemical impedance spectroscopy were performed to
further analyse degradation within the PEM fuel cell. Liu et al. identified that degradation in cell 3 for FC 1
and in cell 5 for FC 2 is most serious, with a degradation rate of 31 µV/h and 30 µV/h, respectively. In both
datasets, degradation of cell 1 is the smallest. Cell 1 in the PEM fuel cell represents the cell closest to the gas
inlet, and cell 5 represents the cell farthest from the gas inlet.

Table 8.1: Data montitored during IEEE PHM 2014 Data Challenge [19].

Index in Dataset Physical Meaning
Time Aging time (h)
U1 to U5 Single cell voltages (V )
Utot Stack voltage (V )
I Current (A)
J Current Density

(
A/cm2

)
TinH2 & ToutH2 Inlet and outlet temperatures of H2 (◦C)
TinAIR & ToutAIR Inlet and outlet temperatures of air (◦C)
TinWAT & Inlet and outlet temperatures of
ToutWAT cooling water (◦C)
PinH2 & PoutH2 Inlet and outlet pressure of H2(mbar)
DinH2 & DoutH2 Inlet and outlet flow rate of H2(l/mn)
DinAIR & DoutAIR Inlet and outlet flow rate of air (l/mn)
DWAT Flow rate of cooling water (l/mn)
HrAIRFC Estimated air inlet hygrometry (%)

8.3. FCLAB µ-CHP Datasets
Another durability dataset is introduced due to the research conducted by Hua et al. [20–22] for long-term
prediction of PEM fuel cells used in combined heat and power of buildings. Three dynamic tests are per-
formed for the PROPICE project, “Prognostic and Health Management of PEM Fuel Cell Systems", for which
eight 1.0 kW fuel cell stacks are tested. The duration of the tests are 383 hr, 1000 hr and 405 hr [22]. Each
test is divided into different stages. During each stage a different load current density is applied. The load
current density is either alternating between two or several values within a stage or is defined at a fixed value.
Data-driven techniques are applied for predicting the RUL and the performance of the different techniques
are compared in section 9.2.
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8.4. ZAL Simulation Model
A simulation model of an air cooled PEM fuel cell is created in Dymola Behaviour Modeling, which is a pack-
age within 3DExperience. The components of a PEM fuel cell are placed in the model as building blocks that
interact with each other. The physical interactions are described by mathematical equations. The model
consists of a membrane, cathode channel, anode channel, cooling channel, and incoming and outcoming
ports at each building block. The electrochemical reactions within the membrane are described by a detailed
model. The gas properties are handled by a heat transfer model at the cathode and anode. No degradation
is considered within the simulation model of ZAL. Furthermore, selection of parameters is conducted iter-
atively based on experimental data. Therefore, there are limitations to how this simulation model can be
applied.
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Prediction Horizon

This chapter discusses the prediction horizon of various data-driven techniques for the available IEEE PHM
2014 Data Challenge Datasets and the non-available FCLAB µ-CHP Datasets.

9.1. IEEE PHM 2014 Data Challenge Datasets
Various techniques have been created to predict voltage degradation, component degradation, and/or re-
maining useful life based on IEEE PHM 2014 Data Challenge Datasets, as mentioned in ??. A voltage threshold
is defined to indicate the RUL. Besides voltage threshold dependency, is RUL also dependent on the split in
training-validation-testing datasets. Different techniques are discussed and compared to understand current
prediction capabilities.

Sahajpal et al. [63] tested six deep learning techniques to predict voltage degradation. The methods were long
short-term memory (LSTM) networks, gated recurrent units (GRUs), and a combination of LSTMs and GRUs
with a 1-D convolutional neural network (CNN) and a bidirectional element. Fuel cell stack measurements
from the IEEE PHM 2014 Data Challenge Datasets were used as a data source. The fuel cell stack data was
lagged by one timestep of 1 hr. Cell voltage data was removed, however, measurements on stack voltage were
preserved in training, validation, and testing datasets. The data from a lagged timestep was used to predict
the stack voltage of 1 hr later. The predicted stack voltage was not used as an input for the next prediction
step. Therefore, the prediction horizon for voltage degradation as health indicator is just 1 hr. A threshold of
96% of initial stack voltage was applied to determine the remaining useful life. This threshold corresponds
with previously defined voltage threshold on this dataset by Bennagoune et al. [75], Xia et al. [17], and Li et
al. [23].

Li et al. [23] created a fusion model that consisted of a bidirectional-LSTM-GRU in combination with an
ESN for voltage predictions. Features were extracted with a particle swarm optimisation (PSO) algorithm
which were then processed into the ESN. A prediction horizon of 100 hr was obtained by integrating a sliding-
window approach which led to a RUL prediction error up to 3% for 200 hr of training which is 20% of the
complete dataset.

Table 9.1: RUL prediction of fusion technique with bi-directional-LSTM-GRU and ESN on dataset FC1 and FC2 [23].

Dataset Voltage threshold (V) Training phase (hr) Actual RUL (hr) Prediction RUL (hr) Er (%)
FC1 3.203 200 609 616.43 1.22%

300 509 518.46 1.86%
400 409 417.01 1.96%
500 309 317.01 2.59%

FC2 3.182 200 195 189.19 2.98%

Bennagoune et al. [75] proposed a dilated and conditional convolutional neural network (CNN) with a multi-
step ahead prediction method. For a prediction horizon of 24 hr, which consisted of 24 steps, a RMSE and
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MAPE of 0.0092, 0.1625 and 0.0132, 0.2661 were achieved on voltage degradation with a dilated CNN for FC1
and FC2, respectively. A stacked dilated CNN is used in a conditional CNN for which the RUL predictions are
presented in Table 9.2.

Table 9.2: RUL comparison of conditional CNN (ConCNN), dilated CNN (DilCNN), ESN, and LSTM [75].

PEMFC1 Prognostics starting at (hr)
591 691 791 891 991

True RUL 437 337 237 137 37
ConCNN 364 288 191 167 10
DilCNN 90 115 77 221 54
ESN 371 - 292 485 211
LSTM 141 209 89 61 37
PEMFC2 Prognostics starting at (hr)

681 731 781 831 881 931
True RUL 277 227 177 127 77 27
ConCNN 227 179 157 108 58 16
DilCNN 196 286 112 188 48 41
ESN 330 167 222 177 127 -
LSTM 190 - 14 91 26 14

Xia et al. [17] decomposed the voltage signal into a calendar aging component and a reversible aging com-
ponent with a locally weighted regression method (LOESS). The calendar and reversible aging components
are predicted by an adaptive extended Kalman filter and a LSTM neural network, respectively. A genetic al-
gorithm is applied to optimise hyperparameters of the LSTM during the training process. The final voltage
degradation is obtained by combining the two components. A voltage threshold of 4% and 5% is applied to
predict the RUL.

Table 9.3: RUL comparison of 1D-CNN-Bi-GRU, conditional CNN (ConCNN), dilated CNN (DilCNN), Bi-LSTM-GRU-ESN, and
T-AEKF-LSTM, on FC-2 dataset.

1D-CNN-Bi-GRU ConCNN DilCNN Bi-LSTM-GRU-ESN T-AEKF-LSTM
Train-val-test Split 510-102-408 681-0-339 681-0-339 200-0-820 561-0-459
True RUL (hr) 277 277 277 195 359
Predicted RUL (hr) 274 227 196 189.2 348
Prediction Horizon (hr) 1 24 24 100 20
Health Indicator Voltage Voltage Voltage Voltage Voltage
Year 2023 2022 2022 2022 2023
Reference [63] [75] [75] [23] [17]

9.2. FCLAB µ-CHP Datasets
Four different data-driven techniques have been created by Hua et al. to predict long-term the remaining
useful life of PEM fuel cells subjected to combined heating and power of a building. In Table 9.4 performance
details are provided of a single-input and double-input echo state network based on the 1000 hr test from the
PROPICE project. These two techniques are compared to two other echo state networks in Table 9.5 which
contain a discrete wavelet transform component and a genetic algorithm. The discrete wavelet transform is
further discussed in subsection 7.3.2.
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Table 9.4: Prediction results of RUL and evaluation criteria on RPLR for single-input ESN (SI-ESN) and double-input ESN (DI-ESN) [22].

ESN type Training length (%) Actual RUL (h) Prediction RUL (h) %Er_(FT)(%) RMSE MAPE
SI-ESN 40 600 468 22.0 0.01331 0.12065

50 500 497 0.6 0.00879 0.09849
60 400 174 56.5 0.02819 0.19113
70 300 110 63.3 0.02422 0.18926
80 200 122 39.0 0.01244 0.10711
90 100 90 10.0 0.00885 0.05098

DI-ESN 40 600 390 35.0 0.02065 0.14497
50 500 438 12.4 0.00788 0.07125
60 400 342 14.5 0.00810 0.06666
70 300 215 28.3 0.01197 0.10634
80 200 138 9.0 0.00631 0.03575
90 100 40 0.0 0.00440 0.02720

Table 9.5: Comparison of prediction performance of single-input ESN (SI-ESN), double-input ESN (DI-ESN), discrete wavelet transform
and ensemble ESN (DWT-EESN), genetic algorithm with DWT-ESN (DWT-ESN-GA).

SI-ESN DI-ESN DWT-EESN DWT-ESN-GA
Dataset µ-CHP µ-CHP µ-CHP µ-CHP
Test 1000 hr 1000 hr 1000 hr 1000 hr
Train-val-test Split 600-0-400 600-0-400 600-0-400 672-0-328
True RUL (hr) 400 400 - 160
Predicted RUL (hr) 174 342 - 168
Prediction Horizon (hr) 150 250 - 168
Health Indicator RPLR RPLR RPLR RPLR
RMSE of HI 0.02819 0.00810 0.00555 0.0036
MAPE of HI 0.19113 0.06666 0.07027 0.0438
Year 2021 2021 2022 2022
Reference [22] [22] [21] [20]
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Research Framework

This chapter discusses the research gap within the field of prognostics and health management of PEM fuel
cells. The main research question and sub-research questions are stated and the objective of this thesis is
explained.

10.1. Research Gap
There is a limited prediction horizon of long-term multi-step ahead predictions on the remaining useful life
of PEM fuel cells. A maximum prediction horizon of 100 hr and 250 hr is achieved by prediction techniques
that applied IEEE PHM 2014 Data Challenge Datasets and FCLAB µ-CHP Datasets, respectively. From a client
perspective an extended prediction horizon is beneficial because it provides an opportunity to take actions
and prevent use-beyond-repair. The largest prediction horizon of 250 hr, which is 10.4 days if the system
is continuously used, is a tight window for a client to schedule and execute a heavy maintenance check.
Furthermore, health indicators that provide a long-term prediction horizon of the RUL are focused on fuel
cell performance and do not provide any health information on component-level. This research will provide
an extended prediction horizon of the RUL, a health indicator on fuel cell performance, and a health indicator
on the membrane and electrode condition which are considered as the most crucial components.

10.2. Research Questions
The main research question of this project is as follows:

How to quantify, assess, and forecast the long-term health of proton-exchange membrane fuel cells and their
critical components tested in a laboratory under static and quasi-dynamic operating conditions?

The sub-questions that support the main research question are:

1. Which health indicator(s) is/are most suitable for expressing the degradation of PEM fuel cells tested un-
der static and quasi-dynamic conditions?

2. How to model long-term degradation of the membrane and electrode within PEM fuel cells?

3. How to enhance the prognostic horizon of long-term predictions on the remaining useful life of PEM fuel
cells tested under static and quasi-dynamic conditions?

4. How can system and component degradation indicators be linked to the remaining useful life of PEM fuel
cells?

10.3. Research Objective
The main objective of this thesis is described by the following statement:

This research aims to combine various degradation models and generate an iterative prediction tool to enhance
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the prediction horizon of the RUL of PEM fuel cells and the interpretability of stack degradation through com-
ponent health indicators.
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Approach

This chapter discusses the approach on how the health of a PEM fuel cell can be quantified, assessed, and
forecasted. Information is provided on health indicators related to stack performance and on characteristics
of critical components which can be extracted from the available datasets. The relationship options between
remaining useful life and health indicators are proposed. Furthermore, an explanation is provided on how
degradation models can be applied to compose health indicators for critical components within PEM fuel
cells. A prognostic technique is proposed based on current prediction horizon and performance of various
data-driven techniques. Lastly, a brief overview is discussed on how the activities and deadlines are planned
throughout this thesis.

11.1. Quantify Health of PEM Fuel Cells
This section discusses the available datasets and the health indicator options to indicate the health of PEM
fuel cells. An explanation is provided on how the health indicators can be associated with the remaining
useful life and what the limitations are of the relation between health indicators and remaining useful life.

Stack and Component Health Indicator
To predict the health of a PEM fuel cell stack and the RUL it is essential to select health indicators which can be
determined with the available datasets. There are three datasets available within this thesis. The first dataset
is from ZAL which consists of 8000 hr of experimental data from a single cell with a static current profile. A
second, and third dataset, are from the IEEE PHM 2014 Data Challenge, which contain 1155 hr with a static
current profile and 1021 hr with a quasi-dynamic current profile of a five-cell stack, respectively.

As discussed in subsection 5.2.4, Liu et al. [13] presented that a multi-scale hybrid health indicator can be
generated based on component degradation with the use of IEEE PHM 2014 Data Challenge Datasets and
validated degradation models for membrane and electrode. The degradation models, which were discussed
in chapter 6, can be applied to different PEM fuel cells when the catalyst material consists of a platinum metal
compound, which is the case for all three datasets. However, utilisation of the membrane degradation models
presents a challenge due to the absence of specific degradation models that are tailored to the GORE-SELECT
membrane material of IEEE PHM 2014 Data Challenge Datasets. Instead, the commonly available membrane
degradation models are designed for Nafion membranes. Nafion and GORE-SELECT membranes share sim-
ilar primary materials, with both being composed of perfluorosulfonic acid (PFSA) membrane. Both types
of membranes undergo similar destruction mechanisms during PEM fuel cell operation. Thereby, aligning
their chemical degradation processes. Experimental evidence suggests comparable relative stability between
Nafion and GORE-SELECT membranes under certain stress levels, further supporting the similarity of their
chemical degradation processes [76? , 77]. By assuming an equivalence in chemical degradation rates un-
der identical operating conditions, chemical degradation models established for Nafion can be considered
applicable to GORE SELECT membranes.

The thesis proposes a modification to the approach outlined by Liu et al. [13]. Rather than generating a
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single health indicator for PEM fuel cells, multiple indicators are suggested to better express their health. This
modified approach focuses on deploying degradation models for both the membrane and electrode, resulting
in the generation of two distinct health indicators. One designated health indicator for the membrane and
another for the electrode. The emphasis on the membrane and electrode health aligns with the findings of
Jouin et al. [11], who highlighted these components as critical regarding degradation. By generating these
component-specific indicators, the aim is to gain deeper insights into the reasons behind the degradation of
overall stack performance over time.

Furthermore, as noted by Hua et al. [20], overall stack performance can be evaluated through degradation
in voltage, power, or relative power-loss rate. Throughout the thesis, the impact of each performance indi-
cator will be thoroughly evaluated. The objective of using both stack performance and component condi-
tion indicators is to provide details on the health status of the membrane and electrode when performance
degradation occurs. This approach aims to provide a comprehensive understanding of PEM fuel cell health
dynamics.

Relationship Health Indicators and Remaining Useful Life
There are two approaches for correlating the predicted health indicators with the remaining useful life. The
first approach involves directly linking a stack performance health indicator to the RUL. The second approach
entails merging multiple health indicators into a unified health indicator. In both cases, a common technique
for RUL determination involves defining a failure threshold. These possibilities will be thoroughly explored
throughout the thesis.

11.2. Assess Health of PEM Fuel Cell
The health of the membrane and electrode in PEM fuel cells, which are the most critical components, can be
assessed by applying validated degradation models as discussed in chapter 6.

The determination of membrane thickness and electrochemical catalyst surface area (ECSA) serves as vital
health indicators for the membrane and electrode in PEM fuel cells. Karpenko-Jereb et al. [10] proposed
a semi-empirical model to assess membrane thickness, providing insights into membrane health. By in-
tegrating physico-chemical properties, this model facilitates the analysis of membrane degradation based
on the oxygen crossover rate, crucial for evaluating membrane integrity over time. Moreover, Chandesris et
al. [42] introduced a model linking membrane thickness degradation to fluoride release, offering further in-
sights into membrane thickness. Understanding membrane thickness dynamics aids in assessing the health
of membranes in PEM fuel cells. Thereby, providing essential information for maintenance.

Similarly, ECSA degradation, assessed through models like those proposed by Moein-Jahromi et al. [44] and
Polverine and Pianese [9], offers valuable insights into electrode health. These models, accounting for cat-
alyst degradation mechanisms such as platinum dissolution and particle coarsening, provide a means to
evaluate electrode health indicators. By estimating ECSA and voltage degradation under various operating
conditions, these models enable assessment of electrode performance and degradation trends. Addition-
ally, Robin et al.’s [58] platinum dissolution model further assists in understanding ECSA dynamics within
the electrode, enhancing the capability to assess electrode health indicators comprehensively. Utilising ECSA
degradation models aids in monitoring electrode health, facilitating timely interventions to maintain PEMFC
performance and prolong electrode lifespan. Together, membrane thickness and ECSA degradation mod-
els serve as tools for evaluating the health and life of PEM fuel cell membranes and electrodes, essential for
ensuring optimal performance and durability of fuel cell systems.

Required information to apply aforementioned degradation models on the tested PEM fuel from IEEE PHM
2014 Data Challenge is provided by the manufacturer UBZM, documented by Hinaje et al. [78], and presented
in Table 11.1. Further internal discussions with ZAL is required on the single cell specifications for applying
the degradation models on the 8000 hr dataset from ZAL.
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Table 11.1: Characteristics and experimental operating parameters of PEM fuel cell from IEEE PHM 2014 Data Challenge [13][19][78].

Parameter Value
GDL thicknesses 400 µm
Membrane thickness 15 µm
Cell active area 100 cm2

Membrane Electrode Assemblies type GORE PRIMEA 5761
Membrane type GORE-SELECT®
Open circuit voltage 1 V
Nominal voltage 0.6 V
Rated power 30 W
Cell number 5
Manufacturer UBZM, Germany
Relative humidity of anode and cathode 50%
Temperature 60 °C
Absolute pressure of anode and cathode 1.5 bar
Stochiometry ratio of anode and cathode 1.5-2
Inlet Pressure of anode and cathode 1.3 bar

Other type of degradation which are considered as rapid phenomena, such as membrane drying and flooding,
are not considered within the approach because of the limited data present. To monitor membrane drying
and flooding it is essential to have access to data from the purge valve, among other things [79].

11.3. Forecast Health of PEM Fuel Cell
This section discusses the selection process of a prediction technique, which will be applied to improve cur-
rent long-term predictions on the selected health indicators with a multi-step ahead approach.

Prediction Technique
From chapter 9, two prediction techniques are highlighted due to their high achieved prediction horizons.
The first technique, proposed by Hua et al. [22], applies a single input echo state network to forecast the
relative power-loss rate, and determine the remaining useful life. The multi-step ahead technique has a pre-
diction horizon of 150 hr. However, the RUL errors are quite significant and further research can be performed
on how to improve this technique. The second technique, introduced by Li et al. [23], combines three recur-
rent neural networks. Utilising a long short-term memory network and a gated recurrent unit, complemented
by a bi-directional element for feature extraction. Additionally, an echo state network with a sliding window
is used to predict stack voltage, which serves as the selected health indicator and is linked to the RUL. This
method achieves a single prediction with a horizon of 100 hr. However, the sliding window technique requires
continuously experimental data and does not re-use predicted values for a next prediction. Both techniques
are based on echo state networks and showcase the robustness in health indicator predictions by leveraging
the simplicity, efficiency, and effectiveness of echo state networks in predicting temporal data. However, it is
crucial to acknowledge that the performance of echo state networks heavily depends on appropriate reservoir
initialisation and parameter tuning [69].

To provide a baseline for hyperparameter tuning and reservoir initialisation, the work of Hua et al. [8, 20–
22, 80] offers valuable insights, detailing tuned hyperparameters and reservoir initialisation procedures.

In the broader literature, various hyperparameter tuning techniques have been explored, including Optuna
[63], particle swarm optimization [23], ANOVA [22], and genetic algorithms [20]. These diverse methodologies
contribute to the refinement and optimisation of predictive models. These techniques will be investigated
during the thesis.

Throughout this thesis, additional focus will be directed towards exploring different preprocessing tech-
niques, parameter optimisation strategies, and the potential of transfer learning methods, aiming to enhance
the predictive capabilities of the proposed models.
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11.4. Thesis Planning
This section discusses the activities that take place during the thesis and its duration. The information is
presented by use of a Gantt chart in Figure 11.1. This chart also shows the milestones and deadlines of the
thesis project.

11/23 12/23 1/24 2/24 3/24 4/24 5/24 6/24 7/24 8/24

Thesis Planning start end

  Literature Study 01/11/23 18/04/24
      Review and document health indicat... 01/11 14/02
      Review and document degradation ... 12/02 12/04
      Review and document data-driven te... 01/11 18/04
      Review and document available data... 10/01 14/02
      Review and document durability test 01/11 26/01
      Set-up durability test program 15/11 15/01
      Define research framework 01/11 23/02
      Define research approach 14/02 29/03
      Research methodology course 01/11 13/02
      Prepare kick-off presentation 04/03 08/03

  Thesis Work 11/03/24 23/08/24
      Apply degradation models 11/03 29/03
      Dataset preprocessing 18/03 19/04
      Building and testing prediction techn... 18/03 07/06
      Define relationship remaining useful l... 11/03 07/06
      Evaluate performance prediction tec... 14/03 07/06
      Case study predictive maintenance 15/04 19/04
      Prepare mid-term presentation 06/05 10/05
      Prepare green-light meeting 10/07 19/07
      Prepare thesis defence presentation 13/08 23/08
      Write scientific paper 15/04 09/08
      Write supporting work 11/03 28/06

  Milestones 01/11/23 23/08/24
      Introductory meeting 01/11 01/11
      Submit project plan 10/01 10/01
      Submit draft literature study 10/03 10/03
      Submit literature study 03/05 03/05
      Kick-off meeting 08/03 08/03
      Mid-term meeting 10/05 10/05
      Green-light meeting 19/07 19/07
      Thesis defence 23/08 23/08

  Holidays 22/12/23 02/01/24
      Christmas break 22/12 02/01
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Figure 11.1: Gantt chart to provide overview of planned activities during the literature study and thesis, the milestones and holidays.
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Conclusion

This thesis has demonstrated advancements in predicting the degradation and Remaining Useful Life (RUL)
of Proton-exchange Membrane (PEM) fuel cells through the application of data-driven and empirical method-
ologies. By leveraging extensive datasets from the FCLAB Research Federation, including the FC1 Dataset and
FC2 Dataset, this research has addressed the complex challenges associated with fuel cell prognostics.

The use of Seasonal and Trend decomposition via LOESS (STL) to break down current and voltage time-series
data into trend, seasonal, and residual components has proven effective in isolating the underlying patterns
and variations. Comparing the forecasting capabilities of Long Short-Term Memory (LSTM) networks and
Echo State Networks (ESNs) has highlighted the strengths and limitations of these approaches. Notably, the
optimised ESN demonstrated an ability to iteratively predict voltage components, achieving a Prognostic
Horizon (PH) of 125 hr, which is a substantial improvement in medium-term predictive accuracy.

The integration of empirical and semi-empirical models for membrane thickness degradation has further
refined the predictive framework, by applying linear regression to minimise reliance on experimental data.
The combination of predicted voltage and membrane thickness data has facilitated RUL forecast, offering
insights into PEM fuel cell health over extended operational periods.

The findings of this research show the effectiveness of the proposed methodology in managing the perfor-
mance and reliability of PEM fuel cells. The application of STL, LSTM, and ESN models, coupled with empir-
ical degradation modeling, demonstrates the potential for these techniques to enhance the predictive main-
tenance strategies for PEM fuel cells.

In summary, this thesis has provided a framework for PEM fuel cell degradation prediction, offering practical
solutions and insights that can be applied to various operational scenarios. Future work could explore further
refinements of these models and their application to different types of fuel cells and operating conditions.
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