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ABSTRACT

Public transport (PT) plays a vital role in commuting billions of travellers in cities all over
the world, providing a mode that is both sustainable and accessible. Metro networks are
especially apt at this considering their high-capacity and high-speed operation in urban
environments. Comparing different metro networks to one another is a suitable man-
ner for transport planners to gain insights into the characteristics of their networks and
which areas of improvement exist. In the field of network science, metro networks have
been studied extensively in recent decades. While this provided many new insights in
the field of network science, the practical relevance for the field of transport science of-
ten remained limited. This limited relevance is primarily caused by the lack of realism
of the network representations used, not incorporating the actual operation and service
that the network provides. As such, this study proposes a comprehensive comparison
of metro networks worldwide including service information. This comparison study
includes service characteristics in the form of the total travel time indicator for short-
est path calculations, which is a combination of the in-vehicle time, waiting time and
number of transfers. The median of this total travel time is taken for each network and
compared to that of other networks. This metric in turn is contrasted with network-
and city-related characteristics in order to explore relations between these factors and
to explain the patterns discovered. From this analysis, it is revealed that the travel time
increases with network size. The indicator that is especially apt at explaining the differ-
ences in total travel time between networks is the number of stations combined with the
average direct station distance. The total travel time methodology applied in this study
shows significantly different results to other commonly used methods that rely only on
in-vehicle time or hops to calculate shortest path travel times. The waiting time turns
out to be the main contributor to these significant differences. Future studies can ex-
pand on this by considering other network science indicators and looking further into
local indicators. In addition, the methodology could be expanded with more detailed
transfer information and other PT modes.
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1
INTRODUCTION

Public transport (PT) plays a vital role in commuting billions of travellers in cities all over
the world. Considering the rapid threat of climate change, improving sustainability and
equity are crucial factors to keep cities habitable. PT plays a crucial role in providing
transport that is both sustainable as well as accessible. A variety of different modes to
transport volumes of people throughout cities exist, such as bus, tram, metro and train.
In an urban environment, metro networks have a variety of factors that make them espe-
cially attractive. In terms of operation, a metro is considerably high-capacity and high-
speed compared to most other PT modes. In terms of infrastructure, their (primarily)
underground nature makes their location highly flexible while also having a minimal
impact on the above-ground urban infrastructure. Considering these advantages and
the rapid advance of technology to construct metro networks, their popularity has in-
creased greatly over the past decade. In the last decade, almost sixty new systems have
opened, nearly a third of the total number of metro networks worldwide. On the other
hand, existing networks also frequently expand, seeing as the total amount of metro net-
work infrastructure has increased by 25%, or 3,300km in total, in the past three years
alone (UITP, 2022).

The subsequent parts of this introductory chapter are structured as follows. Firstly,
the scientific context is provided in Section 1.1. The problem is further described in Sec-
tion 1.2 along with the proposed solution direction in Section 1.3. The accompanying
research questions are provided in Section 1.4. Finally, this chapter is concluded in Sec-
tion 1.5 with a description of the further structure of this document.

1.1. SCIENTIFIC CONTEXT
Metro networks have also received much attention in literature in the recent years. The
field of complex network science has been using public transport systems as a field of
application since the early 2000s (Latora and Marchiori, 2002; Sienkiewicz and Hołyst,
2005). PT systems as a complex network have been extensively explored around the year
2010 with the works of Derrible and Kennedy (Derrible and Kennedy, 2009; Derrible and
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Kennedy, 2010a; Derrible and Kennedy, 2010b; Derrible and Kennedy, 2011; Derrible,
2012). These researchers noted how suitable PT networks were to investigate various
concepts from complex network theory. While this provided many new insights in the
field of network science, the practical relevance for the field of transport science often
remained limited. This limited relevance is primarily caused by the lack of realism of
the network representations used. Frequently, these studies used only simple hops or
in-vehicle travel time to calculate travellers’ paths through the network. In doing so,
service concepts such as transfer possibilities and waiting time are completely ignored.
Evidently, this can lead to a misrepresentation of networks.

PT scientists recognized this gap and tried to integrate concepts from transport sci-
ence into network analyses. This led to a large variety of examples such as: creating a
weighted graph with passenger flows (Xu et al., 2016); investigating the relationship be-
tween network topology and ridership (Ingvardson & Nielsen, 2018); or integrating net-
work science and accessibility analysis (Luo et al., 2019). These studies, albeit limited in
number and scope, provided more insights into the relationship between the structure
of PT networks and their actual service and usage patterns, providing information for
policy makers on the performance of their networks.

1.2. PROBLEM DESCRIPTION
With this field of combining network infrastructure and service information upcoming,
various aspects are still left unexplored. For example, while studies as the aforemen-
tioned do contribute new methodologies in the field, these have not been extensively
used to compare different networks yet. It is vital for PT planners to understand the
performance of their network on these aspects compared to other networks, in order to
learn where room for improvement exists within their networks. In addition, even when
comparison studies are performed, the set of networks used is usually similar: a set of
a few dozen, large-sized metro networks. Logically, using only the same few dozen net-
works means a significant portion of the 190 metro networks worldwide (UITP, 2022)
is currently not studied. Additionally, as described before, the number of networks has
greatly increased in recent years, meaning many recent networks and expansions are
also still unexplored. Considering previous studies primarily use large-sized networks,
the effects on small- and mid-sized networks are also unclear. It can thus be concluded
that a comprehensive comparison of a large set of varied networks is currently missing.

1.3. SOLUTION DIRECTION
To fill these gaps, this study proposes a comprehensive, topological comparison study of
metro networks worldwide that includes service information. This study includes ser-
vice characteristics mathematically in the topological representations of the networks in
order to provide a more realistic representation of these networks. An indicator is used
that incorporates service information to directly compare networks to each other. This
metric in turn is contrasted with network- and city-related characteristics in order to ex-
plore relations between these factors and to explain the patterns discovered. Specific
attention is also paid towards outliers and regional differences in order to discover what
potential patterns arise.
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1.4. RESEARCH QUESTIONS
Based on the research gaps as described above, the question this study aims to answer
can best be formulated as follows:

How can service information be included into a topological comparison of metro net-
works worldwide?

This research question is supported by the following sub-questions that provide more
detail on the possible methodology and results:

• What indicator can best be used to account for service information?

• What type of data pipeline should be created to turn service information data into
comparable metrics?

• Which regional differences and outliers are identified when examining networks’
total travel time and their components?

• Can (a combination) of network and city factors be used to meaningfully explain
the travel time of a network?

• Does including service information provide significantly different results to com-
monly used methods?

1.5. DOCUMENT STRUCTURE
The rest of this report is structured as follows: Firstly, the current state of the literature is
reviewed in Chapter 2. In Chapter 3, the methodology for answering the research ques-
tions is further detailed. Chapter 4 details the modelling implementation for this study.
The results are reported in Chapter 5. Finally, the conclusions and recommendations of
this study are detailed in Chapter 6.





2
LITERATURE STUDY

In this chapter, an extensive literature study is performed in order to identify the current
state-of-the-art of PT network topology research. The aim is to identify what research
has already been performed and what gap still exists in the literature, especially in terms
of including service information. Firstly, a brief overview of the field of study is provided
in Section 2.1. Secondly, the strategy applied for finding related work is further detailed
in Section 2.2. Thirdly, the related works for each topic are outlined in Section 2.3. Fi-
nally, this chapter is concluded with the identification of the research gaps in Section
2.4.

2.1. SCOPING
In order to perform a directed search within the literature, first the field of study needs
to be narrowed down. The main topic of this study (and consequently of this literature
review) is "including service information in a topological comparison of metro networks
worldwide". This title also provides a natural direction for the topics of the literature
review: service information for metro networks and topological comparisons of metro
networks. For this literature study, the topic is expanded slightly to include all types
of PT, not merely metro networks. In addition to that, there are some studies that do
focus on the comparison of PT networks but that do not clearly fall into either of these
two categories. Therefore, a third topic of interest for this literature study is "general PT
comparison studies". A such, the following three topics are researched:

• PT network topological studies - This topic is focused on all studies that research
PT networks from a topological perspective. These primarily consist of empiri-
cal and statistical studies into different graph theory concepts such as structure,
hierarchy and topology. Works in this category specifically focus on the topology
without including service information.

• PT service information studies - This topic is about analyzing PT networks based
on their service characteristics. This includes studies into the accessibility or eq-
uity of networks as well as into the transfers, waiting times and frequency of the

5
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service. These studies generally perform this analysis from a topological perspec-
tive, but some exceptions do exist.

• General PT comparison studies - The focus of this topic primarily lies in the actual
comparison between different PT networks. Literature in this area can be quite
diverse in their focus and also can include grey literature. Literature in this section
explicitly does not incorporate network topology.

The various works identified for each of these categories are presented in Section 2.3.

2.2. BIBLIOMETRIC SEARCH STRATEGY
In this section, the search strategy applied for this literature study is briefly described.
The aim of this literature review is to find the knowledge gap within the field of topolog-
ical metro network comparisons incorporating service information. The general topic
and corresponding subtopics were already described extensively in Section 2.1. As such,
the literature review is performed with these topics in mind. The following methods are
applied to find relevant works:

• Search in academic databases - Different search terms are applied to academic
databases. The primary database used for this review is Scopus. The following
search terms are applied:

– "public transport" and "network" and "topology" (139 results on Scopus)

– "public transport" and "network" and "comparison" (308 results on Scopus)

– "public transport" and "service frequency" or "service information" (140 re-
sults on Scopus)

Based on these search terms, a large variety of works is found, as is indicated above.
Naturally, considering the overlap in the search terms, there is also some overlap
in the works discovered by the three search terms. These works are then filtered
based on their relevance for this study.

• Recommendations by coordinators - The coordinators of this project have pro-
vided several relevant studies as a baseline. These are also included in this litera-
ture study.

• Forward and backward snowballing - The techniques of both forward and back-
ward snowballing are applied to the most relevant works. This is used especially
on works that have a close relation with the aim of this study.

After all of these steps, 33 related works were retained which will be described in
more detail in Section 2.3.

2.3. RELATED WORK
In this section, the related work is discussed. This section is split up into the three corre-
sponding subtopics as described in Section 2.1.
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2.3.1. PT NETWORK TOPOLOGY
The first of three topics to discuss, PT network topology, is arguably the most significant
and comprehensive one. This significance becomes clear from the fact that it has been
an interest of study for several decades and is continually expanding with new findings
and applications. The network topology of PT networks has been of interest for trans-
port scientists and network scientists alike, giving the field a broad variety of studies
from different directions. This section largely follows a chronological order as that best
describes the changes and development in the field. The most relevant studies are ex-
plained in more detail and findings from them that are relevant for this study are briefly
highlighted.

EARLY WORKS

One of the earliest examples of literature on network infrastructure is by Musso and
Vuchic (1988). In this study, the authors aim to identify the most important geometric
characteristics of metro networks. The work is surprisingly extensive for its time provid-
ing a set of five different categories by which to quantitatively describe networks. These
categories are: network size and form; network topology; relationship between network
and city; quantity and quality of offered service; and service use. While the latter two
categories (focusing on service characteristics) are mentioned in the study, they are only
provided as a guideline and not actually used for comparison in the study itself. In terms
of scope, the study includes ten of the most significant metro networks of that time. The
study also focuses quite heavily on defining metro lines and systems by their geometry,
placing them into specific categories. This study can be regarded as the foundation on
which many future studies expanded in the field of network structure analysis.

Studies continuing and expanding on this work arose especially in the 2000s, when
different studies were performed on various locations and PT modes around the world.
One of the earliest examples is the work by Latora and Marchiori (2002). In their work,
the authors aim to bridge the gap between the theoretical paradigms of complex net-
work science and real complex networks. The Boston subway was chosen as the net-
work of application. While this work was one of the first seeking a connection between
PT networks and complex network science, the focus was still very much on network sci-
ence itself. A continuation of this work came three years later in the highly cited study
by Sienkiewicz and Hołyst (2005) analyzing bus systems in Poland. This study focuses
heavily on the application of complex network science concepts on a real-world net-
work. As such, the results themselves are simply a definition of these networks accord-
ing to various topological concepts (such as degree distribution, path length properties
or betweenness). Unlike Musso and Vuchic (1988) in their work, the authors do not fo-
cus on the transport characteristics of these bus networks at all, but simply treat them as
complex networks.

A very similar analysis was performed on the Chinese rail network (Li & Cai, 2007)
which confirmed that railway network to be scale-free. Majima et al. (2007) instead took
a more transport-related approach and performed a complex network analysis to evalu-
ate the potential of a waterbus in the Tokyo area when combined with other modes. Re-
searchers from Korea performed a similar study applied to the subway system of Seoul in
2008 (Lee et al., 2008). Their study focused on the analysis of statistical and topological
properties and also included passenger flow.
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CHARACTERIZING PT NETWORKS USING NETWORK SCIENCE INDICATORS

Arguably the most groundbreaking work in the field of PT network topology came up
around the year 2010 with the works of Von Ferber et al. and Derrible & Kennedy. These
authors took the field to a new level with extensive studies on various network aspects
of public transport networks worldwide. One of the earlier works is by Von Ferber et al.
(2009). The goal of their work is twofold: define public transport networks based on sta-
tistical properties; and build a model that can create a network that would reproduce
these properties based on a few simple rules. These statistical properties were identified
for fourteen public transport networks. The study identified some unexpected similari-
ties and differences between networks and created a model aimed to capture those rules.

A work from the same year albeit with a slightly different focus came from Derri-
ble and Kennedy (2009). In their work, the authors analyze nineteen metro networks
worldwide, showing a relationship between network design and ridership. Network de-
sign was modeled using three indicators: coverage, directness and connectivity. The
study shows a strong correlation between these aspects and the ridership of the metro
networks, suggesting the effect of network design on ridership is significant. While this
study does not specifically consider service characteristics, it does consider more than
just the infrastructure. Both directness and connectivity relate to the routes and number
of transfers (which technically are choices by the operator) and the ridership is included
in the analysis. The study was expanded on by the authors in the following years with
three new studies: Derrible and Kennedy (2010a), Derrible and Kennedy (2010b) and
Derrible (2012)

Derrible and Kennedy (2010a) similarly to Derrible and Kennedy (2009) try to char-
acterize metro networks using indicators. This work specifically focuses on adapting
graph theory concepts into well defined public transport-specific applications and use
this method to characterize networks. The three dimensions used in this study are: state,
form and structure. These dimensions in turn consist of several indicators each. While
the study does contain 33 different metro networks, these are merely used as examples
of the three concepts and are not compared and contrasted themselves.

In a similar work from the same year (Derrible & Kennedy, 2010b), the authors aim to
address topological networks in complex network science using the same data set of 33
networks. The interest here lies in the complexity of the networks and the effects thereof
on the robustness. The networks in this study are not actually compared to each other
nor does the study consider service characteristics.

The third of the works by Derrible on network science in metro networks specifically
focuses on network centrality (Derrible, 2012). An alternative graph representation us-
ing only terminal and transfer nodes was used to compare 28 metro networks on their
betweenness centrality.

While thematically similar, the work by Derrible and Kennedy (2011) takes a different
approach and instead reviews the existing literature on applying graph theory and net-
work science to the field of transit network design. At the time, this application was still
fairly new and unexplored but has since seen a huge increase in popularity. The study
provides a useful overview of the indicators found in other studies that could be applied
to public transport networks. A similar review was created by Lin and Ban (2013). The
main difference is that this work by Lin and Ban (2013) reviewed all transport networks,
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including for example aviation and maritime transportation networks as well.
The work by Von Ferber et al. (2009) and the consequent works by Derrible and

Kennedy kick-started the increase in popularity of public transport network analysis.
The works following this, can be generally split into two categories: complex network
theory and PT network analysis. Whereas the complex network theory works merely use
PT networks as a field of application, the PT network analysis works aim to use network
theory to learn more about PT networks themselves. The developments in the two fields
are described in the corresponding subsections below.

COMPLEX NETWORK THEORY

Part of this increase in popularity can be attributed to the nature of public transport
networks. The aforementioned studies showed that PT networks (and especially metro
networks) are very well-defined and frequently show useful network characteristics. PT
networks are for example usually planar by nature and compared to some other real-
life networks (such as social networks) have a relatively small size and can thus be visu-
ally inspected. In addition, these networks seem to frequently show the aforementioned
small-world or scale-free properties in a real-world situation. This has led to many net-
work science researchers to investigate these and other properties in networks in their
local areas.

One of the earlier works in this era is by Zhang et al. (2013). In their work, the au-
thors investigate the topological characteristics of urban rail transit networks to discover
any universal patterns in them. They do this based on a variety of aspects such as be-
tweenness, degree, shortest path and network failures. Xu et al. (2013) performed similar
research for the PT networks in 330 Chinese cities.

Instead of applying known concepts to new regions, some authors instead aim to de-
velop new methods to apply to complex network analysis in the PT application. Dimitrov
and Ceder (2016) create a new methodology for examining topological characteristics of
PT networks. In addition, the authors also focused on the data extraction process and
solving operational tasks in practice.

Shanmukhappa et al. (2018) similarly apply a new method to the bus networks of
London, Hong Kong and Bengaluru. Their method uses a supernode representation and
end-to-end travel delay to evaluate the topological efficiency of these networks.

Wei et al. (2019) examine the Chinese high-speed rail network to investigate its net-
work structure. Using metrics similar to Derrible and Kennedy (2009), they discovered
that the network shows a hierarchical structure as opposed to the commonly-found scale-
free structure.

While PT networks are often treated as unimodal networks, attempts have been made
to create integrated networks as well. An example of this is by Hong et al. (2019) in which
they create such a network for the metropolis of Seoul.

PT NETWORK ANALYSIS

The interest in PT networks from a complex network perspective is not just of interest
for complex network scientists, but for transport scientists as well. Transport scientists
use the concepts from network science to compare networks to each other or to better
understand specific networks.
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A good example of this approach is the work by Haznagy et al. (2015) where the ur-
ban PT systems of five Hungarian cities are analyzed. In their work, they find interesting
similarities even in cities with varying morphologies. An example of this is the existence
of a few high-degree nodes and an abundance of low-degree nodes. Their discoveries
of this independence within Hungary are supported by different researchers in other re-
gions such as China (Xu et al., 2013) and Poland (Sienkiewicz & Hołyst, 2005) suggesting
that these findings apply globally.

Wu et al. (2017) compare six of the world’s biggest metro networks using a new cen-
trality measure called "node occupying probability". The study finds that these networks
perform better under random attack than targeted attack and that some variation exists
between these networks on the performance of these measures.

Shanmukhappa et al. (2019) similarly to Derrible and Kennedy (2011) and Lin and
Ban (2013) review the current developments in PT network analysis in 2019. Based on
the literature, they drew a variety of conclusions on the state-of-the-art in the field. Espe-
cially relevant for this study were their conclusions on metro network studies. The main
conclusion was that undirected and weighted graphs are best suited for the nature of
metro networks. In addition, they also recommended performing a more in-depth anal-
ysis of PT networks to get proper insights, as a simple topological analysis of the graph
simplification of a network does not provide many practical insights.

2.3.2. SERVICE INFORMATION
The second topic of interest is that of service information. This field has been upcoming
for the past few years where the network theory, as described in Section 2.3.1, is com-
bined with the actual service or operation of a PT network. The studies in this field are
quite varied in their nature and approach as the topic can be addressed from many dif-
ferent sides. The field can be roughly divided up into two categories: operation/ridership
and accessibility. As such, studies divided into those categories are discussed in the cor-
responding sections below.

OPERATION/RIDERSHIP

One approach of how to combine network topology and service information is by con-
sidering the operation or ridership of a metro system. Xu et al. (2016) incorporate trip
data in order to create a weighted passenger flow network of the Beijing subway system.
Through this new methodology, the researchers were able to identify the spatial mobility
patterns in the urban area, providing useful insights for policy makers. This methodol-
ogy can be extended to be applied to other cities and modes as well. Saidi et al. (2017)
similarly use generalized passenger travel costs combined with network theory to com-
pare the urban rail transit systems of six large cities.

Amini et al. (2016) take a slightly different approach. Instead, they investigate which
type of urban network structure is most suitable for a city, depending on its traffic con-
ditions. While not specifically applied to the area of PT, the authors do attempt to bridge
the gap between network theory and real-life by applying the origin-demand data of
Mashhad, Iran, to different possible network structures. Their study reveals that the
most suitable network structure depends on the amount of traffic in the city, indicating
a relationship between network structure and traffic volumes.
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Whereas the approach of the aforementioned studies is to integrate service infor-
mation or demand data into a network formulation, Ingvardson and Nielsen (2018) ap-
proach the problem from the opposite direction. Instead, they look how network topol-
ogy (among other factors) influences the ridership of public transport systems. Their
study finds that extensive rail network coverage (among which metro was counted as
well) is positively correlated with ridership. This correlation seemed largest for metro,
because of its high passenger-carrying capacity. They also discover a strong relation-
ship between urban density and metro network coverage, as a dense metropolitan area
requires a high-capacity transport mode and vice-versa. Their study does not find signif-
icant influence of network topology indicators on ridership. Having significant transfer
possibilities does however increase the mobility of the system, leading to a higher attrac-
tiveness of the entire system.

ACCESSIBILITY

Another approach is to consider how the structural topology and service of a metro sys-
tem relate to its accessibility. A first example of this is by Luo et al. (2019) who integrate
accessibility and network science, using a network science-based approach. They for-
mulate an accessibility indicator of travel impedance based on the generalized travel
cost (GTC), a combination of in-vehicle travel time, waiting time and the number of
transfers. Their work compares eight tram networks using this newly defined indica-
tor. The analysis reveals that, when including these service properties, there is a higher
spatial disparity in PT accessibility. In addition, their work shows that larger networks
exhibit a larger average travel impedance.

A work in the following year by the same authors takes this integration a step further
by evaluating whether passenger flow distribution can be estimated by looking solely at
the network properties of a PT system (Luo et al., 2020). Their work reveals that some
network indicators can indeed be used to estimate passenger flow with reasonable ac-
curacy. This is especially the case for indicators using weighted graphs and those related
to the space-of-service, indicating the higher level of realism of those representations.

Jin et al. (2017) take a more comprehensive approach and consider the accessibility
of the whole high-speed rail (HSR) network of East Asia, comparing multiple countries.
Their study considers how the structure of the network improves accessibility to different
hot-spots. They suggest that further development of an integrated East Asia HSR system
could reduce the travel time between the major cities but admit the impacts are lower
than national developments and that there are many hurdles to realize this.

2.3.3. PT COMPARISON STUDIES
The final topic of interest is comparison studies which do not explicitly incorporate net-
work topology. In this section, a more in-depth analysis is performed on the existing PT
comparison studies. This specifically involves the studies which compare aspects dif-
ferently than network topology and service information as those are already extensively
described in their corresponding sections. As comparison studies such as these are also
quite prevalent in grey literature, that category is also included in this analysis.

The first study to consider is a report by McKinsey (2021). In this report, the authors
compare the urban transportation system of 25 global cities and focus on what makes
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them successful on specific aspects. The number of metrics in the report is quite large,
but some examples include affordability, availability, efficiency and convenience. A key
element of this report is that these metrics are not only judged using objective metrics
but also subjectively through user perceptions. In addition, the results are compared to
earlier studies in order to evaluate the growth or decline of networks in certain aspects.
This provides a picture from a very different perspective than the studies as performed in
Sections 2.3.1 and 2.3.2 which are purely focused on the actual network itself and service
and less on the user experience.

Taecharungroj (2022) takes an entirely different approach to comparing PT networks.
In their work, they compare 127 urban rail transit networks based on traveller reviews via
TripAdvisor. The dimensions used for comparison were not predetermined but are in-
stead inferred using machine learning. This means the comparison is executed based on
the traveller’s perspective and desires, gaining insights that might otherwise be lost. The
study identifies which dimensions are most relevant for which networks, giving opera-
tors insights for where to improve.

In the study by Weckström and Mladenović (2020), the authors compare the public
transport policy of 24 mid-sized cities in Nordic Europe. Their comparison is quite ex-
tensive, including the development trajectory, quantity and structure of services as well
as planning objectives and measures. The comparison is performed based on five newly
developed performance measures. Their study finds that these cities follow fairly simi-
lar planning principles, explained by their proximity and cultural similarity. The actual
performance of these networks does vary however. Several potential explanations are
provided for this varying performance, but no conclusive answer can be given.

Bastidas-Zelaya (2021) seeks to understand the planning and development of metros
in Latin America and to find out what makes the planning and development of those
metro systems unique compared to other systems around the world. There are four main
features they discover to be unique for Latin American metro systems: a higher relative
demand; more financial sustainability; metro projects are all relatively new; and finally,
hardly any public-private partnerships.

2.3.4. SUMMARY TABLE
All related works are presented in Table 2.1. This summary table provides an overview
of all the included related works along with some key information about each of those
works. The following columns are present:

• Networks - This column simply describes how many networks are considered in
each work.

• Topological - This column provides information about whether the work takes a
topological approach or not.

• Comparison - This column describes whether a related work compares different
networks or not.

• Service - This column informs whether the work includes service information.
This could be in the form of for example demand data or scheduling data.
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Table 2.1: A summary table of all related works including some additional information

Paper Networks Topology Comparison Service
Musso and Vuchic, 1988 10 yes yes no
Latora and Marchiori, 2002 1 yes no no
Sienkiewicz and Hołyst, 2005 22 yes yes no
Li and Cai, 2007 1 yes no no
Majima et al., 2007 6 yes yes no
Lee et al., 2008 1 yes no no
Von Ferber et al., 2009 14 yes yes no
Derrible and Kennedy, 2009 19 yes yes yes
Derrible and Kennedy, 2010a 33 yes no no
Derrible and Kennedy, 2010b 33 yes no no
Derrible and Kennedy, 2011 - yes no no
Derrible, 2012 28 yes yes no
Zhang et al., 2013 30 yes yes no
Lin and Ban, 2013 - yes no no
Xu et al., 2013 330 yes yes no
Haznagy et al., 2015 5 yes yes no
Amini et al., 2016 1 yes no yes
Dimitrov and Ceder, 2016 1 yes no no
Xu et al., 2016 1 yes no yes
Jin et al., 2017 4 yes yes yes
Saidi et al., 2017 6 yes yes yes
Wu et al., 2017 6 yes yes no
Ingvardson and Nielsen, 2018 48 yes yes yes
Shanmukhappa et al., 2018 3 yes yes no
Hong et al., 2019 1 yes no no
Luo et al., 2019 8 yes yes yes
Wei et al., 2019 6 yes no no
Shanmukhappa et al., 2019 - yes no no
Luo et al., 2020 2 yes yes yes
Weckström and Mladenović, 2020 24 no yes yes
Bastidas-Zelaya, 2021 20 no yes yes
McKinsey, 2021 25 no yes yes
Taecharungroj, 2022 127 no yes yes

2.4. RESEARCH GAP
Based on the related works described in Section 2.3, several gaps in the literature can be
identified. These gaps are further detailed in the corresponding subsections below.

2.4.1. SERVICE INFORMATION AS A QUANTITATIVE MEASURE
The first and arguably biggest gap in literature is the lack of using service as a quantitative
measure in comparisons between metro networks. Incorporating service information
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quantitatively would make it much easier to directly compare networks to each other
and gain information about their performance. It can also provide more scientific evi-
dence for findings from qualitative studies as well as a basis for decision making. While
recent studies do aim to fill this gap, the amount of literature in this area is still compar-
atively low. In addition, the focus of these studies is varied and none concretely focus on
comparing networks using service information as a measure for accessibility (with the
sole exception of (Luo et al., 2019)). Including service information quantitatively conse-
quently also requires a lot of data and a pipeline to process it, which therefore can also
be considered as gaps in the literature.

2.4.2. NUMBER OF NETWORKS INCLUDED
Nearly all of the related works use either one or multiple networks for application. From
Table 2.1, it becomes clear that the exact number of networks included differs signifi-
cantly per study. These studies can roughly be divided into three categories in terms of
included networks:

1. One network/no comparison - A portion of the explored literature does not actu-
ally compare networks but instead uses one (or a few) networks to apply a newly
developed methodology on.

2. Small comparison (<12 networks) - A second group of studies does perform a
comparison study of multiple networks but restricts this to only a handful of net-
works. Usually these studies do not aim to create a complete image of all possible
networks but instead use this comparison to demonstrate a new methodology and
compare its applicability on a variety of cases.

3. Middle-sized comparison (~12-30) networks - This group of studies features a
larger group of networks that are compared. Frequently, the intent of these studies
is to extract patterns and groupings from these networks in order to get an image
of the overall state of networks.

With some exceptions — (Taecharungroj, 2022) (127 networks), (Ingvardson & Nielsen,
2018) (48 networks) and (Xu et al., 2013) (330 networks) — all explored studies fall into
one of these categories. It can be noticed that these comparisons are far from exhaus-
tive, considering that there are around 190 metro networks in total (UITP, 2022). As such,
there is a clear gap in the literature of metro comparison studies with 30+ networks.

2.4.3. UNEXPLORED NETWORKS AND REGIONAL DIFFERENCES
Lastly, in addition to the number of networks lacking in literature, the actual networks
that are explored is also an area for improvement. Nearly all studies mentioned in this
review perform one of either two comparisons: a comparison on the largest and most
significant metro networks (Musso and Vuchic, 1988; Von Ferber et al., 2009, Derrible,
2012); or a comparison of studies in one particular area (Xu et al., 2013; Weckström
and Mladenović, 2020; Bastidas-Zelaya, 2021). The most notable exception to this is
Taecharungroj (2022) who analyzes 127 networks worldwide of varying sizes. However,
because of the reliance on TripAdvisor data, this study has a very different focus than
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most others and does not in fact consider the topology nor service information of these
networks. This focus from these studies on either large networks or specific networks,
means there are many networks that have not been explored at all or only in a regional
context. In addition, including many networks from different regions means it is also
possible to evaluate regional differences. Researching these regional differences is an-
other gap this study aims to fill.





3
METHODOLOGY

In this chapter, the methodology applied for this study is described. Firstly, the manner
in which networks are selected is briefly explained in Section 3.1. Secondly, the network
representations used for this study are described in Section 3.2. Thirdly, the primary
metric used for comparison is described in Section 3.3. Lastly, the secondary metrics
based on network- and city-related aspects are explained in Sections 3.4 and 3.5 respec-
tively.

3.1. NETWORK SELECTION
The first step in the process is selecting the metro networks to include in this study. In
this section, the overview of potential networks to include is described. Firstly, the def-
inition of what constitutes a metro network is explained in more detail in Section 3.1.1.
Following this definition, a potential set of networks to include in this study follows,
which is briefly illustrated in Section 3.1.2.

3.1.1. DEFINITION OF METRO
Metro, subway, heavy rail and (mass) rapid rail transit are all definitions for a specific
type of mass urban rail public transport. As becomes clear from the title, for this study
the moniker "metro" is used to indicate networks of this type. The exact definition dif-
fers depending on the exact source, but there a few general rules that nearly all sources
adhere to, as also described by the International Association of Public Transport (UITP,
2022):

• Located in an urban area

• Exclusive right-of-way

• Grade-separated through either tunnels or elevation

• High frequency and capacity vehicles

17
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For this study, these four rules are taken as the main determinant to include net-
works. While networks can technically only be described as a metro if they meet all four
of these criteria, some networks exist that do not fully meet all of the criteria but are still
classified as metro. This especially refers to the fourth requirement of "high frequency
and capacity" which is not a binary requirement nor does it have strict limits defined.
This definition of metro therefore excludes tram and light-rail on the one hand and sub-
urban and commuter rail on the other hand. While this excludes some cities that rely
heavily on these types of transportation as their primary urban PT method, this does
ensure the comparison between different networks stays pure, as the metro networks
included should be fairly similar from a systematic point of view.

3.1.2. OVERVIEW OF POTENTIAL NETWORKS

Following the definition as described in Section 3.1.1 as closely as possible, an initial se-
lection of potential networks can be created. This selection is based on varying sources
listing metro networks around the world, such as UITP; and network planners and oper-
ators. The aim of this initial list is not to be completely exhaustive, but to include nearly
all significant networks that can be classified as metro according to the aforementioned
definition. The total list is provided as a world map in Figure 3.1. All cities with a metro
network are indicated in red on this map. Some cities have multiple systems that could
be identified as separate metro systems (such as the Tokyo Metro and Toei Subway in
Tokyo, Japan). Depending on the exact composition and transferability between these
systems, it is determined on a case-by-case basis whether these systems are considered
as one integrated system. The desire is to have only one (integrated) system per city in
order to keep the comparisons with other cities clear.

As described in Section 2.4.2, there is a literature gap both in terms of the number
of networks included as well as the specific networks that are included in related works.
Therefore, the aim of this study is to include as many networks in the comparison as pos-
sible, in order to get the most complete view of the world’s metro networks. In the ideal
situation all networks present in Figure 3.1 are included in the final set used for analysis.
Naturally, this is hard to actually realize considering data limitations. The final number
of networks that is actually included in this study is described further on in Section 4.1.

Figure 3.1: All 190 cities in the world with a metro network
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3.2. PT NETWORK REPRESENTATION
The focus of this study is to create a comparison of metro networks that also includes the
service information quantitatively. Similar to other studies, this is done by representing
the metro networks topologically using concepts from graph theory. From these graph
representations, metrics can be computed that can be used to compare the networks. In
this section, the chosen representations are extensively described.

3.2.1. REPRESENTATION OPTIONS
When representing PT networks using graph theory, there are generally four options for
the type of representation used. How to translate a metro map into these four options, is
displayed graphically in Figure 3.2.

Figure 3.2: (a) A simple metro map (b) L-space (c) B-space (d) P-space (e) C-space (Von Ferber et al., 2009)

These four spaces are four different ways of displaying the topology of the metro
network, both in terms of its infrastructure as well as its service. Whereas the L-space
provides only information on the infrastructure of the system, B-, C- and P-space pro-
vide information on the service of the system. As both the infrastructure and service are
relevant for this study, it is sensible to use two representations: one for infrastructure
and one for service. As L-space is the only representation describing infrastructure, it
warrants no further explanation that it is used as the infrastructure representation. For
service, the options are threefold. C-space is the least attractive option as it only provides
information on which lines are connected, losing vital information about exactly which
stations are on each line. B- and P-space both include this information and are thus
equally rich in information in that aspect. B-space includes some extra nodes detailing
the exact line names/numbers connecting the different stations. As this extra informa-
tion is not directly relevant for this study, P-space is used instead.
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In order to understand exactly what information is captured in these representations
and how this is formulated mathematically, further explanations are provided in the cor-
responding Subsections 3.2.2 and 3.2.3 below.

Before defining each representation separately, a general mathematical definition
of a graph is provided. A graph G is represented mathematically by G = (V ,E , w). In
this graph, V is a set of vertices or nodes while E is a set of pairs of nodes (i , j ), also
known as edges. Edge (i , j ) represents the two nodes i and j joined by this edge. Edges
can also have an edge weight function w that maps each edge (i , j ) ∈ E to a real-valued
weight w(i , j ). In addition to the main weight, other information might be captured
using additional labels l(i , j ).

3.2.2. L-SPACE
As mentioned in the introduction of this section, the L-space or alternatively space-of-
infrastructure is a topological representation of the infrastructure of the network. In
this representation, stations are represented as nodes while the tracks/tunnels between
them are represented as edges. This is the common way to represent L-space where the
information about the different metro lines/routes is lost and only the infrastructure re-
mains. Within this basic concept of L-space, there are two factors that can differ per
implementation: edge weight and edge direction. These concepts are explained in more
detail below.

EDGE WEIGHT

When transforming a metro network into an L-space representation, it is possible to add
a main weight to the edges in order to represent extra information. Below, the differ-
ent possibilities for these edge weights are described along with what information this
weight describes.

• Unweighted - By far the most commonly used option is to not assign any weight
to the edges at all (Sienkiewicz & Hołyst, 2005) (Von Ferber et al., 2009) (Derrible
& Kennedy, 2009). In this implementation, each edge simply represents a connec-
tion between two stations without any additional information about the length or
duration of this connection.

• Station-to-station distance - A way to provide more information on the edges is to
use the distance between stations. This simply describes the distance covered by
the metro network between two stations or in other words the length of an edge.
In the local sense, this weight provides information about how far apart certain
stations are compared to others. Globally, this weight can provide information
about the average interstation distance in the network or the total length of the
network. For this study, the station-to-station distance is defined as l(i , j ).

• Average station-to-station in-vehicle travel time - An alternative that is partly de-
pendent on the aforementioned distance, is the in-vehicle travel time between sta-
tions (Luo et al., 2019). This weight is a combination of the distance, the type of
vehicles used (i.e., as they generally determine the maximum speed of operation)
as well as the infrastructural intricacies of the network (e.g., sharp bends, speed
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limits because of external factors). As such, this weight provides more detailed
insights into both the infrastructure of the network as well as its operation as op-
posed to the distance. Mathematically, ivt(i , j ) represents the in-vehicle time of
edge (i , j ).

From these three options, the in-vehicle travel time is used as the main edge weight
for this study. It provides a more detailed picture of both the infrastructure and oper-
ation as opposed to a distance-based or unweighted graph. It also has great potential
for further integration with other service aspects when combined with P-space. In addi-
tion, the station-to-station distance is used as a secondary label for calculating certain
indicators such as the total network length.

EDGE DIRECTION

Firstly, it is important to establish that all L-space representations are so-called "simple"
graphs. This means that each edge can only exist once. In addition, self-loops are also
not permitted in this representation. In graph theory, edges can be one of two types:
undirected or directed. An undirected graph, or simply "graph", is a graph in which the
edges do not have an orientation. As this is an undirected graph, each node pair can
only have one edge between them and thus also (i , j ) = ( j , i ). In a directed graph on the
other hand, edges have an orientation, and as such for any edge (i , j ) ̸= ( j , i ). This means
between every pair of nodes, two edges can exist: one for each direction.

Figure 3.3: An example of directed metro lines in the Paris network1

As L-space graphs are commonly represented using unweighted edges (as described
in the previous section), usually there is little reason to use directed edges. When using
unweighted edges, one undirected edge between two nodes is simply enough to repre-
sent the potential to move between these two stations. This is a valid choice for metro
networks as vehicles nearly always travel in both directions between stations. There are
however exceptions to this as can be seen in Figure 3.3. On this turquoise line (7bis) in
the Paris metro network, vehicles travel only from Botzaris to Place des Fêtes to Pré St-
Gervais to Danube and back to Botzaris, without travelling in the other direction. While
this is a very uncommon feature in metro networks, it is prevalent enough to account

1Based on: https://www.ratp.fr/sites/default/files/plans-lignes/Plans-essentiels/Plan-Metro.1653922257.pdf

https://www.ratp.fr/sites/default/files/plans-lignes/Plans-essentiels/Plan-Metro.1653922257.pdf
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for it in the L-space implementation. In addition to accounting for these exceptions, it
is also sensible to use directed edges when using weighted edges, as is the case for this
study. This is because the exact weight might differ depending on the travel direction.
The travel time in one direction can for example be higher as the vehicle has to travel up
a slope while it travels downwards in the opposite direction. In order to properly repre-
sent these potential differences, directed edges are used in the L-space implementation
of this study.

CONCLUSION

In conclusion, the L-space consists of a set of nodes representing stations and a set
of directed edges representing the rail infrastructure between the stations. The edges
are weighted with the in-vehicle travel time between the two stations for that direc-
tion. L-space can thus be defined as a graph L = (V ,E , w) where V = a set of nodes,
E ⊆ {

(i , j )
∣∣(i , j ) ∈V 2 ∧ i ̸= j

}
with main edge weight w : (i , j ) → ivt(i , j ) and an additional

label l(i , j ).

3.2.3. P-SPACE
Whereas L-space describes the physical, infrastructural state of the network, the infor-
mation about the service (e.g., where the lines are, which stations can be transferred
at) is lost. The P-space, or space-of-service, is the chosen space to represent the actual
service that is run on the infrastructure described by the L-space. In this representation,
similarly to L-space, the stations are represented as nodes. An edge between two stations
represents the fact that those two stations share a line and thus have a direct means of
travel between them (i.e., without a transfer). For P-space, the same types of decisions
have to be made as for L-space in terms of the edge weight and direction. These choices
are briefly described below.

EDGE WEIGHT

Similarly to L-space, P-space has the option to use either weighted or unweighted edges.
Depending on the exact weight chosen, P-space can provide different types of informa-
tion about the level-of-service in the network. These different options are described be-
low.

• Unweighted - The most common representation, similar to L-space, is to have
unweighted edges (Sienkiewicz & Hołyst, 2005)(Von Ferber et al., 2009) (Xu et al.,
2013). In this representation, each movement (with the exception of the first) from
one node to the other simply represents a transfer. As such, this representation can
provide information about the number of transfers necessary for any trip through
the network.

• Vehicle capacity - Another option is adding the vehicle capacity for a certain line
to the edges as a weight. With this representation, along with information about
transfers, information about the potential number of travellers making this trip
would be known.
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• Frequency - A different weighted option is to add the line frequency as a weight
to the edges. This would thus provide information about how often in a certain
time period vehicles travel across this line. For this study, the frequency is arguably
much more interesting than capacity as it provides more insights into the schedule
made by the planner. The frequency itself is however difficult to combine with the
in-vehicle travel time that is used as a weight for L-space.

• Average waiting time - This weight turns the frequency of a line into an average
waiting time instead (Luo et al., 2019). This is done through the following formula:

w : (i , j ) → wt(i , j ) = 60

(vehtot ÷p)
÷2

In this formula vehtot represents the total number of vehicles travelling on the line
in a set time period p. This could for example be the total number of vehicles in a
full day of 24 hours. This number of vehicles is then divided by the period to get
the vehicles per hour. Dividing 60 by the vehicles per hour, gives the maximum
waiting time in minutes. This maximum waiting time is in turn divided by 2 in
order to get the average waiting time.

To illustrate exactly how this works, let us consider a metro line with a frequency
of six vehicles per hour. For this, the assumption is made that these vehicles are
evenly distributed throughout the hour. While this might not always be the case,
this is very common for metros and public transport in general. Six vehicles per
hour is the equivalent of one every ten minutes. As such, the maximum waiting
time for a vehicle is ten minutes (i.e., when a traveller arrives just as the previous
vehicle is leaving). This is however the absolute worst case scenario which is not
entirely realistic. Another assumption made here, is that travellers arrive evenly
distributed, or in other words do not consider the scheduling of the metro. This
is a valid assumption for metros considering their high-frequency scheduling is in
fact one of the core features of a metro system (UITP, 2022). This high-frequency
schedule means there is generally no need for travellers to consider the timetable,
as vehicles will always arrive within a reasonable time. Considering that travellers
thus arrive randomly, they arrive on average halfway through the maximum wait-
ing time. In this case that would give an average waiting time of five minutes.

Using this average waiting time as an edge weight means the P-space provides in-
formation on both the number of transfers needed as well as the average time travellers
have to wait for each leg of their trip. As such, the P-space now provides a lot of infor-
mation on the service and scheduling of the network. Combining this waiting time with
the in-vehicle time from L-space, provides a fairly comprehensive image of the travel
time that travellers actually experience. It is for this reason that the average waiting time
is used as the main P-space weight in this study. In addition, the route/line to which
each edge belongs is also added as a secondary label. In this way, the different routes are
identifiable in P-space. Mathematically, the route of each edge is represented by r(i , j ).
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EDGE DIRECTION

In addition to the edge weight, the decision must also be made whether to use directed
edges or not. Considering that P-space, similar to L-space, uses edge weights that might
differ per travel direction, it is sensible to also use directed edges in P-space. An example
of how the average waiting time might be different per travel direction is the possibility
of extra express trains that only travel in one direction thus lowering the average waiting
time for that direction.

CONCLUSION

In conclusion, the P-space contains the same nodes as L-space, representing each sta-
tion. Edges exist between each station that is connected by the same line. The weight
of these edges represents the average waiting time on that line between the two sta-
tions. P-space can thus be defined as a graph P = (V ,E , w) where V = a set of nodes,
E ⊆ {

(i , j )
∣∣(i , j ) ∈ V 2 ∧ i ̸= j

}
and w : (i , j ) → wt(i , j ). An additional label r(i , j ) exists to

represent the route of each edge.

3.3. PRIMARY METRIC
Based on the L- and P-space representations as described in Section 3.2, a variety of
metrics can be created. These metrics are a descriptor of different network attributes
including both topological and operational properties of the networks. In this section,
the primary metric used for comparison is described in more detail. This metric is the
main factor which is used to evaluate the performance of networks. Networks can thus
be directly compared based on their performance on this indicator. To help explain why
certain networks score better than others, secondary attributes are used for comparison.
These are further described in Sections 3.4 and 3.5 hereafter.

As described in Chapter 1, the aim is to create a primary metric that includes service
information quantitatively. In addition, considering the overall goal of accessible PT, it
is also important to relate this factor to the concept of accessibility. Firstly, this concept
is explained in a little more detail in Section 3.3.1. Afterwards, the metric is further ex-
plained and defined in Section 3.3.2.

3.3.1. ACCESSIBILITY
In order to be able to properly compare networks, a topic on which to compare them
must be chosen. Based on the gaps identified in Section 2.4, accessibility is chosen as the
most suitable dimension for comparison. As accessibility tends to be a term with varied
meanings, it is important to narrow down the exact meaning that is applied in this study.
In transport planning, the concept generally refers to a measure of the ease of reaching
certain destinations. In the specific case of a metro network, this concept can apply to
multiple different facets of the network. Examples are the proximity of inhabitants to
the nearest stations, the coverage of the network compared to the size of the city or how
quickly points in the city can be accessed with the metro network. As this study takes
a topological approach focusing on the network and its service, it is sensible to define
accessibility in that sense. As such, the exact location of stations, their reachability in the
urban environment and similar factors are not considered. As these topics have been
extensively studied already (e.g., Acampa et al., 2019; Igualada, 2015), it is sensible to
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focus on the network itself instead. For this study, accessibility is focused on how quickly
travellers can travel through the network. In this way, transport planners can learn how
their network performs compared to others in terms of service accessibility. Based on
the earlier introduced network representations, a metric for defining this accessibility is
introduced below.

3.3.2. METRIC DEFINITION

A common way to define accessibility in PT networks is with the shortest path travel time
through the network. Considering the topological approach that this study takes, this is a
sensible direction to follow here as well. The travel time in a graph can be defined based
on, for example, the number of nodes crossed in an unweighted graph or the total dis-
tance in a weighted graph. Neither of these methods explicitly incorporate the service of
the metro network however, which is a desired characteristic for the research. Based on
the L- and P-space representations used in this study, it is possible to create a composite
travel time consisting of the in-vehicle travel time, waiting time and number of transfers.
This can be mathematically defined as described in Equation 3.1 below.

t t (i , j ) = i v t L(i , j )+α∗w t P(i , j )+β∗ t f P(i , j ) (3.1)

t t (i , j ) - The total (shortest path) travel time between node i and j (min)
i v t L(i , j ) - The total in-vehicle travel time between node i and j from L-space (min)
w t P(i , j ) - The total waiting time between node i and j from P-space (min)
t f P(i , j ) - The number of transfers needed in the shortest path between node i and j
from P-space (-)
α - A positive integer, constant penalty per minute of waiting time (min/min)
β - A positive integer, constant penalty per transfer (min/transfer)

The shortest path between two arbitrary nodes i and j is thus the path with the
lowest total travel time which is a combination of the factors i v t L(i , j ), w t P (i , j ) and
t f P (i , j ). Considering the values for these three factors have to come from two differ-
ent representations, the calculation of the shortest path is non-trivial. Calculating the
shortest path for each of these factors separately might result in different paths, mean-
ing the values cannot be combined. Instead, the shortest path calculation is done firstly
in L-space based on the in-vehicle time, after which the corresponding waiting time and
number of transfers for that path are retrieved from P-space. Naturally, the shortest path
in L-space based on in-vehicle time might not be the shortest path in terms of total
travel time. As such, the k-shortest paths based on in-vehicle time in L-space are consid-
ered. The corresponding waiting time and transfer information are then retrieved from
P-space for all of these paths. The addition of these three components (multiplied by the
respective penalty factors) then determines which path has the shortest total travel time
and is thus considered the shortest path. The exact implementation of this along with
the values for k and the attribute coefficient values α and β are described in Section 4.4.

Mathematically, the shortest path between two arbitrary nodes i and j can be de-
fined as follows. Firstly, the definition of a path in a graph must be provided. A path in a
directed graph is a sequence of nodes N = {v1, v2, ..., vn} ∈V ×V ×...×V such that there is
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a directed edge (vx , vx+1) from each node vx to its successive node vx+1 where 1 ≤ i < n.
This is thus a path from node v1 to node vn with length |N | = n −1.

Given a directed graph G , a real-valued weight function w : E → R, the shortest path
between two arbitrary nodes i and j is the path SP = (v1, v2, ..., vn) (where v1 = i and vn =
j ) that over all possible n minimizes the sum

∑n−1
x=1 w(vx , vx+1). This general notation can

be adopted for the calculation of the shortest path calculation in L-space as follows:

i v t L(i , j ) = min
n−1∑
x=1

ivt(vx , vx+1) (3.2)

This calculation provides both a shortest path SP in L-space between node i and j
as well as the corresponding in-vehicle time i v t L(i , j ). The waiting time and number of
transfers corresponding to this path SP can then be gained from P-space to determine
the value of the total travel time. This is done through the following formulae.

w t P(i , j ) = wt(v1, v2)+
n−2∑
x=2

{
wt(vx+1, vx+2), if r(vx , vx+1) ̸= r(vx+1, vx+2)

0, if r(vx , vx+1) = r(vx+1, vx+2)
(3.3)

t f P(i , j ) =
n−2∑
x=1

{
1, if r(vx , vx+1) ̸= r(vx+1, vx+2)

0, if r(vx , vx+1) = r(vx+1, vx+2)
(3.4)

The total waiting time for a shortest path SP is the summation of the waiting time of
the initial edge and the waiting time of each edge that is on a new route. In this way, each
time a transfer is made, the waiting time for the new line is added to the total waiting
time. The number of transfers is calculated in a similar manner but instead for each
edge on a new route, the sum is increased by 1 to indicate a transfer has been made.

3.4. NETWORK INDICATORS
The primary indicator is used as a performance indicator to compare networks. In order
to relate this performance to other factors, four network-related indicators are defined.
These indicators are all related to the size of the network. While this means there is some
natural overlap between them, it is interesting to note the differences in their descrip-
tive power based on the results from this study. In the respective subsections below the
indicators are described along with an explanation of why they are included.

3.4.1. NUMBER OF STATIONS

The first network-related indicator included is the number of stations. This indicator
simply describes the total number of stations in the metro network. The number of sta-
tions is a manner to define the size of the network. The main reason for including this
indicator is to see whether a relationship exists between the travel time (as described by
the primary indicator) and the network size. It is hypothesized that a positive correlation
between these factors exists considering the intuitive notion of increasing travel times in
larger networks and related studies (e.g., (Luo et al., 2019)) confirming this pattern. This
indicator is calculated simply as the total number of nodes in L-space (P-space would be
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equally possible as the nodes are the same in both graphs). Mathematically, this indica-
tor can be defined as per Equation 3.5

nsL = |V (L)| (3.5)

3.4.2. NETWORK LENGTH

Another network-related indicator describing network size is the total network length.
While also a descriptor of size, like the number of stations, this indicator also incorpo-
rates the coverage of the network better. This is because an increase in network length
implicitly means covering more area. This also relates it further to the concept of acces-
sibility, as network coverage has a direct relationship with how accessible the network is.
As this indicator is fairly similar to the number of stations, the hypothesized pattern is
the same for this indicator. Naturally, some individual differences between networks can
be expected considering the slight differences with the number of stations. The calcula-
tion of this indicator is the simple addition of the length of all edges in L-space divided by
two. This division by two is required considering each edge exists twice by the directed
nature of the chosen representation. This will alter the results slightly for networks that
do actually have directed edges (such as the Paris example mentioned in Section 3.2).
Considering the infrequency with which this occurs, this is deemed an acceptable sim-
plification. The total network length is defined mathematically as per Equation 3.6.

l L =
∑

(i , j )∈E(L) l(i , j )

2
(3.6)

3.4.3. NUMBER OF LINES

While the number of lines might seem similar to the previous two indicators, it in fact
describes a much more complex process than that. The number of lines is namely much
closer related to the service of a network, as a line is in fact a service run on a piece of
infrastructure. Planners have some freedom of choice in defining what exactly consti-
tutes a line. Comparing this indicator to the travel time can reveal whether having fewer
or more lines increases the travel time. Naturally, the expectation, similar to the other
two network indicators, is that an increased number of lines leads to an increased travel
time. Adding an extra line generally leads to more stations and a longer network length
which in turn lead to an increased travel time. Based on intuition, some caveats can
be made about this expected similarity however. The freedom of a transport planner to
determine what exactly constitutes a line means that the results can in fact be quite dif-
ferent. Figure 3.4 illustrates this difference quite clearly. While both the Amsterdam and
Vienna network have five lines, what exactly constitutes a line in each network is very
different. Whereas Amsterdam has multiple parallel lines, Vienna exclusively has non-
parallel, crossing lines. This in turns leads to a variation between them in terms of both
the number of stations and the network length. To be specific: Amsterdam has a network
length of 39 km and 39 stations, while Vienna has a length of 80km and 98 stations. As
such, it becomes clear that while these networks have the same number of lines, they are
in fact very differently sized with Vienna being more than twice as large in both aspects.
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(a) Amsterdam (b) Vienna

Figure 3.4: Two five-line networks with a different geometry2

The number of lines can be defined mathematically as per Equation 3.7.

nl P =
∣∣∣{ r (i , j )

∣∣ ∀(i , j ) ∈ E(P)
}∣∣∣ (3.7)

3.4.4. DIRECT STATION DISTANCE

The final network indicator is the average direct station distance. More specifically, the
direct (i.e. geodesic) distance between all station pairs is calculated, of which the average
value is then taken for comparison. This is classified as a network indicator considering
it mostly relates to the locations of the stations in the network, which can be seen as a
network choice. On the other hand, the location of stations is also strongly related to the
lay-out and population hotspots of the city. As such, it is also in part a city-related indi-
cator. The hypothesis is that this indicator is positively correlated with the travel time,
considering they are both indicators of the distance between stations, whether measured
in direct distance or travel time. Nevertheless, this indicator also contains information
about the directness of the network, or in other words, whether the metro network covers
distance between stations in a straight line. Considering that this directness differs per
network, as also shown by Derrible and Kennedy (2010a), these differences are also ex-
pected to be discovered in the comparison with travel time. This indicator is calculated
by taking the direct distance between each pair of stations (defined using the function
d). Similarly to the number of stations, this indicator is calculated in L-space but can be
calculated using P-space as well. The average direct station distance is defined mathe-
matically as per Equation 3.8.

d L =
∑

i∈V (L)
∑

j∈V (L) d(i , j )

|V (L)|2 −|V (L)| (3.8)

2(a) retrieved from: https://www.gvb.nl/sites/default/files/metrokaart.pdf, (b) retrieved from: https://www.
introducingvienna.com/metro

https://www.gvb.nl/sites/default/files/metrokaart.pdf
https://www.introducingvienna.com/metro
https://www.introducingvienna.com/metro
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3.5. CITY INDICATORS
In addition to indicators related to the network itself, a second set of indicators is in-
cluded related to the city in which the network resides. The goal of these indicators is
to discover if a relationship exists between the characteristics of the city and the metro
network operating in it. The three indicators are discussed in the corresponding subsec-
tions below.

3.5.1. COUNTRY/REGION
The first city-related indicator is that of the city’s country and region. Considering the
number of related works that focus on the same sets of networks or specific regions, it is
sensible to consider regional differences as a relevant factor for this study. As such, both
the country and region of each network is added as a data point. The country indicator
is fairly self-explanatory, but in terms of region a little extra explanation must be pro-
vided. For this study, the considered regions are: Africa, North-America, South-America,
Asia and Europe. This is similar to all inhabited continents with the exception of Ocea-
nia which is included with Asia considering the extremely low number of networks in
Oceania. The regions are not used as a distinct indicator for comparison but are instead
considered in all comparisons as a secondary feature.

3.5.2. POPULATION
The size of a city is usually defined by either its population or surface area. For this study,
population is chosen as the indicator of a city’s size, since the surface area is already indi-
rectly included in some other indicators such as direct station distance. Population also
captures information not yet directly captured by any other indicator. The hypothesis
is that there is a positive relationship between the population and the travel time in the
network. A larger population generally means a larger city which in turn suggests a larger
network with longer travel times (as hypothesized in Section 3.4). Considering however,
that the metro is not the main mode of public transport for all cities, this relationship is
most likely weaker than some of the others. A city in which the bus is the main PT mode
will most likely have an underdeveloped metro network. As such, it can be expected that
there will also be big differences in networks’ travel times for this comparison.

3.5.3. GDP
Another city-related aspect that is important to include, is its wealth. Commonly, this
wealth is defined using the Gross Domestic Product (GDP), which is also what is used for
this study. The reason to investigate whether a relationship exists with the travel time,
is because of the potential relationship between wealth and infrastructure investments.
Naturally, a metro network requires many high-cost investments in its infrastructure. A
city with a higher level of wealth is most likely able to afford more of these significant
investments. Therefore, a correlation, if existent, should be expected to be positive be-
tween the GDP and travel time. On the other hand, having more money to invest in the
metro network can also help reduce the travel time as the network gets faster and more
efficient by providing more transfer opportunities and faster vehicles. As such, it is diffi-
cult to provide a strong hypothesis for this indicator.
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IMPLEMENTATION

In this chapter, the implementation of the methodology from Chapter 3 is described.
Firstly, the actual networks included in this study are described in Section 4.1. After-
wards in Section 4.2, the data processing for this study is discussed. The actual manner
in which the L- and P-space are implemented is detailed in Section 4.3. The implemen-
tation of the shortest path algorithm used to calculate the primary indicator is detailed
in Section 4.4. Lastly, this chapter is concluded in Section 4.5 with a description of the
additional data that was retrieved for this study.

4.1. NETWORKS INCLUDED
In order to retrieve the proper data for the metro networks in this study, a data format
must be chosen. This data format is described in Section 4.1.1. The actual retrieval of this
data for all networks is described thereafter in Section 4.1.2. Lastly, the set of networks
included in this study is described in Section 4.1.3.

4.1.1. DATA FORMAT
As described in Section 3.1 there are around 190 potential metro networks that can be
included in this analysis. As the chosen implementation of L- and P-space requires
scheduling data in order to calculate the weights, a data format must be chosen to re-
trieve this data. As the goal is to include as many of these 190 networks as possible, it
is desirable to take a data format that is both openly available and commonly used. As
such, it was decided for this study to make use of the General Transit Feed Specification
(GTFS) format (Google, 2022). This format was chosen for a few reasons specifically.

Firstly, this is the most commonly used internationally accepted format for pub-
lic transport data. A lot of PT operators provide data in this format meaning that the
chances of the relevant data being available is larger. In addition to that, it provides a
specific format for operators to use, meaning the data should be quite universal and
require less adaptation when using it. Secondly, because of the commonness of this for-
mat, a lot of corresponding software exists. The existence of processing software for this
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format should ease the analysis process of this study significantly.
Within the GTFS format there are two types of data: static and realtime. As the name

suggests, static refers to static data such as station locations and scheduling data. Real-
time on the other hand shows the location of vehicles traveling through the network in
realtime. As this study aims to translate scheduling data into a metric for comparison,
GTFS static is the most suitable to use. This also increases the potential networks to be
included, as GTFS static is a lot more commonly available than GTFS realtime.

While this format is the most commonly used international format, not all network
operators actually provide this format publicly and for free. The next section provides
more details on how exactly this data is retrieved for all networks.

4.1.2. DATA RETRIEVAL
As mentioned in Section 4.1.1 the data format used for this study is GTFS static. In order
to acquire this data, the following public sources were considered:

• Mobility Database - The primary data source used for this study is the so-called
Mobility Database (MobilityData, 2021). The Mobility Database is a platform by
the non-profit organization MobilityData that hosts a variety of publicly available
PT data sets in varying formats (among which is GTFS static). This platform has
a database which should contain nearly all available GTFS files for cities around
the world. The cities that have a metro network as mentioned in Section 3.1 are
all searched for in this database. For those networks that have GTFS data present,
this data is downloaded and stored locally for future access in the further steps of
the study.

• Manual search - For networks that appeared to not have any GTFS data according
to the Mobility Database, a second search is executed. This search consists of a
manual Google search of the city/network and the term "GTFS" or "data". In this
manner, a few extra databases were acquired as well.

Through these two methods, the GTFS data is retrieved for a total of 69 networks.
These remaining networks are presented on a world map in Figure 4.1. The networks
highlighted in red are those that actually have GTFS data available, whereas the black
ones are networks that do not have GTFS data available. There are a few things to note
about the networks that do and do not have data available. While the Asia-Pacific re-
gion actually has the majority of metro networks in the world, there are only a few that
actually have publicly available GTFS data. Especially the Indian, Chinese and Japanese
regions have hardly any networks available with the exception of Cochin, Hyderabad,
Hong Kong and Kobe. The European and North-American regions on the other hand,
nearly all have GTFS data available, with a few exceptions, primarily in the UK, Italy
and Eastern Europe. In the Latin-American and Middle-Eastern regions the availability
varies but for both regions there are a handful of available networks.
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Figure 4.1: All 69 metro networks in the world with GTFS data available indicated in red

4.1.3. FINAL SET OF NETWORKS
In order to actually be able to use the networks in the analysis, the GTFS data for all of
these networks needs to be verified and processed. This exact process is described fur-
ther in Section 4.2. Following this process reveals a variety of reasons why some networks
are excluded from the final set:

• Data is missing - For quite a significant set of networks, it seemed as if GTFS data
existed for the metro network, while it in fact did not. In these cases, GTFS data
exists for the city for other modes such as bus and tram but not for metro. For some
cases, the metro line does exist in the data but is not programmed as metro, as it is
in actuality a commuter rail or tram. The networks that were excluded because of
missing data are: Bangkok, Belo Horizonte, Hong Kong, Lausanne, Miami, Manila,
Porto Alegre, St. Louis and Sydney.

• Data cannot be processed - For six networks, the GTFS data does exist, but could
not be processed in the pipeline. The exact reason for not being able to process
differs greatly per network but is usually related to the way the GTFS files are writ-
ten. The networks that were excluded for this reason are: Barcelona, São Paulo,
Istanbul, Mexico City, Singapore and Tehran.

• Data is incorrect - For three networks, the GTFS data existed and could be pro-
cessed but was not in fact correct data. Not correct in this case refers to how
the programmed network does not match up with the actual network. This could
mean missing stations due to construction or extra stations that are in fact unused.
These networks are excluded as these mistakes in the programming will greatly af-
fect the metric calculation and consequently yield incorrect results. The networks
that were excluded for this reason are: Bucharest, Hamburg and Munich.

For networks with data that is incorrect or could not be processed, Appendix F can
be referred to for a more specific case-by-case explanation of why they were excluded.
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Figure 4.2: The 51 metro networks included in the analysis indicated in red

Following these exclusions, a total of 51 networks remain to be used in the final anal-
ysis. This final set of networks can be found in Figure 4.2. The final 51 networks are
indicated in red, whereas the 18 removed networks are indicated in black.

Unfortunately, this final filtration step removes a lot of networks from already un-
derrepresented regions, meaning Europe and North-America now heavily dominate the
data set. More detailed information such as the number of lines, city GDP and city pop-
ulation are provided for the included networks in Appendix C.

4.2. DATA PIPELINE
In this section, the pipeline that was created in order to turn GTFS data into network
representations is briefly described. This section only focuses on the actual processing
of the pipeline, not the implementation details for the network representations. Those
are instead extensively described in Section 4.3 hereafter.

The pipeline used to process the data for this study is programmed in Python (Python,
2022). A Jupyter Notebook (Jupyter, 2022) is created containing the entire pipeline to go
from loading-in GTFS data to outputting metrics based on this data. The pipeline uses a
wide variety of Python libraries in order to process the data, calculate metrics and out-
put the data into the desired graph formats. In principle, this pipeline is able to process
any type of (correctly programmed) GTFS metro file into the desired network represen-
tations and corresponding metrics. The three most significant libraries used are gtfspy
(Kujala et al., 2018), NetworkX (Hagberg et al., 2008) and Bokeh (Bokeh Development
Team, 2018). The gtfspy library is mainly used to process the GTFS data and is explained
in more detail below. NetworkX is used to represent the networks as graphs. Bokeh in
turn is used to visualize the NetworkX representations. The full pipeline is visualized in
Figure 4.3.

As mentioned before, gtfspy is the main library used for processing GTFS data and
was developed by researchers at Aalto University (Kujala et al., 2018). This library is able
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Figure 4.3: The implementation pipeline of this study
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to process the GTFS files of a specific network and turn them into a more usable data
format. Specifically, the GTFS files are transformed into the .sqlite format (SQLite, 2022)
which is a format ideal to perform data analyses on (Step 1). This data can then be di-
rectly accessed and used. A variety of pre-made queries exist that can be used to query
the data, while it is also possible to query the database with custom queries. In this way,
the desired data can be withdrawn from the GTFS data sets without extraneous effort.
Turning GTFS files into .sqlite files takes up a varying amount of time depending on the
way in which the GTFS files were programmed. More details on this processing stage
(including potential failures) for each individual network is provided in Appendix F. In
addition, gtfspy provides an initial graph-based L-space output (Step 2). This initial L-
space can be further processed into a curated L-space representation (Step 3) which in
turn can be turned into a corresponding P-space (Step 4). These final two steps of the
process are further explained in detail in Section 4.3.

4.3. IMPLEMENTATION OF L- AND P-SPACE
The two network representations as defined in Section 3.2 need to actually be imple-
mented in order to use them for further analysis. In the following Sections 4.3.1 and 4.3.2,
the L- and P-space implementations are explained in further detail. In these explana-
tions, the steps followed from the GTFS file to the L- and P-space outputs are described
sequentially. Considering the the practical application of these representations, as well
as the cumbersome nature of creating them, the curated L- and P-space representations
have been made publicly available at https://doi.org/10.4121/21316824 (L-space) and
https://doi.org/10.4121/21316950 (P-space). In order to illustrate the implementation
process of these representations, the metro network of Marseille is used as an exam-
ple, which can be found in Figure 4.4. This network has two lines: M1 (blue) and M2
(red). The lines meet at two stations: Saint Charles and Castellane. These stations con-
sequently are the only stations in the network where a transfer to another line is possible.

Figure 4.4: The metro network of Marseille1

1Retrieved from: https://upload.wikimedia.org/wikipedia/commons/4/42/M%C3%A9tro_de_Marseille.svg

https://doi.org/10.4121/21316824
https://doi.org/10.4121/21316950
https://upload.wikimedia.org/wikipedia/commons/4/42/M%C3%A9tro_de_Marseille.svg
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4.3.1. L-SPACE
Translating a GTFS data set to an L-space representation, requires decisions on the exact
translation. While gtfspy has built-in methods which do provide a graph-based output,
this output is not verified and contains some implementation decisions. As such, a set of
further processing steps is implemented to achieve the desired L-space representation.
The first two steps are undertaken by the gtfspy library. All subsequent processing steps
have been specifically implemented in this study’s pipeline. The steps followed in this
process are explained in more detail below.

1. (gtfspy) GTFS data to .sqlite - The initial step to take is the processing of GTFS
data sets to .sqlite representations. This step is entirely undertaken by the gtfspy
library and provides an .sqlite file as output. The duration of this step varies heavily
depending on the exact implementation of the GTFS data set but generally lasts
between five minutes and one hour per network.

2. (gtfspy) .sqlite to initial graph output - In addition to creating an .sqlite file, gtfspy
also provides the ability to output an initial graph representation of the network.
The output is in the form of an L-space graph representation. As mentioned be-
fore, the output is provided as a NetworkX graph by gtfspy. For this representation,
both the nodes and edges are explained below. The explanation is concluded with
the visualization of this graph output for the Marseille network.

NODES

In terms of nodes, the representation is fairly straightforward. Each station is sim-
ply represented by one single node. Unfortunately, the initial representation pro-
vided by gtfspy from the GTFS data is not always this straightforward. This is be-
cause some operators program the stations separately for each direction. As an
example, take the second station on line M2 in Figure 4.4, named Bougainville. In
the GTFS data, this station actually exists twice. This represents the two directions
in which vehicles travel on this line and cross this station. Naturally, in actuality
this is in fact one and the same station having both north- and southbound plat-
forms. Nevertheless, the graph representation provided by gtfspy outputs both
stations as separate stations. Considering the fact that in the desired L-space out-
put, these stations are modeled as one, this is something that needs to be resolved.
How exactly this is solved, is explained in step 3 onwards.

EDGES

The edges are provided as directed edges with three edge labels.

The first of these labels is the average duration (i.e., in- vehicle travel time) which is
calculated based on the provided GTFS scheduling data. This is calculated by gtf-
spy, taking all trips between two nodes and averaging out their travel time, which
is then taken as the duration for that node pair. This duration corresponds to the
main edge weight, in-vehicle time, as defined in Section 3.2.2.

The second label is the number of vehicles (i.e., the frequency) travelling between
the two nodes in the given time period. This time period is a specific day and time
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of day within the schedule of the provided GTFS data and is partly determined by
gtfspy and partly by the analyst. The gtfspy library actually has a built-in method
that picks a representative day from the full schedule in which at least 90% of the
maximum number of trips are run. This can thus be seen as a representative day
with normal operation. The analyst in turn can manually decide on a suitable
time period to consider trips for. Considering that the peak hours are different
per network and the aim of this study is to get a global picture of networks, a time
period stretching the whole daytime was chosen. To be more precise, the time
period of 05:00 until 23:59 was considered. This therefore excludes potential night
schedules, considering not all networks run operations at night.

The third label is the so-called "route_I_counts". This lists the same frequencies
as the number of vehicles, but then split per route (or line). This split is especially
relevant for networks in which multiple lines run in parallel across the same edge.
More details about this label are provided in the explanation of the P-space imple-
mentation in Section 4.3.2.

GRAPH OUTPUT

The initial graph output provided by gtfspy for the Marseille network is shown in
Figure 4.5. Considering the stations in the network are provided with latitude and
longitude coordinates, the graph can be plot directly onto the map of Marseille. In
this visual representation it is difficult to see the fact that most nodes are in fact
two (or more) nodes. The station of Castellane (the bottom crossing of the two
lines) is however clearly two stations that do not overlap while they should in fact
be the same station. The first step to resolving this, is the "automatic merge" step.

Figure 4.5: The initial L-space representation for the Marseille network
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3. Automatic merge - In order to ensure that each station is only present once, an
algorithm is created that automatically merges stations. The algorithm is fairly
straightforward and has two conditions that must both be met in order to merge
stations: similarity in name and proximity. In terms of name, the stations need to
have the exact same name to be considered for merger. Considering the Bougainville
example from Marseille, this is indeed the case. The second condition relates to
the geodesic distance between the two stations. If this distance is below a certain
threshold, set by the analyst, the stations are merged. For this study the threshold
of 200m was used. This algorithm ensures that stations that are clearly the same
station are indeed merged. In addition, it prevents accidentally merging stations
that have the exact same name, but are not in fact the same station. This is a very
rare case but does for example occur in the New York network.

The merger retains the name and coordinates of the first node. Considering the
proximity of these nodes (200m maximum), this is deemed as an acceptable sim-
plification. The output from the algorithm is a list of merged nodes as well as the
new graph representation.

4. Merge recommender - Unfortunately, this automatic merger step is not sufficient
for all networks. Considering that some networks model stations with different
names (e.g., Main Street - Northbound and Main Street - Southbound), these sta-
tions are not merged by the automatic merger algorithm. In order to ensure that
these stations are still merged, the merge recommender algorithm is used. This al-
gorithm works in a similar manner to the automatic merge algorithm, but instead
of automatically merging stations with similar characteristics, it will instead rec-
ommend to merge those and give the analyst freedom to either agree or disagree.
The merge recommender algorithm uses much looser restrictions as the analyst
has the possibility to prevent incorrect merges.

The recommender algorithm consists of two sequential stages with different con-
ditions. The first round does not consider the similarity in name at all and is in-
stead based solely on the proximity. The distance used for this study is 20m. The
idea of this stage is that stations that are that close, simply have to be the same
station, regardless of what name is given to them in the data. The second stage
considers both similarity in name and distance. The similarity in name is mod-
eled using the so-called Levenshtein distance to measure the difference between
two strings. For this study, a similarity of 75% is used. In terms of spatial distance, a
distance of 500m is used. Both of these values are considerably more lenient than
for the automatic algorithm. As such, this captures most cases where merging is
required, but also some which should in fact not be merged. The exact effective-
ness of this algorithm depends strongly on the manner in which the GTFS data
is programmed, but for most networks nearly all relevant merges are captured by
using this algorithm.

An example of the prompt the analyst receives is provided in Figure 4.6. Consider-
ing that all relevant stations are already merged after the automatic merge stage for
Marseille, the example of Madrid is used instead. In this example, the algorithm
prompts the analyst with the question of whether two stations named "Diego de
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Leon" should be merged. The stations themselves are indicated on the map in red.
Considering the distance between the two stations, the reason these stations were
not merged by the automatic merge is most likely because the distance exceeds the
set limit. In order to determine whether these stations should indeed be merged,
the official map of the metro network should be consulted. If these stations are
indeed one and the same, the analyst confirms this in the prompt and the stations
are merged. This process is followed for all stations meeting the conditions of the
two merge recommender steps. The output provided is once again a list of the
merged stations, along with the updated graph representation.

Figure 4.6: An example of a prompt from the merge recommender algorithm

5. Manual merge - While the automatic merge and merge recommender capture
nearly all stations to be merged, there sometimes are cases which require man-
ual intervention. To facilitate this, the manual merge algorithm is created. This
algorithm provides the analyst with a visual interface in which two nodes can be
selected for merging.

The Madrid network is once again used as an example of stations to be merged
that are not captured by the earlier two algorithms. An example of stations like
this, is provided in Figure 4.7. The two stations of Plaza de Espana and Noviciado
appear as two separate stations on two separate metro lines on the map. They
are however connected via two black lines, which in the case of Madrid, indicates
an out-of-network transfer (with a long walking time specifically). As such, even
though these are technically two different stations, the operator treats them as one
transfer station and indicates it as such. Considering the importance of transfers
in the calculation of shortest paths, it is essential to include transfer possibilities
such as these in the implementation as well. As such, the analyst can manually
decide to merge these two stations. The basis on which to merge stations such as
these differs per network. The general rule applied however is that if the official
map, provided by the operator themselves, indicates a transfer between stations
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is possible, the stations are merged. More detailed information per network on
exactly which stations are and are not merged, along with the argumentation, can
be found in Appendix F. Similarly to the other merging algorithms, the manual
merge algorithm also provides an overview of the merged stations along with the
final L-space representation.

Figure 4.7: A separated transfer station in the Madrid network2

6. Final checks - After the three merging steps, the L-space is generally considered
to be verified and completed. In order to further confirm its correctness, three
final steps are taken. Firstly, it is checked whether the network consists of one
connected component. With very few exceptions, metro networks are generally
one connected component. As such, if the final L-space graph is not one con-
nected component, a mistake is generally present. It sometimes occurs that some
stations are out-of-order or ghost stations are present in the network, thus caus-
ing disconnected components. These stations are then deleted. Secondly, the bi-
directionality of the network is confirmed. Generally, each edge should exist in
both directions. The example presented in Figure 3.3 shows that exceptions do ex-
ist, which should be taken into account. This second check confirms whether each
edge exists in both directions and outputs those that do not. The analyst can con-
sequently manually confirm (using the official map) that the presented exceptions
are in fact correct. Lastly, a manual inspection must be performed to confirm each
station is indeed present in the L-space representation. This is done through a
side-by-side comparison of the official map and the L-space representation. After
these final checks, the curated L-space is stored for further usage.

4.3.2. P-SPACE
Following the creation of the L-space representation, the P-space representation can also
be created. Fortunately, the curated L-space representation can be used to facilitate this
process. The process of creating this P-space representation is described sequentially
below.

1. Copy nodes from L-space - In order to create the nodes for the P-space represen-
tation, the nodes of L-space are simply copied. Considering that set of nodes is
already verified, and that the representations use the same stations as nodes, no
further steps are needed.

2Adapted from: https://www.metromadrid.es/sites/default/files/documentos/Viaja%20en%20Metro/
Planos/Planoesquematico.pdf

https://www.metromadrid.es/sites/default/files/documentos/Viaja%20en%20Metro/Planos/Planoesquematico.pdf
https://www.metromadrid.es/sites/default/files/documentos/Viaja%20en%20Metro/Planos/Planoesquematico.pdf
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2. Create edges - The creation of the P-space edges is a much more intricate process
and requires further explanation. As explained in Section 3.2.3, nodes in P-space
have edges between them when they are connected by a line. In order to create
these edges, firstly the list of lines is retrieved from the GTFS data. Considering
the fact that P-space also uses a directed implementation, these lines are split into
two: one for each direction. The lines are then considered one by one and edges
are drawn between all stations on a line. To retrieve the desired weight for an edge
(the average waiting time for that line), a few more steps are necessary. When a
network does not have parallel lines, this is a fairly simple process. As described
in Section 4.3.1, the number of vehicles between each node in L-space is known,
which is required to calculate the average waiting time. In order to determine what
the approximate number of vehicles is between two edges that are not directly
connected in L-space (but are on the same line and hence connected in P-space),
two edges from L-space are required. These are the outgoing edge from the first
node in the direction of the second node, and the incoming edge from the direc-
tion of the first node to the second node. The lowest number of vehicles is then
chosen as that is the maximum number of vehicles possible between these two
nodes. The average waiting time is then calculated as described in Section 3.2.3
and used as the edge weight.

Figure 4.8: Four lines running in parallel in the San Francisco BART system3

For nodes that have multiple lines between them, this calculation is slightly more
complicated. Consider the stations of Saint-Charles and Castellane in Figure 4.4.
To get from one to the other, either the blue or red line can be taken. Another,
more common example, is the one in the San Francisco network as can be seen in
Figure 4.8. Here four lines run in parallel between four stations. Nevertheless, only
one edge (for each direction) will exist between any two stations in P-space. For
this study, it was decided that the number of vehicles for parallel lines are added
together, and thus a lower average waiting time is achieved. This relies on the as-
sumption that travellers will take the first train that arrives regardless of the line it
runs on. For the San Francisco example, this is a sensible assumption considering

3Based on: https://www.bart.gov/sites/default/files/images/basic_page/system-map-everyday-until-9pm.
png

https://www.bart.gov/sites/default/files/images/basic_page/system-map-everyday-until-9pm.png
https://www.bart.gov/sites/default/files/images/basic_page/system-map-everyday-until-9pm.png
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the vehicles arrive at the same platform and taking the first vehicle is the fastest
way to reach the next station. For the Marseille example however, this assumption
is less valid. While Saint-Charles can be reached from Castellane using both the
blue and red line, these lines are not parallel at Castellane, but actually cross at a
right angle. As such, the red and blue line vehicles arrive at different platforms at
this station. It is therefore much more difficult to take the first vehicle that arrives,
considering the vehicles arrive at different platforms. For this case the expected
behavior for a traveller is most likely to wait at the red line considering that it most
likely has a shorter in-vehicle travel time (only having to cross two stations as op-
posed to the blue line’s three). Considering the fact that the parallel case of the San
Francisco network is more common than the orthogonal case for the Marseille
network, the number of vehicles for both lines are added together. In terms of the
visualization, edges are created in the official color of their line as much as possible
(i.e., this data is frequently present in the GTFS data but not always). When multi-
ple lines run between two stations, these edges are instead made black to indicate
this. The created P-space representation for the Marseille network is provided in
Figure 4.9.

Figure 4.9: The P-space representation for the Marseille network

3. Final checks - Finally, the P-space representation should be manually verified in
order to ensure no mistakes are present. This can be done by checking the waiting
time for a random selection of edges and confirming it is within expected ranges.
In addition, the presence of black edges where expected can also be used to con-
firm the correctness. After these final checks, the P-space can be saved for further
calculations.
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4.4. SHORTEST PATH CALCULATION

As described in Section 3.3, the primary indicator of this study relies on shortest path
calculations. Considering that the exact implementation of these calculations can dif-
fer, more details about it are provided in this section. Firstly, the manner in which the
attribute coefficient values are determined is briefly explained in Section 4.4.1. After-
wards, the shortest path implementation itself is explained in Section 4.4.2.

4.4.1. ATTRIBUTE COEFFICIENT VALUES

The shortest path travel time in this study consists of a combination of the in-vehicle
travel time, waiting time and number of transfers. As explained in Section 3.3.2, both
the waiting time and the number of transfers are weighted using a constant, positive in-
teger penalty/coefficient value. This coefficient translates the waiting time and number
of transfers to a representative amount of in-vehicle time. Considering that the exact
value of these coefficients has been studied extensively in other works, this study does
not aim to redefine these values. Instead, based on these other studies, representative
values are chosen. Since the topic has been studied throughout the past two decades,
various studies from throughout this period are taken (Lee and Vuchic, 2005; Guo and
Wilson, 2011; Garcia-Martinez et al., 2018; Jara-Diaz et al., 2022). Lee and Vuchic (2005)
researched different penalties per transfer to discover how it affected the transit demand
and willingness to transfer. They use penalties varying between 0 and 30 minutes per
transfer. The researchers do not draw any conclusions about which of these values is
most realistic, but simply evaluate the effects on demand, logically decreasing with in-
creasing transfer penalties. Guo and Wilson (2011) actually research the topic specifi-
cally for the London Underground, which logically has a large overlap with this study.
Their study concludes that in the London Underground this penalty is around 5min per
transfer. They do however mention a lot of factors which cause this value to be much
lower than most likely is actually experienced by travellers. Garcia-Martinez et al. (2018)
try to form a more generic value for waiting and transfer penalties in multimodal transit
networks. Their conclusion is that the average transfer penalty is between 15.2 and 17.7
for the multimodal network of Madrid. Four years later, this work was followed upon
by the same authors (Jara-Diaz et al., 2022). This latest study further evaluates the ear-
lier results for Madrid and also compares them to other studies. They conclude 13 to
18 minutes to be the most realistic range for the transfer penalty for planning purposes,
while their investigation into related works show 2 to 3 minutes to be most realistic as a
penalty for the waiting time. Considering the relevance of their study compared to this
one and its recent nature, these values are deemed most realistic. For this study, the
lower bounds of both of these values are taken, thus two in-vehicle equivalent minutes
per minute waiting time and thirteen in-vehicle equivalent minutes per transfer. This is
because other studies (among Guo and Wilson (2011) and Lee and Vuchic (2005)) show
significantly lower values and this study does not focus on multimodal networks, but
on metro networks only. As Jara-Diaz et al. (2022) also show, transfers are experienced
better by travellers within the same mode, considering it is not necessary to leave the
system. Since these are the only transfers in this study, it is sensible to take the lower
bound values.
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4.4.2. IMPLEMENTATION

The two penalty values of two and thirteen minutes for waiting time and number of
transfers respectively are consequently used in the implementation of the shortest path
calculation. As explained before in Section 3.3.2, the in-vehicle time is calculated in L-
space while the waiting time and number of transfers are calculated in P-space, which
are then combined into the total travel time. Three sequential steps are followed for this
process, which are described below. These steps are also visualized in Figure 4.10 for two
example nodes in the network of Marseille.

1. Calculate k-shortest paths in L-space - Firstly, the actual travel paths between two
nodes in the network must be determined. For this, the L-space is necessary as
that contains information on the network topology not present in P-space. Since
the information about waiting time and transfers is not present in L-space, these
conditions cannot be used to calculate the shortest path in L-space. The short-
est paths in L-space are purely based on the in-vehicle time. As such, the shortest
path in L-space might not actually be the total shortest path when also accounting
for waiting time and transfers. To mitigate this as much as possible, the k-shortest
paths from L-space are considered as total shortest path candidates. For this study,
a k of 5 was used. This value is a balance of considering as many shortest paths
as possible while also keeping the runtime of the algorithm restricted to reason-
able values. Using this k, for 90% of the networks, all possible paths are actually
considered. Take for instance the example of Marseille in Figure 4.10: between
these two nodes only two possible paths exist. For the few networks where more
than five paths between some nodes exist (e.g., New York, Madrid, Paris), a fair
number of all possible shortest paths is still considered. The runtime of the algo-
rithm for these networks is somewhere between 10 minutes (Paris) and an hour
(New York). Unfortunately, this means not all shortest paths are considered and
the actual shortest total path might not be chosen. This is deemed an acceptable
simplification considering the individual shortest paths are not used heavily in the
further analysis, only an average value.

2. Calculate corresponding P-space information for k paths - For these k-shortest
paths from L-space, the total shortest path travel time must be calculated. This
is done by finding the corresponding waiting time and number of transfers in P-
space for the different paths between these nodes.

3. Pick shortest total path - From the k-shortest paths, the one with the shortest total
travel time is consequently chosen as the shortest path between the two nodes.

The example in Figure 4.10 shows how the inclusion of the waiting time and number
of transfers from P-space changes which path is the shortest. While the orange path
is the shortest based on in-vehicle time in L-space, it requires an extra transfer and a
longer waiting time when also considering P-space. This extra transfer and more waiting
time, along with the penalties assigned for those, means the light blue path actually has
a shorter total travel time than the orange path.
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Figure 4.10: A visualization of the shortest path calculation
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4.5. ADDITIONAL DATA
In addition to the data calculated based on the GTFS data, some other data is also neces-
sary for this study. The different data sets and how they are retrieved is briefly discussed
in this section.

4.5.1. ADDITIONAL NETWORK INFORMATION
While most network information comes directly from the GTFS data, the official net-
work maps are used to confirm this information. These maps are, as much as possible,
retrieved from the websites of the operators of the networks to ensure the intention of
the operator is captured as much as possible. Examples of relevant information in these
maps is the stations that can be used for transfers, the lines of the network or the exis-
tence of express lines.

4.5.2. POPULATION
The population information for each city is retrieved from a few different sources. Note
should be made that the exact demarcation of a city or urban area is not always easy
to define. As such, the intention is to use only a few databases with similar data to
ensure the data is properly comparable between networks. In addition, official gov-
ernment resources were used as much as possible. Considering that the vast major-
ity of networks in this data set are in either Europe or North-America, databases for
those regions are most important. For Europe, the official EU database Eurostat is used
(https://ec.europa.eu/eurostat). The data from 2019 is used as that is most complete for
all cities in this study. Consequently, for the other databases 2019 is also taken as the rep-
resentative year (where possible). The population data for the United States was taken
from the official 2020 Census via www.censusreporter.org. For the remaining networks, a
variety of different sources were used. The exact sources used can be found in Appendix
G.

4.5.3. GDP
The GDP data for each city was more difficult to find. Considering that GDP is primar-
ily calculated for countries, not individual cities, this data is simply less available. The
intention for this data is similar: to use a low amount of sources, preferably governmen-
tal. Once more, a caveat should be made about the exact demarcation of cities. For
especially the North-American cities, the GDP is usually of a much larger metropolitan
region than just the individual city. This naturally might inflate the GDP values for those
cities compared to cities from other regions. The exact sources used can also be found
in Appendix G.

https://ec.europa.eu/eurostat
www.censusreporter.org




5
RESULTS

In this chapter the results from the study are described in detail. Firstly, the primary
indicator based on the total travel time is discussed in Section 5.1. Afterwards, the cor-
relations between the travel time and network- and city-related factors are discussed in
Section 5.2. Based on these correlations both a simple as well as multiple regression
model is created in Sections 5.3 and 5.4 respectively. Further comparisons between the
travel time and other factors are briefly described in Section 5.5. In Section 5.6, this chap-
ter is concluded with a benchmark analysis comparing the total travel time methodology
applied in this study to other state-of-the art methods.

5.1. PRIMARY INDICATOR
In this section, the results based on the primary indicator used for comparison (as de-
scribed in detail in Section 3.3) are provided. Firstly, the representative value taken as
an indicator of the total travel time is described in Section 5.1.1. Afterwards, in Section
5.1.2, the exceptions discovered for some networks are shortly described.

5.1.1. REPRESENTATIVE VALUE
The primary indicator in this study is based on the total shortest path travel time be-
tween each node pair in the network. Whereas most studies take either simple hops or
only in-vehicle time, this study uses the total travel time which is a combination of the
in-vehicle time, waiting time and transfers, providing a more realistic image of the actual
travel time experienced by travellers. In order to be able to compare networks based on
this metric to other factors (e.g. total network length), all shortest path travel times in
a network must be distilled into one value. In order to gain a representative value for
these travel times in networks, the distribution per network must be analyzed first. This
distribution of the shortest total travel time between all node pairs is captured in a his-
togram for each individual network. These histograms for all 51 networks can be found
in Appendix E (N.B.: In order to display figures that can be directly compared, the travel
time is normalized in terms of the maximum travel time of that network in Appendix E).

49



5

50 5. RESULTS

Looking at the figures in Appendix E, it becomes immediately obvious that not all
networks follow the same distribution of travel time in the figure. The four examples
in Figure 5.1 clearly show this variation (N.B.: The distributions in Figure 5.1 are pre-
sented unnormalized, with the total travel time on the x-axis). Whereas London could
be classified as normally distributed, Cleveland is exponential, while Lisbon is bimodal
and Vancouver is quite difficult to define in terms of its distribution.

Figure 5.1: Four networks with different travel time distributions

To represent these distributions with one value, there are various options such as
the mean, median, mode, standard distribution and variance. For the intended com-
parisons in this study, the mean or median would make most sense as these indicators
explicitly retain the information about the absolute values of travel time the best. These
two options are also less sensitive to outliers than the mode, which also retains infor-
mation about the absolute values. In Figure 5.1, the mean and median are indicated
with vertical dashed lines in yellow and orange respectively. As described before, these
figures follow significantly different distributions, most being not normally distributed.
Therefore, the mean is less suitable as a representative point as it might be skewed in dis-
tributions other than normal distributions. This indeed becomes clear from Figure 5.1
where the mean and median overlap for London, but do not for the other three networks.
As such, the median is chosen as the single data point to represent these distributions.

The median travel time for each network can be found in Figure 5.2. Each network in
the data set is represented using a colored dot to indicate the value of the median travel
time. The lighter (i.e. yellow, orange) dots represent shorter travel times whereas the
darker (i.e. red, purple) dots represent longer travel times. The detailed legend can be
found in Figure 5.3. Considering the high density of networks in Europe and the eastern
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part of North-America, each region is also displayed separately in Appendix B, which
also includes the exact travel time values for each network.

Figure 5.2: The median travel time for all 51 metro networks

Figure 5.3: The legend for Figure 5.2 detailing the color for each range of values of the median travel time

5.1.2. EXCEPTIONS

Unfortunately, the different ways in which operators implement their GTFS data in com-
bination with the implementation decisions of this study means that the results of the
shortest path algorithm sometimes contain mistakes. There is a set of six networks with
these mistakes which can be found in Figure 5.4. The difference in coloring in these
figures is caused by the different number of bins that have to fit in figures of the same
size(i.e., Paris has about 40 bins while New York has 160).

As becomes clear from Figure 5.4, these networks have some very unrealistic travel
times for some OD-pairs up to 800 minutes in the case of New York. While New York
is a large network, a travel time of over ten hours is clearly unrealistic. The reasons for
these exceptionally long travel times are based on exceptionally long waiting times, as
becomes clear from Figure 5.5. These anomalies in waiting time stem from the P-space
implementation for this study. Specifically, a high waiting time is directly related to a line
with a low frequency. The details of exactly which lines this entails for each individual
network and why these mistakes appear in the implementation, is described in more
detail in Appendix F. Fortunately, the median is not very susceptible to outliers such as
these and thus these exceptions provide no hindrance for the further analyses.
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Figure 5.4: Six networks that have anomalies in their total travel time data

Figure 5.5: Six networks that have anomalies in their waiting time data
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5.2. CORRELATIONS BETWEEN THE INDICATORS
In this section, the correlations between the indicators used in this study will be ex-
plored. Considering the fact that the relationship between the different indicators is
unknown, both the Spearman and Pearson correlation will be explored in Sections 5.2.1
and 5.2.2 respectively. The individual values of the different indicators for each network
can be found in Appendices C and D.

5.2.1. SPEARMAN
The first correlation to explore is the Spearman correlation. The reasoning for first ex-
ploring Spearman is twofold. Firstly, there is no reason to assume the different indicators
used in this study are distributed normally. As the Pearson correlation assumes this to be
the case, while Spearman does not, Spearman is preferable. Secondly, whereas Pearson
only tests linear correlation, Spearman is a bit more lenient and tests for a monotonic
correlation. Considering the fact that the discovered correlations might not necessarily
be linear, this too favors the usage of the Spearman correlation. The Spearman correla-
tion between the different indicators can be found in Figure 5.6.

The first thing to note from Figure 5.6 is that all factors are positively correlated. This
is in line with expectation, considering all factors relate to the increase of either the net-
work or the city, which has been hypothesized to correlate with an increasing average
travel time. Secondly, most correlations are fairly strong with only a few having a Spear-
man correlation of 0.50 or lower.

The total travel time is especially strongly correlated with network length, having the
second-highest correlation in the whole heatmap. The highest correlation is actually
between the network length and the number of stations with a Spearman correlation
of 0.91. This is fairly sensible considering how both of these indicators are descriptors
of the network size and are very directly related. An increase in stations generally leads
to an increase in the network length and viceversa. The number of lines actually has a
surprisingly high correlation with both the number of stations and network length, being
0.86 for both. This correlation is notably weaker with the travel time, being only 0.75.
Interestingly, the average direct station distance has the strongest correlation with travel
time, and a weaker one with the other six factors. This is fairly sensible considering how
both the travel time and average direct station distance describe the average shortest
path, in terms of duration and direct distance respectively. However, a key difference
is that the average direct station distance does not account for the infrastructure of the
network but instead considers the direct (i.e. geodesic) distance between stations.

Overall, it can be concluded that all four network factors have a strong positive cor-
relation with the travel time, all having a Spearman correlation of 0.75 or higher. The
network length clearly has the strongest correlation and can thus best considered as the
best single explanatory parameter for the total travel time.

The travel time also has a positive correlation with both the population and GDP.
Both of these correlations are however notably weaker than the network correlations,
with 0.65 for population and 0.57 for GDP. This is fairly sensible, considering that these
two city aspects and the travel time in the metro network are not directly related. In fact,
the correlations discovered here are both most likely spurious and instead are correla-
tions between the city factors and network size. Interestingly however, the correlation
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Figure 5.6: A heatmap of the Spearman correlations between the seven indicators

between travel time and population is actually the strongest correlation for population,
being even higher than that between population and GDP. Out of all correlations with
GDP, GDP and travel time is actually the second highest. The correlation with travel time
being comparatively high with both city indicators suggests a connection between the
travel time and the city indicators independent of the network size. More in-depth re-
search will need to be performed to draw conclusions about this relationship.

5.2.2. PEARSON

Considering the strong positive Spearman correlations found in Section 5.2.1, the ex-
pectation is that the Pearson correlations will show a similar pattern. The Pearson cor-
relations between the different indicators can be found in Figure 5.7. From this figure it
becomes clear that the same strong positive correlations indeed exist in terms of Pear-
son correlation as well. Logically, some differences in the exact height of the correlation
do arise, especially for the GDP compared to the other factors. For the most important
correlations, those between the travel time and the other factors, there are no notable
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differences. These high Pearson correlations between the travel time and other indica-
tors, as well as some low correlations among the other indicators themselves, mean there
is evidence to use a regression model to estimate the travel time.

Figure 5.7: A heatmap of the Pearson correlations between the seven indicators

5.3. SIMPLE LINEAR REGRESSION
Considering the high correlation between the travel time and the network/city factors,
it is sensible to try and estimate the travel time using these factors. In this section, the
possibility of linear regression using a single independent parameter will be explored.

The Pearson correlation heatmap presented in Figure 5.7 naturally provides the best
indication of what secondary parameter to use as an indicator for the travel time. The
network length has the highest Pearson correlation of 0.81 and can thus best be used as
a single estimator of the travel time. An Ordinary Least Squares (OLS) regression model
is applied to find the best fit between the dependent and independent variable. To com-
pare this model to others, the R-squared, adjusted R-squared and Bayesian Information
Criterion (BIC) are used. Both the adjusted R-squared and BIC account for an increase
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in the number of parameters and thus help avoid overfitting and ensuring the model is
parsimonious. The performance of this simple regression model on three criteria can be
found in Table 5.1, while the coefficient values and information about their significance
can be found in Table 5.2. The best fit line between the travel time and network length
can be found in Figure 5.8.

Criterion Value
R-squared 0.653

Adj. R-squared 0.646
BIC 375.2

Table 5.1: The performance of the simple regression model

Parameter Coefficient P-value
Intercept 26.990 0.000

Length 0.132 0.000

Table 5.2: The parameters of the simple regression model including coefficients and p-values

As expected from the high correlation, this linear regression model fits reasonably
well. The R-squared of this regression is 0.653 and both the intercept and the coefficient
for network length are significant at a 5% confidence interval. From Figure 5.8 it becomes
clear however that this model is far from perfect. While the line fits fairly well, there is
still a fair number of outliers. To be precise, there are ten networks that are either over- or
underestimated by more than 10 minutes in this model. The five networks that are over-
estimated by this model are Rennes (-20.1), London (-18.5), Genoa (-14.8), Turin (-13.8)
and Helsinki (-10.2). On the other hand, Oslo (+19.5), Atlanta (+19.25), Boston (+15.3),
Chicago (+14.0) and San Francisco (+11.2) are the networks that are most strongly un-
derestimated. These networks are indicated in Figure 5.8 using the abbreviation labels
from Appendix C. Their outlier nature is discussed briefly below. In addition, the regional
differences that can be identified in Figure 5.8 are also shortly described.

5.3.1. OUTLIERS
The first outliers to discuss are the four networks towards the lower bottom of Figure
5.8: Rennes, Genoa, Turin and Helsinki. All of these networks have a fairly short net-
work length but an especially low average travel time. In order to explain these relatively
low travel times, the total travel time is split up into the three components, which can
be found in Figure 5.9. From Figure 5.9a, it becomes clear that Rennes and Genoa have
the lowest in-vehicle travel time out of all networks while Turin and Helsinki also have a
relatively low in-vehicle travel time. A similar note can be made about the waiting time
from Figure 5.9b. Lastly, the average number of transfers made can be noted in Figure
5.9c. From this figure, it becomes clear that Rennes, Genoa and Turin have no transfers
at all (since they have only one line) while Helsinki has a very low average number of
transfers. Helsinki has such a low average number of transfers since it has only two lines
that run in parallel over the same infrastructure for nearly 75% of their length. Combin-
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Figure 5.8: The best fit line between the total travel time and the network length

ing the data points from these three figures, it becomes clear that none of these networks
have notably lower performance on one of the components than the others. Instead, the
networks perform very well on all of these components, which combined leads to them
having a much lower travel time than estimated by the linear regression model.

The fifth network that is significantly overestimated by the model is London. This
is interesting to note considering London has a much larger network length than the
other four overestimated networks. Looking firstly at Figure 5.9a, it becomes clear that
London does not have a notably low in-vehicle travel time. On the contrary: it has the
second highest in-vehicle travel time out of all networks. The same can be noted for
the number of transfers in Figure 5.9c, where London has the fourth highest number of
transfers. Figure 5.9b shows a completely different image however, with London hav-
ing an exceptionally low waiting time, especially considering its size. Since the waiting
time is weighted twice as heavily as the in-vehicle time in this model, this relatively low
waiting time compensates for the higher in-vehicle time and number of transfers.

The outlier nature of the five most underestimated networks is best explained by the
waiting time in Figure 5.9b, since these networks are among the networks with the high-
est average waiting time. Considering the relatively higher weight of the waiting time,
it is sensible that this significantly influences the total travel time of these networks. In
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(a) In-vehicle time

(b) Waiting time

(c) Transfers

Figure 5.9: The travel time versus the network length, split into three components
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terms of in-vehicle travel time and number of transfers, Oslo, Boston and Atlanta do not
perform notably well or poorly. San Francisco and Chicago on the other hand have a very
high in-vehicle travel time, while Chicago also has a relatively higher number of trans-
fers. San Francisco interestingly actually has a comparatively low number of transfers,
especially for its network size. However, this low number of transfers is not sufficient to
compensate its high in-vehicle and waiting time.

5.3.2. REGIONS

Besides the specific outliers mentioned in the previous section, a few notes can also be
made about the more structural regional differences that can be identified in Figure 5.8.
Firstly, it is interesting to note how ten out of the twelve North-American networks are
underestimated by the model. It can thus be concluded that North-American networks
have a relatively high total travel time compared to other networks. The opposite can
be said for European networks, considering nearly all of the networks overestimated by
the model are in fact European. The other three regions have a relatively low number of
networks and no notable outliers. The travel time components from Figure 5.9 can help
provide more insight into where exactly this difference arises. Once more, the in-vehicle
time (Figure 5.9a) and number of transfers (Figure 5.9c) provide no real insight, with no
clear distinction between the performance of networks by region. The waiting time in
Figure 5.9b however provides more insight. Eight out of the twelve North-American net-
works are among the networks with the highest waiting time. As such, it becomes clear
that the waiting time is the main contributor to North-American networks’ relatively
long total travel time. Considering this waiting time is directly derived from the net-
works’ frequency, North-American networks have a relatively low frequency compared
to other networks. This apparent regional differentiation can also be accounted for in
the model using dummies for each region. Experimentation shows that only Europe and
North-America provide significant parameters (at a 5% level), when considered sepa-
rately. The results for different models including North-America and Europe as regions
separately as well as combined can be found in Table 5.3. From this table, it becomes
clear that as expected, including either region improves the model slightly. The effects
of North-America are slightly stronger than those of Europe, which is in line with the
intuitive findings from Figure 5.8. The BIC of the model including North-America is 3.3
points higher which, while positive, is not especially strong.

Region R2 Adj. R2 BIC Coeff. P-value
None 0.653 0.646 375.2 - -

North-America 0.699 0.686 371.9 7.70 0.009
Europe 0.695 0.682 372.6 -6.38 0.014

N-Amer. + Eur. 0.704 0.685 374.9 5.04, -3.23 0.223, 0.368

Table 5.3: A comparison of regression models including regional dummies
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5.4. MULTIPLE LINEAR REGRESSION
In order to improve the predictive power of the model, a model with multiple parame-
ters is considered in this section. While including more parameters generally improves
the predictive power of models (since more of the variance can be explained), a caveat
should be made about this. Firstly, including more parameters can lead to overfitting and
as such should be done with care. As mentioned before, the adjusted R-squared and BIC
account for this. Secondly, including more parameters is only sensible if they are not too
highly correlated amongst themselves. High multicollinearity means the independent
variables are in fact partly dependent on each other and will make the model volatile. As
can be seen in Figure 5.7, in addition to high correlations between the travel time and the
other factors, the other factors are also highly correlated amongst themselves. Naturally,
this is sensible especially for the network factors considering all of these are an indicator
of the network size and thus directly linked. This high multicollinearity thus makes it
difficult to combine these factors with multiple linear regression.

5.4.1. FULL MODEL

The initial multiple linear regression model is one including all six explanatory factors
from Figure 5.7 along with the categorical factor "Region". The results of this regression
model can be found in Tables 5.4 and 5.5.

Criterion Value
R-squared 0.801

Adj. R-squared 0.751
BIC 382.3

Table 5.4: The performance of the full multiple regression model

Parameter Coefficient P-value
Intercept -8.282 0.658
Stations 0.078 0.208
Length 0.0152 0.755
Lines 0.419 0.557

Distance 1.631 0.001
GDP -0.019 0.141

Population 1.236 0.159
Asia 20.486 0.219

Europe 23.399 0.204
North-America 29.228 0.105
South-America 13.222 0.283

Table 5.5: The parameters of the full multiple regression model including coefficients and p-values

Comparing the results from the full model in Table 5.4 to those of the simple model in
Table 5.1, the full model as expected has a higher regular as well as adjusted R-squared.
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Comparing the BIC however, shows that even though the full model has higher explana-
tory power, it uses many more parameters, leading to a higher (i.e., worse) score. Addi-
tionally, with the exception of the average direct station distance, none of the parameters
in Table 5.5 are significant to the 5% confidence interval. This is sensible considering the
large multicollinearity in the data set. From this, it becomes clear that including all pa-
rameters does not provide an improved model.

5.4.2. IMPROVED MODEL
Instead, several other models are explored with far fewer parameters. It is most sensible
to consider parameters that have a high correlation with travel time but a low one with
each other. Figure 5.7 shows that the number of stations and average direct station dis-
tance are two good candidates. These factors have a correlation with the travel time of
0.71 and 0.69 respectively while they have a notably low correlation of 0.28 amongst each
other. The results of a model including these two parameters can be found in Tables 5.6
and 5.7.

Criterion Value
R-squared 0.768

Adj. R-squared 0.758
BIC 358.6

Table 5.6: The performance of the two-factor regression model

Parameter Coefficient P-value
Intercept 15.527 0.000
Stations 0.109 0.000
Distance 1.819 0.000

Table 5.7: The parameters of the two-factor regression model including coefficients and p-values

From Table 5.6 it becomes clear that while the two-factor model has a lower R-squared
than the full model, it has a better adjusted R-squared and much better BIC. In addi-
tion, all three parameters are significant at the 5%. As a network with no stations and
no length does not exist, the coefficient value of the intercept cannot be properly inter-
preted. What can be concluded however, is that metro networks have a base total travel
time of 15.5 minutes increasing by 0.1min per extra station and 1.8min per extra kilome-
ter of average direct distance between stations. This means that as networks get bigger
by adding more stations and getting more spread out, the travel time increases accord-
ingly. This finding is in line with that of other studies such as Luo et al. (2019).

This improved model can also be used to make estimations for the total travel time
of the networks in the data set. By comparing these estimated travel times to the actual
travel times, an image can be gained about the accuracy of the model as well as which
networks perform well or poorly based on this two-factor model. The difference between
the model estimation and actual travel time can be found in Figure 5.10.
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Figure 5.10: The difference between the estimated travel time and actual travel time
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From Figure 5.10 it becomes clear that the estimation is fairly accurate, with over 50%
of the networks having an estimated travel time that is only five minutes higher or lower
than the actual travel time. There are four networks that have a much higher actual travel
time than their estimated travel time, being Chicago, Atlanta, Boston and Oslo. These are
the same four networks as identified in Section 5.3. As such, in addition to having a long
travel time relative to their network length, these networks also have a long travel time
relative to their number of stations and average direct station distance.

(a) Travel time versus average direct station distance (b) Network diameter versus interstation distance

Figure 5.11: Additional visualizations related to the average direct station distance

Interesting to note is the San Francisco network, which was greatly underestimated
by the length-based model (+11.2) but is actually strongly overestimated by this model
(-8.3). Figure 5.11a makes it clear that San Francisco’s exceptionally long average direct
station distance is the cause of this overestimation. San Francisco in fact has an aver-
age direct station distance that is 13km longer than any other network’s. This average
direct station distance metric can be seen as a combination of the network diameter
and the average interstation distance. These two factors are compared in Figure 5.11b.
From this figure it becomes immediately obvious that San Francisco has both a much
higher network diameter as well as interstation distance than all other networks. This
begs the question whether the San Francisco networks should even be classified as a
metro network. While the network diameter and interstation distance were not specif-
ically defined as characteristics for metro networks in Section 3.1.1, they are related to
other concepts mentioned there. Considering these factors and San Francisco’s relatively
low amount of transfers, it can be better be described as a commuter rail network.

There are also five networks that have a much lower actual travel time than esti-
mated, being London, Paris, Bilbao, Helsinki and Rennes. Helsinki, Rennes and London
were also overestimated outliers in the length-based model, and as such can simply be
considered as networks that have a low travel time for their network size. Bilbao was also
an overestimated outlier in the length-based model (-9.98), albeit slightly less so than
Helsinki and Rennes. Genoa and Turin, two networks that were greatly overestimated
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by the length-based model (-14.8 and -13.8 respectively) are still overestimated here but
much less so (-6.7 and -9.5). It thus seems that while this model is better at estimating
the travel time for these two networks, they are still outliers having a relatively low travel
time for their network size. Paris was also overestimated by the length-based model (-
6.3) but is overestimated considerably more in this model (-11). Figure 5.11a does not
provide a clear explanation for this behavior as Paris does not have an especially low
average direct station distance. Figure 5.12 on the other hand shows how Paris has a
relatively low travel time for its number of stations. It can thus be concluded that Paris
performs especially well for its number of stations. Figure 5.9 provides a reasonable ex-
planation for this. Paris has exceptionally low in-vehicle travel time and waiting time,
also in comparison to its network length. In turn, the number of transfers is actually the
second-highest out of all networks. It thus appears that this high number of transfers is
offset by the low in-vehicle and waiting times.

Figure 5.12: The travel time compared to the number of stations

5.4.3. CONCLUSION
In conclusion, it can be noted that the model based on the number of stations and aver-
age direct station distance can estimate the total travel time of networks to an acceptable
degree. In this model, there are still networks that are significantly over- or underesti-
mated in terms of their travel time. These networks can thus be said to perform well or
poorly respectively based on their network size metrics. As becomes clear from the more
in-depth look at the travel time components in Figure 5.9, this outlier nature can often be
attributed to a significantly higher or lower average waiting time. This confirms the im-
portance of including the total travel time and its components in comparisons between
networks, as they capture effects not fully explained by network-related indicators.
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5.5. FURTHER COMPARISONS
In this section, the comparisons with the three factors that were not extensively explored
in Sections 5.3 and 5.4 — number of lines, population and GDP — will be shortly de-
scribed.

5.5.1. NUMBER OF LINES

The remaining unexplored network factor of comparison is the total number of lines in
the network. As hypothesized in Section 3.4.3, the number of lines is indeed positively
correlated with the travel time, with a Pearson correlation of 0.69 as can be seen in Figure
5.7. The direct comparison between the travel time and number of lines can be found in
Figure 5.13.

Figure 5.13: A comparison between the travel time and the number of lines

Taking a detailed look at this figure reveals that the intuitive notion about Amsterdam
and Vienna, mentioned in Section 3.4.3, indeed holds true. Amsterdam and Vienna,
while on the same vertical axis (both having five lines), have a difference in travel time
of nearly twelve minutes. This pattern can be seen for other networks too, even within
the same group of five line networks. Rotterdam and Oslo for example, have even higher
travel times than Vienna and Amsterdam.

Considering the discrete nature of the number of lines, further investigation can be
performed into patterns between networks with the same number of lines. As described
in Section 5.1.1, networks appear to have very different travel time distributions. Consid-
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ering the large effect of transfers on the waiting time (i.e., adding a travel time of thirteen
minutes extra per transfer), a relationship can be expected between the number of lines
and these distributions. As an example, the six networks with one line will be considered.
The travel time distributions for this group of networks can be found in Figure 5.14. What
can be immediately noted from Figure 5.14 is that even though these networks have dif-
ferent travel times (as already became clear from Figure 5.13), the distribution of their
travel time is very similar. All six networks with one line have a travel time that is expo-
nentially distributed. Naturally, this is very sensible considering none of these networks
have transfers and consequently never have a 13min penalty for a transfer. As such, all
paths through the graph are simply the waiting time for the one line plus the in-vehicle
travel time, hence leading to this exponential pattern. Similar patterns can be found for
networks with more lines as well, but this will not be discussed in further detail here.

Figure 5.14: Travel time distributions of the six networks with one line

In conclusion, while the number of lines is also fairly strongly correlated with the
travel time, its ability to meaningfully explain differences in travel time is much weaker.
Significant differences in travel time can be identified between networks with the same
number of lines. As hypothesized, a possible reason for these significant differences is
the network planner’s freedom to define what constitutes a line, as visualized by Figure
3.4. Interestingly however, the distribution of the travel time does show significant simi-
larities for networks with the same number of lines, even if the values are different.

5.5.2. POPULATION
The first of the city-related factors for comparison is the city population. The direct com-
parison between the travel time and population can be found in Figure 5.15a.

The Pearson correlation between the population and travel time is quite low with
a value of 0.51. This lower correlation also becomes clear from the patterns in Figure
5.15a having a lot of vertical disparity, a large fan-out towards the top-right and a lot of
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(a) Travel time versus population (b) Network length versus population

Figure 5.15: Direct comparisons between the city population and travel time/network length

outliers. Even though a correlation of 0.51 can still be considered moderately strong,
the figure clearly shows that the correlation is quite unreliable. While there is a positive
trend between the population and the travel time as hypothesized, the behavior is far
too erratic to assign any true conclusions to this. Considering the strong correlation
between travel time and network size as described extensively in Section 5.2, this positive
correlation between the travel time and the population is most likely spurious and can
be primarily attributed to larger cities having larger networks which in turn have longer
travel times. Figure 5.7 confirms this positive correlation between the population and
network size. with there being a Pearson correlation of 0.54 between the population and
network length. This relationship is also visualized in Figure 5.15b.

This comparatively weak correlation and the relationship with the network length
can be best be explained by looking at a few notable outliers. Firstly, it is interesting to
note the vertical disparity for networks up to one million inhabitants. The travel time for
networks in this category varies from less than ten minutes up to nearly sixty minutes.
As an example, consider Oslo and Genoa, which have a very similar number of inhabi-
tants (∼620,000 and ∼570,000 respectively) but have a travel time of 57 and 13 minutes
respectively. This significant difference in travel time is logically explained by the size of
their network, Oslo having a network length of 80 kilometers whereas Genoa has a net-
work length of only 13 kilometers. This example indicates how the population is not a
very good determinant of the travel time in a network.

In addition to this vertical disparity, there is also a large number of outliers. These
outliers are different from the ones identified in Sections 5.3 and 5.4 and include for
example New York, Los Angeles, Buenos Aires and Cairo. Logically, their horizontal out-
lier nature is caused by their large population compared to most other cities in the data
set. Los Angeles, Buenos Aires and Cairo however clearly do not follow the pattern of
increasing travel time with an increasing population. Compared to their large size, the
travel time for these cities is relatively low. Looking again at Figure 5.15b, this is because
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these networks are comparatively small for the size of the city, which in turn leads to
lower travel times. New York on the other hand has a relatively high travel time for its
population, also primarily caused by its high network length.

In conclusion, while the travel time and population are positively correlated, they
have a much weaker relation than the previously explored factors. This is in line with
expectation considering that the size of the population, while in part a determinant for
the size of the network as proven by Figure 5.15b, is not directly related to the travel time
of a metro network. The population does not seem to provide any additional meaningful
information that network length does not already, and is thus a relatively poor indicator
of the travel time.

5.5.3. GDP
The second of the city-related factors for comparison is the GDP of the city in which the
metro network operates. The direct comparison between the travel time and the GDP
can be found in Figure 5.16a.

(a) Travel time versus GDP (b) GDP versus population

Figure 5.16: Direct comparisons between the city GDP and travel time/city population

As becomes clear from Figure 5.7, the correlation between the travel time and GDP
is one of the weakest out of the six indicators with a Pearson correlation of 0.61. It is
however positive like the others, and still reasonably strong. The relatively weaker re-
lationship is mostly caused by the significant vertical disparity of the networks, as was
similarly the case for population. An example of this vertical disparity are the networks
of Oslo and Turin. While these networks have nearly the same GDP (68 and 75 billion
euros respectively), their travel time differs by more than forty minutes. While there is
a definite inclination to networks with higher GDP having higher travel times, there are
many networks that have very different travel times while they have the same GDP.

In terms of outliers, New York and Los Angeles appear here too as was similarly the
case for population. Considering the relatively high correlation between the GDP and
population (Pearson correlation of 0.65) it is sensible these networks show a similar out-
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lier nature here. Madrid has a fairly high travel time for its GDP compared to networks
with similar GDP. This is caused by Madrid’s large network size, which was already shown
to have a high correlation with the population in Section 5.5.3. Figure 5.16b illustrates
this correlation between the GDP and population.

In terms of regional patterns, the most interesting regions in the comparison be-
tween travel time and GDP are actually Africa, Asia and South-America. Interestingly,
networks from these regions are all grouped together, with the exception of Kochi which
has a lower travel time. The networks from these regions have a fairly high travel time for
their GDP. Figure 5.16b actually provides some more insight into possible reasons behind
this pattern. As can be noted from that figure, the single African network (Cairo), the two
South-American networks (Buenos Aires and Santiago) and one of the Asian networks
(Hyderabad) all have a very high population compared to their GDP. This means these
cities have a relatively low GDP per capita, which is sensible considering these cities are
part of developing regions.

In conclusion, out of the six relationships investigated, the GDP is, as expected, one
of the weakest. Even though there is a positive correlation with travel time, networks with
similar GDP can have very different travel times. Considering the correlation between
the GDP and population, it is sensible that the patterns here are similar to those found
for the population. However, there is one major difference between the population and
GDP in the grouping of Asian, African and South-American networks, which is caused
by the comparatively low GDP per capita of these networks.

5.6. TRAVEL TIME CALCULATION BENCHMARK ANALYSIS
To complete the results section, a benchmark analysis is performed to evaluate whether
the total travel time method of this study provides significantly different results com-
pared to other commonly used methods. In order to evaluate this, the average shortest
path total travel time as calculated in this study is compared to the shortest path based
purely on in-vehicle travel time as well as the shortest path based on hops. For brevity,
these three methods will be referred to as the "total", "in-vehicle" and "hops" method
respectively. The methods are compared both directly as well as indirectly. The direct
comparison consists of plotting the average values for total compared to in-vehicle and
hops separately for all networks in the data set. The indirect comparison consists of
plotting the three methods to another factor (network length in this case) in order to
evaluate how different the patterns and results are. Considering the network length’s
high correlation with the total travel time, this was considered as the most sensible fac-
tor for comparison, as also indicated in Section 5.2. Firstly, the correlations between the
three methods are shortly discussed in Section 5.6.1. Afterwards in Sections 5.6.2 and
5.6.3, the aforementioned comparisons are plotted and explored using different figures.
Lastly, the conclusions from this benchmark analysis are discussed in Section 5.6.4.

5.6.1. CORRELATION BETWEEN THE METHODS

Before going into the comparisons between the three methods, it is interesting to first
note how correlated they are amongst themselves. The Pearson correlations between
the three methods can be found in Table 5.8. From this table it becomes clear that the
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Method 1 Method 2 Pearson correlation
Total In-vehicle 0.87
Total Hops 0.68

In-vehicle Hops 0.80

Table 5.8: The Pearson correlation between the three methods

total method from this study has a very strong correlation with the in-vehicle method
of 0.87. Naturally, this is a very logical result considering the fact that the total method
is in part based on the in-vehicle time. The next strongest relationship is between the
in-vehicle and hops method of 0.80. This is quite interesting to note, as this relationship
is still quite strong. The fact that this relationship is so strong is fairly sensible however,
considering that both methods do not regard transfers and only account for the number
of links crossed, either including actual travel time or not. Lastly, the relationship be-
tween the total and the hops method must be noted, which is the lowest of the the three
with a value of 0.68. It is sensible that this is the lowest, considering these two methods
have the least in common. This comparatively weaker correlation is a first indication
that the total and hops method are not completely interchangeable and describe net-
works differently. The exact differences between the two methods are further explored
in the next sections.

5.6.2. DIRECT COMPARISON BETWEEN THE METHODS

In this section, the total travel time method is compared directly to the in-vehicle and
hops methods. The comparison between the total and in-vehicle and hops methods can
be found in Figures 5.17a and 5.17b respectively. Both of these figures support the find-
ings from Section 5.6.1 with both looking clearly positively correlated. The difference
in strength of correlation also becomes clear immediately with the hops method com-
parison having a considerably higher spread than the in-vehicle method comparison.
Nevertheless, the spread is quite significant for both of these methods in both the ver-
tical and horizontal direction. Some examples are shortly highlighted to indicate this
difference. Atlanta is an excellent example in both comparisons of how the two alterna-
tive methods can misrepresent networks. In Figure 5.17a it can be seen how Atlanta has
nearly the same in-vehicle travel time as Lille but a completely different total travel time
(56 and 27 minutes respectively). Using the in-vehicle method would suggest Atlanta
and Lille are similar, while the total travel time method shows they are most certainly
not. On the other hand, Atlanta and Valencia have nearly the same total travel time,
but a very different in-vehicle travel time (18 and 34 minutes respectively). Using the
in-vehicle method would suggest that Valencia has much longer travel times while this
is in fact not the case when incorporating waiting time and transfers. This pattern can
also be seen for Atlanta in the comparison with the hops method, where the variance is
even higher. Valencia also has a significantly higher number of hops than Atlanta, while
having the same total travel time. In terms of other networks with the same number of
hops as Atlanta, Turin is a notable example with a much lower total travel time (57 vs 15
minutes). These examples show how differently these three methods describe networks.
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(a) Total vs in-vehicle

(b) Total vs hops

Figure 5.17: The total travel time method compared to the in-vehicle time and hops method
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5.6.3. INDIRECT COMPARISON BETWEEN THE METHODS
To further illustrate the differences between them, the three methods are also all com-
pared to the network length in Figure 5.18.

It can be immediately observed that the three figures show fairly different patterns.
While all three figures show a positive correlation between the two variables, the corre-
lation is obviously strongest between the total travel time and the length. This is con-
firmed by the Pearson correlations which are 0.81, 0.74 and 0.54 for the total, in-vehicle
and hops method respectively. The correlation is especially unreliable between hops
and network length. As can be seen in Figure 5.18c, between a length of 0 and 100km the
networks still follow a fairly linear positive pattern. Afterwards this pattern completely
disappears and even turns into a negative correlation for Madrid, London and New York.
None of the other comparisons in this study have shown a negative correlation as ap-
pears here for these three networks.

In regards to earlier identified patterns, differences between the three methods can
also be discovered. The poor performance of North-American networks compared to
European ones as proven in Section 5.3, and visualized in Figure 5.18a is not visually
present for the other two methods. This intuitive notion is confirmed by regression anal-
ysis, where including a North-American/European parameter is not significant for both
the in-vehicle and hops methods.

Another manner to indicate how the in-vehicle and hops method misrepresent some
networks is through examples of individual networks. The most striking example is New
York, as it performs very differently for the hops method than for the total method. Ac-
cording to the hops method, New York has the same number of hops as networks like
Bilbao, Dubai and Paris. Considering the earlier analyses performed and the significant
differences identified between these networks, it is clear the hops method misrepresents
these networks. Especially considering how New York has a much higher total travel
time than those networks, it is clear that the number of hops represents shortest path
travel times with a much lower accuracy. Something similar can be noted for San Fran-
cisco which, as opposed to the total and in-vehicle method, actually outperforms Paris in
the hops method. This is sensible considering its high interstation distance and conse-
quently lower number of hops necessary to cover similar distances. A network that also
clearly illustrates the differences between the total and in-vehicle method is Valencia.
Its position in Figure 5.18a is not especially notable, being situated towards the top-left
of the group near Berlin and Washington. In both Figure 5.18b and 5.18c it is however
situated far towards the top of the figure, fairly isolated. This is naturally caused by its
relatively high in-vehicle travel time and number of hops respectively. From Figures 5.9b
and 5.9c it becomes clear that Valencia compensates this high in-vehicle travel time with
low waiting times and a lower number of transfers required.
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(a) Total travel time vs network length

(b) In-vehicle travel time vs network length

(c) Number of hops vs network length

Figure 5.18: The three different shortest path methods compared to the network length
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5.6.4. CONCLUSION
In conclusion, it becomes clear that the three methods compared in this section repre-
sent networks very differently. As expected, the hops method has the weakest correlation
with the network size (represented as network length). From the comparisons it also be-
comes clear that this method severely misrepresents some networks due to its lack of
incorporating service information such as in-vehicle time, waiting time and the number
of transfers. The in-vehicle method is a little more accurate, properly representing the
actual travel time spent in vehicles. It does however still significantly over- or underrep-
resent some networks because of its exclusion of other service aspects such as waiting
time and transfers. The total travel time method incorporates all three of these aspects
and also has the strongest correlation with the network size. As discussed in Chapter
2, the total travel time method applied in this paper is not frequently used in literature.
Considering the more accurate nature of the total travel time method, the importance of
using this method in further studies becomes obvious.



6
CONCLUSION

In this final chapter, the conclusions and recommendations based on the study are pro-
vided. Firstly, the key findings answering the research questions are discussed in Section
6.1. The planning and policy implications based on these findings are detailed there-
after in Section 6.2. The limitations of this study are addressed in Section 6.3. Finally,
this study concludes in Section 6.4 with recommendations for further research.

6.1. KEY FINDINGS
The first findings to discuss are related to the main research question: "How can service
information be included into a comprehensive comparison of metro networks world-
wide?". This study shows how service information can be efficiently included as con-
cepts of in-vehicle time, waiting time and number of transfers in the calculation of short-
est path travel times through the network. Through this method, a comparison between
metro networks was made that includes this service information.

Naturally, in order to perform these comparisons, data is necessary for each network.
The data format used for this study is the so-called GTFS static format, providing infor-
mation about the physical lay-out of the network as well as the schedule of operation.
Relevant data in this format was found for 51 different metro networks. In order to pro-
cess this data, a pipeline was created. L- and P-space representations were used to rep-
resent the topological infrastructure and service of the network respectively. Creating
these representations based on GTFS data turned out to be fairly time-consuming, espe-
cially for larger networks. The created pipeline aims to facilitate this process by provid-
ing methods requiring less manual intervention to arrive at the proper representations.
A set of curated L- and P-space representations was created for 51 metro networks and
is publicly available for further research. This set of representations can be used in fu-
ture studies with a variety of different applications such as network theory studies or
further transportation research into metro networks. By combining the data from both
the L- and P-space representations, composite shortest paths were calculated based on
a combination of in-vehicle travel time, waiting time and the number of transfers.
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Calculating these shortest path travel times for all networks provided insight into the
travel time patterns of each network. This revealed that these patterns were not dis-
tributed similarly for each network with some being normally distributed and others
following an exponential or bimodal distribution. Considering this variation in distribu-
tion, it became clear that the median of these travel times would be the best indicator to
characterize networks. As such, in order to incorporate service information, the median
total travel time was used as the primary indicator for this study.

A variety of factors related to the network size and city were used to help explain dif-
ferences in the total travel time between networks. Firstly, the correlations between the
travel time and these other factors were investigated. As hypothesized, all factors have
a positive correlation with the travel time. From these factors, the network length has
the strongest correlation with the travel time. This shows the pattern of increasing travel
time with network size found in other studies (Luo et al., 2019) applies to this set of net-
works as well. Considering its strong correlation, the network length was used in a simple
regression model to estimate the travel time. Through this, a variety of outlier networks
could be identified that perform either much better or worse than predicted according to
the network length. By analyzing the three different travel time components (in-vehicle
time, waiting time and number of transfers), the causes for this outlier nature could be
discovered. It turned out that the waiting time was the main cause for discrepancies be-
tween networks. This thus highlights the importance of including the waiting time in
comparisons between metro networks. In addition, this regression model showed that
North-American networks perform structurally worse compared to other networks, es-
pecially worse than European ones. Including this regional variation in the regression
model turned out to be significant and improved the model slightly.

Multiple regression was also applied in order to further improve the model. The im-
proved model has two explanatory variables with a high correlation with travel time, but
low amongst each other: the number of stations and the average direct station distance.
This model provided significant coefficients and performed much better than the simple
regression model. Nevertheless, this model showed some of the same outliers as the sim-
ple model, albeit reduced. Paris, Bilbao, Helsinki, Rennes and London seem to perform
much better than predicted by the model while Chicago, Atlanta, Boston and Oslo per-
form much worse. The most notable outlier is San Francisco, which is such an anomaly
in terms of both its average direct station distance and average interstation distance, that
it should not be considered a metro network, but a commuter rail instead. The regional
difference discovered for the simple model was not found to be significant in this model.
The other three explored factors — number of lines, city population and city GDP —
while also positively correlated with the travel time, provided no further insights.

Lastly, it was evaluated how the total travel time method applied in this study com-
pares to the more common methods in literature which consider only in-vehicle time or
hops in shortest path calculations. While all three methods show a positive correlation
with network size, the method proposed in this study has a stronger correlation than the
other methods. In addition, it becomes clear that networks are represented very differ-
ently by these three methods. Some networks have a similar amount of average hops
while their average total travel time differs by more than thirty minutes. These exam-
ples show how different these methods are in representing networks. Considering the
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more realistic nature of the total travel time method, it becomes clear that applying this
method is desirable for better comparisons of networks.

6.2. PLANNING AND POLICY IMPLICATIONS
The key findings as described above lead to certain implications for planning and policy
which are shortly discussed in this section.

In a general sense, the total travel time indicator turned out to be a suitable factor
to compare the accessibility of networks. Clear differences between networks appeared
from this indicator and network planners can get an idea of how well their network com-
pares to others. In this way, the results of this study provide a benchmark for network
planners. Through these results, planners can understand which networks share the
same characteristics in terms of different indicators, especially average travel time. This
provides them with a clear idea of which networks to consider for how to improve their
own network. The method applied by this study also provides a more accurate image of
the actual shortest path travel times through the network and as such is a better basis
for comparison. In terms of network planning, planners can gain better understanding
of which travel time factors are the weakest for their network. A high in-vehicle travel
time could be improved by purchasing faster vehicles while long waiting times could be
mitigated by increasing the frequency.

This study also provides insights into which metrics accurately represent travel time
and which do not. Whereas the network length and the combination of number of sta-
tions and average direct station distance were good metrics for comparison, the other
explored factors were less so. This means network planners have a better idea of which
factors to focus on for comparison. In addition, the city factors, while positively corre-
lated with travel time, do not provide much additional information of interest. The vari-
ation in travel time for both the city and population is quite large and does not provide
planners with a clear direction of improvement.

The total travel time method applied in this study also emphasizes the importance
of considering all travel time aspects of the travellers’ journey. Including waiting time
and number of transfers in network representations provides better insights into which
aspects of the travel time have most room for improvement.

6.3. LIMITATIONS
While this study aims to be as comprehensive as possible, decisions had to be made that
limited the scope.

The first obvious limitation is the consideration of metro networks as a distinct, sep-
arated mode. Naturally, planners frequently attempt to integrate PT modes such that
they connect well and that certain gaps of one mode are captured by the others. Consid-
ering the complicated nature of multi-layer networks, the decision was made to restrict
this study exclusively to metro networks.

In terms of the actual networks included in this analysis, further restrictions were
made. Ideally, all 190 metro networks should have been included in this analysis to get a
full comparison of all networks in existence. Considering the heavy reliance of this study
on scheduling data, this turned out to be not feasible. Instead, a set of 51 networks was
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considered based on the availability and correctness of the discovered data. Unfortu-
nately, this data set is slightly skewed towards small- and mid-sized networks as well as
including primarily networks from Europe and North-America. These limitations show
the importance of having correct, publicly-available and standardized data.

Considering the reliance of this study on provided data and the specific implemen-
tation, there are quite an amount of assumptions and decisions that affect the results. In
processing the data, decisions had to be made about the merging of stations in L-space
and combining edges in P-space. Both of these decisions are choices made for this study
but might be made differently for other studies, providing different results. In addition,
a lot of manual correction was required in order to arrive at the final curated network
representations. While this process was performed diligently and each step was docu-
mented, the process is still prone to errors from either the data itself or human error in
the manual edition. Any errors in the data such as missing stations and incorrect sched-
ules logically can lead to mistakes in the final results. Further, while a set data format
was used (GTFS), the exact implementation of this format differs per network in vari-
ous aspects such as the rounding of the time schedule to minutes or seconds. For each
network the schedule is considered only between 05:00 and 23:59 which means poten-
tial night networks are not included. The implementation of the shortest path is also a
simplification, considering only the five shortest paths are considered in L-space, which
are then combined with the shortest path in P-space. Naturally, a consideration of all
shortest paths would be more accurate, yet also much more time-consuming.

While the total travel time method applied in this study is more representative than
the in-vehicle or hops method, it still relies on some assumptions and simplifications.
The waiting time might in fact be much lower for some networks as transfer possibilities
are created by planners that are well-connected in the schedule. Walking times are also
not specifically considered in this study which can also affect the actual transfer times
experienced by travellers. In addition, all transfer stations are considered equal in size
for this study, while in actuality some stations are much bigger than others, leading to
longer transfer times.

Finally, the median value taken as the average of the travel time distributions might
not be representative of the average traveler’s experience. As this value is the median of
all possible OD-pairs, this might overrepresent some hardly used OD-pairs while under-
representing frequently used OD-pairs.

6.4. RECOMMENDATIONS FOR FURTHER RESEARCH
Based on the results and limitations of this study, some recommendations can be made
for further research.

Firstly, the results of this study can be explored into more detail. An example of this
is applying principal component analysis which can improve the approximation of the
travel time. Cluster analysis would also provide more detailed insights into the groups of
networks that exist, giving more information to planners about their peer networks. In
addition, other indicators can be explored in combination with the total travel time. Net-
work science indicators such as directness and degree can be investigated both locally
as well as globally to discover further relations with the travel times. Questions such as:
"Which stations are most often used for transferring?" can also be answered using the
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provided data set.
Secondly, the methodology of this study can be expanded upon. Currently, metro is

the only mode considered which could be expanded upon with other PT modes such as
tram and bus. The pipeline could be adjusted to contain multi-layer networks in order
to incorporate these modes. This would allow for the comparison of multimodal PT sys-
tems, providing an even more comprehensive image of the PT systems of these cities.
In addition, the applied total travel time metric relies on a generic image of the waiting
time. Including transfer and walking time separately, using for example split transfer
stations, could provide much more detail on specific sections of the network as well as
the network as a whole. Other factors such as operation strategies and network structure
can also be considered in order to provide more meaningful insights into differences
between networks.

Thirdly, the data provided by this study could be combined with actual traveler data.
The data from this study could help explain certain travel behavior or identify bottle-
necks in the network. An example of traveler data like this is demand data between
OD-pairs, which would make the average total travel time more representative of ac-
tual travel behavior. In addition, including demand data can lead to further research in
terms of accessibility. While both the total travel time and network length are already
related to accessibility, further inclusion of other accessibility factors can provide more
in-depth insights.

Lastly, the results of this study could be related to existing benchmark studies be-
tween networks to get a more comprehensive image of the relationships between net-
works. An example of this is the McKinsey report (McKinsey, 2021) which provides a
complementary qualitative assessment that could be combined with this study’s quan-
titative assessment.
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M etro networks are a vital public trans-
port (PT) mode in urban areas around the
world because of their high-capacity and

high-speed operation. Comparing different metro
networks to one another is a suitable manner for
transport planners to gain insights into the charac-
teristics of their networks and which areas of im-
provement exist. While metro networks have been
studied extensively in the field of network science,
the practical relevance for the field of transport sci-
ence often remained limited, caused by the lack of
realism of the network representations used. This
study proposes a topological comparison of metro
networks worldwide including service information.
Service information is included in the form of the
total travel time indicator for shortest path calcula-
tions, which combines the in-vehicle time, waiting
and number of transfers. The median of this total
travel time is taken for each network and compared
to other networks. This metric in turn is contrasted
with network size characteristics in order to explore
relations between these factors and to explain the
patterns discovered. From this analysis, it is re-
vealed that the travel time increases with network
size. The total travel time methodology applied in
this study shows significantly different results to
other commonly used methods that rely only on
in-vehicle time or hops to calculate shortest path
travel times. Future studies can expand on this by
considering other network science indicators and
looking further into local indicators. In addition,
the methodology could be expanded with more de-
tailed transfer information and other PT modes.

1 Introduction

Public transport (PT) plays a vital role in commuting
billions of travellers in cities all over the world. Con-
sidering the rapid threat of climate change, improving
sustainability and equity are crucial factors to keep
cities habitable. PT plays a crucial role in providing
transport that is both sustainable as well as accessible.
A variety of different modes to transport volumes of
people throughout cities exist, such as bus, tram, metro
and train. In an urban environment, metro networks
have a variety of factors that make them especially at-
tractive. In terms of operation, a metro is considerably
high-capacity and high-speed compared to most other
PT modes. In terms of infrastructure, their (primar-
ily) underground nature makes their location highly
flexible while also having a minimal impact on the
above-ground urban infrastructure. Considering these
advantages and the rapid advance of technology to con-
struct metro networks, their popularity has increased
greatly over the past decade. In the last decade, almost
sixty new systems have opened, nearly a third of the
total number of metro networks worldwide. On the
other hand, existing networks also frequently expand,
seeing as the total amount of metro network infrastruc-
ture has increased by 25%, or 3,300km in total, in the
past three years alone (UITP, 2022).

Metro networks have also received much attention in
literature in the recent years. The field of complex net-
work science has been using public transport systems as
a field of application since the early 2000s (Latora and
Marchiori, 2002; Sienkiewicz and Hołyst, 2005). PT
systems as a complex network have been extensively ex-
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plored around the year 2010 with the works of Derrible
and Kennedy (Derrible and Kennedy, 2009; Derrible
and Kennedy, 2010a; Derrible and Kennedy, 2010b;
Derrible and Kennedy, 2011; Derrible, 2012). These
researchers noted how suitable PT networks were to
investigate various concepts from complex network the-
ory. While this provided many new insights in the field
of network science, the practical relevance for the field
of transport science often remained limited. This lim-
ited relevance is primarily caused by the lack of realism
of the network representations used. Frequently, these
studies used only simple hops or in-vehicle travel time
to calculate travellers’ paths through the network. In
doing so, service concepts such as transfer possibilities
and waiting time are completely ignored. Evidently,
this can lead to a misrepresentation of networks.
PT scientists recognized this gap and tried to inte-

grate concepts from transport science into network
analyses. This led to a large variety of examples such
as: creating a weighted graph with passenger flows (Xu,
Mao, and Bai, 2016); investigating the relationship be-
tween network topology and ridership (Ingvardson
and Nielsen, 2018); or integrating network science
and accessibility analysis (Luo et al., 2019). These
studies, albeit limited in number and scope, provided
more insights into the relationship between the struc-
ture of PT networks and their actual service and usage
patterns, providing information for policy makers on
the performance of their networks.
With this field of combining network infrastructure

and service information upcoming, various aspects are
still left unexplored. For example, while studies as the
aforementioned do contribute new methodologies in
the field, these have not been extensively used to com-
pare different networks yet. It is vital for PT planners
to understand the performance of their network on
these aspects compared to other networks, in order
to learn where room for improvement exists within
their networks. In addition, even when comparison
studies are performed, the set of networks used is usu-
ally similar: a set of a few dozen, large-sized metro
networks. Logically, using only the same few dozen
networks means a significant portion of the 190 metro
networks worldwide (UITP, 2022) is currently not stud-
ied. Additionally, as described before, the number of
networks has greatly increased in recent years, mean-
ing many recent networks and expansions are also
still unexplored. Using primarily large-sized networks
also skews the results towards networks of that size,
thus producing results that might be less applicable
for small- and mid-sized networks. It can thus be con-
cluded that a comprehensive comparison of a large set
of varied networks is currently missing.

To fill these gaps, this study proposes a comprehen-
sive, topological comparison study of metro networks
worldwide of varying size. This comparison study in-
cludes service characteristics mathematically in the
topological representations of the networks in order
to provide a more realistic representation of these net-

works. This analysis uses an indicator that incorporates
service information to compare networks to each other.
This metric in turn is contrasted with network- and
city-related characteristics in order to explore relations
between these factors and to explain the patterns dis-
covered. Specific attention is also paid towards regional
differences in order to discover what potential patterns
there might be.
Based on the research gaps as described above,

the question this study aims to answer can best be
formulated as follows:

How can service information be included into a
topological comparison of metro networks worldwide?

This research question is supported by the following
sub-questions that provide more detail on the possible
methodology and results:

• What indicator can best be used to account for
service information?

• Which regional differences and outliers are identi-
fied when examining networks’ total travel time?

• Can (a combination) of network factors be used to
meaningfully explain the travel time of a network?

• Does including service information provide signif-
icantly different results to commonly used meth-
ods?

The rest of this paper is structured as follows: Firstly,
the current state of the literature is reviewed in Chapter
2. In Chapter 3, the methodology for answering the
research questions is further detailed. The results are
reported in Chapter 4. Finally, the conclusions and
recommendations of this study are detailed in Chapter
5.

2 Related works

In this section, the related works are discussed. The
related works are split up into two distinct categories:
PT network topology and service information.

2.1 PT network topology

The first of topic to discuss, PT network topology, is
arguably the most significant and comprehensive one.
This significance becomes clear from the fact that it
has been an interest of study for several decades and is
continually expanding with new findings and applica-
tions. The network topology of PT networks has been
of interest for transport scientists and network scien-
tists alike, giving the field a broad variety of studies
from different directions.
One of the earliest examples of literature on net-

work infrastructure is by Musso and Vuchic (1988). In
this paper, the authors aim to identify the most im-
portant geometric characteristics of metro networks.
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This study can be regarded as the foundation on which
many future studies expanded in the field of network
structure analysis. Studies continuing and expanding
on this work arose especially in the 2000s, when differ-
ent studies were performed on various locations and PT
modes around the world. One of the earliest examples
is the work by Latora and Marchiori (2002). In their
work, the authors aim to bridge the gap between the
theoretical paradigms of complex network science and
real complex networks by applying network science
methodologies on the Boston Subway network. A con-
tinuation of this work came three years later in the
highly cited study by Sienkiewicz and Hołyst (2005)
analyzing bus systems in Poland. This study focuses
heavily on the application of complex network science
concepts on a real-world network. Unlike Musso and
Vuchic (1988) in their work, the authors do not focus
on the transport characteristics of these bus networks
at all, but simply treat them as complex networks. A
very similar analysis was performed on the Chinese
rail network (Li and Cai, 2007) which confirmed that
railway network to be scale-free. Majima, Katuhara,
and Takadama (2007) instead took a more transport-
related approach and performed a complex network
analysis to evaluate the potential of a waterbus in the
Tokyo area when combined with other modes. Re-
searchers from Korea performed a similar study ap-
plied to the subway system of Seoul in 2008 (Lee et al.,
2008). Their study focused on the analysis of statistical
and topological properties and also included passenger
flow.

Von Ferber and Derrible took the field to a new level
with extensive studies on various network aspects of
public transport networks worldwide. One of the ear-
lier works is by Ferber et al. (2009). The goal of their
work was twofold: define public transport networks
based on statistical properties; and build a model that
can create a network that would reproduce these prop-
erties based on a few simple rules. These statistical
properties were identified for fourteen public trans-
port networks. The study identified some unexpected
similarities and differences between networks and cre-
ated a model aimed to capture those rules. Derrible
and Kennedy (2009) analyze nineteen metro networks
worldwide, showing a relationship between network
design and ridership. Network design was modeled
using three indicators: coverage, directness and con-
nectivity. The study shows a strong correlation between
these aspects and the ridership of the metro networks,
suggesting the effect of network design on ridership
is significant. Derrible and Kennedy (2010a) similarly
to Derrible and Kennedy (2009) try to characterize
metro networks using indicators. This work specifi-
cally focuses on adapting graph theory concepts into
well defined public transport-specific applications and
use this method to characterize networks. The three
dimensions used in this study are: state, form and struc-
ture. In similar work from the same year (Derrible and
Kennedy, 2010b), the authors aim to address topolog-

ical networks in complex network science using the
same data set of 33 networks. The interest here lies in
the complexity of the networks and the effects thereof
on the robustness. The networks in this study are not
actually compared to each other nor does the study con-
sider service characteristics. The third of the works by
Derrible on network science in metro networks specif-
ically focuses on network centrality (Derrible, 2012).
An alternative graph representation using only termi-
nal and transfer nodes was used to compare 28 metro
networks on their betweenness centrality. While the-
matically similar, the work by Derrible and Kennedy
(2011) takes a different approach and instead reviews
the existing literature on applying graph theory and
network science to the field of transit network design.
At the time, this application was still fairly new and
unexplored but has since seen a huge increase in pop-
ularity. The study provides a useful overview of the
indicators found in other papers that could be applied
to public transport networks. A similar review was
created by Lin and Ban (2013).
In later years, the field was also further explored

by transport scientists appying network science con-
cepts in order to compare PT networks to each other
or to better understand specific networks. A good ex-
ample of this approach is the paper by Haznagy et al.
(2015) where the urban PT systems of five Hungarian
cities are analyzed. In their work, they find interesting
similarities even in cities with varying morphologies.
Their discoveries of this independence within Hun-
gary are supported by different researchers in other
regions such as China (Xu et al., 2013) and Poland
(Sienkiewicz and Hołyst, 2005) suggesting that these
findings apply globally. Wu et al. (2017) compare six
of the world’s biggest metro networks using a new cen-
trality measure called "node occupying probability".
The study finds that these networks perform better
under random attack than targeted attack and that
some variation exists between these networks on the
performance of these measures. Shanmukhappa et al.
(2019) similarly to Derrible and Kennedy (2011) and
Lin and Ban (2013) review the current developments
in PT network analysis in 2019. They recommended
performing more in-depth analysis of PT networks to
get proper insights, as simple topological analyses of
the graph simplification of a network does not provide
many practical insights.

2.2 Service information

The second topic of interest in literature, is that of ser-
vice information. This field has been upcoming for the
past few years where the network theory as described
in Section 2.1 is combined with the actual service or
operation of a PT network. The studies in this field are
quite varied in their nature and approach as the topic
can be addressed from many different perspectives.

One approach of how to combine network topology
and service information is by considering the operation
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or ridership of ametro system. Xu, Mao, and Bai (2016)
incorporate trip data in order to create a weighted
passenger flow network of the Beijing subway system.
Through this new methodology, the researchers were
able to identify the spatial mobility patterns in the ur-
ban area, providing useful insights for policy makers.
Saidi et al. (2017) similarly use generalized passenger
travel costs combined with network theory to compare
the urban rail transit systems of six large cities. Amini
et al. (2016) take a slightly different approach. In-
stead, they investigate which type of urban network
structure is most suitable for a city, depending on its
traffic conditions. Their study reveals that the most
suitable network structure depends on the amount of
traffic in the city, indicating a relationship between
network structure and traffic volumes. Ingvardson and
Nielsen (2018) look how network topology (among
other factors) influences the ridership of public trans-
port systems. Their study finds that extensive rail net-
work coverage (among which metro was counted as
well) is positively correlated with ridership. This cor-
relation seemed largest for metro, because of its high
passenger-carrying capacity. Their study does not find
significant influence of network topology indicators on
ridership. Having significant transfer possibilities does
however increase the mobility of the system, leading
to a higher attractiveness of the entire system.

Another approach is to consider how the structural
topology and service of a metro system relate to its ac-
cessibility. A first example of this is by Luo et al. (2019)
who integrate accessibility and network science, using
a network science-based approach. They formulate an
accessibility indicator of travel impedance based on
the generalized travel cost (GTC), a combination of
in-vehicle travel time, waiting time and the number
of transfers. Their analysis reveals that, when includ-
ing these service properties, there is a higher spatial
disparity in PT accessibility. In addition, their work
shows that larger networks exhibit a larger average
travel impedance. A work in the following year by the
same authors takes this integration a step further by
evaluating whether passenger flow distribution can be
estimated by looking solely at the network properties of
a PT system (Luo, Cats, and Lint, 2020). Their work re-
veals that some network indicators can indeed be used
to estimate passenger flow with reasonable accuracy.
This is especially the case for indicators using weighted
graphs and those related to the space-of-service, in-
dicating the higher level of realism of those represen-
tations. Jin et al. (2017) take a more comprehensive
approach and consider the accessibility of the whole
high-speed rail (HSR) network of East Asia, comparing
multiple countries. They suggest that further devel-
opment of an integrated East Asia HSR system could
reduce the travel time between the major cities but ad-
mits the impacts are lower than national developments
and that there are many hurdles to realize this.

3 Methodology

In this chapter, the methodology and implementation
applied for this study will be shortly discussed. Firstly,
the network representations for this study will be dis-
cussed in Section 3.1. Afterwards, the total travel time
method applied in this study is described in Section
3.2. Lastly, this chapter is concluded in Section 3.3
with an explanation of the comparison to the network
and city aspects.

3.1 Network representations

The focus of this study is to create a comparison of
metro networks that also includes the service infor-
mation quantitatively. Similar to other studies, this is
done by representing the metro networks topologically
using concepts from graph theory. From these graph
representations, metrics can be computed that can be
used to compare the networks. In this section, the
chosen representations and their implementation are
extensively described.
This study will make use of two network represen-

tations: L-space and P-space. L-space, or space-of-
infrastructure, is used to define the infrastructural lay-
out of the network. It is explained in more detail in
Section 3.1.1. The P-space, or space-of-service, is used
to define the service layer of the network. This rep-
resentation is especially important for this study as
it can incorporate additional service information not
captured in L-space. The P-space is discussed in more
detail in Section 3.1.2. The data used for this study is
briefly described in Section 3.1.3.

3.1.1 L-space

As mentioned in the introduction of this section, the L-
space or alternatively space-of-infrastructure is a topo-
logical representation of the infrastructure of the net-
work. In this representation, stations are represented
as nodes while the tracks/tunnels between them are
represented as edges. This is the common way to repre-
sent L-space where the information about the different
metro lines/routes is lost and only the infrastructure
remains. Within this basic concept of L-space, there are
two factors that can differ per implementation: edge
weight and edge direction.

Firstly, for this study it was decided to use average
station-to-station in-vehicle travel time as the L-space
edge weight. In this way, the L-space represents not
just the physical lay-out of the network but also part of
its operation, namely the travel time between stations.
This weight is a combination of the distance, the type
of vehicles used (i.e., as they generally determine the
maximum speed of operation) as well as the infras-
tructural intricacies of the network (e.g., sharp bends,
speed limits because of external factors).

Secondly, it is important to establish whether to use
directed or undirected edges in L-space. Whereas most
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studies detailed in Chapter 2 use an undirected imple-
mentation for L-space, a directed implementation is
chosen for this study. The reasons for this are twofold.
Firstly, while metros nearly always travel in both di-
rections between any given stations, within certain
metro networks (e.g., Paris), one-directional segments
do exist. Secondly, the travel time might differ per
travel direction, because of for example elevation dif-
ferences. As such, this study will use an L-space with
directed edges. An example L-space representation for
the network of Marseille is provided in Figure 1.

Figure 1: The L-space representation for the metro network of
Marseille

In conclusion, the L-space consists of a set of nodes
representing stations and a set of directed edges rep-
resenting the rail infrastructure between the stations.
The edges are weighted with the in-vehicle travel time
between the two stations for that direction. L-space
can thus be defined as a graph L = (V,E,w) where
V = a set of nodes, E ⊆

{
(i, j)

∣∣(i, j) ∈ V 2 ∧ i ̸= j
}

with main edge weight w : (i, j) → ivt(i, j). An addi-
tional edge label l(i, j) is defined to represent the direct
(i.e. geodesic) distance between stations to compute
the total network length.

3.1.2 P-space

Whereas L-space describes the physical, infrastructural
state of the network, the information about the service
(e.g., where the lines are, which stations can be trans-
ferred at) is lost. The P-space, or space-of-service, is the
chosen space to represent the actual service that is run
on the infrastructure described by the L-space. In this
representation, similarly to L-space, the stations are
represented as nodes. An edge between two stations
represents the fact that those two stations share a line
and thus have a direct means of travel between them
(i.e., without a transfer). Through this representation
it is for example possible to represent the waiting time
and number of transfers for a travel path. For P-space,
the same types of decisions have to be made as for L-
space in terms of the edge weight and direction. These
choices are briefly described below.

Considering the aim of this study to include service

information in a topological comparison, it is sensible
to include asmuch information in the space of service as
possible. As such, a weighted P-space implementation
will be used. Specifically, the average waiting time
will be used as the edge weight. This weight turns
the frequency of a line into an average waiting time
instead. This is done through the following formula:

w : (i, j) → wt(i, j) = 60

(vehtot ÷ p)
÷ 2

In this formula vehtot represents the total amount
of vehicles travelling on the line in a set time period p.
This could for example be the total amount of vehicles
in a full day of 24 hours. This amount of vehicles
is then divided by the period to get the vehicles per
hour. Dividing 60 by the vehicles per hour, gives the
maximum waiting time in minutes. This maximum
waiting time is in turn divided by 2 in order to get the
average waiting time.
Using this average waiting time as an edge weight

means the P-space provides information on both the
number of transfers needed as well as the average time
travellers have to wait for each transfer they make. As
such, the P-space now provides a lot of information on
the service and scheduling of the network. Combining
this waiting time and number of transfers with the
in-vehicle time from L-space, provides a fairly compre-
hensive image of the travel time that travellers actually
experience.

Figure 2: The P-space representation for the metro network of
Marseille

In addition to the edge weight, the decision must
also be made whether to use directed edges or not.
Considering that P-space, similar to L-space, uses edge
weights that might differ per travel direction, it is sen-
sible to also use directed edges in P-space. Examples
of how the average waiting time might be different
per travel direction could be extra express trains that
only travel in one direction thus lowering the average
waiting time for that direction. The P-space represen-
tation for the metro network of Marseille can be found
in Figure 2.
In conclusion, the P-space contains the same nodes

as L-space, representing each station. Edges exist be-
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tween each station that is connected by the same line.
The weight of these edges represents the average wait-
ing time on that line between the two stations. P-space
can thus be defined as a graph P = (V,E,w) where
V = a set of nodes, E ⊆

{
(i, j)

∣∣(i, j) ∈ V 2 ∧ i ̸= j
}

and w : (i, j) → wt(i, j). An additional label r(i, j)
exists to represent the route of each edge.

3.1.3 Data

In order to create the network representations as
described in Sections 3.1.1 and 3.1.2, a significant
amount of scheduling data is required. In addition, as
described in Chapter 1 the goal is to include as many
different networks as possible. For these reasons, the
General Transit Feed Specification (GTFS) data format
was chosen for this study (Google, 2022), specifically
the GTFS static format. This format contains all the
data necessary for this study and is publicly available
for many metro networks. In addition, many libraries
exist to process this data, easing the data processing
stage of this study. 51 networks metro networks were
found to have GTFS static data that is both correct and
available. All of these networks were included in the
final data set and are visualized in Figure 3.

Figure 3: The 51 metro networks included in the analysis
indicated in red

3.2 Total travel time method

As becomes clear from Section 3.1, information about
the operation and service is included in both network
representations for this study. In order to compare net-
works based on these representations, the data from
these representations must be transformed into com-
parable metrics. The primary metric for this study is
an accessibility metric based on the average shortest
path through the network. For this study, the total
travel time method is used which combines several
aspects of the travel time through the network. To be
more precise, the total travel time is a combination of
the in-vehicle travel time, waiting time and number
of transfers. This can be mathematically defined as
described in Equation 1 below.

tt(i, j) = ivtL(i, j) + α ∗ wtP(i, j) + β ∗ tfP(i, j) (1)

tt(i, j) - The total (shortest path) travel time between
node i and j (min)
ivtL(i, j) - The total in-vehicle travel time between
node i and j from L-space (min)
wtP(i, j) - The total waiting time between node i and
j from P-space (min)
tfP(i, j) - The number of transfers needed in the
shortest path between node i and j from P-space (-)
α - A positive integer, constant penalty per minute of
waiting time (min/min)
β - A positive integer, constant penalty per transfer
(min/transfer)

The shortest path between two arbitrary nodes i
and j is thus the path with the lowest total travel
time which is a combination of the factors ivtL(i, j),
wtP (i, j) and tfP (i, j). Considering these travel time
components come from different network representa-
tions, they cannot be computed simultaneously. As
such, the k-shortest paths based on in-vehicle time in
L-space are taken as the base. The corresponding wait-
ing time and transfer information are then retrieved
from P-space for all of these paths. The addition of
these three components (multiplied by the respective
penalty factors) then determines which path has the
shortest total travel time and is thus considered the
shortest path. For this study, a k of 5 is chosen as that
covers all shortest paths for nearly all networks while
also keeping the runtime sufficiently low. The penalty
values are taken as 2 and 13 for alpha and beta re-
spectively, based on the lower bounds found in recent
studies (Jara-Diaz et al., 2022).

Given a directed graph G, a real-valued weight func-
tion w : E → R, the shortest path between two ar-
bitrary nodes i and j is the path SP = (v1, v2, ..., vn)
(where v1 = i and vn = j) that over all possible n
minimizes the sum∑n−1

x=1 w(vx, vx+1). This general no-
tation can be adopted for the calculation of the shortest
path calculation in L-space as follows:

ivtL(i, j) = min
n−1∑

x=1

ivt(vx, vx+1) (2)

This calculation provides both a shortest path SP
in L-space between node i and j as well as the corre-
sponding in-vehicle time ivtL(i, j). The waiting time
and number of transfers corresponding to this path SP
can then be gained from P-space to determine the value
of the total travel time. This is done through Equations
3 and 4.

wtP(i, j) = wt(v1, v2) +
n−2∑

x=2

{
wt(vx+1, vx+2), if r(vx, vx+1) ̸= r(vx+1, vx+2)

0, if r(vx, vx+1) = r(vx+1, vx+2)

(3)
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tfP(i, j) =
n−2∑

x=1

{
1, if r(vx, vx+1) ̸= r(vx+1, vx+2)

0, if r(vx, vx+1) = r(vx+1, vx+2)

(4)
Using this shortest path calculation, the total travel

time between any two stations in the network can be
calculated. The average total travel time in a network
can in turn be used to define networks by. For this study,
the average total travel time is taken as the median of
all station-to-station total travel times. The median is
taken as it is both less sensitive to outliers (compared to
for example the mean) and retains the absolute values
for a network (as opposed to the standard deviation or
variance). Henceforth this median total travel time is
simply referred to as "travel time" for brevity.

3.3 Comparison to network factors

In addition to the comparison using the average total
travel time, the metro networks will also be compared
using secondary metrics based on the network size.
These indicators can help provide context and further
insights into the differences found between the net-
works. In addition, the region of each network will
also be included in the analyses to identify potential
regional differences.
For the network size, three different indicators are

considered: the number of stations (nsL), the network
length (nlL) and the average direct station distance
(dL). All three of these indicators describe the size
of the network in a different manner. The reason to
include these indicators is to see whether a relation-
ship exists between the travel time (as described by
the primary indicator) and the network size. It is hy-
pothesized that a positive correlation between these
factors exists considering the intuitive notion of in-
creasing travel times in larger networks and related
studies (Luo et al., 2019) confirming this pattern. The
mathematical description of these three indicators is
provided below:

nsL = |V (L)| (5)

lL =

∑
(i,j)∈E(L) l(i, j)

2
(6)

dL =

∑
i∈V (L)

∑
j∈V (L) d(i, j)

|V (L)|2 − |V (L)| (7)

4 Results

In this chapter, the results of this study will be dis-
cussed. Firstly, in Section 4.1 the correlation between
the travel time and other factors is briefly discussed.
Secondly, a simple regression model is applied in Sec-
tion 4.2 to estimate the travel time. This model is
improved on with a multiple regression model in Sec-
tion 4.3. The results chapter is concluded in Section

4.4 with a benchmark analysis of the total travel time
method applied in this study.

4.1 Correlations

Figure 4: A heatmap of the Pearson correlations between the
four indicators

In this section, the Pearson correlations between the
four indicators are compared. From Figure 4, the corre-
lations between the different indicators can be directly
compared. The first thing to note is that all factors are
positively correlated. This is in line with expectation,
considering all factors relate to the increase of either
the network or the city, which has been hypothesized
to correlate with an increasing average travel time. Sec-
ondly, most correlations are moderate to strong with
only the correlation between the number of stations
and direct station distance being below 0.50.

The total travel time is especially strongly correlated
with network length, having the second-highest corre-
lation in the whole heatmap. The highest correlation is
actually that between the network length and number
of stations with a correlation of 0.91. This is fairly
sensible considering how both of these indicators are
descriptors of the network size and are very directly
related. An increase in stations generally leads to an
increase in the network length and viceversa. Inter-
estingly, the direct station distance has the strongest
correlation with travel time, and a weaker one with
the other six factors. This is fairly sensible considering
how both the travel time and direct station distance
describe the average shortest path, in terms of duration
and direct distance respectively.
Overall, it can be concluded that all three network

factors have a strong positive correlation with the travel
time, all having a correlation of higher than 0.65. The
network length clearly has the strongest correlation
and can thus best considered as the best single explana-
tory parameter for the total travel time.
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4.2 Simple regression model

Considering the high correlation between the network
length and the travel time, it is sensible to try and esti-
mate the travel time using this factor. In this section,
the possibility of linear regression using this single
independent parameter will be explored. The perfor-
mance of this simple regression model on three criteria
can be found in Table 1, while the coefficient values
and information about their significance can be found
in Table 2. The best fit line between the travel time
and network length can be found in Figure 5.

Criterion Value
R-squared 0.653

Adj. R-squared 0.646
BIC 375.2

Table 1: The performance of the simple regression model

Parameter Coefficient P-value
Intercept 26.990 0.000
Length 0.132 0.000

Table 2: The parameters of the singular regression model in-
cluding coefficients and p-values

Figure 5: The best fit line between the total travel time and
the network length

As expected from the high correlation, this line fits
reasonably well. The R-squared of this regression is
0.653 and both the intercept and the coefficient for net-
work length are significant at a 5% confidence interval.
From Figure 5 it becomes clear however that this model
is far from perfect. While the line fits fairly well, there
is still a fair number of large outliers. To be precise,

there are ten networks that are either over- or under-
estimated by more than 10 minutes in this model. The
five networks that are overestimated by this model are
Rennes (-20.1), London (-18.5), Genoa (-14.8), Turin
(-13.8) and Helsinki (-10.2). On the other hand, Oslo
(+19.5), Atlanta (+19.25), Boston (+15.3), Chicago
(+14.0) and San Francisco (+11.2) are the networks
that are most strongly underestimated. Looking at
these major outliers as well as Figure 5, some regional
differences appear to be present. These differences are
shortly discussed below.

4.2.1 Regions

Some notes can also be made about the structural re-
gional differences that can be identified in Figure 5.
Firstly, it is interesting to note how ten out of the twelve
North-American networks are underestimated by the
model, which suggests that these networks have a rel-
atively high total travel time compared to other net-
works. The opposite can be said for European networks,
considering nearly all of the networks overestimated
by the model are European. The other three regions
have a relatively low number of networks and no no-
table outliers. This apparent regional differentiation
can also be accounted for in the model using dum-
mies for each region. Experimentation shows that only
Europe and North-America provide significant param-
eters (at a 5% level), when considered separately. The
results for different models including North-America
and Europe as regions separately as well as combined
can be found in Table 3. From this table, it becomes
clear that as expected, including either region improves
the model slightly. The effects of North-America are
slightly stronger than those of Europe, which is in line
with the intuitive findings from Figure 5. The BIC of
the model including North-America is 3 points higher
which, while positive, is not especially strong.

Region R2 Adj. R2 BIC Coeff. P-value
None 0.65 0.65 375 - -
NAM 0.70 0.69 372 7.7 0.009
EUR 0.70 0.68 373 -6.4 0.014

C. (NAM) 0.70 0.69 375 5.0 0.223
C. (EUR) 0.70 0.69 375 -3.2 0.368

Table 3: A comparison of regression models including regional
dummies

4.3 Multiple regression model

An improvement over the simple regression model from
Section 4.2 is using a multiple regression model with
more factors. It is most sensible to consider parameters
that have a high correlation with travel time but a low
one among other. Figure 4 shows that the number of
stations and direct distance are the best candidates.
Both of these factors have a correlation of 0.77 with
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travel time while they have a relatively low correlation
of 0.52 amongst each other. The results of a model
including these two parameters can be found in Tables
4 and 5.

Criterion Value
R-squared 0.768

Adj. R-squared 0.758
BIC 358.6

Table 4: The general information of the two-factor regression
model

Parameter Coefficient P-value
Intercept 15.527 0.000
Stations 0.109 0.000
Distance 1.819 0.000

Table 5: The parameters of the two-factor regression model
including coefficients and p-values

From Table 4 it becomes clear that the two-factor
model has a much better R-squared, adjusted R-
squared and BIC. In addition, all three parameters are
significant at the 5% level. As a network with no sta-
tions and no length does not exist, the coefficient value
of the intercept cannot be properly interpreted. What
can be concluded however, is that metro networks have
a base total travel time of 15.5 minutes increasing by
0.1min per extra station and 1.8min per extra kilome-
ter of average distance between stations. This means
that as networks get bigger by adding more stations
and getting more spread out, the travel time increases
accordingly. This finding is in line with that of other
studies such as Luo et al. (2019). While this model
has a better fit than the single parameter model, there
still are some outliers which will be shortly highlighted
below.

There are four networks that have a much higher ac-
tual travel time than their predicted travel time, being
Chicago (+13.0), Atlanta (+15.0), Boston (+16.0)
and Oslo (+16.0). These are the same four networks
as identified in Section 4.2. As such, in addition to hav-
ing a long travel time relative to their network length,
these networks also have a long travel time relative to
their number of stations and direct station distance.
Interesting to note is the San Francisco network,

which was greatly underestimated by the length-based
model (+11.2) but is actually strongly overestimated
by this model (-8.3). Looking into the data, it becomes
clear that San Francisco has an exceptionally long av-
erage direct station distance which is the cause of this
overestimation. San Francisco in fact has a direct sta-
tion distance that is 13km longer than any other. This
begs the question whether the San Francisco network
should even be classified as a metro network, consid-
ering it is so different from all other networks in terms
of its direct station distance. Instead, it can better be
defined as a commuter rail.

There are also five networks that have a much lower
actual travel time than predicted, being London (-10),
Paris (-11), Bilbao (-11), Helsinki (-13) and Rennes
(-14). Helsinki, Rennes and London also were over-
estimated outliers in the length-based model, and as
such can simply be considered as networks that have a
low travel time for their network size. Bilbao was also
an overestimated outlier in the length-based model
(-9.98), albeit slightly less so than Helsinki and Rennes.
Genoa and Turin, two networks that were greatly over-
estimated by the length-based model (-14.8 and -13.8
respectively) are still overestimated here but much
less so (-6.7 and -9.5). It thus seems that while this
model is better at predicting the travel time for these
two networks, they are still outliers having a relatively
low travel time for their network size. Paris was also
overestimated by the length-based model (-6.3) but is
overestimated considerably more in this model (-11).
The data reveals that Paris has a relatively low travel
time for its number of stations. It can thus be concluded
that Paris performs especially well for its number of
stations.

In conclusion, it can be noted that the model based
on the number of stations and average direct station
distance can predict the total travel time of networks
to an acceptable degree. In this model, there are still
networks that are significantly over- or underestimated
in terms of their travel time. These networks can thus
be said to perform well or poor respectively based on
their network size metrics.

4.4 Travel time calculation benchmark
analysis

In addition to comparing the average travel time to
other factors, the methodology applied in this study
is also compared to other state-of-the-art methods. To
be more precise, the total travel time method (hence-
forth simply referred to as "total" method) is compared
to the "in-vehicle" and "hops" methods. The in-vehicle
method takes the shortest path travel time based purely
on the path with the least in-vehicle travel time. The
hops method instead considers only the amount of
hops between stations as the shortest path. Both of
these methods are widely applied in literature as they
do not require as much data as the total method. In
this section, these two alternative methods are directly
compared to the total method to identify the differ-
ences in their representation.
The comparison between the total and in-vehicle

and hops methods can be found in Figures 6a and 6b
respectively. Both of these figures show a clear positive
correlation, which is confirmed by the numerical anal-
ysis, with a Pearson correlation of 0.87 for in-vehicle
and 0.68 for hops respectively. While these correla-
tions are both strong and positive, the hops method is
clearly weaker correlated. The difference in strength
of correlation also becomes clear from Figure 6 im-
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(a) Total vs in-vehicle

(b) Total vs hops

Figure 6: The total travel time method compared to the
in-vehicle time and hops method

mediately with the hops method comparison having a
considerably higher spread than the in-vehicle method
comparison. Nevertheless, the spread is quite signif-
icant for both of these methods in both the vertical
and horizontal direction. Some examples are shortly
highlighted to indicate this difference. Atlanta (ATL) is
an excellent example in both comparisons of how the
two alternative methods can misrepresent networks.
In Figure 6a it can be seen how Atlanta has nearly the
same in-vehicle travel time as Lille (LIL) but a com-
pletely different total travel time (56 and 27 minutes
respectively). Using the in-vehicle method would sug-
gest Atlanta and Lille are similar, while the total travel
time method shows they are most certainly not. On the
other hand, Atlanta and Valencia (VAL) have nearly the
same total travel time, but a very different in-vehicle
travel time (18 and 34 minutes respectively). Using
the in-vehicle method would suggest that Valencia has
much longer travel times while this is in fact not the
case when incorporating waiting time and transfers.
This pattern can also be seen for Atlanta in the com-
parison with the hops method, where the variance is
even higher. Valencia also has a significantly higher
number of hops than Atlanta, while having the same
total travel time. In terms of other networks with the
same amount of hops as Atlanta, Turin is a notable
example with a much lower total travel time (57 vs 15
minutes). These examples show how differently these
three methods describe networks.

5 Conclusion & Discussion

In this final chapter, the conclusions and recommen-
dations based on the study are provided. The first
findings to discuss are related to the main research
question: "How can service information be included
into a comprehensive comparison of metro networks
worldwide?". This study shows how service informa-
tion can be efficiently included as concepts of in-vehicle
time, waiting time and number of transfers in the cal-
culation of shortest travel path travel times through the
network. Through this method, a comparison between
metro networks was made that includes this service
information. The median total travel time was used as
the indicator to incorporate service information.

Various network factors were used to help explain dif-
ferences in total travel times between networks. Firstly,
the correlations between the travel time and these fac-
tors were investigated. As hypothesized, all factors
have a positive correlation with the travel time. From
these factors, the network length has the strongest
correlation with the travel time. As such, the net-
work length was used in a simple regression model
to estimate the travel time. Through this, a variety
of outlier networks could be identified that perform
either much better or worse than predicted accord-
ing to the network length. In addition, this regression
model suggested that North-American networks per-
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form structurally worse compared to other networks,
especially worse than European ones. Including this
regional variation in the regression model turned out
to be significant and improved the model slightly.

Multiple regression was also applied in order to fur-
ther improve the model. A model was created with
two factors with a high correlation with travel time,
but low amongst each other: the number of stations
and the average direct station distance. This model
provided significant coefficients and performed much
better than the simple regression model. Nevertheless,
this model showed some of the same outliers as the
simple model, albeit reduced. Paris, Bilbao, Helsinki,
Rennes and London seem to perform much better than
predicted by the model while Chicago, Atlanta, Boston
and Oslo perform much worse. The most notable out-
lier is San Francisco, which is such an anomaly in terms
of both its direct station and interstation distance, that
it should not be considered a metro network, but a com-
muter rail instead. The discovered regional difference
was not significant at the 5% level in this model.

Lastly, it was evaluated how the uncommon total
travel time method applied in this study compares to
the more common methods of using only in-vehicle
time or hops in shortest path calculations. While all
three methods show a positive correlation with net-
work size, the method proposed in this study clearly
has a much stronger correlation than the other meth-
ods. In addition, it becomes clear that networks are
represented very differently by these three methods.
Some networks have a similar amount of average hops
while their average total travel time differs by more
than thirty minutes. These examples clearly show
how different these methods are in representing net-
works. Considering the more realistic nature of the
total travel time method, it becomes clear that apply-
ing that method is desirable for better comparisons of
networks.

In a general sense, the results of this study provide a
benchmark for network planners. Through the results
of this study, planners can understand which networks
share the same characteristics in terms of different in-
dicators, especially average travel time. This provides
them with a clear idea of which networks to consider
on how to improve their own network. This study also
provides insights into which metrics accurately repre-
sent travel time and which do not. Whereas the net-
work length and the combination of number of stations
and direct station distance turn out to be good met-
rics for comparison, the other explored factors are not
as much. This means network planners have a better
idea of which factors to focus on for comparison. The
total travel time method applied in this study also em-
phasizes the importance of considering all travel time
aspects of the travellers’ journey. Including waiting
time and number of transfers in network representa-
tions provides better insights into which aspects of the
travel time have most room for improvement.

In terms of limitations, the first obvious limitation is

the consideration of metro networks as a distinct, sep-
arated mode. Considering the complicated nature of
multi-layer networks, the decision was made to restrict
this study exclusively to metro networks. In terms of
the actual networks included in this analysis, the set
of 190 possible metro networks was limited to 51 be-
cause of data restrictions. While the total travel time
method applied in this study is more representative
than the in-vehicle or hops method, it still relies on
some assumptions and simplifications. The waiting
time might in fact be much lower for some networks as
transfer possibilities are created by planners that are
well-connected in the schedule. Walking times are also
not specifically considered in this study which can also
affect the actual transfer times experienced by trav-
ellers. In addition, all transfer stations are considered
equal in this study while some are much bigger than
others, leading to different transfer times. Finally, the
median value taken as the average of the travel time
distributions might not be representative of the average
traveler’s experience. As this value is the median of all
possible OD-pairs, this might overestimate some hardly
used OD-pairs while underestimating frequently used
OD-pairs.

For future work, the results of this study could be
explored into more detail by applying for example clus-
tering or principal component analysis. Other network
science indicators such as directness and degree can be
investigated both locally as well as globally to discover
further relations with the travel times. The method-
ology could also be expanded upon by creating multi-
layer networks that include multiple PT modes. In
addition, the data provided by this study could be
combined with actual traveler data such as OD-pair
demand data. The data from this study could help ex-
plain certain travel behavior or identify bottlenecks in
the network. Lastly, the results of this study could be re-
lated to existing benchmark studies between networks
to get a more comprehensive image of the relationships
between networks. An example of this is a report by
McKinsey (McKinsey, 2021) which provides a comple-
mentary qualitative assessment that could be combined
with this study’s quantitative assessment.
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B
MEDIAN TRAVEL TIME MAPS

In this appendix the median travel time for each network can be found split by region.
The colors of each network correspond to the value of the travel time as described by
the legend in Figure B.1. The respective regions are North-America (Figure B.2), Europe
(Figure B.3) and the rest of the world (Figure B.4) which thus includes Africa, Asia and
South-America.

Figure B.1: The legend for Figures B.2, B.3, B.4 with the color for each range of values of the median travel time

Figure B.2: The median travel time for the thirteen metro networks in North-America
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Figure B.3: The median travel time for the 31 metro networks in Europe

Figure B.4: The median travel time for the seven metro networks in the rest of the world



C
GENERAL NETWORK INFORMATION

Table C.1 contains the 51 networks that were included in the final data set. Along with
their names is information about their region, country, abbreviation, number of lines,
GDP and population. As described in Section 4.5, this data was all not retrieved from the
GTFS data but externally instead.

Table C.1: General information for the 51 networks selected in the final data set

Name Region Country Short Lines GDP (Million €) Population
Amsterdam EUR NL AMS 5 194067 996,915
Athens EUR GR ATH 3 83199 2,622,404
Atlanta NAM US ATL 4 430158.0777 6,144,050
Baltimore NAM US BAL 1 208629.7637 2,710,489
Berlin EUR DE BER 9 205625 3,644,826
Bilbao EUR ES BIL 2 37164 792,617
Boston NAM US BOS 3 478410.8022 4,941,632
Brussels EUR BE BRU 4 175751.23 1,215,289
Budapest EUR HU BUD 4 69658.93 1,752,286
Buenos Aires SAM AR BUE 6 55288.7619 15,625,084
Cairo AFR EG CAI 3 100156 20,500,000
Chicago NAM US CHI 8 707468.811 9,618,502
Cleveland NAM US CLE 1 134416.0513 2,088,251
Copenhagen EUR DK COP 4 134633.4 623,404
Dubai ASI AE DUB 3 116308.61 3,521,816
Genoa EUR IT GEN 1 30436.24 569,184
Helsinki EUR FI HEL 2 95445.5 648,042
Hyderabad ASI IN HYD 3 73696 7,677,018
Kobe ASI JP KOB 2 48589.53 1530000
Kochi ASI IN KOC 1 60564 2,119,724
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Lille EUR FR LIL 2 85056 955,906
Lisbon EUR PT LIS 4 77439.68 1,859,838
London EUR UK LON 11 615043.14 8,866,541
Los Angeles NAM US LA 2 1034458.982 13,211,027
Lyon EUR FR LYO 4 93402 1,277,584
Madrid EUR ES MAD 13 241040 5,012,504
Malaga EUR ES MAL 2 32207 574,654
Marseille EUR FR MAR 2 103783 969,002
Milan EUR IT MIL 4 215177.43 3,606,653
Montreal NAM CA MON 4 168638.68 4,104,074
Naples EUR IT NAP 2 61721.64 2,867,858
New York NAM US NY 36 1834722.195 19,261,570
Nuremberg EUR DE NUR 3 67888 518,365
Oslo EUR NO OSL 5 68653.21 623,966
Paris EUR FR PAR 16 758527 10,277,625
Philadelphia NAM US PHI 2 441727.3482 6,092,403
Prague EUR CZ PRA 3 88338.82 1,324,277
Rennes EUR FR REN 1 39020 271,686
Rome EUR IT ROM 3 167450.47 2,820,219
Rotterdam EUR NL ROT 5 88121 1,232,747
San Francisco NAM US SF 6 583388.7276 4,709,220
Santiago SAM CL SAN 7 89941.5 7,493,497
Stockholm EUR SE STO 7 151284.4 1,745,766
Toronto NAM CA TOR 4 320473.76 5,928,040
Toulouse EUR FR TOU 2 59930 744,104
Turin EUR IT TUR 1 75076.14 860,793
Valencia EUR ES VAL 6 61499 1,403,247
Vancouver NAM CA VAN 3 154280 2,463,431
Vienna EUR AT VIE 5 137002.48 1,766,746
Warsaw EUR PL WAR 2 93797.85 1,777,972
Washington EUR US WAS 6 555554.1972 6,250,309
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NETWORK DATA

Table D.1 contains the data points computed for each of the 51 included networks. Note
that the total travel time (TT) is the median value as explained in Section 5.1 while the
in-vehicle time (IVT), waiting time (WT) and number of transfers (TF) are listed with
their mean. The other data points are the total number of stations (Stations), the total
network length (Length) and the average direct station distance (Distance).

Table D.1: Data points computed for all 51 networks

Name TT IVT WT TF Stations Length Distance
Amsterdam 28 min 11 min 7 min 0.4 39 39 km 6 km
Athens 41 min 22 min 7 min 0.6 61 78 km 8 km
Atlanta 56 min 18 min 17 min 0.5 38 74 km 12 km
Baltimore 23 min 10 min 7 min 0 14 22 km 7 km
Berlin 50 min 23 min 7 min 1.3 174 143 km 8 km
Bilbao 22 min 16 min 3 min 0.2 42 38 km 7 km
Boston 50 min 20 min 9 min 0.8 52 59 km 7 km
Brussels 28 min 14 min 4 min 0.6 59 37 km 5 km
Budapest 31 min 12 min 4 min 0.8 48 37 km 4 km
Buenos Aires 38 min 16 min 4 min 1 78 55 km 4 km
Cairo 40 min 27 min 2 min 0.7 61 72 km 11 km
Chicago 64 min 32 min 10 min 1 137 174 km 11 km
Cleveland 35 min 18 min 9 min 0 18 29 km 10 km
Copenhagen 22 min 8 min 3 min 0.6 39 36 km 4 km
Dubai 43 min 28 min 5 min 0.6 53 82 km 16 km
Genoa 13 min 6 min 4 min 0 8 6 km 2 km
Helsinki 21 min 16 min 3 min 0.1 25 32 km 9 km
Hyderabad 39 min 19 min 5 min 0.6 56 59 km 8 km
Kobe 39 min 15 min 11 min 0.4 26 36 km 7 km
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Cochin 22 min 13 min 5 min 0 21 23 km 7 km
Lille 27 min 19 min 2 min 0.4 60 42 km 7 km
Lisbon 30 min 11 min 3 min 0.7 50 40 km 4 km
London 60 min 35 min 5 min 1.5 261 390 km 14 km
Los Angeles 31 min 10 min 11 min 0.1 16 24 km 6 km
Lyon 32 min 12 min 4 min 0.8 40 31 km 4 km
Madrid 66 min 31 min 8 min 1.7 240 258 km 10 km
Malaga 20 min 10 min 6 min 0.4 17 10 km 3 km
Marseille 22 min 9 min 4 min 0.4 29 20 km 3 km
Milan 39 min 21 min 4 min 0.8 106 88 km 7 km
Montreal 38 min 16 min 6 min 0.7 67 61 km 6 km
Naples 33 min 18 min 8 min 0.4 28 30 km 4 km
New York City 82 min 35 min 16 min 1.8 421 486 km 12 km
Nuernberg 31 min 13 min 8 min 0.6 49 36 km 5 km
Oslo 57 min 25 min 13 min 0.6 101 80 km 8 km
Paris 48 min 18 min 5 min 1.7 303 207 km 6 km
Philadelphia 40 min 16 min 9 min 0.5 50 51 km 6 km
Prague 31 min 13 min 3 min 0.6 58 61 km 7 km
Rennes 8 min 6 min 1 min 0 15 8 km 2 km
Rome 43 min 23 min 6 min 0.9 73 57 km 8 km
Rotterdam 48 min 26 min 8 min 0.6 70 96 km 11 km
San Francisco 65 min 36 min 13 min 0.3 50 203 km 29 km
Santiago 44 min 17 min 7 min 1.2 119 202 km 9 km
Stockholm 49 min 25 min 7 min 0.7 101 99 km 8 km
Toronto 41 min 26 min 4 min 0.7 75 74 km 9 km
Toulouse 23 min 12 min 2 min 0.5 37 25 km 4 km
Turin 15 min 12 min 2 min 0 23 13 km 4 km
Valencia 53 min 35 min 7 min 0.7 95 144 km 15 km
Vancouver 44 min 25 min 6 min 0.8 52 73 km 11 km
Vienna 39 min 16 min 5 min 1 98 80 km 6 km
Warsaw 28 min 15 min 3 min 0.5 33 33 km 7 km
Washington 57 min 29 min 9 min 0.7 89 174 km 12 km
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HISTOGRAMS

Figure E.1 below contains the (normalized) total travel time distributions for all 51 net-
works.
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Figure E.1: The total travel time distribution for all 51 networks
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PROCESSING

Table F.1 provides an overview of all 51 networks included (and nine that were excluded).
The "time spent" column refers to the processing time from the gtfspy graph output to
the curated L- and P-space graphs. The notes contain information about decisions, as-
sumptions and mistakes. For the nine excluded networks, the reasoning for excluding
them from the final data set is shortly explained. These networks are indicated in red.

Table F.1: Processing notes for all included networks

Network Date Time spent Notes
Amsterdam 19-04-2022 5min GTFS data manually split to re-

move all routes other than Amster-
dam metro routes.

Athens 30-06-2017 20min Map is mixed with tram and com-
muter rail, both of which are not
included in analysis. Line 3 ex-
tension towards Piraeus is missing,
first part was completed in 2020,
full connection not finished as of
2022.

Atlanta 22-04-2022 20min Notably high waiting times but
seems to match up with schedule
(about every 20min)

Baltimore 11-07-2020 15min There seems to be one train in
both directions going from John
Hopkins to Reistertown and then
to Owings Mills directly, without
stopping in-between. As there is
only vehicle per day, these edges
are deleted.
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Barcelona None Not included Split into two files because of two
different providers, need to be
merged. FGC version works, TMB
does not. TMB breaks because of
stop_times entries without depar-
ture arrival time. After deleting all
of these entries (as they’re irrele-
vant for metro), it breaks on fre-
quencies as there are apparently
missing stops.

Berlin 06-05-2022 30min Node 21101 (Rathaus Schoneberg)
is closed for reconstruction and is
thus not part of the scheduling.
There are three triangles where the
metro skips a station in one direc-
tion but not the other. These are:
Seestrasse (U6), Yorckstrasse (U7)
and Augsburgerstrasse (U3).

Bilbao 20-05-2022 10min Even though the system officially
has two lines, the GTFS data treats
them as a single line. The way
the two lines are separated is using
headsign (meaning there are eight
headsigns for one line). Exception
is created in the code such that
headsign is taken as differentiator.
Data does not entirely correspond
with actual case/Gmaps, as from
Ariz and Basauri at the end of L2,
transfers to L1 are not taken cor-
rectly. As this hardly affects the to-
tal travel times, this is left unfixed.

Boston 15-04-2022 15min The green line and mattapan line
are included in the system as a
subway line but are technically a
light rail line, as such are not in-
cluded in the official analysis. Park
St. and Downtown Crossing are left
unmerged as the green line is not
present.
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Brussels 19-04-2022 40min Elisabeth and Simonis are com-
bined into one station, even
though the map does not explicitly
mention this. Line 5 strangely
extends into a portion of line 3 at
the end of the day.

Bucharest None Not included For some reason for all lines, the
last edge between the second-to-
last and last station is missing in
only one direction.

Budapest 04-11-2016 30min Older GTFS data was taken as re-
construction has taken out line 3,
thus making the network incom-
plete. There are three disconnected
stations but they’re not actually on
the map so unsure exactly what
those are, they were deleted.

Buenos Aires 31-12-2021 1hr On line A, Alberti is only passed
on westbound trains and Pasco on
eastbound trains.

Cairo 01-01-2016 10min Is from 2014 so does not contain
the line 3 extensions since then.

Chicago 26-03-2022 1hr Jackson Red, Jackson Blue and Li-
brary are all merged into one.
State/Lake, Lake and Washington
are merged. Directed edges seem
to match up with directed edges on
the official map.

Cleveland 21-03-2022 5min Only red line is included as green
and blue line are light-rail.

Copenhagen 19-04-2022 5min -
Dubai 31-12-2021 15min All lines have the same color in the

data. The southern branch of the
red line is programmed as an extra
line and actually operates like that
in reality as well. Colors have been
manually adjusted to fit the real life
colors.

Genoa 12-04-2022 1min -
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Hamburg None Not included Alsterdorf is missing because of
construction. Hauptbahnhof Nord
and Sud are merged. There are
some extra numbered stations of
which the function is unclear. The
merge algorithm cannot properly
accomodate for merging these into
existing stations.

Helsinki 14-04-2022 2min -
Hyderabad 02-01-2022 5min -
Istanbul None Not included Many implementation differences

in GTFS data make it impossible for
gtfspy to load this data.

Kobe 01-12-2006 5min Data is over 16 years old. While the
stations and lines are completely
correct, the frequencies are most
likely lower than currently.

Kochi 29-10-2019 5min Petta, Alliance JN and SN JN are
missing from the data (were not
constructed yet).

Lille 04-02-2022 10min -
Lisbon 01-03-2022 20min Roma and Areiro are left unmerged

as their merge on the map is re-
lated to commuter rail. Line direc-
tions are programmed as separate
lines, red line has an extra line too.
Seems to not cause any problems
in P-space.

London 02-01-2017 2.5hr Added shape_id as a possible
direction indicator, correctness
not 100% guaranteed. There seem
to be some express trains on the
Metropolitan line, these were
deleted.The 10min walk transfers
are merged. Battersea branch
of Northern line is missing. The
right part of the northern circle
of the central (red) line seems to
be one-directional, this might be
a temporary thing. Kensington
station is inaccessible and Gmaps
also does not record it, so it’s
deleted.

Los Angeles 19-04-2022 10min -
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Lyon 13-04-2022 10min -
Madrid 20-07-2021 40min Stations with "long walking trans-

fer distance" according to the of-
ficial map, have been merged into
one station.

Malaga 11-01-2021 5min -
Marseille 19-04-2022 5min -
Mexico city None Not included Pipeline could not process the data

for unknown reasons.
Milan 07-09-2021 20min -
Montreal 21-03-2022 15min Station Outremont is missing as

that is under construction at the
current moment.

Munich None Not included Data is from March 22, where part
of U6 and U3 are out of service.
As this makes the network incom-
plete, network is not included.

Naples 01-04-2022 30min Rainbow line not included in the
data. As that falls outside of the
municipal zone of Naples and is
a very short line, this is deemed
acceptable. Piazza Cavour was
merged into Museo. San Giovanni-
Barra station is missing from the
data.

New York 20-12-2021 3hr Used stop distance 0 for auto-
matic merge, turned merge rec-
ommender phase 1 into auto-
matic (with 75% overlap and 0m),
skipped phase 2. All subway
and out-of-system transfers are
merged. E 180 st and Gun hill road,
Jamaica and Parsons (F), 7 Av and
Jay (FG), 7 Av and Church (FG),
Burnside and 167 (4) were deleted.
Some weird one-directional stuff
with the brown line, northeast. Has
been kept in, seems fine.

Nuremberg 22-03-2022 20min Colors overwritten manually as
they were all programmed with
same color.
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Oslo 16-06-2017 30min Gulerasen is skipped in south-
bound direction (as indicated by
official map). There are some P-
space edges with extremely low fre-
quency that do not appear on the
map. These seem to be from end-
of-day trains that take alternative
routes. This messes up P-space
calculation slightly, meaning the
shortest paths mean is about 3min
too long.

Paris 15-04-2022 3hr Has some lines that run in only one
direction. Urban transfers (accord-
ing to the map) are considered as
the same station. Chatelet and Les
Halles are left as separate stations
as combining them does not add
a transfer option. Saint Augustin
is merged into Saint Lazare as that
adds line 9 as a transfer option to
Saint Lazare. Havre Caumartin and
Opera are left split as combining
those does not lead to extra, logi-
cal travel behavior. La Chapelle is
merged into Gare du Nord to con-
nect line 2 to Nord. St. Michel and
Cluny are left unmerged as the only
reason for their liason is the RER
line which is not part of the metro
network. Similar reasoning for not
merge Gare de L’est and Chateau
Landon. Austerlitz is merged into
Lyon as that is a sensible urban
transfer. Unclear why and edge be-
tween Porte d’Auteuil and Michel
Ange Molitor exists (probably a late
night only connection, according
to Wikipedia). Anvers and Abesses
are left unmerged as their connec-
tion includes a funiculaire which is
not included.
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Philadelphia 07-06-2021 50min 8th street stations are merged. City
hall and 15th are merged. System
has express lines which are thus
automatically added as extra edges
in L-space. The broad-spur sec-
tion on the broad street line is a bit
confusing considering Fairmount
and Girard. Fairmount stations
are already merged, even though
the map does not indicate them as
such. This seems to be correct ac-
cording to the official station infor-
mation. There is an extra L-Space
edge between the terminals of the
Market-Frankford line. As this edge
has a frequency of 1, it is deemed a
last night train and deleted.

Prague 19-04-2022 10min -
Rennes 25-04-2022 5min -
Rome 19-04-2022 10min GTFS did not contain colors so

backup colors were used.
Rotterdam 19-04-2022 5min GTFS data manually split to re-

move all routes other than Rotter-
dam metro routes.

San Francisco 14-02-2022 30min Has notably high waiting times,
when compared to actual sched-
ule, seems a bit on the high side.
While Millbrae station is part of the
red line during regular service, it
becomes the terminus of the yellow
line after 9PM. This messes slightly
with the shortest path calculations,
meaning some shortest paths are
much longer than necessary.

Santiago 19-09-2020 1h30min Has lines that have different routes
where trains stop at alternating sta-
tions. The line 5 express routes
seem to be missing in some direc-
tions, not exactly clear. The other
two express lines (2 and 4) work
fine, 5 seems to miss an express
route in one direction.

São Paulo None Not included The data could not be processed by
the pipeline for unknown reasons.
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Singapore None Not included The frequencies from the GTFS
data do not load properly, hence
important data is missing

Stockholm 21-02-2022 30min For some unclear reason, the ghost
station Kymlinge is included in the
data, including the trips/routes.
The way this data is programmed
causes similar problems as for
Oslo.

Tehran None Not included The data seems to not be pro-
grammed correctly and cannot be
properly processed by the pipeline
for unknown reasons.

Toronto 28-03-2022 40min -
Toulouse 15-04-2022 5min -
Turin 06-07-2021 1min -
Valencia 19-04-2022 30min On line 3, between Rafelbunyol

and Albalat there are multiple
edges between nodes with an
unclear pattern, for unknown
reason. Balien and Xativa are left
unmerged as their merged status
on the map is because of the tram.
The data is programmed with a
huge amount of lines even though
there are 5 in actuality. This is likely
related to trains stopping at earlier
stations and express trains etc.
Shortest path calculations seem to
be able to accomodate for this.

Vancouver 03-01-2022 15min Vancouver City Centre is merged
into Granville.

Vienna 02-06-2020 30min Data contains a double schedule,
one until 17/03/2020 and one from
16/05/2020. The P-space algorithm
is manually adjusted to ensure the
former schedule is taken only (as
that one has the correct route col-
ors).

Warsaw 19-04-2022 5min Because of data age, still missing
Bernowo and Ulrychow on western
part of red line.
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Washington 03-01-2022 1hr Shady Grove and Rockville on the
red line are present as stations
but unconnected to the rest of the
graph, this is because of construc-
tion to those stations in the cho-
sen period. There’s an extra edge
on blue line that skips Arlington
cemetery, this ruins P-space cal-
culation so edge is deleted, mean-
ing the frequency is lowered with
about a vehicle an hour. This is
because this station closes at 7PM
and all trains afterwards skip it.
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Table G.1 below lists the sources for the population and GDP data for all included coun-
tries/regions.

Region Population source GDP source
Argentina 2010 Census (https://web.archive.

org/web/20120901061446/http:
//200.51.91.231/censo2010/)

Government statistics(www.
estadistica.ec.gba.gov.ar)

Canada StatCan (statcan.gc.ca) StatCan (statcan.gc.ca)
Chile Central Bank (https://si3.bcentral.

cl)
CEIC (https://www.ceicdata.com/
en)

Egypt CitiesABC (https://www.citiesabc.
com)

CitiesABC (https://www.citiesabc.
com)

EU EuroStat (https://ec.europa.eu/
eurostat)

EuroStat (https://ec.europa.eu/
eurostat)

India 2011 Census (https://censusindia.
gov.in/

Government data (https:
//community.data.gov.in/)

Japan Japan External Trade Organization
(JETRO) (https://www.jetro.go.jp)

JETRO (https://www.jetro.go.jp)

UAE Government statistics (https:
//www.dsc.gov.ae/)

Government statistics (https:
//www.dsc.gov.ae/)

UK EuroStat (https://ec.europa.eu/
eurostat)

Statista (www.statista.com)

USA 2020 Census (censusreporter.org) US Bureau of Economic Analysis
(https://www.bea.gov/)

Table G.1: The data sources for the population and GDP of the included networks
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