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Summary 
 
In the process of seismic subsurface imaging, there is no acceptable forward model reflecting the AVO 

response in a laterally inhomogeneous medium for reservoir characterization. This means that even 
when inversion is performed in full waveform, local heterogeneity is typically not fully incorporated 

while emplying a local 1.5D assumption. Thus, it is impossible to image and classify the subsurface 

features with these local heterogeneities.  Still, the angle-dependent response  encodes heterogeneity 
information that assists overcoming this issue if used properly.  To exploit its capabilities, we present a 

way for identifying reservoir characteristics in the presence of local heterogeneity by linking encoded 

angle-dependent responses created using angle-dependent Full Wavefield Migration with their 

originating source - the relevant geological context. To accomplish this purpose, a pipeline technique 
that integrates the produced angle-dependent responses with a pattern categorization deep-learning tool 

is proposed. For a basic test on synthetic data, the method successfully identified the produced different 

stratigraphic architectures and classified them in the training stage. The method is then validated on 
angle gathers generated from different models with comparable geological circumstances. 
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Geologic stratigraphic scenario testing via deep learning: towards imaging beyond seismic 

resolution 

 

Introduction 

 

In the process of seismic subsurface imaging and characterization, usually the tasks of seismic 

interpretation are mostly based on the seismic structural image (i.e. the angle-averaged reflectivity), 

optionally accompanied with seismic attribute information (Chopra & Marfurt, 2007). Alternatively, 

the reservoir characterization is usually based on AVO information in some pre-stack domain (e.g. via 

the angle-gathers), see e.g. (Veeken & Rauch-Davies, 2006). The latter usually employs the 1.5D 

assumption, meaning that locally a 1D medium is considered in order to use the Zoeppritz equations or 

its approximations (Aki & Richards, 1981), even if the inversion is done in a full waveform manner 

(Gisolf & van den Berg, 2010).This means that local heterogeneity is usually not properly incorporated, 

as there is no proper forward model describing the AVO response in a laterally inhomogeneous medium 

(Hammad & Verschuur, 2019). However, the heterogeneity information is encoded in the angle-

dependent response, e.g. by an non-symmetric behavior for positive and negative angles of incidence, 

which is neglected in the Zoeppritz equations for PP reflectivity. 
 

In this paper we propose a procedure to incorporate this detailed information on heterogeneity via a 

Deep Learning approach. For this, we assume a few geological scenarios and generate seismic forward 

data for each of them. An angle-dependent full-wave migration (FWM) is applied to generate seismic 

images (Davydenko & Verschuur, 2017). To access the encoded information, FWM can produce 

subsurface Radon gathers using the extended image domain. Following that, a multilabel machine 

learning (ML) network is trained using these gathers from a selection of models related to a few possible 

geologic scenario. The network determines for each subsurface area which scenario is most comparable 

to the input. By using this hybrid workflow, we hope to go beyond deterministic imaging, 

characterization limits and step forward overcoming the common problems for stratigraphic 

architecture imaging. 

Proposed workflow 
 

In this study, there are three stages of data generation, image domain encoding, and machine learning 

to the process (Figure 1). Next, we introduce each stage separately and then progressively associate 

them. We will directly link this description to a first, basic example to illustrate the procedure.  

Data Generation 
 

For the first stage, the procedure begins by defining (for our current example) four typical types of 

stratigraphic architecture called geo scenarios, as shown in Figure 2. These scenarios are stratigraphic 

"Fluvial system" "Clinoforms","Alluvial fans", " Coarsening upwards trends". A correspondence 

velocity model is then constructed for each scenario (Figure 3), and finally their forward seismic date 

 
Figure 1 Proposed hybrid FWM-ML workflow. 
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is generated with a finite difference method. For this first simple example, we do not yet include an 

overburden to each model.  

 
Fluvial system Clinoforms Alluvial fans Coarsening upwards trends 

    

Figure 2 Four main scenarios of stratigraphic structures- Geo models. 
 

Fluvial system Clinoforms Alluvial fans Coarsening upwards trends  

     
Figure 3 Four main scenarios of stratigraphic structures- Velocity models. 

 
Image Domain Encoding 
 

The application of FWM to the estimated data initiates the second stage. Through this process, time 

domain data is converted to some extended image domain by inversion techniques. In this stage, after 

the generation of images with angle-dependent FWM mode (Figure 4), the Radon panel cube is 

calculated and serves as the representative of the wave's angle-dependent characteristics (Figure 5). It 

is important to mention that despite the fact that each of these Radon panels corresponds to one lateral 

location, they all carry information about the locations nearby (Davydenko & Verschuur, 2017). Such 

that they can serve as input for deep learning networks to recognize lateral heterogeneity. 

 
Fluvial system Clinoforms Alluvial fans Coarsening upwards trends 

    

 
Figure 4 Four main scenarios of stratigraphic structures- Subsurface images.  

 
 

Fluvial system Clinoforms Alluvial fans Coarsening upwards trends 

    

Figure 5 Four main scenarios of stratigraphic structures- Radon Panel cubes. 

 

Hybrid FWM-ML 

 

The third phase addresses the ML deployment as follows. The information on heterogeneity and fine-

scale features that are not visible in the image itself, is contained in the Radon gathers. The patterns 

related to these geologic structures cannot be understood by visual perception alone (Li, 2018; Pintea, 
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et al., 2021). It is worth noting that the 1.5D medium assumption produces symmetric patterns in Radon 

panels, whereas heterogeneity produces asymmetric PP-reflectivity patterns. As a result, in this 

research, we suggest a combination of angle-dependent FWM to extract the Radon gathers and ML to 

recognize the patterns from these gathers. The ML part attempts to understand the pattern associated 

with each geologic scenario and train the network using it. This ML network classifies images locally 

into one of four classes using the multiclass classification technique. In contrast to standard binary and 

multiclass classification, this machine learning network predicts the likelihood of each class in this 

classification (Sokolova & Lapalme, 2009). Following the detection, the network provides a similarity 

rate score between the scenario classes and the detected class. Finally, gradient-weighted class 

activation mapping (Grad-CAM) is used to designate which portions of the image are used by the 

network for each of the true classes (Sokolova & Lapalme, 2009). 

 

Validation model  

 

For network validation proposes, similar stratigraphic scenarios models with variations were developed. 

These newly developed geological models were different in terms of velocity range and pattern, but 

they followed the similar geologic criteria for the stratigraphic structures. For example, consider the 

geological model depicted in Figure 6 (a), which is a representative of Alluvial fans. The layers 

thickness of this unrealistic geological model was assumed to be infinite. The goal of selecting this 

model was to specify how well the trained network is capable of recognizing the class. To do that the 

forward seismic generation, and FWM-angle dependent was generated (Figure 6 (b)). Consequently, 

the Radon panels for each surface location were determined (Figure 6 (c)). Each location panel was 

analyzed with the ML network and the image and final similarity detection map was overlaid in Figure 

6 (d). The final detection result revealed that the network is certain that "stratigraphic type - Fluvial 

system" exist. As shown in Figure 6 (d), the maximum likelihood also happens in between 500 and 

1500 meter. The validation model in Figure 7 is comparable to a fluvial system, with the exception that 

the deposited sediment in the bottom half, unlike the common deposit, is convex in shape. The network 

identified the class and stated that the maximum likelihood occurs before the starting point of the convex 

shaped deposit (Figure 7 (d)). 

    
(a) Velocity model (b) Image (c) A Radon panel for location 

1500 (m) 
(d) Image overlaid with 

similarity map Grad-Cam 

Figure 6 First validation model.  

 

    
(a) Velocity model (b) Image (c) A Radon panel for 

location 1500 (m) 
(d) Image overlaid with 

similarity map Grad-Cam 
Figure 7 Second validation model. 
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Discussions and conclusions 

This research focuses on developing a method to categorize stratigraphic formations using a machine 

learning network trained with angle dependent image information generated by FWM. These gathers 

served as the network's input. Following the training phase, the network was validated using a number 

of similar model angle gathers. With a scoring system that compares the detected class to the training 

class, the network demonstrate its ability to detect the class. Furthermore, a guidance map depicting the 

maximum chance between these two aids in best match locations. It is worthy to mention, the main 

advantage of this method is its ability to retrieve structures beyond the 1.5D assumption typically 

embedded in reservoir characterization. We also hope to go beyond standard seismic resolution. This 

finding agrees with the results of previous studies, which suggested Radon gathers could identify 

generalized transfer functions that are not normally extracted with common methods. Furthermore, in 

contrast to other studies, the proposed method proves to classify the stratigraphic structure for these 

four geologic scenarios. Further studies are necessary to confirm the findings of this study. First of all, 

we need more models per geologic scenario and also have to include realistic overburdens. Next, we 

suggest further studies with more geological scenarios. Besides, a feasibility study on using other 

annotated inputs, such as subsurface offset gathers, can reveal crucial information. Finally, we 

recommend that future research use real datasets to test the accuracy of the suggested strategy. 
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