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Essentially, all models are wrong, but
some models are useful.

George E.P. Box



Abstract

An analytical model for the onset and growth of delaminations induced by matrix cracks under

static loading is proposed. The model introduces four distinct configurations of delaminations

originating from crack tips, which are applicable to cross-ply and general symmetrical laminates

subjected to tension or tension + shear.

The delamination onset method employs Kassapoglou & Socci’s analytical crack propaga-

tion model to describe matrix cracks within the laminate. This leads to closed-form expressions

for the Strain Energy Release Rate associated with both crack propagation and the initiation of

delaminations at crack tips. Both expressions are used to predict the delamination onset load

and crack spacing. Predictions show excellent agreement with test results for cross-plies under

tension.

Regarding the delamination growth model, it assumes a constant distance between cracks

during growth (crack saturation). Experimentally-obtained Mode II interlaminar fracture

toughness equation and closed-form expressions for Strain Energy Release Rate for delamina-

tion growth are employed for predictions. The model overpredicts the initial delamination

length but exhibits satisfactory agreement with test results for the delamination growth in

cross-ply laminates under tension.

Combining all 3 models allows for a comprehensive prediction of crack propagation, delam-

ination onset and delamination growth for general symmetrical laminates. This comprehensive

approach enables the visualization of all relevant information in a single figure, providing

a concise and informative representation of the damage processes. Moreover, the analytical

model facilitates the construction of design curves to investigate delamination onset in detail.

Javier Romarís Villanueva
Delft, August 2023
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1
Introduction

Composite materials have provided significant improvements in the performance and efficiency

of aerospace structures in the last decades. Composite materials by definition are made up of

two or more materials with different properties, such as carbon fibers and epoxy resin, that

are combined to create a material with superior strength, stiffness and durability compared to

traditional materials such as aluminum. Composite materials used in the Aerospace sector

are generally made of Uni-Directional laminae (UD plies) that are stacked following different

orientations to obtain specific properties in those directions, this allows higher optimization

compared with the metal alloys in terms of weight and performance. Composites are used in

a wide range of aerospace applications, from primary structural components such as wings

and fuselages to secondary structures such as engine nacelles. In addition to reducing weight,

composites also offer other benefits such as improved resistance to fatigue, corrosion, or design

flexibility among others. As a result of these benefits, the use of composite materials is expected

to continue to grow in the aerospace sector, even expanding to other fields.

However, the use of composite materials also has disadvantages, one of which is their

failure behaviour. Composite materials are formed by two microscopically different materials

(fibers and matrix) and present different and complex failure modes. Some intrinsic to each

component, those that occur at the interfaces of both and more complex ones that appear as a

result of intricate combinations and interactions between the materials. The most common

failure modes, among others, are: the failure of the matrix with the consequent creation

of matrix cracks, the failure of the fibers (uncommon since they are very strong) and the

delaminations that occur on the interfaces of the laminate. These mechanisms depend on the

stacking sequence of the laminate (symmetric/non-symmetric , balanced/non-balanced ...etc),

the loads applied (in-plane or flexural), the geometry of the structure and the manufacturing

imperfections. Many of the behaviors of composite materials are not yet fully understood.

Failure modes for example are not yet perfectly characterized and there is still much room for

improvement in the models and theories.

Among all the possible failure cases, the most common damages in an aerospace structure

are the creation of matrix cracks in the polymer matrix and the formation of delamination

between plies [1]. Matrix cracks can occur at very low loads, well within the design ultimate

loads of the structure [2, 3]. This type of damage usually do not cause the complete collapse of

the structure but reduce the transverse properties of the ply and consequently, the stiffness and

Poisson’s ratio of the whole laminate [4–6]; it is important then to assess the damage to keep

track of the properties reduction. Matrix cracks multiply and usually induce the delamination

1
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onset to relieve the local stress concentration at the crack tips [7]. Its further growth then leads

to the final failure [7, 8]. This specific failure mechanism is prevalent in Aerospace structures

which emphasizes the importance of gaining a profound understanding of this phenomenon

and the physics behind it.

The most commonly employed methods for studying these types of damages independently

include a Shear Lag Analysis [9], Variational methods [10] and micromechanics models [11]. In

recent years, numerical techniques like Cohesive Zone Models (CZM) in FEM analysis have

also been developed [12]. Very few analytical or experimental studies have been conducted

specifically on the delamination onset induced by matrix cracks. O’Brien [13] developed

a simple analytical model to study the delamination onset and growth under quasi-static

and fatigue loading. He was a pioneer proposing the use of the Strain Energy Release Rate

(SERR) to effectively predict the behaviour of the delamination initiation in cross-ply laminates.

Later on, others like Takeda & Ogihara [7] expanded upon a shear-lag approach to also study

delaminations triggered by transverse cracks and they employed the mode II interlaminar

fracture toughness obtained from ENF tests to predict the progression of these delaminations.

Consequently, they made the assumption that the growth of a delamination in a 0º/90º interface

exhibits pure mode II behavior. However, there is still a lack of precise models capable of accu-

rately predicting the interactions between delaminations and matrix cracks in a general situation.

The objective of this thesis is to obtain an analytical method to predict the delamination

onset induced by matrix crack and its growth in a symmetrical laminate subjected to quasi-static

in-plane loads. This will follow a previous work by C. Kassapoglou & C.A. Socci. In their

paper "Prediction of matrix crack initiation and evolution and their effect on the stiffness of laminates
with off-axis plies under in-plane loading" [3], they obtained closed form expression to predict

the cracks formation and propagation under in-plane loads. These very accurate equations

will be used to derived analytical SERR expressions to predict the delamination onset which is

induced by the cracks. The model will be later validated using adequate test data from the

literature.



2
Literature Review

The Literature Review focuses on two main topics: matrix crack initiation and propagation

models and delamination onset and growth models. The techniques proposed in the literature

can be divided in analytical models, FEM analysis methods and experimental or empirical

approaches. Usually analytical methods to predict matrix cracks are based on the continuum

mechanics [14–16], a Shear Lag Analysis [17, 18] or a Variational approach [10, 19, 20] while

the delamination prediction usually involves the calculation of an Energy Release Rate (ERR)

[13, 21, 22]. Even though a variety of numerical and semi-analytical models have also been

proposed [23–27], this review will be mainly centered around analytical and experimental

studies. This emphasis is driven by the intention to propose an analytical method in this thesis.

When it comes to predicting damage in composite laminates, it is worth considering why

developing an analytical method is preferable to other techniques that may occasionally yield

more accurate results. Analytical methods, based on mathematical equations and theoretical

frameworks, provide distinct advantages in this context:

• Speed & efficiency: analytical methods often provide closed-form solutions or equations

that can be solved relatively quickly, allowing for rapid analysis and decision-making. In

the aerospace industry where efficiency is crucial and time-consuming processes like

numerical methods or costly approaches like testing are not preferred, the development

of an analytical method becomes particularly important.

• Insight into underlying mechanisms/Interpretability: analytical methods provide a deeper

understanding of the underlying mechanisms and relationships governing a system.

This understanding can offer valuable insights and facilitate generalizations beyond

specific empirical data points and also facilitates the interpretation of how variables and

parameters interact with each other.

• Extrapolation & generalization: in the aerospace sector, where the optimization and

complexity of designs result in unique characteristics for each composite laminate, the

ability to predict beyond the range of observed data holds greater significance than

having a perfect understanding of specific behaviors. Analytical models, relying on

theoretical principles, offer valuable insights into the behavior of systems under various

conditions and future scenarios. This becomes particularly advantageous in situations

where empirical data is lacking or when you need to predict different processes but fall

under the same physical principles. For instance, in design processes where precision

may be less crucial and the focus is on studying delamination behavior across a large

number of laminates, an analytical method proves to be more useful.

3
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• Parameter sensitivity analysis: analytical models allow for systematic sensitivity analysis

of the impact of different parameters on the model’s output. By manipulating the

mathematical equations, it is possible to determine the sensitivity of the model to changes

in input parameters, aiding in understanding the relative importance of different factors

and guiding decision-making. This is again very useful for the industry in the validation

and certification processes because you have a deep understanding on the strengths and

weakness of the model.

Despite their numerous advantages, analytical methods usually face challenges when

dealing with materials exhibiting complex behavior. These methods usually rely on simplistic

assumptions and equations and if the material in question demonstrates intricate behavior, the

model will likely fail to accurately capture its complexities in general scenarios due to the huge

amount of variables to take into consideration. In that sense, the unpredictability of inherent

material defects and the interactions between all the damage models are a huge obstacle in the

modelling process [7, 10, 11]. These defects and interactions can significantly alter the behavior

of matrix cracks and delaminations, as highlighted by Wang et al. [22]. Additionally, analytical

methods often suffer from limited scope and applicability. In some cases, these methods narrow

down their focus to specific situations in order to be accurate. For instance, Takeda & Ogihara

[7] proposed a method that offers highly accurate predictions but only for a very specific

combination of laminate and load conditions. Nevertheless, by employing appropriate assump-

tions, possessing a strong understanding of the underlying physics and employing sufficiently

complex equations, analytical models can still provide predictions for highly complex scenarios.

Another interesting discussion is related with the challenges associated with experimental

studies aimed at measuring crack distances and delamination lengths in composite laminates,

which can impact the validation of predictive methods. Matrix cracks are very small and

their detection and accurate measurement are not straightforward. Delaminations are also

difficult to detect as they can occur between layers or at the edges, often being mistaken for

fiber breakages, crack clusters or pre-existing defects [28, 29]. Sometimes stacking sequences

like cross-plies are commonly used to make measurement feasible and more accurate, where

the ply of interest or interface is distinct from the others to minimize false readings. However,

this approach may overlook complex geometries and placing measurement devices in small

areas can result in incomplete data if the damage has global behaviour [30].

While visual inspection and digital image correlation (DIC) techniques can measure surface

damage, they may not account for internal delaminations and cracks within the laminate.

Optical microscopy and scanning electron microscopy offer high accuracy but are challenging to

implement for continuous damage monitoring [28]. Non-destructive testing (NDT) techniques

such as ultrasonic testing, acoustic emission (AE) techniques, and X-ray computed tomography

(CT) are generally considered more effective [31]. It is important to note that the choice of

technique depends on specific research objectives, material properties and available resources.

Researchers often combine multiple methods to address the challenges associated with crack

distance and delamination length measurements in composite laminates [31]. When evaluating

the validation of a method, caution must be exercised with test data and associated errors,

particularly in the onset of cracks and delaminations, as these processes can be spontaneous and

exhibit some level of randomness [32]. A correct assessment of the errors and the measurements

and its limitations should be taken into consideration in the analysis of the predictions.
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2.1. Matrix cracks prediction
Matrix cracks (often called transverse cracks when they appear in 90º plies [33]) emerge due

to various factors such as manufacturing defects, static and fatigue loading or impact on the

composite laminate [34]. These cracks typically manifest in regions where the material exhibits

lower transverse properties, usually the matrix. The matrix, often composed of a polymer

resin, tends to possess lower stiffness and higher susceptibility to cracking compared to the

reinforced fibers [33]. Figure 2.1a illustrates this phenomenon. Besides compromising the

overall properties of the laminate, the presence of matrix cracks can lead to additional types of

damage such as localized delaminations [5, 7], depicted in Figure 2.1b.

(a) (b)

Figure 2.1: (a) Matrix cracks in the 90º plies of a cross ply. (b) Delaminations induced by the matrix cracks in the

0º/90º interfaces. Obtained from [35]

All models used to predict crack initiation and growth in composites take into account

material properties and incorporate specific criteria for crack initiation and propagation. These

criteria often consider stress or strain levels in the matrix material, drawing upon fracture

mechanics principles or failure theories. Some models also consider load transfer between

fibers and the matrix, accounting for stress redistribution caused by the presence of cracks [3,

10]. However, explicit modeling of the fiber/matrix interphase or fiber sizing is typically not

necessary in most models, even though these components do impact the overall properties of

the composite. The complexity of modeling the gradual transition of properties between the

fiber and matrix, along with the relatively smaller effect of the interphase compared to load

transfer, contribute to this decision [36, 37]. In general, failure is more likely to occur at free

surfaces where fibers intersect, such as holes, edges, defects or cracks, rather than in the middle

of the fiber within the matrix interface [36]. However, it’s important to note that if there are

issues with the manufacturing process or the fiber/matrix interface, the fiber/matrix interphase

and sizing can become relevant factors in crack formation and propagation [37]. Assuming

proper manufacturing and sizing processes, the loads required to cause debonding failure at

the fiber/matrix interface are significantly lower than in other regions [36]. This serves as an

illustration of the significance of making sound assumptions grounded in observations, prior

research and fundamental understanding. The application of sizing is aimed at enhancing

adhesion, thereby improving the interfacial shear strength and, notably, preventing fiber-matrix

debonding.

The first challenge for many authors was the estimation of the laminate stiffness and how

the cracks influence the elastic properties of the material. Reifsnider & Highsmith [17] and

Laws et al. [2] used a Shear Lag Analysis to model the axial stiffness of composite ply and
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relate it to the average distance between cracks. Ogin et al. [38] also obtained relations between

the crack density and the mechanical properties degradation under fatigue loading. However,

these approaches have limitations, as they mainly consider uniaxial tension and fail to account

for the complexity of ply response and crack formation under more general in-plane loads.

Additionally, they overlook the influence of adjacent plies on the cracked ply, which may result

in inaccuracies and underestimations of loads.

Kashtalyan & Soutis [18] applied a two-dimensional shear lag methodology in order to

compute the stresses occurring between cracks within a representative portion of the laminate.

In a more recent study, Chen & Yan [39] utilized a shear lag model incorporating a cohesive

fiber-matrix interface. They derived equations in a closed form to determine the maximum

force required for fiber pull-out and evaluated the distribution of stress during the process of

interface debonding.

Hashin [10] introduced the variational approach as a mean to provide an approximate

stress analysis for cross-ply laminates that experience matrix cracking within the 90° plies.

Subsequently, Hashin [19] conducted further research and discovered that cracks in certain plies

have a significant impact on the Poisson’s ratio but only a minimal influence on longitudinal

stiffness. Larĳani & Farrokhabadi [20] made additional advancements by developing a complex

model based on the variational approach. This model was capable of predicting the effect of

cracks on stiffness and even preemptively identifying the initiation of delaminations at specific

crack distances. Hajikazemi & Sadr [40] also obtained expression for arbitrary lay-ups and later

on, Nairn [41] expanded the concept to study the outer ply cracking in cross-ply laminates.

Talreja [14, 15] incorporated continuum damage mechanics and micromechanics to create a

model that effectively predicted off-axis cracked plies. Similar approaches were adopted by

Van Paepegem & Degrieck [42], who focused on crack formation under pure shear. At the

same time, Varna et al. [16] obtained precise models to predict the crack density on cross-ply

laminates. Although this model demonstrated accuracy, it required empirical data to fit certain

parameters. Talreja & Singh [43] later on proposed a method to predict the crack initiation and

evolution in off-axis plies. Their approach integrated FEM analysis with empirically-derived

parameters to accurately anticipate the deterioration of properties resulting from matrix cracks.

In a more recent study, Socci & Kassapoglou [3] developed closed-form expressions to

calculate the stresses between cracks, taking into account the elastic effects resulting from the

nonlinear behavior of the shear stress-strain response. They integrated these expressions with

an energy-based method to forecast the occurrence of new crack formations. Additionally, they

derived closed-form equations to predict the reduction in stiffness of a ply under different

in-plane loads. The model considered factors such as ply thickness, stacking sequence and

load redistribution effects, making it applicable to a wide range of laminates. Notably, the

derived expressions exhibited excellent correlation with experimental data gathered from

various literature sources.

2.2. Delamination onset & growth
Delaminations in composite laminates can manifest in various forms. Two commonly observed

types are edge delaminations and delaminations induced by cracks in the polymer matrix.

Edge delaminations occur due to the highly concentrated stress fields present at the free edges

of the laminate. Similarly, matrix cracks act as stress concentrators , creating localized areas

of weakened bonding between the plies, leading to localized delaminations [13, 44]( see Fig.
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2.2 for a schematic representation). This is particularly significant because, as previously

mentioned, matrix cracks appear well within the design ultimate loads [3]. In real-life scenarios,

these delamination types can interact with each other and other forms of damage, resulting in

complex damage patterns throughout the laminates. The specific nature and extent of delami-

nations depend on factors such as laminate design, material properties, loading conditions,

and inherent manufacturing defects [10].

(a) (b)

Figure 2.2: (a) Free edge delamination. (b) Delamination induced by matrix cracks.

The authors initially directed their research towards exploring free edge delaminations,

which originate at the edges of composite laminates and propagate throughout the thickness.

Subsequently, the authors shifted their focus to investigating delaminations induced by matrix

cracking which present greater complexities due to local interactions in the material. Rodini &

Eisenmann [8] were among the very first to study in detail delaminations although they didn’t

take into account the influence of matrix cracks. They performed extensive experimental tests in

graphite/epoxy laminates, mainly cross-plies, to study the variables influencing the phenomena.

Wang et al. [22] then studied 2 types of delamination: 1D delamination (free edge delami-

nation for example) and 2D delamination (contoured delamination). They used finite-element

method to obtained Strain Energy Release expressions for both cases and they compared with

experimental data obtained from their previous studies [45]. In a specific case, they focused

on the analysis of a delamination occurring at the intersection of transverse cracks and the

free edge of the laminate. Their study was one of the earliest to acknowledge the complexities

associated with the interactions between these two types of damages. In the majority of tests,

it was observed that matrix cracks in the 90º plies induced localized delaminations. These

delaminations then underwent growth and led to the formation of a contoured delamination

front. Conversely, in other tests from the same study, free-edge delaminations appeared first,

leading to the formation of matrix cracks that later induced local delamination onset. The

researchers emphasized that the onset of delamination and subsequent interactions were

highly sensitive to manufacturing defects and other local imperfections. These findings align

with the results of other experimental studies conducted by Brewer & Lagace [46], Wang [47]

and Crossman et al. [48]. Due to the various challenges encountered, the development of a

satisfactory analytical model was complicated.

Independently, O’Brien [13] studied the edge delamination onset and growth on symmetric

laminates under quasi-static and fatigue loads. He was a pioneer proposing the use of the

Strain Energy Release Rate (SERR) and he derived simple analytical expressions to predict the

initiation and growth of edge delaminations. Initially, O’Brien determined the stiffness of the
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pristine laminate using Classical Laminate Theory (CLT) (Fig. 2.3.a). He then employed a rule

of mixture analysis, assuming a fully delaminated laminate (Fig. 2.3.b). By assuming complete

delamination in one or more interfaces and applying the rule of mixture assumption that the

resulting sublaminates (Fig. 2.3.b) experience the same axial strain but different transverse

strains, he calculated the corresponding degraded properties. Subsequently, he obtained

an equation for a partially delaminated laminate by employing again the rule of mixture,

assuming equal-sized delaminated strips at both edges of the laminate (Fig. 2.3.c). This led to

a closed-form equation for stiffness loss, which enabled the derivation of an SERR expression.

He then obtained a critical SERR value from a [±30/±30/90/9̄0]𝑠 laminate and successfully

utilized this value to predict the onset of edge delamination in [+45𝑛/−45𝑛/0𝑛/90𝑛]𝑠 (n = 1,2,3)

laminates. Subsequently, he studied the delamination growth. He employed a delamination

resistance curve (R-curve) to predict the growth behavior and established a correlation between

his SERR equation and delamination growth rates using a power law relationship. This allowed

him to investigate the behavior of laminates under fatigue loads. Although O’Brien’s study did

not explicitly consider matrix cracks, he acknowledged the significance of stiffness changes

resulting from secondary mechanisms such as matrix cracking in the 90º plies.

Figure 2.3: Rule of mixture analysis of stiffness loss. Obtained from [13]

Nairn & Hu [21] used a Variational approach to study the delaminations initiating from

matrix crack tips taking into consideration complex three-dimensional effects on the shape of

the delamination front as shown in Figure 2.4. They obtained SERR expression to predict the

critical crack spacing at the delamination onset in [0/90𝑛]𝑠 , [02/90𝑛]𝑠 and [±45/90𝑛]𝑠 laminates.

The critical crack spacing is defined as the distance between the crack at which the local

delaminations first appear in the tips. Similar approaches were proposed by Lem & Lui [49] in

which they derived expressions to compare the energy dissipation of both delaminations and

cracks.
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Figure 2.4: (A) An edge view of a representative element of damage having microcracks and delaminations. (B) A

side view of the through-the-width delaminations. The shaded areas indicate areas of delaminations. (C) A side

view of arbitrarily shaped delamination fronts. Obtained from [21].

Salpekar & O’Brien [50] investigated local delaminations induced by matrix cracks in

[±𝜃/904]𝑠 laminates using 3D finite element analysis. They proposed three configurations

for local delaminations and placed particular emphasis on a triangular-shaped delamination

emanating from a matrix crack (see Fig.2.5). Using Virtual Crack Closure Techniques (VCCTs),

the authors obtained SERRs expressions corresponding to modes I,II & III. Then they study the

SERRs values along the delamination front and obtained predictions for its shape and growth.

Figure 2.5: Schematic of an inclined delamination growing from a transverse crack. Obtained from [50].

Takeda & Ogihara [7] extended a shear-lag stress analysis to cross-ply laminates containing

delamination at the matrix crack tips. Then, they compared the predictions for the delamina-

tion onset load and crack spacing with experimental data obtained from CFRP (T800H/3631)

laminates. Strain Energy Release Rate (SERR) expressions were derived as a function of the
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material properties, crack distance, delamination length and applied strain. In addition, they

proposed to use the experimentally obtained mode II interlaminar fracture toughness (𝐺𝐼𝐼𝑐) in

combination with the SERR equations to predict the total delamination length with respect to

the applied strain as shown in Figure 2.6. The model is very restricted to [0/90𝑛/0] laminates

under uniaxial tension due to the complexity of obtaining stress field equations for more

intricate laminates. It is worth noting that the shear lag analysis employed in the model

provides approximate solutions, which are not reliable for accurately calculating local stress

fields near the crack tips. Additionally, the applied boundary conditions are not valid for

increasingly small crack spacings. Furthermore, the Energy Release Rate (ERR) associated with

a delamination, as calculated by these approaches lacks information about mode mixity. This is

a critical parameter for accurately predicting the initiation and growth of delaminations in more

general cases. Despite these drawbacks, the model exhibited excellent correlation in predicting

the onset of delamination and transverse crack density when compared to experimental data.

The correlation in predicting the growth of delamination for [0/904/0], [0/908/0] and [0/9012/0]
laminates was also deemed satisfactory.

Figure 2.6: Schematic illustration of the delamination growth prediction proposed by Takeda & Ogihara. Obtained

from [7].

More recently, Carraro et al. [44] proposed a method to predict the delamination onset

induced by matrix cracks in cross-ply laminates under static loads. They used all the previous

experimental evidences and studies to present closed form expressions for the mode I,II &

III stress fields around the matrix crack tips as a function of the so-called Generalized Stress

Intensity Factors (GSIFs). Then, a fracture criterion was proposed for assessing the onset of

delamination, based on a critical value of the mode I GSIF. The researchers conducted several

quasi-static tests on GFRP laminates with configurations of [0/902]𝑠 and [02/904]𝑠 to validate

their predictions of crack density and delamination onset. In their findings, they observed

irregularities in the delamination onset at the 0º/90º interfaces. It was noted that in some cases,

delamination did not initiate in both symmetric interfaces or occurred with jumps between

interfaces through the 90º ply block (see Figure 2.7).



2.2. Delamination onset & growth 11

Figure 2.7: Schematic of the damage evolution in a cross-ply under quasi-static load. Obtained from [44].

This behaviour is in accordance with previously published studies in which similar pattern

were reported. For example, Schellekens & Borst [51] reported similar jumps in [0𝑛/±35𝑛/90𝑛]𝑠
CFRP laminates subjected to uniaxial tensile loading as shown in Fig. 2.8. Others like Lam-

merant & Verpoest [52] and Pakdel et al. [53] also reported similar behaviour in laminates

under impact and fatigue loading respectively. All these experimental evidences emphasize the

complex interactions among cracks, delaminations, interfaces, manufacturing imperfections,

fiber breakages and applied load asymmetries [29]. Consequently, proposing an analytical

method that accurately correlates with test data becomes challenging.

Figure 2.8: Jumping of the delamination between the -35/90 interfaces using the 90º ply matrix crack. Obtained

from [51].

Through an analysis of the relevant literature, it becomes evident that analytical models

for predicting the delaminations induced by matrix cracks in a symmetric laminate under

generic in-plane loading conditions are lacking. Although numerous detailed methods have

been derived for specific scenarios with the help of empirical fits or numerical methods, a

comprehensive and universally applicable analytical model is yet to be developed.
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2.3. Research Question(s)
The main research question that can be derived from the Literature Review is formulated as

follows: To what extent can an analytical model predict the delamination onset induced by
matrix cracks and their subsequent growth in a symmetric composite laminate subjected to
quasi-static in-plane loads?

Current approaches for predicting damage in composite laminates typically rely heavily

on FEM analysis or experimental testing to ensure accuracy. However, the integration of an

analytical model would significantly enhance efficiency, adaptability and speed compared

to other methods. While the accuracy might not be on par, an analytical model that offers

quick results without the need for extensive computational resources, applicable to a generic

laminate under various loading conditions would prove immensely valuable, particularly in

the design phase. Also, other sub-questions can be formulated to break-down and further

explore the main research question:

• To what degree can the model accurately predict the spacing of cracks in a critical plies
under a specific quasi-static applied load?

• How feasible is it to predict the load at which delamination onset will occur in a
cross-ply laminate?

– And in a general symmetric laminate?

– What are the key factors and variables that significantly influence the accuracy?

• How can the delamination length in a cross-ply laminate be effectively correlated with
the quasi-static applied load?

– And in a general symmetric laminate?

– What is the level of correlation between the experimental test data and the delami-

nation growth prediction?



3
Methodology

The approach followed in this study is outlined in this section, providing an overview of the

general methodology. The fundamental principle of the entire model is based on the Strain

Energy Release Rate (SERR) concept, which aims to investigate the most effective methods by

which a material, in this case a composite laminate, can dissipate energy through an increase in

its damaged area [54]. This concept holds significant importance in fracture mechanics because

the energy that must be supplied to a crack tip or a delamination to grow must be balanced

with the formation of new surfaces [55]. Previous studies [7, 13, 33] have demonstrated the

effectiveness of the SERR concept in predicting delamination initiation and growth as well as

crack propagation.

Within the framework of this study, three specific processes will be examined using the

SERR concept. Then, analytical expressions will be derived for symmetric laminates and cross

plies subjected to in-plane loading. These processes include: the formation of new cracks,

the creation of a delamination in a crack tip and the growth of a existing delamination. By

obtaining these expressions, it will be possible to determine, for a given load and laminate,

which process will dissipate more energy (yielding a higher associated SERR) and thus is

more likely to occur [55]. To put it simply, the objective is to identify the most optimal means

of dissipating the energy introduced into the laminate due to the applied load. By doing

so, it would be possible to predict when and how the different processes occur. Although

other energy-dissipating processes such as fiber pullout and fiber breakage are not consid-

ered in this study, they may be relevant in other load cases involving for example impact [56, 57].

Figure 3.1 displays the three aforementioned processes, which are characteristic behaviors

of a composite laminate subjected to in-plane loading. These processes occur sequentially as

follows:

1. Matrix cracks initiate at relatively low loads, well below the ultimate design loads [2].

Subsequent loading leads to the formation of new cracks, assumed to appear at the

midpoint between two existing cracks (refer to Chapter 4)

2. At a certain point, delamination onset occurs in the crack tips at a specific crack spacing

(𝐷𝑜𝑛𝑠𝑒𝑡). This is a commonly observed phenomenon reported by various authors [7, 21,

44, 58].

3. Assuming the crack spacing remains constant (discussed in Chapters 5 and 6), the

delaminations induced by matrix cracks continue to grow until complete failure of the

interface.
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The Strain Energy Release Rates corresponding to these processes are denoted as 𝐺𝑐𝑟 ,

𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 and 𝐺𝑐𝑟+𝑑𝑒𝑙 respectively. The superscript "cr" represents the state in which only cracks

are present, while "cr + del" indicates the coexistence of both cracks and delaminations within

the laminate. The forthcoming chapters will propose and discuss closed-form expressions for

these variables.

Figure 3.1: Typical damage process of a cross-ply under in-plane loading.

Figure 3.1 illustrates that delaminations initiate at the crack tip and symmetrically grow

in the same direction. However, for a more complete analysis, four different variations of

delamination geometry are proposed, as shown in Figure 3.2. All four cases consist of repeating

unit cells throughout the entire length (𝐿) of the laminate.

The aim is to develop equations for the Strain Energy Release Rate (SERR) in each of these
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variations. Among these, the highest value will be chosen, a priori, to ensure a conservative

approach although this will be discussed more in depth in later sections.

• Case I represents a delamination that advances in one direction from the crack tip.

• Case II corresponds to a delamination propagating in both directions from the crack tip.

• Case III involves two pairs of delaminations going in different directions.

• Case IV is a special case inspired by experimentally observed patterns where a delamina-

tion jumps to another interface through a crack (see Fig. 2.8). This is also observed in

laminate after impact damage, where the delamination grow away from the impact point

jumping through interfaces [52, 59, 60].

(a) Case I (b) Case II

(c) Case III (d) Case IV

Figure 3.2: Possible configurations of delaminations nucleating from the crack tips.

Once the SERR (Stress Energy Release Rate) expressions are derived with respect to the

crack spacing 𝐷 for the crack propagation and delamination onset, a comparison can be made

to distinguish two distinct regions, as illustrated in Figure 3.3. The first region corresponds to

cases where 𝐺𝑐𝑟 > 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 , while the second region represents situations where 𝐺𝑐𝑟 < 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 .

For larger values of 𝐷, it is more optimal for the laminate to dissipate energy by generating

additional cracks, resulting in 𝐺𝑐𝑟 being greater than 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 . However, as the distance between

cracks decreases upon loading, there comes a point where it becomes more advantageous

to dissipate energy through delaminations (𝐺𝑐𝑟 < 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 ). This critical point, depicted in

Figure 3.3, is considered as the onset of delamination. The crack spacing 𝐷𝑜𝑛𝑠𝑒𝑡 at which

the delamination start can be related with the load that generates that amount of cracks and

therefore the delamination onset load can be obtained, as it will be discussed in Section 5.



16

Figure 3.3: Schematic representation of the SERR expressions that model the crack propagation and the

delamination onset.

Following the initiation of delaminations at the crack tips, the growth of delaminations

can be predicted using the corresponding Stress Energy Release Rate (𝐺𝑐𝑟+𝑑𝑒𝑙) expression that

is derived in following chapters and the mode II interlaminar fracture toughness (𝐺𝐼𝐼𝑅), as

proposed by Takeda and Ogihara [7]. The SERR expression will be influenced by the applied

load, crack spacing, delamination length and material properties. However, in Section 5 & 6, it

will be assumed that the crack spacing remains constant after the onset of delaminations due

to crack saturation. A schematic representation of the delamination length prediction concept

is illustrated in Figure 3.4.

Figure 3.4: Schematic representation of delamination growth prediction.
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The energy release rate for delamination growth (𝐺𝑐𝑟+𝑑𝑒𝑙) is a decreasing function of the

delamination length 𝑎 but it increases with the applied load. The mode II interlaminar fracture

toughness is considered as the critical value that initiates growth at each load level. Therefore,

the intersection of 𝐺𝑐𝑟+𝑑𝑒𝑙 and 𝐺𝐼𝐼𝑅 corresponds to the delamination length at each specific load

case which allows the prediction of the delamination growth. A comprehensive explanation of

the entire model will be provided in Section 6. A schematic of both the delamination onset

method and the delamination growth method that will be presented in this thesis are presented

next:

Delamination Growth Model

Laminate Properties

Delaminations

Case I Case IVCase II Case III

𝐺𝑐𝑟+𝑑𝑒𝑙(𝐷, 𝑁𝑥 , 𝑎.𝑀𝑎𝑡.𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑖𝑒𝑠)

𝐺𝐼𝐼𝑅(𝑎) 𝐺𝑐𝑟+𝑑𝑒𝑙 (𝐷onset , 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 , 𝑎)

𝐺𝐼𝐼𝑅(𝑎) ∩ 𝐺𝑐𝑟+𝑑𝑒𝑙 (𝐷onsel
, 𝑁𝑥, onset , 𝑎)

𝑎0

𝑁𝑥 + Δ𝑁𝑥

𝐺𝐼𝐼𝑅(𝑎) ∩ 𝐺𝑐𝑟+𝑑𝑒𝑙 (𝐷onset , 𝑁𝑥 + Δ𝑁𝑥 , 𝑎)

𝑎 (𝑁𝑥 + Δ𝑁𝑥)

𝑎(𝑁𝑥) >
𝐷𝑜𝑛𝑠𝑒𝑡?

Delamination

covers the

whole length

𝑎(𝑁𝑥)

𝐷onset , 𝑁𝑥, onset

Delamination

Onset Model

Delamination

onset test

data?

𝐸1 , 𝐸2 , 𝐺12 , 𝑣12 , 𝛾𝑦 , 𝐿, 𝑡

Increase Load

No

Yes

No

Yes

Figure 3.5: Delamination Growth Model
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Delamination Onset Model

Ply Properties

Laminate

Cross-Ply Symmetrical

Loading

Tension Tension + Shear

Max. Stress Criteria

Critical Ply

Delaminations

Case I Case IVCase II Case III

𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 = lim

𝑎→0

𝐺𝑔𝑐𝑟+𝑑𝑒𝑙

𝐺𝑐𝑟 ∩ 𝐺𝑐𝑟+𝑑𝑒𝑙
onset

𝐷𝑜𝑛𝑠𝑒𝑡

Cross-Ply under Tension Other cases

𝑁𝑥𝑦/𝑁𝑥

𝜀a,onset =
𝑌𝑇
𝑖𝑠

𝐸2

√
0.27024

𝑓 (𝐷onset )

(
𝜎𝑦𝑜𝑣

𝑌 𝑖
𝑖𝑠

)
2

+
(
𝜏𝑥𝑦𝑜𝑣
𝑆𝑖𝑠

)
2

= 1

𝑁𝑥, onset , 𝐷onset , 𝐺onset

𝑁𝑥, onset /𝑁𝑥𝑦, onset

𝐷 onset , 𝐺 onset

Cracks in 90
◦
ply

Matrix Cracks

(𝐸1 , 𝐸2 , 𝐺12)

Stacking Sequence

(𝑁𝑥) (𝑁𝑥/𝑁𝑥𝑦)

𝐺𝑐𝑟+𝑑𝑒𝑙 𝐺𝑐𝑟+𝑑𝑒𝑙 𝐺𝑐𝑟+𝑑𝑒𝑙 𝐺𝑐𝑟+𝑑𝑒𝑙

𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡𝐺𝑐𝑟

(
𝑌𝑡
𝑖𝑠

) (
𝑌 𝑖
𝑖𝑠
, 𝑆𝑖𝑠

)

(𝑡1 , 𝑡2)

Iteration

Figure 3.6: Delamination Onset Model
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Matrix Crack Model

This section presents and validates the model utilized for predicting the initiation and propa-

gation of matrix cracks. The model’s accuracy is verified using crack spacing data obtained

from relevant literature sources although it has already been extensively validated for stiffness

degradation. A Strain Energy Release expression is also derived and additionally, an investiga-

tion of the influential variables and a sensitivity analysis of the parameters are conducted to

gain further insights into the process.

The analytical model, developed by C. Kassapolou & C. A. Socci [3], serves as a fundamental

basis for the proposed method to study induced delaminations, as will be discussed in Chapters

5 and 6. The selection of this model is based on three key principles:

• Efficiency & Interpretability: the chosen method should possess an analytical nature,

allowing for an analytical delamination model. Parameters and physical concepts should

be easily comprehensible and easy to study.

• No layups restriction: the model should be applicable to a wide range of cases, aiming to

yield similar results for the proposed model in this study.

• Accuracy: extensive validation has been conducted to establish the model’s accuracy.

An erroneous representation of the cracks would likely lead to inaccurate delamination

predictions.

4.1. Summary of Socci & Kassapoglou’s [3] model for stiffness degra-
dation due to matrix cracks.

Socci & Kassapoglou [3] introduced an analytical approach for investigating the deterioration of

properties in a unidirectional (UD) ply caused by the presence of matrix cracks. They derived

closed-form expressions for the stresses within a cracked ply subjected to in-plane loading,

incorporating the elastic effects resulting from a non-linear shear stress-strain relationship.

Furthermore, they obtained analytical expressions for the elastic constants. To predict the crack

propagation, they proposed an energy criterion that will be explained in 4.2.

In a laminate under pure tension, it is assumed that the cracks are confined within the ply of

interest and span the entire width of the laminate. The axial stiffness between the cracks remains

constant and equivalent to the pristine properties while only the transverse properties are

affected. It is assumed that a matrix crack appears when the transverse in-situ strength (𝑌𝑇
𝑖𝑠

) is

19
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attained within a ply. Consequently, there is no occurrence of inelastic behavior prior to cracking.

Additionally, the laminate is assumed to have considerable length in the longitudinal direction,

thereby eliminating any dependence of stresses on the x-axis. Closed-form expressions for the

stresses between the cracks 𝜎𝑦 , 𝜎𝑧 and 𝜏𝑥𝑦 , where z is the out-of-plane direction, are derived with

respect to the distance between them𝐷, material properties and the thickness of the cracked ply

𝑡𝑐 . For a detailed derivation of the complete stress expressions, please refer to the source cited [3].

The transverse Young’s modulus (𝐸2,𝑟𝑒𝑑) of the cracked ply within a laminate can be

determined by dividing the average stress at 𝐷/2 by the applied strain. By substituting in the

equations derived in [3] and adjusting the notation for consistency with this study, the reduced

transverse Young’s modulus of a ply caused by the existence of cracks normalized with the

pristine Young’s modulus can be expressed as follows:

𝐸2,𝑟𝑒𝑑

𝐸2

= 1 + 8

𝜋2

∑
1

𝑛2

2𝑒
𝜑𝑛𝐷

2 − 2𝑒
−𝜑𝑛𝐷

2 + 𝜑𝑛𝐷
(
𝑒

𝜑𝑛𝐷
2 + 𝑒

−𝜑𝑛𝐷
2

)
𝑒−𝜑𝑛𝐷 − 𝑒𝜑𝑛𝐷 − 2𝜑𝑛𝐷

(4.1)

with n odd, 𝐷 being the crack spacing, 𝐸2 the pristine transverse Young’s modulus of the

ply, 𝜑𝑛 = 𝑛𝜋/𝑡𝑐 and 𝑡𝐶 the thickness of the cracked ply. The 𝐸2,𝑟𝑒𝑑 value obtained in eq. 4.1 is

now used to calculated the minor Poisson’s ratio of the cracked ply:

𝜈21,𝑟𝑒𝑑 =
𝐸2,𝑟𝑒𝑑

𝐸1

𝜈12 (4.2)

When shear is present, it is again assumed that the matrix cracks remain confined within

the ply of interest and similarly, there is no dependence on the longitudinal direction. However,

unlike in transverse tension, where the stress-strain curve is linear, the shear stress-strain

response is considered to be nonlinear [3]. The distribution of 𝜏𝑥𝑦 exhibits significant non-

linearity for small values of 𝐷 and remains constant throughout the thickness for larger values

of 𝐷 (refer to [3]). Consequently, under sufficiently high loads, permanent shear strains occur

and the calculation of this permanent shear strains becomes crucial in accurately determining

the new shear modulus [61, 62]. It is worth noting that due to the nonlinear behavior of the

shear stress-strain curve, the magnitude of strain required to induce the formation of a new

crack is greater than in the case of transverse strain. The elastic shear modulus in a cracked

ply can now be calculated by using the average elastic shear stress (𝜏𝑥𝑦𝑎𝑣) immediately before

cracking. For a detailed description of the step-by-step process, please refer to Appendix B for

clarity. The final expression is provided as follows:

𝐺12,𝑟𝑒𝑑

𝐺12

=
1 − 8𝐵𝑛

1 −
8𝐵𝑛

(
1 −

𝛾𝑦
𝛾𝑎

) [
(1 − 8𝐵𝑛)

(
1 −

𝛾𝑦
𝛾𝑎

)
+

𝛾𝑦
𝛾𝑎

]
1 − 8𝐵𝑛 +

𝛾𝑦
𝛾𝑎

(4.3)
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where:

𝐵𝑛 =
∑ 𝑒 𝑘𝑛

𝐷
2 + 𝑒 𝑘𝑛𝐷𝑒−𝑘𝑛 𝐷2(

1 + 𝑒 𝑘𝑛𝐷
)
(𝑛𝜋)2

(4.4)

with n odd, 𝐷 is the distance between cracks, 𝐺12 the pristine shear modulus of the ply,

𝑘𝑛 = 𝑛𝜋/𝑡𝑐 , 𝑡𝑐 the thickness of the cracked ply, 𝛾𝑦 the yield shear strain and 𝛾𝑎 the local applied

shear strain in a ply. As it can be seen, the reduced modulus is not a constant and it depends

on the local applied shear 𝛾𝑎 due to the non linear behaviour. The local shear applied to a ply

𝛾𝑎 oriented in the 𝜃 direction can be linked to the applied strains in the laminate through the

Classical Laminate Theory (CLT):

𝛾𝑎(𝜃) = −2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝜀𝑥 + 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝜀𝑦 +
(
𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃

)
𝛾𝑥𝑦 (4.5)

4.2. Summary of Socci & Kassapoglou’s [3] model for crack propa-
gation.

Socci & Kassapoglou [3] proposed a method to predict the propagation of cracks based on the

stress fields between two existent cracks before and after the formation of a new cracks (see

𝜎𝑦𝑎𝑣,𝑏𝑒 𝑓 𝑜𝑟𝑒 , 𝜎𝑦𝑎𝑣,𝑎 𝑓 𝑡𝑒𝑟 , 𝜏𝑥𝑦𝑎𝑣,𝑏𝑒 𝑓 𝑜𝑟𝑒 , 𝜏𝑥𝑦𝑎𝑣,𝑎 𝑓 𝑡𝑒𝑟 in [3] ). By relating these stresses with the in situ

strengths of the ply (𝑌𝑇
𝑖𝑠

, 𝑆𝑖𝑠 ), they were able to predict the crack spacing D on a layer induced

by a local applied transverse or shear strain (𝜀𝑎 , 𝛾𝑎).

They observed that for large 𝐷, the stresses between cracks only depart from the value

that a pristine ply would have near the matrix cracks [3]. This means that there is a region

of constant stresses where the new crack is going to appear at location of local defects. If,

however, the crack spacing is short enough, the region of maximum stress degenerates to a

point, the mid point between two cracks. In this case, the crack spacing becomes uniform

and every crack will appear at a distance 𝐷/2 in the middle of two previous cracks. In the

subsequent sections of the report, detailed explanations of Socci & Kassapoglou’s model are

provided specifically for two cases: when the ply is subjected to transverse tension and when it

experiences combined loading, transverse tension and shear.

4.2.1. Ply under transverse tension
In cases where 𝐷 is relatively large, a simple maximum stress criteria is sufficient to estimate

the crack spacing. This estimation is made by considering the condition when the transverse

stress at the midpoint between two existing cracks, denoted as 𝜎𝑦(𝑦 = 𝐷/2), equals the in-situ

strength 𝑌𝑡
𝑖𝑠

. This approach is discussed in detail in Kassapoglou & Socci’s work [3].

However, when the crack spacing 𝐷 is small, an alternative energy-based method was

proposed. This method suggests that the appearance of a new crack can be determined by

analyzing the difference between the average energy density immediately after crack formation

and the energy density just prior to crack initiation. A critical value of this energy density

difference is considered. Further explanation and details of this energy-based method can be

found published in [3]. The average energy density normalized with 𝐾 = 𝜀𝑎𝐸2, as defined

by Socci & Kassapoglou [3] will be adopted, although some notation changes are made to

maintain consistency:
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Δ𝜎2

𝐾2

= 𝑓 (𝐷) = 64

𝜋4

[(∑ 𝑇𝑛

𝐶𝑛

)
2

− 𝐹2

𝑛

]
+ 16

𝜋2

[∑ 𝑇𝑛

𝐶𝑛
− 𝐹𝑛

]
. (4.6)

with:

𝑇𝑛 =
1

𝑛2
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𝑒
5

4
𝜑𝑛𝐷

(
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4
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4

𝜑𝑛𝐷 − 1

4

𝜑2

𝑛𝐷
2

)
+

1

2

𝑒
3

4
𝜑𝑛𝐷

(
1 + 5

4

𝜑𝑛𝐷 + 3

8

𝜑2

𝑛𝐷
2

)
− 𝑒 1

4
𝜑𝑛𝐷

(
1 − 1

4

𝜑𝑛𝐷 − 1

4

𝜑2

𝑛𝐷
2
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+1

2

𝑒
−5

4
𝜑𝑛𝐷

(
1 − 3

4

𝜑𝑛𝐷 + 1

8

𝜑2

𝑛𝐷
2

)
+ 1

2

𝑒
−3

4
𝜑𝑛𝐷

(
1 − 5

4

𝜑𝑛𝐷 + 3

8

𝜑2

𝑛𝐷
2

) ]
(4.7)

𝐶𝑛 =

[
1

2

𝑒
1

2
𝜑𝑛𝐷

(
1 + 1

2

𝜑𝑛𝐷

)
− 1

2

𝑒−
1

2
𝜑𝑛𝐷

(
1 − 1

2

𝜑𝑛𝐷

)] (
𝑒−𝜑𝑛𝐷 − 𝑒𝜑𝑛𝐷 − 2𝜑𝑛𝐷

)
(4.8)

𝐹𝑛 =
1

𝑛2

2𝑒
1

4
𝜑𝑛𝐷 − 2𝑒−

1

4
𝜑𝑛𝐷 + 1

2
𝜑𝑛𝐷

(
𝑒

1

4
𝜑𝑛𝐷 + 𝑒− 1

4
𝜑𝑛𝐷
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1
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𝜑𝑛𝐷 − 𝑒 1
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𝜑𝑛𝐷 − 𝜑𝑛𝐷

(4.9)

with n odd, 𝐷 being the crack spacing, 𝑡𝑐 the thickness of the cracked ply under study and

𝜑𝑛𝐷 =
𝑛𝜋
𝑡𝑐

.

The determination of the crack spacing parameter 𝐷 for a specific applied strain 𝜀𝑎 can

now be achieved using the normalized average energy density Δ𝜎2/𝐾2
. This is accomplished

by relating it to the normalized crack spacing 𝜋𝐷/𝑡𝑐 . The step-by-step process is illustrated

in Figure 4.1. It is important to note that the master curve of Δ𝜎2/𝐾2
remains constant across

different materials and its fundamental shape remains unaffected by varying applied transverse

strains.

Cracking initiates when the applied strain 𝜀𝑎 induces a transverse stress equal to 𝑌𝑡
𝑖𝑠

,

corresponding to a maximum value of (Δ𝜎2/𝐾2)𝑚𝑎𝑥 = 0.27024 at 𝜋𝐷/𝑡𝑐 = 9.3167. As the

applied load is increased, the curve shifts upwards, while the maximum value still occurs

at the same position. Consequently, when cracking commences, the critical value of Δ𝜎2/𝐾2

associated with a ply transverse stress of 𝑌𝑡 𝑖𝑠 can be determined by evaluating the maximum

of the Δ𝜎2/𝐾2
curve when the applied strain induces a transverse stress equivalent to 𝑌𝑡

𝑖𝑠
[3].

Δ𝜎𝑐𝑟𝑖𝑡 = 0.27024(𝐸2𝜀𝑐𝑟𝑖𝑡)2 = 0.27024(𝑌𝑡𝑖𝑠)
2

(4.10)

When the applied strain exceeds the critical value (𝜀𝑎 > 𝜀𝑐𝑟𝑖𝑡), assuming the Young’s

modulus remains constant as described in [3], the quantity Δ𝜎𝑐𝑟𝑖𝑡 is still applicable. In this

case, for a given applied strain 𝜀𝑎 , the master curve 𝑓 (𝜋𝐷/𝑡𝑐) = Δ𝜎2/𝐾2
(depicted by the

blue curve in Figure 4.1) is multiplied by (𝜀𝑎/𝜀𝑐𝑟𝑖𝑡)2, resulting in the red curve 𝑔(𝜋𝐷/𝑡𝑐) (see

Figure 4.1). The ordinate corresponding to the intersection of 𝑔(𝜋𝐷/𝑡𝑐) with the horizontal line

Δ𝜎2/𝐾2 = 0.27024 provides the new crack spacing𝐷 induced by the transverse applied strain 𝜀𝑎 .
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Figure 4.1: Normalized average density (Δ𝜎2/𝐾2
) vs normalized crack spacing (𝜋𝐷/𝑡𝑐).

It is important to note that Figure 4.1 becomes relevant only when the transverse applied

strain in the examined ply surpasses the critical strain value 𝜀𝑐𝑟𝑖𝑡 = 𝑌𝑡
𝑖𝑠
/𝐸2, which varies

depending on the material properties. If the applied strain is lower than 𝜀𝑐𝑟𝑖𝑡 , the crack spacing

is very large and non-uniform, making the concept of a constant crack distance unreliable.

Despite the limited accuracy in describing the cracks under such conditions, the value of 𝐷

remains sufficiently large to neglect any significant degradation in the properties of the ply. It

should be noted that for comparisons with crack spacing measured from test, twice the value

from Fig. 4.1 should be used because, for a given strain, D corresponds to the moment new

cracks will be created and it is unlikely test measurements capture exactly that moment [3].

4.2.2. Ply under transverse tension and shear
The previously discussed concept is applied in a similar manner when considering a ply under

shear. Similar to the transverse strain case, we analyze the difference between the shear stress

before and after cracking, denoted as Δ𝜏2/2𝐺12, in relation to 𝐷/𝑡𝑐 . It is important to note that,

unlike the constant 𝐸2 in transverse tension, 𝐺12 is not a constant value, as explained earlier.

Once again, we determine

(
Δ𝜏2/2𝐺12

)
𝑐𝑟𝑖𝑡 by identifying the maximum point on the curve

where the applied shear strain 𝛾𝑎 leads to a shear stress equal to the in-situ shear strength

𝑆𝑖𝑠. For a detailed explanation and derivation of the equations, refer to [3]. By employing

the Classical Laminate Theory (CLT), it is straightforward to calculate the local applied shear

strain 𝛾𝑎 and transverse strain 𝜀𝑎 experienced by a ply oriented at an angle 𝜃 with respect to

the applied strains in the laminate (𝜀𝑥 , 𝜀𝑦 and 𝛾𝑥𝑦):

𝜀𝑎(𝜃) = 𝑠𝑖𝑛2𝜃𝜀𝑥 + 𝑐𝑜𝑠2𝜃𝜀𝑦 − 2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝛾𝑥𝑦 (4.11)

𝛾𝑎(𝜃) = −2𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃𝜀𝑥 + 2𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝜀𝑦 +
(
𝑐𝑜𝑠2𝜃 − 𝑠𝑖𝑛2𝜃

)
𝛾𝑥𝑦 (4.12)
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When considering a ply subjected to a combination of shear and transverse strain, it is

possible to combine the models used for pure tension and pure shear. In this case, a new

crack will form when the combined effect of the difference between the transverse and shear

stress fields, before and after the crack, exceeds a critical value [3]. Mathematically, this can be

expressed as:

Δ𝜎2

2𝐸2

+ Δ𝜏2

2𝐺12

= Δ𝑈𝑑𝑎𝑣𝑐𝑟𝑖𝑡 (4.13)

Here, Δ𝑈𝑑𝑎𝑣𝑐𝑟𝑖𝑡 represents the critical value for a given load ratio 𝜀𝑎/𝛾𝑎 . This critical value

is determined by considering the scenario where, for a large value of D, the stresses throughout

the ply thickness are approximately uniform [3]. Under such conditions, a failure criterion of

Hashin-type would predict local failure, which can be expressed as:

𝜎2

𝑦𝑎𝑣

(𝑌𝑡
𝑖𝑠
)2

+
𝜏2

𝑥𝑦𝑎𝑣

(𝑆𝑖𝑠)2
= 1 (4.14)

For a comprehensive and detailed explanation of the process and the stress field depicted

in equation 5.31, please refer to the work by Kassapoglou & Socci [3].

4.3. Strain Energy Release Rate
This section aims to derive an expression for the Strain Energy Release Rate (SERR) related

to the propagation of matrix cracks. In this particular case, the SERR expression describes

the energy dissipated during the formation of new cracks due to the increase in the cracked

surface [63]. It will be named using the superscript "cr" to refer to "cracks". 𝐺𝑐𝑟 is therefore

defined as follows:

𝐺𝑐𝑟 = − 𝜕𝑈

𝜕𝐴𝑐𝑟
(4.15)

where 𝑈 is the potential strain energy available in the laminate which depends on the

applied load and 𝐴𝑐𝑟 is the total area of the cracks. In a general case, the potential strain energy

for a composite laminate under tension and shear loading is defined as;

𝑈 =

∭
1

2

(
𝐸𝑐𝑟𝑥 𝜀2

𝑥 + 𝑔𝑐𝑟𝑥𝑦 𝛾
2

𝑥𝑦

)
𝑑𝑉 =

1

2

(
𝐸𝑐𝑟𝑥 𝜀2

𝑥 + 𝑔𝑐𝑟𝑥𝑦 𝛾
2

𝑥𝑦

)
𝐿𝑤ℎ (4.16)

where𝑉 = 𝐿𝑤ℎ is the volume of the laminate, 𝜀𝑥 is the applied tensile strain to the laminate,

𝛾𝑥𝑦 is the applied shear strain, 𝐸𝑐𝑟𝑥 is the longitudinal modulus of the laminate with cracks and

𝑔𝑐𝑟𝑥𝑦 is the shear modulus of the laminate with cracks (no capital G used to avoid confusion

with the SERR expressions).

A maximum stress criterion is used to obtain the first ply failure of the laminate. The

critical ply or plies are assumed to contain cracks that extend throughout the entire width of

the laminate, as shown in Figure 4.2. The contribution of cracks in other plies to the SERR

expression is considered negligible compared to the first ply failure cracks where the growth

of the cracked area is way faster. Additionally, assuming cracks in every ply would introduce

more crack spacing independent variables, making the analytical calculations overly complex.

𝑡𝑐 is defined as the thickness of the cracked ply while ℎ, 𝑤, and 𝐿 correspond to the overall

thickness, width, and length of the laminate respectively. Additionally, 𝐷 denotes the distance
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Figure 4.2: Diagram of a laminate with matrix crack in a ply.

between cracks. With these definitions in place, the total cracked area can be expressed as

follows:

𝐴𝑐𝑟 = 𝑡𝑐𝑤

(
𝐿

𝐷

)
(4.17)

Substituting eq. 4.17 & 4.16 in eq. 4.15 and considering that 𝑡𝑐 , ℎ, 𝑤 and 𝐿 are constants in

the integration, the SERR expression for the cracked laminate under tension and shear loads is:

𝐺𝑐𝑟 =
1

2

(
ℎ

𝑡𝑐

) [
𝜕𝐸𝑐𝑟𝑥

𝜕(1/𝐷) 𝜀
2

𝑥 +
𝜕𝑔𝑐𝑟𝑥𝑦

𝜕(1/𝐷) 𝛾
2

𝑥𝑦

]
(4.18)

4.3.1. General Symmetric Laminate

In order to determine the expression for crack propagation-related SERR (𝐺𝑐𝑟), it is necessary

to obtain first the engineering constants of the laminate [64]. Using the well-known Classical

Laminate Theory (CLT), it becomes feasible to derive the elastic properties of a symmetrical

laminate by first obtaining the stiffness matrix of a single lamina (𝑄𝑖 𝑗) based on its ply properties

and then constructing the ABD matrix. The equations required to compute the ABD matrix are

summarized in Appendix C. Recalling now that for a symmetric laminate 𝐵𝑖 𝑗 = 0, the axial and

shear engineering constants of the laminate can be defined as:

𝐸𝑥 =
1

ℎ

{
𝐴11 + 𝐴12

(
𝐴26𝐴16 − 𝐴12𝐴66

𝐴22𝐴66 − 𝐴2

26

)
+ 𝐴16

(
−𝐴16

𝐴66

+
𝐴26𝐴12𝐴66 − 𝐴2

26
𝐴16

𝐴22𝐴
2

66
− 𝐴2

26
𝐴66

)}
(4.19)

𝑔𝑥𝑦 =
1

ℎ

{
𝐴66 −

𝐴2

26

𝐴22

+
2𝐴12𝐴16𝐴26𝐴22 − 𝐴2

12
𝐴2

26
− 𝐴2

16
𝐴2

22

𝐴11𝐴
2

22
− 𝐴2

12
𝐴22

}
(4.20)

The expressions defined in Appendix C do not take into account the degradation of the

properties of a ply due to the presence of matrix cracks. Consequently, equations 4.1, 4.2 & 4.3

are substituted in eq. C.8 to obtain the reduced stiffnesses of the plies (𝑄𝑖 𝑗):
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𝑄11 =
𝐸1

1 − 𝜈12𝜈21,𝑟𝑒𝑑

𝑄22 =
𝐸2,𝑟𝑒𝑑

1 − 𝜈12𝜈21,𝑟𝑒𝑑

𝑄12 =
𝜈12𝐸2,𝑟𝑒𝑑

1 − 𝜈12𝜈21,𝑟𝑒𝑑

𝑄66 = 𝐺12,𝑟𝑒𝑑

(4.21)

By substituting equations 4.21 into the definition of the A matrix and applying the appro-

priate calculations, the laminate elastic properties (or engineering constants) 𝐸𝑐𝑟𝑥 and 𝑔𝑐𝑟𝑥𝑦 can

be derived as functions of the material properties and the crack distance 𝐷.

To obtain the associated Strain Energy Release Rate 𝐺𝑐𝑟 , as defined in equation 4.18, it

is now required to differentiate 𝐸𝑐𝑟𝑥 and 𝑔𝑐𝑟𝑥𝑦 with respect to 1/𝐷. Since 𝐸𝑐𝑟𝑥 and 𝑔𝑐𝑟𝑥𝑦 rely on

the terms of the A matrix (see Appendix C), the differentiation of these terms follows the

subsequent process:

𝜕𝐴𝑖 𝑗

𝜕(1/𝐷) =
𝑛∑
𝑘=1

𝜕
[
�̄�𝑖 𝑗

]
𝑘

𝜕(1/𝐷) (ℎ𝑘 − ℎ𝑘−1) =
𝜕

[
�̄�𝑖 𝑗

]
𝑐

𝜕(1/𝐷) (ℎ𝑐 − ℎ𝑐−1)︸                   ︷︷                   ︸
𝑓 (𝐷)

+
𝑛∑
𝑘=1

𝑘≠𝑐

𝜕
[
�̄�𝑖 𝑗

]
𝑘

𝜕(1/𝐷) (ℎ𝑘 − ℎ𝑘−1)

︸                        ︷︷                        ︸
≠ 𝑓 (𝐷)

(4.22)

By assuming that cracks are only present in the critical ply obtained by FPF method, only

the [𝑄𝑖 𝑗] corresponding to the cracked ply has a dependence on 𝐷 (in case of more than

one critical ply, the sumation of the cracked [𝑄𝑖 𝑗]). Subsequently, as shown in eq. 4.22, the

differential of the A matrix term is going to be the differential of the Q matrix of the cracked

ply. The differential of the rest of the Q’s is 0. Subscript "c" indicates the cracked ply (or plies)

as shown schematically in Fig. 4.3.

Figure 4.3: Arbitrary laminate with a cracked ply.
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Differentiating

[
�̄�𝑖 𝑗

]
𝑐

and denoting the operator 𝜕Ω/𝜕(1/𝐷) as Ω′
to obtain simpler

equations:

𝜕
[
�̄�11

]
𝑐

𝜕(1/𝐷) =
[
�̄�11

] ′
𝑐
=

[
𝑈′

1
+𝑈2𝑐𝑜𝑠(2𝜃) +𝑈′

3
𝑐𝑜𝑠(4𝜃)

]
𝑐

𝜕
[
�̄�22

]
𝑐

𝜕(1/𝐷) =
[
�̄�22

] ′
𝑐
=

[
𝑈′

1
−𝑈2𝑐𝑜𝑠(2𝜃) +𝑈′

3
𝑐𝑜𝑠(4𝜃)

]
𝑐

𝜕
[
�̄�12

]
𝑐

𝜕(1/𝐷) =
[
�̄�12

] ′
𝑐
=

[
𝑈′

4
−𝑈′

3
𝑐𝑜𝑠(4𝜃)

]
𝑐

𝜕
[
�̄�66

]
𝑐

𝜕(1/𝐷) =
[
�̄�66

] ′
𝑐
=

[
𝑈′

5
−𝑈′

3
𝑐𝑜𝑠(4𝜃)

]
𝑐

𝜕
[
�̄�16

]
𝑐

𝜕(1/𝐷) =
[
�̄�16

] ′
𝑐
=

[
1

2
𝑈′

2
𝑠𝑖𝑛(2𝜃) +𝑈′

3
𝑠𝑖𝑛(4𝜃)

]
𝑐

𝜕
[
�̄�26

]
𝑐

𝜕(1/𝐷) =
[
�̄�26

] ′
𝑐
=

[
1

2
𝑈′

2
𝑠𝑖𝑛(2𝜃) −𝑈′

3
𝑠𝑖𝑛(4𝜃)

]
𝑐

(4.23)

where c is a ply of orientation 𝜃 w.r.t the global axis of the laminate and𝑈𝑖 is defined as:

𝑈′
1
= 3

8

(
𝑄′

11
+𝑄′

22

)
+ 1

4
𝑄′

12
+ 1

2
𝑄′

66

𝑈′
2
= 1

2

(
𝑄′

11
−𝑄′

22

)
𝑈′

3
= 1

8

(
𝑄′

11
+𝑄′

22

)
− 1

4
𝑄′

12
− 1

2
𝑄′

66

𝑈′
4
= 1

8

(
𝑄′

11
+𝑄′

22

)
+ 3

4
𝑄′

12
− 1

2
𝑄′

66

𝑈′
5
= 1

8

(
𝑄′

11
+𝑄′

22

)
− 1

4
𝑄′

12
+ 1

2
𝑄′

66

(4.24)

Differentiating now equation 4.21 and rearranging the terms:

𝑄′
11

=
𝜈2

12
𝐸′

2,𝑟𝑒𝑑(
1 − 𝜈12𝜈21

𝐸2,𝑟𝑒𝑑

𝐸2

)
2

𝑄′
22

=
𝐸′

2,𝑟𝑒𝑑

1 − 𝜈12𝜈21

𝐸2,𝑟𝑒𝑑

𝐸2

1 + 𝜈2

12

𝐸2,𝑟𝑒𝑑

𝐸1

1 − 𝜈12𝜈21

𝐸2,𝑟𝑒𝑑

𝐸2


(4.25)
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𝑄′
12

=
𝜈12𝐸

′
2,𝑟𝑒𝑑

1 − 𝜈12𝜈21

𝐸2,𝑟𝑒𝑑

𝐸2

1 + 𝜈2

12

𝐸2,𝑟𝑒𝑑

𝐸1

1 − 𝜈12𝜈21

𝐸2,𝑟𝑒𝑑

𝐸2


𝑄′

66
= 𝐺′

12,𝑟𝑒𝑑

(4.26)

The last step consists of differentiating the expressions 4.1, 4.2 & 4.3 proposed by Socci &

Kassapoglou [3] for the degraded properties:

𝜕𝐸2,𝑟𝑒𝑑

𝜕(1/𝐷) = −4𝐷2𝐸2

𝑡2𝑐
𝐴𝑛 (4.27)

𝜕𝐺12,𝑟𝑒𝑑

𝜕(1/𝐷) =
−8𝐵′𝑛

1 −
8𝐵𝑛

(
1 −

𝛾𝑦
𝛾𝑎

) [
(1 − 8𝐵𝑛)

(
1 −

𝛾𝑦
𝛾𝑎

)
+

𝛾𝑦
𝛾𝑎

]
1 − 8𝐵𝑛 +

𝛾𝑦
𝛾𝑎

+
64 (1 − 𝐵𝑛) 𝐵𝑛

(
1 −

𝛾𝑦
𝛾𝑎

) [
(1 − 8𝐵𝑛)

(
1 −

𝛾𝑦
𝛾𝑎

)
+

𝛾𝑦
𝛾𝑎

]
𝐵′𝑛

1 −
8𝐵𝑛

(
1 −

𝛾𝑦
𝛾𝑎

) [
(1 − 8𝐵𝑛)

(
1 −

𝛾𝑦
𝛾𝑎

)
+

𝛾𝑦
𝛾𝑎

]
1 − 8𝐵𝑛 +

𝛾𝑦
𝛾𝑎


2 (

1 − 8𝐵𝑛 +
𝛾𝑦
𝛾𝑎

)
2

(4.28)

with:

𝐴𝑛 =
∑ 𝑒

𝜑𝑛𝐷
2

(
𝑒𝜑𝑛𝐷 − 1

) [
1

𝐷

(
𝑒2𝜑𝑛𝐷 − 1

)
− 2𝜑𝑛𝑒𝜑𝑛𝐷

][
2𝜑𝑛𝑒𝜑𝑛𝐷 + 1

𝐷

(
𝑒2𝜑𝑛𝐷 − 1

) ]
2

(4.29)

𝐵𝑛 =
∑ 𝑒0.5𝑘𝑛𝐷 + 𝑒 𝑘𝑛𝐷𝑒−0.5𝑘𝑛𝐷(

1 + 𝑒 𝑘𝑛𝐷
)
(𝑛𝜋)2

(4.30)

𝐵′𝑛 =
∑ 𝑘𝑛𝑒

0.5𝑘𝑛𝐷(𝑒 𝑘𝑛𝐷−1)(
1 + 𝑒 𝑘𝑛𝐷

)
2 (𝑛𝜋)2

𝐷2

(4.31)

where 𝜑𝑛 = 𝑘𝑛 = 𝑛𝜋/𝑡𝑐 , 𝐷 is the crack spacing, 𝑡𝑐 is the thickness of the cracked ply, 𝛾𝑎 is

the applied shear in the cracked ply, 𝛾𝑌 is the yield shear strain of the ply and 𝐸1 , 𝐸2 , 𝐺12 and
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𝜈12 the pristine properties of the ply.

Finally, by substituting equations 4.19-4.31 into equation 4.18, the Strain Energy Release

Rate for crack propagation in a general symmetric laminate can be obtained. The resulting

equation is expressed in terms of the A matrix and its derivatives (𝐴′
𝑖 𝑗
).

𝐺𝑐𝑟 = −1

2

𝜀2

𝑥

{
𝐴′

11
+ 𝐴′

12

(
𝐴26𝐴16−𝐴12𝐴66

𝐴22𝐴66−𝐴2

26

)
+ 𝐴12

(
𝐴′

26
𝐴16+𝐴26𝐴

′
16
−𝐴′

12
𝐴66−𝐴12𝐴

′
66

𝐴22𝐴66−𝐴2

26

)
−𝐴12

[
(𝐴26𝐴16 − 𝐴12𝐴66)

(
𝐴′

22
𝐴66 + 𝐴22𝐴

′
66
− 2𝐴26𝐴

′
26

)(
𝐴22𝐴66 − 𝐴2

26

)
2

]
+𝐴′

16

(
−𝐴16

𝐴66

+
𝐴26𝐴12𝐴66 − 𝐴2

26
𝐴16

𝐴22𝐴
2

66
− 𝐴2

26
𝐴66

)

+𝐴16

[
−
𝐴′

16

𝐴66

+
𝐴16𝐴

′
66

𝐴2

66

+
𝐴′

26
𝐴12𝐴66 + 𝐴26𝐴

′
12
𝐴66 + 𝐴26𝐴12𝐴

′
66
− 2𝐴26𝐴

′
26
𝐴16 − 𝐴2

26
𝐴′

16

𝐴22𝐴
2

66
− 𝐴2

26
𝐴66

]

−𝐴16

[
(𝐴26𝐴12𝐴66−𝐴2

26
𝐴16)(𝐴′

22
𝐴2

66
+2𝐴22𝐴66𝐴

′
66
−2𝐴26𝐴

′
26
𝐴66−𝐴2

26
𝐴′

66
)

(𝐴22𝐴
2

66
−𝐴2

26
𝐴66)2

]}
−1

2

𝛾2

𝑥𝑦

{
𝐴′

66
− 2𝐴26𝐴

′
26

𝐴22

+ 𝐴2

26
𝐴′

22

𝐴2

22

+ 2(𝐴′
12
𝐴16𝐴26𝐴22+𝐴12𝐴

′
16
𝐴26𝐴22+𝐴12𝐴16𝐴

′
26
𝐴22+𝐴12𝐴16𝐴26𝐴

′
22
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(4.32)

4.3.2. Cross-ply
A cross-ply laminate is a special case of the formulation presented before. In a cross-ply

laminate, the composition consists of plies oriented at 0º and 90º, resulting in a balanced

structure. Figure 4.4 provides a schematic representation where 𝑡𝑐 represents the thickness

of the 90º plies, 𝑡1 represents half the thickness of the 0º plies, 𝐿 denotes the length and 𝐷

indicates the distance between cracks. In the case of a cross-ply laminate subjected to uniaxial

tension or tension combined with shear, the 90º plies are always the critical layer where matrix

cracks will first appear. Note that in this scenario, 𝑡𝑐 can refer to a thick 90º ply or a 90º plies

block but esentially will exhibit identical behavior.
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Figure 4.4: Cross-ply laminate with cracks in the 90º ply.

Recalling that for symmetric and balanced laminates 𝐵𝑖 𝑗 = 0 and 𝐴16 = 𝐴26 = 0 respectively,

the longitudinal and shear modulus of the laminate can be defined as:

𝐸𝑥 =
1

2𝑡1 + 𝑡𝑐

[
𝐴11 −

𝐴2

12

𝐴22

]
(4.33)

𝑔𝑥𝑦 =
𝐴66

2𝑡1 + 𝑡𝑐
(4.34)

By substituting the terms of the A matrix, considering the degradation of properties in the

90º ply using equation 4.21 and assuming the pristine properties for the 0º ply, we can calculate

the axial and shear moduli of the cracked laminate:

𝐸𝑐𝑟𝑥 =
1

2𝑡1 + 𝑡𝑐
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(4.35)

𝑔𝑐𝑟𝑥𝑦 =
1

2𝑡1 + 𝑡𝑐
[2𝑡1𝐺12 + 𝑡𝑐𝐺12,𝑟𝑒𝑑] (4.36)

Differentiating eq. 4.35 & 4.36, introducing the result in equation 4.18 and rearranging the

terms, the Strain Energy Release Rate expression 𝐺𝑐𝑟 for a cross-ply under shear and tension is

obtained:

𝐺𝑐𝑟 =
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(4.37)

𝐸1, 𝐸2, 𝐺12 are the pristine properties of the laminate, 𝑡1 and 𝑡𝑐 the thicknesses of the 0º and

90º plies respectively, 𝛾𝑎 is the applied shear on the cracked ply, 𝛾𝑦 the yield shear strain, 𝜀𝑥 &

𝛾𝑥𝑦 the longitudinal and shear strain applied to the laminate and 𝜈𝐷 is defined as:

𝜈𝐷 =
1 − 𝜈12𝜈21

1 − 𝜈12𝜈21𝑟𝑒𝑑
=

1 − 𝜈12𝜈21

1 − 𝜈12𝜈21

𝐸2𝑟𝑒𝑑

𝐸2

(4.38)

4.4. Parameters study
This section provides an analysis of the Strain Energy Release Rate (SERR) expressions derived

for both symmetrical laminates and cross-plies with a focus on examining how various param-

eters influence the resulting curves. Figure 4.5 illustrates the fundamental shape of 𝐺𝑐𝑟 using

a cross-ply under tension as an example. Note that the graph should be read from right to

left for increasing loading. A pristine laminate will have 𝐷 → ∞ and increasing loads will

generate more cracks, hence the crack distance 𝐷 will decrease.

For large values of 𝐷, it is observed that 𝐺𝑐𝑟 remains constant until 𝐷 reaches a critical

value of 𝐷 = 2.966𝑡𝑐 . This behavior is attributed to the crack initiation process explained in
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Section 4.2, where cracks start forming at 𝑟 = 𝜋𝐷/𝑡𝑐 = 9.3167 (refer to Figure 4.1). Prior to

this point, when 𝐷 is larger, cracks are scattered and randomly distributed and the material

properties remain unaffected. Consequently, as there is no increase in the cracked area and the

properties remain constant, the value of 𝐺𝑐𝑟 remains constant and equal to 𝐺𝑐𝑟(𝐷 = 2.966𝑡𝑐)
(refer to equation 4.3.2).

Beyond the critical point mentioned, for smaller values of 𝐷, 𝐺𝑐𝑟 exhibits an increasing

trend until it reaches a maximum after which, it starts to decline as the distance between

cracks decreases. This behavior signifies that the laminate is capable of dissipating a significant

amount of energy when the crack spacing is relatively large ( but smaller than 𝐷 = 2.966𝑡𝑐).

However, as the distance between cracks decreases, the efficiency of energy dissipation dimin-

ishes. Hence, there exists a tendency for the formation of cracks to decrease with a decrease in

their spacing.
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Figure 4.5: UT-E500/Epikote RIMR235 [0/90
2
]𝑠 laminate under tension.

Figure 4.6 shows different cross-plies under tension and illustrates the effect of increasing

the number of 90º plies, which effectively results in an increase in 𝑡𝑐 . The behavior of the 90º

ply block resembles that of a thick ply, meaning that the curve’s behavior remains consistent

whether the thickness of the 90º ply is increased or more 90º plies are added. As shown in Fig.

4.6, increasing the number of 90º plies increases the𝐺𝑐𝑟 values and also shifts the curves towards

the right. The width of the curve’s maximum region also expands, suggesting a greater likeli-

hood of crack occurrence across a wider range of D. Furthermore, the critical point where cracks

initiate, 𝐷 = 2.966𝑡𝑐 , also shifts to the right, indicating that cracks are more likely to form earlier

in cross-plies with thicker 90º plies. In general, the curves indicate that it is more likely for cracks

to initiate and propagate in cross-plies with thicker 90º blocks. This is in accordance with the

numerical findings of Wang [65] and experimental campaign conducted by Crossman et al. [66].
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Figure 4.6: Influence of 𝑡𝑐 in UT-E500/Epikote RIMR2 cross-plies under a tension of 𝜀𝑥 = 0.5.
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Figure 4.7: Influence of 𝐸
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in a UT-E500/Epikote RIMR2 [0/90

2
]𝑠 laminate under tension.

The properties of the plies also have an influence on 𝐺𝑐𝑟 , as evident from the equation

derived for a cross-ply (see eq. 4.3.2). Figure 4.7 illustrates a [0/902]𝑠 laminate under tension
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with varying ratios of the ply Young’s moduli 𝐸1/𝐸2. 𝐺𝑐𝑟 is normalized using the applied

tensile strain in the laminate 𝜀𝑥 , the transverse Young’s modulus 𝐸2 and the 90º ply thickness

𝑡𝑐 . It is observed that higher 𝐸1/𝐸2 ratios result in greater values of the normalized SERR.

The critical 90º ply (or plies) in a cross-ply under tension are subjected to local transverse

strain hence it is more likely to experience crack initiation and propagation if their transverse

properties are lower (i.e., higher 𝐸1/𝐸2 ratio), thereby leading to a higher SERR. Additionally,

it is interesting to note that crack initiation occurs at the same crack spacing 𝐷 because, as

explained earlier, this value in a cross-ply depends solely on the 90º ply thickness.

The relative ratio between the thicknesses of the 90º and 0º plies also has an impact on the

curve, although to a lesser extent. This effect is demonstrated in Figure 4.8, where various

ratios of 𝑡1/𝑡𝑐 are employed while keeping 𝑡𝑐 constant. It is observed that as the 𝑡1/𝑡𝑐 ratio

increases, 𝐺𝑐𝑟 decreases. This behavior can be attributed to the fact that the 0º plies are not

prone to cracking. Therefore, increasing the thickness of these plies does not significantly alter

the likelihood of crack initiation or propagation. Since 𝐺𝑐𝑟 is based on the study of cracks and

their influence on the 90º plies, the impact of varying the 𝑡1/𝑡𝑐 ratio on 𝐺𝑐𝑟 is less pronounced.
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Figure 4.8: Influence of 𝑡
1
/𝑡𝑐 in a UT-E500/Epikote RIMR2 [0/90

2
]𝑠 laminate under tension.

The Strain Energy Release Rate (SERR) can be computed for symmetrical laminates even

when the critical ply is not perpendicular to the longitudinal axis. In such cases, the ply

experiences a combination of local shear and transverse tension, with the proportions varying

based on the loading conditions (tension or tension + shear) and the angle of the ply. Figure

4.9 illustrates the relationship between the Strain Energy Release Rate and the crack spacing

𝐷 for [0/𝜃2]𝑠 laminates subjected to 𝜖𝑥 = 0.05. It can be observed that laminates with angles

ranging from 𝜃 = 90 to 𝜃 = 60 exhibit behavior similar to that of a cross-ply configuration

although with smaller values. This is because these laminates experience comparatively lower

levels of transverse strain, which is the primary driver for crack initiation. Due to the nonlinear
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nature of shear strain-stress response, a higher shear strain is required to initiate a new crack

compared to transverse strain [3]. Consequently, laminates where the critical ply experiences

more local shear are less prone to matrix propagation, resulting in lower values of 𝐺𝑐𝑟 for lower

𝜃 angles, as depicted in Fig. 4.9.

The [0/102]𝑠 configuration represents an extreme case where both transverse strain and

shear strain are very low, leading to an extremely low 𝐺𝑐𝑟 when compared to other cases. As a

result, this laminate is highly unlikely to develop cracks under tension. This observation aligns

with the general understanding that [0/102]𝑠 closely resembles a pure unidirectional block,

which exhibits high resistance to cracking under pure tension. Furthermore, it is worth noting

that the shape of the SERR changes for small 𝐷 values, particularly for lower angles. This

phenomenon arises from the highly nonlinear nature of shear stress under such conditions [3].
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Figure 4.9: 𝐺𝑐𝑟 for UT-E500/Epikote RIMR2 [0/𝜃
2
]𝑠 laminate under tension.

In general, establishing direct relationships for symmetrical laminates is challenging due to

the complexity of interactions among the terms in the equation. By examining equation 4.32, it

becomes evident that all terms of the A matrix and its derivatives are involved, including the

expressions and derivatives of the reduced ply properties (refer to equations 4.27 - 4.31). The

focus of the study in this section was primarily on laminates under tension (𝜀𝑋 ). This approach

aimed to achieve more straightforward relationships between the parameters (for instance, the

second term of equations 4.32 & 4.3.2 are null under pure tension). Additionally, the validation

of the models throughout this thesis revolves around utilizing tensile tests obtained from

relevant literature. Obtaining accurate crack distances or delamination lengths in relation to

loads is not straightforward. Hence, most experimental tests involve simple tensile tests that

gather information for a specific ply.
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The ideas presented in this section about the SERR for crack propagation (𝐺𝑐𝑟) can be

summarized as follows:

• 𝐺𝑐𝑟 significantly increases with an increase in 𝑡𝑐 (critical ply thickness).

• Increasing 𝑡𝑐 (critical ply thickness) shifts the graph towards longer crack spacings.

• 𝐺𝑐𝑟 increases with an increase in the ratio 𝐸1/𝐸2.

• 𝐺𝑐𝑟 mildly reduces with an increase in 𝑡1.

• 𝐺𝑐𝑟 increases when there is a greater relative angle difference on a [0/𝜃2] laminate.

• The critical point at which 𝐺𝑐𝑟 initiates is solely dependent on 𝑡𝑐 .

• 𝐺𝑐𝑟 = 𝑓 (𝐸1 , 𝐸2 , 𝜈12 , 𝑡𝑐 , 𝑡1 , 𝐷, 𝜀𝑥) for a cross-ply under tension.

• 𝐺𝑐𝑟 = 𝑓 (𝐸1 , 𝐸2 , 𝐺12 , 𝜈12 , 𝑡𝑐 , 𝑡1 , 𝐷, 𝜀𝑥 , 𝛾𝑥𝑦 , 𝛾𝑎) for a symmetrical laminate under tension

and shear.

4.5. Validation
The validation process will now assess the model proposed by Socci and Kassapoglou [3]

in section 4.2. The primary objective of this study is to accurately predict the initiation and

growth of delamination resulting from matrix cracks. Therefore, it is crucial to establish the

accuracy of the model in predicting cracks because any inaccuracies could affect the reliability

of delamination onset predictions based on this model. The transverse in-situ strength 𝑌𝑡
𝑖𝑠

is a

critical parameter in the model because it defines how the cracks are going to behave in the

material. This value is not always found in the papers and sometimes has to be estimated (see

Appendix A). Thickness effects are accounted for by changing the in-situ transverse strengths

as necessary and the relative angle between adyacent plies is also taken into account [67]. It

is worth mentioning that the model has already undergone extensive validation for laminate

property degradation [3]. However, in this case, it will be compared with experimental data on

the crack spacing 𝐷 and/or crack density 1/𝐷.

Figure 4.10: Fracture toughness obtained with different techniques. Obtained from [68].

It is important to acknowledge that obtaining crack spacing data is not a straightforward

task. The distances involved are very small, requiring precise measurement methods. Each

technique employed for measurement presents its own challenges and inherent inaccuracies.
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Proper utilization of these techniques relies on a comprehensive understanding of the laminate

under testing and the equipment being used. For instance, Figure 4.10 illustrates different

techniques employed to measure fracture toughness, which essentially involves measuring a

crack. Ideally all techniques should yield identical results. However, considering for example

the measurements of a UD ply (depicted in darker red), the values obtained from these

methods span a considerable range, from 0.076 𝐾𝐽/𝑚2
to 0.3339 𝐾𝐽/𝑚2

which presents a

significant disparity. This measurement pertains to the initial crack identified within the

laminate. Consider the implications of consistently tracking and measuring cracks during

the propagation. Consequently, caution must be exercised when comparing a model with

experimental data, taking into account the differences arising from the techniques employed

and the inherent error and complexity associated with the measurement.

4.5.1. Carraro et al. [44]
Carraro et al. [44] conducted experiments on two cross-ply configurations of glass fiber

UT-E500/Epikote RIMR235. They measured the crack density as a function of the applied

tensile load. The obtained results, along with the model described in section 4.2, are presented

below. The material properties used in the analysis are provided in Appendix A.
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Figure 4.11: Crack propagation of a cross-ply under uniaxial tension.

Figure 4.11 illustrates the model’s prediction of the crack density, which demonstrates

good agreement, particularly after crack initiation. In the case of the [0/902]𝑠 configuration,

the model slightly overestimates the crack density, while for the [02/904]𝑠 configuration, it

underpredicts the crack density at higher loads. It is evident that the model does not perfectly

capture the accurate initiation of cracks. The abrupt jumps in crack density around 100 MPa

correspond to the critical strain at which the stress between cracks equals the in-situ strength

𝑌𝑡 𝑖𝑠 (as explained in section 4.2). The accuracy of initiation predictions heavily relies on the

value of 𝑌𝑡 𝑖𝑠, which was not provided by the author. Hence, a value from a similar material

was used (refer to Appendix A), potentially explaining the less accurate prediction. Typically,
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𝑌𝑡
𝑖𝑠

is determined through experimental tests, although approximations can be made using the

ply strength 𝑌𝑡 . A commonly used approximation, assuming the ply is sufficiently thick, is

𝑌𝑡
𝑖𝑠
= 1.12

√
2𝑌𝑡 [67].

To address this issue, a Maximum Stress First Ply Failure (FPF) criterion is proposed to

determine the load at which cracks initiate, followed by assuming linear multiplication until

reaching the critical crack density obtained from Socci & Kassapoglou’s model. By employing

this approach, a new prediction is obtained, as demonstrated in Figure 4.12. The linear

prediction starts from the FPF load at 1/𝐷 = 0 and progresses towards the critical crack density,

which occurs when the transverse stress between cracks equals 𝑌𝑡
𝑖𝑠

. It is important to note

that Socci & Kassapoglou [3] did not assume that cracks initially appear at this specific point.

Instead, they assumed that cracks begin with uniform spacing at that point, while prior to

that, cracks nucleate randomly. This assumption worked well in their study for predicting the

degradation of laminate properties because before reaching the critical point, the crack spacing

is sufficiently large to preserve the material properties. Hence, a more precise approximation

was not required. However, in our case, the focus is specifically on the cracks. Therefore,

by combining the FPF criterion with Socci & Kassapoglou’s model, the combined method

performs very well, as depicted in Figure 4.12.
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Figure 4.12: Crack propagation of a cross-ply under uniaxial tension combining a FPF with the proposed model.

Representing the data in terms of crack spacing 𝐷 instead of crack density 1/𝐷 provides

valuable insights, as it allows for a broader range of lower 𝐷 values to be observed. In Figure

4.13, the relationship between crack spacing and stress is depicted, revealing a phenomenon

commonly reported in the literature known as crack saturation [21, 69, 70]. When the load

is continuously increased, a point is reached where no further cracks initiate, resulting in a

relatively constant number of cracks. This saturation effect is evident for 𝜎𝑥 > 150𝑀𝑃𝑎 and is

observed under both quasi-static loading and fatigue conditions [69, 70]. This crack saturation

usually occurs after the first delamination is detected which supported by the reported findings

of Carraro et al. [44]. This concept of crack saturation will be utilized later in assumptions

regarding delamination growth.
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Figure 4.13: Crack propagation of a cross-ply under uniaxial tension combining a FPF criteria with the proposed

model.

4.5.2. Chou et al. [71] & Crossman et al. [66]
The experiments conducted by Crossman et al. [66] and by Chou et al. [71] (both papers based

on the same US military report) focused on investigating the occurrence of matrix cracks and

delaminations in AS/3501-6 [±25/90𝑛]𝑠 graphite-epoxy laminates subjected to both quasi-static

and fatigue loading conditions. The study involved applying uniaxial tension to the laminates

and evaluating the crack density within the 90º ply block. Their data, along with our proposed

model, are presented in Figure 4.14. The graph incorporates already the assumption that the

initial cracks initiate at the load determined by the Max. Stress FPF criterion and progress

linearly until reaching the critical value defined by Socci & Kassapoglou’s model.
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Figure 4.14: Crack density evolution for [±25/90𝑛]𝑠 laminates under uniaxial loading.
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Figure 4.15: Crack spacing evolution for [±25/90𝑛]𝑠 laminates under uniaxial loading.

The correlation between the test results and the model is reasonably good; however, it is

worth noting that the critical point where the model becomes effective is near the last measured

data points. Additionally, most of the data points fall within the assumed linear portion,

particularly for the [±25/90] configuration where almost all points lie within this range. The

authors of the study reported that the [±25/903] and [±25/902] laminates initially experienced

matrix cracks, followed by observed edge delaminations. However, in the case of the [±25/90]
layup, edge delaminations in the midplane were observed first. This observation was attributed

to complex interactions between different crack modes and clusters of manufacturing defects

[22, 71].

Examining the data in relation to the crack spacing 𝐷 in Figure 4.15, it is evident that the

cracks tend to continue multiplying. Unlike Figure 4.13, it does not appear to be a saturation of

cracks in this case. This suggests that the cracks could still propagate, which could explain

why all the data points are concentrated within the linear region of the predictive model.

4.5.3. Nairn et al. [41, 72]
Nairn et al. conducted an extensive experimental study for different cross-ply configurations

using different materials: Hercules AS4/3501-6, DuPont Avimid K-Polymer/IM6 and Fiberite

977-2/T300-1800. Some of the results with the corresponding model prediction as shown

below in order to validate the precision of crack prediction.

Figures 4.16 & 4.17 depict laminates with a [02/90𝑛]𝑠 configuration, showing relatively

accurate predictions. At lower loads, the model tends to overestimate the density of cracks,

while for higher loads, the predictions become less conservative. By transforming the crack

density to crack spacing, it is observed that both the test data and predictions converge to

a constant value, indicating crack saturation occurring at approximately 2.1 mm. Generally,

information related with smaller crack spacings (higher crack densities) is more significant.

Therefore, plotting the crack spacing (𝐷) against the load provides more insights into the

trends because a smaller crack density range can contain all the test points. Let us consider

two ranges of crack density: [0 - 0.3] 𝑚𝑚−1
and [0.3 - 0.6] 𝑚𝑚−1

, which initially appear equally
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Figure 4.16: Crack density evolution for [0
2
/90𝑛]𝑠 laminates under uniaxial loading.
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Figure 4.17: Crack spacing evolution for [0
2
/90𝑛]𝑠 laminates under uniaxial loading.

important in Figure 4.16. When transformed into crack spacing (𝐷), these ranges correspond

to [3.33 - ∞] and [1.66 - 3.33] 𝑚𝑚, respectively. The range [1.66 - 3.33] is of greater interest as

it covers the laminate when it has a higher degree of degradation, whereas the other range

represents a state closer to a pristine laminate. This disparity explains why the crack saturation

is easily distinguishable in Figure 4.17 compared to Figure 4.16.

Figures 4.18 and 4.19 exhibit similar cross-ply configurations as previously discussed, but

this time utilizing DuPont Avimid K-Polymer/IM6 UD plies. Once more, it’s important to

remind that the crucial transverse in-situ strength has been estimated by utilizing data from a

comparable material (refer to Appendix A). Once again, there is a strong correlation, especially

for lower loads. However, for higher crack densities, the model tends to underestimate the
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occurrence of cracks. It is important to note that even though the predictions appear inaccurate

within the crack density range of [0.7 - 1], this range actually corresponds to a crack spacing

range of [1 - 1.43] mm. Therefore, considering such small distances, the model demonstrates

remarkable precision. In a similar fashion to the other cross-ply cases, Figure 4.19 demonstrates

that the crack spacing stabilizes at a value of approximately 1. It is noteworthy that for thicker

90º ply blocks, the saturation of crack spacing occurs at longer crack spacings (lower crack

densities) for lower loads. This observation may suggest the formation of delamination that

obstructs crack propagation occurs before for thicker 90º ply cross-plies [70].
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Figure 4.18: Crack density evolution for [0/90𝑛]𝑠 laminates under uniaxial loading.
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Figure 4.19: Crack spacing evolution for [0/90𝑛]𝑠 laminates under uniaxial loading.

Nairn et al. conducted additional tests on cross-ply laminates where the outer plies were
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set at a 90º orientation, while varying the thickness of the embedded 0º plies. Test results for

Hercules AS4/3501-6 plies are shown in Figures 4.20 and 4.21. One notable observation is the

inaccuracies in the linear portion of the prediction, particularly for the [90/02]𝑠 and [90/04]𝑠
configurations. The maximum stress criteria used to determine the FPF load fail to accurately

predict the initiation of cracks in the outer 90º plies. Surprisingly, cracks start at the same applied

stress for the [90/0𝑛]𝑠 configuration, which is somewhat peculiar considering that it would

mean that the 90º have the same local transverse strain. In this case, the estimation of the in-situ

strength for the outer ply is determined using the equation 𝑌𝑡
𝑖𝑠
(𝑜𝑢𝑡𝑒𝑟 𝑝𝑙𝑦) = 1.79

√
𝐺𝑖𝑐/𝜋𝑡Δ

22
,

where Δ
22

= 2(1/𝐸2 − 𝜈2

21
/𝐸1), 𝑡 represents the thickness and 𝐺𝑖𝑐 is the microcrack fracture

toughness mentioned in [41].

The critical point occurring after the linear portion occurs at the same crack density/spacing

for all tested laminates. This is because that point corresponds to 𝐷 = 2.966𝑡𝑐 , as explained in

section 4.2. Since the critical 90º ply where the cracks are generated has the same thickness

in all laminates, the critical 𝐷 point remains consistent. As depicted in Fig. 4.20, the model’s

shape accurately follows the trends of all laminates after the critical point. Additionally, Fig.

4.21 demonstrates the stabilization of crack spacing 𝐷, suggesting saturation of cracks. Thicker

laminates exhibit longer crack spacing to which they tend. For the same stress, the crack

spacing in the 90º ply will be higher for thicker laminates due to the lower local transverse strain,

resulting in fewer cracks being generated. Fig. 4.21 also clearly illustrates the overprediction of

crack initiation for the [90/02]𝑠 and [90/04]𝑠 configurations. This overprediction is problematic

since it does not provide a conservative estimate. However, one could argue that accurate

predictions for lower 𝐷 values are preferable as high crack spacing may have minimal impact

on laminate properties.
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Figure 4.20: Crack density evolution for [90/0𝑛]𝑠 laminates under uniaxial loading.
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Figure 4.21: Crack density evolution for [90/0𝑛]𝑠 laminates under uniaxial loading.



5
Delamination Onset Model

This section introduces a model for predicting the onset of delamination in a general symmetric

laminate. Firstly, the configurations of delamination arising from the tips of matrix cracks

(refer to Fig. 3.2) and their associated Strain Energy Release Rate 𝐺𝑐𝑟+𝑑𝑒𝑙 will be calculated.

Subsequently, based on the Strain Energy Release Rate associated with crack propagation 𝐺𝑐𝑟

obtained in Section 4, a model will be proposed to predict the load and crack spacing at which

delamination initiates.

5.1. Model principles & considerations
The proposed model in this section investigates the scenario where a laminate already contains

matrix cracks and delaminations emanating from the crack tips. Figure 5.1 provides a general

schematic overview of the problem, illustrating matrix cracks in red and delaminations in

blue. The matrix cracks span the entire width of the laminate and are uniformly spaced with

a distance denoted as 𝐷, which can be approximated using the model presented in Section

4. The delaminations, with a length of 𝑎, also cover the entire width of the laminate. Since

the laminate is symmetric, there are always two critical interfaces around the critical ply,

resulting in the consideration of two symmetrical delaminations. Figure 5.1 represents one of

the proposed configurations, while Section 5.2.1 will introduce a total of four configurations to

comprehensively study the problem.

Figure 5.1: Schematic of a laminate with delaminations initiating from matrix crack tips.

In practical situations, it is unrealistic to expect perfectly uniform delaminations to occur in

45
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every crack within the laminate. This aspect, in theory, makes the model conservative as it

assumes a higher level of damage. In reality, delaminations typically initiate and propagate

within one critical interface before transitioning to the other interface through transverse cracks,

as observed in studies by Carraro et al. [44] and Schellekens et al. [51]. This characteristic also

affects the validation process, as experimental tests usually measure the total delaminated area

without considering the specific positions or intervals of delaminations.

However, since our approach employs an energy-based method, the results are primarily

influenced by the total delaminated area rather than the specific distribution. Therefore, the

influence of this occurrence on the results should be minimal. On a real case, the delamination

front would not exhibit perfect uniformity and defects within the laminate can trigger faster

initiation or growth, as well as more complex interactions between various modes. The critical

interfaces where delaminations are expected to occur first are the 0/90 interfaces in the case of a

cross-ply laminate. For a general laminate, it will be assumed that delaminations initiate around

the critical ply (defined as the one in which matrix cracks appear first) identified through a

First Ply Failure (FPF) analysis. It is important to note that the location of delamination onset

depends on the loading conditions. The model is specifically developed for laminates subjected

to pure tension or tension combined with shear, although all validation will be conducted

using literature data from tensile tests.

5.2. Laminate with cracks + delaminations
The forthcoming sections will introduce the different configurations of the delaminations

emanating from cracks already mentioned in previous sections. These configurations will

involve the calculation of laminate stiffness for each case, as well as the derivation of the

corresponding Strain Energy Release Rates (SERR). Specifically, we will examine the SERR

for delamination growth, referred to as 𝐺𝑐𝑟+𝑑𝑒𝑙 and the SERR for the onset of delaminations,

denoted as 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 , which is calculated based on the 𝐺𝑐𝑟+𝑑𝑒𝑙 .

5.2.1. Damage configuration
Four different configurations or cases of delaminations originating from matrix cracks are

introduced now. In each configuration, the delamination length 𝑎 is defined such that when

𝑎 = 𝐷, a single delamination covers the entire space between two cracks. In order to study the

laminate stiffness in Section 5.2.2, a unit cell is defined for each configuration. This unit cell

represents the minimum repetitive unit into which the laminate can be divided. It encompasses

the entire thickness of the laminate and its length varies depending on the specific case being

studied.

Figure 5.2: Case I: Schematic of a delamination initiating from a matrix crack.

The initial case, depicted in Figure 5.2, demonstrates delaminations that initiate and
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propagate in the same direction along the longitudinal axis of the laminate. This configuration

represents the simplest form. Figure 5.3 illustrates a more complex scenario where two

delaminations emanate from each matrix crack tip, propagating in both directions within both

the critical interface plies. This configuration has been observed in experimental tests and has

been previously utilized to model such type of delaminations [7].

Figure 5.3: Case II: Schematic of a delamination initiating from a matrix crack.

Figure 5.4 presents the third configuration proposed, which involves two distinct delamina-

tions propagating in opposite directions between two cracks, followed by two cracks without

any delamination growth in between. While this configuration may appear unrealistic, it can

be utilized as a limit case to explore extreme scenarios.

Figure 5.4: Case III: Schematic of a delamination initiating from a matrix crack.

Lastly, case IV is depicted in Figure 5.5. In this configuration, two delaminations propagate

in opposite directions from the same crack but within different interfaces. This particular

configuration is inspired by experimentally observed cases where cracks serve as pathways for

delaminations to transition between interfaces [44, 52, 59]. Similar pattern can be observed

in laminates under impact where the delaminations jump from interface to interface moving

away from the vertical axis of impact.

Figure 5.5: Case IV: Schematic of a delamination initiating from a matrix crack.
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5.2.2. Laminate Stiffness
The longitudinal and shear laminate stiffness is now being calculated with respect to the

distance between cracks 𝐷, the delamination length 𝑎 and the material properties. This

stiffness will then be used to obtain the Strain Energy Release Rate expressions. To calculate the

stiffnesses for the different configurations shown in Fig. 5.2 - 5.5, it is necessary to calculate the

equivalent modulus of the unit cells to then repeat it as many times as cracks are. To calculate

the equivalent modulus of the unit cell, the laminate is divided in sections delimited by the

presence or absence of delaminations.

Case I

Figure 5.6: Schematic of the calculation of the longitudinal laminate stiffness.

The presence of delaminations causes the unit cell to be divided into two sections. Within

the section containing the delamination, the longitudinal stiffness is denoted as 𝐸𝑑𝑒𝑙𝑥 . This

delamination further divides the section into three sub-laminates that act independently. To

determine 𝐸𝑑𝑒𝑙𝑥 , it is necessary to first obtain 𝐸𝑖𝑛 and 𝐸𝑜𝑢𝑡 using the Classical Laminate Theory

(CLT), taking into account that the properties of the critical ply are reduced (as indicated by

equation 4.21). In the case of a cross-ply laminate, this expressions are as follows:

𝐸𝑖𝑛 =
1

1 − 𝜈12𝜈21𝑟𝑒𝑑

[
𝐸2𝑟𝑒𝑑 − 𝜈2

12

𝐸2

2𝑟𝑒𝑑

𝐸1

]
(5.1)

𝐸𝑜𝑢𝑡 =
1

1 − 𝜈12𝜈21

[
𝐸1 − 𝜈2

12
𝐸2

]
(5.2)

By considering that the three sub-laminates have identical strains, the longitudinal stiffness

𝐸𝑑𝑒𝑙𝑥 can be determined using a compatibility equation:

(2𝑡1 + 𝑡𝑐)𝐸𝑑𝑒𝑙𝑥 = 2𝑡1𝐸𝑜𝑢𝑡 + 𝑡𝑐𝐸𝑖𝑛 → 𝐸𝑑𝑒𝑙𝑥 =
2𝑡1𝐸𝑜𝑢𝑡 + 𝑡𝑐𝐸𝑖𝑛

2𝑡1 + 𝑡𝑐
(5.3)

The stiffness 𝐸𝑐𝑟𝑥 represents the overall stiffness of the laminate with cracks occurring in

the critical plies, which was previously calculated in equations 4.19 & 4.35. To compute the

equivalent axial stiffness 𝐸
𝑒𝑞
𝑥 of the entire unit cell, the two sections are considered as springs

connected in series. These sections are subjected to identical axial forces, resulting in the total

deflection of the unit cell being the summation of the deflections of the two sections:
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length unit cell︷︸︸︷
𝐷 ·𝑁𝑥

𝐸
𝑒𝑞
𝑥

= 𝑎︸︷︷︸
length delaminated section

· 𝑁𝑥

𝐸𝑑𝑒𝑙𝑥

+

length undelaminated section︷  ︸︸  ︷
(𝐷 − 𝑎) ·𝑁𝑥

𝐸𝑐𝑟𝑥
(5.4)

Solving for 𝐸
𝑒𝑞
𝑥 :

𝐸
𝑒𝑞
𝑥 =

𝐷𝐸𝑑𝑒𝑙𝑥 𝐸𝑐𝑟𝑥

𝑎𝐸𝑐𝑟𝑥 + (𝐷 − 𝑎)𝐸𝑑𝑒𝑙𝑥

(5.5)

Finally , the repeating unit of stiffness 𝐸
𝑒𝑞
𝑥 is replicated a number of times equal to the

quantity of matrix cracks present, specifically (𝐿/𝐷) times assumming again that the cells

are string in series. 𝐿 represents the length of the laminate and 𝐷 represents the distance

between cracks. Consequently, the longitudinal stiffness of the laminate with both cracks and

delaminations, denoted as 𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 , can be determined as follows:

𝐿
𝑁𝑥

𝐸𝑐𝑟+𝑑𝑒𝑙𝑥

= 𝐷
𝑁𝑥

𝐸
𝑒𝑞
𝑥

+ 𝐷 𝑁𝑥

𝐸
𝑒𝑞
𝑥

... =

(
𝐿

𝐷

)
𝐷
𝑁𝑥

𝐸
𝑒𝑞
𝑥

→ 𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 = 𝐸
𝑒𝑞
𝑥 (5.6)

In order to calculate the shear laminate modulus for the aforementioned scenario, a similar

procedure is employed, maintaining the same assumptions regarding shear loads and strains.

The resulting expression is similar to the one shown before:

𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦 =
𝐷𝑔𝑑𝑒𝑙𝑥𝑦 𝑔

𝑐𝑟
𝑥𝑦

𝑎𝑔𝑐𝑟𝑥𝑦 + (𝐷 − 𝑎)𝑔𝑑𝑒𝑙𝑥𝑦

(5.7)

Case II

Figure 5.7: Schematic of the calculation of the longitudinal laminate stiffness.

In this configuration, the presence of delaminations divides the unit cell into three sections.

The expressions for 𝐸𝑑𝑒𝑙𝑥 , 𝐸𝑖𝑛 , 𝐸𝑜𝑢𝑡 and 𝐸𝑐𝑟𝑥 remain the same as in the previous case. Similarly,

𝐸
𝑒𝑞
𝑥 is obtained using a similar approach as in case I, treating the three sections as springs in

series. This yields the following expression:
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length unit cell︷︸︸︷
𝐷 ·𝑁𝑥

𝐸
𝑒𝑞
𝑥

= 2 · 𝑎
2︸︷︷︸

length delaminated section

· 𝑁𝑥

𝐸𝑑𝑒𝑙𝑥

+

length undelaminated section︷  ︸︸  ︷
(𝐷 − 𝑎) ·𝑁𝑥

𝐸𝑐𝑟𝑥
(5.8)

The longitudinal stiffness for this configuration is obtained again solving for 𝐸
𝑒𝑞
𝑥 and

assuming (L/D) cells, which gives the same result as before:

𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 =
𝐷𝐸𝑑𝑒𝑙𝑥 𝐸𝑐𝑟𝑥

𝑎𝐸𝑐𝑟𝑥 + (𝐷 − 𝑎)𝐸𝑑𝑒𝑙𝑥

(5.9)

In an analogous way, the shear laminate stiffness is obtained:

𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦 =
𝐷𝑔𝑑𝑒𝑙𝑥𝑦 𝑔

𝑐𝑟
𝑥𝑦

𝑎𝑔𝑐𝑟𝑥𝑦 + (𝐷 − 𝑎)𝑔𝑑𝑒𝑙
𝑥𝑑

(5.10)

Case III

Figure 5.8: Schematic of the calculation of the longitudinal laminate stiffness.

The unit cell in this case has a length of 2𝐷 due to the particular configuration of the

delaminations. This represents the minimum repeating unit size. As illustrated in Fig. 5.8, the

cell is divided into 5 sections, two of which contain delaminations of length 𝑎. The calculations

for 𝐸𝑑𝑒𝑙𝑥 , 𝐸𝑖𝑛 , 𝐸𝑜𝑢𝑡 and 𝐸𝑐𝑟𝑥 have already been performed for the other cases. Once again, to

determine the equivalent stiffness of the repeating cell, 𝐸
𝑒𝑞
𝑥 , it is assumed that the sections

behave like springs in series due to the identical axial forces acting upon them. Consequently,

the total deflection of the unit cell is obtained by summing the individual deflections:

length unit cell︷︸︸︷
𝐷 ·𝑁𝑥

𝐸
𝑒𝑞
𝑥

= 2 · 𝑎
2︸︷︷︸

length delaminated section

· 𝑁𝑥

𝐸𝑑𝑒𝑙𝑥

+

length undelaminated section︷                ︸︸                ︷[
2 · 𝐷

2

+ (𝐷 − 𝑎)
]
·𝑁𝑥

𝐸𝑐𝑟𝑥
(5.11)

which lead to :

𝐸
𝑒𝑞
𝑥 =

2𝐷𝐸𝑑𝑒𝑙𝑥 𝐸𝑐𝑟𝑥

(2𝐷 − 𝑎)𝐸𝑐𝑟𝑥 + 𝑎𝐸𝑑𝑒𝑙𝑥

(5.12)
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The stiffness of the entire laminate is ultimately obtained, assuming the cells are string

in series, by repeating 𝐸
𝑒𝑞
𝑥 a total of (L/2D) times, corresponding to the number of unit cells

present. Hence, the axial stiffness of the laminate with both cracks and delaminations, denoted

as 𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 for this specific configuration, is derived from equation 5.12 as follows:

𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 =
2𝐷𝐸𝑑𝑒𝑙𝑥 𝐸𝑐𝑟𝑥

𝑎𝐸𝑐𝑟𝑥 + (2𝐷 − 𝑎)𝐸𝑑𝑒𝑙𝑥

(5.13)

Once again, the shear modulus is similarly calculated:

𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦 =
2𝐷𝑔𝑑𝑒𝑙𝑥𝑦 𝑔

𝑐𝑟
𝑥𝑦

𝑎𝑔𝑐𝑟𝑥𝑦 + (2𝐷 − 𝑎)𝑔𝑑𝑒𝑙𝑥𝑦

(5.14)

Case IV

Figure 5.9: Schematic of the calculation of the longitudinal laminate stiffness.

In the final configuration, the unit cell is once again divided into three sections, with two of

them containing the delamination. In this case, 𝐸𝑑𝑒𝑙∗𝑥 needs to be calculated using 𝐸𝑜𝑢𝑡 & 𝐸𝑎𝑢𝑥
obtained through the Classical Laminate Theory (CLT) for a laminate composed of the cracked

ply and half of the laminate. Assuming laminate symmetry, the values in both sections are the

same for the longitudinal modulus calculation. Given that the two sub-laminates experience

identical strains, 𝐸𝑑𝑒𝑙∗𝑥 can be determined again by employing a compatibility equation.

(2𝑡1 + 𝑡𝑐)𝐸𝑑𝑒𝑙∗𝑥 = 𝑡1𝐸𝑜𝑢𝑡 + (𝑡1 + 𝑡𝑐)𝐸𝑎𝑢𝑥 → 𝐸𝑑𝑒𝑙∗𝑥 =
𝑡1𝐸𝑜𝑢𝑡 + (𝑡1 + 𝑡𝑐)𝐸𝑎𝑢𝑥

2𝑡1 + 𝑡𝑐
(5.15)

Following the same reasoning as for the previous cases, the three sections are subjected to

equal axial forces, causing them to function as springs in series. Once 𝐸
𝑒𝑞
𝑥 is determined, the

axial stiffness of the entire laminate, denoted as 𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 , is obtained by assuming the cells are

string in series, (L/D) is the number of unit cells present within the length L:

length unit cell︷︸︸︷
𝐷 ·𝑁𝑥

𝐸
𝑒𝑞
𝑥

= 2 · 𝑎
2︸︷︷︸

length delaminated section

· 𝑁𝑥

𝐸𝑑𝑒𝑙∗𝑥

+

length undelaminated section︷  ︸︸  ︷
(𝐷 − 𝑎) ·𝑁𝑥

𝐸𝑐𝑟𝑥
(5.16)
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𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 =
𝐷𝐸𝑑𝑒𝑙∗𝑥 𝐸𝑐𝑟𝑥

𝑎𝐸𝑐𝑟𝑥 + (𝐷 − 𝑎)𝐸𝑑𝑒𝑙∗𝑥

(5.17)

also:

𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦 =
𝐷𝑔𝑑𝑒𝑙∗𝑥𝑦 𝑔𝑐𝑟𝑥𝑦

𝑎𝑔𝑐𝑟𝑥𝑦 + (𝐷 − 𝑎)𝑔𝑑𝑒𝑙∗𝑥𝑦

(5.18)

It is worth noting that for the same material and stacking sequence, it is only necessary to

calculate 𝐸𝑐𝑟𝑥 , 𝐸𝑑𝑒𝑙𝑥 , 𝐸𝑑𝑒𝑙∗𝑥 , 𝑔𝑐𝑟𝑥𝑦 , 𝑔
𝑑𝑒𝑙
𝑥𝑦 and 𝑔𝑑𝑒𝑙∗𝑥𝑦 once, as these values remain consistent across all

cases. When considering a cross-ply laminate, obtaining these stiffness values using CLT is

simpler compared to a general symmetrical laminate. The derivations presented here assume

the presence of a single critical ply or ply block in the laminate symmetry axis with two

surrounding delaminations. However, if the FPF criteria identifies multiple critical plies or an

outer critical ply, the same procedure for constructing the laminate stiffnesses can be applied

by dividing the sections into additional sub-laminates and applying the same assumptions.

5.2.3. Strain Energy Release Rate
The Strain Energy Release Rate in this case, will describe the energy dissipated as the de-

lamination area increases. It is assumed that the crack spacing 𝐷 is constant and only the

delaminations of length 𝑎 are increasing the damaged area. This assumption is based in

experimental observations that suggest that typically, once delaminations occur from a crack

tip, the laminate reaches a state of crack saturation, where the crack density remains stable

[21, 69, 70]. The subscript "cr + del" will refer to this case, where delaminations growing from

cracks tips are present. Therefore, 𝐺𝑐𝑟+𝑑𝑒𝑙 is defined as:

𝐺𝑐𝑟+𝑑𝑒𝑙 = − 𝜕𝑈

𝜕𝐴𝑑𝑒𝑙
(5.19)

The potential strain energy (U) available for delamination growth is defined in relation to

the applied strain on the laminate 𝜀𝑥 and 𝛾𝑥𝑦 , the laminate stiffnesses 𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 and 𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦 and

the volume of the laminate 𝑉 = 𝐿𝑤ℎ :

𝑈 =

∭
1

2

(
𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 𝜀2

𝑥 + 𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦 𝛾2

𝑥𝑦

)
𝑑𝑉 =

1

2

(
𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 𝜀2

𝑥 + 𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦 𝛾2

𝑥𝑦

)
𝐿𝑤ℎ (5.20)

The delaminated area 𝐴𝑑𝑒𝑙 varies depending on the configurations suggested earlier and its

definition differs accordingly:

𝐼 : 𝐴𝑑𝑒𝑙 = 2𝑎𝑤

𝐼𝐼 : 𝐴𝑑𝑒𝑙 = 2

(
2

𝑎

2

)
𝑤 = 2𝑎𝑤

𝐼𝐼𝐼 : 𝐴𝑑𝑒𝑙 = 2𝑎𝑤

𝐼𝑉 : 𝐴𝑑𝑒𝑙 = 2

𝑎

2

𝑤 = 𝑎𝑤

(5.21)
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𝐺𝑐𝑟+𝑑𝑒𝑙 can now be derived combining eq. 5.19, 5.20 & 5.21 assuming that the crack distance

𝐷 is constant, as well as the laminate dimensions ℎ, 𝐿 and 𝑤. Depending on the configuration

of the delaminations, four expressions are obtained:

𝐼 : 𝐺𝑐𝑟+𝑑𝑒𝑙 = −1

4

ℎ𝐷

(
𝜕𝐸𝑐𝑟+𝑑𝑒𝑙𝑥

𝜕𝑎
𝜀2

𝑥 +
𝜕𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦

𝜕𝑎
𝛾2

𝑥𝑦

)
𝐼𝐼 : 𝐺𝑐𝑟+𝑑𝑒𝑙 = −1

4

ℎ𝐷

(
𝜕𝐸𝑐𝑟+𝑑𝑒𝑙𝑥

𝜕𝑎
𝜀2

𝑥 +
𝜕𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦

𝜕𝑎
𝛾2

𝑥𝑦

)
𝐼𝐼𝐼 : 𝐺𝑐𝑟+𝑑𝑒𝑙 = −1

2

ℎ𝐷

(
𝜕𝐸𝑐𝑟+𝑑𝑒𝑙𝑥

𝜕𝑎
𝜀2

𝑥 +
𝜕𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦

𝜕𝑎
𝛾2

𝑥𝑦

)
𝐼𝑉 : 𝐺𝑐𝑟+𝑑𝑒𝑙 = −1

2

ℎ𝐷

(
𝜕𝐸𝑐𝑟+𝑑𝑒𝑙𝑥

𝜕𝑎
𝜀2

𝑥 +
𝜕𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦

𝜕𝑎
𝛾2

𝑥𝑦

)
(5.22)

It should be noted that the stiffness values derived in section 5.2.2, namely 𝐸𝑐𝑟+𝑑𝑒𝑙𝑥 and

𝑔𝑐𝑟+𝑑𝑒𝑙𝑥𝑦 , are independent of the delamination length 𝑎, which simplifies the derivation process.

By differentiating the expressions for these stiffness values obtained in section 5.2.2 with respect

to 𝑎, we can derive the expressions for the Strain Energy Release Rate (SERR) in a laminate

with cracks and delaminations growing from the crack tips:

𝐼 : 𝐺𝑐𝑟+𝑑𝑒𝑙 =
1

4

ℎ

(
𝐿

𝐷

) 
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
[
1 − 𝑎

𝐷
+ 𝑎

𝐷

𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

]
2

𝜀2

𝑥 +
𝑔𝑐𝑟𝑥𝑦

(
𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

− 1

)
[
1 − 𝑎

𝐷
+ 𝑎

𝐷

𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

]
2

𝛾2

𝑥𝑦


𝐼𝐼 : 𝐺𝑐𝑟+𝑑𝑒𝑙 =

1

4

ℎ

(
𝐿

𝐷

) 
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
[
1 − 𝑎

𝐷
+ 𝑎

𝐷

𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

]
2

𝜀2

𝑥 +
𝑔𝑐𝑟𝑥𝑦

(
𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

− 1

)
[
1 − 𝑎

𝐷
+ 𝑎

𝐷

𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

]
2

𝛾2

𝑥𝑦


𝐼𝐼𝐼 : 𝐺𝑐𝑟+𝑑𝑒𝑙 =

1

2

ℎ

(
𝐿

𝐷

) 
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
[
2 − 𝑎

𝐷
+ 𝑎

𝐷

𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

]
2

𝜀2

𝑥 +
𝑔𝑐𝑟𝑥𝑦

(
𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

− 1

)
[
2 − 𝑎

𝐷
+ 𝑎

𝐷

𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

]
2

𝛾2

𝑥𝑦


𝐼𝑉 : 𝐺𝑐𝑟+𝑑𝑒𝑙 =

1

2

ℎ

(
𝐿

𝐷

) 
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙∗𝑥

− 1

)
[
1 − 𝑎

𝐷
+ 𝑎

𝐷

𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙∗𝑥

]
2

𝜀2

𝑥 +
𝑔𝑐𝑟𝑥𝑦

(
𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙∗𝑥𝑦

− 1

)
[
1 − 𝑎

𝐷
+ 𝑎

𝐷

𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙∗𝑥𝑦

]
2

𝛾2

𝑥𝑦



(5.23)
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These expressions depend on various parameters, including the crack spacing 𝐷, delami-

nation length 𝑎, applied strains on the laminate (𝜀𝑥 and 𝛾𝑥𝑦), laminate thickness ℎ, laminate

length 𝐿 and the longitudinal and shear stiffnesses defined in the previous section. It is worth

noting that Case I and Case II have identical expressions, suggesting that these delamination

configurations behave energetically in the same manner. Case III denominator is bigger than

case I & II and Case IV is difficult to evaluate a priori in relation to the other expressions be-

cause it depends on the parameters 𝐸𝑑𝑒𝑙∗𝑥 and 𝑔𝑑𝑒𝑙∗𝑥𝑦 , which do not appear in the other expressions.

These expressions analyze the growth of delaminations under the assumption that they

already exist. However, for the proposed method, it is crucial to derive an expression that

describes the onset of delaminations. To achieve this, it is necessary to study the equation

in the limits of the delamination length 𝑎; namely, when the delamination is extremely large

(𝑎 → ∞) and at its onset, when it is infinitesimally small (𝑎 → 0):

lim

𝑎→∞
𝐺 𝑐𝑟+𝑑𝑒𝑙 = 0 (5.24)

lim

𝑎→ 0

𝐺 𝑐𝑟+𝑑𝑒𝑙 = 𝐺 𝑐𝑟+𝑑𝑒𝑙
𝑜𝑛𝑠𝑒𝑡 =

1

4

ℎ

(
𝐿

𝐷

) {
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
𝜀2

𝑥 + 𝑔𝑐𝑟𝑥𝑦

(
𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

− 1

)
𝛾2

𝑥𝑦

}
(5.25)

As it can be seen, when the delamination becomes large to the extent that it covers the

entire length of the laminate ((𝑎 → ∞) ∼ (𝑎 = 𝐷)), the Strain Energy Release Rate (SERR)

approaches zero. This indicates that the laminate loses its ability to dissipate additional energy

by increasing the delamination area. This makes sense because the delamination area already

covers the entire interface between the plies. On the other hand, at the onset of delamination (as

shown in equation 5.25), 𝐺𝑐𝑟+𝑑𝑒𝑙 approaches a value that primarily depends on the matrix crack

distance 𝐷, the applied strains on the laminate (𝜀𝑥 , 𝛾𝑥𝑦) and the stiffnesses of the respective

sections 𝐸𝑐𝑟𝑥 , 𝐸𝑑𝑒𝑙𝑥 , 𝑔𝑐𝑟𝑥𝑦 , and 𝑔𝑑𝑒𝑙𝑥𝑦 . This equation will be particularly useful in subsequent sections

for proposing a criterion to predict the load at which delamination onset occurs, and thus it

is denoted as 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 . It is worth noting that the equation based on Case I is used to derive

equation 5.25, but the same procedure is employed to obtain the onset SERR in the other cases:

𝐼 : 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 =
1

4

ℎ

(
𝐿

𝐷

) {
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
𝜀2

𝑥 + 𝑔𝑐𝑟𝑥𝑦

(
𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

− 1

)
𝛾2

𝑥𝑦

}
𝐼𝐼 : 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 =

1

4

ℎ

(
𝐿

𝐷

) {
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
𝜀2

𝑥 + 𝑔𝑐𝑟𝑥𝑦

(
𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

− 1

)
𝛾2

𝑥𝑦

}
𝐼𝐼𝐼 : 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 =

1

8

ℎ

(
𝐿

𝐷

) {
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
𝜀2

𝑥 + 𝑔𝑐𝑟𝑥𝑦

(
𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙𝑥𝑦

− 1

)
𝛾2

𝑥𝑦

}
𝐼𝑉 : 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 =

1

2

ℎ

(
𝐿

𝐷

) {
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙∗𝑥

− 1

)
𝜀2

𝑥 + 𝑔𝑐𝑟𝑥𝑦

(
𝑔𝑐𝑟𝑥𝑦

𝑔𝑑𝑒𝑙∗𝑥𝑦

− 1

)
𝛾2

𝑥𝑦

}
(5.26)

Cases I and II are identical, while Case III differs only in terms of the pre-multiplier. In the

case of Case IV, distinctions are also present in the 𝐸𝑑𝑒𝑙∗𝑥 and 𝑔𝑑𝑒𝑙∗𝑥𝑦 variables making it more

challenging to directly compare with the other cases. Case III will hence give the lowest 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡

value while the highest value would depend on how 𝐸𝑑𝑒𝑙∗𝑥 & 𝑔𝑑𝑒𝑙∗𝑥𝑦 differ from 𝐸𝑑𝑒𝑙𝑥 & 𝑔𝑑𝑒𝑙𝑥𝑦 .
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5.3. Parameters study
In this section, the shape of the SERR expressions derived and the influence of the parameters

will be briefly discussed before proposing the method to predict the delamination onset. Focus

will be placed in the case of a laminate under pure tension due to the fact that the validation

data are tensile test (hence 𝛾𝑥𝑦 = 0) but the derivation proposed earlier is valid for a laminate

under tension, shear or combined loading.

5.3.1. SERR for delamination onset (𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 )
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Figure 5.10: UT-E500/Epikote RIMR235 [0/90
2
]𝑠 laminate under tension.

Figure 5.10 illustrates the fundamental shapes of 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 for all the proposed cases (Case

I and Case II being essentially equal). The derived expressions in equation 5.26 primarily

depends on the crack distance 𝐷. All three expressions exhibit similar behavior. They decrease

as 𝐷 increases, indicating that a larger crack distance corresponds to a lower likelihood

of delamination onset. Conversely, as 𝐷 decreases, the Strain Energy Release Rate (SERR)

increases rapidly, eventually reaching an infinite value at 𝐷 = 0, indicating that the interface

has already delaminated. Comparing these expressions with the SERR for crack propagation

(see Fig. 4.5), it becomes evident that the trends are opposite. This suggests that at larger crack

spacings, the appearance of new cracks is more probable, whereas for smaller crack spacings,

the onset of delaminations is more likely to occur.

The expressions are also plotted alongside the well-known equation proposed by O’Brien

[13] for the free-edge delamination onset in cross-ply laminates. This expression, defined in

equation 5.27, does not consider matrix cracks and thus remains constant with respect to 𝐷. It

assumes a free-edge delamination onset that covers the entire laminate. Similar to this study,

O’Brien solved for 𝑎 = 0 in his earlier derivation to obtain the onset, leading to the equation

shown in eq. 5.27. In that equation, 𝐸𝐿𝐴𝑀 represents the pristine axial stiffness of the laminate,

ℎ denotes the laminate thickness and 𝐸∗
is the sum of the stiffnesses of the three sublaminates

separated by the delaminations (equivalent to 𝐸𝑑𝑒𝑙𝑥 in the present notation, with 𝐷 → ∞).
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𝐺𝑂𝐵𝑟𝑖𝑒𝑛 =
1

2

𝜀2

𝑥ℎ(𝐸𝐿𝐴𝑀 − 𝐸∗) (5.27)
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Figure 5.11: Magnified section of normalized SERR plot shown in Fig. 5.10.

Figure 5.11 displays a segment of the normalized SERR expressions for relatively large

crack spacings 𝐷. It is evident that all the proposed 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 expressions are initially larger than

the corresponding 𝐺𝑂′𝐵𝑟𝑖𝑒𝑛 for short crack spacing values. However, at a certain point, 𝐺𝑂′𝐵𝑟𝑖𝑒𝑛

surpasses them. For relatively large 𝐷 values, the term (𝐿/𝐷) in equation 5.26 becomes very

small, causing the entire equation to yield small values. This implies that when the laminate

contains a significant number of cracks (relatively low 𝐷), the tendency is for delaminations to

nucleate at the crack tips. Conversely, if the laminate has fewer cracks and is closer to its pris-

tine properties (relatively large𝐷), the tendency is for the nucleation of free-edge delaminations.

Applying the same line of reasoning, it appears that Case I and Case II are more likely

scenarios because their SERR expressions give higher values for every 𝐷 value. A larger SERR

indicates a greater amount of dissipated energy, hence a higher likelihood of occurrence. Case

IV follows closely behind them in terms of likelihood, suggesting that based on local imper-

fections it is possible to precede the other two cases thus leading to the behaviour observed

some times in experiments where the delamination jumps to another interface [44, 51]. Case III

consistently exhibits lower SERR values for all crack spacings 𝐷. This suggests that Case III is a

configuration that is less likely to occur. With three different configurations and corresponding

SERR expressions, it becomes possible to formulate delamination onset predictions that are

more conservative or less conservative depending on which configuration is assumed. In a

real case, it is probable that all these configurations, as well as more complex ones, may occur

simultaneously. Therefore, it is reasonable to assume that the actual solution lies somewhere be-

tween the less conservative and more conservative predictions provided by these configurations.

Next, the principal parameters influencing the proposed expressions will be examined.

Figure 5.12 demonstrates various cross-ply configurations subjected to tension, highlighting

the impact of adding more 90º plies, which leads to an increase in 𝑡𝑐 . The figure presents
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𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 for case I (equivalent to case II), serving as a representative curve. Case III and case IV

follow a similar pattern with the number of 90º plies, causing a proportional shift in the curve,

as depicted in Figures 5.10 and 5.11. It can be observed that while increasing the number of 90º

plies does increase the 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 values, the effect is not as substantial as in the corresponding

SERR for crack propagation (refer to Figure 4.6). Consequently, it implies that the delamination

onset behavior will not be excessively affected by this factor.
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Figure 5.12: Influence of 𝑡𝑐 in UT-E500/Epikote RIMR2 cross-plies under a tension of 𝜀𝑥 = 0.5
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Figure 5.13 shows the influence of Young’s modulus of the ply in SERR for delamination

onset in a [0/902]𝑠 laminate under tension. 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 decreases for increasing 𝐸1/𝐸2 which indi-

cates that if the ply is stiffer in the longitudinal direction, the tendency to create a delamination

decreases. This behaviour is the opposite that the SERR expression for the crack propagation

(see Fig.4.7). Figure 5.14 shows the influence of the ratio between the critical ply thickness

and the rest of the laminate thickness in the case of a [0/902]𝑠 under tension, maintaining 𝑡𝑐
constant. The lower the 𝑡1/𝑡𝑐 ratio, the lower the 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 which indicates that reducing the

thickness of the plies surrounding the critical ply, makes more unlikely the delamination to

appear in the interface between the critical ply and, in this case, the 0º plies. It is interesting

to note that this ratio influences the 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 curve the most, unlike 𝐺𝑐𝑟 , where the ratio of the

thickness barely influences the behaviour for the crack propagation (see Figure 4.8).

Figure 5.13 illustrates the impact of the Young’s modulus of the ply on the SERR for

delamination onset in a [0/902]𝑠 laminate subjected to tension. As 𝐸1/𝐸2 increases, 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡

decreases, indicating that a stiffer ply in the longitudinal direction reduces the likelihood of

delamination occurring. This behavior is contrary to the SERR expression for crack propagation,

as shown in Figure 4.7. Additionally, Figure 5.14 presents the influence of the ratio between

the critical ply thickness and the overall laminate thickness in the case of a [0/902]𝑠 laminate

under tension, while maintaining 𝑡𝑐 constant. A lower 𝑡1/𝑡𝑐 ratio corresponds to a lower

𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 , suggesting that reducing the thickness of the plies surrounding the critical ply makes

delamination less likely to occur at the interface between the critical ply and, in this case, the 0º

plies. It is worth noting that this ratio has the most significant influence on the 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 curve,

unlike 𝐺𝑐𝑟 , where the thickness ratio has minimal effect on crack propagation behavior (refer

to Figure 4.8).
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Figure 5.14: Influence of 𝑡
1
/𝑡𝑐 in a UT-E500/Epikote RIMR2 [0/90

2
]𝑠 laminate under tension.

Finally, the behavior of the SERR for the delamination onset is analyzed for different [0/𝜃2]𝑠
laminates under pure tension, as depicted in Figure 5.15. The curves of 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 corresponding
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to lower 𝜃 values are observed to be higher than those associated with 𝜃 values closer to

90º. This phenomenon arises from the strong dependence of the expressions on 𝐸𝑐𝑟𝑥 and 𝐸𝑑𝑒𝑙𝑥

(as seen in equations 5.26), which represent the longitudinal stiffnesses of the cracked and

delaminated sections. Therefore, 𝜃 values closer to 0º (the longitudinal direction) result in

higher SERR values.

Interestingly, the SERR for the [0/102]𝑠 laminate is lower than that of the [0/202]𝑠 , [0/302]𝑠
and [0/402]𝑠 laminates. This can possibly be attributed to the intricate interactions among the

terms of the A matrix within the 𝐸𝑐𝑟𝑥 and 𝐸𝑐𝑟𝑥 /𝐸𝑑𝑒𝑙𝑥 expressions for that specific range of 𝐷. For

even lower 𝐷 values, the SERR corresponding to the [0/102]𝑠 laminate increases rapidly and

surpasses the others. It should be noted that the definition of 𝐸𝑐𝑟𝑥 in equation 4.19 depends on

the interactions among almost all the A terms of the ABD matrix when 𝜃 ≠ 90, and within these

terms, equations 4.1, 4.2 and ?? establish complex relationships with the variable 𝐷. However,

as explained in subsequent sections, the range of extremely low crack spacing depicted in

Figure 5.15, where the curves start to approach infinity, is not relevant, and delamination onset

will occur at higher 𝐷 values.
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Figure 5.15: 𝐺𝑐𝑟 for UT-E500/Epikote RIMR2 [0/𝜃
2
]𝑠 laminate under tension.

The ideas presented in this section can be summarized as follows:

• The expressions for 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 in Case I and Case II are identical.

• 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 for case I (and II) is greater than 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 for case III and IV.

• 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 for all cases tend to a lower value than the SERR given by O’Brien for high 𝐷

values.

• 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 for all cases tend to an infinite value for 𝐷 → 0.

• 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 increases with an increase in 𝑡𝑐 (critical ply thickness).

• 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 decreases with an increase in the ratio 𝐸1/𝐸2.
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• 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 significantly increases with an increase 𝑡1.

• 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 decreases when there is a greater relative angle difference on a [0/𝜃2]𝑠 laminate.

• 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 = 𝑓 (𝐸𝑐𝑟𝑥 , 𝐸𝑑𝑒𝑙𝑥 , ℎ, 𝐿, 𝐷, 𝜀𝑥 , 𝛾𝑥𝑦).

5.3.2. SERR for delamination growth (𝐺𝑐𝑟+𝑑𝑒𝑙)
In section 6, the Strain Energy Release Rate equation will be utilized to predict the growth of a

pre-existing delamination. The expression, represented by equations 5.23, primarily relies on

two factors: the spacing between cracks, denoted as 𝐷, and the length of the delamination,

denoted as 𝑎. The stiffness of the laminate’s cracked and delaminated sections also plays a role

but it inherently depends on the aforementioned parameter 𝐷 and the material properties. To

illustrate this relationship, Figure 5.16 - 5.18 display the variation of 𝐺𝑐𝑟+𝑑𝑒𝑙 with respect to 𝑎

for different fixed crack spacings, considering all four cases.
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Figure 5.16: Case I & Case II normalized 𝐺𝑐𝑟+𝑑𝑒𝑙 for UT-E500/Epikote RIMR2 [0/90
2
]𝑠 laminate under tension.
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Figure 5.18: Case IV normalized 𝐺𝑐𝑟+𝑑𝑒𝑙 for UT-E500/Epikote RIMR2 [0/90
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]𝑠 laminate under tension.

The depicted figures indicate a trend where the Strain Energy Release Rate (𝐺𝑐𝑟+𝑑𝑒𝑙) de-

creases as the delamination length (𝑎) increases; particularly in cases I, II and IV, compared

to case III. This phenomenon can be attributed to the denominator of equations 5.23. As 𝑎

increases, the denominator also increases because 𝐸𝑐𝑟𝑥 /𝐸𝑑𝑒𝑙𝑥 > 1, resulting in a reduction of the

overall value of the function.

Furthermore, Figures 5.16 to 5.18 demonstrate that smaller values of the crack spacing (𝐷)

lead to higher overall values of 𝐺𝑐𝑟+𝑑𝑒𝑙 for each delamination length, indicating an increased

likelihood of delamination growth. This effect is primarily influenced by the 𝐿/𝐷 term in

equations 5.23, while also depending on the ratio of 𝑎/𝐷. This tendency holds true for all

four cases. The figures presented cover a spectrum of 𝑎 values ranging in the range [0 5] mm

which is mathematically valid. However, from a physical perspective, it is unreasonable for 𝑎

to exceed 𝐷. This is evident in Figures 5.6 to 5.9, where it can be observed that when 𝑎 = 𝐷,

the delamination spans the entire length of the laminate. In the graphs depicting 𝐺𝑐𝑟+𝑑𝑒𝑙 for

different fixed 𝐷 values, the solid line corresponds to cases where 𝑎 < 𝐷, while the dashed line

represents situations where 𝑎 > 𝐷.

5.4. Delamination Onset prediction
5.4.1. Cross-ply under tension
A method is proposed in order to predict the load at which delamination initiates in a cross-ply

laminate subjected to tension. This prediction relies on two parameters: the Strain Energy

Release Rate for crack propagation, denoted as 𝐺𝑐𝑟 , and the Strain Energy Release Rate for

delamination onset, denoted as 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 . The key concept is that the Strain Energy Release

Rate provides insight into the relative likelihood of different processes occurring. In this cases

two processes can occur upon loading: the formation of a new crack or the initiation of a

delamination in a crack tip. Both processes have their related SERR expression and they can

be compared based on their common parameter 𝐷. Figure 5.19 illustrates the 𝐺𝑐𝑟 and 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡

expressions.
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of a laminate under tension.

Two distinct regions can be identified: the case where the creation of new cracks dis-

sipate more energy than the creation of a delamination (𝐺𝑐𝑟 > 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 ) and the opposite

(𝐺𝑐𝑟 > 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 ). The critical point, where 𝐺𝑐𝑟 is precisely equal to 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 , is determined by the

intersection of both curves. This intersection represents a distance between cracks, denoted as

𝐷𝑜𝑛𝑠𝑒𝑡 , which is assumed to correspond to the onset of delamination. Essentially, 𝐺𝑐𝑟 serves

as a critical Strain Energy Release Rate to predict the delamination onset as a function of 𝐷.

It designates the point at which it is no longer advantageous for the laminate to dissipate

energy by increasing the cracked area, but rather by expanding (or creating) a delaminated area.

It is important to note that this critical distance, 𝐷𝑜𝑛𝑠𝑒𝑡 , is dependent on the applied load to

the laminate, as the SERR expressions also rely on the applied load. In the case of a cross-ply

laminate subjected to pure tension, the SERR expressions defined in equation 4.3.2 and equation

5.26 can be normalized with the applied strain in the laminate 𝜀𝑥 , the transverse Young’s

modulus 𝐸2 and the critical ply thickness 𝑡𝑐 . This normalization allows for the straightforward

calculation of 𝐷𝑜𝑛𝑠𝑒𝑡 by solving the following equation:

𝐺𝑐𝑟

𝜀2

𝑥𝐸2𝑡𝑐
=
𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡

𝜀2

𝑥𝐸2𝑡𝑐
(5.28)

To establish a relationship between the crack spacing at the onset of delamination𝐷𝑜𝑛𝑠𝑒𝑡 and

the applied load 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 , we first need to connect the crack spacing with the local transverse

strain that generates 𝐷𝑜𝑛𝑠𝑒𝑡 . Using equation 4.11 and the Classical Laminate Theory (CLT),

the local transverse strain applied in the critical ply can be linked to the load. In this case,

we employ Socci & Kassapoglou’s model, as described in section 4.2, to calculate the local

transverse strain in the ply that will result in the desired crack spacing𝐷𝑜𝑛𝑠𝑒𝑡 . While the original

approach by Socci & Kassapoglou assumes a known strain, in our case, the crack spacing is

defined, and the load is the variable of interest. By following the equations presented in section

4.2.1, we can determine the applied local transverse strain in the 90º ply that corresponds to the
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given spacing in a specific laminate. Subsequently, this strain can be easily linked to the tensile

load required to induce delamination onset, denoted as 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 :

𝜀𝑎,𝑜𝑛𝑠𝑒𝑡 =
𝑌𝑇
𝑖𝑠

𝐸2

√
0.27024

𝑓 (𝐷𝑜𝑛𝑠𝑒𝑡)
= 𝜀𝑥,𝑜𝑛𝑠𝑒𝑡 =

𝜎𝑥,𝑜𝑛𝑠𝑒𝑡
𝐸𝑥

=
(𝑁𝑥,𝑜𝑛𝑠𝑒𝑡/ℎ)

𝐸𝑥
(5.29)

where 𝑓 (𝐷𝑜𝑛𝑠𝑒𝑡) is defined in eq. 4.6,𝑌𝑇
𝑖𝑠

is the transverse in-situ strength, 𝐸2 is the transverse

Young’s modulus of the ply, 𝜎𝑥,𝑜𝑛𝑠𝑒𝑡 is onset stress applied to the laminate, 𝐸𝑥 is the longitudinal

stiffness of the laminate calculated with CLT (assuming a spacing of cracks of 𝐷𝑜𝑛𝑠𝑒𝑡), ℎ is the

laminate thickness and 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 is the onset load.

This method offers significant advantages as it does not rely on experimentally-obtained

critical Strain Energy Release Rates (SERR), unlike other approaches such as the one proposed

by O’Brien for free-edge delaminations [13]. Instead, it only requires the material properties

and the transverse in-situ strength of the ply, denoted as 𝑌𝑇
𝑖𝑠

. This makes the method more

convenient and less dependent on specific experimental data. Furthermore, this method can

also be applied to laminates in which the critical ply is subjected only to transverse tension,

basically any general symmetrical laminate that contains 90º plies.

5.4.2. Symmetrical laminate under tension or tension + shear
When considering a general symmetrical laminate under pure tension or shear combined with

tension, the procedure is fundamentally similar to the previous approach. However, in this

case, the Strain Energy Release Rate (SERR) expressions cannot be normalized due to the

presence of local shear loads in the critical ply. In a general laminate, the critical ply can have

any orientation, resulting in the generation of local shear even under pure tension loading. To

account for this, the SERR expression defined in equation 4.32 should be used, which includes

the terms 𝐺12,𝑟𝑒𝑑 and 𝐺′
12,𝑟𝑒𝑑

(refer to equations 4.3 and 4.28). These terms are dependent on

the local applied shear, denoted as 𝛾𝑎 = 𝑓 (𝜀𝑥 , 𝛾𝑥𝑦). Consequently, an analytical normalization

of the equation is not feasible.

To determine the onset load, an iterative process is required. It involves incrementally

applying loads (𝑁𝑥 or 𝑁𝑥/𝑁𝑥𝑦) to the laminate and checking if the criteria proposed by Socci

& Kassapoglou, as explained in section 4.2.2, is met for a ply subjected to combined shear and

transverse tension. The onset load is obtained by imposing first the condition that, for a given

load combination (𝑁𝑥/𝑁𝑥𝑦), the following criterion is satisfied:

𝐺𝑐𝑟(𝑁𝑥/𝑁𝑥𝑦 , 𝐷) = 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 (𝑁𝑥/𝑁𝑥𝑦 , 𝐷) (5.30)

By imposing this condition, a potential value for 𝐷𝑜𝑛𝑠𝑒𝑡 is obtained as a solution. However,

it is essential to validate this value by evaluating it against the criteria outlined in section 4.2.2

that predicts the crack spacing in a ply for a combineD loading:

𝜎2

𝑦𝑎𝑣(𝐷𝑜𝑛𝑠𝑒𝑡)
(𝑌𝑡
𝑖𝑠
)2

+
𝜏2

𝑥𝑦𝑎𝑣(𝐷𝑜𝑛𝑠𝑒𝑡)
(𝑆𝑖𝑠)2

= 1 (5.31)

If the criteria is met, the value of 𝐷𝑜𝑛𝑠𝑒𝑡 is determined. However, if the criteria is not

satisfied, the load needs to be adjusted and the process is repeated until the correct value of

𝐷𝑜𝑛𝑠𝑒𝑡 is obtained. Once the value of 𝐷𝑜𝑛𝑠𝑒𝑡 is determined, the corresponding load at that point
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will represent the onset load for delamination (𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 or 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡/𝑁𝑥𝑦,𝑜𝑛𝑠𝑒𝑡). A flowchart in

Figure 5.20 provides a simple visual representation of the iterative process.

Figure 5.20: Flowchart of the iteration process to obtain the delamination onset load.

5.4.3. Influence of proposed delamination configurations
Both previously proposed methods use the Strain Energy Release Rate expression for delami-

nation onset, denoted as 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 . However, as defined in section 5.26, there are three distinct

equations that correspond to the four configurations of delaminations being considered. All

three equations will be employed to determine a range of onset loads, as illustrated in Figure 5.21.
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Figure 5.21: 𝐺𝑐𝑟 vs 𝐺𝑐𝑟+𝑑𝑒𝑙
𝑜𝑛𝑠𝑒𝑡

for the four different delamination configurations.
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As shown above, the intersection of the three different equations yields three distinct values

of 𝐷𝑜𝑛𝑠𝑒𝑡 . Following the previously explained method, three different delamination onset loads

can be obtained. Consequently, it becomes possible to establish a prediction range, with the

upper and lower limits representing the most and least conservative 𝐷𝑜𝑛𝑠𝑒𝑡 values, respectively.

Assuming the same laminate with consistent properties, including in-situ strengths, a smaller

𝐷𝑜𝑛𝑠𝑒𝑡 in a ply will require a higher load to achieve that spacing. Therefore, the smallest 𝐷𝑜𝑛𝑠𝑒𝑡

value will correspond to the highest delamination onset load. In this particular example, case

I results in the highest 𝐷𝑜𝑛𝑠𝑒𝑡 value, which consequently corresponds to the lowest 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡

value. Hence, case I is considered the most conservative one. Ideally, the real load at which

delamination is initially detected should fall within this range and should be higher than the

model’s most conservative value.

It is worth noting that when the 𝐺𝑐𝑟 curve shifts towards the right, the intersections with

the 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 expressions occur closer together. As a result, the range of 𝐷𝑜𝑛𝑠𝑒𝑡 (and consequently,

the range of 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡) becomes smaller. This shift can occur, for instance, if there is a thick 90º

block present, as mentioned in Figure 4.6. The SERR expressions for delamination onset will

also undergo changes. However, as discussed in section 5.3.1, most of the differences occur at

very low crack spacings, whereas the intersections with 𝐺𝑐𝑟 are more likely to occur at higher

𝐷 values.

5.5. Validation
A validation of the model to predict the delamination onset is presented in this section. Data

from relevant literature sources is used.

5.5.1. Carraro et al. [44]
In their study, Carraro et al. [44] performed experiments on two cross-ply arrangements of

glass fiber UT-E500/Epikote RIMR235. Their research focused on analyzing the development

of cracks in the 90º ply block and determining the load at which initial delamination was

observed. The reported delamination onset stress value came with an associated error but

the specific number of tested specimens was not included. Figure 5.22 displays both their

experimental findings and the outcomes predicted by our proposed method.
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The model exhibits small discrepancies in predicting the delamination onset stress for the

[0/902]𝑠 and [02/904]𝑠 laminates, as depicted in Fig. 5.22. Specifically, it underpredicts the

onset stress for [0/902]𝑠 and overpredicts it for [02/904]𝑠 . Case I, as explained in section 5.4.3,

gives the most conservative prediction being 134.4 MPa for [0/902]𝑠 and 104.9 MPa for [02/904]𝑠 .
Case III on the contrary constitutes the less conservative case giving an onset stress of 148.42

MPa and 119.5 MPa respectively. Overall, there is good correlation between the predictions

and experimental results.

The observed trend in the model’s behavior suggests that it may tend to be less conservative

(overpredicts onset loads) for thicker 90º plies. This behavior is likely influenced by the

parameter 𝑌𝑇
𝑖𝑠

, representing the transverse in-situ strength, which plays a critical role in the

prediction. In this study, the value of 𝑌𝑇
𝑖𝑠

was approximated using the transverse strength of

the ply, which is generally acceptable. However, for cases with very thick ply blocks (e.g., eight

90º plies), the block behaves more like a thick individual ply and thicker plies typically have

less in-situ strength than thinner ones [67]. Therefore, if the same 𝑌𝑇[ 𝑖𝑠] is used for both the

[0/902]𝑠 and [02/904]𝑠 laminates, the model might be assuming a higher strength in the latter,

potentially explaining the overprediction.

The model assumes that all 90º plies have the same behavior since the transverse applied

strain in them is identical which gives an identical crack distance in each ply for every load.

Essentially, the model views the 90º ply block as a single, very thick ply around which delam-

ination will initiate. To improve predictions, it is suggested to adapt the 𝑌𝑇
𝑖𝑠

value based on

the thickness of the 90º ply block or use experimental 𝑌𝑇
𝑖𝑠

values when available. Additionally,

Carraro et al. reported a damage evolution similar to that shown in Fig. 2.7, which essentially

combines all four cases proposed in section 5.2.1. This means that the configurations proposed

are relevant for a real scenario.

The calculation of the Strain Energy Release Rate (SERR) for delamination growth and

onset relies on a rather restrictive assumption as it was mentioned during the derivation of the

expression. It is assumed that once delamination begins at the crack tips, the propagation is

halted by matrix cracks, leading to a state of crack saturation where the matrix crack spacing

remain highly stable. This phenomenon, known as crack saturation, has been supported by

experimental observations in the literature [21, 69, 70]. Carraro et al. conducted important

work in which they monitored crack density and reported the delamination onset, providing

valuable validation for this assumption.

Figure 5.23 illustrates the evolution of crack spacing (previously shown in the previous

chapter) and the stress at which the first delamination is detected, both in the experimental test

and our model. To avoid confusion, only the delamination onset stress predicted for Case III is

plotted. For the [0/902]𝑠 laminate, after the delamination onset load, the crack spacing/density

remains relatively stable. In the case of the [02/904]𝑠 , this phenomenon is less clear, and crack

propagation appears to continue at least within the range of [100 - 125] MPa. Nevertheless, the

assumption that the crack spacing remains constant after the delamination onset, enabling the

derivation of the SERR expression for both delamination growth and onset, seems reasonably

accurate. Note that the predicted delamination onset for the [02/904]𝑠 laminate (continuos blue

line) and the tested delamination onset (dashed blue line) in Figure 5.23 are almost superposed.
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5.5.2. Chou et al. [71]
Chou et al. [71] conducted experiments to explore the presence of matrix cracks and delamina-

tions in AS/3501-6 [±25/90𝑛]𝑠 graphite-epoxy laminates under quasi-static and fatigue loading

conditions. Their results, in which they do not reported an error interval, are plotted in Figure

5.24 with the predictions of the model. While not explicitly stated, the upper boundary of the

prediction still corresponds to Case III and the lower boundary corresponds to Case I.
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Figure 5.24: Delamination onset stress for [±25/90𝑛]𝑠 laminates under uniaxial tension.
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In this instance, the correlation between the test results and the model is not as strong,

but the model successfully captures the trend where the delamination onset stress decreases

with an increase in the number of 90º plies. Specifically, for the [±25/90]𝑠 laminate, the model

overpredicts by approximately 12%, while for the [±25/902]𝑠 laminate, the overestimation is

around 8.6%. However, for the thicker laminate, the prediction is notably accurate, with the

test yielding 249.14 MPa and the model’s prediction falling within the range of [240.84 - 246.30]

MPa, resulting in an underestimation of the stress by approximately 3%. The in-situ transverse

strength of a ply is influenced by the relative orientation of the adjacent ply as well [67]. Hence,

in this scenario, the -25/90 interface may be exerting enough influence on the strength to result

in poorer predictions. The approximation of 𝑌𝑇
𝑖𝑠

has been solely based on the ply transverse

strength, suggesting that a more precise value could potentially lead to further improvements

in the predictions.

5.5.3. Takeda & Ogihara [7]
Ogihara & Takeda conducted a study on the initiation and growth of delaminations caused by

matrix cracks in laminates with orientations [0/904/0], [0/908/0] and [0/9012/0] under quasi-

static tension. Figure 5.25 illustrates the reported onset stress from their experiments along

with the predictions made by our model. Additionally, our model predicts the delamination

onset stress for laminates with orientations [0/90𝑛/0] where n ranges from 1 to 14, which

incorporate the tested cases. The blue curve represents a second-order fitting of the predicted

values for n ranging from 1 to 14, aiming to capture the overall trend while including the three

test values obtained from Takeda & Ogihara.

Figure 5.25: Delamination onset stress for [0/90𝑛/0]𝑠 laminates under uniaxial tension.

The model exhibits an underprediction for the onset of the [0/904/0] laminate by approx-

imately 33%, which, on one hand, is advantageous as it provides a conservative estimate.

However, for improved accuracy, it should ideally be closer to the actual value. The other two

reported values are overpredicted by approximately 24.5% and 4.9% respectively. Although
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these results may initially appear somewhat imprecise, it is essential to consider the complexity

of the physical process and the utilization of approximate transverse in-situ strength values,

which contributes to the accuracy achieved.

One of the strengths of model could be seen in the prediction band for laminates with a

number of 90º plies ranging from 1 to 14. Although the results may not be highly precise, they

effectively capture the overall trend of the process. This feature proves immensely valuable

in engineering applications where extreme precision may not be a strict requirement. For

instance, during design phases involving numerous laminates, the model can rapidly offer a

general understanding of their behavior and facilitate easy comparisons among them.

5.5.4. Brewer & Lagace [46]
Brewer & Lagace conducted a study on delamination initiation in graphite/epoxy laminates

with 15º plies. They performed experimental tensile tests and also proposed a criteria for the

process. The graphite/epoxy plies used in their experiments were Hercules AS1/3501-6 and

the reported properties included the thickness of the plies (0.169 mm) and the length of the

specimen (200 mm). Other properties of the material were obtained from existing papers with

the same material.

Their main focus in the study was directed towards free edge delaminations for the family

of [±15𝑛]𝑠 laminates. By employing our model and comparing its outcomes with their ex-

perimental data, valuable insights can be obtained regarding the applicability of our method.

Since all plies are critical according to the Maximum Stress criteria, cracks are considered in

all the plies. The delamination was assumed to occur at the interfaces between the 15/-15

plies due to the likelihood of experiencing the highest interlaminar normal and shear stresses.

However, a limitation of our model is that it only considers two symmetrical delaminations,

which is a common scenario. Nevertheless, as discussed in Section 5.2.2, the same assumptions

and procedures can be employed to determine the stiffness of laminates with more than 2

delaminations. The stiffness is obtained from the schematics illustrated in Figure 5.26 for case

I, and the same process is applied for the remaining cases and laminates. Subsequently, the

procedure to determine 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 remains identical. The comparison between the test results

and predictions is presented in Figure 5.27.

(a) [±15]𝑠 (b) [±152]𝑠 .

Figure 5.26: Delamination and crack distribution for Case I.
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Figure 5.27: Delamination onset stress for [±15𝑛]𝑠 laminates under uniaxial tension.

As evident from the results, the prediction is not highly accurate, with the delamination

onset stress being approximately 40% higher on average, except in the case of n = 1. This

outcome might seem reasonable, given that the measured stress corresponds to a free-edge

delamination. However, the intriguing aspect is that, assuming our model is correct, the

delamination induced by cracks will occur after the free-edge delamination. This is due to

the [±15𝑛]𝑠 laminate under tension being not prone to crack initiation, making delaminations

starting at crack tips highly unlikely. The authors themselves support this fact, as they stated:

"The initiation stresses for the three laminate types are displayed in Figures 3 through 5 where the range
of data is shown. In no cases did transverse cracks form before delamination initiation. Indeed, in many
cases, delamination initiated without the formation of transverse cracks" (Brewer & Lagace, [46]).

Despite this, the authors also confirmed that some specimens did exhibit delamination

induced by matrix cracks, but these cases were not in the majority. The authors’ statement

reads: "A number of specimens gave initiation stress data which fell outside the range of similar
specimens. These fell into two categories. Some specimens exhibited initiations emanating from
initial defects such as microvoids or preexisting transverse cracks. Other specimens exhibited massive
delamination fracture. The cases of initiations emanating from existing defects clearly define a separate
data set since the existing defect will change the stress field in its vicinity, thereby deviating from the
straight free edge case being considered" Brewer & Lagace, [46]). The high accuracy observed

for n = 1 could potentially suggest that in this particular case, more cracks were formed, re-

sulting in a behavior closer to what our method proposes. However, this is merely a speculation.

The absence of cracks could have been anticipated by analyzing the Strain Energy Release

(SERR) for crack propagation, as obtained in this thesis. Figure 4.19 clearly indicates that the

[0/202]𝑠 and [0/102]𝑠 laminates, which can be extrapolated to a [±15] to some degree, exhibit

extremely low 𝐺𝑐𝑟 values, signifying a very low likelihood of crack propagation. This finding

explains why the delamination onset stress is overpredicted; the intersection with 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡
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occurs at relatively low 𝐷 values, which require relatively high loads to be produced. This

suggests that our model might not be inaccurate; instead, another process, such as free-edge

delamination as described by the authors, occurs before the delamination induced by cracks.

This comparison helps to understand the limitations of the model. The method presented in

this thesis can theoretically be applied to any laminate, but an understanding of which processes

are more prone to occur is also needed beforehand. As observed in previous validations, the

method works remarkably well in cross-plies under tension or similar stack sequences, where

delamination from a crack tip is more likely due to the higher occurrence of cracks. In those

cases the method can predict the onset and that will most likely be the reason for the failure of

the structure. However, in laminates where cracks are less likely, the assumption that cracks are

present could be still valid but other processes will make the structure fail before our method

can "kick-in". Nevertheless, as mentioned by the authors, delaminations induced by matrix

cracks also occur in addition to free-edge delaminations, highlighting the complexity of these

processes and the probable influence of localized defects.

In general, it is reasonable to deduce that the model exhibits a good correlation with reality.

However, in specific cases like the one discussed here, where delaminations induced by cracks

are less likely to occur, the model’s usefulness is limited. While the model assumptions hold

well for cross-plies and laminates with similar behaviours, its accuracy diminishes when

applied to laminates that deviate from such behavior. This doesn’t necessarily mean that the

method cannot be used, but it indicates that other processes, like free-edge delaminations in

this case, might occur before the development of delaminations induced by matrix cracks,

which the model is designed to simulate.

5.5.5. Nairn & Hu [21]
The proposed method for modeling the delamination onset stress also provides predictions

for the crack spacing at the onset (𝐷𝑜𝑛𝑠𝑒𝑡). This parameter represents the distance between

cracks at which delaminations theoretically appear at their tips. It holds significant importance

as it helps assess when a crack poses a real threat to the structure’s integrity. Nairn & Liu

introduced a variational method to study delamination onset induced by matrix cracks, and

their research yielded various conclusions, including graphs that relate the cracks at the onset

to different laminates. Specifically, their graph, shown in Figure 5.28, presents the critical crack

density (1/𝐷𝑜𝑛𝑠𝑒𝑡 in our notation) for various thicknesses of [0/90𝑛]𝑠 , [02/90𝑛]𝑠 and [±45/90𝑛]𝑠
laminates. Using our model, the corresponding graph is presented in Figure 5.29.

Figure 5.28: Critical crack densities (1/𝐷𝑜𝑛𝑠𝑒𝑡 in our notation) in the delamination onset. Obtained from [21].
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Figure 5.29: Crack density at the delamination onset for different laminates compared to Nairn & Liu’s results. The

hatched fill area contain all 3 curves from Fig. 5.28

While the trends observed in both Nairn and Liu’s work and our present method are highly

accurate, it is important to acknowledge that their model, like ours, is also a proposed model

and there could be slight discrepancies between the predictions and experimental results. Both

methods predict lower crack densities at the onset for thinner critical plies (90º plies). However,

our model slightly underpredicts the crack density for all n values. The band formed by the

solution for case III and case I is wider in the [0/90𝑛]𝑠 laminate and narrows down for thicker

laminates. Notably, all three families of laminates show similar values. This is because our

model solely considers cracks in the 90º plies and delamination in the 0º/90º interface, making

the outer plies have minimal impact on the prediction, except for the calculation of laminate

stiffnesses.

Thinner 90º ply blocks require higher crack densities for the onset of delamination (resulting

in lower crack spacing), which means a higher load is needed to generate that smaller spacing.

Therefore, thinner 90º plies exhibit better behavior against delamination initiation. This

observation aligns with experimental cases, where thicker blocks of plies tend to generate

higher interlaminar stresses, often leading to the appearance of delamination.

The plots generated by the model are valuable in determining how close the actual structure

is to a potentially dangerous region. By inspecting the cracks in the laminate’s 90º plies and

comparing the observed values to those predicted in Figure 5.29, one can assess the safety

status. If the observed crack density is far from the values predicted in the graph, it can be

assumed that the structure is not in imminent danger. On the other hand, if the observed crack

density is approaching the predicted values, some concern should be warranted. These plots

serve as a helpful tool to monitor damage and make comparisons between different laminates.

It is important to note that the model is applicable only to quasi-static loading situations.
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5.6. Sensitivity study
In order to enhance the method’s applicability, it is crucial to identify the most vital parameters

that ensure the model functions correctly. In this section, the parameters of the material

used by Carraro et al. [44] will be perturbed and the resulting behavior of delamination

onset stress will be observed. Figure 5.30 illustrates the ratio of delamination onset stress

w.r.t. the original value (𝜎𝑜𝑛𝑠𝑒𝑡/𝜎∗𝑜𝑛𝑠𝑒𝑡 ) for various perturbations of the parameters denoted as

Δ. Notably, within the 0%-20% range, the deviation from the original value exhibits linearity,

with the transverse in-situ strength 𝑌𝑇
𝑖𝑠

being the most critical property. This outcome was as

anticipated, considering𝑌𝑇
𝑖𝑠

significantly influences crack propagation and is present in eq. 5.29.

Regrettably, obtaining an accurate value for the transverse in-situ strength (𝑌𝑇
𝑖𝑠

) can prove

challenging without conducting experimental tests. On the other hand, 𝑆𝑖𝑠 and 𝐺12 do not

impact the properties due to the cross-ply configuration being under pure tension, meaning

there is no shear in any ply. This observation is apparent in the close-form expressions of 𝐺𝑐𝑟

and𝐺𝑐𝑟+𝑑𝑒𝑙 for a cross-ply (eq. 4.3.2 & 5.26), where𝐺12 is absent when there is no shear (𝛾𝑥𝑦 = 0).

Additionally, 𝐸1, 𝐸2 and 𝐿 also significantly influence the solution; fortunately, the available

values for these properties are usually accurate and should not exceed a 10% error. Its worth

noting that if the parameters are perturbed more than a 25%, a non-linear behaviour appears al-

though it is fair to assume that all properties values will be known with an error of less than 25%.
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Figure 5.30: Delamination onset stress perturbing the parameters a certain percentage (Δ) normalized with the

original solution.

The preceding analysis focused on the conservative solution, case III configuration. In

Figure 5.31, 5.32 and 5.33, a comparison is presented between the behaviors of case III and case

I when their parameters are perturbed. It is evident that both cases exhibit similar behavior,

albeit with slight differences. Notably, the parameter 𝐿 shows greater sensitivity in case III. This

is attributed to the fact that the ratio 𝐿/𝐷 in eq. 5.26 is relatively larger than 1/8, in contrast to
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the 1/4 ratio observed in case I.

Despite these differences, all parameters behave in a relatively similar manner, which aligns

with expectations since only the expression for 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 changes "inside" the delamination onset

prediction.
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Figure 5.31: Case I & Case III solutions perturbing the parameters a 5%.
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Figure 5.32: Case I & Case III solutions perturbing the parameters a 10%.
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Figure 5.33: Case I & Case III solutions perturbing the parameters a 20%.

5.7. Design curves
The model introduced in this section also enables the creation of design curves that incorporate

all the relevant parameters. These curves effectively represent and communicate the complete

set of information and potential outcomes within a single set of plots. For instance, when

considering a cross-ply under pure tension, the task of determining the delamination onset

stress, denoted as 𝜎𝑥,𝑜𝑛𝑠𝑒𝑡 , involves certain variables outlined in detail in Section 5.4.1 which

are presented below:

𝜎𝑥,𝑜𝑛𝑠𝑒𝑡 = 𝑓
(
𝐸1, 𝐸2, 𝜈12, 𝑡𝑐 , 𝑡1, 𝐿, 𝑌

𝑇
𝑖𝑠

)
(5.32)

where 𝐸1, 𝐸2 and 𝜈12 are the Young’s moduli of the ply and the Poisson ratio, respectively.

Additionally, 𝑡𝑐 stands for the thickness of the 90º plies, 𝑡1 corresponds to the thickness of half

of the 0º plies (as shown in Fig.4.4), 𝐿 denotes the laminate length and 𝑌𝑇
𝑖𝑠

represents the in-situ

strength. To simplify the problem and make it dimensionless, we can create new variables

using 𝐸2 and 𝑡1, effectively reducing the problem to five variables:

𝜎𝑥,𝑜𝑛𝑠𝑒𝑡
𝐸2

= 𝑓

(
𝐸1

𝐸2

, 𝜈12,
𝑡𝑐

𝑡1
,
𝐿

𝑡1
,
𝑌𝑇
𝑖𝑠

𝐸2

)
(5.33)

It is important to note that a general [0/90𝑛]𝑠 cross-ply configuration can be used with any

number of 90º plies. However, the key parameter influencing the problem is the ratio 𝑡𝑐/𝑡1,

which represents the total thickness of the 90º plies (whether there is one or multiple plies)

divided by the thickness of half of the 0º plies. By studying all the possible cases based on

these dimensionless variables, we can generate curves that depict the solution for the chosen

set of dimensionless parameters. Let’s fix 𝜈12 to be 0.3 and 𝐿/𝑡1 to be 200/0.15, which serves

as a representative case of a unidirectional (UD) ply commonly used in the industry. With

these parameters in place, we can now obtain the normalized delamination onset stress for

various combinations of the ratios 𝐸1/𝐸2, 𝑡𝑐/𝑡1 and 𝑌𝑇
𝑖𝑠
/𝐸2. Figure 5.34 and 5.35 provide a
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three-dimensional representation of the solutions, helping visualize the relationships between

the variables and the resultant delamination onset stress.
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The previous graphs offer valuable insights into the overall trends of the delamination

onset process. However, they may not be practical for directly extracting specific values

required for other calculations or design procedures. To address this, isolines are constructed,
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containing the 𝜎𝑥,𝑜𝑛𝑠𝑒𝑡/𝐸2 values (representing the height in the 3D plot). Subsequently, distinct

design curves corresponding to various 𝐸1/𝐸2 ratios are introduced in Figures 5.36 - 5.42.

These design curves provide a more detailed representation of the relationship between the

parameters, making it easier to determine specific values needed for different design scenarios

or engineering calculations. Note that the colorbar introduced is redundant with the numbered

label in each isoline, curves could have been represented in a plain color.
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Figure 5.38: Normalized delamination onset stress as a function of 𝑡𝑐/𝑡1 and 𝑌𝑇
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Figure 5.40: Normalized delamination onset stress as a function of 𝑡𝑐/𝑡1 and 𝑌𝑇
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Figure 5.41: Normalized delamination onset stress as a function of 𝑡𝑐/𝑡1 and 𝑌𝑇
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Figure 5.42: Normalized delamination onset stress as a function of 𝑡𝑐/𝑡1 and 𝑌𝑇
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Similar curves can be derived for other fixed 𝐿/𝑡1 or 𝜈12 values, for symmetrical laminates

or for combined loading just following the method presented in Sections 4 & 5. However, it’s

important to acknowledge that, for example, in the case of a general symmetrical laminate

under tension, additional variables come into play, such as 𝐺12, 𝛾𝑌 and 𝑆𝑖𝑠 . Fixing these

additional parameters will be necessary, increasing the complexity of the analysis.

In summary, the approach presented allows for the creation of design curves tailored to

various specific situations, enabling a comprehensive exploration of how different laminate

configurations affect the onset of delaminations induced by matrix cracks.

5.8. Generalization
If the material properties of a symmetrical laminate, such as the transverse in-situ strength 𝑌𝑇

𝑖𝑠
,

shear in-situ strength 𝑆𝑖𝑠 and yield shear strain 𝛾𝑌 (when not cross-ply), are known, the model

can be used to obtain the delamination onset in a wide variety of cases. Next, the delami-

nation onset stress is obtained for different symmetrical laminates with different ply thicknesses.

Figure 5.43 illustrates the behavior of various laminates concerning delamination onset

stress. Among these laminates, the one with the most favorable behavior, i.e. highest load

needed for the onset of delaminations induced by matrix cracks, is the [0/30]𝑠 configuration,

which exhibits the highest onset stress. This superiority can be attributed to its similarity

to a unidirectional (UD) block, as the difference in stiffness between the 0º and 30º plies is

relatively small. Following this, the [0/45]𝑠 laminate experiences localized shear in its 45º

ply, making it less resistant to delamination. Subsequently, the [0/90]𝑠 laminate suffers the

most since it has the greatest difference between plies being the 90º ply very weak under tension.
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Figure 5.43: Delamination Onset stress for different laminates under tension with respect to the ply thickness.

The inferior performance of laminates with a 90º ply orientation can be explained by

the ease with which matrix cracks propagate within such plies. This is supported by the

SERR expression for crack propagation 𝐺𝑐𝑟 (refer to Figure 4.9), which shows significantly

higher values for [0/90]𝑠 laminates. On the other hand, the SERR expression for delam-

ination onset 𝐺𝑐𝑟+𝑑𝑒𝑙 indicates that laminates exhibiting behavior similar to cross-ply will

experience delamination after others, such as the [0/30]𝑠 laminate (refer to Figure 5.15). The in-

tersection of both SERR expressions, defining the onset, occurs earlier in laminates with 90º plies.

Moreover, among the laminates with critical 90º plies, those with thicker ply blocks are

more prone to earlier delamination. The relationships between the critical ply and the assumed

pristine plies, specifically the ratio 𝑡𝑐/𝑡1, along with the laminate stiffnesses, significantly

influence the delamination onset (see Figures 4.8, 5.12 and 5.14).

The model also enables the prediction of delamination onset for combined loading sce-

narios, involving tension and shear in the laminate. Figure 5.44 illustrates a [0/90]𝑠 laminate

subjected to tension along with a fixed ratio of that load applied as shear to the laminate. Upon

observation, it is evident that the case of pure tension and tension + 10% shear show nearly

identical behavior. This similarity arises because the local shear in a ply, as explained in section

4.1, does not have as significant an influence as transverse strain. Thus, the introduction of a

small amount of shear does not markedly affect the laminate’s behavior under tension.

However, when the amount of shear increases proportionally to the tension, the delamination

onset stress is significantly reduced. This reduction occurs mainly because tension and shear

are being applied at similar magnitudes or even greater. If the ratio of the shear applied to the

laminate is not fixed and the shear and tension can be applied independently, the delamination

onset will consist of an envelope of stresses of ratio 𝜎𝑜𝑛𝑠𝑒𝑡/𝜎𝑥𝑦 . These examples demonstrate

how the model can be applied to different types of laminates and loading scenarios, enabling
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the study of various parameters.
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Figure 5.44: Cross.ply under tension and shear for different ply thicknesses.



6
Delamination Growth Model

This section introduces a model to predict the initial delamination length and its subsequent

growth, utilizing the mode II Interlaminar fracture toughness (𝐺𝐼𝐼𝑅). The assumption that only

mode II is critical is discussed briefly in section 6.2.1 below. The model adopts a similar line of

reasoning as the previous section,comparing different SERR expressions, but now incorporates

the expression for delamination growth (𝐺𝑐𝑟+𝑑𝑒𝑙) derived earlier, which had not been employed

until now.

6.1. Model Principles & Considerations
After delamination initiates, the laminate will have cracks in the critical plies, with a spacing

of 𝐷𝑜𝑛𝑠𝑒𝑡 between them as described in the previous section. Delaminations will swiftly

emerge at the crack tips, each having an initial length denoted by 𝑎0, as illustrated in Fig-

ure 6.1. While the figure depicts configuration I, the concept applies equally to cases II, III and IV.

Figure 6.1: Schematic of the crack growth under uniaxial tension.

From this point onward, the distance between cracks will be assumed to remain constant and

equal to the value obtained at the delamination onset (𝐷𝑜𝑛𝑠𝑒𝑡). This assumption is supported

by experimental findings, indicating that at a certain stage, crack saturation occurs in the

laminate, leading to a relatively stable crack spacing during delamination growth [21, 69,

70]. This assumption was already considered when calculating 𝐺𝑐𝑟+𝑑𝑒𝑙 , which facilitated the

differentiation 𝜕𝑈/𝜕𝐴𝑑𝑒𝑙 . If the crack spacing were not constant, the variable 𝐴𝑑𝑒𝑙 would

depend on the ratio 𝑎/𝐷 and the analytical differentiation would have been more complex or

even impossible.

83
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When 𝑎 = 𝐷, a delamination will cover the entire length of the laminate (𝐿) and the

delamiantion growth will stop. In experimental studies, researchers typically measure the

sum of the delamination lengths of the laminate or interface. In such cases, the value to

be compared is 𝑎(𝐿/𝐷𝑜𝑛𝑠𝑒𝑡), which represents the delamination length (𝑎) multiplied by the

number of spaces between cracks.

For now, the only required inputs are the material properties, the delamination onset

load/stress and the distance between cracks at the onset (𝐷𝑜𝑛𝑠𝑒𝑡). These last two values can

be obtained from the model proposed in Section 5. However, if these values are determined

through alternative means, such as experimental studies, this method can still be utilized

independently by employing those obtained values.

6.2. Delamination growth prediction
The approach presented in this section to study the delamination growth subsequent to the

onset is derived from the method proposed by Takeda & Ogihara [7]. They introduced the

concept that with a SERR expression to analyze delamination growth, it becomes possible to

predict the delamination length for a given load using the experimentally obtained Mode II

interlaminar fracture toughness (𝐺𝐼𝐼𝑅). In this context, 𝐺𝐼𝐼𝑅 acts as a critical value dependent

on the delamination length 𝑎, which can be correlated with our SERR expression 𝐺𝑐𝑟+𝑑𝑒𝑙 .

6.2.1. Mode II Interlaminar fracture toughness
The mode II interlaminar fracture toughness (𝐺𝐼𝐼𝑅) characterizes a composite laminate’s ability

to resist delamination growth when the delaminated surfaces slide parallel to the plane of

the layers. Typically, this parameter is determined through an End-Notched Flexure (ENF)

test, where a unidirectional (UD) ply block of the material is tested with a film inserted in the

mid-plane, acting as a pre-set delamination. During the test, load and delamination length are

recorded and from these data, the mode II energy release rate for the ENF test can be calculated

using the following expression:

𝐺𝐼𝐼 =
9𝑎2𝑃2𝐶

2𝐵
(
2𝐿3

𝑠 + 3𝑎3

) (6.1)

In this equation, 𝑎 represents the delamination length, 𝑃 is the applied load, 𝐶 denotes the

compliance (see [7] for reference), 𝐵 is the width of the specimen, and 𝐿𝑠 is half of the span

length. To determine the fracture resistance 𝐺𝐼𝐼𝑅 associated with this value, it is necessary

to study the region of the Load-displacement curve after the onset of non-linearity [7]. By

analyzing this region, the mode II interlaminar fracture toughness (𝐺𝐼𝐼𝑅) as a function of the

increase in delamination length Δ𝑎 = 𝑎𝑖 − 𝑎0 can be obtained. Figure 6.2 illustrates the results

obtained by Takeda & Ogihara for a CFRP Toray-T800H/3631 at various temperatures. Crack

extension in their notation refer to the increase in the delamination length.

Mode II interlaminar fracture toughness is typically characterized by a constant value, as

elaborated in the ASTM-D7905 standard [73]. This standard provides detailed instructions on

conducting the ENF test, outlining the steps to derive relevant parameters such as 𝐺𝐼𝐼𝑅. To

determine 𝐺𝐼𝐼𝑅, a specific load level from the load-displacement curve obtained in the ENF test

is employed. This load value is not straightforward to obtain and the ASTM-D7905 standard

employs a rather intricate calculation process, complemented by meticulous statistical analysis,

to ensure the acquisition of a conservative yet representative 𝐺𝐼𝐼𝑅 value. By employing this

load value, accounting for the precrack distance and considering certain statistical factors (as

mentioned in [73]), a standardized definition of 𝐺𝐼𝐼𝑅 is established.
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Figure 6.2: Mode II interlaminar fracture toughness 𝐺𝐼𝐼𝑅 vs delamination extension Δ𝑎. Obtained from [7]

For most practical applications, a constant value suffices, particularly in engineering sce-

narios where the aim is to simplify material behavior characterization and comparison across

different samples and experimental conditions, streamlining the approach for practical usage.

Delamination length measurements are also prone to being influenced by factors like specimen

geometry, loading rate and test conditions, rendering it intricate to directly compare outcomes

from disparate studies. This is why the single value stipulated by the ASTM-D7905 standard

[73] finds preference in the industry.

However, our model’s primary goal is to predict delamination growth, encompassing even

exceedingly low values. Consequently, it is more advantageous to employ a variable 𝐺𝐼𝐼𝑅
value. Takeda & Ogihara also acknowledge this concern, highlighting that matrix cracks and

the initiation of delamination occur within the range of extremely small delamination lengths,

which vary rapidly. Therefore, utilizing a varying 𝐺𝐼𝐼𝑅 would offer a more precise prediction

of the behavior [7]. They slightly modify the procedure outlined in the ASTM-D7905 standard,

deriving the mode II interlaminar fracture toughness as a function of delamination length in

the subcritical region of delamination propagation, as manifested in the load-displacement

curve obtained through a standard ENF test. This subcritical region, as depicted in Figure 6.3,

is marked by the initiation of non-linear behavior in the curve.

Figure 6.3: Typical Load-Displacement curve obtained by ENF tests. Obtained from [7]

The method that will be explained in this chapter could, in principle, be implemented

with the conventional constant 𝐺𝐼𝐼𝑅 value, represented by a horizontal line w.r.t Δ𝑎. However,

guaranteeing the proximity of outcomes to those demonstrated in the subsequent pages

remains uncertain. A priori, since using a constant 𝐺𝐼𝐼𝑅 value is a simplification, using 𝐺𝐼𝐼𝑅 as

a function of Δ𝑎 would yield more accurate results.
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Takeda and Ogihara [7], following their proposed method, obtained 𝐺𝐼𝐼𝑅 values as a

function of the increase in delamination length Δ𝑎 = 𝑎𝑖 − 𝑎0 and fitted the points using the

following expression:

𝐺𝐼𝐼𝑅 = 𝐺0 + 𝑘
√
Δ𝑎 (6.2)

where 𝐺0 and 𝑘 are constants. For the Toray-T800H/3631 composite at room temperature,

the specific values are 𝐺0 = 394 𝐽/𝑚2
and 𝑘 = 5850 𝐽/𝑚3/2

, as determined by the authors [7].

This curve, using these values, will be employed to predict and validate the method presented

in this section. It’s worth noting that any expression linking 𝐺𝐼𝐼𝑅 with the delamination length

𝑎 can be used as well.

It is essential to consider that the application of the mode II fracture toughness restricts

the method’s applicability. Mode II refers to situations where the delaminated surfaces slide

parallel to the plane of the layers, as depicted in Figure 6.4. Consequently, this model is

expected to be particularly accurate for a cross-ply configuration under pure tension, where

delaminations occur in the 0º/90º interface, growing locally in parallel to the laminate’s

longitudinal axis. However, if local shear exists in the plies surrounding the delaminated area,

it is highly probable that mode III effects are also present, making the predictions less accurate.

Figure 6.4: Fracture mechanics modes.

6.2.2. Initial delamination length
Now, the delamination onset load 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 and the crack spacing at onset 𝐷𝑜𝑛𝑠𝑒𝑡 obtained in the

previous section can be used to predict the initial delamination length 𝑎0 based on the mode

II interlaminar fracture toughness 𝐺𝐼𝐼𝑅. Assuming that the load just before the delamination

creation and immediately after the creation is the same (thus, the onset is instantaneous), the

load for 𝑎0 is known and equal to 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 . Additionally, the distance between cracks at that

moment is also known as 𝐷𝑜𝑛𝑠𝑒𝑡 , allowing the particularization of the SERR expression for

delamination growth for that specific moment as 𝐺𝑐𝑟+𝑑𝑒𝑙(𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 , 𝐷𝑜𝑛𝑠𝑒𝑡 , 𝑎0).

Next, by assuming that the critical energy release rate for delamination growth is equal to

the mode II interlaminar fracture toughness 𝐺𝐼𝐼𝑅, the delamination length can be determined

for any given load, including at the onset. The expression for 𝐺𝐼𝐼𝑅 assumes that 𝑎 corresponds

to the total delamination length, as explained by Takeda & Ogihara. However, in this case,

the variable 𝑎 represents the delamination length between two matrix cracks. Hence, it is

necessary to divide the mode II interlaminar fracture toughness by the number of matrix

spacings 𝐿/𝐷𝑜𝑛𝑠𝑒𝑡 . Consequently, the initial delamination length 𝑎0 can be found by solving
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the following equation:

𝐺𝑐𝑟+𝑑𝑒𝑙 (𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 , 𝐷𝑜𝑛𝑠𝑒𝑡 , 𝑎0) =
(
𝐷𝑜𝑛𝑠𝑒𝑡

𝐿

)
𝐺𝐼𝐼𝑅 (𝑎0) (6.3)

Expanding the equation, we employ the 𝐺𝐼𝐼𝑅 expression derived by Takeda & Ogihara

(eq.6.2) and the SERR expression for delamination growth for case I (eq. 5.23). It is assumed

that the laminate is under pure tension (𝛾𝑥𝑦 = 0) to exclude any shear-induced mode III

delamination growth:

1

4

ℎ

(
𝐿

𝐷𝑜𝑛𝑠𝑒𝑡

) 
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
[
1 − 𝑎0

𝐷𝑜𝑛𝑠𝑒𝑡
+ 𝑎0

𝐷𝑜𝑛𝑠𝑒𝑡

𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

]
2

𝜀2

𝑥,𝑜𝑛𝑠𝑒𝑡


=

(
𝐷𝑜𝑛𝑠𝑒𝑡

𝐿

) (
𝐺0 + 𝑘

√
𝑎0

)
(6.4)

The equation can be solved numerically for 𝑎0, which represents the point of intersection

between 𝐺𝐼𝐼𝑅 and the specific 𝐺𝑐𝑟+𝑑𝑒𝑙 corresponding to 𝑁𝑥,𝑜𝑛𝑠𝑒𝑡 and 𝐷𝑜𝑛𝑠𝑒𝑡 , as illustrated

in Figure 6.5. This value of 𝑎0, obtained from the intersection, corresponds to the initial

delamination length. It is important to note that when comparing with experimental tests,

where the total delaminated length is usually measured, the 𝑎0 obtained from this method

should be multiplied by 𝐿/𝐷𝑜𝑛𝑠𝑒𝑡 to account for all the delaminations originating from the

crack tips.
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Figure 6.5: 𝐺𝑐𝑟+𝑑𝑒𝑙 vs 𝐺𝐼𝐼𝑅 for a [0/90
2
]𝑠 laminate under tension

An attempt can also be made to solve Equation 6.4 analytically. To do this, the left term of

the equation is expanded into a Taylor series as follows:

1

4

ℎ

(
𝐿

𝐷𝑜𝑛𝑠𝑒𝑡

) 
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
[
1 − 𝑎0

𝐷𝑜𝑛𝑠𝑒𝑡
+ 𝑎0

𝐷𝑜𝑛𝑠𝑒𝑡

𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

]
2

𝜀2

𝑥,𝑜𝑛𝑠𝑒𝑡


≃ 1

4

ℎ𝜀2

𝑥,𝑜𝑛𝑠𝑒𝑡

(
𝐿

𝐷𝑜𝑛𝑠𝑒𝑡

)
𝐸𝑐𝑟𝑥 Δ𝐸

{
1 − 2

𝑎0

𝐷𝑜𝑛𝑠𝑒𝑡
Δ𝐸
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+3

(
𝑎0

𝐷𝑜𝑛𝑠𝑒𝑡
Δ𝐸

)
2

− 4

(
𝑎0

𝐷𝑜𝑛𝑠𝑒𝑡
Δ𝐸

)
3

+ 5

(
𝑎0

𝐷𝑜𝑛𝑠𝑒𝑡
Δ𝐸

)
4

− 6

(
𝑎0

𝐷𝑜𝑛𝑠𝑒𝑡
Δ𝐸

)
5

+ 𝑂(𝑎6

0
)
}

(6.5)

where Δ𝐸 = (𝐸𝑐𝑟𝑥 /𝐸𝑑𝑒𝑙𝑥 −1). Taking now the first two terms of the expansion and substituting

in eq.6.4, it is possible to obtain a close form expression for the initial delamination length 𝑎0

which is:

𝑎0 =

4𝐴2
Δ𝐸

𝐷𝑜𝑛𝑠𝑒𝑡
− 4𝐴

Δ𝐸

𝐷𝑜𝑛𝑠𝑒𝑡
𝐺0 + 𝑘2 + 𝑘

√
8𝐴2

Δ𝐸

𝐷𝑜𝑛𝑠𝑒𝑡
− 8𝐴

Δ𝐸

𝐷𝑜𝑛𝑠𝑒𝑡
𝐺0 + 𝑘2

8𝐴2

(
Δ𝐸

𝐷𝑜𝑛𝑠𝑒𝑡

)
2

(6.6)

with:

𝐴 =
1

4

ℎ𝜀2

𝑥,𝑜𝑛𝑠𝑒𝑡

(
𝐿

𝐷𝑜𝑛𝑠𝑒𝑡

)
𝐸𝑐𝑟𝑥 Δ𝐸 (6.7)

Δ𝐸 =
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1 (6.8)

In this expression, 𝜀𝑥,𝑜𝑛𝑠𝑒𝑡 and 𝐷𝑜𝑛𝑠𝑒𝑡 represent the strain and crack spacing at the delam-

ination onset respectively. 𝐺0 and 𝑘 are constants obtained from the mode II interlaminar

toughness fit, 𝐿 is the length of the laminate and 𝐸𝑐𝑟𝑥 and 𝐸𝑑𝑒𝑙𝑥 are the longitudinal stiffness of

the cracked and delaminated sections of the laminate. The accuracy of this approximation will

be discussed in section 6.3.

It is important to note that this derivation and the graph shown in Figure 6.5 were obtained

specifically for the case I configuration. A similar derivation can be carried out for the other

delamination configurations, resulting in three different expressions for the initial delamination

length. Just like the delamination onset, these three different expressions will provide three

distinct initial delamination length values.

6.2.3. Delamination growth
The same procedure is employed to predict the growth of delaminations once the onset has

occurred. As the laminate is further loaded (𝑁𝑥 > 𝑁𝑥𝑜𝑛𝑠𝑒𝑡 ), a new Strain Energy Release Rate

expression with respect to 𝑎 is obtained, keeping the distance between cracks constant and

equal to the value at the onset. Assuming that the critical energy release rate for delamination

growth is equal to 𝐺𝐼𝐼𝑅, the delamination length can be determined as a function of the applied

laminate load (or strain). By solving equation 6.9 with respect to 𝑎, the delamination length at

any given load 𝑁𝑥 can be obtained:

1

4

ℎ

(
𝐿

𝐷𝑜𝑛𝑠𝑒𝑡

) 
𝐸𝑐𝑟𝑥

(
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1

)
[
1 − 𝑎

𝐷𝑜𝑛𝑠𝑒𝑡
+ 𝑎

𝐷𝑜𝑛𝑠𝑒𝑡

𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

]
2

𝜀2

𝑥

︸                                                        ︷︷                                                        ︸
𝐺𝑐𝑟+𝑑𝑒𝑙

=

(
𝐷𝑜𝑛𝑠𝑒𝑡

𝐿

) (
𝐺0 + 𝑘

√
𝑎
)

︸        ︷︷        ︸
𝐺𝐼𝐼𝑅

(6.9)
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Figure 6.6 graphically demonstrates the procedure for a [0/902]𝑠 laminate. As the load

increases, 𝐺𝑐𝑟+𝑑𝑒𝑙 also increases, leading to intersections with 𝐺𝐼𝐼𝑅 occurring at higher values

of 𝑎. This process continues until 𝑎 = 𝐷𝑜𝑛𝑠𝑒𝑡 , indicating that the delamination has extended

the entire distance between two cracks, covering the entire length of the laminate. By using

this methodology, the length of the delamination is determined for each load, resulting in a

graph similar to Figure 6.7, where the delamination length 𝑎 is plotted against the load 𝑁𝑥 . It is

important to note that 𝜀𝑥 and 𝑁𝑥 can be related easily through the Classical Laminate Theory

(CLT).
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Figure 6.6: 𝐺𝑐𝑟+𝑑𝑒𝑙 vs 𝐺𝐼𝐼𝑅 for different loads in a [0/90
2
]𝑠 laminate under tension.
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Figure 6.7: Delamination growth in a [0/90
2
]𝑠 laminate under tension.
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As it can be seen in Fig. 6.7, the delamination onset load obtained through the model

presented in Section 5 marks the initiation of the delamination that will have a initial length of

𝑎0. The delamination will grow upon loading until its length is equal to the distance between

cracks (remember that this distance is assumed constant and equal to the value at the onset

𝐷𝑜𝑛𝑠𝑒𝑡). Once this value is obtained, a delamination expands through the whole length of the

laminate marking the total failure. Comparing the range of loads required for the whole growth

of the delamination, it is observed that is significantly lower than for the crack propagation

until the onset. This means that once the delamination is initiated, the growth is relatively fast

compared with the whole cracking phase. Fig. 6.7 is not linear even though it is close. As it

will be discussed later, the shape depends on the laminate under study.

Figure 6.6 & 6.7 are obtained using the case I 𝐺𝑐𝑟+𝑑𝑒𝑙 & 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 equations but the same

procedure can be followed for the rest of the cases. This will give 3 different predictions of

the delamination growth. Following the same procedure used for the initial delamination

onset, it is possible to approximate the expressions of the 𝐺𝑐𝑟+𝑑𝑒𝑙 (for tensile loading) using

Taylor’s series. Expanding in series all expressions for the 𝐺𝑐𝑟+𝑑𝑒𝑙 case I, II, III and IV in the

same way as before and solving 𝐺𝑐𝑟+𝑑𝑒𝑙 = 𝐺𝐼𝐼𝑅 taking the first two terms of the expansion, the

delamination growth expressions for all four cases are derived:

𝐼 : 𝑎(𝐷𝑜𝑛𝑠𝑒𝑡 , 𝜀𝑥) =
4𝐴2
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𝐴2

Δ𝐸

𝐷𝑜𝑛𝑠𝑒𝑡
− 2𝐴

Δ𝐸

𝐷𝑜𝑛𝑠𝑒𝑡
𝐺0 + 𝑘2

𝐴2

(
Δ𝐸

𝐷𝑜𝑛𝑠𝑒𝑡

)
2

𝐼𝑉 : 𝑎(𝐷𝑜𝑛𝑠𝑒𝑡 , 𝜀𝑥) =
8𝐴2

Δ𝐸∗

𝐷𝑜𝑛𝑠𝑒𝑡
− 4𝐴

Δ𝐸∗

𝐷𝑜𝑛𝑠𝑒𝑡
𝐺0 + 𝑘2 + 𝑘

√
16𝐴2

Δ𝐸∗

𝐷𝑜𝑛𝑠𝑒𝑡
− 8𝐴

Δ𝐸∗

𝐷𝑜𝑛𝑠𝑒𝑡
𝐺0 + 𝑘2

8𝐴2

(
Δ𝐸∗

𝐷𝑜𝑛𝑠𝑒𝑡

)
2

(6.10)

with:

𝐴 =
1

4

ℎ𝜀2

𝑥

(
𝐿

𝐷𝑜𝑛𝑠𝑒𝑡

)
2

𝐸𝑐𝑟𝑥 Δ𝐸 (6.11)
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Δ𝐸 =
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙𝑥

− 1 (6.12)

Δ𝐸∗ =
𝐸𝑐𝑟𝑥

𝐸𝑑𝑒𝑙∗𝑥

− 1 (6.13)

On the contrary to the delamination onset, it is not easy a priori to predict which case will

give a lower or higher value for the initial delamination length 𝑎0 or for the range of the loads in

which the delamination grows. Case I for example will give a higher crack spacing at the onset

(𝐷𝑜𝑛𝑠𝑒𝑡) as shown in Section 5.4.3 but will have a lower onset strain 𝜀𝑥,𝑜𝑛𝑠𝑒𝑡 . The different crack

spacing will also give different values of the 𝐸𝑐𝑟𝑥 and 𝐸𝑑𝑒𝑙𝑥 and because the 𝐷𝑜𝑛𝑠𝑒𝑡 is constant

through the growth, the behaviour of the equations will differ due to the terms Δ𝐸/𝐷𝑜𝑛𝑠𝑒𝑡 . The

equations themselves are also different (see eqs.6.9) so in short, the most conservative case

cannot be determined a priori. In any case, 3 predictions will be made (case I & II are defined

by the same equations thus give the same results) so a range of values can be predicted in

which, a priori, the real case will be contained in. This again due to the fact that most propably,

the real case is a combination of all 4 cases proposed. As an example of a real case, Carraro et

al. in Fig. 2.7 reported how a delamination will grow jumping though the 90º ply cracks, not

initiating in all cracks and growing in different directions with no particular uniformity.

6.3. Validation
Getting experimental data on delaminations caused by matrix cracks, where the length or

area of the delamination is measured, is a challenging task. As mentioned in Section 2, the

majority of studies focus on measuring edge delamination or examining fatigue propagation.

Consequently, only one study with pertinent data was found to validate the delamination

growth model.

6.3.1. Taheda & Ogihara [7]
Ogihara & Takeda conducted a study on the initiation and propagation of delaminations

resulting from matrix cracks in TS00H/3631 CFRP laminates. They explored laminates with

orientations [0/904/0], [0/908/0] and [0/9012/0] under quasi-static tension. In Figure 6.8, their

measured data is presented alongside our model predictions using case I expressions. It’s

important to note that the original published data was presented using what they referred to

as "delamination ratio," which represents the sum of delamination lengths measured in the

specimen divided by the specimen length. In our notation, this can be expressed as follows:

𝐷𝑒𝑙𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =

((
𝐿

𝐷𝑜𝑛𝑠𝑒𝑡

)
𝑎

)
/𝐿 = 𝑎/𝐷𝑜𝑛𝑠𝑒𝑡 (6.14)

In the absence of delamination, the ratio will be 0 and as soon as a full delamination covers

the entire length of the laminate, the ratio will reach 1. The delamination onset strains, 𝜀𝑥,𝑜𝑛𝑠𝑒𝑡 ,
obtained from the model presented in Section 5, are indicated by vertical dotted lines. The

initial delamination length is represented by horizontal dashed lines.
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Figure 6.8: Delamination growth for the TS00H/3631 CFRP laminates under tension.

As depicted in Fig. 6.8, the model predicts that the initial delamination length for all three

laminates falls within a 𝑎/𝐷𝑜𝑛𝑠𝑒𝑡 range of 0.4 to 0.6. This implies that according to case I, the

initial length would cover nearly 50% of the distance between cracks. However, the experimental

data show very low initial values for delamination ratios, close to 0. The authors’ comments

shed light on this observation: "[...] were then subjected to optical microscopic examination. The total
delamination length was defined as the sum of the delamination lengths at the tips of transverse cracks
in the specimens" . Consequently, it is unclear whether the low ratio is a result of numerous

small delaminations appearing at all crack tips or just a few relatively long delaminations form-

ing in some cracks, which seems more likely. Both of this cases will give low delamination ratios.

Nevertheless, the general trend is decently predicted, as the delamination ratio increases al-

most linearly with an increase in the applied strain to the laminate. The model also successfully

predicts that the [0/904/0] laminate experiences delamination onset last, while both [0/908/0]
and [0/9012/0] are more prone to initiate delaminations first. In the experimental data, both

the latter laminates initiate delaminations at nearly the same strain. Similarly, the prediction

indicates that the [0/904/0] laminate is the last one to have its entire length covered with a

delamination. In all three cases, this occurs rapidly, within the range of [1%-1.2%] strain for the

[0/9012/0], [1.1%-1.3%] for the [0/908/0], and [1.35%-1.6%] for the [0/904/0] laminate. However,

in reality, the authors reported catastrophic failure of the laminates before the delamination

ratio reached 1.

Due to the significant overestimation of the initial delamination ratio (and subsequently the

delamination length) in the prediction, a solution is proposed to estimate the region from 𝑎 = 0

(delamination ratio = 0) to the predicted initial delamination length 𝑎0 (delamination ratio =

𝑎0/𝐷𝑜𝑛𝑠𝑒𝑡) using a linear approximation. To determine the point at 𝑎 = 0, the delamination onset

SERR expression proposed by O’Brien [13] (see equation 5.27) will be employed. Although

originally developed for an edge delamination onset, this well-known expression could be
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useful in predicting delamination behavior for strains or loads smaller than our predicted

onset.

By setting 𝐺𝑐𝑟+𝑑𝑒𝑙(𝑎 = 0) = 𝐺𝑂′𝐵𝑟𝑖𝑒𝑛 , a crack spacing and hence a strain can be obtained,

establishing the initial point for the linear prediction. As demonstrated in Section 5.3.1, our

𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 expressions yield higher values than 𝐺𝑂′𝐵𝑟𝑖𝑒𝑛 , indicating that the intersection of these

expressions will give a load/strain significantly lower than our predicted delamination onset

induced by matrix cracks.

For all the laminates, if the strain at which 𝐺𝑐𝑟+𝑑𝑒𝑙(𝑎 = 0) = 𝐺𝑂′𝐵𝑟𝑖𝑒𝑛 is calculated, a linear

approximation can be performed from that point to the originally predicted onsets. This linear

approximation is represented by the dash-dotted lines in Figure 6.9. These three points yield

slightly different values, although they are relatively close to each other, as evident from the

graph. The predicted behavior in this region seems reasonably accurate for the [0/908/0] and

[0/9012/0] laminates but is less accurate for the [0/904/0] laminate. An alternative approach to

approximate this region could involve using a linear interpolation from the delamination onset

to the delamination ratio equal to 0 using the predicted curves.
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Figure 6.9: Delamination growth for the TS00H/3631 CFRP laminates under tension.

So far, only case I has been utilized in the predictions. However, by incorporating all cases

(three different expressions), it becomes possible to establish a prediction band using the two

extreme cases, which is a reasonable assumption to expect that most experimental points will

fall within this range. Figure 6.10 illustrates the obtained prediction band. As discussed in

section 6.2.3, each case has distinct equations with different onset loads and crack densities,

making it challenging to anticipate the prediction behavior beforehand.

As shown in Figure 6.10, the initial delamination lengths and the range until complete

delamination growth differ for each case and laminate. Ultimately, the prediction turns out to
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be reasonably accurate, providing a range of prediction values, which is always superior to a

simple prediction. Case I, as depicted in Figure 6.8, represents the most conservative scenario,

being the one that occurs first and hence exhibits faster growth. Nonetheless, it is noteworthy

that the initial delamination length does not necessarily have to be the longest, as evident in

Figure 6.10.

In general, representing the predictions with bands provides a more accurate containment

of all the experimentally obtained data. This approach offers a broader and more realistic range

of possibilities, accommodating the complexities and variations in the laminates’ behavior.

Figure 6.10: Delamination growth for the TS00H/3631 CFRP laminates under tension. Case I and Case III

represented the extreme predictions of the band.

6.3.2. 𝑎0 approximation

In sections 6.2.2 and 6.2.3, we approximated 𝐺𝑐𝑟+𝑑𝑒𝑙 using a Taylor series, allowing us to

obtain a closed-form for the solution of the equation for 𝐺𝑐𝑟+𝑑𝑒𝑙 = 𝐺𝐼𝐼𝑅 instead of rely-

ing on numerical methods. While obtaining the numerical value (intersection of the two

curves) is relatively straightforward, having a closed-form equation for the delamination length

𝑎 is always preferable. In this section, we will briefly discuss the accuracy of this approximation.

Equations 6.6 & 6.10 are derived by considering the first two terms of the Taylor series

expansion of the 𝐺𝑐𝑟+𝑑𝑒𝑙 function. As 𝐺𝐼𝐼𝑅 is dependent on 𝑎1/2
, the resulting equation to solve

becomes a second-order polynomial, yielding the solutions for all four delamination configura-

tions as presented in equations 6.10. To validate the accuracy of the obtained expressions, the

material properties and laminates previously used will be employed. A comparison will be

made between the initial delamination length value (for case I) obtained numerically, using

the 2-term Taylor series and using the 3-term Taylor series. It is important to note that the

numerical value is considered the most accurate a priori.

In Figure 6.11, we observe that the values obtained using only the first two terms of the

Taylor expansion are very close together, indicating that this approximation is sufficiently
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Figure 6.11: Comparison of the initial delamination length obtained by numerical methods and with the Taylor

series approximation.

accurate. The error of the Taylor series solutions compared to the numerical value is depicted

in Figure 6.12. It is evident that the 2-term Taylor series approximation, which gives rise to the

equations presented in 6.10, exhibits less than 1.5% error when compared to the numerical

approach. This result demonstrates that a 2-term series effectively represents 𝐺𝑐𝑟+𝑑𝑒𝑙 for a

cross-ply under pure tension, especially concerning the determination of the delamination

length.

This outcome could have been anticipated from the behavior depicted in Figure 6.6, where

𝐺𝑐𝑟+𝑑𝑒𝑙 is linear for small 𝑎 values at the corresponding 𝐷𝑜𝑛𝑠𝑒𝑡 values (remembering that

𝐺𝑐𝑟+𝑑𝑒𝑙 primarily depends on 𝐷 and 𝑎). If we refer to Figures 5.16 - 5.18 in section 5.3.2, where

these equations were initially derived, we notice that for very small 𝐷 values, the function

behaves non-linearly. Fortunately, the crack spacing at the onset, and hence throughout the

delamination growth process, remains greater than 0.5 mm. For this particular material, 𝐷𝑜𝑛𝑠𝑒𝑡

equals 1.14, 1.78 and 2.3 for the [0/904/0], [0/908/0] and [0/9012/0] laminates respectively. This

correlation could also have been expected when examining Figures 5.28 and 5.29 from section

5.5.5, which depict the crack spacing behavior at the onset for cross-ply laminates (although

for a different material). Thus, as long as 𝐷𝑜𝑛𝑠𝑒𝑡 is not excessively small, the closed-form

expressions for 𝑎 (𝐷𝑜𝑛𝑠𝑒𝑡 , 𝜀𝑥) shown in equation 6.10 remain accurate and valid.
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Figure 6.12: Error of the initial delamination length value obtained by the Taylor series approximation with respect

to the numerical value.



7
Complete Damage Evolution

It is now possible to integrate the crack propagation model (described in section 4), the

delamination onset model (explained in section 5) and the delamination growth model

(outlined in section 6) into a unified plot. This consolidated representation offers a convenient

and general overview of the composite laminate’s behavior. Figure 7.1 illustrates the general

shape of the graph for a typical cross-ply configuration subjected to tension, allowing for quick

insights into the laminate’s response.
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Figure 7.1: Schematic of the damage evolution of a cross-ply under tension.

Initially, the laminate experiences cracking in the critical ply or plies, but the crack spacing

remains sufficiently wide that it does not significantly affect the material properties [3]. This

phase extends from the unloaded condition until the cracks start propagating uniformly at

96
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𝐷 = 2.966𝑡𝑐 , as defined by Kassapoglou and Socci’s model (see section 4.2). Within this range,

Socci & Kassapoglou’s model is represented by the grey line, while the linear approximation

derived from the FPF (First Ply Failure) load, discussed in section 4.5.1, is depicted in black.

This early phase is generally considered less critical as the cracks are present but spaced far

enough apart that the material properties remain largely unaffected [3]. For assessing the

actual crack spacing 𝐷 on the graph, the linear approximation to the FPF load is more practical

as it closely aligns with reality, as validated in section 4.5.1. However, if not explicitly required,

the original approximation can be utilized.

Beyond the point where𝐷 = 2.966𝑡𝑐 , the cracks propagate uniformly following Kassapoglou

& Socci’s model. This crack multiplication process continues until the delamination onset

occurs at the tips of the cracks. At this stage, crack saturation is assumed, and the crack distance

at onset 𝐷𝑜𝑛𝑠𝑒𝑡 remains constant during delamination growth (see section 5). The formed

delaminations start with an initial delamination length 𝑎0, which depends on the material

properties and loading conditions. From this point onwards, the delaminations grow (as

represented by the dashed line in Figure 7.1) until they cover the entire space between the

cracks, resulting in 𝑎 = 𝐷𝑜𝑛𝑠𝑒𝑡 .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9

105

0

1

2

3

4

5

6

7

8

9

10

0

1

2

3

4

5

6

7

8

9

10

Onset Onset Onset

[0/90
4
/0]

[0/90
8
/0]

[0/90
12

/0]

Figure 7.2: Damage evolution of [0/90
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/0] laminates under tension.

This representation is now applied to the laminates studied by Takeda & Ogihara [7],

namely, the [0/904/0], [0/908/0] and [0/9012/0] laminates. In Figure 7.2, the delamination

growth, as previously shown, is now illustrated along with the crack propagation. It is evident

that the crack spacing at delamination onset increases with an increasing number of 90º plies, as

does the initial delamination length to a lesser extent. Additionally, the crack spacing at which

the cracks start behaving with uniform spacing also increases, which is logical since this point

is proportional to the thickness of the critical ply or plies (𝐷 = 2.966𝑡𝑐). The representation

is plotted against the applied load, and Figure 7.3 depicts the exact same figure but for the

applied stress.
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With just a single glance, a comparison can be easily made among the three laminates and a

ton of information can be obtained. The thicker the 90º ply block, the lower the stress required

to reach delamination onset, and the higher the crack spacing at the onset. Additionally, thicker

laminates experience quicker delamination growth. In summary, the [0/9012/0] laminate

exhibits the most unfavorable behavior against delamination induced by matrix cracking.
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Figure 7.3: Damage evolution of [0/90
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/0] laminates under tension.

Not only can different laminates be compared using this representation, but also the

influence of various properties on the general behavior of the same laminate can be easily

assessed. Let’s consider the previous [0/904/0] laminate and vary its main properties. Figure

7.4 illustrates a variation of the longitudinal Young’s modulus from -15% to +15%. As observed,

the point of crack initiation remains the same since it depends solely on the thickness of the 90º

plies, which remains constant in this case. However, the delamination onset load increases with

an increasing value of 𝐸1. The delamination growth also occurs at higher loads but follows

the same trend. This behavior may be attributed to the fact that stiffer 0º plies, associated

with higher 𝐸1 values, bear a larger portion of the loads, leaving less load available for crack

propagation and delamination growth.

In Figure 7.5, we vary the transverse Young’s modulus 𝐸2 within a range of ±15%. The

point at which Kassapoglou & Socci’s model "kicks-in" remains constant at the same crack

spacing but it occurs at higher loads for decreasing 𝐸2 values. Interestingly, the behavior is

opposite to that observed for 𝐸1. Increasing 𝐸2 reduces the delamination onset load, which

aligns with the closed-form equation 5.29 derived in section 5.4.1. This equation indicates that

the onset load is inversely proportional to 𝐸2 and directly proportional to the transverse in-situ

strength 𝑌𝑇
𝑖𝑠

. Moreover, it is noteworthy that 𝐸2 significantly influences the delamination initial

length. Lower 𝐸2 values lead to higher initial lengths, but the range of loads for delamination

growth becomes narrower compared to the influence of 𝐸1. This suggests that higher 𝐸2 values



99

result in improved crack and delamination behavior since these occur at higher loads. The

explanation lies in the fact that a higher transverse Young’s modulus makes the 90º ply under

tension stiffer and these plies are critical sites for crack initiation.
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Lastly, the study also examines the effect of varying the transverse in-situ strength, 𝑌𝑇
𝑖𝑠

.

As depicted in Figure 7.6, it significantly influences crack formation and delamination onset,

which is sensible considering it is the driving factor that determines when a new crack will

appear (refer to section 4.2). Moreover, it plays a crucial role in the closed-form expression for

determining the delamination onset load (see eq.5.29), where it is directly proportional to the

onset load. Additionally, although not distinctly visible in the figure, lower values of 𝑌𝑇
𝑖𝑠

result

in shorter initial delamination lengths.

Notably, the delamination growth remains unaffected by the transverse in-situ strength,

as evident from the dashed parts of the curves. The delamination growth, described by

the SERR expression 𝐺𝑐𝑟+𝑑𝑒𝑙 , does not consider 𝑌𝑇
𝑖𝑠

since it solely accounts for the energy

dissipated by increasing the delaminated area. Furthermore, 𝑌𝑇
𝑖𝑠

is not explicitly defined in

𝐺𝐼𝐼𝑅, which governs the critical values for delamination growth. Hence, the delamination

growth model doesn’t directly incorporate the parameter 𝑌𝑇
𝑖𝑠

, but the constants within 𝐺𝐼𝐼𝑅
might have a dependence on it. Given that the constants accessible are those derived by

Takeda & Ogihara for a particular material, the manner in which the material impacts these

constants and consequently the model remains to be studied. Considering that delaminations

predominantly arise at ply interfaces rather than being directly linked to ply strength, it could

be argued that the influence of the material might not be profoundly critical. Nonetheless, it is

likely that 𝑌𝑇
𝑖𝑠

could exert a certain level of influence to some degree.
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Figure 7.6: Influence of 𝑌𝑇
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in a [0/90
4
/0] laminate under tension.

Previously, predictions were made for cross-plies under the assumption that the mode

II interlaminar fracture toughness 𝐺𝐼𝐼𝑅 accurately determines a critical SERR value since

delamination grows parallel to the laminate longitudinal axis. Now, [0/𝜃2]𝑠 laminates are

studied to draw conclusions about the applicability of the delamination growth model and

more specifically, the use of 𝐺𝐼𝐼𝑅. The crack propagation and delamination onset models are

not restricted by any layup (as long as it is symmetrical) and will work fine. However, as
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mentioned in section 6.2.1, when the interface in which a laminate is growing is not driven by

pure in-plane shear, the use of 𝐺𝐼𝐼𝑅 may no longer be an accurate option (refer to Figure 6.4).
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Figure 7.7: Damage evolution in [0/𝜃
2
]𝑠 laminates under tension.

Figure 7.7 illustrates [0/𝜃2]𝑠 laminates subjected to tension for 𝜃 = 90, 75, 70 and 65. In

these laminates, the central plies experience both local shear and transverse tension (except

the 90º), leading to an expected mode II and mode III interaction in the delamination growth

process. Observing the behavior, the [0/752]𝑠 laminate, which has relatively low local shear,

behaves similarly to the cross-ply but with the onset of delamination occurring at a higher

load as well as the delamination growth range. On the other hand, the [0/702]𝑠 and [0/652]𝑠
laminates exhibit a sudden change in behavior, with the onset of delamination also happening

at a higher load. These laminates have an extremely small initial delamination length, almost

close to zero, which might not be an accurate value comparing it with the cross-ply values

and considering that the 𝐷𝑜𝑛𝑠𝑒𝑡 is quite similar. Moreover, their delamination growth shows a

highly non-linear pattern, requiring a broad range of loads for complete delamination growth.

This behavior is attributed to the fact that the SERR for delamination growth 𝐺𝑐𝑟+𝑑𝑒𝑙 at the

onset is almost smaller than the mode II interlaminar fracture toughness (𝐺𝐼𝐼𝑅) for all 𝑎 values.

Let’s examine Figure 7.8, which illustrates the approach used to predict delamination

growth for the [0/702]𝑠 laminate, and compare it with Figure 6.6, corresponding to the [0/902]𝑠
laminate. At the onset, 𝐺𝑐𝑟+𝑑𝑒𝑙 for the [0/702]𝑠 laminate intersects very closely with 𝐺𝐼𝐼𝑅 at

𝑎 = 0. This indicates that the mode II interlaminar fracture toughness is almost higher than

the actual SERR required for delamination growth, suggesting that delamination growth may

not occur. Subsequent loading causes 𝐺𝑐𝑟+𝑑𝑒𝑙 to intersect 𝐺𝐼𝐼𝑅 over a very small range of 𝑎

values, resulting in a non-linear delamination growth graph, as depicted in Figure 7.6. This
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non-linearity explains the wide range of loading needed to achieve complete delamination

growth (𝑎 = 𝐷𝑜𝑛𝑠𝑒𝑡). These findings imply that the model predicts that delamination growth

in the [0/702]𝑠 and [0/652]𝑠 laminates is highly unlikely or that the 𝐺𝐼𝐼𝑅 expression does not

accurately capture the energy required for the delamination growth. Since these laminates

exhibit a significant amount of shear, it is possible that a combined mode II + III expression for

the interlaminar fracture toughness is necessary.

For 𝜃 < 65º, our model does not predict delamination growth, despite being able to obtain

the delamination onset load using the model presented in section 5. This onset load seems

accurate since the behaviour follows the ascending trend for lower 𝜃 values. These observations

support the idea that the issue may lie in the value of 𝐺𝐼𝐼𝑅 used and the proposed delamination

growth model may only be suitable for laminates in which delamination is driven mainly by

mode II.
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Figure 7.8: 𝐺𝑐𝑟+𝑑𝑒𝑙 vs 𝐺𝐼𝐼𝑅 in a [0/70
2
]𝑠 laminate under tension.

This section has demonstrated the potential of the integrated models presented in this thesis,

effectively representing the complete process of crack initiation, propagation, delamination

onset induced by these cracks and the subsequent growth of these delaminations. The ability

to rapidly and quantitatively compare different laminates and material properties allows for

quick conclusions regarding their behavior against damage, making it particularly valuable

during design phases.

Moreover, the accuracy of these models has been demonstrated, making them suitable for

predicting delamination onset loads, crack spacings and delamination lengths with reasonable

precision. Specially good correlation is obtained for cross-plies. This predictive capability

further enhances their practical utility in engineering applications. Overall, the combined

analytical models offer a comprehensive toolset for understanding and predicting the behavior

of laminated composites under the influence of cracking and delamination, fostering more

informed and efficient decisions.



8
Conclusions

The objective of this research was to develop an analytical model for studying the behavior of de-

laminations originating from matrix cracks. The model consist of three analytical components:

a matrix crack propagation model, a delamination onset model and a delamination growth

model. These components are built on a robust physical foundation and are well-suited for

practical/realistic applications, such as design and damage assessment. This section includes a

comprehensive discussion of the methodology employed, the results obtained, the validation

and the applicability of the models.

All the models presented in this study are entirely analytical, providing inherent speed
and efficiency. Their strong mathematical and physical foundations make them highly in-

terpretable and easily generalizable or improvable. Moreover, they enable a comprehensive

examination of various parameters and their sensitivity. The study derives closed-form expres-

sions for the Strain Energy Release Rate (SERR) related to crack propagation (𝐺𝑐𝑟), delamination

onset (𝐺𝑐𝑟+𝑑𝑒𝑙 𝑜𝑛𝑠𝑒𝑡) and delamination growth (𝐺𝑐𝑟+𝑑𝑒𝑙 𝑔𝑟𝑜𝑤𝑡ℎ) for any given symmetrical laminate.

An exception is found in section 5.4.2 where an iteration is needed to obtain the solution

of eq.5.31 (refer to Figure 5.20). However, this numerical solution is not computationally

intensive. For modeling the damage of a cross-ply, two material properties that are not easily

obtained are required: the transverse in-situ strength (𝑌𝑇𝑖𝑠) and a mode II interlaminar fracture

toughness relation with respect to the delamination length (𝐺𝐼𝐼𝑅 = 𝑓 (𝑎)). In the case of a

general symmetrical laminate, additional parameters, such as the shear in-situ strength (𝑆𝑖𝑠)

and the yield shear strain (𝛾𝑌), are needed. These parameters can be reasonably approximated,

and if precise experimental values are desired, they only need to be obtained once per material.

Considering the model’s versatility in analyzing any given symmetrical laminate, it proves to

be a valuable tool for practical applications and can be highly useful in various scenarios.

Regarding the methodology of the proposed models (section 3): The underlying idea for all

models is the use of the Strain Energy Release Rate (SERR) to assess different damage scenarios.

The concept is relatively straightforward: derive SERR expressions associated with specific

processes (crack propagation, delamination onset and delamination growth) and then compare

these expressions to identify critical points, particularly in terms of the main variable, which, in

this case, is the crack spacing. These critical values establish distinct regions where one process

becomes more probable than the others. One of the notable advantages of this approach is

that the critical values of each SERR expression are self-defined by utilizing the other derived

SERR expressions. This eliminates the need for experimental determination of these critical
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values. Additionally, this methodology allows for the easy incorporation of additional damage

modes, enabling meaningful comparisons among different damage mechanisms. The SERR

concept has a long-standing history in composite fracture mechanics and is strongly connected

to the physics underlying the damage processes. As a result, this approach enhances the inter-

pretability and provides a qualitative and quantitative understanding of the mechanisms at play.

Regarding the applicability and validation of the models (sections 4.5, 5.5 and 6.3 ): The

matrix crack propagation model has undergone extensive validation using test data for a

cross-ply laminate. However, further comparison and validation are needed for more complex

and generic layups. The model shows great versatility and can be applied to any symmetrical

laminate subjected to tension or tension + shear without any specific restrictions. Nevertheless,

it is essential to assess how well the model predicts crack propagation in laminates where

most plies present a significant likelihood of crack propagation, as most validation has been

conducted for cross-ply laminates or layups containing 90º plies. Similarly, the delamination

onset model can technically be applied to any symmetrical laminate under tension or tension

+ shear, as long as only one interface is critical for the initiation of delamination (in each

symmetric half). However, if in more than two interfaces delaminations are considered, some

modifications must be made in the calculation of laminate stiffnesses (see eq. 5.7 - 5.18 ). On the

other hand, the delamination growth model has only been validated for cross-ply laminates,

and the use of mode II interlaminar fracture toughness may not be suitable for laminates where

local shear is present in the plies. Nonetheless, the proposed model is simple and represents

a step in the right direction, showing promise if further refinement is undertaken. Once a

combined mode II and III fracture toughness model is employed, its applicability could be

expanded to any symmetrical laminate.

Regarding the study of the parameters and interpretability of the expressions derived
(sections 4.4, 5.3 and 5.6: The obtained closed-form expressions offer valuable insights into

various trends. The behavior of 𝐺𝑐𝑟 primarily depends on the stacking sequence and the

thickness of the critical plies, while 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 is highly sensitive to the ratio 𝑡1/𝑡𝑐 (as shown in

Figure 5.14). The delamination growth expression, 𝐺𝑐𝑟+𝑑𝑒𝑙 , exhibits a linear behaviour within

the typical usage range. Interestingly, all SERR expressions for the four proposed cases behave

similarly concerning the parameters. Particular attention must be given to obtaining accurate

in-situ strengths values (𝑌𝑇
𝑖𝑠

and 𝑆𝑖𝑠), as they significantly impact the crack propagation and

delamination onset models. The analytical nature of the model facilitates a quick understanding

of the physical relationships between parameters and their influence on predictions. This

understanding can pave the way for future researchers to make modifications, improvements

and expansions of the expressions and the model itself.

Finally, regarding the practical use of the models (section 5.7 and 7): Their efficiency and

analytical nature enable rapid comparison of the laminate behavior. Design curves for the

delamination onset can be generated, facilitating the quick exploration of numerous parameter

combinations. This allows for the comparison of different materials and layups simultaneously,

without the need for complex simulations. As the model has been validated, even with its

inherent errors, it becomes a powerful tool in the early stages of the design process. Further-

more, by combining crack propagation, delamination onset and growth plots, a wealth of

information about a specific laminate can be readily obtained within seconds. These plots serve

practical purposes, such as damage assessment in structures. For instance, if a non-destructive

test is performed on a laminate, and an average distance for a ply is determined, these plots

can provide insights into whether the laminate is approaching a critical area or if it is in a
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safe range. While some additional work would be necessary to fully implement the models,

their extension to include fatigue loading would be highly beneficial for practical use. Overall,

these analytical models have the potential to offer valuable insights and streamline various

engineering processes.

Based on the conclusions reached in this chapter, recommendations for future work are

given in Section 9 which are arranged in descending order of priority.



9
Recommendations for future work

The proposed recommendations are arranged in descending order, starting with the most

impactful and useful feature and gradually progressing to the less directly impactful but still

relevant features.

• Modify the crack propagation and delamination onset model (section 4 and 5) to take
into account cracks in every ply. Currently, the model assumes cracks only in critical

plies based on the FPF criteria. While this works perfectly in a cross-ply or laminates

with 90º plies under tension because matrix cracks will hardly appear in plies other than

the 90º, other complex laminates with many ply orientations could suffer completely

different individual crack propagation behaviours. To address this limitation, consider

introducing a crack spacing variable for each ply orientation. However, it is acknowledged

that this modification will increase the complexity of calculating analytical expressions

for 𝐺𝑐𝑟 , 𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 and 𝐺𝑐𝑟+𝑑𝑒𝑙 as the stiffnesses and cracked areas 𝐴𝑐𝑟 will now depend on

𝐷1 , 𝐷2 , ..., 𝐷𝑖 where 𝑖 represents the number of ply orientations (see Figure 9.1). This

could lead to highly intricate analytical differentiations. This improvement will prove

very useful in laminates in which most of its plies are prone to cracking.

Figure 9.1: Symmetrical laminate with cracks in every ply.

• Expand the model to take into account more complex delamination scenarios like
multiple delaminations or different configurations emanating from the crack tips. 4
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delamination configurations are proposed but more complex scenarios could be devised

and compared. Many delaminations occurring at the same time with different behaviours

could be studied including again different delamination lengths variables depending on

the interface.

• Improve the delamination growth model proposed in section 6.2.1 using a mixed mode
II+III interlaminar fracture toughness model. The use of Mode II interlaminar fracture

toughness restricts the model to situations where the delamination growth is close to an

in-plane shear growth. Since the delamination onset model works for every symmetrical

laminate, a delamination growth model that is as effective in every situation would be

required.

• Demonstrate that the crack spacing remains constant after the onset using the derived
SERR expressions. When considering a crack spacing 𝐷 and introducing a delamination

of length 𝑎, 𝐺𝑐𝑟+𝑑𝑒𝑙 has to be always bigger than 𝐺𝑐𝑟 for that specific 𝐷 in order to prove

that no crack will appear after the onset𝐷𝑜𝑛𝑠𝑒𝑡 . Mathematically, the following expressions

must be satisfied:

∀𝑎,∀𝐷 < 𝐷𝑜𝑛𝑠𝑒𝑡 : 𝐺𝑐𝑟+𝑑𝑒𝑙(𝑎, 𝐷) > 𝐺𝑐𝑟(𝐷)

• Include additional damage modes to the model to improve the predictions (eg. free-

edge delaminations, fiber fracture, fiber-matrix debonding...). It has been discussed

briefly in section 6.3.1 how the SERR derived by O’Brien [13] for edge delamination can

be combined with the proposed model to help to improve the predictions. Including

a general method to predict free-edge delaminations, fiber fracture or other damage

models can help to improve the correlation with reality and can make the plots derived

in section 7 even more complete.

• Devise a rigorous criterion to model the initial delamination length which is over-
estimated in the model. While the overstimation of the initial length make the model

conservative, a more precise method could be used to effectively capture the spontaneous

process of the creation of the delaminations in the matrix crack tips.

• Assume that the crack spacing varies during the delamination growth. The assumption

that the crack spacing is constant through the delamination growth is fair but an analysis

of how the delamination behaves upon varying the crack distance at the same time as the

delamination grows could give interesting information.

• Validate the delamination onset model for laminates under combined loading. No

combined loading tests were found on the literature, nor FEM analysis. Either experi-

mental data of FEM modelling would be required to validate the model for laminates

under tension and shear.

• Transition the model to fatigue loading. SERR expressions are also used in fatigue

loading to predict crack propagation and delamination growth so the derived expressions

could be modified and maybe used for dynamic loading. These would require great

effort as the dynamic effects in the composite laminates are complex and difficult to study

analytically.



A
Material Properties

Table A.1: Material data used in the thesis.

UT-E500/Epikote RIMR235 AS/3501-6 Fiberite 934/T300

Property Value Source Value Source Value Source

𝐸1 [GPa] 41.4 [44] 139.9 [71] 128 [72]

𝐸2 [GPa] 13.1 [44] 11.1 [71] 7.2 [72]

𝐺12 [GPa] 4.0 [44] 4.79 [71] 4 [72]

𝜈12 0.30 [44] 0.27 [71] 0.3 [72]

t [mm] 0.34 [44] 0.132 [71] 0.125 [72]

𝛾𝑦 0.014
∗

[74] 0.0165 [75] - -

𝑌𝑡
𝑖𝑠

[MPa] 70.96
∗

[76] 60.03
∗

[77] 58.6 [78]

𝑆𝑖𝑠 [MPa] - - 140.31
∗

[77] - -

L [mm] 200 (140) [44] 177.8 [71] 150 [72]

Avimid K Polymer/IM6 Hercules 3501-6/AS4 T800H/3631

Property Value Source Value Source Value Source

𝐸1 [GPa] 134 [72] 130 [72] 152.2 [7]

𝐸2 [GPa] 9.8 [72] 9.7 [72] 9.57 [7]

𝐺12 [GPa] 5.5 [72] 5.0 [72] 5.0 [7]

𝜈12 0.3 [72] 0.3 [72] 0.3 [7]

t [mm] 0.125 [72] 0.125 [72] 0.132 [7]

𝛾𝑦 - - - - - -

𝑌𝑡
𝑖𝑠

[MPa] 92.82
∗

[72] 49.42
∗

[72] 65.09
∗

[79]

𝑆𝑖𝑠 [MPa] - - - - - -

L [mm] 150 [72] 150 [72] 30 [7]
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Hercules AS1/3501-6 Typical carbon/epoxy UD

Property Value Source Value Source

𝐸1 [GPa] 130 [46] 128 [21]

𝐸2 [GPa] 10 [46] 7.2 [21]

𝐺12 [GPa] 5 [46] 4 [21]

𝜈12 0.3 [46] 0.3 [21]

t [mm] 0.169 [46] 0.14 [21]

𝛾𝑦 - - - -

𝑌𝑡
𝑖𝑠

[MPa] 38.78
∗

[80] 58.6∗ [78]

𝑆𝑖𝑠 [MPa] 120 [80] - -

L [mm] 200 [46] 150 [72]

∗
Value derived from data within given reference.



B
Reduced Shear Modulus Calculation

Socci & Kassapoglou [3] approximate the shear stress-strain curve as a bi-linear curve with

initial slope 𝐺𝑥𝑦 and final slope 𝑘 as shown in Figure B.1. For sufficient high loads, permanent

shear strains 𝛾𝑚 are present on the ply as defined in point A in Fig. B.1. The permanent

strain should be known in order to calculate the new slope of the line AB. The final slope 𝑘 is

obtained by ensuring that the areas under the bi-linear curve and the experimentally obtained

stress-strain cuRve are the same.

Figure B.1: Shear stress-strain curve approximated by a bi-linear curve. Obtained from [3]
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Two quantities are now defined by the authors: the "unavailable" elastic energy which is

not available due to the non-linearities of the curve and the "non-recoverable" strain energy

because unloading from point B does not go to zero strain but to the permanent strain 𝛾𝑚 . For

an applied strain 𝛾𝑥𝑦 in a ply, the "unavailable" elastic energy is defined as the triangle 𝐷𝐸𝐵1

in Fig. B.1. The "non-recoverable" strain energy is obtain as the are of the polygon 𝐶𝐴𝐵1𝐷.

The permanent shear strain 𝛾𝑚 is obtained requiring that the ratio of the "unavailable" elastic

energy to the total elastic energy (area CEF) is equal to the ratio of the "non-recoverable" energy

to the total elastic-plastic energy (area 𝐶𝐹𝐵1𝐷) which gives:

𝐷𝐸𝐵1

𝐶𝐸𝐹
=
𝐶𝐴𝐵1𝐷

𝐶𝐹𝐵1𝐷
⇒ 𝛾𝑚 =

(
𝐺𝑥𝑦𝛾𝑥𝑦 − 𝜏𝑥𝑦

) (
𝛾𝑥𝑦 − 𝛾𝑦

) [
𝜏𝑥𝑦

(
𝛾𝑥𝑦 − 𝛾𝑦

)
+ 𝐺𝑥𝑦𝛾𝑥𝑦𝛾𝑦

]
𝐺𝑥𝑦𝛾2

𝑥𝑦

(
𝜏𝑥𝑦 + 𝐺𝑥𝑦𝛾𝑦

)
(B.1)

where 𝛾𝑦 is the yield shear strain, 𝐺𝑥𝑦 the shear modulus in the ply and 𝜏𝑥𝑦 is the stress

obtained from the bi-linear relation:

𝜏𝑥𝑦 = 𝐺𝑥𝑦 + 𝑘(𝛾𝑥𝑦 − 𝛾𝑦) (B.2)

Then, the shear modulus due to the non-linearity is defined as follows:

𝐺𝑥𝑦 =
𝜏𝑥𝑦

(𝛾𝑥𝑦 − 𝛾𝑚)
(B.3)

In addition of the non-linear behaviour, the shear stress in the ply will be reduced due to

the presence of cracks if the shear applied to the ply is sufficiently high. The shear strain stress

is obtained in [3] as:

𝜏𝑥𝑦 = −
8𝜈0𝐺𝑥𝑦

𝐷

∑ 𝑠𝑖𝑛 𝑛𝜋
2

𝑛𝜋
(
1 + 𝑒 𝑘𝑛𝐷

) (
𝑒 𝑘𝑛𝑦 + 𝑒 𝑘𝑛𝐷𝑒−𝑘𝑛𝑦

)
𝑐𝑜𝑠

𝑛𝜋𝑧
𝑡2

+ 2𝜈0

𝐷
𝐺𝑥𝑦 (B.4)

𝜈0 = 𝛾𝑎𝐷/2, 𝑘𝑛 = 𝑛𝜋/𝑡2, 𝐷 is the distance between cracks, 𝑡2 the thickness of the cracked

ply, 𝐺𝑥𝑦 the shear modulus and 𝑧 is the through thickness coordinate as shown in Fig.B.2.

Figure B.2: Matrix cracks forming in a ply under pure shear. Obtained from [3]
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In [3] can be demonstrated that if the shear stress is elastic for all z at the y location for

interest, the average shear stress is defined as:

𝜏𝑥𝑦𝑎𝑣 = −16𝜈0

𝐷
𝐺𝑥𝑦

∑ 𝑒 𝑘𝑛𝑦 + 𝑒 𝑘𝑛𝐷𝑒−𝑘𝑛𝑦(
1 + 𝑒 𝑘𝑛𝐷

)
(𝑛𝜋)2

+ 2𝜈0

𝐷
𝐺𝑥𝑦 (B.5)

If the shear stress becomes non-linear for a portion 𝑧0 ≤ 𝑧 ≤ 𝑡2/2, the average shear stress

can be expressed by:

𝜏𝑥𝑦𝑎𝑣 = −16𝜈0

𝐷
𝐺𝑥𝑦

∑ 𝑒 𝑘𝑛𝑦 + 𝑒 𝑘𝑛𝐷𝑒−𝑘𝑛𝑦(
1 + 𝑒 𝑘𝑛𝐷

)
(𝑛𝜋)2

[
𝑘 +

(
𝐺𝑥𝑦 − 𝑘

)
𝑠𝑖𝑛

𝑛𝜋
2

𝑠𝑖𝑛
𝑛𝜋𝑧0

𝑡2

]
+2𝜈0

𝐷
𝐺𝑥𝑦

[
2𝑧0

𝑡2
+ 𝑘

𝐺𝑥𝑦

(
1 − 2𝑧0

𝑡2

)]
+ 𝐺𝑥𝑦𝛾𝑦

(
1 − 𝑘

𝐺𝑥𝑦

) (
1 − 2𝑧0

𝑡2

)
(B.6)

𝑧0 is found as the value of z for which the right hand side of equation B.4 is equal to the

"yield" shear stress 𝐺𝑥𝑦𝛾𝑦 . Evaluating eq. B.5 or eq. B.6 in y = D/2 right before cracking, the

shear modulus in a cracked ply is finally defined as:

𝐺𝑥𝑦,𝑟𝑒𝑑 =
𝜏𝑥𝑦𝑎𝑣

(𝛾𝑥𝑦 − 𝛾𝑚)
(B.7)

Substituing eq. B.5 & eq. B.1 in eq. B.7 and modifying the notation to make it uniform with

the rest of the report, eq. ?? is obtained.



C
ABD matrix calculation

The constitutive equations of CLT [64] can be easily written in matrix form as:

𝑁𝑥

𝑁𝑦

𝑁𝑥𝑦

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦


=



𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16

𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26

𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66

𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16

𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26

𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66





𝜀0

𝑥

𝜀0

𝑦

𝛾0

𝑥𝑦

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦


(C.1)

Written in contracted form : [
𝑁

𝑀

]
=

[
𝐴 𝐵

𝐵 𝐷

]
=

[
𝜀0

𝑥

𝐾

]
(C.2)

By definition, the terms of the ABD matrix are expressed as:

𝐴𝑖 𝑗 =

𝑛∑
𝑘=1

[
�̄�𝑖 𝑗

]
𝑘
(ℎ𝑘 − ℎ𝑘−1) (C.3)

𝐵𝑖 𝑗 =
1

2

𝑛∑
𝑘=1

[
�̄�𝑖 𝑗

]
𝑘

(
ℎ2

𝑘
− ℎ2

𝑘−1

)
(C.4)

𝐷𝑖 𝑗 =
1

3

𝑛∑
𝑘=1

[
�̄�𝑖 𝑗

]
𝑘

(
ℎ3

𝑘
− ℎ3

𝑘−1

)
(C.5)

ℎ𝑘 − ℎ𝑘−1 is the thickness of of a k-ply and

[
�̄�𝑖 𝑗

]
𝑘

is the stiffness matrix of a k-ply in global

coordinates which are defined as follow:
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�̄�11 = 𝑈1 +𝑈2 𝑐𝑜𝑠(2𝜃) +𝑈3 𝑐𝑜𝑠(4𝜃)

�̄�22 = 𝑈1 −𝑈2 𝑐𝑜𝑠(2𝜃) +𝑈3 𝑐𝑜𝑠(4𝜃)

�̄�12 = 𝑈4 −𝑈3 𝑐𝑜𝑠(4𝜃)

�̄�66 = 𝑈5 −𝑈3 𝑐𝑜𝑠(4𝜃)

�̄�16 = 1

2
𝑈2 𝑠𝑖𝑛(2𝜃) +𝑈3 𝑠𝑖𝑛(4𝜃)

�̄�26 = 1

2
𝑈2 𝑠𝑖𝑛(2𝜃) −𝑈3 𝑠𝑖𝑛(4𝜃)

(C.6)

where

𝑈1 = 3

8
(𝑄11 +𝑄22) + 1

4
𝑄12 + 1

2
𝑄66

𝑈2 = 1

2
(𝑄11 −𝑄22)

𝑈3 = 1

8
(𝑄11 +𝑄22) − 1

4
𝑄12 − 1

2
𝑄66

𝑈4 = 1

8
(𝑄11 +𝑄22) + 3

4
𝑄12 − 1

2
𝑄66

𝑈5 = 1

8
(𝑄11 +𝑄22) − 1

4
𝑄12 + 1

2
𝑄66

(C.7)

𝜃 is the angle of the ply with respect to the global axis and 𝑄𝑖 𝑗 terms are defined as the

reduced stiffnesses of the ply [64] and can be obtained using the material properties of the

lamina (𝐸1, 𝐸2, 𝐺12, 𝜈12 and 𝜈21) assuming that 𝜈21 = (𝐸2/𝐸1)𝜈12:

𝑄11 =
𝐸1

1 − 𝜈12𝜈21

𝑄22 =
𝐸2

1 − 𝜈12𝜈21

𝑄12 =
𝜈12𝐸2

1 − 𝜈12𝜈21

𝑄66 = 𝐺12

(C.8)



D
𝐺𝑐𝑟 and 𝐺𝑐𝑟+𝑑𝑒𝑙 3D plots

A representation of the SERR expressions for crack propagation 𝐺𝑐𝑟 and delamination onset

𝐺𝑐𝑟+𝑑𝑒𝑙𝑜𝑛𝑠𝑒𝑡 are presented here with respect to their most 2 important parameters, the crack spacing

𝐷 and the applied load 𝜎𝑥 . This 3D representations help to understand the trend of both

function. Since it is assumed that it sufficiently explained during the report, this figures are

presented here in the Appendix as an additional information.
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Figure D.1: Schematic of 𝐺𝑐𝑟 as a function of 𝐷 and the applied stress 𝜎𝑥 for a generic symmetrical laminate.
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Figure D.3: Schematic of 𝐺𝑐𝑟+𝑑𝑒𝑙
𝑜𝑛𝑠𝑒𝑡

as a function of 𝐷 and the applied stress 𝜎𝑥 for a generic symmetrical laminate.
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Figure D.5: Schematic of the intersection of 𝐺𝑐𝑟 and 𝐺𝑐𝑟+𝑑𝑒𝑙
𝑜𝑛𝑠𝑒𝑡

as a function of 𝐷 and the applied stress 𝜎𝑥 for a

generic symmetrical laminate.
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