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Summary

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterised by deficits in social
interaction and restrictive and repetitive behaviours. ASD is often accompanied by anxiety, elevated
rates of depression, and reduced quality of life. Current diagnostic tools are time-consuming, subjec-
tive, and less effective in certain groups, particularly young children. Eye tracking has emerged as
a promising biomarker, holding the potential to improve diagnostic accuracy and developmental out-
comes, thereby reducing the lifetime socio-economic costs of autism. This thesis aims to advance the
understanding of gaze behaviour as a biomarker for ASD, thereby driving the development of more
accurate, accessible, and scalable diagnostic tools.

A literature review identified fifteen eye tracking features that are associated with ASD diagnosis or So-
cial Responsiveness Scale (SRS) scores. These features were extracted from raw eye tracking data
in the Generation R database. Statistical analyses were performed using Generalised Linear Models
to evaluate their relationship with ASD diagnosis and SRS scores. Additional analyses addressed fea-
ture distributions, gender differences, and the effects of video content and participant age and gender.
Features with significant relationships with ASD diagnosis or SRS scores were used in a nested cross-
validation framework with predictive machine learning models. The Area Under the Curve (AUC) was
the primary performance metric, supported by F1 score, precision, and recall.

Classification proved challenging due to limited discriminative power of individual features. The Cat-
Boost Gradient Boosting Decision Tree achieved the highest performance for ASD prediction with an
AUC of 0.71, indicating that gaze-derived features hold promise when used in complex non-linear mod-
els. In contrast, the model predicting SRS scores performed worse, with an AUC of 0.57, suggesting
that social responsiveness is a part of ASD that may be more effectively masked in adolescents. An
alternative explanation is that the features reflect aspects of the autism phenotype that are unrelated
to social responsiveness.

Key limitations include the small number of 33 participants with an ASD diagnosis, which reduced
statistical power. The reliance on pre-existing clinical diagnoses and SRS scores, which does not
capture the full complexity of ASD, led to a lack of ground truth. The adolescent age of the participants
posed limitations, as masking behaviours can obscure gaze-based markers. Co-occurring factors such
as attention difficulties or cognitive ability were not controlled for. Finally, choices in feature engineering,
such as gaze data aggregation, reduced temporal detail; and exclusion of participants with very low
screentime may have caused individuals with low social engagement to be underrepresented.

In summary, gaze analysis is a promising tool for understanding and identifying ASD. The findings
in this thesis suggest that while individual gaze features offer limited diagnostic power on their own,
their integration within more advanced models holds potential to improve the diagnostic process and
provide deeper insights into the mechanisms underlying ASD. As datasets grow in size and quality, and
stimuli continue to evolve, there are substantial opportunities to uncover more nuanced relationships
between gaze behaviour and ASD traits. These developments ultimately support the creation of low-
cost, inclusive and scalable ASD assessment tools, thereby enhancing both individual quality of life
and broader socio-economic outcomes.
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1
Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects approximately 1 in 100
children worldwide. [1] Core characteristics of ASD include deficits in social interaction and restricted,
repetitive behaviours. [2] Research indicates that autistic adults experience anxiety, depression, and
stress levels comparable to individuals diagnosed with primary anxiety and depressive disorders. [3]
Moreover, the quality of life for individuals with ASD is consistently lower than that of the general pop-
ulation, across all age groups. [4, 5]

Despite the high prevalence and substantial impact of ASD across the lifespan, current diagnostic ap-
proaches face several critical limitations. Limitations of current gold-standard diagnostic tools, such
as the Autism Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview (ADI),
are particularly evident among certain subgroups. [6] For example, culturally and linguistically diverse
populations often experience diminished diagnostic precision with these assessments. [7] Additionally,
current tools frequently fail to adequately detect high-functioning autism, as they rely heavily on overt
behavioural markers that may not capture the subtle social deficits of this subgroup. [8] Furthermore,
these tools are not applicable in very young children, due to reliance on caregiver recall and the sub-
stantial developmental variability in children under the age of three. [9] Early identification allows for
early intervention, which has been shown to significantly enhance developmental outcomes and quality
of life for individuals with ASD. [10, 11] In addition to individual benefits, early intervention also yields
significant economic benefits over time. [10, 12] Consequently, there is a need for objective biomarkers
to complement and enhance the ASD diagnostic process.

To identify objective biomarkers for ASD, it is essential to understand its underlying neurobiological and
psychological mechanisms. Although ASD is widely recognized as a neurodevelopmental condition,
no single model has yet captured the full complexity of its etiology. Increasing evidence points to a
multifaceted interplay of genetic, neurological, environmental, and psychological factors. [13–16] This
complexity suggests that a viable biomarker must be sensitive to both the neurological and cognitive
aspects of the condition.

Gaze behaviour is particularly valuable in this context, as it integrates lower-level neural processes
with higher-order cognitive functions. Atypical gaze patterns have been linked to altered activity in key
brain regions involved in emotion processing, attention, and social cognition, including the amygdala,
frontal eye fields, dorsolateral prefrontal cortex, insula, superior temporal sulcus, and temporoparietal
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junction. [17–19] At the same time, gaze behaviour is shaped by higher-order psychological processes
such as motivation, joint attention, and theory of mind. This dual anchoring in both neural and cognitive
domains positions gaze behaviour as a meaningful marker of ASD-related differences. Eye tracking
provides a non-invasive and quantifiable method for these behaviours, and it is particularly well-suited
for assessing young children. [20, 21] Gaze-related differences between individuals with ASD and
those with typical development (TD) have been observed as early as infancy, which underscores the
potential for earlier diagnosis. [22] Eye tracking also enables more objective assessments in the other
subgroups that are underserved by traditional diagnostic tools, such as high-functioning individuals
and culturally diverse populations. [23, 24] These strengths make it a promising tool to improve the
diagnostic process of ASD.

To fully realise these advantages, careful consideration must be given to the type of stimulus used in
eye tracking assessments. Research suggests that dynamic social stimuli involving more than one
person are optimal for distinguishing individuals with ASD from TD. [25, 26] The differences between
these groups become more pronounced when video-based stimuli are used, as opposed to live social
interactions. [27] Moreover, naturalistic scenes yield greater ecological validity than animated charac-
ters. [28, 29] Given these findings, video recordings of naturalistic social interactions involving multiple
individuals appear to be the most effective method for identifying gaze patterns associated with ASD.
However, despite their promise, the specific eye-tracking outcome parameters most predictive of ASD
remain unclear, as much of the existing research has focused on static stimuli.

This thesis aims to address this knowledge gap by identifying and evaluating gaze-based outcome
parameters from dynamic, naturalistic social stimuli that may serve as objective biomarkers for ASD. A
comprehensive literature review, detailed in Appendix A, was conducted to identify outcome parameters.
These parameters will be extracted and evaluated using an eye tracking dataset, with the ultimate goal
of informing more inclusive and effective diagnostic practices.



2
Methods

2.1. Data Acquisition
Participants
This study was conducted within the framework of Generation R, a longitudinal population-based co-
hort in Rotterdam, the Netherlands. Generation R is a longitudinal population study that follows ap-
proximately 10,000 children from the fetal stage through adulthood to study a variety of factors related
to health and disease. When the children were approximately 13 years old they were invited to visit
the research centre for an eye tracking task and evaluation of the Social Responsiveness Scale (SRS)
short form. Between April 2016 and January 2020, a total of 3,008 children underwent the eye tracking
task, all of whom had normal or corrected-to-normal vision. Valid eye tracking data was obtained from
2,920 children (97% of those tested). The majority of these children watched three videos and therefore
provided three measurements (see Paragraph Video Stimuli), while 48 participants watched only one
or two due to technical difficulties or non-participation. Individual measurements were excluded when
the quality of the eye tracking data was deemed inadequate, defined as an error margin exceeding
1.5° of visual angle or a tracking percentage below 25% of the video duration. When a participant had
measurements eligible for inclusion, as well as measurements meeting exclusion criteria, only the mea-
surements meeting exclusion criteria were removed. A total of 254 observations from 148 participants
was excluded because their tracking percentage fell below the 25% threshold. An additional 746 ob-
servations from 262 participants were discarded because their calibration error exceeded 1.5°. Lastly,
to ensure that analyses focused on individual differences, one randomly selected twin from each twin
pair who completed the eye-tracking task was excluded. This led to the exclusion of 76 children. This
step was carried out after inspection of eye tracking data quality was to avoid excluding the twin that
had acceptable data quality while retaining the twin with insufficient data quality, ensuring minimal data
loss. The final data set consisted of 7508 measurements derived from 2539 children.

Social Responsiveness
Autistic traits were assessed using both dimensional and categorical measures: the SRS short form
and clinical ASD diagnoses. The SRS short form is a validated 16-item questionnaire that assesses
social functioning and traits associated with ASD, providing a total score that reflects the severity of
social impairments. A lower score indicates better social functioning. This measure was administered
consistently across the entire cohort. In contrast, ASD diagnoses were included only when participants
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2.2. Data Processing 9

had independently sought psychological help outside the study context and received a formal diagnosis
of ASD. The dual use of both measures aimed to enhance the comprehensiveness of the assessment:
while the SRS offers broad and systematic coverage of autistic traits, formal diagnosis serves as a
clinically grounded complement. Notably, the association between SRS scores and ASD diagnosis
has been reported to be moderate (ϕ = 0.33), suggesting that the SRS likely captures only a portion of
the broader ASD phenotype. [30]

Eye Tracking
Video Stimuli
The video stimuli presented during the eye tracking task were recorded using a professional-grade
digital camera. Each clip was 36.5 by 27.5 cm in size, corresponding to 40.1° x 30.8° of visual angle
when viewed from a distance of 65 cm, and had a resolution of 800 x 600 pixels. Eight distinct video
clips were developed, each depicting a dyadic interaction between two same-gender actors aged 20
to 25 years. The emotional content of the clips was categorised into four types: happiness, anger,
sadness, and depression. All emotional contents were portrayed once by male actors and once by
female actors. To ensure consistency, all scenes were recorded with a stationary camera and without
cuts. Actors wore neutral clothing and stood in fixed positions against a plain backdrop. A poster was
included in the background of each scene as a non-social object. The emotional scripts were carefully
developed in collaboration with a local film director to ensure authenticity, realism, and emotional clarity.
Each dialoguemaintained a standardised structure in terms of sentence length, pauses, and turn-taking,
though the emotional content varied. In each interaction, one actor expressed the emotion while the
other remained neutral. Participants were exposed to a random selection of three out of eight clips,
each depicting a different emotion. The actors were in at least one of the three videos female and at
least one of the three videos male.

Apparatus and procedure
Eye tracking data was collected in a quiet, standardly lit room using the SMI Red250 remote eye tracking
system. The device recorded gaze data at a sampling rate of 120 Hz. The system provided a spatial
resolution of 0.1° and gaze accuracy of up to 0.5°, while permitting limited head movement within
a defined three-dimensional space (32×21×30 cm) at a distance not exceeding 75 cm. Participants
were not restrained by a chin rest to allow for naturalistic viewing behaviour. Before the experiment
commenced, a 9-point calibration procedure was performed. Participants were asked to fixate on
a black dot that appeared sequentially at nine locations on the screen. Calibration was considered
successful when the average error remained below 1.5° of visual angle.

2.2. Data Processing
2.2.1. Speech Detection
Speech detection was conducted using Python version 3.13.2, which enabled frame-wise energy com-
putation of audio signals of the librosa library. Speech segments were identified based on manually
adjustable energy thresholds that were uniquely defined for each video to accommodate differences
in recording conditions and speaker characteristics. The initially detected segments were further pro-
cessed by merging adjacent segments separated by small gaps to accommodate short silences be-
tween words, using video-specific max_gap values. Subsequently, the frame numbers were manually
reviewed against the video clips to confirm the final onset and offset frame numbers. The resulting
speech segment boundaries, expressed in frame indices, were converted to time (in seconds) by divid-
ing the frame numbers by the video frame rate of 25 fps.
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2.2.2. Feature Extraction
Feature extraction was conducted using custom-writtenMATLAB scripts, usingMATLAB version 2024B.
Note on all metrics: If only one eye was successfully tracked, the feature values were based solely on
the data of the tracked eye. Features were chosen guided by the literature review conducted prior
to the start of this thesis, which is attached in Appendix A. Adjustments included the removal of the
ratio between speaker and non-speaker fixation, which was justified by the major mathematical issues
related to the use of ratios. [31] In order to still include information about fixation on the non-speaker
during speech, the gaze-speech time and silhouette correlation were computed for the non-speaker
fixation, in addition to the speaker fixation.

Screen Time
To estimate the screen engagement of a participant, a screen time value was computed. The parameter
utilised for this purpose consisted of a number ranging from zero to one, denoting the percentage of
the video duration during which the eye movements of a participant occurred within the screen that was
displaying the video. This value was available for both the left and the right eye. In instances where
both eyes were successfully tracked, the screen time value was calculated as the mean of the two:

ScreenTime =
1

2
(Qleft +Qright)

Gaze-Speech Time Correlation
To assess the temporal alignment between speech and fixation on the speaker and non-speaker during
speech, the Pearson correlation coefficient was computed. The signals were represented as binary
square waves. The speech square wave encoded the presence (1) or absence (0) of speech in the
video. The other square wave indicated fixation on either the speaker or non-speaker during speech
and was encoded as the presence (1) or absence (0) of fixations on the speaker or non-speaker during
speech. The time correlation was computed twice: Once for fixation on the speaker during speech and
once for fixation on the non-speaker during speech. If both eyes were successfully tracked, a frame
was not registered as a fixation on the speaker or non-speaker if this was true for only one eye, as this
indicates either a border or a measurement error. During silence, both square waves had value 0. An
example plot of the two binary square waves is provided in Figure 2.1.

Given the two binary sequences, X and Y, the Pearson correlation coefficient r was calculated as:

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
√∑

(Yi − Ȳ )2

where X̄ and Ȳ represent the mean values of sequences X and Y , respectively.

The numerator of the Pearson correlation coefficient is given by:∑
(Xi − X̄)(Yi − Ȳ )

which represents the covariance between X and Y , quantifying their joint variation.

The denominator consists of the standard deviations of X and Y , given by:√∑
(Xi − X̄)2 and

√∑
(Yi − Ȳ )2

respectively, and they measure the extent of variation within each individual sequence.
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Figure 2.1: Example of the binary square waves used for the calculation of gaze-speech time and silhouette correlation. The
first square wave indicates speech segments. The second square wave indicates fixation on the speaker during speech. The

third square wave indicates fixation on the non-speaker during speech.

By combining the covariance and standard deviations, the correlation coefficient r quantifies how
strongly deviations in X correspond to deviations in Y . Theoretically, Pearson’s correlation coeffi-
cient r may range from -1 to 1. However, as the fixation square wave only contains a value of one in
situations where the speech square wave is also one, the value of r can only range from 0 to 1 in this
application.

If the fixation square wave was identical to the speech square wave, the correlation coefficient was set
to 1, indicating perfect alignment. Conversely, if the fixation square wave contained only zeros, the
coefficient was set to 0, reflecting a total lack of association.

Gaze-Speech Silhouette Correlation
The silhouette correlation between the same square waves provides an additional perspective on the
alignment between the two sequences. Again, the silhouette correlation was computed twice: Once for
fixation on the speaker during speech and once for fixation on the non-speaker during speech. Unlike
time correlation, which focuses on the temporal synchronisation of events, the silhouette correlation
emphasises their shape and structural similarity.

In order to illustrate the distinctiveness of time and silhouette correlation, consider two individuals who
engage with the speaker in different ways during speech. In the first case, the participant maintains an
uninterrupted gaze on the speaker for half the duration of the speech. In the second case, the partici-
pant takes multiple short glances, each of which, when summed, also accounts for half of the speech
duration. In both instances, time correlation would yield the same value. However, the silhouette corre-
lation provides an alternative perspective, as it takes into account the structure of gaze behaviour. The
short glances of the second participant would result in a lower silhouette correlation due to the way the
Dynamic Time Warping (DTW) algorithm accounts for shifts, stretches, and compressions in the gaze
sequence. The silhouette correlation is penalised more heavily in the case of short glances, due to a
higher Dmin value, as the DTW algorithm involves a cumulative cost matrix that increases when more
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adjustments are required to align the sequences. Therefore, time and silhouette correlation capture
complementary aspects of gaze behaviour.

The silhouette correlation was computed using DTWwith a shifting window. The frame rate of the videos
was 25 fps. Previous research has shown that approximately 200 ms is required to initiate a saccade.
[32] Based on this, the maximum allowed shift was set to five frames, as this shift accommodates the
time needed for a saccade to either initiate towards or away from the speaker or non-speaker.

The minimum DTW distance over all shifts was given by:

Dmin = min
s∈[−m,m]

DTW (Xs, Ys)

where Xs and Ys represent the shifted sequences. The silhouette correlation Cs was then defined as:

Cs = 1− Dmin

max(NX , NY )

where NX and NY denote the sequence lengths.

The silhouette correlation Cs may range from 0 to 1, where 1 indicates perfect similarity, and 0 indi-
cates no similarity. The formula is typically normalised by dividing the DTW distance by the maximum
sequence length to scale the result. However, since the sequences in this analysis are of equal length,
the silhouette correlation can be expressed as:

Cs = 1−Dmin

Scanpath Variance
This metric provides a measure of how much the participant’s fixation points deviate from the average
fixation point of all participants throughout the clip. A higher average Euclidean distance between
a participants fixation point and the average fixation point of all participants indicates a more atypical
scanpath. The Euclidean distancewas calculated for each framewhere a participant exhibited a fixation.
Subsequently, these Eucleadian distances were averaged. The average Euclidean distance Davg can
be computed using the formula:

Davg =
1

N

N∑
i=1

√
(Xi −Xavg)2 + (Yi − Yavg)2

where:

• N is the number of fixations,

• Xi, Yi represent the X- and Y -coordinates of the individual fixation points,

• Xavg, Yavg represent the average X- and Y -coordinates for the corresponding frame.

Predictive Saccades
Predictive saccades reflect the ability to anticipate social cues. A predictive saccade was defined as
a saccade towards the next speaker during the silence period between speech turns. If both eyes
were successfully tracked, a saccade was not classified as towards the next speaker unless this was
true for both eyes. The time window was shifted by 200 ms, or five frames, as this is the duration
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required to initiate a saccade. [32] Given that each video contained six turns of speech, there were five
silence periods in which a participant could exhibit a predictive saccade. Consequently, the number of
predictive saccades varied between 0 and 5.

Time per Fixation
The average time per fixation was computed in frame numbers using the following formula:

avgFixationDuration =

∑n
i=1 Durationi

n

Saccadic Speed
The saccadic speed was registered by the eye tracking apparatus. To correct for the relationship
between amplitude and velocity in saccades, the saccadic speed was divided by the amplitude to
obtain the slope. [33] The slope which was converted to the a measure for the average saccadic speed
using the following formula:

avgSaccadicSpeed =

∑n
i=1

Speedi
Amplitudei
n

Fixation Durations on Areas of Interest
To quantify attention towards specific AOIs in the video stimuli, the total fixation duration per object
category was computed as the percentage of the analysed time in that video that was spent fixating on
a certain AOI. The AOIs included were body, eyes, face, mouth, object and background. To accommo-
date calibration inaccuracies and borderline fixations, a buffer zone of 1.5° of visual angle was applied
to each area of interest (AOI), following the suggestions of previous work in the field. [34–36] The face
AOI consisted of the eyes, mouth and head. The background AOI consisted of the background within
the video and the black bars on the screen. The body AOI consisted of the body and the neck. If both
eyes were successfully tracked, a fixation was not considered to be directed at a certain AOI if this was
true for only one eye, as this indicates either a border or a measurement error.

2.2.3. Feature Inspection
Feature Distribution
To comprehensively understand the properties of the measured features, three distribution analyses
were conducted: (1) Population-wide distribution fitting, (2) Diagnosis-specific distribution fitting, and
(3) Feature association with SRS scores. Firstly, population-level distributions were assessed by fitting
a set of candidate parametric probability density functions (PDFs) to each feature across the full cohort.
The distributions considered included the normal, gamma, beta, and uniform distribution families. The
gamma and beta distributions were only considered when the feature values fell within their respective
valid ranges: [0, ∞] for the gamma distribution and [0, 1] for the beta distribution. Parameters for each
candidate distribution were estimated using maximum likelihood estimation, and the goodness-of-fit
was assessed by the log-likelihood function, defined as:

L(θ) =
n∑

i=1

log f(xi | θ),

where f(xi | θ) denotes the PDF evaluated at observation xi given parameters θ. The distribution
yielding the maximum log-likelihood was selected as the best-fitting model. The results were visualised
through kernel density histograms overlaid with the fitted PDFs.
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Secondly, feature distributions were analysed stratified by autism diagnosis (0 = non-autistic, 1 = autis-
tic). Within each diagnostic subgroup, the same distribution was fitted. The resulting distributions were
visualised both in separate panels and via overlaid plots, enabling direct visual comparison of how the
feature distributions differ between diagnostic groups.

Finally, the relationship between features and the continuous SRS scores was examined. Scatterplots
were constructed with feature values plotted against SRS scores, coloured by diagnosis group. Sep-
arate linear regression models were fitted within each diagnostic group to assess differences in the
relationship between features and social responsiveness.

Together, these analyses provided a foundation for understanding feature behaviour both at the popu-
lation level and across clinically relevant subgroups, leveraging parametric modelling and visualisation
techniques.

Control of Video, Gender, and Age Effects on Features
To examine the influence of stimulus content and participant characteristics on the features, each fea-
ture was analysed to see whether its values changed depending on the content of the video being
watched, participant gender, and participant age. For video- and gender-related effects, mean and 95%
confidence intervals were calculated per clip and visualised to assess variability, followed by one-way
ANOVAs and Benjamini-Hochberg-corrected p-values. Effect sizes were quantified using η², and sig-
nificant effects were corrected by centring feature values within clips or genders. Furthermore, gender-
related effects on SRS scores were examined, as previous research has demonstrated a significant
association between gender and raw SRS scores [37]. One participant with missing gender data was
retained without gender-specific centring. Age-related effects were examined using linear regression
with age entered as a continuous predictor. Scatterplots with fitted regression lines were generated to
visualise the associations, and statistical significance was evaluated based on regression coefficients
and their Benjamini-Hochberg corrected p-values. Significant effects were removed by replacing origi-
nal values with residuals from the regression model, effectively eliminating linear age-related variance.
Pseudo eta squared was used to quantify effect sizes using the formula:

η2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2

where:

• yi is the observed value of the feature,

• ŷi is the value of the feature predicted by the regression model based on age,

• ȳ is the mean of the observed values of the feature across all participants.

Additionally, age-related effects on SRS scores were examined, as previous research has demon-
strated an association between age and raw SRS scores [37]. Data from 240 participants with missing
age information was retained without correction to preserve dataset integrity.

2.3. Statistical Analysis
The aim of statistical analysis was to gain insight in the relationship between the features and both
autism diagnosis and SRS scores, as well as to identify candidate features for predictive models. For
both autism diagnoses and SRS scores a Generalised Estimating Equations Generalised Linear Model
(GEE-GLM) was employed, enabling robust modelling of the outcome while accounting for repeated



2.4. Predictive Modelling 15

measurements within participants. The linearity assumption of the model was verified by visually in-
specting the residuals, which were centered around zero. Due to the presence of extreme outliers in
both the speaker and non-speaker silhouette correlation features, these variables were winsorised at
the 1st and 99th percentiles. Features and SRS scores were scaled using z-score scaling for inter-
pretability of regression coefficients. For the autism diagnosis outcome the family was set to binominal
with a logistic link function. To choose the best-fitting family for the SRS scores, both gaussian and
gamma families were tested, and the one with the lowest average QIC score was selected. Conse-
quently, the Gaussian family with an identity link function was used. To achieve better model fit, the
SRS scores were transformed using a rank-based inverse normal transformation. Participant ID was
specified as the clustering variable to model within-subject correlations. Wald tests from the GEE-
GLM models were used to evaluate statistical significance, with p-values adjusted using the Benjamini-
Hochberg procedure to control for multiple testing. A pseudo eta squared effect size was calculated
using the following formula:

η2 =
Dnull −Dfull

Dnull

where:

• Dnull is the deviance of the intercept-only model, representing model fit without the predictor,

• Dfull is the deviance of the full model including the predictor.

In addition to the ASD model including all participants, a separate ASD model was estimated using
only male participants. This decision was based on the well-documented underdiagnosis of ASD in
females, a pattern that is also evident in the present dataset: only 4 out of 33 participants diagnosed
with ASD are female. Given this substantial imbalance, restricting the analysis to males enhances the
reliability of the model estimates. [38]

Furthermore, the interacting factor gender was tested for each feature. This approach was motivated
by the well-documented differences in how ASD symptoms manifest across genders. [39–41] Con-
sequently, it is plausible that distinct models are needed to accurately predict social responsiveness
and ASD for each gender, potentially even including different subsets of features. Due to the limited
number of female participants with ASD, 4 out of 33, conducting gender-specific analyses for diagnosis
was not feasible, underscoring the likelihood of underdiagnosis in our cohort. Therefore, the gender
comparison will be restricted to models related to SRS scores.

2.4. Predictive Modelling
Feature Redundancy
Understanding and eliminating feature redundancy is essential to ensure that predictions are based on
distinct, non-overlapping information, thereby reducing overfitting and enhancing model interpretability.
Redundant features decrease statistical power without contributing additional information. Therefore,
redundant features were removed from the dataset.

To assess feature redundancy, a correlation matrix was computed for the candidate feature set. Fea-
tures were considered redundant if their correlation coefficient exceeded 0.80. The correlation between
pairs of features was calculated using the Pearson correlation coefficient, defined as:

r =

∑
(Xi − X̄)(Yi − Ȳ )√∑

(Xi − X̄)2
√∑

(Yi − Ȳ )2
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where X̄ and Ȳ represent the mean values of sequences X and Y , respectively. This formula was
previously used and explained in more detail in Subsection 2.2.2, Paragraph Gaze-Speech Time Cor-
relation.

To gain further insight into the data, the Variance Inflation Factor (VIF) was calculated for each feature.
The VIF serves as an indicator of how much the variance of a feature is inflated due to its correlation
with a combination of other features in the dataset. A high VIF value suggests that a feature is highly
correlated with one or more other features, and is therefore redundant. A VIF greater than 10 was
considered to indicate serious multicollinearity requiring feature removal. [42] The VIF for a given
feature was computed using the following formula:

VIF(Xi) =
1

1−R2
i

(2.1)

where R2
i is the coefficient of determination when feature Xi is regressed on all other features. The

R2
i value is a statistical measure that represents the proportion of the variance in the feature that is

predictable from the other features. A higher R2
i value indicates a higher correlation between the

feature and the other feature, and leads to an elevated VIF. The formula to calculate R2 is:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2

where:

• yi is the actual observed value for the i-th data point,

• ŷi is the predicted value for the i-th data point based on the regression model,

• ȳ is the mean of the actual observed values,

• n is the number of data points.

The denominator corresponds to the Residual Sum of Squares (RSS), which measures the variance
of the residuals, and is expressed as:

RSS =

n∑
i=1

(yi − ŷi)
2

The numerator corresponds to the Total Sum of Squares (TSS), which measures the total variance in
the data, and is given by:

TSS =

n∑
i=1

(yi − ȳ)2

Model Selection
Predictive models were selected based on their diversity in complexity, feature importance interpretabil-
ity, and effectiveness in ranking features, all of which are key considerations for exploratory clinical
research. Insight into feature importance is paramount in research contexts where understanding the
underlying drivers of predictions is as critical as predictive performance itself. To meet these require-
ments, a diverse set of three model types was chosen, spanning a spectrum of complexity:

• Low complexity: Linear Regression (with L1, L2, and elastic net regularisation),

• Medium complexity: Random Forest,

• High complexity: CatBoost Gradient Boosting Decision Tree (CatBoost GBDT).
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Data Preprocessing
To mitigate class imbalance, the dataset was downsampled to ensure an equal number of diagnosed
and non-diagnosed individuals. Features were standardised using z-score normalisation for the Logis-
tic Regression classifier. The Random Forest and CatBoost GBDT do not require z-score normalisa-
tion, as these tree-based models are scale-invariant and can handle raw feature distributions without
impacting performance.

Dimensionality Reducting and Ensembling
Alternative approaches were explored with the aim of improving predictive performance. These ap-
proaches were evaluated independently, in parallel to the primary modelling strategy. The alternative
strategies included:

• Principal Component Analysis (PCA)was applied as an unsupervised dimensionality reduction
technique. It transforms the original features into a smaller set of new variables, called principal
components, which capture the majority of the variance in the data.

• Linear Discriminant Analysis (LDA) was used as a supervised dimensionality reduction ap-
proach. Unlike PCA, LDA takes class labels into account and projects the data onto a new axis
that maximises the separation between classes.

• Ensembling was used to combine the predictive probabilities of the three models using the raw
features (Logistic Regression, Random Forest, and CatBoost GBDT) by averaging their outputs.
This approach leverages the complementary strengths of each model type, improving robustness
compared to any single model alone.

Nested Cross-Validation
A nested cross-validation framework was employed to obtain realistic estimates of model performance
and to prevent overfitting during hyperparameter selection. The outer loop consisted ofK = 3 stratified
group folds, ensuring that all samples from a given participant were assigned to the same fold. Within
each training fold, an innerK = 3 stratified group cross-validation was used for hyperparameter tuning,
using the grid search displayed in Table 2.1. The optimal hyperparameters were used to evaluate
performance on the test set of the outer loop. A visual representation of the nested cross-validation
framework is provided in Figure 2.2.

Participant-level Prediction and Aggregation
Model predictions were computed at the sample level and aggregated per participant by averaging
predicted probabilities:

p̂i =
1

ni

ni∑
j=1

p̂ij

where p̂ij is the predicted probability for the j-th sample of participant i, and ni is the number of samples
for participant i. Final binary predictions were obtained by thresholding at 0.5:

ŷi =

1 if p̂i ≥ 0.5

0 otherwise
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Table 2.1: Hyperparameter grids used for model tuning.

Model Hyperparameter Values

Logistic Regression
penalty l1, l2, elasticnet
C 0.001, 0.01, 0.1, 1, 10
l1_ratio (only for elasticnet) 0.2, 0.5, 0.8

Random Forest
n_estimators 50, 100, 150
max_features sqrt, log2, None
max_depth 5, 10, 20, None

CatBoost

iterations 100, 200, 300
learning_rate 0.01, 0.05, 0.1
depth 4, 6, 8
l2_leaf_reg 1, 3, 5

Logistic Regression (PCA)

penalty l1, l2, elasticnet
C 0.001, 0.01, 0.1, 1, 10
l1_ratio (only for elasticnet) 0.2, 0.5, 0.8
n_components 2, 4, 6

Logistic Regression (LDA)

penalty l1, l2, elasticnet
C 0.001, 0.01, 0.1, 1, 10
l1_ratio (only for elasticnet) 0.2, 0.5, 0.8

Ensemble NA

Figure 2.2: Nested cross-validation framework as applied in this study.
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Performance Metrics
To evaluate model performance, the primary metric was the area under the receiver operating char-
acteristic curve (AUC). The AUC was chosen because this work represents an early stage in the use
of technical tools for ASD assessment. At this stage, the focus is on the models overall ability to dis-
criminate between classes, rather than on optimising the trade-off between false positives and false
negatives. As secondary performance metrics, the F1 score, precision and recall were computed. The
F1 score is the harmonic mean of precision and recall, making it a robust measure for evaluating bi-
nary classification performance. Model performance was evaluated using these metrics, and the best
performing model was chosen for predicting autism diagnosis and SRS scores separately. When two
models performed similarly, the less complex model was selected for reasons of interpretability and
deployment feasibility.

Definition of Reference Labels
A formal autism diagnosis was used as the reference label, distinguishing between individuals with and
without ASD. In addition, SRS raw scores were used as an alternative outcome reflecting levels of autis-
tic traits. A cut-off score of 15 was applied to classify individuals as having elevated versus typical levels
of social impairment, based on findings by Nguyen et al., who identified this threshold as optimising
both sensitivity and specificity. [43] However, important to note is that subsequent research by Lyall et
al. has raised concerns about the validity of this cut-off in females, suggesting potential gender-related
differences in SRS score interpretation. [44] Currently, no more well-established threshold than 15 for
both genders exists. Therefore, this cut-off was adopted for the present analysis.



3
Results

3.1. Participant Characteristics
Table 3.1 presents descriptive statistics of the participants included in the final dataset, as described
in Section 2.1. It summarises the distributions of gender, age, autism diagnosis, and SRS scores.
Participants with missing information on autism diagnosis or SRS scores were excluded from analyses
involving that specific outcome, but were retained for analyses of the other outcome.

Table 3.1: Participant Characteristics Summary.

Total

Total N = 2539

Gender

Male (%) N = 1218 (47.97%)
Female (%) N = 1320 (51.99%)
Unknown (%) N = 1 (0.04%)

Age

µ (σ) µ = 13.52 (σ = 0.36)
Min, Max 12.60, 16.63
Unknown (%) N = 240 (9.45%)

Autism Diagnosis

No (%) N = 2502 (98.54%)
Yes (%) N = 33 (1.30%)
Unknown (%) N = 4 (0.16%)

SRS Score

µ (σ) µ = 4.76 (σ = 3.66)
Min, Max 0.0, 46.0
Unknown (%) N = 278 (10.95%)

20
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3.2. Data Processing
Feature Distribution
The fitted distributions are visualised in Appendix B, which provides a per-feature summary of the
empirical distributions. The fitting of the full cohort distribution revealed that no single parametric family
consistently provided the best fit in all features. Although the normal distribution frequently offered a
reasonable approximation of central tendency, features exhibiting skewness or bounded support were
more accurately modelled by the gamma or beta distributions. Log-likelihood values substantiated
these differences, with the beta and gamma families outperforming the normal distribution particularly
for skewed features.

When distributions were stratified by autism diagnosis, group-level similarities and differences became
apparent. In several features, the ASD and TD group had a nearly fully overlapping distribution. In
certain features, however, the ASD and TD group diverged in the shape and dispersion of their distri-
butions. This phenomenon became most apparent in the face fixation feature. This feature was best
modelled by a beta distribution in both groups, but exhibited greater skewness in the autistic subgroup.

It was noticed that associations between features and SRS scores visually appeared to be diagnosis-
dependent. This hypothesis was confirmed with a linear regression model including interaction terms
for autism diagnosis group, of which the results are displayed in Table 3.2. Eleven out of fifteen features
indeed demonstrated a notably different, usually stronger, association with SRS scores within the ASD
group compared to the TD group. This pattern suggests that social responsiveness may be more
reliably predicted in individuals with ASD than TD. The direction of the relationship was generally aligned
with expectations based on the literature review conducted prior to this thesis, which can be found
in Appendix A. Interestingly, two features, object fixation and non-speaker time correlation, exhibited
statistically significant interaction effects in the opposite direction for both groups. Higher values of
these features were associated with lower social functioning in the TD group, whereas in the ASD group
higher values were associated with increased social functioning. In the TD group, increased fixation
on distracting objects may indicate reduced social engagement, substituting for socially oriented gaze
like face fixation. In contrast, for individuals with autism, more object fixation may reflect partial social
engagement rather than avoidance, and therefore may be a positive marker of social functioning.

Control of Video, Gender, and Age Effects on Features
The plots of the mean values of features per videoclip are provided in Appendix C. These revealed
systematic variability in features depending on the video content, which was confirmed by the results
of the one-way ANOVA provided in Table 3.3. Each feature was affected significantly by video content,
with effect sizes ranging from 0-21%. Therefore, all features were corrected, such that each feature
value was expressed relative to the mean feature value for that video. Given that the initial effect size
of the video clip on the scanpath variance was observed to be excessively high (η2 = 0.21), further
investigation was conducted to understand the cause of this effect. The key contributing factor turned
out to be the varying physical distance between the main characters in each video. When the spatial
distance between the main characters was larger, an identical shift in fixation from one character to the
other resulted in a larger Euclidean distance. To validate this confounding variable, a correction was
applied to the scanpath variance measure. The ear-to-ear distance between the main characters was
estimated for each video and used as a predictor in a linear regression model with scanpath variance
as the dependent variable. Using the residuals from this model reduced the effect size of the video clip
on scanpath variance significantly (η2 = 0.02), suggesting that much of the original effect was indeed
attributable to differences in spatial layout.
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Table 3.2: Interaction p-values for diagnosis group in the relationship between each feature and SRS scores, with regression
coefficients for TD and ASD groups.

Feature p Coefficient TD Coefficient ASD

ScreenTime 0.00 -0.99 -37.96
SaccadicSpeed 0.00 -0.00 -0.27
FaceFixation 0.00 -1.15 -13.21
SpeakerTimeCorrelation 0.00 -1.90 -23.22
EyesFixation 0.00 -0.70 -15.63
TimePerFixation 0.00 -0.00 -0.00
PredictiveSaccades 0.00 -0.12 -1.34
ObjectFixation 0.01 1.77 -18.21
NonSpeakerTimeCorrelation 0.01 0.71 -13.11
ScanpathVariance 0.01 0.00 0.02
BodyFixation 0.01 1.08 6.62
NonSpeakerSilhouetteCorrelation 0.18 -0.87 5.87
BackgroundFixation 0.39 4.21 -0.91
SpeakerSilhouetteCorrelation 0.51 -3.47 5.64
MouthFixation 0.68 -0.48 0.10

Table 3.3: Summary of one-way ANOVAs testing the effect of video content on each feature, ordered by increasing p-value.

Feature p η2

ScanpathVariance < 0.001 0.21
SpeakerTimeCorrelation < 0.001 0.12
PredictiveSaccades < 0.001 0.11
SpeakerSilhouetteCorrelation < 0.001 0.09
NonSpeakerTimeCorrelation < 0.001 0.08
MouthFixation < 0.001 0.07
NonSpeakerSilhouetteCorrelation < 0.001 0.07
FaceFixation < 0.001 0.06
TimePerFixation < 0.001 0.03
SaccadicSpeed < 0.001 0.03
BodyFixation < 0.001 0.02
EyesFixation < 0.001 0.01
ObjectFixation < 0.001 0.01
BackgroundFixation < 0.001 0.01
ScreenTime < 0.001 0.00

The plots of the mean values of features and SRS scores per gender are provided in Appendix D. These
revealed systematic variability in the majority of the features depending on the gender of the participant,
which was confirmed by the results of the one-way ANOVA displayed in Table 3.4. All features except
eye fixation were affected significantly by participant gender, with effect sizes ranging from 0-2%. All
affected features were corrected for gender-related effects, such that each feature value was expressed
relative to the mean for that feature in the gender group of the participant. SRS scores were corrected
using the same method.
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Table 3.4: Results of one-way ANOVAs testing the effect of participant gender on each feature, ordered by increasing p-value.

Feature p η2

SpeakerTimeCorrelation p < 0.001 0.02
ScanpathVariance p < 0.001 0.02
FaceFixation p < 0.001 0.01
SRS p < 0.001 0.01
ScreenTime p < 0.001 0.01
NonSpeakerTimeCorrelation p < 0.001 0.01
MouthFixation p < 0.001 0.01
SaccadicSpeed p < 0.001 0.00
BackgroundFixation p < 0.001 0.00
ObjectFixation p < 0.001 0.00
PredictiveSaccades p < 0.001 0.00
TimePerFixation p < 0.001 0.00
BodyFixation p = 0.01 0.00
NonSpeakerSilhouetteCorrelation p = 0.02 0.00
SpeakerSilhouetteCorrelation p = 0.03 0.00
EyesFixation p = 0.09 0.00

Scatterplots showing the linear regression of features and SRS scores across the continuous participant
age range are provided in Appendix E. The summary of the regression analyses is shown in Table 3.5.
No features or SRS scores demonstrated statistically significant relationships with age. Therefore, no
age-related corrections were applied.

Table 3.5: Regression results for the effect of participant age on each feature, ordered by increasing p-values.

Feature Coefficient p η2

SpeakerSilhouetteCorrelation 0.003 0.11 0.00
MouthFixation -0.020 0.11 0.00
BackgroundFixation 0.004 0.12 0.00
SRS 0.268 0.12 0.00
SaccadicSpeed 0.934 0.12 0.00
PredictiveSaccades -0.063 0.21 0.00
BodyFixation -0.007 0.21 0.00
ScanpathVariance 3.445 0.21 0.00
NonSpeakerSilhouetteCorrelation -0.003 0.25 0.00
EyesFixation 0.006 0.52 0.00
NonSpeakerTimeCorrelation -0.002 0.52 0.00
TimePerFixation 3698.224 0.73 0.00
FaceFixation -0.003 0.88 0.00
ObjectFixation 0.000 0.96 0.00
ScreenTime -0.001 0.96 0.00
SpeakerTimeCorrelation -0.000 0.96 0.00

In summary, the gaze analysis features examined in this study were predominantly influenced by video
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content and participant gender, with the effect of video content yielding substantially larger effect sizes.
In contrast, participant age exhibited no impact on the extracted features. However, the limited age
range within the dataset likely constrained the ability to detect age-related effects.

3.3. Statistical Analysis
Autism Diagnoses
All participants
The GEE-GLM analysis including all participants did not reveal any statistically significant associations
between the eye-tracking features and autism diagnosis after correction for multiple comparisons, as
detailed in Table 3.6. All adjusted p-values exceeded the 0.05 threshold, with effect sizes ranging from
near-zero to 0.009, indicating low explanatory power for individual features in relation to diagnostic
status. Corresponding plots are provided in Appendix F.

Table 3.6: GEE-GLM results for the relationship between each feature and autism diagnosis, ordered by increasing p-value. A
positive coefficient suggests a higher feature value indicates a higher ASD probability.

Feature Participants Coefficient p η2

EyesFixation all -4.60E-05 0.31 0.003
male -0.000324 0.56 0.003

SpeakerSilhouetteCorrelation all 1.50E-05 0.35 0.002
male 0.000176 0.56 0.005

PredictiveSaccades all 7.00E-06 0.47 0.001
male -5.00E-05 0.56 0.002

ObjectFixation all 1.70E-05 0.47 0.002
male 0.000149 0.64 0.003

ScanpathVariance all 1.00E-05 0.56 0.003
male 0.000177 0.56 0.004

NonSpeakerTimeCorrelation all -5.00E-06 0.56 0.002
male -9.90E-05 0.56 0.004

FaceFixation all -2.10E-05 0.56 0.005
male -0.000263 0.56 0.004

ScreenTime all 1.10E-05 0.74 0.000
male 0.000143 0.85 0.000

BackgroundFixation all -6.00E-06 0.74 0.001
male 8.90E-05 0.56 0.001

BodyFixation all 1.20E-05 0.74 0.009
male 0.000279 0.56 0.006

MouthFixation all 8.00E-06 0.74 0.000
male 6.50E-05 0.86 0.000

SaccadicSpeed all -2.00E-06 0.90 0.000
male 0.000263 0.56 0.000

TimePerFixation all -3.00E-06 0.90 0.000
male 4.50E-05 0.86 0.000

SpeakerTimeCorrelation all -3.00E-06 0.90 0.000
male 2.60E-05 0.86 0.000

NonSpeakerSilhouetteCorrelation all 1.00E-06 0.90 0.000
male -1.80E-05 0.86 0.000
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Male-only model
Restricting GEE-GLM analyses for autism diagnosis to male participants, intended to address the
known underdiagnosis of females, did not yield higher effect sizes or more statistically significant out-
comes, as detailed in Table 3.6. This may be partly attributable to the associated reduction in sample
size. Corresponding visualisations are presented in Appendix G.

SRS Scores
All participants
The GEE-GLM analysis including all participants identified five features that were statistically signifi-
cantly associated with SRS scores after multiple comparison correction. These included Background
Fixation, Speaker Time Correlation, Face Fixation, Predictive Saccades and Scanpath Variance, all
showing adjusted p-values below 0.05 and effect sizes ranging from 0.002 to 0.004, as shown in Table
3.7. Effect sizes were small despite statistical significance, indicating subtle but reliable relationships.
All variables were standardised using z-scores, so the reported coefficients represent the expected
change in the outcome in standard deviation units for a one standard deviation change in the predictor.
In contrast, ten features did not reach statistical significance. These features were Eye Fixation, Body
Fixation, Screen Time, Mouth Fixation, Speaker Silhouette Correlation, Saccadic Speed, Non-Speaker
Silhouette Correlation, Non-Speaker Time Correlation, Time Per Fixation and Object Fixation. Figures
with SRS scores plotted against feature values are provided in Appendix H.

Table 3.7: GEE-GLM results for the relationship between each feature and SRS scores, ordered by increasing p-value. A
positive coefficient suggests a higher feature value indicates a higher SRS score, a negative coefficient suggests a higher

feature value indicates a lower SRS score.

Feature Coefficient p η2

BackgroundFixation 0.000113 0.00 0.004
SpeakerTimeCorrelation -0.000121 0.01 0.003
FaceFixation -0.000244 0.01 0.004
ScanpathVariance 0.000103 0.01 0.003
PredictiveSaccades -5.95E-05 0.02 0.002
EyesFixation -0.000194 0.05 0.002
BodyFixation 0.000132 0.06 0.002
ScreenTime -0.000148 0.21 0.001
MouthFixation -6.96E-05 0.38 0.000
SpeakerSilhouetteCorrelation -2.94E-05 0.53 0.000
SaccadicSpeed -7.69E-05 0.58 0.000
NonSpeakerSilhouetteCorrelation -1.17E-05 0.56 0.000
NonSpeakerTimeCorrelation 1.20E-05 0.67 0.000
ObjectFixation 1.25E-05 0.83 0.000
TimePerFixation -8.74E-06 0.90 0.000

Gender-Specific Patterns in Behaviours Indicative of Social Responsiveness
Analysis of the gender interaction terms revealed no features for which the relationship with SRS scores
differed significantly by participant gender, as shown in Table 3.8. Therefore, no separate feature sets
for male and female participants were created. Supplementary figures illustrating the relationships
between each feature and SRS scores by gender are provided in Appendix I.
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Table 3.8: P-values for differences in the relationship between feature and SRS score between genders, ordered by increasing
p-value.

Predictor p

ScanpathVariance 0.08
BackgroundFixation 0.08
PredictiveSaccades 0.10
SpeakerTimeCorrelation 0.10
FaceFixation 0.21
EyesFixation 0.45
ScreenTime 0.64
NonSpeakerTimeCorrelation 0.64
BodyFixation 0.64
MouthFixation 0.64
TimePerFixation 0.76
SaccadicSpeed 0.85
NonSpeakerSilhouetteCorrelation 0.85
ObjectFixation 0.85
SpeakerSilhouetteCorrelation 0.87

3.4. Predictive Modelling
Feature Sets
The feature sets were defined by including features that were either statistically significant (p < 0.05)
or exhibited a partial effect size of η2 ≥ 0.002. Features that met either of these requirements in the
male-only model for autism diagnosis but not in the all participants model were included, as females are
known to be underdiagnosed, likely making the male-only model more accurate. The inclusion of non-
significant features with effect sizes above this threshold was motivated by mathematical difficulty of
achieving statistical significance inmodels with binary outcomes compared to those with continuous out-
comes. [45] In the context of the continuous outcome of SRS scores, several features with η2 ≥ 0.002

were statistically significant, suggesting that this level of effect size may reflect meaningful associa-
tions. Therefore, excluding features on the basis of a p-value threshold might result in the omission of
potentially informative predictors in the binary diagnostic analysis. The feature set for autism diagnosis
consisted of following eight features: scanpath variance, speaker silhouette correlation, non-speaker
time correlation, predictive saccades, body fixation, eye fixation, face fixation and object fixation. The
feature set for SRS scores consisted of the following five features: speaker time correlation, predictive
saccades, scanpath variance, background fixation and face fixation. Three features overlap between
the feature sets predicting autism diagnosis and SRS scores.

Feature Redundancy
Eye fixation was removed from the ASD feature set based on domain considerations specific to this
study about feature redundancy: the eyes were part of the face in our data analysis. The decision
to remove eyes fixation and keep face fixation was based on the higher effect size of face fixation.
Correlation matrices and VIF values of all other features, presented in Appendix J, confirmed that
multicollinearity was not an issue in either the ASD or SRS feature sets. The maximum correlation
observed between any two features was 0.60 in the ASD set and 0.58 in the SRS set. Both values
are well below the predefined threshold of 0.80, and indicate a moderate degree of linear relationship
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between features. Furthermore, the maximum VIF was 2.87 for the ASD feature set and 1.93 for the
SRS feature set. Since both values are considerably lower than the established threshold of 10, no
additional features needed to be excluded due to redundancy. Therefore, the final feature set for ASD
predictive modelling consisted of seven features, and the final feature set for SRS score predictive
modelling consisted of five features.

ASD Model
Results of the hyperparameter tuning for all ASD models are provided in Appendix K. Among the eval-
uated models, the CatBoost Gradient Boosting Decision Tree emerged as the most effective approach
for ASD modelling, with an AUC of 0.71. Its corresponding ROC curve and confusion matrix are shown
in Figure 3.1. The F1 score this model achieved was 0.69, with a precision of 0.69 and a recall of 0.72.

(a) ROC curve (b) Confusion matrix

Figure 3.1: Evaluation metrics for the CatBoost Gradient Boosting Decision Tree classifier: AUC = 0.71; F1 = 0.69; precision =
0.69; recall = 0.72.

The AUC of 0.71, considering the feature distributions and small effect sizes, demonstrates how com-
bining multiple subtle signals in a powerful model can create a reasonably discriminative classifier. Per-
formance metrics for all other ASD classifiers, including ROC curves, confusion matrices, F1 scores,
precision, and recall, are presented in Appendix L. Higher AUC scores were achieved with increased
model complexity. This suggests that the data contains non-linear and high-dimensional structure that
cannot be adequately captured by linear models. Neither PCA nor LDA significantly improved the
performance of the Logistic Regression model. Similarly, ensemble methods did not outperform the
best-performing standalone model.

SRS Model
Results of the hyperparameter tuning for all SRSmodels are provided in Appendix K. Although themore
complex individual models outperformed Logistic Regression, the highest performance was achieved
by the Logistic Regression Classifier combined with PCA, leading to an AUC of 0.57. Its ROC curve and
confusion matrix are provided in Figure M.4. This classifier attained an F1 score of 0.42, a precision of
0.65 and a recall of 0.41.

Both dimensionality reduction techniques increased performance, which indicates the raw features
for SRS are noisy. Additionally, PCA outperformed LDA, which may indicate that class-discriminative
information in the data is not well captured by linear class separation, possibly reflecting underlying
nonlinear structure. Performance metrics for all other SRS classifiers, including ROC curves, confusion
matrices, F1 scores, precision, and recall, are presented in Appendix M.
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(a) ROC curve (b) Confusion matrix

Figure 3.2: Evaluation metrics for the Logistic Regression classifier with PCA: AUC = 0.57; F1 = 0.42; precision = 0.65; recall =
0.41.



4
Discussion

4.1. Conclusions
This study examined gaze patterns related to ASD and social responsiveness, revealing interactions
that underscore the potential of gaze analysis for both understanding and identifying ASD. A predictive
model for ASD achieved an AUC of 0.71, indicating that gaze-based features capture meaningful dif-
ferences in social information processing between autistic and neurotypical individuals. Unexpectedly,
the predictive model for SRS scores achieved a lower AUC of 0.57, despite consistent SRS evalua-
tion across all participants, whereas ASD diagnosis relied on self-initiated clinical referral. A possible
explanation for the difference in performance is that social responsiveness, as assessed by the SRS,
represents a component of ASD that is more amenable to social learning and compensation, particu-
larly during adolescence. Another possibility is that certain non-social characteristics of autism, such
as motor control differences, which affect up to 87% of autistic individuals, may be reflected in features
like predictive saccades and scanpath variance. [46] These aspects may thus offer a more stable and
less consciously masked signal for identifying ASD. Collectively, these findings underscore both the
promise and challenges of applying gaze-based metrics in autism research. While eye tracking shows
potential for ASD detection, substantial methodological and conceptual work remains before gaze anal-
ysis can be applied in clinical practice. To situate these findings in context, the following section reviews
how they compare with prior work on ASD detection using eye tracking.

4.2. Comparison with Existing Literature
The majority of studies included in the literature review reported only the presence or absence of a cor-
relation with the outcome measure, without providing predictive performance metrics. However, some
studies did report predictive performance metrics. Notably, Constantino et al. achieved an AUC of
0.86 in infants using fixation duration features focused on the eyes and mouth. [22] This relatively high
AUC is likely attributable to the more appropriate age range of the participants, as infants have not yet
developed socially desirable behaviors that mask their natural gaze behaviour. Müller et al. reported
an AUC of 0.75 by combining visual attention to the eyes, mouth, body, and objects with pupil dilation,
a feature found to be moderately reduced in individuals with ASD. [47] Similarly, a large-scale study in
toddlers by Chang et al., which utilised gaze-speech synchrony as the primary feature, yielded an AUC
of 0.76. [48] Cilia et al. achieved an AUC of 0.71 using scanpath images, while Liaqat et al. who also
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focused on scanpaths reported a lower AUC of 0.64. [49, 50] In summary, the findings of this study
align with existing literature. Higher predictive performance is generally observed in younger popula-
tions, such as infants and toddlers, underscoring the likelihood of masking effects in older children and
adolescents. However, an important factor to consider before reaching this conclusion is that partici-
pants included at a young age based on an ASD diagnosis are likely more severe cases. The ideal
approach would involve conducting an eye-tracking task at a young age and longitudinally tracking the
cohort over several years to identify who eventually receives an ASD diagnosis. However, this method
requires significantly more time and financial resources.

4.3. Applicability and Generalisability
These patterns of age-related variation in performance raise important questions about how well eye-
tracking tools generalise across different populations and settings. Applicability and generalisability
are important for scalability, and therefore for the clinical utility of diagnostic tools. Applicability and
generalisability can be studies from two key perspectives: first, whether the tool performs consistently
across diverse population groups, and second, whether it remains effective when applied with different
video stimuli.

First of all, the consistency of gaze-based features across demographic variables such as culture, age,
and gender must be assessed. Previous research has demonstrated the cross-cultural validity of eye-
tracking parameters in the detection of ASD. [23, 24] In contrast, gender does require correction of
gaze-derived features, as confirmed by our data analysis. [24] While limited information is available
about the performance of similar eye-tracking tools, existing studies suggest better performance in
toddlers and infants than in adolescents or adults. [22, 47, 48] Taken together, these findings suggest
that gaze-based features are broadly applicable across cultures, especially in younger populations,
provided that gender-related differences are accounted for.

Regarding the applicability of different video stimuli, important considerations must be taken into ac-
count. Gepner et al. demonstrated that a reduced pace of speech increases visual attention to the
speaker’s mouth in individuals with ASD. They propose that slower speech allows more time for pro-
cessing facial dynamics, which may be cognitively overwhelming at typical conversational speeds for
individuals with ASD. [51] As a consequence, cut-off values for certain features, such as face fixation
duration, may vary depending on the speech tempo. This suggests that calibration on groups with and
without ASD remained essential prior to clinical application of new video stimuli. In addition to speech
pace, the emotional content of a video can also modulate gaze behaviour. Research by Sahuquillo-
Leal et al. has shown that children with ASD exhibit more avoidant gaze behaviour in response to
threatening scenes compared to TD peers. [52] These findings underscore that both linguistic and
emotional characteristics of stimuli can substantially influence visual attention patterns.

Taken together, these results indicate that both participant characteristics and stimulus characteristics
play critical roles in shaping gaze behaviour. Consequently, deliberate stimulus design choices are
essential to maximising the diagnostic utility of gaze-based tools.

4.4. Design for Detection: Stimulus Design
Building on this need for deliberate design, the following section explores specific stimulus character-
istics that can enhance sensitivity to ASD-related gaze behaviour. As explained, video recordings of
naturalistic social interactions involving multiple individuals appear to be the most effective stimulus
type for identifying gaze patterns associated with ASD. Building on this foundation, several additional
features may further enhance the discriminative power of gaze-based assessments and should be con-



4.5. Multimodal Extension Opportunities 31

sidered in future stimulus design. Future stimuli could be refined to systematically elicit these features.

Scene inversion, achieved by mirroring the scene, represents one such feature that has not been
utilised in the current set of stimuli. Shic et al. demonstrated that children with ASD are less affected
by scene inversion compared to TD children, suggesting reduced sensitivity to configural social infor-
mation. [53] Another promising feature is gaze idiosyncrasy, which can be captured by presenting the
same video stimulus multiple times. It has been shown that children with ASD observe social interac-
tions in a highly idiosyncratic manner. This manifests not only between individuals, as computed with
the scanpath variance feature, but also within individuals across repeated viewings. While TD children
have highly correlated scanpaths across multiple viewings, children with ASD show significantly lower
within-subject consistency. [54] Another candidate feature is eye blink synchronisation. Nakano et al.
reported that TD adults tend to synchronise their eye blinks with a speaker, reflecting attentional en-
gagement and social attunement. In contrast, adults with ASD do not show this synchronisation. [55]
Moreover, frame-by-frame analysis has yet to be utilised in this context, but holds potential to enhance
classification performance by capturing moment-to-moment variations in gaze behaviour. Incorporat-
ing a non-verbal request in the stimulus results in reduced fixation on the person receiving that request
in individuals with ASD and could therefore enhance classification performance. [56, 57] Finally, the
video stimuli used in this study could be improved by using a geometric image as the distracting object
alongside the video, rather than a poster in the background, as children with ASD have a strong pref-
erence for geometric images. [58–61] De Belen et al. achieved an AUC of 0.96 using this method with
images.

In summary, multiple gaze-derived features hold meaningful potential to improve design of future stimuli
for the detection of ASD-related visual behaviour. Incorporating both regular and inverted versions
of the same scenes, presenting scenes multiple times, assessing eye blink synchronisation with the
character onscreen and including a geometric image could significantly enhance the discriminative
power of the stimuli.

4.5. Multimodal Extension Opportunities
While optimising visual stimuli is one strategy for improving detection, integrating additional physio-
logical modalities may further enhance classification performance. In their 2019 study, Dijkhuis et al.
demonstrated that adults with ASD exhibit a lower skin conductance level (SCL) when viewing socio-
emotional video clips, suggesting that SCL may serve as a valuable complementary feature in ASD
detection within the same experimental design. [62] In addition, electroencephalography (EEG) offers
potential to enhance diagnostic accuracy. Specifically, differences in visual interest in biological mo-
tion between children with ASD and TD peers can be observed through reduced suppression of the
alpha and high beta frequency bands in the right frontal and parietal regions. [63] When EEG is em-
ployed, its utility can be extended by incorporating motor-related stimuli. TD individuals typically show
mu-band suppression both when performing and observing movement, whereas individuals with ASD
display mu-suppression only during execution of movement, not during observation. [64] A potential
drawback of incorporating physiological measures such as SCL and EEG is the associated increase in
cost and technical complexity. Nevertheless, recent developments offer promising solutions in terms of
cost-effectiveness. For instance, Vargas-Cuentas et al. developed a portable tablet-based setup that
eliminates the need for eye-tracker calibration or head stabilisation, thereby significantly reducing hard-
ware costs while maintaining adequate accuracy for gaze-based assessment. [65] In summary, while
the integration of multimodal measures such as SCL and EEG can substantially enhance predictive per-
formance, recent technological advances also offer pathways to achieve this in a cost-effective manner.
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In additional to technical modalitites, an extension of the algorithm to include patient characteristics like
family history of autism is also a possible direction of improvements.

4.6. General Strengths and Limitations
With these technical and conceptual opportunities in mind, it is important to consider the strengths and
limitations of the current study in order to contextualise its contributions. First of all, this study possesses
several notable strengths. The use of naturalistic, dynamic video stimuli ensures high ecological validity,
providing a more realistic context for assessing visual attention compared to static or artificial stimuli.
Additionally, themultifaceted set of gaze features enables comprehensivemodelling of different aspects
of visual behaviour, from saccadic dynamics to fixation patterns. The inclusion of both categorical
ASD diagnosis and dimensional SRS scores as outcome variables permits an examination of autistic
traits across different measurement frameworks. Furthermore, the comparative evaluation of multiple
predictive modelling approaches offers insight into the data’s underlying structure.

However, several limitations must also be acknowledged. First and foremost, the study is limited by the
small sample size of participants with ASD and elevated SRS scores. Although the Generation R co-
hort represents a large-scale population database, it was not specifically designed to recruit substantial
numbers of individuals with autism or pronounced autistic traits, constraining statistical power. More-
over, the study relies on ASD diagnoses obtained by individuals who independently sought help, which
introduces bias and reduces the generalisability of the findings. It is possible that certain subgroups,
particularly females and individuals who are high-functioning or engage in masking behaviours, are
therefore not adequately labelled in the data. Additionally, the SRS, especially in its shortened form,
does not fully capture the complexity of the autism phenotype. This lack of a ground truth for ASD diag-
nosis within the dataset complicates the validity of the results. Furthermore, the age of the participants
proposes a methodological limitation. At approximately thirteen years old, they may have developed
compensatory strategies or masking behaviours, potentially obscuring the natural behaviour. Ideally,
eye-tracking studies should be conducted with children under the age of four, a period during which
current diagnostic tools face challenges due to developmental variability, and where eye-tracking may
be advantageous, as younger children are less likely to exhibit socially conditioned masking behaviours.
Another limitation relates to the lack of control for comorbid factors such as ADHD or cognitive ability.
Both of these factors are known to influence SRS scores and social attention but were not accounted
for in the current analyses. [66, 67] These strengths and limitations highlight critical areas for future
research, including improving diagnostic ground truths and accounting for co-occurring factors.

4.7. Data Analysis Limitations
In addition to general methodological constraints, there are limitations related specifically to the data
analysis procedures employed in this study. Firstly, although the preprocessing steps were essential
to ensure data quality, they also reduced the volume of usable data and may have introduced bias. For
example, screen time was used both as a feature and as a quality control criterion, with participants
excluded if their screen time fell below a 0.25 threshold. This may have biased the sample by excluding
individuals with low screen time, who may represent individuals with limited social engagement. Addi-
tionally, the feature engineering process leads to loss of temporal granularity. By aggregating behavior
across time windows, the analysis may overlook short-term fluctuations in gaze behavior that could be
indicative of social processing. Together, these constraints point to a number of concrete avenues for
improvement.
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4.8. Recommendations
The following recommendations aim to guide future research design. To begin with, several strategies
could be employed to explore alternative machine learning models. Using alternative forms of input
data may unlock latent value within the dataset. One such approach is to represent the scanpath on a
two-dimensional image and use this image as the input for a machine learning model. A convolutional
neural network would be a suitable model architecture for this task, as these are well-established for
processing visual input. This approach was carried out by Cilia et al., leading to an AUC of 0.71 after
correcting the data leakage mistake in their machine learning approach. [49] Applying this technique
to our dataset was not feasible as their were eight different videos, and unlike numeric feature values,
scanpath images cannot be corrected for varying stimuli. Consequently, only measurements using
the same stimulus can be compared, which results in a sample size too small to support meaningful
machine learning analysis. Nonetheless, the MATLAB code used to generate the scanpath images is
available for use.

Alternatively, it may be beneficial to use the raw gaze data, including fixation, saccade and blink reg-
istrations, directly as input. This strategy could uncover deeper structures within the data that may
have been obscured or lost through extraction of predefined features. Colonnese et al. achieved an
F1-score of 93% using raw gaze data and a variety of deep neural networks. [68] Important to note
is that using the raw gaze data also requires splitting the dataset by video stimuli, which reduces the
sample size to the same extent as the scanpath images method. Another major drawback of both these
methods is their increasing loss of explainability, which is highly valuable in clinical research.

To enhance the predictive power of the machine learning models in this study, extracting additional
features may prove beneficial. Head movements have been shown to be atypical in response to a
social stimulus in individuals with ASD, making it a potentially valuable feature. [69] Another promising
feature to incorporate in future studies is pupil dilation, which can be detected during video viewing and
yields predictive value for ASD. [47] Furthermore, various other features could be derived when stimuli
are optimised as described in Section 4.4.

In terms of study population of future studies, a much younger population under the age of four would
be ideal. During this stage, current diagnostic tools face major challenges due to developmental vari-
ability, whilst eye-tracking may be advantageous as younger children are less likely to exhibit masking
behaviours.

Regarding outcomemeasures, future analyses that have access to datasets that include the full version
of the SRS, could benefit from examining SRS subscale scores. Unlike the short form, the full version
of the Social Responsiveness Scale includes five distinct subdomains: social awareness, social cog-
nition, social communication, social motivation, and restricted and repetitive behaviours. Investigating
associations between these subscales and gaze-derived features may yield more nuanced insights
into the specific aspects of social functioning reflected in gaze patterns.

These recommendations cover analytical techniques, stimulus refinement, population targeting, and
outcome measure selection, together forming a roadmap for optimising future applications of gaze-
based ASD detection. In conclusion, gaze behaviour holds considerable promise for generating deeper
insights into ASD. These insights ultimately contribute to the development of low-cost, inclusive, and
scalable ASD assessment tools, thereby enhancing both individual quality of life and broader socio-
economic outcomes across diverse populations.



Bibliography

1. Zeidan, J. et al. Global prevalence of autism: A systematic review update. en. Autism Res. 15,
778–790 (May 2022).

2. Nadeem, M. S. et al. Autism - A comprehensive array of prominent signs and symptoms. en. Curr.
Pharm. Des. 27, 1418–1433 (2021).

3. Park, S. H. et al. Disability, functioning, and quality of life among treatment-seeking young autistic
adults and its relation to depression, anxiety, and stress. en. Autism 23, 1675–1686 (Oct. 2019).

4. Movsessian, T. & Osoba, T. A. Association between therapeutic interventions and quality of life in
people with autism. J. Soc. Behav. Health Sci. 16 (Nov. 2022).

5. Tedla, J. S. et al. Assessing the quality of life in children with autism spectrum disorder: a cross-
sectional study of contributing factors. en. Front. Psychiatry 15, 1507856 (Dec. 2024).

6. Bishop, S. L. & Lord, C. Commentary: Best practices and processes for assessment of autism
spectrum disorder - the intended role of standardized diagnostic instruments. en. J. Child Psychol.
Psychiatry 64, 834–838 (May 2023).

7. Huda, E. et al. Screening tools for autism in culturally and linguistically diverse paediatric popula-
tions: a systematic review. en. BMC Pediatr. 24, 610 (Sept. 2024).

8. Lefort-Besnard, J. et al. Patterns of autism symptoms: hidden structure in the ADOS and ADI-R
instruments. en. Transl. Psychiatry 10, 257 (July 2020).

9. Hus, Y. & Segal, O. Challenges surrounding the diagnosis of autism in children. en. Neuropsychi-
atr. Dis. Treat. 17, 3509–3529 (Dec. 2021).

10. Okoye, C. et al. Early diagnosis of autism spectrum disorder: A review and analysis of the risks
and benefits. en. Cureus 15, e43226 (Aug. 2023).

11. Estes, A. et al. Long-term outcomes of early intervention in 6-year-old children with autism spec-
trum disorder. en. J. Am. Acad. Child Adolesc. Psychiatry 54, 580–587 (July 2015).

12. Vivanti, G., Prior, M., Williams, K. & Dissanayake, C. Predictors of outcomes in autism early inter-
vention: Why don’t we know more? en. Front. Pediatr. 2, 58 (June 2014).

13. Andrade, C. Autism spectrum disorder, 1: Genetic and environmental risk factors. en. J. Clin.
Psychiatry 86 (Apr. 2025).

14. Strathearn, L. The elusive etiology of autism: nature and nurture? en. Front. Behav. Neurosci. 3,
11 (July 2009).

15. Matuskey, D. et al. 11C-UCB-J PET imaging is consistent with lower synaptic density in autistic
adults. en. Mol. Psychiatry (Oct. 2024).

16. Gandal, M. J. et al. Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD.
en. Nature 611, 532–539 (Nov. 2022).

17. Papagiannopoulou, E. A., Chitty, K. M., Hermens, D. F., Hickie, I. B. & Lagopoulos, J. A systematic
review and meta-analysis of eye-tracking studies in children with autism spectrum disorders. en.
Soc. Neurosci. 9, 610–632 (July 2014).

34



Bibliography 35

18. Pelphrey, K. A., Morris, J. P. & McCarthy, G. Neural basis of eye gaze processing deficits in autism.
en. Brain 128, 1038–1048 (May 2005).

19. Agam, Y., Joseph, R. M., Barton, J. J. S. & Manoach, D. S. Reduced cognitive control of response
inhibition by the anterior cingulate cortex in autism spectrum disorders. en. Neuroimage 52, 336–
347 (Aug. 2010).

20. Bölte, S. et al. How can clinicians detect and treat autism early? Methodological trends of tech-
nology use in research. en. Acta Paediatr. 105, 137–144 (Feb. 2016).

21. Klin, A. Biomarkers in autism spectrum disorder: Challenges, advances, and the need for biomark-
ers of relevance to public health. en. Focus (Am. Psychiatr. Publ.) 16, 135–142 (Apr. 2018).

22. Constantino, J. N. et al. Infant viewing of social scenes is under genetic control and is atypical in
autism. en. Nature 547, 340–344 (July 2017).

23. Al-Shaban, F. A. et al. Development and validation of an Arabic language eye-tracking paradigm
for the early screening and diagnosis of autism spectrum disorders in Qatar. en. Autism Res. 16,
2291–2301 (Dec. 2023).

24. Frazier, T. W. et al. Social attention as a cross-cultural transdiagnostic neurodevelopmental risk
marker. en. Autism Res. 14, 1873–1885 (Sept. 2021).

25. Speer, L. L., Cook, A. E., McMahon, W. M. & Clark, E. Face processing in children with autism:
effects of stimulus contents and type. en. Autism 11, 265–277 (May 2007).

26. Chita-Tegmark, M. Social attention in ASD: A review and meta-analysis of eye-tracking studies.
en. Res. Dev. Disabil. 48, 79–93 (Jan. 2016).

27. Grossman, R. B., Zane, E., Mertens, J. & Mitchell, T. Facetime vs. Screentime: Gaze patterns to
live and video social stimuli in adolescents with ASD. en. Sci. Rep. 9, 12643 (Sept. 2019).

28. Robain, F. et al. Measuring social orienting in preschoolers with autism spectrum disorder using
cartoons stimuli. en. J. Psychiatr. Res. 156, 398–405 (Dec. 2022).

29. Parker, T. C. et al. Neural and visual processing of social gaze cueing in typical and ASD adults.
en. medRxiv (Feb. 2023).

30. Bezemer, M. L., Blijd-Hoogewys, E. M. A. & Meek-Heekelaar, M. The predictive value of the AQ
and the SRS-A in the diagnosis of ASD in adults in clinical practice. en. J. Autism Dev. Disord. 51,
2402–2415 (July 2021).

31. Mooldijk, S. S., Labrecque, J. A., Ikram, M. A. & Ikram, M. K. Ratios in regression analyses with
causal questions. en. Am. J. Epidemiol. 194, 311–313 (Jan. 2025).

32. Engel, K. C., Anderson, J. H. & Soechting, J. F. Oculomotor tracking in two dimensions. J. Neu-
rophysiol. 81, 1597–1602 (1999).

33. Bahill, A. T., Clark, M. R. & Stark, L. Themain sequence, a tool for studying human eyemovements.
en. Math. Biosci. 24, 191–204 (Jan. 1975).

34. Hessels, R. S., Kemner, C., van den Boomen, C. & Hooge, I. T. C. The area-of-interest prob-
lem in eyetracking research: A noise-robust solution for face and sparse stimuli. en. Behav. Res.
Methods 48, 1694–1712 (Dec. 2016).

35. Frank, M. C., Vul, E. & Saxe, R. Measuring the development of social attention using free-viewing.
en. Infancy 17, 355–375 (July 2012).

36. Orquin, J. L., Ashby, N. J. S. & Clarke, A. D. F. Areas of interest as a signal detection problem in
behavioral eye tracking research. en. J. Behav. Decis. Mak. 29, 103–115 (Apr. 2016).



Bibliography 36

37. Hus, V., Bishop, S., Gotham, K., Huerta, M. & Lord, C. Factors influencing scores on the social
responsiveness scale. en. J. Child Psychol. Psychiatry 54, 216–224 (Feb. 2013).

38. Lockwood Estrin, G., Milner, V., Spain, D., Happé, F. & Colvert, E. Barriers to autism spectrum
disorder diagnosis for young women and girls: A systematic review. en.Rev. J. Autism Dev. Disord.
8, 454–470 (2021).

39. Halladay, A. K. et al. Sex and gender differences in autism spectrum disorder: summarizing evi-
dence gaps and identifying emerging areas of priority. en. Mol. Autism 6, 36 (June 2015).

40. Wood-Downie, H., Wong, B., Kovshoff, H., Cortese, S. & Hadwin, J. A. Research Review: A sys-
tematic review and meta-analysis of sex/gender differences in social interaction and communi-
cation in autistic and nonautistic children and adolescents. en. J. Child Psychol. Psychiatry 62,
922–936 (Aug. 2021).

41. Lundin, K., Mahdi, S., Isaksson, J. & Bölte, S. Functional gender differences in autism: An in-
ternational, multidisciplinary expert survey using the International Classification of Functioning,
Disability, and Health model. en. Autism 25, 1020–1035 (May 2021).

42. Pennsylvania State University. 10.7 - Detecting Multicollinearity Using Variance Inflation Factors
Accessed: April 11, 2025. 2025. https://online.stat.psu.edu/stat462/node/180/.

43. Nguyen, P. H. et al. The reliability and validity of the social responsiveness scale to measure
autism symptomology in Vietnamese children. en. Autism Res. 12, 1706–1718 (Nov. 2019).

44. Lyall, K. et al. Examining shortened versions of the Social Responsiveness Scale for use in autism
spectrum disorder prediction and as a quantitative trait measure: Results from a validation study
of 3-5 year old children. en. JCPP Adv. 2, e12106 (Dec. 2022).

45. Suissa, S. & Blais, L. Binary regression with continuous outcomes. en. Stat. Med. 14, 247–255
(Feb. 1995).

46. Bhat, A. N. Motor impairment increases in children with autism spectrum disorder as a function
of social communication, cognitive and functional impairment, repetitive behavior severity, and
comorbid diagnoses: A SPARK study report. en. Autism Res. 14, 202–219 (Jan. 2021).

47. Müller, N., Baumeister, S., Dziobek, I., Banaschewski, T. & Poustka, L. Validation of the Movie for
the Assessment of Social Cognition in Adolescents with ASD: Fixation Duration and Pupil Dilation
as Predictors of Performance. Journal of Autism and Developmental Disorders 46, 2831–2844.
ISSN: 1573-3432. http://dx.doi.org/10.1007/s10803-016-2828-z (June 2016).

48. Chang, Z. et al. Computational Methods to Measure Patterns of Gaze in Toddlers With Autism
Spectrum Disorder. JAMA Pediatrics. ISSN: 2168-6203. http://dx.doi.org/10.1001/jamaped
iatrics.2021.0530 (Apr. 2021).

49. Cilia, F. et al. Computer-aided screening of autism spectrum disorder: Eye-tracking study using
data visualization and deep learning. en. JMIR Hum. Factors 8, e27706 (Oct. 2021).

50. Liaqat, S. et al. Predicting ASD diagnosis in children with synthetic and image-based eye gaze
data. en. Signal Process. Image Commun. 94, 116198 (May 2021).

51. Gepner, B., Godde, A., Charrier, A., Carvalho, N. & Tardif, C. Reducing facial dynamics’ speed
during speech enhances attention to mouth in children with autism spectrum disorder: An eye-
tracking study. en. Dev. Psychopathol. 33, 1006–1015 (Aug. 2021).

52. Sahuquillo-Leal, R. et al. Attentional biases towards emotional scenes in autism spectrum condi-
tion: An eye-tracking study. en. Res. Dev. Disabil. 120, 104124 (Jan. 2022).



Bibliography 37

53. Shic, F., Scassellati, B., Lin, D. & Chawarska, K. Measuring context: The gaze patterns of chil-
dren with autism evaluated from the bottom-up in 2007 IEEE 6th International Conference on
Development and Learning (IEEE, London, UK, July 2007).

54. Avni, I. et al. Children with autism observe social interactions in an idiosyncratic manner. en.
Autism Res. 13, 935–946 (June 2020).

55. Nakano, T., Kato, N. & Kitazawa, S. Lack of eyeblink entrainments in autism spectrum disorders.
en. Neuropsychologia 49, 2784–2790 (July 2011).

56. Falck-Ytter, T., von Hofsten, C., Gillberg, C. & Fernell, E. Visualization and analysis of eye move-
ment data from children with typical and atypical development. en. J. Autism Dev. Disord. 43,
2249–2258 (Oct. 2013).

57. Viktorsson, C., Bölte, S. & Falck-Ytter, T. How 18-month-olds with later autism look at other chil-
dren interacting: The timing of gaze allocation. en. J. Autism Dev. Disord. 54, 4091–4101 (Nov.
2024).

58. Pierce, K., Conant, D., Hazin, R., Stoner, R. & Desmond, J. Preference for geometric patterns
early in life as a risk factor for autism. en. Arch. Gen. Psychiatry 68, 101–109 (Jan. 2011).

59. Pierce, K. et al. Eye tracking reveals abnormal visual preference for geometric images as an early
biomarker of an autism spectrum disorder subtype associated with increased symptom severity.
en. Biol. Psychiatry 79, 657–666 (Apr. 2016).

60. Moore, A. et al. The geometric preference subtype in ASD: identifying a consistent, early-emerging
phenomenon through eye tracking. en. Mol. Autism 9 (Dec. 2018).

61. De Belen, R. A. J., Eapen, V., Bednarz, T. & Sowmya, A. Using visual attention estimation on
videos for automated prediction of autism spectrum disorder and symptom severity in preschool
children. en. PLoS One 19, e0282818 (Feb. 2024).

62. Dijkhuis, R., Gurbuz, E., Ziermans, T., Staal, W. & Swaab, H. Social attention and emotional
responsiveness in young adults with autism. en. Front. Psychiatry 10, 426 (June 2019).

63. Cantonas, L.-M. et al. Impaired alpha and beta modulation in response to social stimuli in children
with autism spectrum disorder Jan. 2022.

64. Oberman, L. M. et al. EEG evidence for mirror neuron dysfunction in autism spectrum disorders.
en. Brain Res. Cogn. Brain Res. 24, 190–198 (July 2005).

65. Vargas-Cuentas, N. I. et al. Developing an eye-tracking algorithm as a potential tool for early
diagnosis of autism spectrum disorder in children. en. PLoS One 12, e0188826 (Nov. 2017).

66. Tian, J. et al. Atypical biological motion perception in children with attention deficit hyperactivity
disorder: Local motion and global configuration processing May 2024.

67. Ayyildiz, D., Bikmazer, A., Cahid Örengül, A. & Perdahlı Fiş, N. Executive Functions and social
responsiveness in children and adolescents with autism spectrum disorder and attention deficit
hyperactivity disorder. en. Psyc.. Clin. Psychopharmacol. 31, 165–172 (June 2021).

68. Colonnese, F., Di Luzio, F., Rosato, A. & Panella, M. Enhancing autism detection through gaze
analysis using eye tracking sensors and data attribution with distillation in deep neural networks.
en. Sensors (Basel) 24 (Dec. 2024).

69. Martin, K. B. et al. Objective measurement of head movement differences in children with and
without autism spectrum disorder. en. Mol. Autism 9 (Dec. 2018).



A
Literature Review



Eye Tracking as a Biomarker for ASD: A Review of Eye Movement
Outcome Parameters for Dynamic Social Stimuli

I.M. Brugman1, R. van der Vliet2, M. Frens2

February 26, 2025

1Delft University of Technology
2Erasmus Medical Center

Introduction: Autism Spectrum Disorder (ASD) diminishes quality of life, especially without early interven-
tion. While current diagnostic tools facing limitations, eye tracking has emerged as an objective biomarker
for ASD assessment. This review examines existing research on eye tracking outcome parameters when using
naturalistic social interaction videos as a social stimulus.
Methods: A systematic search of MEDLINE, Embase, and Web of Science was conducted to identify em-
pirical studies comparing eye movements in ASD and typically developing (TD) individuals while watching
naturalistic social scene videos.
Results: Out of 1520 articles, 19 met the inclusion criteria, in which 13 outcome parameters were identified
including areas of interest, gaze-speech correlation, scanpatch variance saccadic speed, total looking time, time
per fixation and frame-by-frame analysis.
Conclusion: Eye-tracking is a promising biomarker for ASD, as individuals with ASD showed reduced fixa-
tion on social cues, increased attention to non-social elements, and altered gaze patterns.

1 Introduction

Autism Spectrum Disorder (ASD) is a neurodevelop-
mental condition that affects approximately 1 in 100
children worldwide. [1] The brains of individuals with
ASD show significant differences compared to those
of their typically developing (TD) peers. [2, 3] Core
characteristics of ASD include deficits in social in-
teraction, restrictive interests, anxiety, and repetitive
behaviors. [4] Research indicates that young autistic
adults experience anxiety, depression, and stress lev-
els comparable to individuals diagnosed with primary
anxiety and depressive disorders. [5] Moreover, the
quality of life for individuals with ASD is consistently
lower than that of the general population, across all
age groups. [6, 7]

Early identification allows for timely intervention,
which has been shown to significantly enhance devel-
opmental outcomes and quality of life for individu-
als with ASD. In addition to individual benefits, early

intervention also yields significant economic benefits
over time. [8, 9] Currently, gold-standard diagnostic
instruments such as the Autism Diagnostic Observa-
tion Schedule (ADOS) and the Autism Diagnostic In-
terview (ADI) require extensive time for administra-
tion and analysis. Additionally, these tools are suscep-
tible to subjectivity, thereby reducing diagnostic accu-
racy, particularly among certain subgroups. [10] For
example, culturally and linguistically diverse popula-
tions often experience diminished diagnostic precision
with these assessments. [11] Additionally, these tools
frequently fail to adequately detect high-functioning
autism, as they rely heavily on overt behavioural mark-
ers that may not capture the subtle social deficits of
this subgroup. [12] Another limitation is their reduced
applicability in very young children due to reliance
on caregiver recall and the substantial developmental
variability observed in children under the age of three.
[13] Consequently, there is an urgent need for objec-
tive biomarkers in ASD assessment.
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Eye tracking has emerged as a promising biomarker
capable of differentiating ASD from TD individuals.
Atypical gaze patterns in individuals with ASD are
linked to dysfunctions across multiple brain regions,
including the amygdala, frontal eye fields, temporal
parietal junction, insula, and dorsal lateral prefrontal
cortex. [14] Integrating eye tracking into the diagnos-
tic process has been shown to enhance diagnostic effi-
ciency while reducing the lifetime cost of autism. [15]
Additionally, eye tracking mitigates the limitations as-
sociated with traditional diagnostic tools. It is par-
ticularly advantageous for studying infants and young
children’s cognitive processes in a non-intrusive man-
ner. [16, 17] Furthermore, eye tracking holds promise
as a solution for assessing high-functioning autism and
culturally diverse populations due to the increasing
availability of varied social stimuli

Previous studies suggest that dynamic social stimuli
involving more than one person are optimal for distin-
guishing between ASD and TD individuals. [18, 19]
The differences between these groups become more
pronounced when video-based stimuli are used instead
of live social interactions. [20] Moreover, naturalistic
scenes yield greater ecological validity than animated
characters. [21, 22] Taken together, it becomes evi-
dent that the most effective method for detecting ASD-
related gaze patterns is through video recordings of
naturalistic social interactions involving multiple indi-
viduals. However, the optimal outcome parameter for
such dynamic stimuli remains undetermined, as pre-
vious studies predominantly employed static stimuli.
Therefore, the objective of this review is to synthe-
size existing research on eye tracking outcome param-
eters during naturalistic dynamic social stimuli involv-
ing multiple individuals, with the goal of improving
the diagnostic accuracy of ASD.

2 Methods

2.1 Search Strategy

The databases MEDLINE, Embase and Web of Sci-
ence were searched up to February 3, 2025 to identify
relevant articles. The search strategy was developed in
collaboration with a medical librarian from the Eras-
mus Medical Center, using keywords such as "autism",
"social stimulus", and "eye tracking". The complete
search strategy is provided in Appendix A.

2.2 Inclusion Criteria

Inclusion criteria were (a) Published in English; (b)
Empiral study; (c) Human participants; (d) Patient
group of participants with autism-related traits (either
defined as a diagnosis on the autism spectrum, or eval-
uated with social cognition scales, e.g. Social Re-
sponsiveness Scale (SRS), Autism Diagnostic Inter-
view (ADI) or Autism Diagnostic Observation Sched-
ule (ADOS)); (e) Control group of neurotypically de-
veloped peers; (f) The main goal of the study was to
compare the eye movements of both groups during a
social stimulus; (g) The social stimulus was a video
of a naturalistic social scene involving multiple char-
acters. When a study employed this type of stimulus
along with others, the article was only included if a
distinction in outcome parameters was made.

3 Results

3.1 Search Results

The PRISMA flow diagram of the search strategy is
presented in Figure 1. The initial search yielded 1520
articles, with 715 remaining after duplicate removal.
Title and abstract screening led to the exclusion of 668
studies. A full text review of the remaining 47 arti-
cles resulted in the inclusion of 19 studies in the final
review..

3.2 Study Characteristics

The median sample size of the 19 included studies was
63 participants. The age range varied across stud-
ies, spanning from infants to adults. Some studies
performed a between-group comparison of eye move-
ments including both an ASD and TD group, while
others examined the correlation between gaze be-
haviour and autism-related scales. The autism-related
scales utilised in the included articles were the Autism
Diagnostic Observation Schedule (ADOS), Social Re-
sponsiveness Scale (SRS), Multidimensional Anxiety
Scale for Children (MASC), and the Vineland Adap-
tive Behaviour Scales Expanded edition (VABS-E).

3.3 Outcome parameters

The 13 identified outcome parameters consisted of
seven Areas of Interest (AOI) and six other outcome
parameters. An overview of the outcome parameters
is provided in 1. Each of them will be discussed be-
low. When a study combined eyes and mouth as a sin-
gle outcome parameter, it was considered the face AOI
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Figure 1: PRISMA flow diagram of the search strategy.

in this review. The hands area of interest included the
activity area when applicable.

AOI: Face

Eight studies found a lower fixation time on the face
in ASD participants, [23–30] while four studies were
unable to identify any difference in fixation time com-
pared to TD participants. [31–34] One study observed
a negative correlation with the ADOS severity score,
indicating better social functioning when a participant
fixates more on the face. [24] Three other studies
did not notice a correlation with autism-related scales.
[30, 32, 33] A larger effect size was observed when
stimuli consisted of more socially complex scenes [26]
and when a person in the video moved their head a lot
[25].

AOI: Eyes

Three studies reported a lower fixation time on the
eyes in ASD participants, [23, 27, 35] and one study

could not identify a difference. [30] A positive corre-
lation with MASC scores was noticed in one study, im-
plying a relationship between better social functioning
and eye fixation. [36] Three studies did not observe a
correlation with autism-related scales. [27, 30, 35]

AOI: Mouth

The evidence for a difference in mouth fixation be-
tween individuals with ASD and TD is contradictory,
with two articles showing a lower fixation time in ASD
[23, 27] and one article showing a higher fixation time
in ASD. [35] Furthermore, one study reported a pos-
itive correlation with social functioning scales, [35]
and one reported no correlation with social function-
ing scales. [36] However, the rationale behind these
conflicting results might be provided by Rice et al., as
they found that IQ profiles moderated the correlation
between fixation time on the mouth and social func-
tioning. [27]
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Table 1: Outcome parameters used in the literature. AOI = Area of Interest. ASD = Autism Spectrum Disorder. ADOS
= Autism Diagnostic Observation Schedule. SRS = Social Responsiveness Scale. MASC = Multidimensional Anxiety
Scale for Children. VABS-E = Vineland Adaptive Behaviour Scales Expanded edition.

AOI

Face

Lower fixation time in ASD [23–30]
No difference in fixation time [31–34]
Negative correlation with ADOS [24]

No correlation with ADOS / SRS [30, 32, 33]

Eyes

Lower fixation time in ASD [23, 27, 35]
No difference in fixation time [30]

Positive correlation with MASC [36]
No correlation with ADOS / VABS-E [27, 30, 35]

Mouth

Lower fixation time in ASD [23, 27]
Higher fixation time in ASD [35]

Positive correlation with social functioning [35]
No correlation with MASC scores [36]

Correlation with social functioning moderated by IQ profiles [27]

Body
Higher fixation time in ASD [27, 35]
No difference in fixation time [29, 34]

No correlation with ADOS / VABS-E / MASC [27, 35, 36]

Hands
Higher fixation time in ASD [29]

No difference in fixation time [26, 33]
No correlation with SRS [33]

Distracting object

Higher fixation time in ASD [27, 34, 35]
No difference in fixation time [26, 29, 31]
Positive correlation with ADOS [27, 35]

No correlation with VABS-E / MASC [35, 36]

Background
No difference in fixation time [33]

No correlation with SRS [33]

Gaze-speech correlation

Gaze was not kept at speaker till end of speech in ASD [23]
Less predictive saccades in ASD [23, 25]

Proportionally less fixation at speaker than non-speaker in ASD[25]
Lower gaze-speech correlation in ASD[37]

Scanpath variance
Higher scanpath variance in ASD [23, 30, 38]

Positive correlation with ADOS [30]
No correlation with SRS [38]

Saccadic speed
No difference in saccadic speed [39]

No correlation with SRS [39]

Total looking time
Significantly lower in ASD [39]

No correlation with SRS [39]
Time per fixation Significantly lower in ASD [25]

Frame-by-frame analysis
Less fixation on person receiving a non-verbal request in ASD[32, 40]

More fixation on sandwich after it fell in ASD[41]
No frame-by-frame differences [31]

AOI: Body

A higher fixation time on the body in the ASD group
was reported by two studies, [27, 35] whereas two oth-
ers could not detect a difference. [29, 34] No correla-
tion between fixation time on the body and social func-
tioning scales has been detected. [27, 35, 36]

AOI: Hands, activity area

One study reported a higher fixation time on the hands
in the ASD group, [29] whereas two other studies did
not observe this difference. [26, 33] No correlation
with the SRS could be detected. [33]
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AOI: Distracting object

A higher fixation time on distracting objects in partici-
pants with ASD was reported in three studies. [27, 34,
35] Three studies did not observe this difference. [26,
29, 31] A positive correlation between fixation time on
distracting objects and the ADOS severity score was
found by two studies, indicating worse social function-
ing in participants who fixated more on distracted ob-
jects. [27, 35] No correlation was observed between
fixation time on distracting objects and scores on the
VABS-E or MASC. [35, 36]

AOI: Background

No significant differences were observed between the
ASD and TD group in background fixation time. [33]
Additionally, no correlation with the SRS was de-
tected. [33]

Gaze-speech correlation

Several pieces of evidence point towards a difference
in gaze-speech correlation between individuals with
ASD and TD. Individuals with ASD are less likely
to keep their gaze at the speaker till the end of their
speech. [23] In line with this finding it was found
that people with ASD fixate proportionally less on the
speaker than the non-speaker. [25] Furthermore, it has
been reported by two studies that people with ASD ex-
hibit less predivtive saccades than their TD peers. [23,
25] Lastly, Chang et al. found a discrepancy in gaze-
speech correlation between ASD an TD. [37]

Scanpath variance

Three studies reported a higher scanpath variance in
individuals with ASD. [23, 30, 38] In agreement with
this, Avni et al. observed a correlation between scan-
path variance and ADOS scores. [30] A correlation
with the SRS could not be detected by Ramot et al.
[38]

Saccadic speed

No difference in saccadic speed was detected between
the ASD and TD group (p = 0.08). [39] No correlation
between saccadic speed and the SRS has been detected
by Shaffer et al. [39]

Total looking time

The total looking time, meaning the fixation time
within screen boundaries, was lower in the ASD group

compared to the TD group. [39] However, no correla-
tion between total looking time and the SRS could be
established. [39]

Time per fixation

The time per fixation was lower in the ASD group
compared to the TD group. [25]

Frame-by-frame analysis

Four studies performed a frame-by-frame analysis, ex-
ploring in which part of the provided social scene gaze
differences could be observed. Two of those studies
reported that individuals with ASD fixated less on a
person receiving a non-verbal request. [32, 40] One
study observed more fixation on a sandwich after it
fell. [41] Kaliukhovich et al. could not find any differ-
ences in their frame-by-frame analysis. [29]

4 Discussion

The results indicate that individuals with ASD exhibit
distinct eye movement patterns when viewing natu-
ralistic social stimuli. Specifically, they tend to fix-
ate less on socially informative areas such as the face
and eyes while exhibiting increased attention toward
less socially informative elements such as the body,
hands, and distracting objects. The observed reduction
in fixation time on the eyes and face is consistent with
theories of social disengagement in ASD. The amyg-
dala and associated neural pathways, which are crucial
for processing facial expressions and emotional cues,
have been shown to function atypically in individu-
als with ASD. [14] Furthermore, increased fixation on
non-social elements is consistent with the preference
for predictable, rule-based information processing in
individuals with ASD. [42]

Intriguingly, the fixation time on the mouth appears to
be moderated by IQ profiles. [27] In individuals with
a verbal IQ that exceeds their non-verbal IQ, mouth
fixation had a negative correlation with ADOS sever-
ity scores. This finding indicates that in this specific
group, a greater tendency to fixate on the mouth is as-
sociated with better social functioning. Conversely, in
the group with a low and evenly distributed IQ, no such
correlation was observed. Notably, in the group with
a high and evenly distributed IQ, a positive correla-
tion was identified between mouth fixation and ADOS
severity scores, suggesting that increased mouth fixa-
tion is associated with worse social functioning in this
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subgroup. These findings underscore the complexity
of social functioning and highlight the potential mod-
erating role of IQ in this context.

Beyond the areas of interest, several studies exam-
ined non-AOI outcome measures, which provided ad-
ditional insights into the eye movement behaviour of
individuals with ASD. These measures included gaze-
speech correlation, scanpath variance, saccadic speed,
total looking time, time per fixation, and frame-by-
frame analysis. Individuals with ASD demonstrated
lower gaze-speech correlation, they were less likely
to maintain gaze on a speaker until the conclusion of
their speech and showed fewer predictive saccades, in-
dicating difficulties in anticipating social cues. Higher
scanpath variance, also termed idiosyncracy, in ASD
participants suggests a more dispersed and less struc-
tured visual search pattern. This finding aligns with
previous research showing that individuals with ASD
exhibit more variable cortical responses as well as id-
iosyncratic distortion of the functional connectivity
pattern. [43, 44] This link highlights how neurolog-
ical atypicalities in ASD may manifest in observable
behavior, though this remains a tentative interpreta-
tion requiring further investigation. While the saccadic
speed outcome parameter did not reach statistical sig-
nificance (p = 0.08), the p-value suggests a trend that
could be worth exploring in future research. Addi-
tionally, a consistent reduction in total looking time
was observed in individuals with ASD, suggesting a
reduced engagement with the visual content of so-
cial scenes. Furthermore, frame-by-frame analysis re-
vealed reduced fixation on individuals receiving non-
verbal requests. The absence of gaze shifts toward
a person receiving a non-verbal request might share
its underlying mechanism with the lack of predictive
saccades, as such gaze shifts are essentially predictive
saccades. These findings underscore that a biomarker
model should include include both AOI and non-AOI
parameters to fully capture the complexities of gaze
behaviour in ASD.

The small median sample size of 63 participants rep-
resents a significant limitation of the included studies.
Furthermore, a methodological issue that was iden-
tified in the reviewed studies is the variation in the
measurement of fixation time. Some studies report
actual fixation time, defined as the absolute duration
spent looking at a specific area, while others use pro-

portional fixation time, defined as fixation time rel-
ative to the total screen fixation time. This distinc-
tion is critical because individuals with ASD tend to
look at the screen for a significantly shorter duration
overall than their TD counterparts. [39] Using propor-
tional fixation time may, therefore, overestimate their
engagement with social stimuli. It would be recom-
mended for future research to use the actual fixation
time, rather than the proportional fixation time.

In order to ascertain whether eye tracking is beneficial
solely for diagnostic purposes or also for monitoring
the effect of interventions, future studies should fo-
cus on whether gaze behaviour undergoes alterations
over time in response to interventions. Longitudinal
research could assist in identifying whether gaze pat-
terns can be modified through targeted therapies and
whether such changes are associated with improved
social functioning. Another important avenue for re-
search is exploring cultural and linguistic influences
on gaze behaviour. Given that social communication
norms vary across cultures, it is possible that gaze
preferences in ASD are influenced by sociocultural
factors. Studies with more diverse participant popu-
lations could help elucidate these effects and inform
the adaptation of stimuli and variables for varied cul-
tural contexts. Moreover, advanced machine learning
models may enable individualized assessments, which
could inform personalized interventions. Finally, from
a clinical implementation perspective, integrating eye
tracking into ASD screening procedures requires ad-
dressing considerations such as cost, scalability, and
the clinical benefits in comparison to alternative diag-
nostic tools. While eye tracking technology has be-
come more affordable in recent years, [45] further re-
search is necessary to determine the optimal point in
the patient journey at which this tool provides the most
benefit.

In conclusion, individuals with ASD have been shown
to exhibit reduced fixation on social cues, increased
attention to non-social elements, and altered gaze pat-
terns. These patterns may be related to atypical amyg-
dala function, idiosyncratic cortical responses and id-
iosyncratic distortion of the functional connectivity
pattern. Moving forward, it is crucial to further inves-
tigate the relevance of combinations of these outcome
parameters within larger sample sizes and to examine
the effects of various interventions.

6



References

1. Zeidan, J. et al. Global prevalence of autism: A systematic review update. en. Autism Res. 15, 778–790
(May 2022).

2. Matuskey, D. et al. 11C-UCB-J PET imaging is consistent with lower synaptic density in autistic adults.
en. Mol. Psychiatry (Oct. 2024).

3. Gandal, M. J. et al. Broad transcriptomic dysregulation occurs across the cerebral cortex in ASD. en.
Nature 611, 532–539 (Nov. 2022).

4. Nadeem, M. S. et al. Autism - A comprehensive array of prominent signs and symptoms. en. Curr. Pharm.
Des. 27, 1418–1433 (2021).

5. Park, S. H. et al. Disability, functioning, and quality of life among treatment-seeking young autistic adults
and its relation to depression, anxiety, and stress. en. Autism 23, 1675–1686 (Oct. 2019).

6. Movsessian, T. & Osoba, T. A. Association between therapeutic interventions and quality of life in people
with autism. J. Soc. Behav. Health Sci. 16 (Nov. 2022).

7. Tedla, J. S. et al. Assessing the quality of life in children with autism spectrum disorder: a cross-sectional
study of contributing factors. en. Front. Psychiatry 15, 1507856 (Dec. 2024).

8. Vivanti, G., Prior, M., Williams, K. & Dissanayake, C. Predictors of outcomes in autism early intervention:
Why donâC™t we know more? en. Front. Pediatr. 2, 58 (June 2014).

9. Okoye, C. et al. Early diagnosis of autism spectrum disorder: A review and analysis of the risks and
benefits. en. Cureus 15, e43226 (Aug. 2023).

10. Bishop, S. L. & Lord, C. Commentary: Best practices and processes for assessment of autism spectrum
disorder - the intended role of standardized diagnostic instruments. en. J. Child Psychol. Psychiatry 64,
834–838 (May 2023).

11. Huda, E. et al. Screening tools for autism in culturally and linguistically diverse paediatric populations: a
systematic review. en. BMC Pediatr. 24, 610 (Sept. 2024).

12. Lefort-Besnard, J. et al. Patterns of autism symptoms: hidden structure in the ADOS and ADI-R instru-
ments. en. Transl. Psychiatry 10, 257 (July 2020).

13. Hus, Y. & Segal, O. Challenges surrounding the diagnosis of autism in children. en. Neuropsychiatr. Dis.
Treat. 17, 3509–3529 (Dec. 2021).

14. Papagiannopoulou, E. A., Chitty, K. M., Hermens, D. F., Hickie, I. B. & Lagopoulos, J. A systematic
review and meta-analysis of eye-tracking studies in children with autism spectrum disorders. en. Soc.
Neurosci. 9, 610–632 (July 2014).

15. Frazier, T. W. et al. Evidence-based use of scalable biomarkers to increase diagnostic efficiency and
decrease the lifetime costs of autism. en. Autism Res. 14, 1271–1283 (June 2021).

16. Bölte, S. et al. How can clinicians detect and treat autism early? Methodological trends of technology use
in research. en. Acta Paediatr. 105, 137–144 (Feb. 2016).

17. Klin, A. Biomarkers in autism spectrum disorder: Challenges, advances, and the need for biomarkers of
relevance to public health. en. Focus (Am. Psychiatr. Publ.) 16, 135–142 (Apr. 2018).

18. Speer, L. L., Cook, A. E., McMahon, W. M. & Clark, E. Face processing in children with autism: effects
of stimulus contents and type. en. Autism 11, 265–277 (May 2007).

19. Chita-Tegmark, M. Social attention in ASD: A review and meta-analysis of eye-tracking studies. en. Res.
Dev. Disabil. 48, 79–93 (Jan. 2016).

20. Grossman, R. B., Zane, E., Mertens, J. & Mitchell, T. Facetime vs. Screentime: Gaze patterns to live and
video social stimuli in adolescents with ASD. en. Sci. Rep. 9, 12643 (Sept. 2019).

21. Robain, F. et al. Measuring social orienting in preschoolers with autism spectrum disorder using cartoons
stimuli. en. J. Psychiatr. Res. 156, 398–405 (Dec. 2022).

22. Parker, T. C. et al. Neural and visual processing of social gaze cueing in typical and ASD adults. en.
medRxiv (Feb. 2023).

23. Nakano, T. et al. Atypical gaze patterns in children and adults with autism spectrum disorders dissociated
from developmental changes in gaze behaviour. en. Proc. Biol. Sci. 277, 2935–2943 (Oct. 2010).

7



24. Zantinge, G., van Rijn, S., Stockmann, L. & Swaab, H. Psychophysiological responses to emotions of
others in young children with autism spectrum disorders: Correlates of social functioning. Autism Res.
10, 1499–1509 (Sept. 2017).

25. Von Hofsten, C., Uhlig, H., Adell, M. & Kochukhova, O. How children with autism look at events. en.
Res. Autism Spectr. Disord. 3, 556–569 (Apr. 2009).

26. Parish-Morris, J. et al. Adaptation to different communicative contexts: an eye tracking study of autistic
adults. en. J. Neurodev. Disord. 11, 5 (Apr. 2019).

27. Rice, K., Moriuchi, J. M., Jones, W. & Klin, A. Parsing heterogeneity in autism spectrum disorders: visual
scanning of dynamic social scenes in school-aged children. en. J. Am. Acad. Child Adolesc. Psychiatry
51, 238–248 (Mar. 2012).

28. Constantino, J. N. et al. Infant viewing of social scenes is under genetic control and is atypical in autism.
en. Nature 547, 340–344 (July 2017).

29. Kaliukhovich, D. A. et al. Social attention to activities in children and adults with autism spectrum disor-
der: effects of context and age. en. Mol. Autism 11, 79 (Oct. 2020).

30. Avni, I. et al. Children with autism observe social interactions in an idiosyncratic manner. en. Autism Res.
13, 935–946 (June 2020).

31. Yoshida, A. et al. Eye gaze and cerebral blood flow activation while watching social movies in children
with autism spectrum disorder. en. J. Brain Sci. 51, 47–76 (Feb. 2022).

32. Viktorsson, C., Bölte, S. & Falck-Ytter, T. How 18-month-olds with later autism look at other children
interacting: The timing of gaze allocation. en. J. Autism Dev. Disord. 54, 4091–4101 (Nov. 2024).

33. Greene, R. K. et al. Dynamic eye tracking as a predictor and outcome measure of social skills intervention
in adolescents and adults with autism spectrum disorder. en. J. Autism Dev. Disord. 51, 1173–1187 (Apr.
2021).

34. Tang, J. S. Y., Chen, N. T. M., Falkmer, M., Blte, S. & Girdler, S. Atypical visual processing but com-
parable levels of emotion recognition in adults with autism during the processing of social scenes. en. J.
Autism Dev. Disord. 49, 4009–4018 (Oct. 2019).

35. Klin, A., Jones, W., Schultz, R., Volkmar, F. & Cohen, D. Visual fixation patterns during viewing of
naturalistic social situations as predictors of social competence in individuals with autism. en. Arch. Gen.
Psychiatry 59, 809–816 (Sept. 2002).

36. Müller, N., Baumeister, S., Dziobek, I., Banaschewski, T. & Poustka, L. Validation of the Movie for
the Assessment of Social Cognition in adolescents with ASD: Fixation duration and pupil dilation as
predictors of performance. en. J. Autism Dev. Disord. 46, 2831–2844 (Sept. 2016).

37. Chang, Z. et al. Computational methods to measure patterns of gaze in toddlers with autism spectrum
disorder. en. JAMA Pediatr. 175, 827–836 (Aug. 2021).

38. Ramot, M., Walsh, C., Reimann, G. E. & Martin, A. Distinct neural mechanisms of social orienting and
mentalizing revealed by independent measures of neural and eye movement typicality. en. Commun. Biol.
3, 48 (Jan. 2020).

39. Shaffer, R. C. et al. Brief report: Diminished gaze preference for dynamic social interaction scenes in
youth with autism spectrum disorders. en. J. Autism Dev. Disord. 47, 506–513 (Feb. 2017).

40. Falck-Ytter, T., von Hofsten, C., Gillberg, C. & Fernell, E. Visualization and analysis of eye movement
data from children with typical and atypical development. en. J. Autism Dev. Disord. 43, 2249–2258 (Oct.
2013).

41. Lönnqvist, L. et al. How young adults with autism spectrum disorder watch and interpret pragmatically
complex scenes. en. Q. J. Exp. Psychol. (Hove) 70, 2331–2346 (Nov. 2017).

42. Brosnan, M. & Ashwin, C. Thinking, fast and slow on the autism spectrum. en. Autism 27, 1245–1255
(July 2023).

43. Byrge, L., Dubois, J., Tyszka, J. M., Adolphs, R. & Kennedy, D. P. Idiosyncratic brain activation patterns
are associated with poor social comprehension in autism. en. J. Neurosci. 35, 5837–5850 (Apr. 2015).

44. Hahamy, A., Behrmann, M. & Malach, R. The idiosyncratic brain: distortion of spontaneous connectivity
patterns in autism spectrum disorder. en. Nat. Neurosci. 18, 302–309 (Feb. 2015).

45. Guo, R., Kim, N. & Lee, J. Empirical insights into eye-tracking for design evaluation: Applications in
visual communication and new media design. en. Behav. Sci. (Basel) 14 (Dec. 2024).

8



Appendix A: Search query

MEDLINE (exp * Autism Spectrum Disorder / OR ((Social ADJ3 Responsive*)).ab,ti,kw. OR (asd OR autis*
OR Asperger* OR rett-sundrome* OR pdd-nos).ti.) AND (Eye Movements / OR Eye Movement Measurements
/ OR Eye-Tracking Technology / OR Fixation, Ocular / OR (((eye* OR ocular OR gaze*) ADJ3 (movement*
OR tracking OR measurement* OR analys* OR pattern* OR cueing* OR cues OR estimation* OR fixation*
OR follow*)) OR eyetrack*).ab,ti,kw. OR (gaze).ti.) AND (Video Recording/ OR (videorecor* OR video OR
videos OR (live ADJ3 (interaction* OR observation* OR situation)) OR (social* ADJ3 (stimul* OR event* OR
interaction* OR scene* OR task*)) OR (dynamic* ADJ3 setting*) OR ((viewing OR watching* OR complex*)
ADJ3 scene*)).ab,ti,kw. OR (dynamic* OR stimulus*).ti.) NOT (* Attention Deficit Disorder with Hyperac-
tivity / OR (attention-deficit-hyperactivity OR adhd).ti.) NOT (news OR congres* OR abstract* OR book* OR
chapter* OR dissertation abstract*).pt. NOT (Systematic Review / OR Meta-Analysis / OR Case Reports / OR
(systematic-review* OR meta-analy* OR case-report*).ti.) NOT (exp animals/ NOT humans/) AND english.la.

Embase (’Social Responsiveness Scale’/exp OR autism/mj/exp OR ’autism screening questionnaire’/mj OR
’autism assessment’/mj/exp OR ’autism screening’/mj OR ((Social NEAR/3 Responsive*)):ab,ti,kw OR (asd
OR autis* OR Asperger* OR rett-sundrome* OR pdd-nos):ti) AND (’eye movement’/exp OR ’eye move-
ment monitor’/exp OR ’eye tracking scan path’/de OR ’eye tracking technology’/de OR gaze/mj OR ’eye fix-
ation’/de OR (((eye* OR ocular OR gaze*) NEAR/3 (movement* OR tracking OR measurement* OR analys*
OR pattern* OR cueing* OR cues OR estimation* OR fixation* OR follow*)) OR eyetrack*):ab,ti,kw OR
(gaze):ti) AND (videorecording/de OR ’social stimulation’/de OR (videorecor* OR video OR videos OR (live
NEAR/3 (interaction* OR observation* OR situation)) OR (social* NEAR/3 (stimul* OR event* OR interac-
tion* OR scene* OR task*)) OR (dynamic* NEAR/3 setting*) OR ((viewing OR watching* OR complex*)
NEAR/3 scene*)):ab,ti,kw OR (dynamic* OR stimulus*):ti) NOT (’attention deficit hyperactivity disorder’/mj
OR (attention-deficit-hyperactivity OR adhd):ti) NOT [conference abstract]/lim NOT (’systematic review’/de
OR ’meta analysis’/de OR ’case report’/de OR (systematic-review* OR meta-analy* OR case-report*):ti) NOT
([animals]/lim NOT [humans]/lim) AND [english]/lim

Web of Science (TS=((Social NEAR/2 Responsive*)) OR TI=(asd OR autis* OR Asperger* OR rett-sundrome*
OR pdd-nos)) AND (TS=(((eye* OR ocular OR gaze*) NEAR/2 (movement* OR tracking OR measurement*
OR analys* OR pattern* OR cueing* OR cues OR estimation* OR fixation* OR follow*)) OR eyetrack*) OR
TI=(gaze)) AND (TS=(videorecor* OR video OR videos OR (live NEAR/2 (interaction* OR observation* OR
situation)) OR (social* NEAR/2 (stimul* OR event* OR interaction* OR scene* OR task*)) OR (dynamic*
NEAR/2 setting*) OR ((viewing OR watching* OR complex*) NEAR/2 scene*)) OR TI=(dynamic* OR stimu-
lus*)) NOT TI=((attention-deficit-hyperactivity OR adhd)) NOT TI=((systematic-review* OR meta-analy* OR
case-report*)) NOT DT=(Meeting Abstract OR Meeting Summary) AND LA=(English)
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Background Fixation
Table B.1: Log-likelihood and parameters for distribution fits on background fixation.

Participants Distribution LogLikelihood µ σ

All 0.02 0.06
Normal 10726.84 0.02 0.00
Beta 67431.86 0.01 0.00
Gamma 79444.00 0.08 0.10
Uniform 146.63 0.49 0.08

Figure B.1: Population distribution of background fixation.

Figure B.2: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.3: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.4: Relationship between background fixation and SRS scores by diagnosis.
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Body Fixation
Table B.2: Log-likelihood and parameters for distribution fits on body fixation.

Participants Distribution LogLikelihood µ σ

All 0.09 0.12
Normal 5197.26 0.09 0.01
Beta 9179.29 0.06 0.00
Gamma 17992.18 0.09 0.01
Uniform 378.46 0.48 0.08

Figure B.5: Population distribution of body fixation.

Figure B.6: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.7: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.8: Relationship between body fixation and SRS scores by diagnosis.
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Eyes Fixation
Table B.3: Log-likelihood and parameters for distribution fits on eyes fixation.

Participants Distribution LogLikelihood µ σ

All 0.15 0.19
Normal 1734.54 0.15 0.04
Beta 33566.02 0.20 0.04
Gamma 37655.69 0.08 0.01
Uniform 452.57 0.47 0.07

Figure B.9: Population distribution of eyes fixation.

Figure B.10: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.11: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.12: Relationship between eyes fixation and SRS scores by diagnosis.
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Face Fixation
Table B.4: Log-likelihood and parameters for distribution fits on face fixation.

Participants Distribution LogLikelihood µ σ

All 0.71 0.21
Normal 1104.22 0.71 0.04
Beta 2212.62 0.71 0.21
Gamma 893.88 0.71 0.05
Uniform 84.05 0.49 0.08

Figure B.13: Population distribution of face fixation.

Figure B.14: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.15: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.16: Relationship between face fixation and SRS scores by diagnosis.
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Mouth Fixation
Table B.5: Log-likelihood and parameters for distribution fits on mouth fixation.

Participants Distribution LogLikelihood µ σ

All 0.41 0.24
Normal -5.22 0.41 0.06
Beta 873.54 0.39 0.06
Gamma -4.77 0.41 0.06
Uniform 417.07 0.47 0.07

Figure B.17: Population distribution of mouth fixation.

Figure B.18: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.19: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.20: Relationship between mouth fixation and SRS scores by diagnosis.
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Non-Speaker Silhouette Correlation
Table B.6: Log-likelihood and parameters for distribution fits on non-speaker silhouette correlation.

Participants Distribution LogLikelihood µ σ

All 0.97 0.06
Normal 10867.24 0.97 0.00
Gamma 9102.61 0.97 0.01
Beta 36410.18 0.97 0.00
Uniform 2019.69 0.62 0.05

Figure B.21: Population distribution of non-speaker silhouette correlation.

Figure B.22: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.23: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.24: Relationship between non-speaker silhouette correlation and SRS scores by diagnosis.
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Non-Speaker Time Correlation
Table B.7: Log-likelihood and parameters for distribution fits on non-speaker time correlation.

Participants Distribution LogLikelihood µ σ

All 0.19 0.07
Normal 9561.06 0.19 0.00
Beta 9625.56 0.19 0.00
Gamma 9625.84 0.19 0.00
Uniform 4411.19 0.28 0.03

Figure B.25: Population distribution of non-speaker time correlation.

Figure B.26: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.27: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.28: Relationship between non-speaker time correlation and SRS scores by diagnosis.
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Object Fixation
Table B.8: Log-likelihood and parameters for distribution fits on object fixation.

Participants Distribution LogLikelihood µ σ

All 0.02 0.04
Normal 14191.60 0.02 0.00
Beta 73102.06 0.01 0.00
Gamma 159089.48 0.24 0.30
Uniform 2774.63 0.35 0.04

Figure B.29: Population distribution of object fixation.

Figure B.30: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.31: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.32: Relationship between object fixation and SRS scores by diagnosis.
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Predictive Saccades
Table B.9: Log-likelihood and parameters for distribution fits on predictive saccades.

Participants Distribution LogLikelihood µ σ

All 3.76 1.14
Binominal -11108.38 3.76 0.97
Poisson -13318.70 3.76 1.94

Figure B.33: Population distribution of predictive saccades.

Figure B.34: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.35: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.36: Relationship between predictive saccades and SRS scores by diagnosis.
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Saccadic Speed
Table B.10: Log-likelihood and parameters for distribution fits on saccadic speed.

Participants Distribution LogLikelihood µ σ

All 68.92 13.15
Normal -29997.07 68.92 172.92
Gamma -30100.03 68.71 180.23
Uniform -34745.81 65.86 871.98

Figure B.37: Population distribution of saccadic speed.

Figure B.38: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.39: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.40: Relationship between saccadic speed and SRS scores by diagnosis.
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Scanpath Variance
Table B.11: Log-likelihood and parameters for distribution fits on scanpath variance.

Participants Distribution LogLikelihood µ σ

All 182.76 62.55
Normal -41706.43 182.76 3912.72
Uniform -50682.42 487.74 60840.17
Gamma -40914.42 182.76 3721.26

Figure B.41: Population distribution of scanpath variance.

Figure B.42: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.43: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.44: Relationship between scanpath variance and SRS scores by diagnosis.
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Screen Time
Table B.12: Log-likelihood and parameters for distribution fits on screen time.

Participants Distribution LogLikelihood µ σ

All 0.88 0.13
Normal 4808.08 0.88 0.02
Beta 8851.98 0.88 0.01
Gamma 4449.76 0.88 0.02
Uniform 2210.61 0.62 0.05

Figure B.45: Population distribution of screentime.

Figure B.46: Distribution by autism diagnosis, showing fitted distributions for each group.



72

Figure B.47: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.48: Relationship between screentime and SRS scores by diagnosis.
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Speaker Silhouette Correlation
Table B.13: Log-likelihood and parameters for distribution fits on speaker silhouette correlation.

Participants Distribution LogLikelihood µ σ

All 0.96 0.03
Normal 15170.58 0.96 0.00
Beta 16842.45 0.96 0.00
Gamma 13928.42 0.96 0.00
Uniform 3164.48 0.67 0.04

Figure B.49: Population distribution of speaker silhouette correlation.

Figure B.50: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.51: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.52: Relationship between speaker silhouette correlation and SRS scores by diagnosis.
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Speaker Time Correlation
Table B.14: Log-likelihood and parameters for distribution fits on speaker time correlation.

Participants Distribution LogLikelihood µ σ

All 0.60 0.12
Normal 5432.63 0.60 0.01
Beta 5574.64 0.60 0.12
Gamma 5218.90 0.60 0.02
Uniform 948.32 0.44 0.06

Figure B.53: Population distribution of speaker time correlation.

Figure B.54: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.55: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.56: Relationship between speaker time correlation and SRS scores by diagnosis.
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Time Per Fixation
Table B.15: Log-likelihood and parameters for distribution fits on time per fixation.

Participants Distribution LogLikelihood µ σ

All 475157.04 183371.09
Normal -101644.85 475157.04 33624957848.41
Gamma -101632.31 450658.78 32825528270.28
Uniform -108208.90 991824.78 275004203793.78

Figure B.57: Population distribution of time per fixation.

Figure B.58: Distribution by autism diagnosis, showing fitted distributions for each group.
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Figure B.59: Distribution overlays by autism diagnosis, showing fitted distributions for each group.

Figure B.60: Relationship between time per fixation and SRS scores by diagnosis.



C
Video-Related Effects
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Background Fixation

Figure C.1: Mean values with 95% CI per video clip for the fixations on the background. Variation across clips may reflect
differences in how visually or socially engaging the conversations were. In less engaging clips, participants may have been
more prone to disengage from the social scene and let their gaze drift toward the background.

Body Fixation

Figure C.2: Mean values with 95% CI per video clip for the fixations on the body, excluding the face, of characters. Differences
across clips may be driven by variation in gesture frequency, bodily expressiveness, or visual framing.
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Eyes Fixation

Figure C.3: Mean values with 95% CI per video clip for the fixations on the eyes. Variations across clips likely reflect differences
in emotional expressiveness, eye visibility, or gaze dynamics of the characters.

Face Fixation

Figure C.4: Mean values with 95%CI per video clip for the fixations on the face. Variation across clips may result from differences
in framing, or visual competition from other elements.
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Mouth Fixation

Figure C.5: Mean values with 95%CI per video clip for the fixations on the mouth. Variation between clips may reflect differences
in speech articulation, visibility of mouth movements, or audiovisual clarity.

Non-Speaker Silhouette Correlation

Figure C.6: Mean and 95% CI of Non-Speaker Silhouette Correlation across video clips. This metric assesses how structurally
aligned participants’ gaze patterns were with the non-speaking individuals during speech, focusing on the overall shape of the
gaze sequence rather than precise timing. Variability across clips indicates that some non-speakers may have elicited more
sustained or patterned attention, despite not speaking, possibly due to contextual or social cues.
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Non-Speaker Time Correlation

Figure C.7: Mean and 95% CI of Non-Speaker Time Correlation across video clips. This figure illustrates the degree to which
gaze behaviour tracked non-speaking individuals during speech. Differences between clips suggest that certain non-speakers
may have drawn more attention, potentially due to social dynamics, actions, or visual salience within the scene.

Object Fixation

Figure C.8: Mean values with 95% CI per video clip for the fixations on the distracting object in the scene. Higher fixation
rates on objects may indicate reduced social engagement. Variability across clips may be influenced by how captivating the
conversation was.
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Predictive Saccades

Figure C.9: Mean and 95% CI of Predictive Saccades across video clips. Predictive saccades refer to anticipatory eye move-
ments made ahead of speaker turns. Differences in predictive behaviour across clips may indicate that some scenes offered
more predictable visual or narrative structure, allowing participants to anticipate upcoming speech shifts more easily.

Saccadic Speed

Figure C.10: Mean and 95% CI of Saccadic Speed across video clips. Saccadic speed reflects the average velocity of rapid
eye movements between fixations. Variations across clips suggest that content influenced how quickly participants shifted their
gaze, potentially due to differences in pacing, motion, or attentional demands.
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Scanpath Variance

Figure C.11: Mean and 95% CI of Scanpath Variance across video clips. This metric quantifies how much the gaze position of
an individual deviates from the average across all participants. The remaining video-related effects on this metric are most likely
due to differences in the spatical layout across videos.

Screen Time

Figure C.12: Mean and 95% CI of Screen Time across video clips. This plot displays the average proportion of time participants
spent looking at the screen during each video clip, with error bars indicating the 95% CI. Variations in Screen Time across clips
reflect differences in how engaging or visually accessible the clips were, highlighting the influence of stimulus content—such as
emotional salience or actor behaviour—on participants’ viewing behaviour.
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Speaker Silhouette Correlation

Figure C.13: Mean and 95% CI of Speaker Silhouette Correlation across video clips. This measure captures the structural simi-
larity between the participant’s gaze pattern and the speaker’s speech activity, reflecting the shape and continuity of engagement
rather than just temporal overlap. Unlike time correlation, silhouette correlation penalises fragmented viewing behaviour, such
as brief glances. Differences across clips may reflect variations in how continuously participants tracked the speaker during
speech.

Speaker Time Correlation

Figure C.14: Mean and 95% CI of Speaker Time Correlation across video clips. This plot shows the extent to which participants’
eye movements were temporally aligned with the speaking actor. Variability across clips may reflect differences in how promi-
nently or consistently the speaker was featured, influencing viewers’ attention and engagement with speech-related visual cues.
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Time Per Fixation

Figure C.15: Mean and 95% CI of Time Per Fixation across video clips. This feature captures the average duration that gaze
remains on a single fixation point before moving on. Differences across clips may reflect variations in speaking pace, scene
complexity, or viewer engagement.



D
Gender-Related Effects
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Background Fixation

Figure D.1: Mean values with 95% CI per participant gender for the fixations on the background.

Body Fixation

Figure D.2: Mean values with 95% CI per participant gender for the fixations on the body, excluding face, of the characters.
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Eyes Fixation

Figure D.3: Mean values with 95% confidence intervals (CI) per participant gender for the fixations on the eyes.

Face Fixation

Figure D.4: Mean values with 95% CI per participant gender for the fixations on the characters faces.



91

Mouth Fixation

Figure D.5: Mean values with 95% CI per participant gender for the fixations on the characters mouths.

Non-Speaker Silhouette Correlation

Figure D.6: Mean and 95% CI of Non-Speaker Silhouette Correlation across participant genders. This metric assesses how
structurally aligned participants’ gaze patterns were with the non-speaking individuals during speech, focusing on the overall
shape of the gaze sequence rather than precise timing.
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Non-Speaker Time Correlation

Figure D.7: Mean and 95% CI of Non-Speaker Time Correlation across participant genders. This figure illustrates the degree
to which gaze behaviour tracked non-speaking individuals during speech.

Object Fixation

Figure D.8: Mean values with 95% CI per participant gender for the fixations on the distracting object in the scene.
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Predictive Saccades

Figure D.9: Mean and 95% CI of Predictive Saccades across participant genders. Predictive saccades refer to anticipatory eye
movements made ahead of speaker turns.

Saccadic Speed

Figure D.10: Mean and 95% CI of Saccadic Speed across participant genders. Saccadic speed reflects the average velocity of
rapid eye movements between fixations.
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Scanpath Variance

Figure D.11: Mean and 95% CI of Scanpath Variance across participant genders. This metric assesses how structurally aligned
participants’ gaze patterns were with the non-speaking individuals during speech, focusing on the overall shape of the gaze
sequence rather than precise timing. This metric quantifies how much the gaze position of an individual deviates from the
average across all participants.

Screen Time

Figure D.12: Mean and 95% CI of Screen Time across participant genders. This plot displays the average proportion of time
participants spent looking at the screen during each video clip, with error bars indicating the 95% CI.
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Speaker Silhouette Correlation

Figure D.13: Mean and 95% CI of Speaker Silhouette Correlation across participant genders. This measure captures the
structural similarity between the participant’s gaze pattern and the speaker’s speech activity, reflecting the shape and continuity
of engagement rather than just temporal overlap. Unlike time correlation, silhouette correlation penalises fragmented viewing
behaviour, such as brief glances.

Speaker Time Correlation

Figure D.14: Mean and 95% CI of Speaker Time Correlation across participant genders. This feature quantifies the extent to
which participants’ eye movements were temporally aligned with the speaking actor.
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SRS scores

Figure D.15: Mean values of SRS scores with 95% CI per participant gender.

Time Per Fixation

Figure D.16: Mean and 95% CI of Time Per Fixation across participant genders. This feature captures the average duration
that gaze remains on a single fixation point before moving on.



E
Age-Related Effects
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Background Fixation

Figure E.1: Scatter plot with linear regression line showing the relationship between age and Background Fixation. Each point
represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.

Body Fixation

Figure E.2: Scatter plot with linear regression line showing the relationship between age and Body Fixation. Each point repre-
sents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate effect
strength and statistical significance.
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Eyes Fixation

Figure E.3: Scatter plot with linear regression line showing the relationship between age and Eyes Fixation. Each point repre-
sents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate effect
strength and statistical significance.

Face Fixation

Figure E.4: Scatter plot with linear regression line showing the relationship between age and Face Fixation. Each point repre-
sents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate effect
strength and statistical significance.
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Mouth Fixation

Figure E.5: Scatter plot with linear regression line showing the relationship between age and Mouth Fixation. Each point
represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.

Non-Speaker Silhouette Correlation

Figure E.6: Scatter plot with linear regression line showing the relationship between age and Non-Speaker Silhouette Correlation.
Each point represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.
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Non-Speaker Time Correlation

Figure E.7: Scatter plot with linear regression line showing the relationship between age and Non-Speaker Time Correlation.
Each point represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.

Object Fixation

Figure E.8: Scatter plot with linear regression line showing the relationship between age and Object Fixation. Each point
represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.
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Predictive Saccades

Figure E.9: Scatter plot with linear regression line showing the relationship between age and Predictive Saccades. Each point
represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.

Saccadic Speed

Figure E.10: Scatter plot with linear regression line showing the relationship between age and Saccadic Speed. Each point
represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.
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Scanpath Variance

Figure E.11: Scatter plot with linear regression line showing the relationship between age and Scanpath Variance. Each point
represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.

Screen Time

Figure E.12: Scatter plot with linear regression line showing the relationship between age and Screen Time. Each point rep-
resents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate effect
strength and statistical significance.
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Speaker Silhouette Correlation

Figure E.13: Scatter plot with linear regression line showing the relationship between age and Speaker Silhouette Correlation.
Each point represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.

Speaker Time Correlation

Figure E.14: Scatter plot with linear regression line showing the relationship between age and Speaker Time Correlation. Each
point represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.



105

SRS scores

Figure E.15: Scatter plot with linear regression line showing the relationship between age and SRS scpres. Each point repre-
sents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate effect
strength and statistical significance.

Time Per Fixation

Figure E.16: Scatter plot with linear regression line showing the relationship between age and Time Per Fixation. Each point
represents an individual measurement. The red line indicates the linear trend, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.



F
GEE-GLM Autism Diagnosis:

All Participants
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Background Fixation

Figure F.1: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Background Fixation in all participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Body Fixation

Figure F.2: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Body Fixation in all participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Eyes Fixation

Figure F.3: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Eyes Fixation in all participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Face Fixation

Figure F.4: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Face Fixation in all participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Mouth Fixation

Figure F.5: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Mouth Fixation in all participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Non-Speaker Silhouette Correlation

Figure F.6: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Non-Speaker Silhouette Correlation
in all participants. The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a
probability between zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with
95% CI. Coefficient and p-value indicate effect strength and statistical significance.
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Non-Speaker Time Correlation

Figure F.7: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Non-Speaker Time Correlation in all
participants. The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability
between zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI.
Coefficient and p-value indicate effect strength and statistical significance.

Object Fixation

Figure F.8: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Object Fixation in all participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Predictive Saccades

Figure F.9: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Predictive Saccades in all participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Saccadic Speed

Figure F.10: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Saccadic Speed in all participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.



112

Scanpath Variance

Figure F.11: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Scanpath Variance in all participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Screen Time

Figure F.12: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Screen Time in all participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Speaker Silhouette Correlation

Figure F.13: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Speaker Silhouette Correlation in all
participants. The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability
between zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI.
Coefficient and p-value indicate effect strength and statistical significance.

Speaker Time Correlation

Figure F.14: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Speaker Time Correlation in all par-
ticipants. The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability
between zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coef-
ficient and p-value indicate effect strength and statistical significance.
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Time Per Fixation

Figure F.15: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Time Per Fixation in all participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.



G
GEE-GLM Autism Diagnosis:

Male Only
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Background Fixation

FigureG.1: GEE-GLMmodel fit illustrating the relationship between ASD diagnosis and Background Fixation inmale participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Body Fixation

Figure G.2: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Body Fixation in male participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Eyes Fixation

Figure G.3: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Eyes Fixation in male participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Face Fixation

Figure G.4: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Face Fixation in male participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Mouth Fixation

Figure G.5: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Mouth Fixation in male participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Non-Speaker Silhouette Correlation

Figure G.6: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Non-Speaker Silhouette Correlation
in male participants. The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a
probability between zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with
95% CI. Coefficient and p-value indicate effect strength and statistical significance.
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Non-Speaker Time Correlation

Figure G.7: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Non-Speaker Time Correlation in male
participants. The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability
between zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI.
Coefficient and p-value indicate effect strength and statistical significance.

Object Fixation

Figure G.8: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Object Fixation in male participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Predictive Saccades

FigureG.9: GEE-GLMmodel fit illustrating the relationship between ASD diagnosis and Predictive Saccades inmale participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Saccadic Speed

Figure G.10: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Saccadic Speed in male participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Scanpath Variance

Figure G.11: GEE-GLMmodel fit illustrating the relationship between ASD diagnosis and Scanpath Variance in male participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.

Screen Time

Figure G.12: GEE-GLMmodel fit illustrating the relationship between ASD diagnosis and Screen Time in male participants. The
feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between zero
and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Speaker Silhouette Correlation

Figure G.13: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Speaker Silhouette Correlation in
male participants. The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a
probability between zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with
95% CI. Coefficient and p-value indicate effect strength and statistical significance.

Speaker Time Correlation

Figure G.14: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Speaker Time Correlation in male
participants. The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability
between zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI.
Coefficient and p-value indicate effect strength and statistical significance.
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Time Per Fixation

Figure G.15: GEE-GLM model fit illustrating the relationship between ASD diagnosis and Time Per Fixation in male participants.
The feature values on the x-axis are presented in z-scores. The ASD diagnosis on the y-axis indicates a probability between
zero and one, with the mean being low due to class imbalance. The red line indicates the model fit, with 95% CI. Coefficient and
p-value indicate effect strength and statistical significance.
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Background Fixation

Figure H.1: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Background Fixation.
Each point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented
in z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.

Body Fixation

Figure H.2: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Body Fixation. Each
point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented in
z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.
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Eyes Fixation

Figure H.3: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Eyes Fixation. Each point
represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores,
with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.

Face Fixation

Figure H.4: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Face Fixation. Each point
represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores,
with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value indicate
effect strength and statistical significance.
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Mouth Fixation

Figure H.5: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Mouth Fixation. Each
point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented in
z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.

Non-Speaker Silhouette Correlation

Figure H.6: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Non-Speaker Silhouette
Correlation. Each point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-
axis are presented in z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI.
Coefficient and p-value indicate effect strength and statistical significance.



128

Non-Speaker Time Correlation

Figure H.7: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Non-Speaker Time
Correlation. Each point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-
axis are presented in z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI.
Coefficient and p-value indicate effect strength and statistical significance.

Object Fixation

Figure H.8: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Object Fixation. Each
point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented in
z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.
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Predictive Saccades

Figure H.9: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Predictive Saccades.
Each point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented
in z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.

Saccadic Speed

Figure H.10: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Saccadic Speed. Each
point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented in
z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.
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Scanpath Variance

Figure H.11: Scatter plot with GEE-GLMmodel fit illustrating the relationship between SRS scores and Scanpath Variance. Each
point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented in
z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.

Screen Time

Figure H.12: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Screen Time. Each
point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented in
z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.
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Speaker Silhouette Correlation

Figure H.13: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Speaker Silhouette
Correlation. Each point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-
axis are presented in z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI.
Coefficient and p-value indicate effect strength and statistical significance.

Speaker Time Correlation

Figure H.14: Scatter plot with GEE-GLMmodel fit illustrating the relationship between SRS scores and Speaker Time Correlation.
Each point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented
in z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.
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Time Per Fixation

Figure H.15: Scatter plot with GEE-GLM model fit illustrating the relationship between SRS scores and Time Per Fixation. Each
point represents an individual measurement. The feature values on the x-axis and SRS scores on the y-axis are presented in
z-scores, with mean zero and standard deviation one. The red line indicates the model fit, with 95% CI. Coefficient and p-value
indicate effect strength and statistical significance.
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Background Fixation

Figure I.1: GEE-GLM model fits illustrating the relationship between SRS scores and Background Fixation for male and female
participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates
statistical significance of the difference between male and female participants.

Body Fixation

Figure I.2: GEE-GLM model fits illustrating the relationship between SRS scores and Body Fixation for male and female partici-
pants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates statistical
significance of the difference between male and female participants.
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Eyes Fixation

Figure I.3: GEE-GLM model fits illustrating the relationship between SRS scores and Eyes Fixation for male and female partici-
pants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates statistical
significance of the difference between male and female participants.

Face Fixation

Figure I.4: GEE-GLM model fits illustrating the relationship between SRS scores and Face Fixation for male and female partici-
pants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates statistical
significance of the difference between male and female participants.
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Mouth Fixation

Figure I.5: GEE-GLM model fits illustrating the relationship between SRS scores and Mouth Fixation for male and female
participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates
statistical significance of the difference between male and female participants.

Non-Speaker Silhouette Correlation

Figure I.6: GEE-GLM model fits illustrating the relationship between SRS scores and Non-Speaker Silhouette Correlation for
male and female participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The
p-value indicates statistical significance of the difference between male and female participants.
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Non-Speaker Time Correlation

Figure I.7: GEE-GLM model fits illustrating the relationship between SRS scores and Non-Speaker Time Correlation for male
and female participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value
indicates statistical significance of the difference between male and female participants.

Object Fixation

Figure I.8: GEE-GLM model fits illustrating the relationship between SRS scores and Object Fixation for male and female
participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates
statistical significance of the difference between male and female participants.
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Predictive Saccades

Figure I.9: GEE-GLM model fits illustrating the relationship between SRS scores and Predictive Saccades for male and female
participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates
statistical significance of the difference between male and female participants.

Saccadic Speed

Figure I.10: GEE-GLM model fits illustrating the relationship between SRS scores and Saccadic Speed for male and female
participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates
statistical significance of the difference between male and female participants.
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Scanpath Variance

Figure I.11: GEE-GLM model fits illustrating the relationship between SRS scores and Scanpath Variance for male and female
participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates
statistical significance of the difference between male and female participants.

Screen Time

Figure I.12: GEE-GLM model fits illustrating the relationship between SRS scores and Screen Time for male and female partici-
pants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates statistical
significance of the difference between male and female participants.
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Speaker Silhouette Correlation

Figure I.13: GEE-GLM model fits illustrating the relationship between SRS scores and Speaker Silhouette Correlation for male
and female participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value
indicates statistical significance of the difference between male and female participants.

Speaker Time Correlation

Figure I.14: GEE-GLM model fits illustrating the relationship between SRS scores and Speaker Time Correlation for male and
female participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value
indicates statistical significance of the difference between male and female participants.
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Time Per Fixation

Figure I.15: GEE-GLM model fits illustrating the relationship between SRS scores and Time Per Fixation for male and female
participants. The feature values on the x-axis and SRS scores on the y-axis are presented in z-scores. The p-value indicates
statistical significance of the difference between male and female participants.
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ASD Diagnosis
Table J.1: Correlation matrix of the feature set predicting ASD diagnosis. Abbreviations: BodyFx = Body Fixation; FaceFx =
Face Fixation; NSpTC = Non-Speaker Time Correlation; ObjFx = Object Fixation; PredSac = Predictive Saccades; ScanVar =
Scanpath Variance; SpSC = Speaker Silhouette Correlation.

BodyFx FaceFx NSpTC ObjFx PredSac ScanVar SpSC

BodyFx 1 0.60 0.04 0.00 0.02 0.12 0.01
FaceFx 0.60 1 0.07 0.19 0.29 0.40 0.23
NSpTC 0.04 0.07 1 0.11 0.08 0.41 0.06
ObjFx 0.00 0.19 0.11 1 0.12 0.58 0.04
PredSac 0.02 0.29 0.08 0.12 1 0.17 0.11
ScanVar 0.12 0.40 0.41 0.58 0.17 1 0.04
SpSC 0.01 0.23 0.06 0.04 0.11 0.04 1

Table J.2: VIF of features in the feature set predicting ASD diagnosis, ordered by decreasing VIF.

Feature VIF

Face Fixation 2.87
Scanpath Variance 2.41
Body Fixation 1.90
Object Fixation 1.57
Non-Speaker Time Correlation 1.49
Predictive Saccades 1.25
Speaker Silhouette Correlation 1.22
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SRS Scores
Table J.3: Correlation matrix of the feature set predicting SRS scores. Abbreviations: BackFx = Background Fixation; FaceFx
= Face Fixation; PredSac = Predictive Saccades; ScanVar = Scanpath Variance; SpTC = Speaker Time Correlation.

BackFx FaceFx PredSac ScanVar SpTC

BackFx 1 0.31 0.23 0.27 0.41
FaceFx 0.31 1 0.29 0.40 0.58
PredSac 0.23 0.29 1 0.17 0.36
ScanVar 0.27 0.40 0.17 1 0.50
SpTC 0.41 0.58 0.36 0.50 1

Table J.4: VIF of features in the feature set predicting SRS scores, ordered by decreasing VIF.

Feature VIF

Speaker Time Correlation 1.93
Face Fixation 1.58
Scanpath Variance 1.37
Background Fixation 1.23
Predictive Saccades 1.17
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ASD Diagnosis
Table K.1: Selected hyperparameters across outer folds for each classifier tried for ASD predictive modelling. The most

frequently selected value across folds is shown in the last column.

Model Hyperparameter Fold 1 Fold 2 Fold 3 most chosen

Logistic Regression
C 0.464 0.022 0.022 0.022
penalty elasticnet l2 elasticnet elasticnet
l1_ratio 0.2 — 0.2 0.2

Random Forest
max_depth 20 5 20 20
max_features sqrt sqrt sqrt sqrt
n_estimators 50 150 50 50

CatBoost

depth 4 4 8 4
iterations 200 200 300 200
l2_leaf_reg 1 3 1 1
learning_rate 0.1 0.05 0.1 0.1

Logistic Regression (PCA)

C 0.022 0.464 0.001 —
penalty elasticnet l1 l2 —
l1_ratio 0.2 — — 0.2
n_components 2 4 2 2

Logistic Regression (LDA)
C 0.001 0.001 0.001 0.001
penalty l2 l2 l2 l2
l1_ratio — — — —

Ensemble NA
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SRS Scores
Table K.2: Selected hyperparameters across outer folds for each classifier tried for SRS predictive modelling. The most

frequently selected value across folds is shown in the last column.

Model Hyperparameter Fold 1 Fold 2 Fold 3 most chosen

Logistic Regression
C 0.022 0.001 10.0 —
penalty elasticnet l1 elasticnet elasticnet
l1_ratio 0.2 — 0.5 —

Random Forest
max_depth 20 5 5 5
max_features sqrt None sqrt sqrt
n_estimators 50 100 50 50

CatBoost

depth 8 8 4 8
iterations 100 200 100 100
l2_leaf_reg 5 1 1 1
learning_rate 0.05 0.01 0.01 0.01

Logistic Regression (PCA)

C 10.0 10.0 10.0 10.0
penalty l2 elasticnet l2 l2
l1_ratio — 0.2 — —
n_components 4 4 6 4

Logistic Regression (LDA)
C 0.001 0.001 0.001 0.001
penalty l2 l1 l2 l2
l1_ratio — — — —

Ensemble NA
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(a) ROC curve (b) Confusion matrix

Figure L.1: Evaluation metrics for the Logistic Regression classifier: AUC = 0.49; F1 = 0.49; precision = 0.56; recall = 0.46.

(a) ROC curve (b) Confusion matrix

Figure L.2: Evaluation metrics for the Random Forest classifier: AUC = 0.65; F1 = 0.64; precision = 0.69; recall = 0.66.

(a) ROC curve (b) Confusion matrix

Figure L.3: Evaluation metrics for the CatBoost Gradient Boosting Decision Tree classifier: AUC = 0.71; F1 = 0.69; precision =
0.69; recall = 0.72.
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(a) ROC curve (b) Confusion matrix

Figure L.4: Evaluation metrics for the Logistic Regression classifier with PCA: AUC = 0.53; F1 = 0.45; precision = 0.54; recall
= 0.43.

(a) ROC curve (b) Confusion matrix

Figure L.5: Evaluation metrics for the Logistic Regression classifier with LDA: AUC = 0.46; F1 = 0.46; precision = 0.46; recall =
0.49.

(a) ROC curve (b) Confusion matrix

Figure L.6: Evaluation metrics for the Ensemble classifier averaging the Logistic Regression classifier, the Random Forest
classifier and the CatBoost Gradient Boosting Decision Tree classifier: AUC = 0.61; F1 = 0.61; precision = 0.61; recall = 0.61.
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(a) ROC curve (b) Confusion matrix

Figure M.1: Evaluation metrics for the Logistic Regression classifier: AUC = 0.50; F1 = 0.35; precision = 0.31; recall = 0.47.

(a) ROC curve (b) Confusion matrix

Figure M.2: Evaluation metrics for the Random Forest classifier: AUC = 0.51; F1 = 0.37; precision = 0.65; recall = 0.40.

(a) ROC curve (b) Confusion matrix

Figure M.3: Evaluation metrics for the CatBoost Gradient Boosting Decision Tree classifier: AUC = 0.52; F1 = 0.37; precision
= 0.53; recall = 0.37.
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(a) ROC curve (b) Confusion matrix

Figure M.4: Evaluation metrics for the Logistic Regression classifier with PCA: AUC = 0.57; F1 = 0.42; precision = 0.65; recall
= 0.41.

(a) ROC curve (b) Confusion matrix

Figure M.5: Evaluation metrics for the Logistic Regression classifier with LDA: AUC = 0.50; F1 = 0.34; precision = 0.31; recall
= 0.45.

(a) ROC curve (b) Confusion matrix

Figure M.6: Evaluation metrics for the Ensemble classifier averaging the Logistic Regression classifier, the Random Forest
classifier and the CatBoost Gradient Boosting Decision Tree classifier: AUC = 0.47; F1 = 0.39; precision = 0.44; recall = 0.35.






