
Program Synthesis from Rewards with Probe
Adjusting Probe to Increase Exploration When Synthesising Programs from Rewards in Minecraft

Nils Marten Mikk1

Supervisors: Sebastijan Dumančić1, Tilman Hinnerichs1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2024

Name of the student: Nils Marten Mikk
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumančić, Tilman Hinnerichs, Wendelin Böhmer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Program synthesis is the task of generating a program that
satisfies some specification. An important aspect of program
synthesis is the method of specification. There are various
ways in which a desired program can be specified, such as
I/O examples, traces, and natural language. This research pa-
per aims to explore a novel method of specifying a desired
program in program synthesis – rewards. This concept is ex-
plored by adjusting the Probe program synthesiser to solve
the dense navigation environments in MineRL. In order to
avoid local maxima, it is necessary to increase the amount of
exploration. To that end, different ways of increasing explo-
ration were tested by changing the parameters of Probe. By
increasing the amount of exploration, it is possible to solve
more environments, or solve them faster. But increasing ex-
ploration could also have the opposite effect, depending on
the environment.

1 Introduction
Program synthesis is the task of generating a program ac-
cording to some user-provided specification. It can be used
in many situations, such as data transformation (Gulwani
2011; Singh and Gulwani 2016), code suggestions (Gvero
et al. 2013), and code repair (Nguyen et al. 2013; Singh,
Gulwani, and Solar-Lezama 2013). Therefore, program syn-
thesis can be of great use to software engineers by helping
them write code or fix bugs, increasing their efficiency.

The main idea of program synthesis is to search over the
space of all programs until a program that satisfies the speci-
fication is found. Because the size of the search space is very
large (possibly infinite), programs need to be generated in a
smart way.

An important part of program synthesis is the method
used for describing a desired program. The choice of spec-
ification can greatly influence the outcome of the program
synthesiser. It can also affect the usability of the synthesiser.
There are many ways in which the program can be speci-
fied, such as I/O examples, partial programs, formal specifi-
cations, traces, and natural language.

This project aims to fill a knowledge cap in the types of
specifications used for program synthesis. It explores a novel
method of specifying a desired program – learning from re-
wards. This could, for example, be used to generate pro-
grams for playing video games. In this paper, it is used to
synthesise programs for playing Minecraft with the Probe
program synthesiser.

Probe is a program synthesiser that uses a probabilistic
context-free grammar to guide the search by enumerating
programs with higher probabilities first. It can update the
probabilities of the rules during execution using partial so-
lutions, therefore requiring no training data. This synthesiser
can be used to synthesise programs from rewards by updat-
ing the probabilities based on the rewards received.

The goal of the program synthesiser would be to generate
programs that maximise the reward. While trying to max-
imise the reward, the synthesiser could get stuck in a local
maximum and never reach the desired program. For this rea-
son, it is important to find ways for the synthesiser to explore
more novel programs that do not end up in a local maximum.

This paper attempts to answer the following questions:
• How to define program synthesis from rewards?
• How to adjust Probe to learn programs from rewards?
• How to increase the amount of exploration when learning

from rewards with Probe?
• How does increasing the amount of exploration affect the

time it takes to learn programs from rewards with Probe?
The following contributions are made in this paper:
• A generalised Probe synthesiser that enables the use

of arbitrary search algorithms. It also allows for easily
changing its parameters, such as the function for updat-
ing the grammar, or the number of programs to iterate in
one cycle (section 3.1).

• Defining program synthesis from rewards (section 3.3).
• Adjusting the Probe synthesiser to learn programs for

playing Minecraft from rewards by redefining partial so-
lutions, observational equivalence, and the function for
updating the grammar (section 3.4).

• Finding ways to increase the amount of exploration by
changing the parameters of Probe and the grammar, and
analysing their effect on the runtime. (section 4).

2 Background
This section gives an overview of the background informa-
tion necessary for understanding this paper.

2.1 Program Synthesis
The goal of program synthesis is to automatically generate
a program that satisfies a user-provided specification. This
is done by searching over the program space – the set of all
programs that can be derived from the provided grammar.
The different search algorithms enumerate the programs in
the program space until a program is found that satisfies the
specification, or until a time limit is reached. The efficiency
of program synthesis is mainly influenced by the choice of
the search algorithm, method of specification, and program
space.

Enumerative search orders the search space according to
some metric, such as program size, and then enumerates the
programs. Two common enumerative search methods are
top-down and bottom-up tree search. Top-down tree search
start enumerating from the starting symbol, while bottom-up
starts from terminal symbols. Various methods for pruning
can be used to arrive at the desired program quicker, such
as observational equivalence (Albarghouthi, Gulwani, and
Kincaid 2013). Enumerating programs can be improved by
guiding the search with probabilistic models by exploring
likelier programs first. The Probe synthesiser (Barke, Peleg,
and Polikarpova 2020) makes use of this idea by using a
probabilistic context-free grammar (PCFG) and enumerat-
ing programs with higher probabilities first. It can learn the
probabilities during execution without requiring any train-
ing data, unlike previous approaches. Other approaches to
program synthesis include component-based synthesis (Jha
et al. 2010), genetic programming (Koza 1994), solver-aided
programming (Torlak and Bodik 2013), and many more.

1

A common method of specifying the desired program is
programming by example. In this specification, the desired
program is given as a set of input-output examples. For every
program that is enumerated, the program is evaluated using
the input examples. A program is said to satisfy the specifi-
cation if the outputs of evaluating the program on the input
examples match the output examples.

2.2 Probe Program Synthesiser
The main idea of the Probe program synthesiser (Barke, Pe-
leg, and Polikarpova 2020) is to learn the probabilities of the
probabilistic context-free grammar during execution. This
means that it does not require any training data for learning
the probabilities.

Guided Bottom-Up Search For generating the programs,
the Probe synthesiser makes use of the guided bottom-up
search algorithm, introduced in the Probe paper. This algo-
rithm takes as input a PCFG Gp, a set of I/O examples E ,
and the state, consisting of the starting cost level Lvl, the
program bank B, the evaluation cache E, and the set of par-
tial solutions PSol. The program bank contains previously
generated programs organised by their cost, and the evalua-
tion cache contains the results of previous evaluations.

The algorithm generates the programs level by level, us-
ing the rules from Gp and the programs from the bank. The
programs generated in a level have a cost equal to the level.
The cost of a program is defined as the sum of the cost of
the rule and the costs of the subexpressions taken from the
bank. The probability of a rule is converted to an integer as
⌊− log2(probability(rule))⌉ so that it can be used as a cost.
For each program, it evaluates the program with the inputs
of E and checks if the results match the outputs of E . If they
do, it returns the program, along with the state. Otherwise,
it checks if the program is observationally equivalent to an-
other program in the bank by comparing the result with the
results in E. If it is not equivalent, the program is added to
the bank and the result to the evaluation cache. The program
is also added to the list of partial solutions if it correctly
solved some examples. This process repeats for one cycle –
until a certain number of levels have been searched. If the

correct program was not found, it returns nothing as the pro-
gram, and the state.

Probe Algorithm The Probe algorithm takes as input a
context-free grammar (CFG) G and a set of I/O examples
E . Firstly, it changes the CFG G to a PCFG Gp with uni-
form probabilities. It then initialises the state by setting the
level Lvl to 0, and the bank B and evaluation cache E to the
empty set. The guided bottom-up search is then run for one
cycle. If the program is found, it returns the program. Oth-
erwise, it selects promising partial solutions from the set of
partial solutions PSol. In the Probe paper, they defined three
different methods for selecting promising partial solutions:
largest subset, first cheapest, and all cheapest. If the set of
promising partial solution is not empty, the probabilities of
Gp are updated, and the search state is reset. Otherwise, the
search is continued from the same state with the same prob-
abilities. This process continues until a time limit is reached.
The pseudocode for the synthesiser can be seen in algorithm
1.

The update function gives higher probabilities to rules that
are part of partial solutions that solve many examples. The
probabilities of each rule R are updated according to the for-
mula:

p(R) =
pu(R)1−FIT

Z

where

FIT = max
{P∈PSol|R∈tr(P)}

|E ∩ E[P]|
|E|

where pu is the uniform distribution of Gp, Z is the normal-
isation factor, tr(P) is the set of rules used in deriving P ,
and E[P] is the result of evaluating P .

2.3 Minecraft and MineRL
The sandbox video game Minecraft is used to explore syn-
thesising programs from rewards. It is a game with three-
dimensional procedurally generated worlds made of blocks.
In this game, players can explore the world, gather re-
sources, craft items with the resources, build structures, and
much more.

Algorithm 1: Probe algorithm (Barke, Peleg, and Polikarpova 2020)
Input: CFG G, set of input-output examples E
Output: A solution P or ⊥

1: function PROBE(G, E)
2: Gp ← ⟨G, pu⟩ ▷ Initialise PCFG to uniform
3: Lvl,B,E ← 0, ∅, ∅ ▷ Initialize search state
4: while not timeout do
5: P, ⟨Lvl,B,E, PSol⟩ ← GUIDEDSEARCH(Gp, E , ⟨Lvl,B,E, ∅⟩) ▷ Search with current PCFG Gp
6: if P ̸= ⊥ then
7: return P ▷ Solution found
8: PSol← SELECT(PSol, E) ▷ Select promising partial solutions
9: if PSol ̸= ∅ then

10: Gp ← UPDATE(Gp, PSol, E) ▷ Update the PCFG Gp
11: Lvl,B,E ← 0, ∅, ∅ ▷ Restart the search
12: return ⊥

2

The MineRL Python library is used to interact with the
game. It provides several environments with different tasks,
and gives the possibility to define your own environments.
For example, it provides an environment with the goal of
obtaining 64 blocks of wood by chopping trees. For each
wood the agent obtains, it gets a reward. Using this reward
and the observations returned from the environment, such as
the RGB image and contents of the inventory, it is possible to
guide the agent towards the end goal. For each environment,
a set of possible actions is defined as a dictionary of action-
value pairs. For example, to move the agent forwards, we can
set action["forward"]=1 and call the step function.
The step function will run one time step of the environment
with the provided action.

Many approaches have been used to solve the MineRL en-
vironments. The approaches used among the finalists of pre-
vious MineRL competitions include Sample-efficient Hier-
archical AI (Mao et al. 2022), Hierarchical Deep Q-Network
(Skrynnik et al. 2021), imitation learning (Amiranashvili
et al. 2020), and behavioural cloning (Kanervisto, Kart-
tunen, and Hautamäki 2020). Almost all of them use rein-
forcement learning in some way, unlike the approach taken
in this paper.

3 Methodology
The research project is split into four steps:

1. Generalising the Probe program synthesiser.
2. Defining a grammar and a method for evaluating gener-

ated programs.
3. Adjusting the Probe synthesiser to learn the programs

from rewards.
4. Finding ways to increase exploration and analysing their

effect on runtime.

The first three steps of the project were conducted together
with Nicolae Filat and Timur Mukminov.

3.1 Generalised Probe
As the first step, we generalised the Probe algorithm. The
pseudocode for this algorithm can be seen in algorithm 2.
The generalised version makes it possible to use a different
algorithm for searching the program space instead of guided
bottom-up search. It also allows for easily changing the se-
lection and update functions, and the number of programs to
iterate in one cycle. The generalisation makes it easy to ex-
periment with different parameters of the Probe algorithm.

The algorithms for searching the program space are im-
plemented as iterators, which means that they return all the
programs they enumerate one-by-one, instead of just return-
ing the correct program once they find it. As such, the logic
that keeps track of a cycle is moved from the guided bottom-
up search algorithm to the Probe algorithm. The number of
programs generated is used as the length of a cycle instead
of the number of levels because a generic program itera-
tor might not iterate programs by levels. A generic iterator
might also not have an evaluation cache and a list of par-
tial solutions, therefore these are also added to the Probe
algorithm. However, this means that the generated programs

have to be evaluated in the Probe algorithm. When using
the generalised Probe algorithm with a program iterator that
needs to evaluate the program itself, such as guided bottom-
up search, this can result in double evaluation. This can be
avoided by having the iterator return the result along with
the program. The pseudocode in algorithm 2 does not in-
clude this optimisation.

3.2 Defining and Evaluating MineRL Programs
We defined our programs to be lists of (steps, action) in-
structions, where steps indicates the number of steps to take
with the given action. Having the ability to take multiple
steps with a single instruction significantly reduces the num-
ber of programs that have to be generated for doing the same
action multiple times in a row. The evaluation function iter-
ates over the list of instructions and executes each action
steps number of times in the environment.

The environment must be reset between evaluations.
Since fully resetting the environment takes a lot of time, we
instead opted for teleporting the agent back to the start. This
works well in the case of navigation environments, but might
not work for other types of environments.

3.3 Program Synthesis from Rewards
Since we were unable to obtain the datasets for the MineRL
environments, we could not use traces to guide the search.
Instead, we used only the reward returned from the envi-
ronment. To do that, we keep track of the highest reward
achieved. After running the program iterator for a number
of iterations, if a program with a higher reward was found,
we update the grammar to use the program with the highest
reward for the first instructions and restart the iterator from
the beginning. This way, the agent continues from the pro-
gram with the highest reward for all subsequent programs.

To make synthesising programs in this way feasible, we
used the dense navigation environments, which return a re-
ward after each step based on how much closer the agent
gets to the goal. For example, moving half a block closer to
the goal would yield a reward of 0.5.

However, this method does not work if the agent is not
able to reach the goal from the place with the highest reward.
This can happen if there is a hole on the way to the goal from
which the agent cannot get out, or there is a wall directly in
the direction of the goal.

3.4 Probe with Rewards
In order to make Probe work with rewards, we had to make
some changes. Firstly, the algorithm no longer takes a set
of examples as input, as it only learns from rewards. We
keep track of the best reward and the program which ob-
tained that reward. Because we no longer have examples, we
cannot use them to determine partial solutions. Instead, we
define a partial solution to be a program that improves the
best reward. We also had to redefine observational equiva-
lence. Because we were using the navigation environments,
we decided that two programs are observationally equiva-
lent if they end up in approximately the same position. The
x- and z-coordinates are rounded to one digit, and the y-
coordinate (altitude) is floored.

3

Algorithm 2: Generalised Probe algorithm
Input: PCFG Gp, set of input-output examples E , program iterator I , selection function SELECT, update function UPDATE,
max. time T , cycle length C
Output: A solution P or ⊥

1: function PROBEGENERALISED(Gp, E , I , SELECT, UPDATE, T , C)
2: E ← ∅ ▷ Initialise evaluation cache
3: S ← ∅ ▷ Initialise program iterator state
4: while time < T do
5: i← 0
6: PSol← ∅ ▷ Initialise partial solutions
7: while i < C do ▷ Generate C programs (one cycle)
8: P ← ITERATE(I, S) ▷ Get next program
9: R← EVAL(P, E) ▷ Evaluate program

10: if R = E then
11: return P ▷ Solution found
12: if R ∈ E then
13: continue ▷ Result in evaluation cache
14: if R ∩ E ̸= ∅ then ▷ Program solves some examples
15: PSol← PSol ∪ P ▷ Add program to partial solutions
16: E ← E ∪R ▷ Add result to evaluation cache
17: PSol← SELECT(PSol) ▷ Select promising partial solutions
18: if PSol ̸= ∅ then ▷ Promising partial solutions found
19: Gp ← UPDATE(Gp, PSol, E) ▷ Update grammar
20: E ← ∅ ▷ Reset evaluation cache
21: S ← ∅ ▷ Reset program iterator state
22: return ⊥

The selection function chooses five programs with the
highest reward from the partial solutions. The grammar is
then updated using the selected programs. The program with
the highest reward is used to update the grammar such that
all new programs start with the actions from this program.
This way, all subsequent programs start searching from the
position of the best program. Because the start of the pro-
gram is fixed to the actions of the best program, only the last
action of the promising partial solutions is used to update the
probabilities of the grammar. The probabilities of each rule
R are updated according to the formula:

p(R) =
pp(R)1−FIT

Z
where

FIT = min(max
{P∈PSol|R∈tr(last(P))}

r(P)

100
, 1)

where pp is the previous probability of R, last(P) is the last
action of program P , and r(P) is the reward obtained by P .

4 Experiments and Results
This section describes the experiments conducted in order to
increase the amount of exploration. It gives the parameters
used to run the experiments, and the results of these experi-
ments.

4.1 Setup
The code was implemented in Julia using the Herb.jl li-
brary (Hinnerichs and Dumančić 2024). The code is avail-
able on the probe-with-minerl-explore branch of

the HerbSearch GitHub repository1. The instructions on how
to run the experiments are available on the same branch in
the experiment setup.md file.

Version 0.4.4 of MineRL was used for the experi-
ments. All the experiments use a modified version of
the MineRLNavigateDense-v0 environment. In this
environment, the agent has to reach a diamond block
approximately 64 blocks away from the spawn point.
The agent is given a reward after each step based on
how much closer it gets to the goal, and a reward
of 100 upon reaching the goal. The modified environ-
ment, MineRLNavigateDenseProgSynth-v0, adds
the ability to send chat commands. It also adds the posi-
tion of the agent to the observation space. These changes
are used for teleporting the player to the spawn point instead
of hard resetting the environment between evaluations. The
chat commands are also used to give the agent infinite health
and food, and to disable mobs. In the original environment,
the compass that points to the goal has a small randomised
offset from the goal. Because the compass is used to cal-
culate the reward, this randomisation has been turned off
in order to get an accurate reward based on the actual dis-
tance to the goal. The modified version can be found on the
prog-synth branch of the forked MineRL GitHub repos-
itory2.

All the experiments were run on a Lenovo Legion 5

1https://github.com/Herb-AI/HerbSearch.jl/tree/probe-with-
minerl-explore

2https://github.com/eErr0Re/minerl/tree/prog-synth

4

S → [A]
A → (T, Dict("move" => D, "sprint" => 1, "jump" => 1)
D → forward | back | left | right | forward-left | forward-right | back-left | back-right
T → 5 | 10 | 25 | 50 | 75 | 100

Figure 1: Grammar of the first experiment.

15ARH05 laptop running Arch Linux. This laptop has an
AMD Ryzen 7 4800H processor, and 16 GB of RAM. The
experiments were run ten times with a 20-minute timeout
per run. The low number of runs and high timeout are due
to the fact that evaluating a program takes a long time be-
cause all the actions have to be simulated in the environ-
ment. The experiments were run with the following world
seeds: 6354, 95812, 958129, 999999, and 11248956. These
seeds are used to generate the Minecraft worlds. In the fol-
lowing section, the worlds generated from these seeds are
also referred to as worlds 1, 2, 3, 4, and 5, respectively.

4.2 Experiments
The experiments described in this section are additive,
meaning that the parameters that are not explicitly changed
in experiment N are the same as in experiment N − 1.

Experiment 1 The first experiment uses the algorithm de-
scribed in section 3.4 with cycle length set to six. The gram-
mar used is shown in figure 1, where S is the starting sym-
bol. As described in section 3.4, the first rule gets replaced
with S → [best program; A] in the update function.
This first experiment is quite exploitative, as it continues
searching only from the best program and allows for only
one action after the best program. This serves as a baseline

for making the algorithm more explorative.
Looking at the runtimes of the experiment in figure 2, we

can see that it is able to find a solution for worlds 1, 3, and 4
in less than 600 seconds. However, because this experiment
is too exploitative, it gets stuck in worlds 2, and 5. In world
2, there is a hole between the agent and the goal. The agent
goes into the hole and receives a higher reward than previous
programs, making subsequent programs continue from the
hole. Because the hole is deep, there is no way to get out of
it. In world 5, there is a cave in front of the agent and the
goal is in the direction of the cave, but slightly to the left.
Because of the way programs are enumerated, the agent first
goes forwards into the cave. It receives a higher reward, and
is unable to exit the cave because the reward would decrease.

Experiment 2 The second experiment changes the gram-
mar to allow taking multiple actions after the best pro-
gram. The rule ACTS → [A] | [ACTS; A] is added
to the grammar, and the starting rule is changed to S →
ACTS. The update function now changes the first rule to
S →[best program; ACTS]. This should allow the
agent to exit the cave in world 5.

However, looking at figure 2, we can see that world 5
still timed out. The agent was unable to exit the cave, even
though it could take multiple actions after the best program.

51 2 3 4
0

100

200

300

400

500

600

700

800

900

World

Ti
m

e
(s

)

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Figure 2: Average runtimes of experiments 1-5 over ten runs in seconds. A missing bar means that the experiment timed out for
at least one run. The graph also shows the standard deviation of each experiment.

5

Because the exit is behind the agent, and the grammar has
obtained higher probabilities for going forwards from previ-
ous programs, the actions that lead out of the cave have low
probabilities. Getting out of the cave and increasing the re-
ward would take many actions. Finding a program that takes
many low-probability actions would take a lot of time.

Although worlds 1, 3, and 4 do not need to perform multi-
ple actions after the best program in order to reach the goal,
we can see from figure 2 that this experiment affects their
runtimes. Even though they do not make use of the rule
ACTS → [ACTS; A], they have to use the extra rule
ACTS → [A], which adds to the costs of the programs
and affects the probabilities. The rule for taking multiple ac-
tions also affects the probabilities even when it is not used.
This was confirmed by running the first experiment again
with the extra rule ACTS → [A], and a dummy rule,
D → 0, instead of the rule for multiple actions. With these
two added rules, experiments 1 and 2 have the same runtime.

Experiment 3 The order of the (steps, action) tuple in
the grammar of experiment 3 is changed to (action, steps).
This way, the different directions are enumerated before the
different numbers of steps. Instead of trying all the step sizes
for one direction, the synthesiser now tries all the directions
with one step size. The cycle length is also changed to eight
in order to enumerate all eight directions in one cycle. This
should help the synthesiser find the correct direction faster.

As we can see from figure 2, this drastically improved the
runtimes of worlds 1 and 3, while only slightly increasing
the runtime of world 4. Worlds 1 and 3 have more obsta-
cles, requiring direction changes, which could explain why
this experiment improved their runtimes this much. This ex-
periment is also able to solve world 5 because it does not
immediately go forwards into the cave. Instead, it explores
more directions and finds that going slightly left gives a bet-
ter reward.

Experiment 4 Experiment 4 aims to further increase ex-
ploration by only taking into account the directions from the
last best program, and not exploiting the ones from previ-
ous best programs. This is done by giving the last direction
a higher probability, while giving the other directions lower,
uniform probabilities. In the update function, the last direc-
tion is given a cost of 1, and other directions a cost of 10,
before normalising. In case the last direction does not in-
crease the reward, instead of exploiting directions that were
used in previous best programs, it now explores all direc-
tions uniformly to find the right direction. By doing this, the
synthesiser should be able to find the right direction faster in
worlds that require more direction changes.

This experiment significantly improved the runtimes of
worlds 3 and 5, but increased the runtimes for worlds 1 and
4.

Experiment 5 A lot of time is usually spent searching near
the goal. This is partly caused by higher probabilities for
higher steps sizes attained from past best programs. When
the agent is close to the goal, these probabilities cause the
agent to travel too far and miss the goal. This issue is reme-
died in experiment 5 by not updating the probabilities of step

sizes, leaving them to be uniform. This way, programs are
always enumerated from lowest to highest step sizes. This
should also not affect the search before the end too much
because, with cycle length eight, this experiment is able to
cover all step sizes for one direction in a single cycle.

From figure 3 we can see that this experiment had the ex-
pected effect on world 4 by decreasing the search time near
the end and keeping the rest of the search roughly the same.
However, this did not work as intended for the other worlds,
as it affected the search before the end too much.

0 50 100 150 200 250

0

20

40

60

80

Time (s)

B
es

tr
ew

ar
d

Experiment 4 Experiment 5

Figure 3: The best reward over time of the first run of exper-
iments 4 and 5 in world 4.

Experiment 6 The final experiment is the most explo-
rative – it does not exploit any of the directions or step
sizes used in previous best programs. The initial costs of the
grammar rules are random. In the update function, instead
of updating the costs based on the last action, all the costs
are again randomised. Having random costs could help the
synthesiser avoid the cave in world 2. The costs are chosen
randomly from [1, 3] using the default random number gen-
erator in Julia, before normalising. The seed for the random
number generator is the same as the world seed, and the ran-
dom number generator is not reset between runs.

From table 1 we can see that experiment 6 is not able to
solve any of the worlds consistently. We can also see that
there is a big difference between the minimum and the max-
imum runtime for each world. Both of these results were ex-
pected because the directions and step sizes are random. It
also seems that this experiment tends to do better in worlds
with fewer obstacles, such as worlds 3 and 4. Furthermore,
this experiment is the only one that was able to solve world
2, but only in two of the ten runs.

6

World Successes Min. time (s) Max. time (s)

1 4 427 1027
2 2 264 930
3 8 178 412
4 9 44 385
5 6 317 1076

Table 1: Results of experiment 6 over ten runs. This table
shows the number of successful runs, the minimum runtime,
and the maximum runtime of successful runs per each world.

5 Conclusions and Future Work
The goal of this research project was to explore a novel
method of specification in program synthesis – rewards. This
was done by adjusting the Probe program synthesiser to syn-
thesise programs for the dense navigation environments of
MineRL. Changes were made to the Probe synthesiser to
enable learning from rewards, which include redefining par-
tial solutions, observational equivalence, and the function
for updating the probabilities of grammar rules. The synthe-
siser was also generalised to allow for experimenting with
different parameters more easily. To guide the search, the
grammar was updated after a number of iterations to use the
program with the best reward as the first steps for subse-
quent programs. Because the synthesis could get stuck in
local maxima, different ways of increasing exploration were
investigated to remedy that.

By changing different parameters of the Probe synthe-
siser, it is possible to increase exploration. The experiments
done in this paper made changes to the grammar, the update
function, and the number of programs enumerated in one cy-
cle. Increasing the amount of exploration makes it possible
to solve some instances that the synthesiser could not solve
before, but increasing it too much could have the opposite ef-
fect. Depending on the environment, increasing exploration
can either increase or decrease the runtime.

There are several paths that could be further explored in
synthesising programs from rewards in MineRL:
• Using a different environment other than the dense nav-

igation environment, such as the environment for chop-
ping trees, which would be much more difficult as the
rewards are sparse, and the action space is larger.

• Using observations from the environment in addition to
the reward to guide the search, such as the RGB image,
which would require image processing.

• Exploring different formulas for updating the probabili-
ties of the rules.

• Using traces of successful solutions to guide the search.
• Using backtracking to get out of local maxima. This

would require a way of finding out if the agent is stuck,
which is not that straightforward.

Responsible Research
An important aspect of responsible research is reproducibil-
ity. This paper attempts to ensure reproducibility by describ-

ing the experimental setup and the conducted experiments in
detail. Section 4.1 gives a thorough overview of the experi-
mental setup, along with the specifications of the system on
which the experiments were run. This section also provides
a link to the GitHub repository which contains the code for
the experiments and instructions on how to run these experi-
ments, such that the results could be easily reproduced. Sec-
tion 4.2 describes exactly what was changed for each exper-
iment. Furthermore, experiments that make use of random
number generators use a fixed seed for reproducibility.

References
Albarghouthi, A.; Gulwani, S.; and Kincaid, Z. 2013. Re-
cursive Program Synthesis. In Proceedings of the 25th Inter-
national Conference on Computer Aided Verification, 934–
950. Springer.
Amiranashvili, A.; Dorka, N.; Burgard, W.; Koltun, V.; and
Brox, T. 2020. Scaling Imitation Learning in Minecraft.
arXiv:2007.02701.
Barke, S.; Peleg, H.; and Polikarpova, N. 2020. Just-in-Time
Learning for Bottom-Up Enumerative Synthesis. Proceed-
ings of the ACM on Programming Languages, 4(OOPSLA):
1–29.
Gulwani, S. 2011. Automating String Processing in Spread-
sheets using Input-Output Examples. In Proceedings of the
38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, 317–330. New York, NY, USA:
Association for Computing Machinery.
Gvero, T.; Kuncak, V.; Kuraj, I.; and Piskac, R. 2013. Com-
plete completion using types and weights. ACM SIGPLAN
Notices, 48(6): 27–38.
Hinnerichs, T.; and Dumančić, S. 2024. Herb.jl: A library
for defining and efficiently solving program synthesis tasks
in Julia. https://github.com/Herb-AI/Herb.jl. GitHub repos-
itory.
Jha, S.; Gulwani, S.; Seshia, S. A.; and Tiwari, A. 2010.
Oracle-guided component-based program synthesis. In Pro-
ceedings of the 32nd ACM/IEEE International Conference
on Software Engineering, 215–224. New York, NY, USA:
Association for Computing Machinery.
Kanervisto, A.; Karttunen, J.; and Hautamäki, V. 2020. Play-
ing Minecraft with Behavioural Cloning. arXiv:2005.03374.
Koza, J. R. 1994. Genetic programming as a means for
programming computers by natural selection. Statistics and
Computing, 4(2): 87–112.
Mao, H.; Wang, C.; Hao, X.; Mao, Y.; Lu, Y.; Wu, C.; Hao,
J.; Li, D.; and Tang, P. 2022. SEIHAI: A Sample-Efficient
Hierarchical AI for the MineRL Competition. In Distributed
Artificial Intelligence, 38–51. Springer.
Nguyen, H. D. T.; Qi, D.; Roychoudhury, A.; and Chan-
dra, S. 2013. SemFix: program repair via semantic analy-
sis. In Proceedings of the 2013 International Conference on
Software Engineering, 772–781. San Francisco, CA, USA:
IEEE Press.
Singh, R.; and Gulwani, S. 2016. Transforming spreadsheet
data types using examples. ACM SIGPLAN Notices, 51(1):
343–356.

7

Singh, R.; Gulwani, S.; and Solar-Lezama, A. 2013. Au-
tomated feedback generation for introductory programming
assignments. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Imple-
mentation, 15–26. New York, NY, USA: Association for
Computing Machinery.
Skrynnik, A.; Staroverov, A.; Aitygulov, E.; Aksenov, K.;
Davydov, V.; and Panov, A. I. 2021. Hierarchical Deep Q-
Network from Imperfect Demonstrations in Minecraft. Cog-
nitive Systems Research, 65: 74–78.
Torlak, E.; and Bodik, R. 2013. Growing solver-aided lan-
guages with rosette. In Proceedings of the 2013 ACM inter-
national symposium on New ideas, new paradigms, and re-
flections on programming & software, 135–152. New York,
NY, USA: Association for Computing Machinery.

8

