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1 Preface

During the MSc Geomatics program at the Delft University of Technology, the students execute a
synthesis project. The project aims to investigate a real-world problem and to bring students and
teachers/supervisors in cooperation with a company or public agency (e.g. municipalities). The
students are challenged to use their existing knowledge in geomatics and to gain further experience
in handling of geo-information as to come in touch with the involved stakeholders. The duration of
the project is ten weeks and takes place at the end of the first year. The novelty of this project is
to establish an automated method to assess buildings in Amsterdam on their suitability for catering
services, based on the compliance of their chimneys to minimum height restrictions.

2 Acknowledgments

As a group, we would express our gratitude to the people who have helped us throughout this project.
First of all, we would like to thank Mr. Wietse Balster, representing the Municipality of Amsterdam,
for providing input data and for the defining the desired output of this project. In addition, we
would like to thank our two supervisors: Giorgio Agugiaro and Balázs Dukai for their useful and
interesting ideas and general supervision which ensured we were able to complete this project with
the most achievable results. Finally, we would like to thank Mathias Lemmens, Edward Verbree and
Liangliang Nan for the organization of the Synthesis Project course.

3 Introduction

Although it is challenging to establish a direct connection between odors and health symptoms,
odor nuisance is attributed to adverse reactions including headaches, sleep disturbances, inability to
concentrate and stress-related issues. In many urban areas, odor nuisance is related to the presence
of catering services (e.g. restaurants, clubs, takeaways) nearby or adjacent to housing facilities. In
those cases, the local residents are mostly affected [12].

Regulations in the Netherlands on odor control, regarding the commercial kitchens and the catering
services, have been established by the Activiteitenregeling Milieubeheer, Article 3.103, Clause 1 [15].
This clause states that the maximum tolerated odor nuisance from emissions due to the cooking
activities should be based on a strict rule. Specifically, this rule defines that the height of the
chimney is required to be at least two meters higher than the highest point of the roof of every
building present in a radius of 25 meters.

However, the municipality of Amsterdam is not allowed to apply this regulation on the historical
buildings of Amsterdam due to aesthetic reasons. As a result, people willing to set up catering services
need to install deodorizing systems which leads to extra costs. Also, the responsible inspection office
needs to control the appliance of this regulation by doing in-situ measurements, which costs time
and requires more staff.

To overcome this problem, the municipality of Amsterdam is interested in a tool for both spatial
programmers and citizens that visualizes all the buildings of the 3D city model of Amsterdam and
provides information on their suitability for catering purposes. The suitability requirements are based
on the chimney heights and the buildings’ heights in the surrounding area. In an attempt to unveil
how this tool could perform reliable results, this research aims to detect chimneys from point clouds
and in a next step to detect buildings with appropriate chimney heights in the city of Amsterdam.

The report is structured as follows. First a description of the problem is provided, together with the
research questions and related scientific work. Hereafter, the methodology for creating the 3D model
is provided. Next, the methods applied for the chimney detection together with the methods on how
the quality of the algorithm is assessed are described. Hereafter, the results are presented followed
by an extended discussion. The report finishes with conclusions and recommendations.
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4 Problem description

4.1 Background information

The main underlying problem to this project is that currently it is complicated for the municipality of
Amsterdam to execute the chimney regulations for restaurants in the city. To minimize the influence
of the smell, chimneys need to comply to a minimum height restriction. This restriction is based on
the height of surrounding buildings in a certain radius. If the chimney is not compliant, an expensive
filter needs to be installed. Currently the height of the chimneys is measured by inspectors on-site,
which results in inconsistent and biased measurements and time consuming practices. Therefore, a
faster, automated and possibly scalable method is required.

To fulfill the requirements for the tool of the municipality of Amsterdam, two different sub-tasks are
specified:

• Creating a 3D model which can be easily accessed by the customer and enables an easy handling
for retrieving the chimney heights and compliance information to the regulations.

• Development of an algorithm that can detect the chimneys with their height automatically
from point clouds.

4.2 Study area

Even though the resulting algorithm for object detection and the more refined chimney detection
can be applied to any urban area, the focus of this project is on the west side of the centre of
the city of Amsterdam. This area is selected to fulfill the needs of the client, who is interested in
the Nieuwmarkt. Besides, the area is interesting due to the high amount of catering services and
monumental buildings (for which installation of new building structures should be avoided, as it
might conflict with regulations), as seen in figure 2. The extent of the study area was fixed by
creating a polygon in QGIS. The extent and a visualization of the polygon defining the research area
are given in table 4.2 and figure 1.

X-coordinate Y-coordinate

UL 119825.483905 488220.711820
LL 119787.402886 485704.644437
UR 122208.267719 488226.151967
LR 122194.667355 485682.883855

Table 1: Coordinates of extent of research area in EPSG:28992. UL = Upper left, LL = Lower left,
UR = Upper right, LR = Lower right.
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Figure 1: The research area

Figure 2: Most national (blue dots) and municipal (red dots) monuments fall within our research
area. Retrieved from [3]

4.3 Research questions

When looking at the problem from a scientific point of view the question can be splitted in multiple
sub-questions:

• Is it possible to detect small structures on top of roofs with point clouds made from aerial
images?

• Is it possible to distinguish between chimneys, other structures on the roof or just outliers from
the point cloud?
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• If a detection and distinction is possible, what is the quality of the applied methods?

5 Related work

One of the largest challenges to this project is the world-wide lack of scientific knowledge on how
to detect small objects on top of roofs. Chimney detection, or in general, detection of small roof
structures from airborne point clouds (LIDAR and dense stereo image matching), is hardly researched.
Often the quality of the point cloud does not allow for a clear representation of these structures and
therefore makes the detection of small objects very challenging. However, research is executed on
approaches for classification, segmentation and reconstruction of roof structures in urban areas. Some
of these researches have looked into small roof structures. In these researches, small roof structures
are generally handled in two different ways:

• Before implementing certain approach, a noise filter is applied to get rid of these structures
(i.e. Jochem et al [9] use a threshold in their segmentation to filter out chimneys)

• It is stated that the approach is influenced by the small roof structures - and sometimes they are
detected. However, these structures are only side-products of their research with less reliable
reconstruction and are not explained in further detail (i.e. Vosselmann [8], where all small roof
structures like chimneys and windows are treated as segments)

Most approaches are based on LIDAR point clouds in contrast to point clouds created by stereo
image matching - as mostly used in this research. These point clouds are less noisy and therefore
more applicable for many algorithms that use the similarity, or the normals, of adjacent points for
identifying roof points ( i. e. research by Caixia et al. in 2019 [23]). In the research of this project
LIDAR data could often not be used as too less points where present to represent a roof object.
Nevertheless, the approaches applied by different researches are worth considering as they deliver
important notes and ideas for the development of own methods.

In research executed by Vosselmann in 2013 [8] different segmentation methods are applied and post-
processing methods are executed for detecting connected points and extracting features. Detection of
small features was not the main purpose of the research, even though the results show some of these
features. Jochem et al (2009) [9] used the surface normals to detect planar segments in roofs. Their
methods allowed to detect some small structures, but these were rejected as disturbance factors. A
different approach is selected by Peters et al. (2015) [16]. They use the medial axis transform and
shrinking ball algorithm to perform a visibility analysis for point clouds. Some small objects with
spare points could be detected.

It can be expected that in the future the quality of the point clouds will increase, resulting in new
possibilities for small object detection. Consequently more research should be expected on this topic.

6 Methodology

6.1 3D model

A 3D city model was created for this project with two purposes. Firstly, the model allows to make
the results on object and chimney detection interactive and easily usable for the client. Secondly,
generation of an enriched 3D city model was a requirement set by the supervisors in order to generate
an input model for a course given at the Technical University of Delft. It was decided to first create
a ‘base’ Level of Detail (LoD)1 model, which is later enriched with information from other datasets.
The process of generation of the final model can thus be divided into two steps; creation of the 3D
city model and the enrichment of the created model.

In the following paragraphs first the data needed for creation of the city model and the model
enrichment will be presented. Hereafter, the methodology on creation of the geometry of the model
is described, followed by the methods applied to include the semantics in the model.

8



6.1.1 Data sources

In order to generate the LoD1 3D city model, 2D shapes and locations of the buildings are needed,
together with height information that allows for extrusion of the building shapes. For the building
shapes, the Basic Registration of Large-Scale Topography (BGT) dataset is used which contains
large scale topology information for the Netherlands. For the height information the Actueel
Hoogtebestand Nederland (AHN3) dataset is used, which contains classified LIDAR points for the
whole of the Netherlands. All this data is downloaded from the Publieke Dienstverlening Op de
Kaart (PDOK) portal 1, which is a geo-portal for The Netherlands. The extent of the research
project was based on a BGT tile of a part of Amsterdam, as the polygon defining the study area
was drawn around the tile, including a small buffer which was necessary for matching height points
to buildings later-on in the project. Consequently, no pre-processing was needed for the BGT tile
extracted from the geoportal. For the AHN3 dataset four tiles where extracted and clipped based
on the polygon representing the research area.

Moreover, the client provided a LoD2 model of the city of Amsterdam. This model contained a
better representation of the roof surfaces - potentially useful for detecting points above the roof.
It was delivered as a DGN file, a proprietary format supported by Bentley Systems, MicroStation
and IGDS CAD programs. Reading and translating the file properly was not possible, leading it
to be dismissed. This will be discussed with more detail in the subsection below.

For the enrichment of the 3D model several datasets were considered, including the Waarde
Ontroerende Zaken (WOZ), Nationaal Handelsregister (NHR) and Basisregistratie Adressen en
Gebouwen (BAG). The WOZ contains information on the actual function of buildings. The
National Handelsregister discloses the names of establishments – which could give a hint on the
type of catering services housed in a building. However, the WOZ data can only be retrieved for
individual buildings and there is a restriction on the number of searches per time period – making
it impossible to retrieve data for larger areas. Furthermore, although the NHR was found online,
the data could only be retrieved in an anonymised manner, making it unviable for linkage with
the 3D model. Searching for alternatives to these datasets led to the data portal of Amsterdam,
where data was found containing all restaurant and café names and addresses in the city area [5].
Unfortunately, this data was outdated: the last update was in 2017. Therefore it was decided not
to use the data in the final model. Nevertheless, the work-flow for integrating this data in the
model to determine the bldg:usage as ’restaurant’ is present in the FME workspace. Furthermore,
data on energy labels was retrieved to be included in the model [4], next to the main source of
information; the BAG dataset. The BAG contains all information on the addresses of buildings
and their units – street name, street type, floor areas, geometries, year of construction, valid
system time of the units (if they still exist or not), functions, among others. The dataset was
obtained as a PostGIS dump, created by NLExtract [14] and based on the latest releases of the
BAG documents as made available by Kadaster. The file was restored as a PostGIS table, which
could then be easily queried using SQL. The release date of the file was 8 april 2019; the most
recent version available at the start of the project.

6.1.2 Geometry

In order to generate the 3D city model, 3dfier was used. This software was developed by the
Technical University of Delft and allows for creation of simple LoD1 3D models out of 2D GIS data
by lifting polygons to corresponding height values delivered by a point cloud dataset (i.e. LIDAR
data). Different lifting methods are specified based on the semantics of the polygons [18]. As input
the BGT tile is used together with AHN3 data, which are described above. Code is provided on the
Github page of 3dfier which allows for preparation of BGT data. It removes both buildings that
no longer exist and CurvePolygons, to generate suitable input files for 3dfier [19]. 3dfier requires a
configuration file in which references are provided to input files and parameter values are specified.
It was decided to use the default values provided in the standard configuration document where
possible and to alter some parameters via trial and error, optimizing the output results. Different
versions of the model where stored and information on these versions was reported in a table 6.1.3.
The output files where CityJSON files so that they could be visualized using the CityJSON viewer

1https://www.pdok.nl/
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Version Information Problems
1 Default settings Large spikes in almost all classes
2 filter outliers Large spikes in almost all classes
3 filter outliers and flatten roads Large spikes in almost all classes
4 Input AHN3 data is cropped to remove

all points below zero. Default settings
are used.

Large spikes in almost all classes

5 radius vertex elevation = 2.0 (instead
of 1.0)

Still many spikes, but less.

6 radius vertex elevation = 3.0 Still many spikes, but less.
7 radius vertex elevation = 6.0 Still some spikes, but a lot less.
8 radius vertex elevation = 6.0 No difference with version 7 so

filtering outliers is not necessary
9 radius vertex elevation = 10.0 Only hand-full of very small

spikes left
10 radius vertex elevation = 15.0 One big spike pointing upwards

and a couple of small spikes.

Table 2: Versions of 3D models generated through 3Dfier.

[21]. The selected final model was generated in CityGML. The documentation to the parameters
necessary in the configuration document are provided on the 3dfier github [20].

No objects were present in the research area belonging to the BGT class ‘Ondersteunend Water-
deel’. Therefore, the path to this empty file was excluded from the configuration file. The default
values on lifting options could be kept unaltered.

The issue that arose when using default values was the appearance of spikes (figure 3). Several
attempts where executed to remove these spikes. It was believed that the spikes were either a
result of outliers in the LIDAR data, or a consequence of no-data values. Firstly, the explanation
based on outliers was examined. In the configuration file, for every BGT class where spikes where
present, the parameter ‘filter outliers’ was set to true. In addition, there was experimented with
cropping the AHN3 data by removing all the points with a z value below zero, to check if the issue
was indeed a result of outliers. However, the spikes still remained and therefore it was believed
that the problem did not lie with outliers.

Figure 3: A cross section of 3D model version 2. Spikes are present for multiple classes.

Consequently, the next step was to examine if the spikes where a result of no-data values. A
relevant parameter for no-data values is ‘radius vertex elevation’. This parameter specifies the
radius used for the distances between the 3D points and the vertices of polygons, in meters. If
this radius is large, more points will be considered when extruding a polygon. However, the
larger the radius, the further away of the polygon these points can possibly be and therefore, the
smaller the chance that the points used all correspond to the polygon. When the parameter has
a small value, less points will be considered, allowing the possibility of no points being considered
at all. Consequently, the polygon will be elevated to the default no-data elevation value set for
that class. Enlarging the ‘radius vertex elevation’ from the default value of 1 metre to 2, 3, 6,
10 and 15 resulted in less spikes. The reduction of the amount of spikes after enlargement of
the ‘radius vertex elevation’ indicated that the spikes could be explained by no-data values. The
higher the value, the less spikes were present. In order to balance between the amount of spikes
and a justifiable search radius it was decided to select model version 9, with a search radius of 10m,
as the final model. It should be noted that a the search radius used for finding points belonging
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to buildings is a separate value. Therefore the relatively high search radius selected for the other
classes does not influence the quality of building extrusion.

After creating the LOD1 model, the DGN file containing the model of Amsterdam was considered
as an additional resource for providing LOD2 geometries. This process would have taken place
through the FME workbench - as with the semantic enrichment -, allowing proper translation of
features to the CityGML format. However, it was not possible to extract the geometries in an
ordered manner from the file. Firstly, the layers that could be accessed using the FME readers
seemed quite unorganized with regards to their names: some were related to building qualities
(’nieuwbouw’, ’nieuwe bebouwing’, ’bestaande bouw’) while others concerned locations (’Ijburg
Middeneiland’, ’Dreven’). Secondly, there were many different geometries present in these layers:
around 130.000 lines, 1000 arcs, 300.000 polygons and 26.000 solids - besides another 330.000
features of different types. And although it is possible to filter these geometries, their properties
together with the structure of the file indicate the absence of proper linkage of geometries to their
actual buildings. This can be observed in figure 4. It means there is not a way of knowing which
surfaces/polygons belong to which buildings - and which are part of the roof. This problem could
be a consequence of export methods used for generating the file, or it can be due to limitations of
the FME readers. Regardless, these challenges rendered the LOD2 model unfit for use.

Figure 4: Contents of the DGN file: it was only possible to visualize what seemed to be LOD1 solids.
The different parts of a building (as highlighted in red) do not seem to have any attribute linking
them to other building parts.

6.1.3 Semantics

After the geometric part of the model was finalized, the focus was set on the semantics and
therefore the enrichment of the model. Before discussing the workflow for integrating the BAG
data with the existing CityGML model, some limitations of the data should be considered. The
most common errors and problematic attributes are discussed in the Kadaster’s ’quality dashboard’
[10]. Some of these situations deserve special attention, as they occur within the study area or
could potentially affect the research results;

• Unlikely building year: although the history of Amsterdam dates back to the middle ages
and the study area in particular contains many of its older buildings, it is improbable that
there are structures present from before the 13th century. When querying for this, the only
deviation was that of building years listed as ‘1005’. According to Gemeente Amsterdam [2]
this is actually a special code given to buildings in the historic area of the city, for which the
year of construction is unknown and does not require further research. It is important to be
aware of this when passing the information on to the CityGML model, as this code must be
interpreted properly in the final visualization.
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Figure 5: There are over 5000 buildings in the study area with unknown building year - this is logical,
as the central area of the city contains most of the older buildings

• Unlikely floor area: When the floor area is unknown, the values: 1, 99, 999, 9999, 99999
and 999999 are given instead. As the floor area information is used to compute the storey
number/height, it is important that these values are filtered to prevent the propagation of
errors. However, when typos are made it becomes more difficult to eliminate the problem.
These cases are handled directly in FME: if the calculated storey height (based on the proper
building area and the height retrieved from the point cloud) is too low to be realistic, the floor
area is most likely wrong – and consequently disregarded in the output model.

After the semantic enrichment mentioned above, the final step was to link the findings of the
object detection and the verification of compliance to the model. This was accomplished by
merging the output file of the verification with the building instances in the model, based on
their BAG IDs. The file contains: a point for each object, the transformation parameters used
to construct the geometry of the object, an attribute for passing/failing the validation test, and
the BAG ID of the building each object relates to.

When extracting information from the BAG sub-queries were used for clarity, as there were many
linkages present between different tables and attributes that needed to be understood beforehand.
These intermediate sub-queries were stored as materialized views, and eventually exported as
CSV. This format can be easily read into FME, which was used for the integration of the data
with the CityGML model. The model itself already contained a link between the BGT features
and BAG id’s, making the process more straightforward – it was stored in a generic attribute
‘identificatieBAGPND’, as specified by the dutch information model IMGeo. Two steps deserve
further consideration:

• Different address representations: the house suffix is composed of two columns, namely
‘huisletter’ and ‘huistoevoeging’. These columns are used interchangeably: sometimes the
object contains both letters and suffix, other times only one of the columns is used. The
distinction between both is not always clear, but the suffix allows alphanumeric characters,
which makes it more suitable for different situations. For all the objects in Amsterdam, about
34% makes use of house suffixes, while only 17% uses house letters. In the CityGML model,
both will be considered as ‘ThoroughfareNumberSuffix’ – as the maxOccurs of this element is
‘unbounded’, both attributes can be modelled at the same time.

Postal code House
number

House let-
ter

House suf-
fix

1012WG 277 B
1015DW 42 H
1016RA 1 A 2
1017SG 24

Table 3: Addresses can have different elements, house letters and suffixes are used interchangeably

• Handling wrong values: when the year of construction is listed as the code ‘1005’,
bldg:yearOfConstruction is left empty, as to avoid confusion in the final model. Similarly
for bldg:storeysAboveGround and bldg:storeyHeightAboveGround, the attributes are left empty
if the value of ‘floorArea’ reflects a default code or if the area seems disproportional to the
building dimensions. This last case can be checked by comparing the calculated storey height
to a realistic threshold – for example, storey height smaller than 2 metres should not be con-
sidered in the output. A threshold for maximum storey height should be defined based on the
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functions of the buildings.

As mentioned before, three other sources were integrated in the model besides the BAG: a
dataset with information on restaurant addresses in Amsterdam [5], energy label/quality data
from the municipality [4], and a file containing all objects/chimneys that were detected - to-
gether with relevant indicators. The information contained in the first two datasets was merged
with the features in the model by using the postal codes. The restaurant dataset was used to
specify the usage of the building – in contrast to the ‘function’ that is extracted from the BAG.
In this way, the ‘usage’ element can be used to filter out the attributes/geometries of buildings
that are most relevant: those containing catering services. Of course, the dataset’s low update
frequency makes its use less ideal and reliable. Still, this type of information should be con-
sidered. A small fragment of the elements specified for a building entity are shown below, in
Listing 1.

Listing 1: All elements found under bldg:Building

<core : ex te rna lRe f e r ence > . . .</ core : ex te rna lRe f e r ence>
<bldg : funct ion>winke l f unc t i e </bldg : funct ion>
<bldg : funct ion>woonfunctie</bldg : funct ion>
<bldg : funct ion>kantoor funct i e </bldg : funct ion>
<bldg : usage>re s taurant </bldg : usage>
<bldg : measuredHeight uom=”m”>22.08</ bldg : measuredHeight>
<bldg : storeysAboveGround>4</bldg : storeysAboveGround>
<bldg : storeyHeightsAboveGround uom=”m”>5.52
</bldg : storeyHeightsAboveGround>
<bldg : lod0FootPrint > . . .</ bldg : lod0FootPrint>
<bldg : lod0RoofEdge > . . .</ bldg : lod0RoofEdge>
<bldg : l od1So l id > . . .</ bldg : l od1So l id>
<bldg : address > . . .</ bldg : address>
<energy : usageZone > . . .</ energy : usageZone>

The dataset concerning energy certification, was incorporated through the energy Application
Domain Extension (ADE) and specified for each BuildingUnit within a Building. Although not
directly related to our application, it is not difficult to image that energy data might be of use
for analyses regarding other ‘above roof’ structures – such as solar panels, and air vents. This
dataset also contained house numbers and house suffix for each energy certificate documents.
However, the house suffix column showed inconsistencies compared to those in the BAG (i.e.
hyphenation, case-sensitive letters, and latin numerals), so this information was not used for
the merging. As can be seen in Listing 2, the ’usageZoneType’ was left empty. This had to
be done because the available values were often ambiguous. Some units within BAG buildings
have multiple functions listed (and thus, multiple usage zone types). Because of this, it is not
possible to confirm to which type of usage zone the building unit belongs. This is a limitation
of the data available, so no further actions could be taken. As a ’usageZoneType’ value is
mandatory, the energy extension could not be validated properly.

Lastly, the output file from the object detection was imported into the model. Due to the
possibly large volume of objects and the simplified (rectangular) representation used for vi-
sualization, it was decided to initially model them as implicit geometries. However, due to
software problems regarding the support of this type of object, the final BuildingInstallations
were modelled explicitly. The results will be shown in the next section.

Listing 2: All elements found under energy:usageZone

<energy : usageZone>
<energy : UsageZone gml : id=”Uzone 73334”>

<energy : usageZoneType codeSpace=””/>
<energy : conta ins>

<energy : Bui ld ingUnit gml : id=”Unit 75853”>
<energy : f loorArea>

<energy : FloorArea>
<energy : type>grossFloorArea </energy : type>
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<energy : va lue uom=”mˆ2”>116</energy : value>
</energy : FloorArea>

</energy : f l oorArea>
<energy : ene rgyPer fo rmanceCer t i f i ca t i on>

<energy : EnergyPer formanceCert i f i cat ion>
<energy : rat ing>D</energy : rat ing>
<energy : name/>
<energy : c e r t i f i c a t i o n I d >746461896</ energy : c e r t i f i c a t i o n I d >

</energy : EnergyPer formanceCert i f i cat ion>
</energy : ene rgyPer fo rmanceCer t i f i ca t i on>

</energy : Bui ldingUnit>
</energy : conta ins>

</energy : UsageZone>
</energy : usageZone>

6.2 Object detection

6.2.1 Data sources

There are four data sources used for object detection; a point cloud generated from dense image
matching (DIM), their respective orthophotos, the AHN3 point cloud and the BAG.

DIM aims at computing a depth value for every pixel of an image. Thus, all points in the DIM
point cloud are regularly arranged along x- and y- axes like pixels in the image. However, there
are matching problems in texture-less, occluded, overshadowed, and depth discontinuous areas,
which affect the accuracy of height and planar values of the corresponding points [17]. The DIM
point cloud, provided by the municipality of Amsterdam, contains 3D information of buildings
and is used as the main source for roof detection and segmentation. The orthophotos underlying
the DIM point cloud are used for extraction of ground truth data to be able to execute quality
checks. Using the respective orthophotos ensures that all deviations occurring in the point cloud
should in theory be visible in the images. To

As the AHN3 point cloud has a better height accuracy than the DIM point cloud, AHN3 data
was used for reconstructing 3D roof surfaces as planes (see Figure 6). These planes were used
for detection of objects above the roof. The building boundaries are represented by the BAG
dataset.BAG is selected instead of BGT as the orthophotos are taken from a top-view. BGT
defines ground level geometry as the boundary of a building where it touches the ground, while
BAG defines the 2D boundary of a building by providing the footprint of the roof.

Figure 6: Quality comparison between AHN3 and DIM (point clouds are rendered by height)

Another important factor is the density difference between the two point cloud datasets. Samples
were taken from the DIM and the AHN3 point clouds to compute the planar point density and
average distance between points. The DIM point cloud is around two times more dense than the
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AHN3 point cloud. When looking closer, the DIM point cloud’s point density per squared meter
for the study area can be as high as 110 points, compared to 10 points for the AHN3. The limited
amount of points restricts the possibility to detect very small objects, as can be explained by the
Nyquist–Shannon sampling theorem [7]. According to this theorem, only objects with dimensions
twice as big as the sampling distance (lambda) will be reconstructed fully. The reason for this is
that objects smaller than the sampling distance may be completely missed at times, as illustrated
in 7. An object twice as big will have at least one point to represent it. However, it should be
noted that this is not enough to properly classify points as objects/outliers - so very small objects
will still suffer from these limitations.

Figure 7: Illustration of relation between sampling distance (lambda) and object dimensions

The results from the table above indicate that the lidar point cloud is less appropriate to be used
for the detection of small objects. With a distance among points of 24cm, only objects around
50cm would be detected. Nonetheless, the lower point density means there might not be enough
points available to actually distinguish an object and its shape. Since the DIM point cloud was
created from aerial photos with the ground sample distance (GSD) being 10cm, the distance
among consecutive-nearby points in the DIM point cloud is ideally 10cm. However, the sampled
point clouds from the table above indicate less optimistic results: an average distance between
points of 18cm. Therefore, there is a chance that small objects-structures with dimensions less
than 36cm have not been captured by the aerial photos and are not present in the point cloud.
Still, the results from the DIM indicate that this point cloud could lead to better results.

In real-life, many gaps are present in the DIM point cloud (due to occlusions, shadowing), which
enlarges the required minimum object size needed to be certain that the object is detected. This
limitation has been acknowledged, but no alterations to the applied methodology could be imple-
mented.

Area size
(km2)

Number of points Point density
(points/m2)

average planar dis-
tance (m)

DIM 0.25 x 0.25 5,559,162 88.95 0.11
AHN3 0.25 x 0.25 1,001,292 16.02 0.25

Table 4: statistics for point cloud quality.

6.2.2 BAG footprint point cloud separation

Detection of all square chimneys in an area can be realized by firstly detecting chimneys on a
single building and applying the methods to all the buildings in the research area. Therefore, it
was decided as a first step to split the DIM point cloud per building in the BAG dataset and to
use the splitted point clouds for the chimney detection algorithm. This splitting was executed in
FME (Figure 8).

The input data consisted of 110 DIM point cloud tiles and 15455 buildings/footprints from the
BAG. First, the transformer ”Clipper” was used to split all the DIM files into separated files per
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building. This tool traverses all the input point clouds and splits them one by one, according to
the input footprints. Since some footprints are at the junction of several DIM tiles, there might
be several separated files (2, 3, or 4) referring to the same footprint, which need to be merged into
one. This was realised by the transformer ”PointCloudCombiner”, which organizes point clouds
into groups by the attribute ”pandid” and outputs for each group its own point cloud.

Due to the inconsistency in the extents of Dense Image Matching (DIM) and BAG, only 14392
separated files were generated. 1061 of the point clouds completely fall outside of the extent of
DIM. Some footprints (173) were exactly at the boundary of the DIM, hence the corresponding
point clouds only contained a part of the buildings.

Figure 8: Separation workflow in FME

6.2.3 Segmentation and filtering

The next step comprises the segmentation of the DIM point cloud based on a region growing
algorithm for detecting planes. As chimneys and other roof structures stick out, they disturb the
planarity of the roof and are not part of the same segment.

Each segmentation starts with the selection of a randomly picked point. From this point the
k-nearest neighbours are selected with a sample size of 20. These points are used for a plane
estimation using RANSAC [22]. Afterwards points are detected that fit to the plane based on
a threshold. For this paper the threshold is set to 0.4m, by trial and error (points that are up
to 40 cm over or under the plane are considered as part of the plane). This threshold is set as
it compensate to the low quality (bumpiness) of the input point cloud but it still allows for the
detection of roof structures. If the number of points of a plane is increased by at least 30%, the
plane is re-estimated. A potential plane must have a least 150 points to be considered as plane.
With this approach the planes are segmented and structures not belonging to the roof are set to
unclassified (Figure 9).

Afterwards all points with a segment ID were removed so that only the unclassified points are
left. These points are reclassified based on their euclidean distance to each other. If points were
closer than 50 cm they were considered to belong to the same class. All classes with less than 25
points were then removed as well, as they are outliers or leftovers from edges of the roof and are
not needed for identification (see Figure 10).
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Figure 9: Segmented point
cloud. The unsegmented parts
are displayed in blue (except the
big structure at the bottom left).

Figure 10: The filtered and clus-
tered point cloud

6.2.4 Roof reconstruction and wall detection

The next step included the detection and removal of roofs and walls from the point clouds. The
basic idea is that during the segmentation, some planar segments containing more than 150 points
were detected. It is assumed that these segments represented roofs or walls, as objects on top
of the roof will not be represented by such a large amount of points. Therefore, based on the
segmentation results, roof detection was carried out.

Firstly, the wall segments were removed from the point cloud. For all the segments which contained
more than 150 points, the normals were calculated. The length of the estimated normal vector is 1,
if the angle between this vector and horizontal plane is smaller than 20 degrees, the corresponding
segment is considered as too steep it is likely that it represents a wall. Therefore, these segments
were removed.

With the remaining segments and with AHN3 data, roof detection and reconstruction was exe-
cuted. The reconstructed roofs were used later on for removing objects that are located under the
roofs. Whenever possible the AHN3 point cloud was used as input for the roof reconstruction, as
AHN3 can better represent flat surfaces than the DIM point cloud. The AHN3 point cloud was
segmented. Instead of using segments which contained more than 150 points for roof reconstruc-
tion, segments where selected that contained more than 100 points. This was done as the AHN3
is less dense than the DIM point cloud. If a building did not exist in the AHN3 point cloud, it
was decided to use the DIM point cloud for roof detection. In the following paragraphs the roof
detection procedure will be described in more detail.

The goal of the roof detection was to reconstruct roof surfaces from point clouds per building (BAG
footprint). One of the most common reconstruction methods is Poisson reconstruction introduced
in Kazhdan et al.[13], which generates smooth surface models by extracting ISO-surfaces from
a vector field. However, the output model of this approach consists of many triangles. For
this research, this is not a desired output as it complicates the performance of the next step;
identification of structures above roof. The model of the roofs should be as concise as possible,
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i.e., containing several planar surfaces represented by a set of vertices. Nan et al. [11] have
proposed a polygonal surface reconstruction method which aims at a manifold and watertight
polygonal surface model from a point cloud. But it requires the model to be scanned completely,
while point clouds from DIM have limited information on the facades and the bottom surfaces.
Considering the characteristics of a DIM point cloud, it was decided only to reconstruct roof
surfaces and neglect facades and small structures on the roof. Because, in practice, reconstruction
of the facades is not necessary as only roofs are going to be used for the filtering of objects above
them.

First an infinite plane was estimated for a segment. Hereafter, this plane was clipped to the extent
of the segment. Principal components analysis (Principal Component Analysis (PCA)) was used
for the estimation of the plane. As for the extent for clipping, firstly a convex hull was generated.
However, some roofs were found in the point clouds which could not be described properly by its
convex hull. In example T-shaped roofs will become triangles in the output model. Therefore, the
concave hull was used to describe the shape of the roof.

The concave hull of a set of 2D points was computed in three steps:

1) Building the Delaunay trianglation (DT): There is an existing python library ”scipy”
that can be used to generate DT. Since the coordinates of DIM are quite big, the library didn’t
function well at first: many points were unreasonably missing and only a few of them were left
to form the DT. Thus, the input points were then centralized (i.e. shifted to the centroid).
Hereafter, the points were all included in the DT.

2) Creating the alpha shape: An alpha shape is the DT with big triangles removed of which
the radius of the circumcircle is bigger than the threshold ‘alpha’. For AHN3, of which the av-
erage distance between each pair of points is approximately 0.4 meters, the threshold was set to
0.7 meters. This threshold was selected by executing several experiments. With respect to the
DIM point cloud, considering its horizontal resolution is 10 centimeters, the alpha parameter
was set to 0.2 meters. These parameters ensure that the basic triangles (i.e., an equilateral right
triangle with the radius about 7 centimeters) will be kept as well as relatively larger triangles
which make the alpha shape more smooth (see Figure 11), i.e., less vertices for representing the
boundary. It will be further explained in step 3).

Figure 11: Alpha shapes with different parameters

3) Extracting boundary: The alpha shape is simply a set of triangles. Boundary edges are
only stored once among these triangles, while other edges are stored twice, as they are shared
between two triangles. To select all the boundary edges, this knowledge was used, as all the
duplicate edges were removed and only boundary edges were retained. However, it should be
noted that these boundary edges might include inner rings and separated rings (see Figure 12).
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Figure 12: Potential inner rings and separate rings

The boundary edges are not ordered and need to be sorted to form a loop so it can be stored
as a valid geometry. It was done by randomly selecting an edge and finding the next one to
be connected. Once no next edge was found, the existing loop was returned. As is shown in
the figures above, the number of vertices of a boundary can be large due to the short distance
between points, so that boundaries can be simplified. The criterion for simplification was that
the angle between adjacent edges should be no more than 160 degrees. If the angle exceeded the
threshold, the corresponding vertex was removed and the two adjacent vertices were connected
(figure 13).

Figure 13: Simplification of the concave hull

For the convenience of the computation, only the longest outer ring was used among all returned
rings. Inner rings and separated rings were removed.

6.2.5 Identification of structures above roof

As mentioned in the previous section, roof surfaces were constructed based on the point clouds. For
every BAG ID (i.e. polygon with buildings), one obj file was exported containing all the possible
roof surfaces, which are created by fitting planes through the segmented points. Moreover, the
segmented point cloud, which had been cropped in separate ply files based on the BAG footprints,
was “cleaned” from points on the walls and roofs.

In this part, the roof surfaces and the cleaned point cloud corresponding to every BAG foot-
print were used as input datasets. The reconstructed roof surfaces were used to detect all the
points/segments that were located above them.
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The algorithm takes as input values two different datasets: the roof surfaces (obj files) and the
segmented point cloud (ply) for every BAG ID footprint. It retrieves the coordinates of the faces
that exist in each obj file and stores them in a list. Then, it stores the coordinates and the segment
IDs of the segmented point clouds.

The next step was to create 2D polygons of the faces (roofs surfaces) and to check and store all
2D points of the point cloud that are contained in the corresponding face (using Shapely library).
By applying this method, the algorithm filters out the points corresponding to a specific face in
2D space and then searches which of them are above or below the roof surface in 3D space.

Afterwards, a plane is fitted on each roof surface in order to retrieve its centroid coordinates, its
normal vector (i.e (A,B,C)) and the D parameter of the plane equation (i.e ’D = −Ax−By−Cz’).
All the parameters of the planes were stored in a dictionary.

All the segmented points, that corresponded to a specific roof surface, are projected on the roof
surface and a new z value is calculated for each point. The height difference between the original
3D point and its projected point is stored as an extra attribute of this point. This will be used
latter on for chimney detection described in section 6.2.6.

In the end, the algorithm returns all the points that are above the roof surfaces in a ply file. This
file contains for every point; (x, y, z) coordinates, the segment ID, the height difference and the
face ID of their corresponding roof surface.

The above procedure is executed for all the BAG footprints of the study area.

In Figure 14, the flowchart presents the order of the aforementioned steps. In figures 16 and 17,
the segmented points are visualized before and after the implementation of the algorithm. The
algorithm detects the actual points above the roofs and stores them in an output ply file.

Figure 14: Flowchart above roofs structures
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In figure 15, the idea of the algorithm is presented. The segmented points that possibly define a
small structure on the roof are projected on the corresponding plane.

Figure 15: Projected points on the roof plane

Figure 16: Before: Roof surfaces and segmented points

Figure 17: After: Roof surfaces and points above them

In some cases, the roofs surfaces overlapped each other. This happens as big flat structures above
the roofs are segmented and reconstructed as separate roof surfaces. Consequently, some segments
corresponded to multiple roof surfaces. In order to select only the points that are above the roof
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as a whole, the surface with the highest elevation was selected to be the corresponding surface to
a segment, on which the points were be projected.

Figures 18, 19, 20, 21 visualize the specific case of overlapping surfaces and how the algorithm
detects only the required ones. In figures 19 and 21, the color scale indicates the height difference
of each point from its corresponding roof surface. The red color displays the highest point, whereas
the blue color shows the lowest point.

Figure 18: Segmented points above 2
overlapping roof surfaces

Figure 19: Only points above roofs

Figure 20: Segmented points above 2
overlapping roof surfaces

Figure 21: Only points above roofs

6.2.6 Square chimney detection

Chimneys exist in many different shapes and sizes. For this project it was decided to focus only
on square brick chimneys, as it is believed this type of chimney is most easily distinguished from
other objects. All available segments over the roof are filtered out using different criteria, with the
goal to have only possible square chimneys left over. In order to distinguish between other objects
and square chimney, the minimum and maximum X, Y, Z position of all points of a segment were
determined and the span for each dimension was calculated. Furthermore the number of points
per segment and the distance of the points to the roof (not the same as Z, which is the absolute
height) was considered.

A chimney is defined as a square-like structure with dimensions of maximum 1m and a maximum
height of 2m. Even though this will exclude some very large chimneys, it ensured that the majority
of false segments could be excluded. The following criteria were used for selecting square chimneys
out of all segments:

• For every dimension, it is checked whether the span is larger than 1 meter. For x and y
direction this criterion can remove objects that are too large for being square chimneys (for
example solar panels or lifted parts of the roof). In z direction it is able to discard oblique
segments (for example, leftovers of oblique roofs).

• The span of x is divided by the span of y to get a ratio between x and y. If the ratio is lower
than 0.9 or higher than 1.1, it is considered not to be a chimney. With this approach long
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and thin structures can be detected, as the result will be very high or very low. A result of 1
represents a complete square segment. As the span is determined with the bounding box this
approach cannot detect oblique long and thin segments (as seen in figure 22), as the ratio of
their span of x and y is close to 1. An additional filtering step is needed.

Figure 22: Oblique feature

• To solve the problems of oblique segments the correlation between x and y is calculated. Every
segment with a correlation higher than 0.9 or smaller than -0.9 is excluded, as in this case the
points are distributed similar to figure 22.

• The distance of the segment’s centroid to the roof is calculated. Every segment with a distance
bigger than 2 meter from the roof is removed. This method allows to eliminate the segments
which correspond to trees located over the roofs.

All the thresholds used for the criteria were set carefully using trial and error. It is believed
that the selected thresholds are reasonable, however, it is realized that small differences in the
thresholds can lead to very different outcomes.

6.2.7 Compliance analysis

In order to check whether a building complies with the set chimney regulations, the height of its
chimney(s) and the highest point of its surrounding buildings are needed. As the filtering of square
chimneys out of all objects detected was not successful (see results), it was decided to implement
the compliance check for all the objects detected on top of the roofs. The client can then check
all detected objects for a building, which objects are compliant to the regulations, and whether
they are predicted to be a chimney.

The object’s height can be acquired from the chimney detection part (section 6.2.6), by finding
the highest point of a segment. The heights of a building can be derived from roof detection
(section 6.2.4) by finding the highest vertex of its roof polygons. For the purpose of convenience,
the heights of all buildings have been calculated and saved in a JSON file (dictionary format)
beforehand, which contains BAG IDs (key) and building heights (value).

The safety compliance analysis for one object can be divided into two parts as illustrated below,
and then this procedure can be applied for all the detected objects.

1) Finding buildings inside the 25-meter circle of which the center is the centroid of
the object (see Figure 23). This was done by calculating the distance between the center and
all the surrounding buildings. If the distance is less than 25 meters, then it is considered inside
the radius. Also, buildings that are not completely inside the radius are included. This means
that, although the highest point of one building may be outside the circle, it is still taken into
account. This is a limitation of the approach. All the buildings that were considered to be
inside the circle were stored in a list of BAG IDs.

2) Comparing the chimney height to the building height. The BAG IDs of the buildings
present in the search radius of 25 meters were used as keys to get the corresponding height
values in the pre-made JSON file. If any of these heights is bigger than the chimney height
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minus 2, this chimney is considered non-compliant with the regulations. Otherwise, it complies.

Figure 23: Highest segment point in a 25 meters radius

6.2.8 Quality assessment

In order to check the quality of the methods for object-chimney detection, results need to be
compared to ground truth data. Both the results generated by the algorithm detecting objects
above the roof, as the algorithm detecting chimneys were assessed. This was done in three steps:

1. Collection of ground truth data

2. Conversion of 3D point segments to 2D polygons

3. Comparison between ground truth and the converted 2D polygons

Ground truth data
As no ground truth data exist that contain shapes and locations of objects and square brick
chimneys on top of roofs in Amsterdam, the research team had to generate ground truth data
manually. It was aimed to collect all the objects on top of the roof for at least 5% of all the (BAG)
buildings in the research area. The aerial imagery underlying the DIM point cloud was clipped to
the research area and hereafter divided into 110 tiles.

Five tiles where selected randomly and divided among the research team members (fig. 24). Every
researcher manually drew all the required objects on top of all the buildings in the tile, which were
visible in the aerial imagery. For every object a polygon was created in a shapefile layer using
QGIS. To ensure consistency in the ground truth data collection methodology, guidelines where
specified on how to generate the data, especially focusing on what kind of objects to record, and
what kind not.
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Figure 24: Overview of the study area

The main goal was to draw all objects that are sticking out and are not part of the roof itself,
leading to the following guidelines:

– Capture every object that is on top of a roof and;

– Has a shadow, or;

– Has a very coarse texture, or;

– Sticks out on 3D viewer of Google Earth

– Do not capture

– Windows

– Solar panels

– Dormers

Next to a unique ID, two attributes were added for each object; ‘brick chim’ and ’polyarea’. The
first attribute could contain the value ‘y’ or ‘n’, which indicated if the object is a square brick
chimney (‘y’) or not (‘n’). The value of this attribute was selected by using both Google Street
View and the 3D capabilities of Google Earth. An example of a square brick chimney on an image,
in Google Street View and in Google Earth is presented in figure 25.
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Figure 25: The same square brick chimneys represented in an image, Google Street View and Google
Earth (from left to right)

The second attribute contains the polygon area. All the polygons with area less than 0.2 square
meters (m2) have not been considered in the whole process, as they correspond to small structures
that can not be detected in the point cloud.

After the ground truth for the five tiles was collected, the content of all the files was checked by
one individual for consistency and completeness. Hereafter, the shapefiles were merged and every
object received an unique ID.

In figure 16, the ground truth data are presented with green color whereas the polygons of BAG
buildings with light grey color.

Figure 26: Sample of ground truth data

3D point segments to 2D polygons
To be able to compare the results of both the object detection algorithm and afterwards the
chimney detection algorithm, the object detected in the extent of the five tiles were converted
from groups of 3D point segments to 2D polygons. Specifically, the Z coordinate was removed
from all the points. Hereafter two approached were tested.

In the first approach, the convex hull was generated for each segment - each detected deviation
above the roof (see fig 27). In the second approach, the concave hull was generated for each
segment (see fig 28). These two different approaches were tested, as the concave hull based on the
alpha shape technique (Delaunay Triangulation (DT)) is affected by the distribution of points in
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a segment. That’s why the triangulated points with triangle sides bigger than a specific threshold
value (0.2m) were not used (i.e. points that were far away).

For both approaches, the generated polygons were stored in a shapefile.

Figure 27: Example of a created convex hull for a detected segment.

Figure 28: Example of a created concave hull for a detected segment.

Quality check
The last step of the quality assessment comprises the comparison between the ground truth data
and the 2D polygons representing the detected objects and square brick chimneys by the algo-
rithm. Test statistics were calculated for all the detected objects and for the matching objects
(where a match is detected between a ground truth object and a algorithm object). This compar-
ison is done for both the concave polygons and the convex polygons. The calculated test statistics
are presented in table 5 and table 6.
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Objects above roof
Test statistic Description
Objects detected Percentage of ground truth objects that are detected by the algorithm (Based

on a 10% overlap; 10% of area of ground truth is overlapping with corresponding
detected object and a maximum area ratio of 2.5)

Mean overlap For the detected ground truth objects, the average percentage of the area of
the ground truth object that overlaps with the matched detected object

True positives Number of occasions where algorithm has detected an object at a location
where there is also an object in ground truth

False positives Number of occasions where algorithm detected an object while there is no
object at that location in the ground truth

False negatives Number of occasions where algorithm did not detect an object at a location
where there is an object in the ground truth

Table 5: Test statistics calculated for the detected objects above the roofs

Description of test statistics calculated for all the matching objects
Test statistic Description
Confusion matrix Presents the true positives, true negatives, false positives and false negatives
Overall accuracy Total number of well classified segments/polygons divided by all the total

amount of matches
Kappa coefficient The overall accuracy with the chance component removed

Table 6: Description of test statistics calculated for the matched objects

The ’Objects detected’ test statistic represented in table 5, depends on two parameters: a threshold
on the minimum percentage of overlap required to identify the ground truth object as ’detected’,
and the maximum ratio that is allowed between the area of the ground truth polygon and the
area of the 2D polygon representing a detected segment.

Figure 29: Case 1: Overlap between ground truth (green) and detected structures (blue)
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Figure 30: Case 2: Overlap between ground truth (green) and detected structures (blue)

As seen in Figures 29 and 30, the ground truth data (green color) are overlapping with the detected
structures (light blue color). The 10% overlap was used as the minimum required overlap in order
to detect as much as possible overlapping polygons. Since the ground truth data were digitized
manually (i.e. not well-drawn shapes) and the detected structures-polygons were created from
the segmented points (i.e. not good shapes), it was important to not pay attention to the exact
boundaries of the polygons, but to their minimum overlapping area.

6.3 Visualization

The envisioned tool for the verification of the regulation should allow the client to select a building or
chimney in the 3D model. Upon selection, all relevant properties of the objects should be displayed.
This includes the time of the last update and whether the object complies to the regulations according
to the predictions made by the algorithm. As the object detection did not yield satisfactory results,
it should be remembered the data used for the visualization is conceptual - further research is needed
to produce more reliable results. The software involved in the visualization of the output will be
briefly discussed in the results.

7 Results

7.1 Convex versus concave

In figure 31, the polygons of the ground truth data are displayed in green, while the convex hull and
the concave hull is displayed in red and light blue respectively. It is believed that the convex hull
provides a better 2D representation than the concave hull. The shape and the size of concave hull
polygons cover less area than that of the convex hull whilst this larger area often follows the shape
of ground truth data better. It was decided to use the convex hull approach in order to maximize
the possibility to overlap larger area of the corresponding ground truth polygon.
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Figure 31: Overlap between concave (red) and convex hull (blue) approaches presented on top of the
ground truth (green)

7.1.1 Objects above roof detection

In table 7 below, the test statistics calculated for the results of the object detection algorithm are
presented. The ground truth dataset consists of 3108 objects. In the whole extent of the ground
truth, the algorithm has detected 1185 objects. Approximately 5% (=154 objects) of the ground
truth objects have been detected by the algorithm (true positives), based on a 10% overlap of
the convex polygons representing the detected object with the ground truth and a maximum area
ratio of 2.5. The mean overlap of these matching objects is approximately 64%. The false positives
indicate that the algorithm has detected 1031 objects at locations where no objects were present
in the ground truth.

Objects above roof
Test statistic Value
Objects detected 4.95%
Mean overlap 63.71%
True positives 154
False positives 1031
False negatives 2954

Table 7: Test statistics calculated for the detected objects above the roofs

When visualizing the resulting detected objects by the algorithm, it could be noted that overall
the algorithm performs better at buildings with flat roofs when compared to more complex roof
structures. As seen in figures 32 and 33, the
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Figure 32: Flat roofs. Green = ground truth, blue = Convex hull

Figure 33: Non flat roofs. Green = ground truth, blue = convex hull.

7.1.2 Detection of chimneys

The confusion matrix and the calculated test statistics for the matching objects (the true positives
in table 7), are given in table 8 and table 9.

For the matching objects detected, the true positives show that the algorithm was able to detect
17 square brick chimneys which are also chimneys in the ground truth. This is 5% percent of
all the square brick chimneys present in the ground truth and 50% of all ground truth chimney
objects for which a match has been detected by the algorithm.

The algorithm has detected 833 chimneys in the whole extent of the ground truth. Therefore, 816
chimneys where detected by the algorithm at locations where there is no chimney or object in the
ground truth data.
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DO DO All
no yes all

GT no 40 80 120
GT yes 17 17 34
All all 57 97 154

Table 8: The confusion matrix for the matching objects. GT = Ground truth, DO = Detected
objects

Test statistic Value
Overall accuracy 37.01%
Kappa coefficient -0.10

Table 9: Test statistics calculated for the detected square brick chimneys

7.1.3 3D City Model

For visualization purposes the CityGML model can be converted to KML/COLLADA/glTF for-
mat, through the 3DCityDB Importer/Exporter. These conversions prepare the model to be used
in a variety of applications including Google Earth, Cesium and GIS. Figure 35 shows an example
of the city model exported in KML. Such applications are user-friendly, in that they allow the user
to easily distinguish between the different spatial features. In this way, only the relevant pieces
of information are retrieved - through information balloons. These have been created through
HTML templates. The structure of the CityGML file could allow one to hover/click on the in-
dividual building installations to view if they do/do not comply to the regulations. Of course,
this is a hypothetical ’template’. If the object detection had produced any reliable results, then
the formulation of the object attributes would probably be of another type (for example, using
percentiles to define object height and estimating the compliance with this).

Figure 34: Buildings modelled in Google Earth, with attributes shown and hovering enabled
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Figure 35: Objects on the roof modelled in Google Earth, and possibly relevant attributes

8 Discussion

The calculated test statistics for all the objects detected by the algorithm indicate that the algorithm
is able to detect only 5% of the objects in the ground truth dataset. In addition, it should be noted
that the false positives and the false negatives are high for both all the objects detected by the
algorithm and the algorithm objects for which a match is found with the ground truth.

The overall accuracy reaches 37%, however, the Kappa coefficient indicates that the distinction
between square brick chimneys and other roof objects of the matched objects, provided by the
algorithm, is of lower quality than if random classification were to be applied. This suggests that
there is currently no added value of applying the object and chimney detection algorithm.

After execution of the algorithm it can be concluded that it is possible to detect some small structures
over the roof by using a point cloud made from aerial images and a LIDAR point cloud. However,
next to real structures on the roof also many false structures are detected. A strong limitation to this
research, which likely contributes to these outcomes, is the quality of the input point clouds. The
roof surfaces in the DIM point cloud are bumpy. In order to cope with these bumps it was decided
to use a threshold of 40 cm above and below the generated roof plane, to eliminate points belonging
to roofs from the DIM point cloud. Consequently, object detection is limited to objects that are at
least 40 cm high. This problem could be solved by using a point cloud of higher quality, such as
LIDAR point clouds like the AHN3. However, using solely the AHN3 for object detection was not
possible as the density of the point cloud is quite low. Consequently objects are being represented
in the point cloud by only a few points.

Another important limitation for this project is the methodology applied for ground truth data
generation. No data is available on the location and/or the type of chimneys in Amsterdam, therefore
the data needed to be created manually. In addition the data was collected by different researchers.
Even though it is believed that the selected approaches were of the highest quality achievable, the
methods applied have some large drawbacks. Even on a high quality aerial image it is very difficult
to recognize chimneys or distinguish them from other roof structures. Even with Google Earth
and Google street view used as an additional aid, a complete identification of objects above roofs
- and especially chimneys -, is not possible. A lack in quality of the ground truth data strongly
influences the outcomes of the quality check of the generated algorithm. For example, the algorithm
has detected many more square chimneys than were present in the ground truth data. Therefore, it
is possible that during the manual approach of ground truth data collection many square chimneys
have been missed. For future research in this field, higher quality ground truth data with the location
of objects and chimneys is essential to improve the reliability of the quality check of the algorithm.

In addition, the way the quality check of the detected objects is executed also influences the results.
For example, it was decided to use the convex hull to represent detected segments in 2D as it was
believed that it provided a better representation of an object than the concave hull. However, if one
would argue the concave hull would be more suitable, the percentage of overlap between polygons will
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change, leading to a different amount of matches being detected. In further research the influence
of the 2D representation of objects on the quality assessment of the algorithm needs to be further
examined.

The results are also influenced in the case of the filtering of objects over the roof and the distinction
of square chimneys from other roof objects. A change of the distinction criteria will directly affect
the number of objects over the roof that are kept, as well as the number of chimneys. Less rigid
numbers, for example a span x-y-ratio with lower than 0.9 or higher than 1.1, leads to more objects
left after the filtering and also to more possible square chimneys. On the other hand, more outliers
(part of the roofs) from the segmentation will be kept and the number of false values would increase.
Furthermore, the threshold which is set to eliminate tree points; a distance of maximum 2 meters from
the centroid of a segment to the roof, has a strong limitation. This threshold has the disadvantage
that very large chimneys can not be detected, as they will be eliminated.

Furthermore, when focussing on the classification errors of the algorithm, the distinction between
chimneys and other objects on the roof is very challenging. Chimneys can have many different
shapes and can differ much in size. Chimneys represented as points are hard to distinguish from
other objects, such as air conditioning objects. Again, this problem could be solved with a higher
quality point cloud, as more details would be depicted and some unique attributes of the roof objects
would be visible.

Even if the detection was successful, another challenge would still have to be tackled: linking the
detected objects to the proper building units. Although the 3D model was enriched with information
regarding building units, it is currently not possible to determine the exact location of these units
within each building geometry. Hence, even if a certain object/chimney is modelled as a building
installation belonging to a certain BAG building, it is not possible to distinguish to which unit
it actually belongs. The problem becomes particularly apparent in the context of large mixed-
use buildings: there is no way of telling whether a non-compliant chimney belongs to a restaurant
located alongside the front facade or to a commercial unit at the far end of the building. Moreover,
the BAG geometries that were used throughout the process also present problems. In some cases, the
geometries represent clusters of buildings – this was observed for some rowhouses, which are a quite
common building type in the centre of Amsterdam. This further decreases the chances of matching
chimneys to the proper premises. More detailed data is needed to develop the model in a way that
allows chimney installations to be verified against regulations.

Finally, interoperability is an important concept for generating an usable and scalable output. In
other words, the result of the verification of regulations should make use of Open standards that
enforce interoperability. In the case of geospatial data, the Open Geospatial Consortium (OGC) is
one of the main organizations behind these standards. OGC standards used in this project include
the international encoding standards KML and CityGML, besides the community standard LAS [6].
However, the use of open standards does not guarantee optimal output. An example are the addresses
in the 3D model: the documentation of the software used to process the CityGML file [1] only allows
parsing a number of fixed templates. It was not possible to create multiple xAL:Premises within
one xal:Thoroughfare. Because of this, each address registered to a building had to be written to a
separate xAL:AddressDetails. This caused much redundancy, as the same postal code, street name
and house number had to be repeated many times. The result is a much larger and verbose file.
Another examples occurred when trying the visualize the roof surfaces in obj file format, through the
software CloudCompare. The shape of the concave hulls could not be properly displayed, which could
lead to wrong interpretations. However, this limitation was acknowledged timely and the software
Mapple was ultimately used for visual validations.

This is a consequence of very generic and flexible standards: they enable many different representa-
tions and operations, but can become very complex to handle. Applications involving these standards
may therefore choose to limit their scope and only focus on a subset of the specification. For fu-
ture work, the capabilities and limitations of different software should be thoroughly reviewed before
generating any output.
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9 Conclusions and recommendations

The objective of this project was to explore an automated approach to handling (and presenting)
compliance of chimneys to regulations. To this end, a number of research questions were formulated.
Firstly, the research focused on the detection of structures on top of roofs. This problem needed to
be tackled before moving on to distinguishing the actual chimneys from all other structures. The
results of this object detection are determined by the initial segmentation of the building’s points and
the roof reconstruction. When visualizing the 2D projection of the segmented points (as polygons)
on top of the original aerial images, it seems possible to distinguish some objects.

Even though the algorithm was able to detect 5% of the objects present in the ground truth, the
high amount of false positives indicated inconsistencies in either the ground truth or the algorithm
itself. Changes in the parameters of the codes used for detection and revision of the ground truth
did not lead to better results. Thus, this questions the possibility to make further statements on the
identification of chimneys. However, an attempt was made to filter out square chimneys from the
detected objects. Even though some square brick chimneys where correctly detected, most of the
chimneys in the ground truth were not.

In conclusion, it can be stated that identifying small objects and square chimneys on the roof, using
a point cloud generated from aerial images, is currently not possible with the applied methodology.
With current input data quality there is not a reliable method to do so. Whereas point clouds created
by stereo image matching usually have many points to represent small objects, their accuracy is
limited. Even flat roofs are very bumpy and it is hard to distinguish between an object or simply
false values. LIDAR point clouds instead are very accurate in their height but the distances between
the points are too big and small objects are not represented very well or not at all. With better
quality for the input data a big jump in the quality of the detection is to be expected. These accuracy
limitations also obstructs the possibility to distinguish square chimneys from other roof objects.

Regarding the 3D city model, the basic idea was to link the outcome of the detection algorithm
(compliance to regulations) to actual buildings and visualize this in an interactive tool. However, the
detection was not completely successful and the modelling itself presents some limitations. Therefore,
further developments are needed to create a complete and usable tool.

Due to the time and manpower limitations of this project, only one approach for identifying chimneys
could be examined. The following approaches are suggested to be investigated in further research:

• The aerial images of the point cloud could be used for feature detection in images using machine
learning approaches. Even though chimneys can differ greatly in color and shape it could be a
good decision supporter for the existing method.

• The color information of each point in the point cloud could be used as an additional information
source for distinguishing chimneys from other roof structure/vegetation over the roof.

• High quality infrared images captured during the winter can contain valuable information that
allows for localization of chimneys on top of roofs, as an operational chimney emits heat.

Overall it can be concluded that if the municipality of Amsterdam is interested in automated chimney
detection and validating to regulations, they need to invest in better quality input data. LIDAR point
cloud data should be collected for the city, which contains more points per square metre and high
quality ground truth data should be generated. It is believed that when improved input data is used
as inputs for the applied methods of this research, the output will be of a higher quality and therefore
of a higher value.
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A Appendix

Figure 36: Methodology
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