
3DCityDB-Tools plug-in for QGIS:
Adding server-side support to 3DCityDB v.5.0

Bing-Shiuan Tsai
P5 Defense Oct.29. 2024

1st supervisor: Giorgio Agugiaro
2nd supervisor: Camilo León Sánchez
Co-reader: Martijn Meijers

External supervisor: Claus Nagel
External supervisor: Zhihang Yao

1

2

Outline:
1. Introduction & Related work
2. Methodology & Implementation (part 1)
3. Methodology & Implementation (part 2)
4. Tests & Results
5. Conclusions & Future Development

3DCityDB 5.0

1. Introduction & Related work

3

3DCityDB 5.0

3D City Models

4

Wind Speed Simulation Analysis
TU Delft GEO5015 Course Assignment (2023)

Solar Irradiance Analysis
TU Delft GEO5014 Course Assignment (2023)

2024.Oct.29 13:00 (UTC + 8)

Shading Analysis
Taiwan 3D Map Online Portal Functions

Possible Interactions with
3D City Model data from QGIS

• Case2: click on one geometry to retrieve attributes
o read-only
o read-write

5

• Case1: checking only geometries

• Case3: retrieve feature geometries with “inline”
attributes
o read-only
o read-write

• Case4: user perform case 1-3 using GUIs

…… ID

Thesis Background

6

3D City Database

v.4.x v.5.0

Different database
schemas

SQL Data Encoding

o Requires SQL skills to access the data

3DCityDB-Tools
Plug-in for QGIS

v.8.x Thesis goal

Adding support to the new
3DCityDB 5.0

Data Interaction via GIS layers

o Intuitive data usage

v.2.0 (2012) v.3.0 (2021)

Fundamental changes in
data model

Conceptual Data Model

o Standards to represent city objects

Related Work - CityGML

7

v.2.0 (2012) v.3.0 (2021)

Fundamental changes in
data model

Conceptual Data Model

o Standards to represent city objects

8

CityGML 2.0
Example: Vegetation module

CityGML 2.0 Vegetation Module [Figure from Kolbe et al., (2012)]

9

CityGML 3.0

Space
feature

Boundary
feature

Core module

Lod2 Solid
Building

Lod2 roof

Lod2
Wall

Lod 2
Wall

LoD: Level of Detail
CityGML 3.0 Core module [Figure from Kolbe et al., (2021)]

Related Work - 3DCityDB

10

3D City Database

v.4.x v.5.0

Different database
schemas

SQL Data Encoding

o Requires SQL skills to access the data

v.2.0 (2012) v.3.0 (2021)

Fundamental changes in
data model

Conceptual Data Model

o Standards to represent city objects

11

3DCityDB Versions

3DCityDB 4.x 3DCityDB 5.0

12

3DCityDB 4.x

• Quick facts
o 66 tables
o Standard attributes are mapped to joined tables

(e.g. CITYOBJECT + BUILDING tables)
o Generic attributes are mapped to one EAV table

(CITYOBJECT_GENERICATTRIB table)
o All surface geometries are decomposed into

polygons

EAV: "Entity-Attribute-Value" model, or "open schema" model

13

Buildings mapped in 3DCityDB 4.x

• CITYOBJECT
Attributes

• BUILDING Attributes

14

Buildings mapped in 3DCityDB 4.x

• CITYOBJECT_GENERICATTRIB

Generic attribute names Generic attribute values
Foreign keys

feature_ID

• SURFACE_GEOMETRY

15

Buildings mapped in 3DCityDB 4.x

Foreign keys
feature_ID

Example: 1 solid
decomposed into polygons

16

3DCityDB 5.0

• Quick facts
o 18 Tables
o All attributes are mapped to only one EAV table

(PROPERTY table)
o All surface geometries NOT decomposed into polygons

EAV: "Entity-Attribute-Value" model, or "open schema" model

17

Buildings mapped in 3DCityDB 5.0
• FEATURE

• PROPERTY Attribute names Attribute values

18

Buildings mapped in 3DCityDB 5.0

Example: 1 solid directly
stored

Foreign keys
feature_ID

• GEOMETRY_DATA

19

3D City Database

v.4.x v.5.0

Different database
schemas

SQL Data Encoding

o Requires SQL skills to access the data

3DCityDB-Tools
Plug-in for QGIS

v.8.x Thesis goal

Adding support to the new
3DCityDB 5.0

Data Interaction via GIS layers

o Intuitive data usage

v.2.0 (2012) v.3.0 (2021)

Fundamental changes in
data model

Conceptual Data Model

o Standards to represent city objects

Related Work - 3DCityDB-Tools for QGIS

20

(Current) 3DCityDB-Tools for QGIS
• Create “layers” that follow Simple Feature for SQL (SFS) model

o i.e. one geometry has all attributes associated in a simple table

• Currently developed for 3DCityDB 4.x, and works only on PostgreSQL version

21

SQL Views & Materialized Views (MatView)
• Current plug-in uses MatViews for geometries, and views for attributes

VIEW

SQL statement saved

Scan &
Re-run

Return
result

Return
result

Usually longer query time
with large data

MATERIALIZED VIEW

Refresh

Result of SQL statement
saved as temporary table

ScanReturn
result

Return
result

Shorter query time with large data

Refresh time and storage consumption

22

Research Questions

How does the new 3DCityDB 5.0 affect the current method of the plug-in to create layers ?

Sub-questions:
● How do the new CityGML 3.0 concepts of space, LoD affect the process ?
● With regards to geometries, can the same or a similar approach be reproduced ?
● With regards to attributes, can the same or a similar approach be reproduced ?
● How is the CityGML 2.0 data mapped to the new schema of 3DCityDB 5.0?

2.Methodology & Implementation (Part 1)

23

3DCityDB 5.0

24

Methodology

• Feature Geometry
o Check existence of feature geometry representations

& LoDs
o fill up metadata table
o Create (materialized) views of feature geometries

• Feature Attribute
o Check existence of feature attributes and “types”
o fill up metadata table
o Create (materialized) views of selected attributes

o GIS Layer Creation
o Join (materialized) views of feature geometries and

attributes to create GIS layers

25

Check Existence of Geometries

SELECT DISTINCT
 f.objectclass_id,
 p.name,
 p.datatype_id,
 p.name,
 p.val_lod
FROM citydb.feature AS f
 INNER JOIN citydb.property AS p ON f.id = p.feature_id
 AND f.objectclass_id = 901 ',sql_where,' –-Extent selection
WHERE p.datatype_id IN (11,16)
 AND p.val_lod IS NOT NULL;

Check geometry of Space feature
(Building 901)

Check geometry of Boundary feature
(Roof Surface 712)

SELECT DISTINCT
 f1.objectclass_id AS parent_obejectclass_id,
 f2.objectclass_id,
 p2.name,
 p2.datatype_id,
 p2.name,
 p2.val_lod
FROM citydb.feature AS f1
 INNER JOIN citydb.property AS p1 ON f1.id = p1.feature_id
 AND p1.name = 'boundary' ',sql_where,'
 INNER JOIN citydb.feature AS f2 ON f2.id = p1.val_feature_id
 AND f2.objectclass_id = 712 --RoofSurface class
 INNER JOIN citydb.property AS p2 ON f2.id = p2.feature_id
 AND p2.datatype_id = 11; -- geometry property

Dynamically replaced by the PL/PgSQL functions

26

Feature Geometry Metadata

(Parent) Classes
LoDs & geometry
representations

27

Visualised Geometry (Mat)Views
• When it comes to feature geometries, users can select :

✓Desired LoD
✓Desired geometry representation

28

Test Datasets

(-) Artificial datasets

00:01.0

00:06.7

01:28.4

00:00.2

00:02.7

00:15.3

00:03.1

00:15.2

03:01.1

00:02.7

00:05.8

00:33.6

00:01.8

00:05.1

00:32.9

00:04.1

00:09.4

00:48.0

00:00.0 00:43.2 01:26.4 02:09.6 02:52.8 03:36.0

Building
(LoD0 Multi-Surface)

(Feature number: 30,449)

Relief Component
(LoD1 TIN)

(Feature number: 4,941)

Relief Component
(LoD3 TIN)

(Feature number: 1,815)

R
ijs

en
-H

ol
te

n
R

ijs
en

-H
ol

te
n

Vi
en

na

TIME UNIT: MM:SS.S

Space & Relief Component features with geometries (Buildings, TINs)

3DCityDB v.5.0 Materialized View Refresh time

3DCityDB v.5.0 Materialized View Query time

3DCityDB v.5.0 View Query time

3DCityDB v.4.x Materialized View Refresh time

3DCityDB v.4.x Materialized View Query time

3DCityDB v.4.x View Query time

29

Choice of View or MatView for Geometries
TIN: Triangulated irregular network

00:40.9

00:08.9

00:07.2

00:01.4

01:24.7

00:17.2

03:47.1

00:08.2

00:09.1

00:01.4

06:44.8

00:16.4

00:00.0 00:43.2 01:26.4 02:09.6 02:52.8 03:36.0 04:19.2 05:02.4 05:45.6 06:28.8 07:12.0

SolitaryVegetationObject
(LoD3 Implicit Representation)

(Feature number: 58,515)

SolitaryVegetationObject
(LoD2 Implicit Representation)

(Feature number: 187,360)

R
ijs

en
-H

ol
te

n
Vi

en
na

TIME UNIT: MM:SS.S

Space features with implicit geometries (Trees)

3DCityDB v.5.0 Materialized View Refresh time

3DCityDB v.5.0 Materialized View Query time

3DCityDB v.5.0 View Query time

3DCityDB v.4.x Materialized View Refresh time

3DCityDB v.4.x Materialized View Query time

3DCityDB v.4.x View Query time

30

Choice of View or MatView for Geometries

31

Choice of View or MatView for Geometries

00:05.3

00:39.3

00:01.1

00:09.8

00:16.2

02:11.0

00:04.4

01:16.9

00:03.6

00:12.4

01:13.2

03:06.9

00:00.0 00:43.2 01:26.4 02:09.6 02:52.8 03:36.0

Building_WallSurface
(LoD2 Multi-Surface)

(Feature number: 555,459)

BuildingPart_WallSurface
(LoD2 Multi-Surface)

(Feature number: 4,085,091)

R
ijs

en
-H

ol
te

n
Vi

en
na

TIME UNIT: MM:SS.S

Boundary features with geometries (Building walls)

3DCityDB v.5.0 Materialized View Refresh time

3DCityDB v.5.0 Materialized View Query time

3DCityDB v.5.0 View Query time

3DCityDB v.4.x Materialized View Refresh time

3DCityDB v.4.x Materialized View Query time

3DCityDB v.4.x View Query time

32

Feature Geometry: Results

• When it comes to feature geometries, it is not necessary to create materialized views for all
representations
o Optional with space geometries (different from implicit representations)
o Still needed for implicit representation, and boundary geometries
o It is still reasonable to use materialized views for accessing geometries

• In the server-side plug-in of this research, users can select
o Desired geometry representation
o Desired LoD

33

Methodology

• Feature Geometry
o Check existence of feature geometry representations

& LoDs
o fill up metadata table
o Create (materialized) views of feature geometries

• Feature Attribute
o Check existence of feature attributes and “types”
o fill up metadata table
o Create (materialized) views of selected attributes

o GIS Layer Creation
o Join (materialized) views of feature geometries and

attributes to create GIS layers

34

Check Feature Attributes
• Check whether attributes are:

o Type: “Inline” or “Nested”
o Multiplicity: [0..1] “single” / [0..*] “multiple”

• 4 possible classes:
o Class 1 - “Inline-Single”
o Class 2 - ”Inline-Multiple”,
o Class 3 - “Nested-Single”
o Class 4 - “Nested-Multiple”

• Flatten (i.e. "linearise") attributes depending on their classes

35

Check Existence and Classify Attributes

SELECT
 ARRAY_AGG(DISTINCT p.name)
FROM citydb.feature AS f
 INNER JOIN citydb.property AS p ON (f.id = p.feature_id
 AND f.objectclass_id = 901 ',sql_where,')
WHERE p.parent_id IS NULL
 -- Filter irrelevant attribute data types and Nested attribute
 AND p.datatype_id NOT IN
 (8, 9, 10, 11, 16, ',nested_attri_ids,');

Check “Inline” feature attributes
(Building 901)

Check “Nested” feature attributes
(Building 901)

SELECT
 ARRAY_AGG(ARRAY[p_attri, attri]) AS nested_attribute_set
FROM(
 SELECT DISTINCT p.name AS p_attri, p1.name AS attri
 FROM citydb.feature AS f
 INNER JOIN citydb.property AS p ON f.id = p.feature_id
 AND f.objectclass_id = 901
 -- Filter on parent attribute
 AND p.datatype_id NOT IN (8, 9, 10, 11, 16) ',sql_where,'
 -- Join the child attributes and filter out the Inline attributes
 INNER JOIN citydb.property AS p1 ON p.id = p1.parent_id
 ORDER BY p.name, p1.name
) AS nested_attribute;

Dynamically replaced by the PL/PgSQL functions

36

Feature Attribute Metadata

Classes Existing attributes “Inline” /
”Nested”

Simple /
Multiple

37

Class 1 - “Inline-Single” Attributes

feature_id name val_string val_codespace

1 class habitation link

2 class habitation link

3 class traffic link

4 class vegetation link

feature_id class class_codespace

1 habitation link

2 habitation link

3 traffic link

4 vegetation link

Source table Resulting table

Rename Replace the prefix

38

• ..After flattening

• PROPERTY table, before

Class 1 - “Inline-Single” Attributes

feature_id name val_string val_codespace

1 function residential link

1 function hostel link

2 function hospital link

3 function residential link

feature_id function_1 function_codespace_1 function_2 function_codespace_2

1 residential link hostel link

2 hospital link NULL NULL

3 residential link NULL NULL

39

Source table Resulting table

Class 2 - “Inline-Multiple” Attributes

Multiplicity 1 Multiplicity 2

Rename Replace the prefix

40

• .. After flattening

• PROPERTY table, before

Class 2 - “Inline-Multiple” Attributes

feature
_id

height
_value

height
value_UoM

height
_status

height_low
Reference

height_high
Reference

1 15 m measured lowest
GroundPoint

highest
RoofEdge

attrib
_id

feature
_id

parent
_id

name val_
string

val_
double

val_
uom

8 1 NULL height NULL NULL NULL

9 1 8 value NULL 15 m

10 1 8 status measured NULL NULL

11 1 8 lowReference lowest
GroundPoint

NULL NULL

11 1 8 highReference highest
RoofEdge

NULL NULL

41

Class 3 - “Nested-Single” Attributes

Source table Resulting table

Rename to parent & child
attribute name combinations

42

• ..After flattening

• PROPERTY table, before

Class 3 - “Nested-Single” Attributes

feature
_id

height
_value
_1

height
_UoM
_1

height
_status
_1

height_low
Reference
_1

height_high
Reference
_1

1 15 m measured lowest
GroundPoint

highest
RoofEdge

attrib
_id

feature
_id

parent
_id

name val_
string

val_
double

val_
uom

8 1 NULL height NULL NULL NULL

9 1 8 value NULL 15 m

10 1 8 status measured NULL NULL

11 1 8 lowReference lowest
GroundPoint

NULL NULL

11 1 8 highReference highest
RoofEdge

NULL NULL

43

Class 4 - “Nested-Multiple” Attributes

Source table Resulting table

Multiplicity 1 Multiplicity 2

Class 3 rename strategy

2nd height entry

44

• PROPERTY table, before

Class 4 - “Nested-Multiple” Attributes

45

• ..After flattening

Class 4 - “Nested-Multiple” Attributes

46

Feature Attribute: Results

Class 1 - Inline-Single
Building - “description”

Class 2 - Inline-Multiple
Building - “function”

47

Feature Attribute: Results

Class 4 - Nested-Multiple
Building – “height”

Class 3 - Nested-Single
Building – “土砂災害警戒区域

(Landslide Disaster Warning Area)”

48

Feature Attribute: Results

• When it comes to feature attributes, the structure of PROPERTY table in 3DCityDB 5.0 makes
attribute flattening more challenging

• 4 classes of attributes correspond to 4 linearising strategies

• In the server-side plug-in of this research
o Users can select which attributes to link with geometries
o Generic attributes are treated as “standard” attributes
o Attribute names in other characters (e.g., kanji in Japanese) can be used as column names, too

3. Methodology & Implementation (Part 2)

49

3DCityDB
v.5.0

50

Methodology

• Feature Geometry
o Check existence of feature geometry representations

& LoDs
o fill up metadata table
o Create (materialized) views of feature geometries

• Feature Attribute
o Check existence of feature attributes and “types”
o fill up metadata table
o Create (materialized) views of selected attributes

o GIS Layer Creation
o Join (materialized) views of feature geometries and

attributes to create GIS layers
o Store information for layer generation

51

GIS Layer Creation Approaches

Approach_2
Materialized View
multiple left JOINs

Approach_1
View

multiple left JOINs
=

Geometry
MatView

+

Attribute View_1

+

Attribute View_2 Attribute View_3

+ …

=

Geometry
MatView

+

Attribute MatView_1

+

Attribute MatView_2 Attribute MatView_3

+ …

=

Geometry
MatView

+

Integrated Attributes MatView

Approach_3
Materialized View

just 1 left JOINs

52

● Timewise, Approach 3 is the most suitable option: just one JOIN + MatViews

Choice for GIS Layer Creation approaches

00:00.4

00:00.3

00:01.0

00:00.7

00:23.6

01:56.6

00:00.0 00:17.3 00:34.6 00:51.8 01:09.1 01:26.4 01:43.7 02:01.0 02:18.2

SolitaryVegetationObject
(LoD2 Implicit Representation)

(Feature number: 3,341)

BuildingPart_RoofSurface
(LoD2 Multi-Surface)

(Feature number: 110,395)

TIME UNIT: MM:SS.S

Query Time of the GIS Layers (Vienna dataset)

Approach 1- Views (Multiple Joins)

Approach 2- Materialized Views (Multiple Joins)

Approach 3- Materialized View (1 Join)

53

GIS Layer Creation Query Templates

SELECT
 COALESCE(a1.f_id, a2.f_id, ...) AS f_id,
 a1.',qi_a1_col_name_2,',
 a2.',qi_a2_col_name_2,',
 a2.',qi_a2_col_name_3,',
 ...
FROM (',ql_collect_flatten_attri_1_SQL,') AS a1
 FULL JOIN (',ql_collect_flatten_attri_2_SQL,') AS a2
 ON COALESCE(a1.f_id) = a2.f_id
 FULL JOIN (',ql_collect_flatten_attri_3_SQL,') AS a3
 ON COALESCE(a1.f_id, a2.f_id) = a3.f_id
 ...

Integrate selected feature attributes Create GIS layer using approach 3

SELECT
 g.f_id,
 g.f_object_id,
 g.geom,

 -- Dynamically extended part
 -- The first column a.f_id is not selected
 a.',qi_a_col_name_2,',
 a.',qi_a_col_name_3,',
 a.',qi_a_col_name_4,'
 ...

FROM citydb.',qi_geometry_materialzied_view_name,' AS g
 LEFT JOIN citydb.',qi_attri_table,' AS a ON g.f_id = a.f_id

Dynamically replaced by the PL/PgSQL functions

54

Layer Creation Metadata

(Parent)
Classes

“Inline” & ”Nested”
Attributes selected

LoDs &
Geometries

55

Created GIS Layers

4. Tests & Results

56

3DCityDB 5.0

57

Results
• Rijsen-Holten dataset (CityGML 2.0) – full schema extents

58

• Rijsen-Holten dataset (CityGML 2.0) – user-selected extents

Results

59

• Vienna dataset (CityGML 2.0)– full schema extent

Results

60

Results
• Tokyo dataset (CityGML 2.0) – full schema extent

61

Results
• FZK Haus dataset (CityGML 3.0) – full schema extent

62

Results
• Munich transportation dataset (CityGML 3.0) – full schema extent

63

Results
• New York City transportation dataset (CityGML 3.0) – full schema extent

5. Conclusions & Future Development

64

3DCityDB 5.0

65

Answers to Research Questions

How does the new 3DCityDB affects the current method of the plug-in to create layers?

66

Answers to Research Questions

For geometries:
● How do the new CityGML 3.0 concepts of space, LoD affect the process ?
● Can the same or a similar approach be reproduced ?

➢ The CityGML 3.0 Core module simplifies management of geometry representations and LoDs

➢ Users can select their desired feature LoD and geometry representation for creating GIS layers

➢ Materialized views are still preferable with implicit geometries and space-boundary classes

67

Answers to Research Questions

For attributes:
● Can the same or a similar approach be reproduced ?

➢ No!! Since all attributes are stored following the EAV model within 3DCityDB 5.0. They require
different strategies for flattening depending on one of the four classes.

➢ But: The current new approach should simplify future management of ADE-related attributes

➢ Attribute materialized views are preferable to offer better user experience.

ADE: Application Domain Extension

68

Answers to Research Questions

● How is the CityGML 2.0 data mapped to the new schema of 3DCityDB 5.0?

➢ CityGML 2.0 data is mapped automatically to CityGML 3.0 upon import into 3DCityDB 5.0

➢ Certain properties from CityGML 2.0 cannot be directly mapped are marked as “deprecated”
(e.g. RoofEdge geometry)

➢ In the implementation of this research, the deprecated properties are displayed in the
metadata check but are excluded during view creation

Use Cases Check & Limitations

• Case1: checking feature geometries

• Case2: click on feature geometry to access attributes
o read-only
o read-write

• Case3: access feature geometry and linked attributes
o read-only
o read-write

• Case4: user perform case 1-3 using GUIs
69

…… ID

Limitations

70

• Boundary Feature
➢ lod2 Multi-Surface

• Space Feature
➢ No own geometries

• At the moment, features without their "own" geometry
representations cannot be viewed via GIS layers

Transportation module extraction
[Figure from Kolbe et al., (2021)]

71

Future Development

• Add Read-write capabilities for use case 3-2
• Rethinking of the strengths/weaknesses of materialised

views?

• Role of IVM (Incremental View Maintenance) package in
PostgreSQL?

• Adaptation of the plug-in client side
• Modify “Layer Loader” to enable geometries and attribute

selection

• Use the metadata table (on layer generation) as the
connecting point between PostgreSQL server-side (this
work) and the new to-be-updated client-side in QGIS

72

Thank you for your attention

73

3DCityDB 5.0

	Slide 1: 3DCityDB-Tools plug-in for QGIS: Adding server-side support to 3DCityDB v.5.0
	Slide 2
	Slide 3: 1. Introduction & Related work
	Slide 4: 3D City Models
	Slide 5: Possible Interactions with 3D City Model data from QGIS
	Slide 6: Thesis Background
	Slide 7: Related Work - CityGML
	Slide 8: CityGML 2.0
	Slide 9: CityGML 3.0
	Slide 10: Related Work - 3DCityDB
	Slide 11: 3DCityDB Versions
	Slide 12: 3DCityDB 4.x
	Slide 13: Buildings mapped in 3DCityDB 4.x
	Slide 14: Buildings mapped in 3DCityDB 4.x
	Slide 15: Buildings mapped in 3DCityDB 4.x
	Slide 16: 3DCityDB 5.0
	Slide 17: Buildings mapped in 3DCityDB 5.0
	Slide 18: Buildings mapped in 3DCityDB 5.0
	Slide 19
	Slide 20: (Current) 3DCityDB-Tools for QGIS
	Slide 21: SQL Views & Materialized Views (MatView)
	Slide 22: Research Questions
	Slide 23: 2.Methodology & Implementation (Part 1)
	Slide 24: Methodology
	Slide 25: Check Existence of Geometries
	Slide 26: Feature Geometry Metadata
	Slide 27: Visualised Geometry (Mat)Views
	Slide 28: Test Datasets
	Slide 29: Choice of View or MatView for Geometries
	Slide 30: Choice of View or MatView for Geometries
	Slide 31: Choice of View or MatView for Geometries
	Slide 32: Feature Geometry: Results
	Slide 33: Methodology
	Slide 34: Check Feature Attributes
	Slide 35: Check Existence and Classify Attributes
	Slide 36: Feature Attribute Metadata
	Slide 37: Class 1 - “Inline-Single” Attributes
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Feature Attribute: Results
	Slide 47: Feature Attribute: Results
	Slide 48: Feature Attribute: Results
	Slide 49: 3. Methodology & Implementation (Part 2)
	Slide 50: Methodology
	Slide 51: GIS Layer Creation Approaches
	Slide 52
	Slide 53: GIS Layer Creation Query Templates
	Slide 54: Layer Creation Metadata
	Slide 55: Created GIS Layers
	Slide 56: 4. Tests & Results
	Slide 57: Results
	Slide 58: Results
	Slide 59
	Slide 60: Results
	Slide 61: Results
	Slide 62: Results
	Slide 63: Results
	Slide 64: 5. Conclusions & Future Development
	Slide 65: Answers to Research Questions
	Slide 66: Answers to Research Questions
	Slide 67: Answers to Research Questions
	Slide 68: Answers to Research Questions
	Slide 69: Use Cases Check & Limitations
	Slide 70: Limitations
	Slide 71: Future Development
	Slide 72
	Slide 73: Thank you for your attention

