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a  b  s  t  r  a  c  t

Estimating  gas  source  terms  is essential  and  significant  for managing  a  gas  emission  accident.  Optimiza-
tion  method,  as a kind  of  estimation  methods,  is  helpful  to  figure  out the  source  terms  by  solving  the
inverse  problem.  Significantly,  the  performance  of  optimization  method  on source  term  estimation  is
affected  by  the  accuracy  of forward  dispersion  model.  To  enhance  the estimation  accuracy,  previous
works  have  demonstrated  the feasibility  of  using  Back  Propagation  Neural  Network  (BPNN)  trained  by
actual experimental  datasets  as a forward  dispersion  model.  However,  the  overall  accuracy  of  source
estimation  is still  limited  by  backward  estimation  methods.  Most  related  studies  used  a single  opti-
mization  algorithm  to estimate  source  terms,  which  usually  fails  to realize  the  requirements  of  both
high  calculation  accuracy  and  satisfying  computational  efficiency.  Therefore,  a  hybrid  strategy  was  pro-
posed in  this  study  to  combine  optimization  algorithms  with  different  characteristics,  including  particle
swarm  optimization,  genetic  algorithm  and  simulated  annealing  algorithm,  to  not  only  achieve  high accu-
racy  in  global  searching,  but also  converge  to a stable  result  efficiently.  Finally,  extensive  experiments

are  conducted  to  testify  our  proposed  hybrid  optimization  algorithms.  The  Skill  scores  of  hybrid  opti-
mization  algorithms  decrease  obviously  compared  to  those  of  single  optimization  algorithm.  Hence, the
proposed  hybrid  strategy  is potentially  useful  for guiding  the  combination  of  optimization  algorithms
for  gas source  terms  estimation,  which  further  contributes  to  deal with  a gas  emission  accident  with
satisfying  calculation  accuracy  and computational  efficiency.

nstitu
© 2020  I

. Introduction

Hazardous gas emission accidents have brought huge damage
o the society (Yi et al., 2017). For example, The Fukushima Dai-
chi Nuclear Power Plant (FNPP1) accident in Japan in March 2011
aused wide spread devastation (Tsuruda, 2013). Consequently, it is
f vital importance and necessity to monitor hazardous gas emis-
ion and apply different methods to estimate terms of emission
ource. In recent years, many researchers use different algorithms

nd strategies to solve the problem of source term estimation. How-
ver, these methods always have their own limitations, for instance,
article swarm optimization algorithms (PSO) is easy to fall into
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local optimum, or genetic algorithms (GA) has low efficiency due
to its poor local searching ability. Researchers have used differ-
ent ways to overcome the limitations of traditional source term
estimation algorithms, such as fine-tuning the parameters of a sin-
gle algorithm (Chu et al., 2011) or combine different algorithms
together (Vasant et al., 2019). The former approach is difficult
to find optimal values of parameters with limited performance
improvement, while the latter approach still can be improved. So
it is necessary to combine optimization algorithms with different
characteristics under the guidance of suitable hybrid strategy for
better estimation of gas source.

Source terms consist of source position, source strength and
so on. These parameters can be estimated by various methods
based on gas dispersion observation data, including concentra-
tion data and meteorological data (Zhu et al., 2018). Except for

the direct way  by portable instruments or widely distributed sen-
sors, indirect methods by computation algorithms coupled with
measurement results are also used to determine the source terms
of gas emissions (Ma  et al., 2014). Common computation algo-
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ithms include Algebraic method (Debski, 2010), Bayesian method
Xue et al., 2018) and Optimization method (Chu et al., 2011).
mong them, the Algebraic method obtains the source terms by
guring out the atmospheric dispersion model inversely. But due

o the complexity of atmospheric dispersion, it is hard to handle
he problem directly under most conditions (Debski, 2010). The
oal of the Bayesian method is to obtain the posterior probabil-
ty density distribution of the source terms by Bayesian inference,
nd then estimate the source terms by probability density (Keats
t al., 2007). The Optimization method is mainly to find the optimal
alue of the source terms by minimizing the cost function (Vasant
t al., 2020). There are various optimization algorithms, such as
SO, GA, simulated annealing algorithms (SA), firefly algorithms
Fister et al., 2013). PSO is a commonly used optimization algo-
ithm originated in studies of synchronous bird flocking and fish
chooling. A collection of particles is defined in PSO correspond-
ng to a candidate solution to the optimization problem (Boeringer
nd Werner, 2004). Motivated by Darwin’s theories of evolution
nd the concept of “survival of the fittest”, genetic algorithms use
rocesses analogous to genetic recombination and mutation to pro-
ote the evolution of a population that best satisfies a predefined

oal (Khlaifi et al., 2009). SA is a stochastic optimization procedure
hich is widely applicable and has been found effective in several

roblems arising in different fields (Gibson et al., 2002). Ma  (Ma
t al., 2017) combined PSO algorithm with Tikhonov regularization
o identify source parameters including source strength and loca-
ion. The comparison results of simulation and experiment case
howed that the linear Tikhonov–PSO method with transformed
inear inverse model has high computation efficiency. Khlaifi et al.
Khlaifi et al., 2009) applied GA and Gaussian diffusion model for
he source quantification. The study demonstrated that this method

akes it possible to identify the emission parameters of the main
ource in the study zone. Thomson (Thomson et al., 2007) used a
andom search algorithm and a SA algorithm to locate the known
as diffusion sources in the desert. However, researches show that
ifferent optimization algorithms have their own advantages and

imitations. For example, algorithms with fast calculation speed are
ften trapped in local optimum and hard to obtain global opti-
al  solutions, like PSO algorithm. While algorithms with strong

earching ability usually show a poor performance in computa-
ional efficiency, like GA algorithm. Combining algorithms with
ifferent characteristics together is an obviously suitable way  to
btain better performance of estimation results. Furthermore, the
ccuracies of estimation results largely depend on the accuracy of
he forward dispersion model that is used in backward calculation
Wang et al., 2018;Vasant et al., 2020). The error of the forward
ispersion model will affect the range of the error of the inverse
stimation. Therefore, it is necessary to build an accurate forward
ispersion model for source term estimation.

In the study of forward atmospheric dispersion modeling,
esearchers used partial differential equations to describe the gas
ispersion process. With the development of computer technology,
eople began to use computer simulation to numerically simulate
nd calculate gas dispersion. (Sheppard, 1962). Gaussian dispersion
odel (Hanna et al., 1982), Lagrange stochastic model (Wilson and

awford, 1996) and Computational Fluid Dynamics model (CFD)
Efthimiou et al., 2017) are currently three commonly used meth-
ds. However, methods with high computational efficiency, like
aussian dispersion model, often have low accuracy in compli-
ated scenes. While methods with high calculation accuracy, like
agrange stochastic model and CFD, are always computationally
xpensive (Qiu et al., 2018). In order to solve the problem that afore-

entioned atmospheric dispersion models are difficult to balance

he accuracy and computational efficiency, Artificial Neural Net-
ork (ANN) has been applied to this field in recent years (Boznar

t al., 1993; Chen et al., 2020). As one of the most widely used
ental Protection 138 (2020) 27–38

ANN models, Back Propagation Neural Network (BPNN) is a multi-
layer feedforward network trained by error inverse propagation
algorithm. The BPNN model can approximate an arbitrary func-
tion theoretically and has strong nonlinear mapping ability. After
being trained by dataset, the BPNN model can predict the dis-
persion of hazardous gas accurately and efficiently (Valeriy and
Pandian, 2018). Many researchers have applied this method into
their studies. So et al. (So et al., 2010) used neural network to esti-
mate the release rate based on real-time sensor data. The results
indicated that the proposed technique can estimate release rates
effectively within seconds. Lauret et al. (Lauret et al., 2016) cou-
pled Cellular Automata with ANN to calculate the atmospheric
dispersion of methane in 2D scenario. Then, Efforts are made in
reducing computation time while keeping an acceptable accuracy.
Ma (Ma  and Zhang, 2016) applied different machine learning algo-
rithms, including BPNN, Radial Basis Function (RBF) network and
Support Vector Machine (SVM), coupled with Gaussian parame-
ters to predict forward atmospheric dispersion and compare the
performance of different algorithms. These studies have shown
that neural network has good performance in the simulation of
atmospheric forward dispersion, and thus has positive effects on
improving the accuracy of inverse source term estimation.

In this study, the state-of-the-art BPNN-based method is used
to simulate the gas forward dispersion process. After trained by
abundant actual experiment data, the neural network exhibits good
performance in both calculation accuracy and calculation speed
compared with traditional atmospheric dispersion models. The
trained BPNN also ensures the accuracy and efficiency of inverse
estimation result on source term. In addition, as it is the first step
to investigate the feasibility of using hybrid strategy in the realm of
source term estimation, we  selected three most commonly used
optimization algorithms (PSO, GA and SA) and combined them
together based on the hybrid strategy. The estimation results on
source terms of actual dataset illustrate that each step of combina-
tion overcomes several limitations of original algorithms. As for the
final PSO + GA + SA hybrid algorithm, in the early stage of operation,
the hybrid optimization algorithm has large randomness, ensuring
strong global search ability for an accurate solution. As the num-
ber of iteration increases, the randomness of hybrid optimization
algorithm reduces gradually, in order to improve the local search
ability and obtain a stable solution. Experimental results show that
a hybrid strategy combining three common and naïve optimiza-
tion algorithms can even achieve better performance compared to
traditional strategies. This implies that a hybrid strategy could be
a promising and useful tool in the emergency management of gas
emission accidents.

The rest of this paper is organized as follows. Section 2 describes
the principle of atmospheric forward dispersion model (BPNN) and
optimization algorithms, as well as the proposal of hybrid strategy.
The establishment and training of BPNN based on field dataset (the
Prairie Grass Project) is demonstrated and analyzed in Section 3.
Section 4 gives the source estimation experiments of three opti-
mization algorithms. The comparison and analysis of estimation
results are also discussed in this section. The discussion is given in
Section 4, followed by the conclusions in Section 5.

2. Models and methods

2.1. Atmospheric forward dispersion model

To solve the problem of source term estimation, it often requires

the forward atmospheric dispersion model to behave well in com-
putational accuracy and efficiency. However, existing atmospheric
dispersion models, like the Gaussian model, Lagrange stochastic
model and CFD model, cannot balance the requirements of high
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Fig. 1. Structure 

stimation accuracy and good computational efficiency. To deal
ith the problem, ANN has been applied in recent years to pre-

ict the concentration distribution of gas dispersion. BPNN is a
ulti-layer feedforward network trained by error inverse propaga-

ion algorithm (Valeriy and Pandian, 2020a). As for computational
fficiency, the computation time of BPNN is mainly cost in the neu-
al network training process, but the training can be completed
n advance (Valeriy and Pandian, 2020b). Once the training is com-
leted, as long as input data follow the corresponding format in the

nference process, BPNN can output the prediction results quickly
Thomas et al., 2020). In terms of computational accuracy, BPNN
as a strong nonlinear fitting ability. Through the training of abun-
ant data, it can fit the complex relationship between the input and
he output with high precision (Pelliccioni and Tirabassi, 2006).

Therefore, this study uses BPNN model to predict the concen-
ration distribution of gas accurately and quickly. Noticeably, the
tructure of our BP model is shown in Fig. 1, including an input layer,
wo hidden layers and an output layer. The number of input layer
eurons equals the dimension of training data, matching the num-
er of source terms to be estimated. The neuron numbers of two
idden layer are continuously debugged according to the dataset
haracteristics and training results. Since the goal is to predict the
as concentration distribution, the output layer has only one neu-
on, representing the concentration of hazardous gas.

There exist many factors affecting the gas concentration
istribution in different degrees, like emission parameters, meteo-
ological parameters and topography parameters. In this paper, five

ost important parameters, including source position X, Y, source
trength Q, wind speed V and wind direction Dir, are selected as
he parameters of source term estimation (Wang et al., 2018). The
stablishment and training process of BPNN will be described in
ection 3.2.

.2. Optimization algorithms and hybrid strategy

To our knowledge, this study is the first work using hybrid
trategy in the realm of source term estimation. Therefore, the
oal of this study is not using the state-of-the-art techniques and
ne-tuning their parameters. Instead, we simply select three most
ommonly used optimization algorithms (PSO, GA, and SA) to tes-
ify the feasibility of using hybrid strategy. Moreover, the hybrid
trategy is not a random combination, but a strategy with progres-
ive relation based on the characteristics of different optimization
lgorithms.

.2.1. Particle swarm optimization algorithm

PSO was first proposed by Eberhart and Kennedy in 1995

Kennedy and Eberhart, 1995), and its basic concept stems from
he study of the foraging behavior of flocks. The PSO algorithm is
imple and easy to implement, with few parameters and fast con-
 neural network.

vergence. The process of PSO can be described as follows. There are
N particles in the D-dimensional searching space corresponding to
candidate solutions to the optimization problem. The position of
the particle i in the kth iteration is Xk

i
, which is updated by the influ-

ence of the velocity (Vk
i

) of the particle i. pbesti = (pi1, pi2, ...piD) is
the previous best position of particle i, and gbest = (g1, g2, ...gD)
is the global best position of the swarm. After getting pbesti and
gbest, each particle can update its position and velocity according
to following formula:

Vk+1
i

= ω • Vki + c1 • rand1 • (pbesti − Xki ) + c2 • rand2 •

(gbest − Xki ) (1)

Xk+1
i

= Xki + Vk+1
i

(2)

Where ω is the inertia factor, used to control the velocity of par-
ticles. i = 1, 2, 3, . . . N is the particle number. c1 and c2 are called
learning factors or acceleration coefficients. Appropriate c1 and c2
can not only accelerate the convergence speed but also refrain from
falling into local optimum easily to some extent. In order to bal-
ance the effect of random factors, c1 and c2 are set equal generally.
rand1 and rand2 are random numbers between 0 and 1. According
to Eq. (1), the next iteration velocity of particle i is determined by
its current velocity, position, pbesti and gbest.

Generally, there are many local optimal values distributed
around the global optimal value. Due to the characteristics of PSO
algorithm, once the algorithm finds a local optimal value, it will fall
into it and thus fail to find out the global optimal value (Bhushan
and Pillai, 2013).

2.2.2. Genetic algorithm
The Genetic Algorithm (GA) originated from computer simula-

tion studies of biological systems. It is a random global search and
optimization method that mimics the evolutionary mechanism of
biological evolution in nature, drawing on Darwin’s evolution the-
ory and Mendel’s genetic theory (Angeline et al., 1994). The GA use
processes analogous to genetic recombination and mutation to pro-
mote the evolution of a population that best satisfies a predefined
goal. It is an efficient, parallel, global search method in essence,
which can automatically acquire and accumulate knowledge about
the search space, and control the search process adaptively to
obtain the best solution (Boeringer and Werner, 2004). It has
many advantages, like parallel computing capabilities, scalability,
and easy to combine with other technologies and algorithms. The
biggest advantage is that it scarcely falls into the local optimization

during the search process. Even in the case that defined cost func-
tion is discontinuous, irregular, or noisy, the global optimal solution
can be found with high probability (Boeringer and Werner, 2004)
(Fig. 2).
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Fig. 2. Crossover and mutation in genetic algorithm.

One of the core ideas of GA is chromosome coding, which estab-
ishes the mapping between actual parameters and genes. In this
aper, the selected source terms and corresponding velocity are
onsidered as genes on different chromosomes. The core steps
f the GA are crossover, mutation and selection. The crossover
peration refers to the exchange of two partial chromosomes in

 certain way to form two  new individuals. One-point Crossover,
wo-point Crossover, Multi-point Crossover, Uniform Crossover
nd Arithmetic Crossover are typical means of crossover. The muta-
ion operation refers to the replacement of several genes in the
ndividual chromosome with other alleles, thereby forming new
ndividuals. The means of mutation usually include Simple Muta-
ion, Uniform Mutation, Boundary Mutation, and Non-uniform

utation. The selection operation refers to the screening of all
ndividuals in the population according to certain strategy. There
re many common selection strategies, such as Roulette Wheel
election, Stochastic Tournament and Elitist Selection. Crossover
nd mutation operations increase the diversity of the population,
hus expanding the parameters search space, guaranteeing the GA
ehave well in the global search.

.2.3. Simulated annealing algorithm
The earliest idea of Simulated Annealing (SA) was proposed by

. Metropolis et al. in 1953 (Metropolis et al., 1953). In 1983, S.
irkpatrick et al. introduced annealing ideas into the field of com-
inatorial optimization successfully (Kirkpatrick, 1984). The SA is a
andom optimization algorithm based on the Monte-Carlo iterative
olution strategy. According to the Metropolis criterion (Metropolis
t al., 1953), the probability that particles tend to balance at tem-
erature T is exp

(
−�E/ (kT)

)
, where E is the internal energy at

emperature T, �E  is the change of internal energy, and k is the
oltzmann constant. Metropolis guidelines are often expressed as:

 =

⎧⎨
⎩

1ifEnew < Eold

exp(−Enew − Eold
T

)ifEnew ≥ Eold
(3)

The Metropolis criterion shows that when temperature is T, the
robability of cooling with an energy difference of �E  is P (�E).
hen the energy difference �E  is constant, the cooling probability

(�E) is positively correlated with the temperature T. Since the
emperature decreases gradually according to Eq. (4) during the
nnealing process, the cooling probability P also reaches 0 gradu-
lly.
 =  ̨ • T,  ̨ ∈ (0, 1) (4)

One obvious characteristic of the SA is that there is a certain
ecreasingly probability P in the running process to accept a point
ental Protection 138 (2020) 27–38

near the local optimal solution, so it is possible to jump out of the
local optimum and find out the global optimal solution finally.

2.2.4. Hybrid strategy
As mentioned before, in the problem of source term estimation

of hazardous gas, single optimization algorithm can hardly meet the
requirements of high estimation accuracy and high computational
efficiency at meantime. For example, the PSO has simple particle
update step and fast calculation speed, but it is easy to fall into
local optimum (Ni et al., 2013). Due to the crossover and mutation
steps, the GA has strong global search ability, but it is difficult to
converge to a stable value, and its calculation time is long. The local
search ability and global search ability of the SA are greatly affected
by initial temperature T and annealing coefficient ˛. If the initial
temperature is high, it is highly possible for the algorithm to find
out a global optimal solution successfully. When  ̨ reaches 0, the
temperature drops rapidly, and thus the global search ability of
the algorithm is poor. When  ̨ is close to 1, the temperature drops
slowly, resulting in a longer calculation time.

Single optimization algorithm has its own limitations when
solving the problem of source term estimation. Therefore, it is nec-
essary to propose a hybrid strategy to combine different algorithms
together. Thus, a hybrid algorithm which overcomes the limitations
of single algorithm can be applied in the estimation of source term.
The detailed hybrid strategy is exhibited in Fig. 3.

The three selected optimization algorithms (PSO, GA, SA) have
different characteristics. Apart from SA, PSO and GA contain a num-
ber of particles or individuals corresponding to candidate solutions.
Although PSO and GA possess similar capabilities, PSO has much
simpler principle and implementation. As a result, PSO is chosen as
the basic algorithm to combine with others. Single PSO is prone to
fall into a local optimum and hard to obtain global optimal values.
To enhance the global searching ability of single PSO, it is neces-
sary to combine PSO with other optimization algorithms with good
performance on global searching, such as GA and SA. Compared
with SA, GA is more suitable for solving problems with a number
of particles or individuals. Specifically, the PSO is added with the
crossover, mutation and selection steps to obtain the hybrid PSO +
GA algorithm as the guidance of hybrid strategy. These three steps
can increase the population diversity of the particle swarm and
expand the parameters search space in theory, so that the hybrid
PSO + GA has stronger global search ability than single PSO. This
paper chooses Arithmetic Crossover, Uniform Mutation and Elitist
Selection as implementation methods in these three steps. Arith-
metic Crossover refers to selecting two  individuals as the male and
female parents randomly, then producing one filial generation by
the linear combination of these two  parents. Uniform Mutation
is replacing the original gene values at each chromosome with a
small probability. Elitist Selection means sorting all particles in the
population according to the cost function value, then selecting the
individuals with small cost function value as the next generation
population.

As for the PSO + GA, the mutation step which is controlled by
the mutation probability, has the most significant effect on parame-
ters search space expansion. If the mutation probability value is too
small, the PSO + GA is difficult to jump out of the local optimum;
while if the mutation probability value is too large, the calcula-
tion results hardly converge to a stable value. Therefore, the idea
of the SA is introduced to obtain the PSO + GA + SA algorithm. The
temperature T and the annealing coefficient  ̨ are used to control
the variation of the mutation probability. As a result, the muta-

tion probability decreases with the increase of iteration number.
In conclusion, the hybrid strategy can ensure that the combined
algorithm has a large parameters-search-space and a strong global
search ability in the early stage; as the iteration goes on, the calcu-
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Table 1
Neural network model parameters.

Parameters name Setting value

Maximum training number 200
Training goal 1000
Learning rate 0.005
Fig. 3. Algorithm hyb

ation result of each step converges gradually, and a stable global
ptimal solution is finally obtained.

. Gas concentration prediction based on BPNN and field
ataset

.1. Data acquisition and network construction

.1.1. Project prairie grass dataset
The Prairie Grass Project is a well-known experiment dataset

f actual field. It is a typical hazardous gas emission case with
ow-chimney source in flat terrain and open air conditions. The
xperiments were conducted in O’Neil, Nebraska (USA, 42.493 ◦N,
8.572 ◦W)  from July to August 1956 (Barad, 1958). Hazardous gas
SO2) was released from a continuous point source at a height of
.46 m.  Gas concentration data were collected by sensors at the
eight of 1.5 m.  These sensors were centered on the gas emission
ource, and evenly distributed on five semi-circular arcs (located at
0, 100, 200, 400, 800 m in the downwind direction, respectively).

The spacing between sensors was two degrees on the inner four
emi-circular arcs, and one degree on the outermost semi-circular
rc. In terms of meteorological data, the wind direction and wind
peed were measured for about 10 or 20 min  by two sensors, one
as 25 m directly west of the emission source, another was  450 m

orth and 30 m west of the source.
The dataset contains 68 groups of amount to 8246 gas concen-

ration and meteorological data. All the data are divided into two
arts randomly, some of which contains 60 groups (6954 experi-
ental data) to train and validate the BPNN. While the other part

ontains 8 groups (1292 experimental data) to test the neural net-
ork and carry out the optimization algorithms experiments.
.1.2. Establishment and training of BPNN
In this section, a neural network will be established and

rained based on the Prairie Grass dataset. According to the
Momentum factor 0.9
Maximum failures number 100

training and prediction results of the BPNN, the parameters are
adjusted continuously. Thus a suitable neural network is obtained
finally.

In the establishing and training process, the most important is
the setting of various parameters. Among all parameters involved
in the BPNN, some of them control the training process and affect
the training results, like maximum training number, training goal,
learning rate, momentum factor and maximum failures number.
After a large number of experiments, these parameters are set to
the values shown in Table 1.

The neuron number in two hidden layers also has obvious influ-
ence on the performance of the BPNN model. If the number is too
small, the fitting and predicting performance of the network will be
poor; while if the number is too large, the training time and error
will arise, leading to reduction of the generalization ability of the
network. Accordingly, the selection of the neuron number in hid-
den layers is also important. Moreover, because of the randomness
of the network training in MATLAB software, different trainings will
have different results even if the neural network is set to the same
parameters. It is necessary to repeat training process to obtain the
best network (Ma  and Zhang, 2016).
3.2. Result analysis

The training results are always measured by neural network
characteristic parameters, such as normalized mean squared error
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Fig. 5. Experimental data and neural network output data. (a) is the results of release
17 and (b) is the results of release 22.
Fig. 4. The log(NMSE) of different combinations of neuron number.

NMSE), mean squared error (MSE), R-squared (R2) (Pelliccioni and
irabassi, 2006). This paper determines the number of neuron in
idden layers by calculating the NMSE value of the neural net-
ork (Wang et al., 2018). For better distinction, the function log

s applied to NMSE (shown in Fig. 4). The region with light yel-
ow means smaller NMSE value compared with the region with
ark blue. Small NMSE value indicates that the predicting result
f neural network is highly accurate. Therefore, the combinations
f the neuron number in two hidden layers corresponding to the

ight yellow region can obtain neural networks with good predic-
ion performance potentially. Finally, the neuron number in two
idden layers is determined as [30, 30].

We randomly select two experimental datasets (Release 17,
2) of the Prairie Grass Project (Barad, 1958) to test the trained
eural network. The gas concentration values of the experimental
ata and neural network output data in the two release exper-

ment datasets are shown in the two sub-graphs of Fig. 5. It
an be seen that although some prediction results of the neu-
al network are deviated from experimental concentration values,

ost predicted concentrations agree well with the experimental
ata.

The scatterplot and linear fit of the experimental data and neural
etwork output data are given in the two graphs of Fig. 6. The linear
t curves of the two graphs are very close to “y = x”, indicating that

he prediction results of the neural network are very close to the
xperimental data. In addition, R2 in graph (a) is 0.9629, and graph
b) is 0.9657, which further demonstrates the great performance of
he neural network in predicting gas concentration.

. Source estimation experiments and results analysis

The flow of the hybrid strategy is shown in Fig. 3. In order to
ompare the influence of the hybrid strategy on the estimation of
ource terms, this paper compares three optimization algorithm
ombinations (PSO, PSO + GA, PSO + GA + SA) in MATLAB software
2015a version) through comprehensive estimation experiments.
he performance of these algorithms is compared and analyzed
rom the aspects of accuracy and speed according to the experiment
esults.

.1. Assessment parameter
One important parameter for optimization algorithms is cost
unction, whose purpose is measuring the error between the actual
alue and the predicting value during the calculation process. Since
hese three algorithms are based on the frame of the PSO, the def-

Fig. 6. Experimental data and neural network output data fitting curve. (a) is the
results of release 17 and (b) is the results of release 22.
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Table 2
PSO algorithm initialization parameters.

C C Iteration number Particle number Parameter dimension
Y. Wang et al. / Process Safety and En

nition of cost function are similar. There are many forms of cost
unction (Hui and Zhang, 2017). In this paper, the MSE  is chosen as
he cost function, shown in Eq. (5).

i =
1
m

m∑
j=1

[
Cest,i (:) − Cact,i (:)

]2

(5)

here fi is the cost function value of the particle i. Cest,i (:) indicates
he predicted gas concentration distribution value of the particle i,
hile Cact,i (:) indicates the actual gas concentration distribution

alue. The dimension of these two parameters is m,  which cor-
esponds to the number of gas concentration data measured in
ifferent experiments. It’s worth mentioning that the value of m
aries in different experiments.

As for measuring the results of source term estimation, there
xit many approaches used by researchers. In this paper, there are
ve source terms to be estimated in total. It is necessary to measure

he accuracy of the estimation of all source terms. Fortunately, Skill
cores can be constructed to quantify the closeness of each estima-
ion to the real source terms (Long et al., 2010; Ma  et al., 2017). The
kill score combines individual component equations, one to quan-
ify the accuracy of each source term (i.e. source location, source
trength, wind direction and wind speed) as determined by differ-
nt optimization algorithms.

x = max(
xact − xest
xact − xmin

,
xest − xact
xmax − xact

) (6)

y = max(
yact − yest
yact − ymin

,
yest − yact
ymax − yact

) (7)

Sx and Sy are the individual Skill score of estimating x and y
oordinate, respectively. Eq. (6) and Eq. (7) are similar, the subscript
act” indicates the actual value, and the subscript “est” indicates the
redicted value. The subscript “min” means the minimum value of
his parameter in the dataset, and the subscript “max” means the

aximum value. Taking Eq. (6) as example, if xact > xest , thus xact −
est > 0 and xest − xact < 0, Sx is calculated by the former formula.

hile if xact < xest , Sx is calculated by the latter formula.

q =
∣∣Qact − Qest

∣∣
Qact

(8)

Different from x and y coordinate, source strength Q is an one-
imensional variable. Thus the expression of Eq. (8) is simpler than
q. (6) and Eq. (7). Sq is the relative error of the actual value and the
redicted value.

dir = min(
∣∣Diract − Direst

∣∣ , 360 −
∣∣Diract − Direst

∣∣)/180 (9)

The range of wind direction is [0,360), thus the absolute value
f difference between the actual and predicted direction may  be
alculated in two ways. The denominator is set to 180, so as Sdir can
e normalized to the internal [0, 1.0].

v =
∣∣Vact − Vest

∣∣
Vact

(10)

Similar to source strength Q, wind direction V is also an one-
imensional variable. The expression of Eq. (10) means the relative
rror of the actual value and the predicted value of V. On most occa-
ions, the score value of each term in Eq. (6)–(10) is normalized to
he interval [0, 1.0]. If the calculated value is bigger than 1, it is set
o 1.

killscore = (ω1Sx + ω2Sy + ω3Sq + ω4Sdir + ω5Sv)/5 (11)
The Skill score is the combination of individual component
quations. However, the importance of each source term is differ-
nt. In Eq. (11),ωi, i = 1, 2, 3, 4, 5 is the weight of above five terms
core. According to article (Hui and Zhang, 2017), the five weights
1 2

2 2 100 100 5

are set to 5.0, 5.0, 2.0, 1.0 and 2.0 respectively. These weights reflect
the importance level of these terms in different scenarios. Among
these terms, the most important is the coordinates of the gas emis-
sion source, so ω1 and ω2 are both large values (5.0). Source strength
Q and wind speed V are also very important parameters and are dif-
ficult to estimate, so the weights ω3 and ω5 values are set to 2.0.
Obviously, lower Skill score means the estimation results are more
accurate.

4.2. Source terms estimation experiments

4.2.1. Estimation experiment of single PSO
Firstly, single PSO uses the trained network as the forward atmo-

spheric model to perform source terms estimation experiment.
According to the discussion before, the pseudocode of the experi-
ment is presented as Algorithm 1.

The algorithm takes Release 17 or 22 of the Prairie Grass Dataset
as the input. The output is the estimations of source term (source
position, source strength, wind direction and wind speed) and cost
function value. In the Initialization process, key parameters of PSO
are set as Table 2. The position and velocity of each particle are
assigned randomly in the problem hyperspace. In each iteration,
all particles repeat step 4-8. The velocity of each particle is updated
according to Eq. (1). The limit of velocity is also considered. Then,
the position of each particle is updated according to Eq. (2). The
value of position corresponds to source terms, which are the input
of BPNN. Based on the predicted concentration of BPNN, the cost
function of every particle can be evaluated by Eq. (5). Calculate and
compare the cost function value of all particles, the pbesti of each
particle and the gbest in every iteration can be updated.

Continuous cost function value can exhibit the calculation pro-
cess of estimation experiment. Fig. 7 shows the change of cost
function value with iteration number varying in three experiments
of PSO algorithm in two cases (release 17 and release 22). It can
be seen from the plot that although the initial cost function value
in different experiments differs greatly, the cost function values
all decrease successively and eventually stabilize as the iteration
number increases. However, the final stable cost function values

are slightly different in various cases. To be specific, the final cost
function value in release 22 is smaller than the value in release 17,
indicating that the source terms in release 22 are estimated more
accurate as a whole.
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Fig. 8. The Skill score of 100 PSO experiments. (a) is the results of release 17 and (b)
is  the results of release 22.
ig. 7. Cost function value changes with iteration number varying in three different
SO experiments. (a) is the results of release 17 and (b) is the results of release 22.

In order to demonstrate the performance of the PSO, this paper
epeated the experiments 100 times in release 17 and release
2. The Skill score of experimental results was calculated by Eq.
6)–(11), shown in Fig. 8. It can be seen from the plot that the aver-
ge Skill score of 100 experimental results of release 17 is 1.5368,
nd all Skill scores are within the range of 0.9280 ∼2.806. However,
any points (54) have same Skill score (1.1079), which is bigger

han the minimum value. These Skill scores are due to the fact
hat the PSO algorithm is highly possible falling into the local opti-

al  value, and cannot search for better results (lower Skill scores).
oreover, there exist some Skill scores whose values are bigger

han 2, indicating that these locally optimal estimation results are
naccurate. In order to reduce the probability that the algorithm
alls into the local optimum and improve the global search ability,
ingle PSO algorithm needs to be combined with other algorithms.

.2.2. Estimation experiment of PSO + GA algorithm
According to Fig. 3, based on the PSO algorithm, three steps

crossover, mutation and selection) are added by referring to the
dea of GA. The pseudocode of the experiment is illustrated as
lgorithm 2.

In Algorithm 2, the crossover and mutation steps are performed
ith a certain probability. In this paper, the crossover probabil-

ty is set to 0.9 and the mutation probability is set to 0.03 after
undreds of attempts. When the generated random number is less
han the crossover probability, the crossover step is performed to
btain the velocity and position of the progeny particles. When
he generated random number is smaller than the mutation prob-
bility, the mutation step is performed to initialize the velocity
nd position of the particle directly, replacing the original parti-
le parameters. After performing the crossover step to generate
nother 50 individuals, the number of particles in the entire popu-
ation will increase to 150. In order to maintain the stability of the

articles number in each generation, the Elitist Selection strategy is
dopted when the selection step is performed, and 100 individuals
ith smaller cost function value are selected as the next generation

opulation.

Fig. 9. The Skill score of 100 PSO + GA experiments. (a) is the results of release 17
and (b) is the results of release 22.
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The core of the PSO + GA algorithm is the introduction of
rossover and mutation steps. These steps make particles not move
irectly to the direction determined by the global optimal value
nd the individual optimal value, but with some deviation based
n this direction. In some situations, particles which fall into the

ocal optimal values may  even jump out completely and perform
andom initialization. Therefore, the hybrid algorithm reduces the
robability of falling into local optimum in the estimation process,
nd improves the global search ability.

Fig. 9 shows the results of 100 PSO + GA algorithm experiments
n two cases. It can be seen that for release 17, the average value in
hese experiments is 1.2131. Although most values are smaller than
he average value, there still exist a few Skill scores of experimental
esults larger than 2. These large values have a negative effect on the
erformance of the algorithm. The Skill scores of 100 experiments

n release 22 have the similar characteristics, but the distribution
f Skill score is different from that in release 17.

Comparing the corresponding graphs in Fig. 8 and Fig. 9, it can
e seen that the average values in Fig. 9(a) and Fig. 9(b) are smaller

n contrast with those in Fig. 8(a) and Fig. 8(b). This phenomenon
hows that after combining the PSO with the GA, the global search
bility of hybrid algorithm is improved. However, the introduction
f the mutation step leads to new problems. Specifically, a large
utation probability makes it difficult to converge to a stable value,

nd a small mutation probability does not make an obvious effect to
mprove the global search ability. After abundant trials, the muta-
ion probability is set to 0.03. Although this value can balance the
roblem of convergence to a stable value and global search abil-

ty to some extent, there still exist some estimation results which
ccur large jump at the end of the iteration calculation, leading to
igh Skill scores, such as the values of the 3rd, 4th, 14th and 96th
xperiments in Fig. 9(a), and the 26th, 51 st and 86th experiments
n Fig. 9(b).

.2.3. Estimation experiments of PSO + GA + SA algorithm

In order to improve the performance of PSO + GA algorithm, the

dea of SA algorithm is used to control the mutation probability by
he temperature value in the simulated annealing process. The flow
f PSO + GA + SA is similar to PSO + GA. Except for adding some new
Fig. 10. The Skill score of 100 PSO + GA + SA experiments. (a) is the results of release
17 and (b) is the results of release 22.

parameters (e.g. initial temperature T and coefficient ˛) and step 8,
the pseudocode of PSO + GA + SA algorithm is same with Algorithm
2. At the beginning of PSO + GA + SA, the temperature value and the
corresponding mutation probability value are both high. There is a
great likelihood of performing the mutation step, which improves
the algorithm’s global search ability. As the number of iteration
increases, the temperature gradually decreases, the corresponding
mutation probability value also goes down, and the probability that
the particle performs the mutation step is also reduced, so that the
estimation result of source terms is easy to converge.

As shown in Eq. (4), T represents the temperature in the SA algo-
rithm, and each step is attenuated by the coefficient  ̨ (  ̨ < 1), which
in turn leads to a decrease in the probability of mutation.

The initial temperature T is set to 8000 K, the coefficient  ̨ is 0.7,
and the results of 100 experiments in two cases are shown in Fig. 10.
In release 17, the Skill scores of the PSO + GA + SA algorithm are all
in the interval of 0.474∼1.863, and the average value is 1.091. Com-
pared with PSO + GA and PSO algorithm (Fig. 8(a) and Fig. 9(a)), the
values decrease significantly, indicating that the hybrid algorithm
is more accurate. The experiment results in release 22 show the
similar phenomenon.

4.3. Comparison and analysis of estimation experiment results

The Skill scores of three optimization algorithms are shown in
Fig. 8–10. The comparison and analysis of total Skill score indicate
the improvement of estimation accuracy for hybrid optimization
algorithms. However, total Skill score cannot demonstrate the
change of individual Skill score of each source term. Fig. 11 shows
the mean Skill score of five source terms in 100 estimation experi-

ments for release 17.

Comparing the individual Skill score of PSO + GA  with that of
PSO, it can be seen that scores of all source terms drop off obviously.
The score values of five source terms decrease by 21.10 %, 23.11 %,
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Fig. 11. Skill score of each source term in three optimization algorithms.
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Table 4
Time cost of three optimization algorithms.
Fig. 12. Skill score of three optimization algorithms.

0.08 %, 48.91 %, and 7.90 %, respectively. As we can see, the Skill
core of other terms in PSO + GA + SA all decrease in contrast with
hose in PSO + GA except for Q. These values are declined by 5.12
, 20.64 %, 15.79 %, and 2.88 %, respectively. The Skill score of Q in
SO + GA + SA increases by 19.27 % than the score in PSO + GA, and

s also a little higher than the score in PSO. As mentioned before,
he estimation results are more accurate with lower Skill score on
ource term. In most occasions, the estimation accuracy of every
ource term increases as the combination of algorithms.

Fig. 12 shows the results of source terms estimation exper-
ments of three algorithms. In the violin diagram, each dot
epresents an experiment result. The width of the violin outline
ndicates the number of experiment results within the range. The
iolin outline will be thicker when more experiment results fall
ithin this Skill score range. The analysis results of Skill score are

hown in Table 3.
The median and 25 % percentile Skill score of the PSO are both

.108. In addition, there are many results whose Skill scores are
igh. These phenomena indicate that the accuracy of the estima-
ion is not accurate enough and the algorithm is easy to fall into
ocal optimum. After combining with the GA, in addition to the

edian (1.141), the mean (1.213), the 25 % percentile (1.099), the
5 % percentile (1.196), the minimum (0.692) and the maximum
alue (2.331) of the PSO + GA algorithm experimental results are
ower than the mean (1.537), 25 % percentile (1.108), 75 % percentile
1.974), minimum value (0.928), and maximum value (2.806) corre-

ponding to the PSO algorithm experimental results, indicating that
he PSO + GA algorithm is more accurate than the PSO algorithm.

oreover, from the outline of the graph, the difference between the
5 % percentile and the 25 % percentile of the PSO + GA algorithm
Algorithm PSO PSO + GA PSO + GA + SA

Time(s) 571.05 924.07 949.82

is 0.097, which is much smaller than 0.866 of the PSO algorithm,
demonstrating that the results of the PSO + GA algorithm are more
concentrated and stable. Compared with the results of above two
algorithms, the mean of the scores (1.091), the median (1.120), the
25 % percentile (0.928), the 75 % percentile (1.202), the minimum
(0.474) and maximum (1.863) of the PSO + GA + SA algorithm are
all smaller, revealing that the accuracy of the algorithm has been
further improved. In addition, the difference between the 75 % per-
centile and the 25 % percentile of the PSO + GA + SA algorithm is
0.274, which is slightly larger than 0.097 of PSO + GA algorithm and
less than 0.866 of PSO algorithm. The difference between the max-
imum and minimum is 1.389, which is less than 1.639 of PSO + GA
algorithm and 1.878 of PSO algorithm. These results illustrate that
the Skill scores of PSO + GA + SA algorithm are more concentrated
overall.

Table 4 shows the time-cost of different algorithms on
source terms estimation experiments. The processing dataset and
the hardware condition (DESKTOP-6A30060, 3.10 GHz Intel(R)
Core(TM) i7−8809 G, 16GB) are same. The iteration number and
particle number are set as Table 2, and the experiment of each algo-
rithm repeats 10 times. From the results, the time-cost of PSO + GA
algorithm is increased by 61.8 % compared with PSO algorithm.
The main reason is that when the crossover, mutation and selec-
tion steps are introduced, each generation of population needs to be
crossed to generate 50 progeny particles. So there are 150 particles
in the new population to perform a mutation step. After selection
step, 100 particles are selected as the new generation population
finally. Since the number of particles calculated by the PSO + GA
algorithm is increased by 50 % compared with the PSO algorithm
actually, the time-cost has increased greatly. Compared with the
PSO + GA algorithm, the time-cost of the PSO + GA + SA algorithm
is only increased by 2.8 %, which is not obvious. According to the
results of source term estimation experiments, the run-time com-
plexity of three optimization algorithms are O(MN),  O(1.5 MN) and
O(1.5 MN), respectively. M represents the Iteration number of the
algorithms, while N represents the Particle number in each itera-
tion. In another word, the PSO + GA + SA hybrid algorithm does not
raise the calculation time rapidly when improving the calculation
accuracy obviously.

5. Discussion

Fig. 8(a), Fig. 9(a) and Fig. 10(a) show the Skill score values
obtained by running the three optimization algorithms 100 times
in release 17. A larger Skill score indicates a more inaccurate esti-
mation result. As we  can see in Fig. 8(a), there are many Skill scores
of points are higher than 2. Even more, 54 points have same Skill
score. These points are due to the fact that the PSO algorithm falls
into local optimum during the calculation process, and cannot con-
tinue to search for a more accurate estimation result. In Fig. 9(a),
after the introduction of the GA, this problem is settled in some
extent. The average value of Skill score in Fig. 9(a) is lower than
that in Fig. 8(a), showing the PSO + GA hybrid algorithm behaves
better in global search. However, because of the randomness of
the PSO + GA algorithm, there are still many Skill scores have high
values, indicating the PSO + GA algorithm is not stable enough. It

can be seen from Fig. 10(a) that the number of Skill scores bigger
than 2 is smaller than Fig. 9(a) and Fig. 8(a). Moreover, the average
value also decreases. These results indicate the hybrid algorithm is
robust. Fig. 8 (b), Fig. 9 (b) and Fig. 10 (b) corresponding to release
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Table  3
Analysis results of Skill score of three optimization algorithms.

Mean Median 25 % percentile 75 % percentile Minimum Maximum
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PSO 1.537 1.108 1.108 

PSO  + GA 1.213 1.141 1.099 

PSO  + GA + SA 1.091 1.120 0.928 

2 also show similar phenomenon, wherein the average value and
he number of points with large Skill score are both decreasing.
n addition, in the horizontal comparison of the two  plots (a) and
b) in Fig. 8∼10, the average value of Skill score in (b) is slightly
ower than that in (a). These phenomena indicate that the method
an be applied to the scenario of release 22 with higher estimation
ccuracy.

As mentioned before, the accuracy of source term estimation
ften depends on the accuracy of the forward dispersion model
Wang et al., 2018). In this paper, through a large number of exper-
ments, BPNN with 2 hidden layers is used as the forward dispersion

odel. However, from the comparison between the Skill score in
wo scenarios, it can be seen from various experiment scenar-
os that the difference in prediction accuracy of the BPNN model

ill lead to the change of calculation results eventually. Therefore,
mproving the prediction accuracy of the neural network model
n various scenes is especially important for the source term esti-

ation problem. Most existing neural network models attempt to
nhance model expression by increasing model complexity, so it
ay  be useful to try BPNN with more hidden layers. However,

he complex network structure will lead to a long time-cost in
omputation. Due to the existence of massive iteration steps in
he algorithm, when adopting the network for inference, a small
ncrease of time-cost in one iteration step will prolong the over-
ll calculation time of the algorithm obviously. In recent years,
here have been many studies focusing on the pruning of complex
tructures of neural networks for calculation speedup. Networks
ike MobileNet (Chen and Su, 2017) and ShuffleNet (Zhang et al.,
017) are used to reduce the network parameters by designing
laborate convolution structures while maintaining accuracy. Next
tudy is trying to apply these neural networks to model forward
tmospheric dispersion process.

In this paper, to investigate the feasibility of using hybrid strat-
gy in the realm of source term estimation, three most commonly
sed optimization algorithms (PSO, GA and SA) are combined
ogether based on the hybrid strategy. However, some key param-
ters in the hybrid algorithms has a significant impact on the
arameter estimation results, such as crossover probability and
utation probability in PSO + GA algorithm, initial temperature and

nnealing formula in PSO + GA + SA algorithm. Although the val-
es of these parameters in this paper are a high-quality result after
bundant attempts, there may  exist other values which can make
he corresponding hybrid algorithms have better performance in
ource term estimation. How to determine the optimal values of
ey parameters in an algorithm under specific metrics quickly and
utomatically is also a problem worth studying. In addition to the
SO, GA and SA applied in this paper, there are many other opti-
ization algorithms, such as Ant Colony Optimization algorithm,

rtificial Bee Colony algorithm, Differential Evolution algorithm.
tudying these algorithms and combining them will be very suit-
ble for solving the problem of source terms estimation.

. Conclusion
In order to solve the source term estimation problem of haz-
rdous gas emission accidents, this paper used a hybrid strategy
s the backward estimation method with a state-of-the-art BPNN
s the gas forward dispersion model. In terms of the BPNN-based
1.974 0.928 2.806
1.196 0.692 2.331
1.202 0.474 1.863

forward model, the neuron number in hidden layers was  finally
determined after vast experiments. Trained and tested by mass of
actual data, the network shows great performance on prediction
accuracy and calculation speed in different scenarios. Aiming at
the characteristics of different optimization algorithms, this paper
proposed a hybrid strategy to combine PSO algorithm, GA  algo-
rithm and SA algorithm step by step. To overcome the shortcomings
of PSO algorithm, which is easy to fall into local optimization, the
steps of crossover, mutation and selection are adopted to improve
the global search ability of the algorithm. Because of the random-
ness of PSO + GA hybrid algorithm, the SA algorithm was combined
to control the variation of the mutation probability. The compar-
ison of Skill score among three algorithms indicates that the PSO
+ GA + SA hybrid algorithm has higher calculation accuracy with
acceptable computational efficiency. In the end, the hybrid strat-
egy proposed in this paper has a positive impact in practice. Under
the guidance of the hybrid strategy, combining different optimiza-
tion algorithms, the hybrid algorithm shows better performance
in calculation accuracy and computational efficiency for hazardous
gas source term estimation, which has important implications to
hazard emergency management.

Future researches can focus on studying optimal values of
parameter combinations, leading to better algorithm performance
in source term estimation. Moreover, in another direction, we  can
focus on designing a generic framework of hybrid strategy for
combining different algorithms. Meanwhile, putting the hybrid
algorithm presented in this paper into application can protect the
environment form the threat of hazardous gas.
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