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Abstract—In this paper a two-stage model is proposed, com-
bining the idea of a two-stage model from Anjos and Vieira
[2016] with a gradient descent approach, much like proposed in
Sikaroudi and Shahanaghi [2016], in order to solve the facility
layout problem for problems consisting of 8 and 12 departments
. The gradient descent approach uses the partial derivatives of
a multi-variable objective, the flow-cost, in order to get a vector
which is the direction of greatest descent. Computing this vector
for all departments and then moving them creates an iterative
improving loop. In addition to the gradient descent approach
a swapping procedure and a shooting procedure is introduced
in order to reduce the effect of random starting position.The
proposed method was tested on two toy-problems from Tam
and Li [1991] and compared to results existing in literature.
Additionally, the effect of including a first-stage model was tested
as well. When looking directly at the results, the proposed method
is consistent and shows good results. Especially the inclusion of
the first-stage model helps finding better solutions. Compared
to other results found in the literature, the method is slightly
lacking based purely on the objective value.

I. INTRODUCTION

In a world that is getting more complicated, so are the
floor-plans of numerous buildings. Especially for industries,
a layout of the floor-plan can really define how profitable a
factory is, it is estimated that in total 20-50% of total operating
expenses can be related to the material handling costs and the
layout of a factory [Tompkins et al., 2010]. Furthermore, early
changes in the design of a layout have a big impact on the final
design and can be very profitable, especially considering that
changes in a later stage are significantly harder, costlier and
more complicated to perform. Chwif et al. [1998] suggest that
the optimal location of facilities is one of the most important
issues that should be resolved early in the design stage. In
the past, when layout were less complicated, optimizing the
location of facilities was not as much of an issue. However,
after the second world war, operations research and with it
the optimizing of processes arose. Optimizing various process
has been a big issue ever since, and so too the optimization of
the layout of facilities emerged which became known as the
Facility Layout Problem. With the development of powerful
computers that are available to the wide public, a window of
opportunities opened to be able to solve these ”FLP’s”.

The facility layout problem deals with finding the optimal
relative locations of departments on a plane.The facility layout
problem can essentially be taken apart into two different
components, those are the formulation of the problem and
the resolution of the formulated problem. Drira et al. [2007]
gives a comprehensive survey of the facility layout problem
and talks about both the formulation as the resolution of it.
There are generally two ways to formulate the facility layout
problem geometrically: discrete and continuous.

Quadratic layout formulation, or put short ”QAP”, which
stands for the quadratic assignment problem, is a kind of
formulation to the facility layout problem that is discrete in
nature. QAP is used by many researchers [Chwif et al., 1998]
and is proven to be NP-Complete [Sahni and Gonzalez, 1976].
This means that the global solution can be found, but the
time required to do so increases rapidly as the number of
components increases. With QAP formulations, the plant site is
divided into different blocks of the same size and each facility
will be assigned to one or more of these blocks (in the case
of unequal areas) [Drira et al., 2007].

In contrast to the discrete formulation of the problem, the
facility layout problem is often formulated as continual. This
continual formulation is often abbreviated to mixed integer
programming MIP [Das, 1993]. Continual means that unlike
the QAP, facilities can be placed anywhere and the main
constraint is that they must not overlap, not even partially
[Das, 1993] [Merrell et al., 2010] [Dunker et al., 2005]. The
facilities are no longer bound to small block-sized elements,
but are defined by their centroid coordinates (often: xi, yi)
and their half length li and half width wi [Drira et al., 2007].
Another way to formulate the positions of the facilities is by
the coordinates of one of their corners (most often the bottom
left) and their full width wi and length li [Chwif et al., 1998].

A third way layouts are sometimes formulated is in the
shape of a graph, using graph theory. In this formulation,
the departments take the shape of vertexes and connections
between the departments are represented by the edges between
the vertexes, thus forming an undirected graph. However,
to eventually get to a non-abstract layout, a graph theoretic
approach must make use of either a MIP or QAP formulation



nonetheless.
When it comes to resolving the formulations, there are

a number of different approaches, which can be divided
into exact approaches and meta-heuristic approaches. Exact
approaches aim to explore the entire solution space, and can
therefor always find the global optimum, because all solutions
have been evaluated. An example of such an approach is
presented by Kouvelis and Kim [1992], who make use of
a branch and bound algorithm. Another example is by Kim
and Kim [1999], who also implement drop-off and pick-up
points for the departments. However, like the numerous other
articles that dealt with exact methods, these methods are often
incapable of solving cases with a large number of departments
(up to fifteen), making meta-heuristics much more feasible for
larger sized problems [Drira et al., 2007].

Amongst the different meta-heuristic methods, the most
popular ones are the simulated annealing approach, the tabu
search approach and the genetic algorithm approach. The first
two are considered to be global search methods while the latter
is classified as an evolutionary method [Drira et al., 2007]. All
three of these methods are however improvement algorithms,
based on an initial solution and altering it slightly to iterate
towards a more optimal solution. This is the complete opposite
of construction algorithms, which, as the name might imply,
construct a solution only once, carefully evaluating all steps
before taking one. In practise, these two type of algorithms
are often combined, as construction algorithms can provide a
healthy starting solution for an improvement algorithm [Drira
et al., 2007].

The method that is proposed in this paper consists of two
models, the first model uses the gradient decent approach
where the departments will be represented as circles in an
attempt to find the optimal relative location constraints to
be used in the second model, which will be a linear constraint
optimization solver. This method is further explained in section
three, after the problem has been defined in section two.
Section four takes the method into practise by applying it to
existing toy problems, as well as a comparison with a real-life
factory. Section five concludes this paper.

II. PROBLEM FORMULATION

In this thesis, the facility layout problem is defined as a con-
tinuous problem, where the facilities can be placed anywhere
on the map and can not overlap. The voxelated approach of
the quadratic assignment problem leaves the problem that the
definite shape of one department (unless it consists solely of
one voxel) is hard to influence. For example, an aspect ratio
in the discreet environment would ultimately be very hard to
implement using the quadratic assignment problem. Scholz
et al. [2009] describes that the main drawback on discreet
approaches and graph theoretic approaches is the geometric
constraints that can not be considered sufficiently. In the case
of this problem, the geometric constraints will prove to be
very important.

A. Shaping the departments

The method is primarily based on the assumption that it
should be feasible for producing layouts for factories, in par-
ticular, vegetable food factories. Since in these type of factories
the departments are split heavily between departments that can
take multiple dimensions (e.g. a storage room with a flexible
organisation of storage racks) and constraint departments that
can really only take on one set of width and height (e.g. a room
with one big machine). Hence all departments are defined by
their area (Ai) and max aspect ratio ai [Anjos and Vieira,
2016]:

max

{
wi
hi
,
hi
wi

}
6 ai (1)

wihi = Ai (2)

The aspect ratio constraints will be discarded in the first-
stage model (graph decent) as its purpose is to find relative
relations between departments, hence, all departments in the
first-stage model will be modeled as circles with radius ri and
a set of coordinates xi & yi. In the second-stage model, all
departments will be modelled as squares by assigning a width
wi and height hi and a set of coordinates xi & yi.

B. Overlap

In order to restrict the departments from overlapping with
the total facility two constraints are introduced in both the
first-stage and the second-stage model:
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Where WF and HF are equal to the total facility’s width
and height, respectively. In case of the first-stage model: wi
= hi = ri. The way that the overlap between facilities is
constrained differs between the two models. In the first-stage
model (gradient descent), overlap is allowed, however, it does
add to the objective by adding the one dimensional overlap
ri + rj − dij to the distance in the case there is overlap. In
this case, dij is the euclidean distance between the centroids
of the departments.

doverlap = λd(ri + rj − dij) (5)

λd =

{
0 for ri + rj − dij 6 0

1 otherwise
(6)

In the case of the second-stage model, where the actual
layout is computed, overlap is not allowed, and thus constraints
are added to prevent the departments from overlapping. Since
the solver does not take non-linear constraints, a boolean
variable is added which is implemented in such a way that the
absolute value between coordinates is found, see equations (7)
through (9).



λij =

{
−1 for xi 6 xj and yi 6 yj
+1 otherwise

(7)

2λij(xi − xj) > wi + wj (8)

2λij(yi − yj) > hi + hj (9)

C. Objective

The objective of this method is to minimize the flow-cost
of the layout. For a two department layout, this would be the
flow between the departments, (fij), multiplied by the distance
between the departments, (dij), multiplied by the cost per flow
per distance of moving materials between the two departments,
(cij). Naturally, the flow-cost for a layout consisting of more
than two departments would then be the sum of the flow-costs
for all sets of departments. This then leads to the following
objective for the flow-cost, which is similar to the objective
for minimizing the material handling costs as found in Wang
et al. [2005].

MinFlowCost =

n∑
i=1

n∑
j=1

cijfijdij (10)

The flow fij between the departments is provided using a
matrix of i rows by j columns, providing the flow between
departments i and j at row i and column j. The cost cij is
taken to be one for simplification. The distance dij between
the departments is different for both models. In the first-stage
model, the distance is measured as the euclidean distance as
seen in equation (11), additionally, the distance for overlap-
ping, as seen in equation (5) is assimilated in the distance
equation . The second-stage model however, will make use
of the rectilinear distance, like seen in equation (12), as the
chosen solver is only capable of performing linear operations.

dij =
√
(xi − xj)2 + (yi − yj)2 + doverlap (11)

dij = |xi − xj |+ |yi − yj | (12)

D. Relative location constraints

The whole idea of splitting the method into two models
is to gain an early insight in what arrangement of depart-
ments would work near optimal without requiring too much
computational power. This early insight does not have to be
accurate in aspect ratio or other geometric constraints, nor
in overlapping. The loss off accuracy in that case gains the
benefit that the model becomes much faster. This way, a near
optimal arrangements can be found in the first-stage model
and this arrangements data can be passed onto the second-
stage model, where all previous requirements must be met,
but due to the extra constraints found in the first-stage model
the second-stage model should be able to converge faster.

The second-stage models therefor takes all constraints that
were found in the first-stage model. These will be constraints
between all departments i and j that will separate them either
horizontally or vertically. To determine this separation the

differences between x and y coordinates of both departments
is evaluated. Should δx be 1.5 times bigger than δy, then a
separation constraint will be issued to separate department i
to the left of j if i was to the left of j in the most optimal
solution from the first-stage model, or to the right of j if i
was to the right of j in the most optimal solution from the
first-stage model. In the same way, should δy be 1.5 times
bigger than δx, then a separation constraint will be issued to
separate department i to the top of j if i was to the top of
j in the most optimal solution from the first-stage model, or
to the bottom of j if i was to the bottom of j in the most
optimal solution from the first-stage model. If neither of the
two differences is significantly bigger than the other (a factor
1.5), no constraint will be issued. The idea to split the method
into two models to first find these relative location constraints
and how to find these constraints was originally proposed in
Anjos and Vieira [2016]. The main difference is that in that
paper, the relative location constraints will be issued even if
one δ is only slightly bigger than the other.

III. PROPOSED METHODOLOGY

The method proposed in this model is separated into two
stages, a first-stage model and a second-stage model. The
first-stage model is a simplified version that does not take
into account aspect ratio and other geometric constraints and
takes the overlap as a soft constraint. This is in order to
quickly find a good solution and then transfer the relative
location information to the second-stage model in the shape of
constraints. This way, the hypothesis is that the second-stage
model, which does take all the hard constraints as described
in section 2 into account, will be able to converge into a good
solution faster.

A. First-stage model

The first stage model makes use of the gradient descent
approach to iteratively move towards a better objective func-
tion (10). This idea was already proposed in Sikaroudi and
Shahanaghi [2016], where the term force exertion heuristics
was used in order to get to a layout. The main difference
with this approach is that here the gradient descent approach
does not need to find a feasible solution, only an idea about
the relative positions of the departments in a good solution.
This gradient descent approach builds upon the fact that the
gradient of any function can be used to find the direction
of steepest ascent (or descent when taking the negative of
this direction). This approach works for any objective and
for multiple variables by taking all the partial derivatives and
combining these in a vector, which is the direction of steepest
ascent. This principle is explained in equation (13) for an
objective f consisting of two variables: x and y.

∇f =

[
df
dx
df
dy

]
(13)

f(xi, yi) =

n∑
j=1

fij(dij + λd(ri + rj − dij)) (14)



∇f(xi, yi) =
[
0

0

]
for λd = 1 (15)

∇f(xi, yi) =

[
df
dx
df
dy

]
for λd = 0 (16)

df

dxi
=

n∑
j=1

(xi − xj)fij√
(xi − xj)2 + (yi − yj)2

(17)

df

dyi
=

n∑
j=1

(yi − yj)fij√
(xi − xj)2 + (yi − yj)2

(18)

The principle of the gradient descent is used in this first
stage model by iteratively moving every department in the
direction of greatest descent by taking the gradient of the
objective. In this objective, the variables are the xi and yi
coordinates of department i whilst the coordinates of every
other department j are considered to be a constant. This gra-
dient is then calculated for every department, after which the
departments are moved resulting then in a different gradient
thus creating an iterative process in which all departments
move towards the lowest objective. This iterative process is
explained in algorithm 3.

Interestingly, the partial derivatives between any two de-
partments that are not overlapping (λd = 0) are equal to
the difference in x-coordinates or y-coordinates divided by
the distance between the two departments and multiplied by
the flow, as seen in equations (17) and (18). In essence this
would mean that the gradient would be a normalised vector
that origins from one department and points to the other.
When λd = 1 , however, all the variables disappear from
the objective, leaving the gradient to be [0,0], meaning that
any direction and no direction will improve the objective
considering just these two departments.

An important addition is the inclusion of the overlap repul-
sion vectors, these vectors are introduced to remove overlap
whenever there is overlap. The vector acts in the opposite
direction of the department j that department i has overlap
with. A last vector prevents the departments from overlapping
with the total facility, although in this first-stage model the
total facility is merely present to prevent the departments from
moving out of bounds.

1) Shooting: In addition to the gradient descent approach,
two procedures are proposed to solve certain problems that a
gradient descent approach encounters. The first problem is that
the the departments are seeking equilibrium, but sometimes
this is a local minimum equilibrium. The downside of the
equilibrium is that there is no natural way for the gradient
descent approach to escape this local equilibrium once trapped.
In order to counter this, the shooting procedure is introduced.
This procedure initiates when there has been no progress in
the objective for n iterations, after which the next iterations
multiplies the flow attraction vector by a factor α. During this
shooting iteration, all overlap vectors are ignored.

This procedure introduces an imbalance in the equilibrium
so that the local minimum can be escaped. Once the shooting

procedure has initiated, a second one can not be initiated for
n iterations. Furthermore, during this cool-down period, the
objective is stored but the solution does not qualify as valid
until the cool down is reduced to 0 again. The procedure for
shooting is summarized in algorithm 1.

2) Swapping: The second problem that occurs is the in-
fluence of the random starting positions. While the shoot-
ing procedure will already partly eliminate this problem, a
swap procedure is also proposed. When triggered, the swap
procedure evaluates all possible department swaps and ranks
them based on their influence on the objective. It is important
to notice that the overlap is not included in the objective
when evaluating a swap, since this would further encourage
swapping. When all possible swaps have been evaluated, the
most profitable one (if any) is performed. The trigger for
swapping is a rapid increase in the objective, where the
current iterations must have improved by at least β % in
comparison to objective of the previous iteration. Just like
with shooting a cool-down of n iterations is issued where
neither a swapping of shooting procedure maybe initiated.The
procedure is summarized in algorithm 2.

B. Second-stage model

In the second-stage model, the relative location constraints
from the first-stage model will be implemented in addition to
all hard constraints as mentioned in section 2. The second-
stage model takes all the constraints and objective and models
that in Google’s OR-tools [Perron and Furnon], using its CP-
Sat solver, a linear constraint programming solver capable of
running optimizations by using only integers. Since the solver
is linear, some constraints involving divisions and absolute
values had to be rewritten as mentioned in section 2. To
allow for the implementation of the absolute values, the
.EnforceOnlyIf() method provided by the CP-Sat solver was
used. A non-linear constraint that cannot be rewritten is the
area requirement as seen in equation 2, it is non-linear as it
multiplies two variables.. The CP-SAT solver offers a way that
still allows this multiplication of different variables through the
.AddMultiplicationEquality() method. Together with the fact
that only integers are allowed, and the constraint can only be
set to equality (no bigger then or less than), the number of
options that are left to shape a department are low, since the
area requirement only has so many ways to be a product of two
integers. A possible way to work around this is the up-scaling
of the variables and the area requirements, every factor 10
will add an extra decimal to the options of forming the area
requirement. A nice example of this up-scaling is shown in
table I.



Algorithm 1 Pseudo-code for the ”shooting” procedure
if cool-down != 0 then

cool-down = cool-down -1
end
if iteration > n AND cool-down == 0 then

if objective current >= objective iteration-n then
shoot = True

end
end
if shoot == True then

Compute only the flow-attraction vectors
Move all departments α * the set distance
cool-down = n
shooting = False

end
else

Move departments normally
end

Algorithm 2 Pseudo-code for the ”swapping” procedure
if cool-down == 0 then

if objective current/objective previous ≤ β then
swapping = True

end
end
if swapping == True then

flag = False for i in range(nr departments) do
for j in range(nr departments) do

if i !j then
copy the data frame
swap coordinates of department i and j
calculate the objective excluding overlap if
objective < min(objectives) then

save i
save j
flag = True

end
end

end
end
if flag == True then

swap departments i and j in actual data frame
cool-down = n

end
swapping = False

end

Area Requirement Nr of possible integer multiplications
12 3
1200 15
120000 35
12000000 63
56 4
5600 18
560000 40
56000000 70

TABLE I
THE AMOUNT OF INTEGER MULTIPLICATIONS TO MAKE THE AREA

REQUIREMENT, UP-SCALING BY FACTORS OF 100 OFFERS MORE
POSSIBILITIES, BUT THIS COMES AT A COST OF COMPUTATIONAL POWER
REQUIRED AS THE VARIABLES WILL BE SCALED AS WELL (BY FACTORS

10).

Algorithm 3 Pseudo-code for the first-stage model
Import necessary modules
Import data from excel using pandas
for i in range(nr departments) do

Radius =
√

Area
π

x = random integer (min,max)
y = random integer (min,max)

end
for k in range(max iterations) do

for j in range(nr departments) do
for j in range(nr departments) do

if i!=j then
Compute partial derivative df

dxi

Compute partial derivative df
dyi

Compute flow attraction vectors
Compute repulsive vectors for overlapping
Compute repulsive vectors for overlap with
outside facility
Add weights to all vectors
Compute the master vector for each department

end
end

end
Move the departments in the direction of the master-vector
a set distance
Compute the Objective
for i in range(nr departments) do

for j in range(nr departments) do
if i!=j then

Objective ij = distance ij * flow ij
Objective = Objective + Objective ij

end
end

end
Append Objective to Objectives
if Objective == min(Objectives) then

Save x and y positions
Save iteration number
Save objective and overlap amount

end
end



IV. RESULTS

The proposed frame-work was tested using a python 3.8
environment set up in Rhinoceros [Associates, b] using the
plugin grasshopper [Associates, a] for the first-stage model and
the CP-Sat solver from google OR-tools [Perron and Furnon]
modelled in python for the second-stage model. The tests were
done using an Intel(R) Core(TM) i7-9700K CPU @3.6GHz
with 32 Gb of memory. As test problems, two cases were
taken from [Tam and Li, 1991] and [Chwif et al., 1998] which
were originally composed in [Nugent et al., 1968] consisting
of 8 and 12 departments. Both the results for the first- and
second-stage model are presented.

A. first-stage model

The results for the first model are published in table II. The
table holds the results that were taken for a 50 sample test
on the four different methods, vanilla, swapping, shooting and
swapping and shooting combined. Each method had its own
sample of 50 runs, taking a maximum of 800 iterations.

Each column provided the results for one of these methods,
going over the objective as well as the flow-cost, the amount
of overlap and the number of iterations it took to find the best
result. Each subsection is split into the average, minimum,
maximum and standard deviation. Table II shows the results
for the 8 department test, only the 8 department problem was
used to test the different methods efficiency. Additionally, the
relative improvement of the proposed improvement procedures
compared to the vanilla method can be found in table III.

The computational time needed for the test problems were
on average 20.1 seconds for the 8 department problem and
on average 29.8 seconds for the 12 department problem for
800 iterations. Figures 1 and 4 show the best layout for the
first-stage model for respectively the 8 and 12 department
problems, as well as their graphs. The graphs show the
improvement of the objective, flow-cost, and overlap through
all 800 iterations. The green circle encircles the best iteration
(corresponding with the layout).

When comparing the different methods in tables II and III,
it can be noted that the results for the vanilla method are the
least promising, with the highest average objective, overlap
and high standard deviations, indicating a heavy influence
of the random starting positions. This influence is slightly
reduced for the shooting method, as well as the average
objective. However, the real improvements can be found with
the swapping method and the method that includes both
swapping and shooting, greatly reducing the average objective
and the standard deviation. While swapping has the best
average objective, the method with both procedures has the
absolute single best solution, which is due to the fact that it has
a slightly higher standard deviation, increasing the chances to
get a very low objective (and also a very high objective) while
still, on average, producing very solid solutions. Therefor, it
can be argued that the method that includes both procedures
is preferred when there is enough time to run multiple tests
while the swapping method would be preferred when only a
few samples can be run.

Swapping Shooting Both
Objective
Average -15% -5% -15%
Minimum -2% -2% -2%
Maximum -32% -1% -20%
Standard deviation -83% 3% -65%
Overlap
Average -70% -36% -58%
Minimum 35% 52% 33%
Maximum -98% -72% -96%
Standard deviation -96% -72% -94%
Flow-cost
Average -15% -4% -15%
Minimum 28% 30% 27%
Maximum -33% -2% -20%
Standard deviation -83% -4% -67%
Iterations
Average 10% 29% 9%
Minimum - - -
Maximum 0% 0% -1%
Standard deviation -17% -24% -29%

TABLE III
THE IMPROVEMENT IN PERCENTAGES FOR THE PROPOSED IMPROVEMENT
METHODS COMPARED TO THE VANILLA METHOD FOR THE 8 DEPARTMENT

PROBLEM, NEGATIVE IS A DECREASE (IMPROVEMENT).

Vanilla Swapping Shooting Both
Objective
Average 905.8 766.4 864.7 767.6
Minimum 760.6 745.1 747.9 742.5
Maximum 1225.7 829.6 1207.9 977.9
Standard deviation 96.7 16.9 99.2 33.8
Overlap
Average 4.9 1.47 3.14 2.04
Minimum 0.46 0.62 0.7 0.61
Maximum 146.41 3.34 40.7 5.73
Standard deviation 20.46 0.77 5.63 1.16
Flow-cost
Average 894.1 757.3 854.6 755.8
Minimum 568 727.7 741 723.1
Maximum 1220.5 816.8 1200.8 971.4
Standard deviation 104.5 17.5 99.9 35
Iterations
Average 475.8 521.9 613.1 518.8
Minimum 0 141 8 118
Maximum 799 799 796 790
Standard deviation 238.3 197.1 181.2 169.1

TABLE II
THE RESULTS FOR THE 8 DEPARTMENT PROBLEM FOR THE FIRST-STAGE

MODEL.

B. second-stage model

In the second-stage model, the best solution found during
the first-stage model for the 8 and 12 department problem,
as seen in figures 1 and 3, are used to find the relational
constraints. These constraints, together with all constraints
established in section 2, will be modelled in the CP-Sat solver
and solved for three time frames: 25 seconds, 100 second and
300 seconds. Additionally, the same models are solved but
this time the relational constraints from the first model are
excluded in order to test the effectiveness of the first model.

The results for the 8 department problem, taking into
account 3 different time frames and the in- or exclusion of the
first-stage model’s constraints are published in table IV, while
the same results for the 12 department problem are published



Fig. 1. The result for the first-stage model considering the layout for the 8
department problem. Source: Own work

Fig. 2. The change of objective, flow-cost and overlap through the iterations
concerning the best solution for the 8 department problem. Source: Own work

in table V. Additionally, the best results are published in
table VI, which, in addition to providing information on
the objective as stated in this paper, compares the objective

Fig. 3. The result for the first-stage model considering the layout for the 12
department problem. Source: Own work

Fig. 4. The change of objective, flow-cost and overlap through the iterations
concerning the best solution for the 12 department problem. Source: Own
work

with up to two references who have solved the exact same
problem. In order to be able to compare the objective, the
final layout was found using the objective in this thesis, but
an additional python component would calculate the objective
for that solution as formulated in Tam and Li [1991], thus
making the three methods comparable.

When comparing the inclusion of the first-stage model’s
constraints versus the exclusion of those constraints in tables
IV and V , it can be said that the inclusion of the con-



Relational constraints No relational constraints Difference%
25s 477.2 528.1 9.6
100s 427.6 520.3 17.8
300s 410.3 515 20.3

TABLE IV
THE RESULTS FOR THE 8 DEPARTMENT PROBLEM INCLUDING THE

FIRST-STAGE MODEL’S CONSTRAINTS AND EXCLUDING THEM.

Relational constraints No relational constraints Difference%
25s 1338.9 1678.4 20.2
100s 1302.1 1607.1 19.0
300s 1302.1 1444.0 9.8

TABLE V
THE RESULTS FOR THE 12 DEPARTMENT PROBLEM INCLUDING THE

FIRST-STAGE MODEL’S CONSTRAINTS AND EXCLUDING THEM.

straints does help significantly to lower the objective as the
improvement is always at least 9.6% in all time frames, as
well for the 8 department problem as for the 12 department
problem. When comparing the best results of the method with
the results found in the literature however, it can be seen that
the approach in this paper is still behind the best approaches
found in the literature. As Chwif et al. [1998] already noted,
the method used in Tam and Li [1991] is an exact method,
so the results there are an absolute optimum, but that method
becomes unfeasible after 15 methods, while the method in this
paper does not. In addition to that, the empty space ratio (ESR)
was better in this case, 20% versus 37% and 23%, proving that
this method creates a more compact layout.

Departments OV Recomputed OV Tam OV Chwif OV
8 410.3 967.3 839 -
12 1302.1 3931.4 3162 3684

TABLE VI
THE TWO PROBLEMS COMPARED TO METHODS FROM CHWIF ET AL.

[1998] AND TAM AND LI [1991]

V. CONCLUSION

In this paper a two-stage model was proposed, combining
the idea of a two-stage model from Anjos and Vieira [2016]
with a gradient descent approach much like proposed in
Sikaroudi and Shahanaghi [2016]. The proposed method was
tested on two toy-problems from Tam and Li [1991] and
compared to results existing in literature. Additionally, the
effect of including a first-stage model was tested as well.

When looking directly at the results, the proposed method is
consistent and shows good results. Especially the inclusion of
the first-stage model helps finding better solutions. Compared
to other results found in the literature, the method is lacking
based purely on the objective value. What it is capable of doing
a little better however, is the reduction of the empty space
ratio. Additionally, the proposed method is versatile enough
and quite fast compared to other methods.

Would there have been space for additional research, other
test problems of different sizes could have been explored more
thoroughly. Additionally, a real-life example could have been
used to test the proposed method on. An idea for generating
even more promising lay-outs is experimenting with the way

Fig. 5. The result for the first-stage model considering the layout for the 8
department problem. Source: Own work

Fig. 6. The change of objective, flow-cost and overlap through the iterations
concerning the best solution for the 12 department problem. Source: Own
work

that the relational constraints are transferred from the first-
stage model to the second-stage model.
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