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Chapter 1
Introduction

The fundamental cause of trouble in the world is that the
stupid are cocksure while the intelligent are full of doubt.

Bertrand Russell

The main idea of this dissertation is to examine complex dynamics associated with the
plaque growth in human arteries which leads to fatal consequences to human life. It is

a chronic disease better known as Atherosclerosis, and its accurate clinical and mathematical
understanding is essential to unravel the important risk factors in its development and offer a
cure. This disease is very complex as it involves many chemical agents, complicated blood
flow profiles, genetic make-up of an individual etc. Many of them influence each other via
chemical reactions or biomechanical interactions. To date, atherosclerosis is still only partly
understood by physiological and clinical methods. From the mathematical modeling point
of view, it is a challenge to contribute to the understanding of this disease. In recent times,
many studies are conducted in vivo (experiments in living organisms), in vitro (experiments
in laboratory) and in silico (experiments using computers), in order to determine the salient
features that might affect and control the biochemical and biomechanical reactions in the
arteries. Mathematical models, on one hand, could provide deeper insight into such complex
phenomena and assist in predicting their evolution. Essentially, various techniques for math-
ematical analysis are utilized, such as the theory of dynamical systems, bifurcation analysis,
numerical analysis etc. Fluid mechanics is another discipline, which is a prerequisite to de-
termine the interactions between blood flow and artery walls. In this thesis, we present the
mathematical and computational analyses on the formation of plaques in arteries. We con-
sider atherosclerosis as a coupled problem for both blood flow conditions and biochemical
evolution of the plaque constituents involved. We explore the interaction of different impor-
tant plaque constituents on short time scales, and its accumulation into the artery on a longer
time scale to clearly distinguish which factors are the most relevant and what can be inferred
from a mathematical perspective.

In this Introduction, we explain the fundamentals of the development of atherosclerosis by
reviewing the early and most prominent theories available in literature. We want to empha-
size that all the previous work can be unified into a single framework commonly called the
stages of development for atherosclerotic plaques (Libby et al. 2002). Furthermore, we dis-
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cuss the basic vascular dynamics and its impact on evolution of this disease. Finally, we
conclude this chapter with a brief outline for this thesis.

1.1 Background

Arteriosclerosis is the hardening of human arteries. One of its variant is atherosclerosis,
which is hardening of arteries due to plaque deposition. It is the most prevalent form of car-
diovascular disease and is characterized by the progressive accumulation of lipids and fibrous
elements in large arteries. It is believed that atherosclerosis is one of leading causes of death
in the industrialized world by 2020 (Mach 2005). The main causes for this disease known are
high blood pressure, diabetes, high levels of cholesterol, smoking, age and genetic make-up
(Kuvin and Kimmelstiel 1999). People with a parent or sibling who has had atherosclerosis
or cardiovascular diseases, have a much higher risk of developing atherosclerosis than others.

During the 1970s, atherosclerosis was believed to be caused by deposition of lipids on arte-
rial walls due to a strong correlation between hypercholesterolaemia and atheroma (Ross and
Harker 1976). The advancements in vascular biology and rapid clinical investigations have
suggested that the disease is initialized by the dysfunction of internal elastic lamina. Sev-
eral theories have been proposed regarding the pathogenesis of atherosclerosis (Schwartz
and Reidy 1987, Davis 1986, Libby et al. 2002). The most prominent is ’response-to-injury’
theory, proposed by Ross and Glomset (Ross and Glomset 1976a, Ross and Glomset 1976b)
that essentially predicts that the injury of endothelium is responsible for platelet adhesion
and aggregation. They proposed that the growth factors released from the platelets are re-
sponsible for smooth muscle migration into the intima as they secrete components of ex-
tra cellular matrix. Another aspect was presented by (Ross 1986) that the monocytes and
macrophages also contribute to the pathogenesis of atherosclerosis due to the inflamma-
tory response. Uptill now numerous in vivo and in vitro studies have been performed to
understand the mechanisms responsible for atherogenesis. It is quite well established that
atherosclerosis is a multifocal, smoldering, immuno-inflammatory disease of medium-sized
and large arteries fuelled by lipids. Endothelial cells, leukocytes, and intimal smooth mus-
cle cells are the major players in the development of this disease (Falk 2006). Furthermore,
(Libby et al. 2002, Hansson and Libby 2006, Gotlieb 2007) have reviewed previous existing
research clinically and explained that the theories of origin of atherosclerosis are not mutu-
ally exclusive and are all linked. They have explained that all the hypotheses/theories can be
combined into one by understanding the progression of atherosclerosis in different stages.
Many of their experiments both, in-vivo and in-vitro have suggested that plaque evolution
can be divided into mainly four stages of atherosclerosis. These stages of development of
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Figure 1.1: The pathogenesis of atherosclerosis: Endothelial injury triggers the complex mechanism
shown in the form of a diagram.

plaques are explained below and also depicted in Figure 1.2. As such, the development of
plaque is divided into four stages viz., ’Endothelial injury’, ’Oxidation of LDL’, ’Inflamma-
tory process’ and ’Calcification’. We explain each of them in next subsections.

1.1.1 Endothelial injury

The ’response to injury’ hypothesis proposes that the primary event in atherogenesis is en-
dothelial damage and dysfunction which disrupts properties resulting in platelet and leuko-
cyte adhesion (resulting in recruitment of monocytes), thrombosis (formation of blood clots),
smooth muscle proliferation, vasospasm (causing ischemia), lipid accumulation and ulti-
mately atheroma (Ross 1986). Endothelial derived nitric oxide regulates vessel tone, inhibits
platelet activation, adhesion and aggregation (Upchurch et al. 1996). It also limits smooth
muscle proliferation and modulates endothelial leukocyte interactions (Luscher et al. 1996).
On the other hand, It was observed that the wall shear stress can change the morphology and
orientation of endothelial cell layer (Shaaban and Deurinckx 2000). Endothelial cells are
subjected to elevated levels of wall shear stress tend to elongate and align in the direction of
flow, whereas those experiencing low or oscillatory wall shear stress remain more rounded
and have no preferred alignment pattern (Levesque and Nerem 1985). This implies that the
endothelial dysfunction is directly associated with the flow regions. In Figure 1.1, the dys-
function of endothelial layer is depicted. As it is a complex phenomena involving a lot of
secretion of signaling molecules, we assume a constant supply of LDL through this barrier
and consider it as a parameter in the first part of the thesis. Later, we consider the endothelial
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Figure 1.2: Four different stages of development of atherosclerosis.

shear stress dependence on the evolution of radius of the artery.

1.1.2 Oxidation of LDL

Low-density lipoproteins (LDL) are one out of five different groups of lipoproteins that
stream through the blood and are supplied to other parts of the human body (others include
Chylomicrons, VLDL, IDL and HDL). The LDL particles are the aggregates of lipids and
proteins. The most abundant lipid constituents are triacylglycerols, free cholesterol, choles-
terol esters and phospholipids (especially phosphatidylcholine and sphingomyelin ). These
LDL particles are formed in the liver and gut, and carry cholesterol, which they transfer to
different cells and tissues to provide lipid for the use of cellular metabolism. High density
lipoprotein (HDL) on the other hand, performs the reverse role of transporting lipids to the
liver for excretion. That is why, it is very common to call LDL a bad cholesterol and HDL
a good cholesterol. HDL particles are small and dense and have the same structure as LDL,
although LDL is more dense (Cobbold et al. 2002). LDL consists of a lipid core, a surface
protein and some antioxidant defences such as ubiquinol-10 and α-tocopherol (vitamin E)
(Bowry et al. 1992). Both LDL and HDL can diffuse through the endothelium (the layer of
the artery) and enter into the intima while being transported into the blood. The endothelium
takes the role of a selectively permeable barrier between blood and intima, and consists of
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Figure 1.3: The oxidation of LDL particles after it enters into the intima. The modified ox-LDL being
the potential threat to the defence system.

tightly packed endothelial cells (Mckay et al. 2005). Endothelial cells adopt to the flow con-
ditions. For laminar and uniform blood flow in the artery, their shape remains ellipsoidal.
Regions where the flow conditions are not normal, for example, turbulent or stagnant, the
endothelial cells are more polygonal in their shape. For the later regions, the permeability
for LDL becomes higher and thus more LDL can enter the intima. In the lumen, antioxidants
are present that is why the LDL/HDL do not oxidize; but as these particles enter the intima,
which is not a protected environment, the free radicals penetrate into the LDL particle and
destroy the antioxidant (vitamin E). Later, they do the same with surface protein and then to
the lipid in the core. The oxidized-LDL particles are recognized by the scavenger receptors
(Parthasarathy et al. 1990). This triggers the immune system response and recruitment of
monocytes takes place later on (See Figure 1.2).

1.1.3 Inflammatory process

After oxidation of LDL (formation of ox-LDL), being recognized by the scavenger recep-
tors, the endothelial cells display adhesion molecules to the blood at the permeable interface.
Blood containing the immune system (monocytes, T-cells etc.) recognizes the threat and thus
these monocytes enter into the intima. This initiates leukocyte locomotion (chemotaxis) and
so the monocytes and T-cells squeeze through gaps between endothelial cells and migrate up
the chemo-attractant gradient (Mckay et al. 2005). A series of reactions take place within
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the intima in order to attract ox-LDL to the site. Monocytes multiply themselves to be-
come macrophages. These macrophages digest ox-LDL and simultaneously smooth muscle
cells begin migrating from the media and fatty streak is formed. After macrophages digest
the ox-LDL content, their size increases and they do not survive in the vasculature. These
macrophages are called foam cells after they digested the lipid core. A fibrous cap starts
forming by the smooth muscle cells and collagen in the vasculature. Artery starts expanding
by the elastic wall (media) as the necrotic core grows further. This phenomenon is called
remodeling. There is a limit to the expansion of arterial wall, when it reaches its maximum
point, the plaque formation bulges into the lumen (Davis 2005).

1.1.4 Plaque Growth and Calcifications

At this stage a change in the geometry of vasculature is clearly witnessed (See Figure 1.2).
The plaque growth is attributed to a combination of debris of cellular apoptosis (such as
macrophages and foam cells), and migration of smooth muscle cells and collagen. The
majority of plaque is found in areas of high density of macrophages and foam cells. Unlike
the natural cell death, apoptosis is the main contributor in the evolution of atherosclerotic
plaques. It is believed that the foam cell apoptosis is the specific cause of lipid core in the
atherosclerotic plaque (Mckay et al. 2005).

1.2 Blood Vessels

There are mainly two kind of arteries which are classified as being muscular and elastic.
Elastic arteries are the largest, ranging from 1cm to 2.5cm in diameter. They have more
significance as they can adopt to the applied blood pressure and other bodily mechanisms.
The majority of elastic arteries reside near the heart. They include the aorta, carotid, illiac
and pulmonary. Arteries are designed to minimize internal friction and flow resistance, and
to maximize the strength of the wall. This is very simple to understand: arteries, which are
near the heart, are organized in a fashion that they are quite elastic containing the fibers of
collagen and elastin. Once they gather the blood out to the major regions of the body, there
is a transition in the structure of the arterial wall. The collagen and elastic fibers get reduced
in number and all that remains is smooth muscle cells (which is what makes an artery more
muscular). Figure 1.2 shows a healthy elastic artery.

On a microscopic level, arteries are divided into three layers, which are known as Intima,
Media (tunica media) and Adventitia (tunica externa). The intima is nearest to the lumen
where endothelial layer separates it with flow of blood. The intima has a lining of endothe-
lial cells which are polygonal, oval or fusiform and have very distinct round or oval nuclei. It
is an elastic structure that thickens with age, disease and topography. In atherosclerosis, en-
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dothelial cells play a vital role as they are closest cells (within intima) that adapt to the blood
pressure, shear stresses and other mechanical factors of animal species. It is known that
pathological changes of the intimal components may be associated with atherosclerosis; the
most common disease of arterial walls. It involves deposition of fatty substances, calcium,
collagen fibers, cellular waste products and fibrin (a clotting material in the blood). The
resulting build-up is called atherosclerotic plaque, and it may be very complex in geometry
and biochemical composition. In later stages, the media is also affected. These pathological
changes are associated with significant alterations in the mechanical properties of the arterial
wall. Hence, the mechanical behavior of atherosclerotic arteries differs significantly from
that of healthy arteries (Holzapfel and Gasser 2000).

The tunica media is the second layer of arteries consisting of smooth muscle cells and in
the case of elastic arteries, they also consist of elastin and collagen fibers. This layer is sep-
arated from the intima and the adventitia both by internal elastic lamina and external elastic
lamina. When smooth muscle cells contract (vasoconstriction), the lumen gets smaller and
blood pressure rises. When it expands ( vasodilation), the lumen gets bigger, lowering the
blood pressure. The adventitia being the outermost layer, contains fibroblasts and fibrocytes
which produce elastin and collagen. This layer provides the reinforcement to the artery. For
atherosclerosis, its importance lies in the fact that it produces collagen fibers, which con-
tributes to atherosclerotic plaques.

1.3 Vascular Dynamics

Vascular dynamics is an important factor in the pathogenesis of atherosclerosis. It involves
the laws of fluid dynamics applied to the tissue response of the blood vessels. Continuous
blood flow governed by the laws of fluid mechanics is instrumental to the development and
evolution of biological tissues in the vaso vasorum (network of blood vessels). The mechani-
cal blood properties at the site of atherosclerotic lesions are found to be different compared to
the sites with no such lesions. The motion of blood in the vessels can be in the form of lami-
nar streamlines or turbulent flow. In turbulent motion, the blood flows irregularly in eddying
motion at different sites of the vessel during various instances. In laminar flow, the motion
of blood is in straight streamlines. In the presence of atherosclerotic plaques, the flow char-
acteristics at sites of turbulent motion change drastically, causing flow disturbances and high
pressure gradients. The blood flow is governed by the pulsation of the heart muscle which
provides pressure to drive the blood into the whole body (circulatory system). The recurring
pulsation of the heart provides arteries to adopt themselves on a given time in a way that the
blood is transferred to all parts of the body. Thus, this pressure-flow relationship governs the
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Figure 1.4: The layers within an artery: Intima, Media and Externa along with their sublayers.

arterial movement of the blood. The blood viscosity plays a vital role in the ongoing flow
behavior. It is known that in small arteries, the viscosity is not constant, implying that blood
behaves in non-newtonian fashion, but in medium and large arteries, the shear stresses are
smaller and the blood viscosity can be regarded as constant (Dormandy 1970).

One of the most important consequences of the blood flow profile in vessels is the shear
stress applied at their walls. The shear stress is the parallel or tangential force onto the wall
of the arteries, the endothelium. The wall shear stress, or endothelial shear stress, is the
product of blood viscosity and the shear rate. The shear rate is the velocity gradient normal
to the boundary (the wall). It is widely confirmed that atherosclerosis in adult human be-
ings develops preferentially in arterial regions where wall shear stress is low (Caro 2009).
Furthermore, the arterial wall mass transport is more complicated and appears to be a very
important factor in atherogenesis.
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1.4 Outline and motivation of the thesis

As described in (Hansson and Libby 2006, Libby et al. 2002, Mckay et al. 2005), there are
mainly four stages in the development of atheroma in the arteries (as shown in Figure 1.2).
These stages being: (1). Lipoproteins entering the intima and their oxidation, (2). The in-
flammatory process, (3). Plaque growth: SMC migration and apoptosis in the vasculature
and (4). Plaque instability: SMC and EC apoptosis and cap degradation. Though compre-
hensive guidelines are given in (Mckay et al. 2005) for the modeling of atherosclerosis as a
biochemical process, a detailed analysis is not carried out. After a careful review of litera-
ture, we came across with the following objectives and recommendations.

• There is need for all four stages of atherosclerosis to be fully understood and mod-
eled more realistically. In recent times, there have been many mathematical models
(Cobbold et al. 2002, Khatib et al. 2007, Khatib et al. 2009, Ibragimov et al. 2005,
Ougrinovskaia et al. 2010, Calvez et al. 2009) that have studied certain aspects of
atherosclerosis. But all of them, somehow, lack the analysis of the time scale these
biological processes evolve and concentrated mainly on the initial stage of atheroscle-
rosis. In the wake of these models, a long term analysis of atherosclerosis is desirable
as mentioned in (Zohdi et al. 2004).

• It is also desirable to take into account, the blood flow and its coupling to the biological
evolution of species (LDL, ox-LDL and others).

• In models like (Cobbold et al. 2002, Khatib et al. 2007, Khatib et al. 2009, Ibrag-
imov et al. 2005, Ougrinovskaia et al. 2010, Calvez et al. 2009), monocytes and
macrophages are not distinguished. Furthermore, there is no model yet to our knowl-
edge, which has separate equations for monocytes, macrophages, ox-LDL, radius of
the artery and foam cells. It is desirable to understand the key roles each of these
particles play in time evolution of atherosclerotic plaques.

In this thesis, we consider the evolution of the main constituents of plaques which include,
LDL, ox-LDL, monocytes, macrophages and foam cells. We assume a constant supply of
LDL particles from the lumen to the intima and denote it with the dimensionless parame-
ter d and later on, we consider its evolution as a convection-diffusion process in the lumen.
We further take the advantage of a previous study (Lantz and Karlsson 2012), and impose
shear dependent transfer of LDL into the intima. This further elaborates on the role of LDL
transfer depending upon the flow conditions. The evolution of foam cells which is coupled
to monocytes, macrophages and ox-LDL concentrations, is obtained in time. Broadly speak-
ing, the human plaque is composed of necrotic core, the fibrous content and calcium. In this
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thesis, we consider the necrotic core as the plaque itself since the fibrous part and the calcium
accumulation into the plaque are found at a very late stage. Thus we can safely approximate
plaque with the necrotic core which is made up of foam cells. The models presented in
this thesis consist of several parameters, some of which are clinically well-known (Mckay
et al. 2005), whereas the others are not known due to insufficient clinical data.

In chapter 2, we present two models, which we call model A and model B, differing in
approach that, in model A, there is no coupling of blood flow while in model B, blood flow
is coupled to it. The analysis is time-dependent and it gives sufficient approximation of the
reduction of the radius of the artery and increase in the volume of the plaque. In Chapter 3,
we present the bifurcation analysis of codimension two by considering two most important
parameters that largely affect the plaque growth. Chapter 3 presents the slow-fast dynam-
ics of the model we presented in Chapter 2. In Chapter 4, we consider the full version of
Navier-Stokes equation coupled to the transfer of LDL particles and thus understanding the
consequence of different flow conditions on transfer of LDL into the intima. We consider
the plaque growth as a time-dependent moving boundary problem to explore the temporal
influence which has never been performed to the best of our knowledge. This results in many
new parameters introduced in our proposed models, and they are discussed in detail in this
thesis. After several simulations, we found two threshold values, one for LDL intake and the
other for shear stress, which in turn gives the idea of the importance of these two. Calcula-
tions also show that the regions, where the flow profile is not laminar, is subjected to a higher
amount of infiltration of particles from the blood to the wall of the artery. We present all the
conclusions in Chapter 5.
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Chapter 2
Long time evolution of atherosclerotic plaques

The question is not what you look at, but what you see.

Henry David Thoreau

Abstract

The evolution of atherosclerosis in general, and the influence of wall shear stress on the
growth of atherosclerotic plaques in particular, is an intricate phenomenon which is still
only partly understood. We therefore propose a qualitative mathematical model which
consists of a number of ordinary differential equations for the concentrations of the most
relevant constituents of the atherosclerotic plaque. These equations were studied both
for the case that the wall shear stress is a parameter (model A), and for the case in
which the plaque evolution is coupled to the blood flow (model B) which results in a
time dependent wall shear stress. We find that both models exhibit a class of marginally
stable equilibria, all reflecting states in which the plaque only grows for a short period of
time after a perturbation. The uncoupled model A, however, shows bi-stability between
this class of equilibria and another equilibrium state in which the plaque experiences
unlimited growth in time, if the LDL cholesterol intake exceeds a threshold value. In
model B the bi-stability vanishes, but we find that there is still a critical value of the LDL
cholesterol intake beyond which the lumen radius drastically decreases. We show that
this decrease is quite sensitive to the value of the wall shear stress.

2.1 Introduction

Atherosclerosis is a vascular disease caused by inflammation of the intima, a layer in the
arterial wall, which results in the accumulation of LDL (low density lipoprotein) cholesterol,
monocytes, macrophages and fat-laden foam cells at the place of the inflammation. This
process is commonly referred to as plaque formation. A large number of clinical investiga-
tions (Malek et al. 1999, Li et al. 2006, Gijsen et al. 2008, Hansson and Libby 2006) have
been performed on plaque formation and growth of atheromatous plaque. From these in-
vestigations is was inferred that after accumulation of LDL particles in the intima, the LDL
molecules can get oxidized causing an inflammatory reaction. This oxidation process is me-
diated by the monocytes (Xing et al. 1998). The immune response following the penetration
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and oxidation of LDL cholesterol urge the endothelial cells near the inflammatory area to
recruit monocytes from the blood, which subsequently enter the intima. The monocytes on
their turn, are converted into macrophages, which digest (or phagocytose) the oxidized LDL
particles. These macrophages are eventually transformed in inert fat-laden foam cells, which
again trigger the immune system. The cycle of recruitment of monocytes and production of
more foam cells then starts again from the beginning. In this biological process the inflam-
matory response is transmitted by cytokines (Hansson and Libby 2006), which increase the
endothelial cell activation leading to an enhanced rate of monocyte recruitment.

Once a plaque is formed, it is covered by a fibrous cap, consisting of elastin/collagen
and smooth muscle cells (SMCs). Rupture of this cap leads to serious events like myocar-
dial infarction or stroke. Therefore it is of crucial importance to find criteria which help to
determine the vulnerability of the cap, in order to predict which caps are eventually prone
to rupture (Li et al. 2006, Koskinas et al. 2009, de Korte and van der Steen 2002, Fan and
Wanatabe 2003). No adequate diagnostic strategy to identify vulnerability is available yet.
Since plaques typically evolve on timescales as long as 10 to 15 years, clinical investigations
are very time consuming and expensive. Consequently, mathematical models have been
developed to address a number of questions associated with atherosclerosis. So far, most
models either concentrate on explaining a specific clinical trial result about the growth and
rupture of atherosclerotic plaques (Wang 2001), or focus on the initiation of atherosclerosis
(Cobbold et al. 2002, Khatib et al. 2007, Khatib et al. 2009, Ibragimov et al. 2005, Ougri-
novskaia et al. 2010, Calvez et al. 2009). In the paper by Cobbold et al. (Cobbold et al. 2002),
for example, a model for the oxidation process of LDL cholesterol and the protective effects
of vitamins has been put forward. Their findings give results that are consistent with clinical
studies that vitamin E does not lead to significant reduction of atherosclerotic plaques, con-
trary to the expectations. More recently, in the work of Ougrinovskaia et al. (Ougrinovskaia
et al. 2010) the uptake of cholesterol by different scavenger receptors of macrophages dur-
ing early stage atherosclerosis was investigated, using an ODE model. It was found that
macrophage proliferation rather than an increased influx of LDL particles drives lesion in-
stability. Another interesting model was studied by Ibragimov et al. in Ref. (Ibragimov
et al. 2005), where a sophisticated partial differential equation model for the first stages in
the atherosclerosis process was examined. In Ref. (Mckay et al. 2005) a very clear introduc-
tion of models that may be applied during different stages in the evolution of atherosclerotic
plaques and an extensive list of parameter values are provided.

Although atherosclerosis is in the first place an inflammatory phenomenon, its evolution
can be influenced by mechanical stimuli. It has long been known, for example, that shear
stresses can influence plaque formation in a beneficial way (Wang 2001, Malek et al. 1999).
Higher shear stress generally leads to reduced plaque formation and growth. This is generally
believed to be due to the endothelial cells (Gijsen et al. 2008), which are capable of sensing
the wall shear stresses exerted by the flowing blood. It follows that, in general, the growth
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of the plaque region into the lumen is dependent on the flow profile of the blood in the
lumen. The interaction between blood flow and the progression of atherosclerotic plaques
has, however, not yet received much attention from the mathematical modeling prospective.

One of the few papers addressing this phenomenon is a recent paper by Zohdi et al.
(Zohdi et al. 2004) in which it was attempted to construct a simple model taking into ac-
count the growth of the monocyte concentration in the plaque, by calculating the adhesion of
monocytes to the endothelial layer. In their seminal work Zohdi et al. developed a numerical
scheme to deal with the long term evolution of atherosclerotic plaques. The goal of this paper
is to extend the model put forward in Refs. (Zohdi et al. 2004) and (Zohdi 2005) by taking ex-
plicitly into account the reactions that occur in the intima as well as the effect of shear stress
exerted by the blood flow and discerned by the endothelial cells. As recent findings have
indicated that shear stress not only critically affects plaque formation and growth, but also
the transition of a developing plaque to a rupture-prone phenotype (Chatzisis et al. 2008),
the need for mathematical models that incorporate such features is evident.

We do not intend to give a quantitative model in this paper, but rather report on the
consequences of shear stress on plaque evolution on long time scales, for a generic model
describing the development of atherosclerosis. We therefore use a system of ordinary dif-
ferential equations (ODEs) to describe the evolution of the main constituents of the plaque.
We do not take any spatial-dependence or stochastic processes into account, but rather focus
on the coupling between flow and plaque growth. We believe that it is important to under-
stand the consequences of the ODE model, before generalizing the model to higher spatial
dimensions or including stochastic effects. Modeling features that are not robust under small
changes of assumptions in the ODE systems are likely to remain non-robust in more compli-
cated scenarios. The basis for our model is the interaction between the endothelial cells and
the wall shear stress. We first consider the case that the shear rate is an adjustable control
parameter (model A) and subsequently develop a more sophisticated model in which the wall
shear stress is calculated in a self-consistent way from the flow profile (model B). We find
that system A, in which the shear stress is treated as a control parameter, exhibits bi-stability
between the class I equilibria, in which the plaque is marginally stable and a state in which
the plaque grows indefinitely. The self-consistent model B possesses only the (marginally)
stable equilibrium states. In these marginally stable states the radius of the lumen can still
be significantly reduced. We show that this reduction depends rather strongly on the size of
the wall shear stress that was exerted by the blood on the arterial wall.

This paper is organized as follows. In section 2, we introduce two mathematical mod-
els: model A and model B; each consisting of a system of ordinary differential equations
(ODEs) for the constituents of the plaque. However, whereas the wall shear stress in model
A is simply a parameter whose value can be controlled, in model B, also referred to as the
self-consistent system (SCS), the flow is coupled in a self-consistent way to the plaque evo-
lution. That is, the Navier-Stokes equations for an incompressible fluid are solved in the
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axisymmetric case, from which then the wall shear stress can be calculated. On the one hand
this value of the wall shear stress enters the evolution equations of plaque constituents and
on the other hand the plaque volume determines the wall shear stress by occluding part of the
artery. For this reason we coin model B the SCS model. Next, in section 3, we discuss our
numerical findings for the two different models and report on how the lumen radius depends
on the LDL-intake. Finally, in section 4 we summarize our results. We also discuss nec-
essary generalizations of the model in order to make long term predictions about cap tissue
vulnerability.

2.2 The models A and B

As the main objective of this paper is to investigate the effects of wall shear stress on the pro-
gression of atherosclerotic plaques, we consider two different models: model A and model
B. The first model (A) we develop consists of four differential equations for the constituents
of the plaque. In this model there is no coupling between the blood flow in the artery and
the growth of the atherosclerotic plaque. Rather the wall shear stress is simply considered
an adjustable parameter. This allows a bifurcation analysis to be performed to determine the
stability of the plaque for varying shear rates; the model is described in detail in subsection
2.2.1.

As the blood flow through an artery is obviously dependent on the plaque volume, since
a larger occlusion implies by incompressibility higher blood velocities, we also develop a
second model, model B, in which the wall shear stress is calculated from the velocity profile
in the partially occluded artery. This wall stress influences on its turn the volume of the
plaque and therefore the cross sectional area available for blood flow; this model is derived
in subsection 2.2.2.

2.2.1 Model A

Our model is inspired by that of Ref. (Zohdi et al. 2004), but differs from it in the way the vol-
ume of the plaque evolves. The ODE model proposed by Ougrinovskaia et al. (Ougrinovskaia
et al. 2010) has similar evolution equations of some plaque constituents, but does not incor-
porate any effects of wall shear stress. Also the models described in Ref. (Mckay et al. 2005)
are akin to our model, although there are differences in the details. In Fig. 2.1 we present a
sketch of the configuration we consider in this paper. The problem is reduced to essentially
one-dimension, by considering a cylindrical geometry with translational symmetry in the z-
direction and axial symmetry along the z-axis. The plaque is presumed to consist of mono-
cytes, macrophages, LDL cholesterol, and fat-laden foam cells. The model is supposed to
give qualitative results and it offers the opportunity to investigate the influence of shear stress
on the progression of atherosclerosis. It has long been known that shear stresses influence the
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Figure 2.1: Schematic representation of the blood flow in the lumen. The LDL-particles (red dots)
present in the blood may enter the intima due to dis-functioning of the endothelial layer ((green)
blocks). If the plaque region increases, the radius of the lumen is reduced and consequently the blood
velocity and the wall shear stress are modified. The configuration is rotationally and translationally
symmetric with respect to rotations about the z-axis and translations in the z-direction, respectively.

growth of plaques in a positive way (Wang 2001, Malek et al. 1999, Gijsen et al. 2008), that
is, higher shear stresses lead to reduced plaque formation in the artery. To elucidate the ef-
fects caused by shear stress on the plaque evolution, we take its influence on the remodeling
of the artery explicitly into account. The equations governing the monocyte concentration
(m), the macrophage concentration (M), the oxidized LDL (Lox), and the fat-laden foam cells
concentration (F) in the plaque residing in the intima are given by

dm
dt

= (Γ(σw,Lox)−dm)m−ρ1m, (2.1a)

dM
dt

= ρ1m− ρinLox

1+Lox/Lth
M, (2.1b)

dLox

dt
=

qm
1+m/mth

−ρLLoxM−dLLox, (2.1c)

dF
dt

=
ρinLox

1+Lox/Lth
M. (2.1d)

These equations are new in the sense that we take wall shear stress into account, and have sep-
arate evolution of the monocytes and the macrophages, contrary to Ref. (Ougrinovskaia et al.
2010). The physical interpretation of these equations is as follows. The term Γ(σw,Lox)m
models the signaling reaction of the endothelium after LDL particles have entered the intima;
it presumes a linear dependence on the monocyte concentration and a nonlinear (sigmoidal)
dependence on the Lox concentration. This term is furthermore assumed to be a decreasing
function of the wall shear stress σw. The specific form of the term Γ(σw,Lox)m is discussed
below. The −dmm-term models monocyte diffusion out of the plaque into the lumen and the
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last term −ρ1m designates the differentiation of monocytes into macrophages. These terms
were also present in a model described in Ref. (Mckay et al. 2005), where the initiation
process of atherosclerosis was studied in detail.

The macrophage evolution is described by Eq. (2.1b); the concentration of macrophages
(M) increases as monocytes differentiate into macrophages. The macrophages can absorb
several Lox particles at their receptors after which they are turned into so-called foam cells
(Kruth et al. 2002). The ingestion of Lox by the macrophages will saturate for sufficiently
high Lox concentrations, which we implement by the sigmoidal term. We choose a sigmoidal
dependence on Lox for the sake of simplicity, but we checked that other functional forms
to implement the saturation can be employed without any qualitative changes. Diffusion of
macrophages is neglected, since they are typically larger than monocytes and therefore have
a smaller diffusion coefficient.

Equation (2.1c) governs the evolution of Lox, where we stress, that we consider only LDL
particles that are immediately oxidized upon entering the intima. The three terms on the
right-hand side of Eq. (2.1c) represent, LDL-uptake by the endothelial layer and oxidation
by monocytes, the ingestion of oxidized-LDL by macrophages, and the diffusion of LDL out
of the plaque region, respectively. The parameter q determines the rate of (unoxidized) LDL-
uptake by the endothelial layer. However, not all LDL molecules that permeate the intima
will get oxidized. The oxidization process requires the presence of monocytes/macrophages
(Xing et al. 1998, Chisolm et al. 1999, Llodra et al. 2004). Since we only consider the
oxidized-LDL in our model, we have combined the penetration of the LDL particles through
the endothelial layer with the oxidation process in the single term qm

1+m/mth
in Eq. (2.1c). For

the reason that in order for the LDL to get oxidized the presence of monocytes is required, the
first term on the right-hand side of Eq. (2.1c) has m in the numerator. Since the production
of Lox due to intake cannot grow indefinitely, there is a natural saturation incorporated by the
1+m/mth in the denominator. The precise functional form of the saturation is not known;
for concreteness we have taken the sigmoidal form.

The functional dependence of Γ(σw,Lox) on σw and Lox appearing in Eq. (2.1a) is taken
as follows:

Γ(σw,Lox) =
γ0

1+σw/σ0

Lox

1+Lox/Lth
, (2.2)

which is consistent with the fact that larger shear rates imply a smaller growth coefficient
for the monocytes (Malek et al. 1999, Gijsen et al. 2008). The value of σ0 designates the
wall shear stress at which the growth rate of the monocyte concentration due to the signaling
response by the endothelium is reduced with a factor of two compared to the zero wall shear
rate response by the endothelium. From Eq. (2.2) it follows that for Lox concentrations much
smaller than Lth, the sigmoidal function increases linearly with Lox, and for concentrations
well beyond Lth the sigmoidal function saturates. We remark that Eq. (2.2) is a function
that has the required biological characteristics; that is, it should decrease with increasing
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σw, increase with Lox, but be bounded when Lox is very large. The functional dependence
of Γ on Lox was also studied in Ref. (Ougrinovskaia et al. 2010), where it was called a
Michaelis-Menten function. It turned out that this functional form gave rise to dynamics that
was much more stable and realistic than functional forms having more inflections. We have
investigated the dynamics for different dependence of Γ on σw and Lox, but this did not lead
to any qualitative differences, and therefore we will only consider Γ given by Eq. (2.2) in
this paper.

The factor γ0 is a constant which determines the rate at which monocytes enter the intima
for small wall shear stress and low Lox. In this case the monocyte concentration increases
linearly with Lox at rate γ0. The system of equations (2.1) is closed when σ is taken to be a
parameter. The system (2.1) is the first model that we will explore in section 3.

2.2.2 Model B

The significance of the model of the previous subsection can be improved if we do not
consider the wall shear stress as given, but calculate it in a self-consistent way. The wall
shear stress σw can be computed if we assume that the flow is incompressible, which implies
a constant throughput (Q) through the artery. Although healthy arteries can adjust in such a
way that the wall shear stress is kept more or less constant, atherosclerosis affected arteries
can no longer tune their diameter according to the shear stress value (Malek et al. 1999). If
we solve the Navier-Stokes’ equations for the cylindrical symmetric situation (Landau et al.
1987), commonly called Poiseuille flow, and prescribe no-slip boundary conditions at the
artery walls, we obtain the quadratic velocity profile of the form v(r, t) = vmax(t)

(
1−
( r

R

)2
)

.

This implies that the throughput Q = 2π
∫ R

0 rv(r, t)dr = πvmax(t)R2(t)
2 , from which we infer

that the central velocity vmax(t) = 2Q/πR2(t). The wall shear stress can now be calculated
directly from the velocity profile and the expression for vmax(t) and yields

σw =−η
∂v(r, t)

∂ r

∣∣
r=R(t) =

4Qη

πR3(t)
, (2.3)

with η the viscosity of blood and R(t) the radius of the artery.
The system is closed when we supplement Eqs. (2.1a-2.1c) with an equation describing

the evolution of the radius of the artery. We will assume axial and translation symmetry
with respect to the z-axis. The plaque volume V (t) in the intima can then be calculated as
V (t) =−lpπ(R2(t)−R2

0), with R0 the radius of the artery before the onset of atherosclerosis
and lp the length of the affected region in the artery.

During a time interval ∆t the total plaque volume increases to the accumulation of plaque
constituents. The volume of the plaque at t+∆t: V (t+∆t) can therefore be expressed to first
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order in ∆t as

V (t +∆t) =V (t)+
(

νM
dM
dt

+νLox
dLox

dt
+νm

dm
dt

+νF
dF
dt

)
V (t)∆t, (2.4)

where we simply summed over the increase in volume caused by the macrophages,
oxidized-LDL, monocytes and foam cells and weighted each constituent with the volume
of a single molecule of the respective substance. We remark that the units on both sides
balance as all concentrations are measured in number of molecules per unit volume. From
the literature we obtained the following values for the molecular volumes: νF = 10−13m3

(Gerrity 1981), νLox = 10−21m3 (Hulthe et al. 2000), νm = 10−17m3 (Gerrity 1981), νM =

10−14m3 (Krombach et al. 1997). We easily translate Eq. (2.4) in a differential equation for
the plaque volume

dV
dt

=

(
νM

dM
dt

+νLox
dLox

dt
+νm

dm
dt

+νF
dF
dt

)
V. (2.5)

We will explicitly take all contributions to the volume change into account in our numer-
ical simulations, but, of course, a good approximation would be to only consider the foam
cell contribution as the foam cells act as a kind of storage place for the debris in the plaque;
therefore they dominate the plaque volume for long times.

The equation for the radius of the artery is obtained by differentiating V (t)=−lpπ(R2(t)−
R2

0) and substituting Eq. (2.5) for dV
dt . If we next use Eqs. (2.1) to replace the dM

dt , dLox
dt , dm

dt ,
dF
dt we arrive at

dR
dt

=

(
R− R2

0
R

) m
(

ρ1(νM−νm)−νmdm + νmγ0
1+σw/σ0

(
Lox

1+Lox/Lth

)
+

qνLox
1+m/mth

)
2

+

(
R− R2

0
R

)M
(
−ρLνLox Lox +(νF −νM) ρinLox

1+Lox/Lth

)
−νLox dLLox

2
. (2.6)

Eqs. (2.1a-2.1c) and (2.6) together with Eqs. (2.3) and (2.2) constitute an autonomous system
of four differential equations that can qualitatively describe the progression of atherosclerotic
plaques.

In the following section we will investigate the behavior predicted by this system of
differential equations. Here we remark that our approach differs in several respects from
Ref. (Zohdi et al. 2004). Firstly, we concentrate on shear stresses instead of residence times
of the monocytes near the intima. Secondly, we have explicit differential equations for the
macrophages, monocytes, foam and LDL particles. At the end of this section, we briefly
compare our results with those obtained in Ref. (Zohdi et al. 2004) to estimate the importance
of the different effects.
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η σ0 Q dL ρ1 dm

0.004 Pas 1 Pa 2.8×10−6m3/s 2.4×10−5/s 1.15×10−6/s 5.75×10−6/s

Table 2.1: The parameter values used in the numerical simulations. The value of η was raken from
(Lipowsky 2005), σ0 was taken inbetween the low wall shear stress and high wall shear stress values
mentioned in (Malek et al. 1999), Q is taken from (Bonert et al. 2003), dL from (Cobbold et al. 2002),
ρ1 from (Maoz et al. 1986), and dm from (Mckay et al. 2005).

2.3 Numerical implementation

Before investigating the dynamics contained in Eqs. (2.1a-2.1c), we rescale the equations
using the following transformations:

L̃ = Lox/Lth, m̃ = m/Lth, M̃ = M/Lth, F̃ = F/Lth, σ̃ = σw/σ0,

t̃ = dLt, ε = dm/dL, a = γ0Lth/dL, c = ρ1/dL, b = ρinLth/dL,

d =
qmth

dLLth
, e = ρLLth/dL, f = mth/Lth. (2.7)

These transformations yield the following set of reduced equations:

ṁ =

(
aL

(1+σ)(1+L)
− ε− c

)
m, (2.8a)

Ṁ = cm− bML
1+L

, (2.8b)

L̇ =
dm

f +m
− eLM−L, (2.8c)

Ḟ =
bLM
1+L

, (2.8d)

where the dot denotes differentiation with respect to t̃ and the tildes on m, M, L, and F
are dropped for notational convenience. Notice that Eq. (2.8d) decouples from the other
equations, which therefore determine the stability of the system (3.5).

We first consider the equations in absence of the closure relation which implies that we
regard the shear stress σ as an adjustable parameter and do not consider the influence of
remodeling of the artery on the flow profile, that is, we do not take into account Eq. (2.3).

2.3.1 Wall shear stress as a parameter

When the shear stress is simply considered a parameter, the system of differential equa-
tions given by Eqs. (3.5) is found to possess infinitely many equilibria, which are sepa-
rated in two classes. The first class of equilibria, which we denote by I, are of the form
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(m,M,L) = (0,M1,0), where M1 can have any non-negative value. The second class of equi-
libria (II) corresponds to two points with m6=0, which we will denote (m±,M±,L∗). These
equilibria are born in a saddle-node bifurcation; the detailed expressions for m±,M±,L∗, are
relegated to the appendix.

(a) (b)

σ d

m± m±

Figure 2.2: (a) The (dimensionless) equilibrium monocyte concentration a a function of the wall shear
stress σ . The (grey) solid-line m = 0 corresponds to the infinitely many marginally stable equilibria
referred to as class A. The other curve consisting of two branches denotes the equilibrium m+ (upper-
branch solid) and m− (lower branch dashed). The solid curves are linearly stable solutions, so we find
that the system exhibits bi-stability. In (b) the same equilibria (m±) are depicted, this time as a function
of the LDL-intake d for fixed γ = 1. As soon as d exceeds the threshold value dthres, the plaque-region
can turn unstable and start to grow.

In Fig. 2.2(a) we have plotted the equilibrium monocyte concentration, which was found
by equating the left-hand side of Eqs. (2.8a)-(2.8c) to zero, for a typical choice of parameter
values: a = b = e = f = 1,ε = 0.01,c = 0.05,d = 0.30; the values of ε and c follow directly
from Table 2.1, the other parameters are unknown and simply set to 1 for computational
convenience. We have checked our calculations for different values of e,b, f and found that
the qualitative results do not change when varying these values with factors as high as 10, as
long as the a and d parameters are changed accordingly. A precise bifurcation study which
would in detail reveal the parameter dependence will be published elsewhere.

In Fig. 2.2(b) we took the same parameter values as in 2(a) except that we now set
σ = 1, and varied d. The figures clearly show that for each value of d and σ , the m = 0
solution is (marginally) stable. However, for values of d > dthres or 0≤ σ < σthres, the
system is bi-stable. Besides the class I equilibria one of the branches m+ represents a stable
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equilibrium, implying that depending on the initial conditions the solution curve either ends
at the line {(m,M,L)|m = L = 0}, or at (m,M,L) = (m+,M+,L∗). A similar bi-stability was
also observed in Ref. (Ougrinovskaia et al. 2010).

The physical interpretation of this bi-stability is as follows. The artery is initially in a
state of class A, in which no monocytes are present in the plaque. When the average LDL-
transport into the intima is then structurally increased which is modeled by an increased
parameter value for d, beyond a certain threshold dthres, or alternatively the wall shear stress
is structurally decreased below a threshold value σthres, the plaque is highly susceptible to
sudden changes in the Lox or monocyte concentration. A sudden increase of the Lox concen-
tration may bring the system in the equilibrium state represented by m+ in which the plaque
region rapidly grows. An eventual decrease in d may stop this rapid growth of the plaque as
a consequence of the accumulation of foam cells.
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Figure 2.3: Modeling the wall shear stress as a fixed parameter.The (dimensionless) concentration of
the plaque constituents as a function of (dimensionless) time. The monocyte and macrophage concen-
tration decay to 0, but the debris ending up in the fat-laden foam cells approaches a finite value. The
Lox concentration is determined by the intake parameter d. The solid curves correspond to d = 0.35
and the dashed curves to d = 0.40; all other parameters are kept constant at the values mentioned in
the text and the shear stress σ = 1.
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Figure 2.4: Dependence of the stability of class I equilibria on initial conditions. In (a) curves in the
(m,M)-plane for 4 different values of Lox are plotted. The phase space above the curves (Stable) is
attracted to the class I equilibria. The phase space in the lower right-hand corner is attracted to the
attracting node (m+,M+,L+) and gives rise to continuing plaque growth. In (b) a sketch of the three-
dimensional phase space is shown. The separating surface (stable manifold of the saddle) is shown as
well as the class I equilibria, the saddle point and the attracting node.

Quantitatively this means that if the plaque resides in a state (m,M,Lox) = (0,M0,0) at
t = t0, and the foam concentration F has a constant value F0 , where F0 =

∫ t0
0

bL(t)M(t)
1+L(t) dt, the

transition to the state (m+,M+,L∗) accomplishes a linear growth of the foam concentration
in time F(t) = F0 +b(t− t0)L∗M+/(1+L∗).

The threshold values dthres and σthres can easily be found from the eigenvalues. In the
Appendix we derive the threshold values for d and σ , but we do not reproduce the lengthy
expressions for the eigenvalues. For the parameter values we used in Fig. 2.2, the threshold
value for d at σ = 1 is dthres = 0.369. If we set d = 0.30, we find in accordance with Fig. 2.2
that σthresh = 0.491.

In Fig. 2.3 we show the results for a numerical solution of Eqs. (2.1a)-(2.1d), with param-
eter values a = b = e = f = 1,ε = 0.01,c = 0.05 and initial condition (m(0),M(0),L(0)) =
(1,1,1) for two values of d. The dashed curve corresponds to d = 0.40 and the solid one to
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d = 0.35. The parameter values in Table 2.1, were obtained from experimental results re-
ported in the literature; see the caption of Table 2.1. It can immediately be seen from Fig. 2.3
that the solid curves correspond to a cholesterol intake below the threshold value and the
dashed curves have an intake value that exceeds the threshold value dthresh.

From Fig. 2.3 one can see that for the case d = 0.35 the monocyte concentration drops
rapidly, followed by the Lox with some time delay. The macrophage and foam concentration
approach a non-zero equilibrium value for dimensionless time t≈200, which translates into
a time 200/dL, corresponding according to Table 2.1, to approximately 0.3 years, which
is considerably shorter than the typical time span for the evolution of atherosclerosis of
approximately 10-15 years.

In the case d = 0.40, corresponding to the dashed curves, the monocytes, macrophages
and LDL concentrations approach a nonzero value, as the initial condition (m(0),M(0),L(0))=
(1,1,1) drives the trajectory to the stable equilibrium (m+,M+,L+). When the equilibrium is
reached, the foam concentration increases linearly in time, in agreement with our asymptotic
expression for F .

To investigate how the dynamics depend on the initial condition we used MATCONT
(Dhooge et al. 2008) to vary the initial conditions. We plotted our results in Fig.2.4. From
figure 2.4(a) it can be clearly seen that the curve separating the basin of attraction for class I
equilibria and the attracting node, depends only moderately on the value of L(0) . The curves
were obtained numerically by varying the initial conditions for 4 different values of L(0). To
summarize the dynamics we have constructed a three-dimensional sketch which displays the
dynamics that occurs in the system in Fig.2.4(b). The dashed blue curves denote trajectories
moving toward the stable node, the full lines connect to the M-axis, and the red curves to the
saddle. The stable manifold of the saddle divides phase space in two regions, which either
belong to basin of attraction of the the class I equilibria on the M-axis, or to the basin of
attraction of stable node (m+,M+,L+).

2.3.2 Self-consistent equations with remodeling

We next consider the coupled equations in which the wall shear stress is no longer a pa-
rameter, but is determined by Eq. (2.3). In this case we have 4 ordinary differential equa-
tions, whose equilibria are easily calculated. We consider the equations for m̃, M̃, L̃ox and
R̃ = R/R0, where R0 is the initial radius of the lumen. The equation for the monocytes is
given, after substitution of the expression for the wall shear stress, by

˙̃m = λ (R̃, L̃)m̃, (2.9)

where λ (R,L) is defined by

λ (R̃, L̃) =
aR̃3

R̃3 +α

L̃
1+ L̃

− ε− c, (2.10)
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and we introduced a dimensionless parameter α≡ 4Qη

πR3
0σ0

, and scaled the radius by R0, hence

R̃ = R/R0.
The equation for the (dimensionless) artery radius is governed by

˙̃R =
ξ

2

(
R̃− 1

R̃

)[
m̃
(

aR̃3L̃ν̃m

(α + R̃3)(1+L)
+ cν̃M− ν̃m(ε + c)

)
+

bM̃L̃
1+ L̃

(1− ν̃M)

+ ν̃L

(
dm̃

f + m̃
− eM̃L̃− L̃

)]
, (2.11)

where we introduced ξ = νF Lth. The specific volumes are all expressed relative to νF ,
that is, ν̃m = νm/νF , ν̃M = νM/νF , and ν̃L = νL/νF . The numerical values for these can
be found from the values mentioned in subsection 2.1. This gives νL = 10−8, νm = 10−4,
νM = 10−3. We now drop again the tildes and always refer to dimensionless system of
differential equations given by Eq. (2.9), Eq. (2.11) and Eqs. (2.8b), (2.8c), as the self-
consistent system (SCS) or model B.

The equilibria of the SCS equations are again easily calculated. We find that in this case
there are infinitely many equilibria of class I, constituting a plane, which have the follow-
ing form (m,M,L,R) = (0,M∗,0,R∗), where M∗ and R∗ are values for the (dimensionless)
macrophage concentration and artery radius that depend on the initial state. This class of
equilibria is again found to be marginally stable. There is an additional equilibrium with
R = 1, which is unstable, and we will ignore this state as we assume that some reduction
in the lumen has already taken place, which implies that initially the radius R < 1. We will
always choose R(t = 0) = 0.99 in this paper. The extra coupling between the radius and
the wall shear stress removes the bi-stable state that showed up when the wall shear stress
was treated as parameter, and in this sense stabilizes the atherosclerosis process. This can be
understood as follows. When the radius of the lumen decreases the shear stress increases and
this drives the system to a state with m = 0 and L = 0 and the progression of atherosclerosis
is halted, leading to a nonzero value of the lumen radius. The important question is what the
final lumen radius will be and how fast the size of the lumen is reduced.

The calculation of how the artery radius decreases with time for sufficiently long times
is similar to that of the parameter model. Almost all debris (except a small quantity of
macrophages) will finally end up in the foam cells and we need therefore only take the foam
contribution to the plaque volume into account. This means that for long timescales we only
need to solve the separable differential equation

Ṙ =
ξ

2

(
R− 1

R

)
bML
1+L

. (2.12)

When we integrate Eq. (2.12), we find that in the long time limit, the (dimensionless)
radius of the lumen decreases with time as

R2(t) = 1−
(
1−R2(t = 0)

)
eξ I(t), (2.13)
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Figure 2.5: Numerical solution of model B where the wall shear stress evolves with time. The (dimen-
sionless) concentration of the plaque constituents and the lumen radius as a function of (dimensionless)
time. The monocyte and oxidized LDL concentration decay to 0, but the debris ending up in the fat-
laden foam cells approaches a finite value. The macrophage concentration is determined by the intake
parameter d. The solid curves correspond to d = 0.40 and the dashed curves to d = 0.30; all other
parameters are kept constant at the values mentioned in the text and we choose ξ = 0.02 and α = 0.05,
which corresponds to a realistic flow profile. The initial values were the same of in Fig. 2.3, that is,
(m(0),M(0),L(0)) = (1,1,1).

where I(t) =
∫ t

0
bL(t ′)M(t ′)

1+L(t ′) dt ′. This asymptotic expression implies that the lumen radius R(t)

will remain positive as long as I(t)<− ln(1−R2(t=0))
ξ

, which means for all times for our choice
of parameters. We notice that to analyze the behavior of model B for small values of the
lumen, the coordinate transformation w(t) = 1/R(t) can be used, which was also employed
in Ref. (Ougrinovskaia et al. 2010). In this way the equilibrium at R = 0 is transferred to
w = ∞.

In Fig. 2.5 the concentrations of the plaque constituents and the lumen radius are de-
picted, where we kept all parameter values the same as in Fig. 2.3, except the values of d
which were taken d = 0.40 and d = 0.30 for the solid and dashed curves, respectively. The
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Figure 2.6: Dependence of the stationary lumen radius R∗ on the intake parameter d for two different
values of α (α = 0.050 solid and α = 0.025 dashed) . One can clearly see that after a certain threshold
value of d = 0.24 the radius greatly reduces with d. This reduction is largest when α is smaller.

value of the parameter α was set to 0.05 and we checked that varying α did not lead to any
qualitative differences in how the concentrations and lumen depend on time. For short times
oscillations that die out rather soon are observed. These can be explained if one realizes that
α has a small value and because R evolves on such a slow timescale it will be approximately
constant on the time interval [0,1000], say. The dynamics observed will in this case mimic
that of model A in which the system has an attracting node, besides the type I equilibria.
The oscillations are around the values of m, M, L, that would correspond such a node. Only
when R starts to decrease, the dynamics can no longer be approximated by that of model A,
and strong deviations between the dynamics in the two models arise. The numerical results
further show that for both values of d the evolution of R, L, m, M is comparable. The long
time scale dynamics reveals that the macrophage concentration starts to drop slightly earlier
than the monocyte concentration, which is caused by the parameter b being larger than c.
This leads to the little bump in the L concentration at late times.

The most conspicuous differences between Fig. 2.3 and Fig. 2.5 besides the oscillations,
is the fact that the lumen dynamics occurs on a much longer timescale, typically 10000-
15000 units. A time span of 10000-15000 dimensionless time units corresponds to 11-16
years, which is in accord with clinical findings.

In Fig. 2.6 we show how the radius of the lumen evolves in time, as a function of the
cholesterol intake parameter d for two different values of α , namely α = 0.025, which cor-
responds to the values in Table 2.1, and α = 0.050. The most conspicuous feature of Fig. 2.6
is the presence of a critical value for d, dcrit . Even though the system is no longer bi-stable,
if the LDL-uptake exceeds this critical value dcrit , the equilibrium value for the lumen ra-
dius is extremely reduced (approximately 50%) compared to the value of the radius with
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LDL-uptake slightly below dcrit .
From Fig. 2.6 it can also be inferred that the lumen radius reduction depends rather

sensitively on the value of α . For small α values the lumen radius is greatly diminished.
Even though we do not pretend the model to be quantitative, monitoring the evolution of the
radius of the lumen in time, provides information about the value of α and ξ . Comparing the
evolution of the lumen radius seen during a clinical test with theoretically obtained curves
for different values of α and ξ , might lead to better estimates for α and Lth, from which in
turn values for Lth and σ0 could be determined, and possibly order of magnitude estimates
for the remaining parameters.

To summarize, we developed a qualitative model and studied two different cases of the
model. One case in which the wall shear stress was treated as a parameter and another
case (model B) in which the flow was coupled to the dynamical processes that are pertinent
in atherosclerosis. For model A, we report that the system is bi-stable and that the foam
concentration may grow indefinitely in time, depending on d and σ .

We find that coupling to the flow, as implemented in model B, leads to a class of marginally
stable equilibrium states. The bi-stability present in the parameter model A has disappeared.

Finally, we compare our results with the model of Zohdi et al. (Zohdi et al. 2004). In
this work which describes remodeling of the artery as a consequence of absorption of LDL
particles, depending on the velocity of the LDL particles than the wall shear stress. This
results in a linear dependence of the lumen radius on time in contrast to our findings. We
expect that the differences between the results can be attributed to the differences in the
uptake mechanisms of LDL particles.

2.4 Conclusion

We constructed two models A and B for long time evolution of plaques in arteries, combining
both chemical reactions in the intima and remodeling of the plaque region. Our models
illustrate that both LDL-uptake and wall shear stress play important roles in the evolution of
atherosclerotic plaques.

Comparison of the two models shows that the major differences between a model which
treats the wall shear rate as given (A) and one which incorporates the evolution of the wall
shear stress in a self consistent manner (B), is that the bi-stability between two classes (I
and II) of equilibrium states in model A, is no longer present in model B. In this sense
coupling to the flow stabilizes the dynamics. Nevertheless, although the threshold value of
the cholesterol intake disappeared in model B, we demonstrated numerically that there is
still a critical value of the LDL-uptake dcrit , which is independent of the shear rate parameter
α , beyond which the lumen radius will drastically decrease. The occlusion of the lumen
does depend on the shear rate parameter α once the LDL-uptake has passed the critical
value. This seems to suggest that it is indeed beneficial to maximize the value of α and most
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importantly, minimize the consumption of LDL cholesterol. When the artery is affected by
atherosclerosis, the lumen reduction might be diminished by sufficient physical exercises,
leading to a larger Q and consequently a greater value of α .

The models presented here have a qualitative character. To make quantitative comparison
with experiments possible in the near future a number of crucial modifications to the model
that we presented here are required.

The most pertinent subjects for future investigation to facilitate comparison with clinical
and experimental results are the following. First of all, three dimensional computation of
the blood flow is necessary in order to calculate the wall shear stress. Secondly, the entering
of monocytes and LDL particles into the intima is known to be a complicated processes
in which both residence times and shear stresses play a role. It would be interesting to
know the relative importance of shear stress effects compared to direct absorption. Future
research by the authors address such questions. Thirdly, the reactions taking place in the
intima and specifically the role played by cytokines needs to be incorporated. Recent findings
(Hansson and Libby 2006) confirmed their importance in destabilizing the cap that covers
the plaque, by inhibiting the collagen production. Finally, we neglected here the elasto-
mechanical properties of the vulnerable cap. It is known that smooth muscle cells, but also
collagen plays a key role in the formation and remodeling thereof (Holzapfel and Gasser
2000). One could think of future models in which these processes are incorporated in a
mesoscopic fashion, or instead of models which combine macroscopic elasticity with fluid
flow.

We think that the present analysis may help in providing a basis for such more sophisti-
cated models.
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Appendix

To calculate the stability of the equilibria, the Jacobian J of system (3.5) is calculated. We
find that J is given by

J =


aL

(1+σ)(1+L) − ε− c 0 am
(1+σ)(1+L)2

c −bL
1+L

−bM
(1+L)2

d f
( f+m)2 −eL −eM−1

 . (2.14)
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For the equilibrium (m,M,L)=(0,M1,0), where M1 can have any positive value, this implies
that the eigenvalues are respectively

λ1 =−(ε + c), λ2 =−(eM1 +1), λ3 = 0. (2.15)

As λ1,λ2 < 0 for all parameter values and λ3 = 0, these equilibria are always marginally
stable. This implies that a small perturbation shifts the system from the equilibrium (0,M1,0)
in phase space to a new one with (0,M2,0). There are two more equilibria (m∗,M∗,L∗),
which have m∗ 6=0. These can easily be found to obey

L∗ =
(ε + c)(1+σ)

a− (1+σ)(ε + c)
,

M∗ =
cm∗(1+L∗)

bL∗
,

(m∗)2 +m∗
[

f − db
ec

+
(1+σ)(1+d)b(ε + c)

eac

]
+

f b(1+σ)(ε + c)
eac

= 0. (2.16)

From the expression for L∗ is transpires that in order for the equilibrium to exist a > (1+
σ)(ε + c). Solving the quadratic equation for m∗ gives rise to two branches m+ and m−,
which satisfy

m± =− f − db
ec +

(1+σ)(1+d)b(ε+c)
eac

2
±
√

H
2

, (2.17)

where H =
[

f − db
ec +

(1+σ)(1+d)b(ε+c)
eac

]2
− 4 b f (1+σ)(ε+c)

eac ; H should be positive in order for

the equilibria to exist. For the parameter values considered the m+ solution is stable and the
m− unstable. To determine the threshold values for σ and d, we should calculate when J has
an eigenvalue zero for one of the equilibria of class B. As this implies that the detJ = 0, we
immediately find that this implies that m∗ =

[
db−e f c

2ec −
(1+σ)(1+d)b(ε+c)

2eac

]
. The value of σ ,

coined σthres, for which this value of m∗ is attained is easily seen to be

σthres =
−bcd2−cead f+eac f−2bdc−bc+bd2a−2bdε+bda−bεd2−bε+2a

√
e f cbd+ce f d2b−c2 f 2e2d

(1+d)2b(ε+c) , (2.18)

or expressed in terms of the intake parameter d, this threshold reads

dthresh =
ea f c+bσc+bc+bε +bσε +2

√
eac f bε + ea f c2b+ eacb f σε + ea f c2bσ

b(a− (ε + c)(1+σ))

(2.19)

For model B the calculations are analogous, except that we now have to deal with a
four-dimensional system as the equations for the radius R is coupled to evolution of the
monocytes. but now we only find the class A equilibria which are marginally stable and
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the trivial equilibrium (m,M,L,R) = (0,0,0,1). The class A equilibria are of the form
(m,M,L,R)=(0,M1,0,R1), where M1 is the equilibrium value of M and R1 the equilibrium
value of the lumen. Which equilibrium value is obtained depends on the initial conditions;
the equilibria of class A are all marginally stable since they have two zero eigenvalues, one
arises from the calculation in the same way as in model A, the other zero eigenvalue comes
from the equation of the lumen radius R.
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Chapter 3
Bifurcation analysis for the evolution of

atherosclerotic plaques

A man should look for what is, and not for what he thinks
should be.

Albert Einstein

Abstract

We analyze two ordinary differential equation (ODE) models for atherosclerosis. The
ODE models describe long time evolution of plaques in arteries. We show how the dy-
namics of the first atherosclerosis model (model A) can be understood using codimension-
two bifurcation analysis. The LDL intake parameter is the first control parameter and
the second control parameter was either taken to be the conversion rate of macrophages
or the wall shear stress. Our analysis reveals that in both cases a Bogdanov-Takens
(BT) point acts as an organizing center. The bifurcation diagrams are calculated partly
analytically and to a large extent numerically using AUTO07 and MATCONT. The bifur-
cation curves show that the concentration of LDL in the plaque as well as the monocyte
and the macrophage concentration exhibit oscillations for a certain range of values of
the control parameters. Moreover, we find that there are threshold values for both the
cholesterol intake rate and the conversion rate of the macrophages. It was found that
larger conversion rates of macrophages lower the threshold value of cholesterol intake
and vice versa. We further argue that the dynamics for model A can still be discerned
in the second model (model B) in which the slow evolution of the radius of the artery is
coupled self-consistently to changes in the plaque volume. The very slow evolution of the
radius of the artery compared to the other processes makes it possible to use a slow man-
ifold approximation to study the dynamics in this case. We find that in this case the model
predicts that the concentrations of the plaque constituents may go through a period of
oscillations before the radius of the artery will start to decrease. These oscillations hence
act as a precursor for the reduction of the artery radius by plaque growth.

3.1 Introduction

Atherosclerosis is a chronic inflammation of the layers of the artery wall, which gives rise
to plaque formation that may ultimately lead to a blockage of the blood supply to vital parts
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of the human body. The subject of how atherosclerotic plaques grow and how they may
eventually rupture has been investigated since a long time. One mechanism that is responsi-
ble for the onset of atherosclerosis is endothelial injury after which subsequent biochemical
phenomena take place that trigger the formation of plaques in arteries. The evolution of
atherosclerotic plaques is characterized by accumulation of so-called lipid-laden foam cells
over time (Crowther 2005) in a part of the arterial wall that is called the intima. The evolu-
tion of plaques involves a number of different substances of which some are carried with the
blood flow and others reside in the layers of the artery. Important constituents include LDL-
cholesterol, monocytes, macrophages, cytokines and smooth muscle cells. Besides the bio-
chemical reactions that occur within the plaque mechanical stimuli were shown to play an im-
portant role in the development of atherosclerosis (Gijsen et al. 2008, Slager et al. 2005). Es-
pecially the shear stress that is exerted by the blood on the endothelial layer is crucial. It was
found that high wall shear stress leads to a reduced plaque growth. The growth of a plaque
region is therefore anisotropic: the plaque grows predominantly in the downstream direction
where the shear stress is much lower than upstream (Yang and Vafai 2006, Ross 1993). Also
during later stages in which smooth muscle cells proliferate and a fibrous cap covering the
plaque is constructed, biomechanical factors become important for the stability and elasticity
of the cap (Holzapfel and Gasser 2000).

Although beneficial effects of high wall shear stress on plaque evolution have been
demonstrated in experiments (Slager et al. 2005, Gijsen et al. 2008), hardly any mathe-
matical model has been developed that takes biomechanical effects into account. In a recent
paper (Bulelzai and Dubbeldam 2012), we put forward an ODE model for the progression
of atherosclerosis which includes wall shear stress effects. This model was inspired by a
model of (Zohdi et al. 2004), who introduced a phenomenological model to describe plaque
evolution by focusing on particle adhesion rather than wall shear stress. Another ODE model
was developed by (Ougrinovskaia et al. 2010) for the initiation of the disease. Even though
ODE models can never capture all aspects that are relevant for atherosclerosis, ODE models
can give qualitative results that can serve as guidelines for clinical experiments. Moreover,
ODEs are relevant limiting cases for partial differential equation (PDE) models (Bulelzai
et al. 2013). These PDE-models usually contain parameters whose values are not always
known from experiments. Bifurcation analysis can provide clues for the parameter values
and the correctness of the model.

In this paper we analyse the dynamics associated with the progression of atherosclero-
sis by performing a codimension-two bifurcation analysis of the two models proposed in
(Bulelzai and Dubbeldam 2012). These models referred to as model A and B, respectively,
consider the evolution of the plaque in two cases. In model A the dynamics of plaque con-
stituents is modeled without taking into account biomechanical effects. In model B, these
effects were included by presuming a wall shear stress dependent recruitment of monocytes.
The assumption of a constant throughput of the blood through the artery leads then to a self-
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consistent model, in the sense that a smaller radius gives rise to larger flow velocity which
implies on its turn an increased wall shear stress in a consistent way. The importance of such
coupling of the blood flow to the plaque is essential in predicting how the radius of the artery
behaves and how the total volume of the plaque evolves.

We organize this paper as follows: In Section 2 we present the models A and B. In
Section 3 we focus on the codimension-two bifurcation diagram with two different sets of
control parameters. We first consider the dynamics in the case that the LDL-intake rate and
the ingestion rate of (oxidized) LDL are the control parameters and later we replace the
ingestion rate by the wall shear stress. In both cases, we obtain similar bifurcation diagrams
which have a Bogdanov-Takens (BT) point as an organizing center. This allows us to unfold
the dynamics for a wide range of parameters. For model B which has a trivial bifurcation
diagram, we perform a slow-fast analysis in Section 4 as the radius of the artery evolves on a
much longer time scale than the typical time scale associated with the biochemical responses
of the plaque constituents. We calculate the slow-manifold and determine the evolution of the
artery radius. In Section 5, we discuss the physical interpretation of our bifurcation studies
and finally in Section 6 we present the conclusions.

3.2 Introduction of models A and B

3.2.1 Model A

The evolution equations for model A are given as:

ṁ =

(
aL

(1+σ)(1+L)
− ε− c

)
m, (3.1a)

Ṁ = cm− bML
1+L

, (3.1b)

L̇ =
dm

f +m
− eLM−L, (3.1c)

Ḟ =
bLM
1+L

. (3.1d)

The physical interpretation of this coupled system is described in (Bulelzai and Dubbeldam
2012) and we will only give a brief explanation of the terms and parameters here. All pa-
rameters and variables in the model are dimensionless and nonnegative. The dot denotes
the time derivative and since the equation for F (3.1d) decouples from the system, we only
consider the three equations for m, M and L. In this model, which is called model A, in
accordance with (Bulelzai and Dubbeldam 2012), the shear stress σ is simply considered
a parameter. In contrast to model B where σ is calculated self-consistently using the rela-
tion between the radius of the artery and the flow velocity of the blood. The first equation
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Eq. (3.1a) determines the evolution of the monocytes (m). The monocyte concentration in-
creases due to the presence of oxidized LDL molecules in the plaque, which is represented
by the first term on the righthand-side of Eq. (3.1a). The parameter a determining the rate at
which monocytes are recruited from the blood is not experimentally known. The second and
third term describe diffusion out of the plaque region and the process in which monocytes
are converted into macrophages (M). Eq. (3.1b) describes the conversion of moncocytes into
macrophages and the conversion of macrophages into foam cells with rate b. The ox-LDL
cholesterol concentration (L) evolves according to Eq. (3.1c), which accounts for oxdidation
by monocytes of unoxidized LDL entering the plaque from the blood. The intake rate of
LDL cholesterol is denoted by d and is a control variable. The ingestion of ox-LDL by the
macrophages and diffusion out of the plaque are accounted for by the second and third terms.
Finally, the macrophages end up as foam cells with a conversion rate b, which is modeled in
Eq. (3.1d).

3.2.2 Model B

The previously defined model A is made self-consistent by requiring that the wall shear stress
σ is not a control parameter, but rather a dynamic quantity whose evolution is governed by
an ordinary differential equation. Assuming a Poiseuille profile of the flow and demanding
incompressibility, the wall shear stress σ(t) and the artery radius R(t) are seen to be related
by

σ(t) =
α

R3(t)
, (3.2)

where α is a constant proportional to the viscosity and the throughput through the artery. For
details about the model we refer to (Bulelzai and Dubbeldam 2012).

Model B consists of the evolution equations of m, M, L, which are given by Eqs. 3.1(a-c)
as in model A, and the evolution of the artery radius, or equivalently, the wall shear stress
σ(t). The evolution equation for σ is derived in (Bulelzai and Dubbeldam 2012) and reads

σ̇ =−3
2

ξ σ(1− (
σ

α
)

2
3 )[m(

aLνm

(1+σ)(1+L)
+ cνM−νm(ε + c))

+
bML
1+L

(1−νM)+νL(
dm

f +m
− eM−L)]. (3.3)

In Eq. (3.3) ξ is a small parameter and therefore model B constitutes a so-called slow-
fast system with m,M,L the fast variables and σ the slow variable. We further remark that
the parameters νi denote the volumes of the different constituents with respect to the foam
cells and therefore νi� 1. Hence a good approximation of Eq. (3.3) is

σ̇ =−3
2

ξ σ

(
1−
(

σ

α

) 2
3
)

bML
1+L

. (3.4)
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We can summarize model B by the following four evolution equations:

ṁ =

(
aL

(1+σ(t))(1+L)
− ε− c

)
m, (3.5a)

Ṁ = cm− bML
1+L

, (3.5b)

L̇ =
dm

f +m
− eLM−L, (3.5c)

σ̇ =−3
2

ξ σ

(
1−
(

σ

α

) 2
3
)

bML
1+L

. (3.5d)

3.3 Bifurcation analysis

In this section we will study the dynamics of model A, by first constructing a codimension-
two bifurcation diagram for model A. The bifurcation diagram obtained for model A will
serve as a starting point for our slow-fast analysis of model B. We proceed to discuss the
general features of the dynamics and the bifurcation diagram in the next subsection, while
the detailed computations are relegated to appendix A.

3.3.1 Codimension-two bifurcation diagram of model A

The system of differential equations given by Eqs. (3.1) is found to possesses infinitely many
equilibria, which are separated in two classes. The first class of equilibria (infinitely many),
which we denote by type I, are of the form (m,M,L) = (0,M0,0), where M0 can have any
non-negative value; we will denote this line with l in this paper. The second class of equilib-
ria (type II) corresponds to two points with m6=0, which we will denote by (m±,M±,L∗).

We study the existence and stability of the equilibria by varying two parameters. First, we
consider the bifurcation diagram in the (b,d)-plane in which both the ingestion of oxidized
cholesterol by macrophages and the intake rate of LDL particles are control parameters. The
reason for choosing d is that it is the natural parameter of the model as it determines the total
number of LDL cholesterol entering into the plaque region and b because it determines the
effect of macrophage secretory products such as, Interleukin-6 which determines how fast
LDL-particles are eliminated from the plaque region (Frisdal et al. 2011).

Moreover, the two-dimensional bifurcation diagram allows a Bogdanov-Takens (BT)
point to be identified which acts as an organizing center. As general references to the bifur-
cations we encounter see for example (Guckenheimer and Holmes 1983, Kuznetsov 1996).

There is a critical value of e such that the Bogdanov-Takens bifurcation is degenerate, i.e.
there is a codimension-three bifurcation. Hence, we find qualitatively different bifurcation
diagrams depending on the value of e. We therefore discuss both cases separately. The
parameters a, f ,ε,c are kept fixed throughout the paper and their values are set to a = f = 1,
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Figure 3.1: The two-dimensional bifurcation diagram for e = 1. A Bogdanov-Takens point (BT )
acts as an organizing center. The Hopf curve (H), the homoclinic curve (Hom) and the saddle node
curve (S) intersect at BT . Simulations corresponding to regions (1-4) are also shown. The line of
marginal equilibria l is shown with dashed black lines in the portraits and colors green and blue, show
the two orbits starting from different initial conditions. The normal form coefficient for BT point,
s =sign(a1/b1), is positive here and is relegated in the appendix A.

ε = 0.01 and c = 0.05. For the (b,d)-diagram, σ is fixed and set to 1.0; for the (σ ,d)-
diagram, the value of b is fixed and set to 0.7 in this paper.
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Bifurcation diagram for e = 1

For the values of the parameters mentioned above, we find the two-dimensional bifurcation
diagram displayed in Fig. 3.1, using the numerical continuation package AUTO07 (Doedel
and Oldman 2012). The phase portraits that correspond to regions (1-4) in Fig. 3.1, are
depicted at the borders of Fig. 3.1.

The dynamics in the respective regions (1-4) is as follows. In region (1) there are no
equilibria beside the ones on the invariant manifold l, so all trajectories will end there, inde-
pendent of the initial condition. For the atherosclerosis this implies that in this regime any
perturbation in m, M, L, will lead to a small increment in the total plaque volume, which is
reflected by a small increase in the foam concentration F (Equation 3.1d), which acts as a
reservoir for the plaque components.

When d is increased so that the curve S is crossed, a saddle node bifurcation occurs in
which two new equilibria are generated, both of which are repelling. This implies that in
region (2) the phase portrait is very similar to that of region (1). Only when d is further
increased, and hence the Hopf-curve (H) is crossed and region (3) is entered, the dynamics
is very different. One of the equilibria born in the saddle node bifurcation turns stable and
an unstable limit cycle emerges through a subcritical Hopf bifurcation. The unstable limit
cycle separates the basin of attraction of the invariant line l and the attracting equilibrium
(m+,M+,L∗), and therefore the system is bistable. An even further increase in d leads to a
homoclinic bifurcation Hom in which the stable and unstable manifolds of the equilibrium
(m−,M−,L∗), connect after which the unstable limit cycle vanishes. When we enter region
(4), we are left with an attracting focus and a saddle besides the invariant line l. In this re-
gion (4) bistability therefore remains, but the basin of attraction of the attracting equilibrium
(m+,M+,L∗) has expanded as can be seen from the phase portrait.

Bifurcation diagram for e = 5

When we change the value of the parameter e = 1 to e = 5, we have a diagram in which the
positions of Hom and H curve are interchanged. In this case, it is known that there will be
a point GH on the Hopf curve (H) where the first Lyapunov coefficient vanishes (Dumortier
et al. 1991). At this point the Hopf bifurcation changes from subcritical to supercritical.
Moreover, there will be a curve (saddle node of limit cycles curve) which connects the point
GH to NS, the point where the neutral saddle curve and the homoclinic curve meet. This
gives rise to four new regions (5) and (6), (7) and (8) where regions (6), (7) and (8) are so
close to the homoclinic and Hopf curves that they cannot be discerned in Fig. 3.2(a), but in
the qualitative sketch 3.2(b) their size has been exaggerated to clarify their presence.

The phase portraits corresponding to region (1-8) are shown in Fig. 3(a) and (b), again
quantitatively and qualitatively, respectively. We remark that we can draw two-dimensional
phase portraits as the saddle point has a two-dimensional stable manifold for the parameter
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values that we consider. In Fig. 3(b) the vertical direction corresponds to L and the horizontal
axis is in the m-direction. The line l of equilibria is denoted by a solid filled circle, the saddle
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Figure 3.3: Both three-dimensional(a) and two-dimensional(b) phase portraits for different regions for
model A. (a) Green and blue lines stand for two different initial conditions to obtain the portraits. The
line of marginal equilibria l is shown with dashed black lines in the portraits and colors green and blue,
show the two orbits at different initial conditions. (b) The line l of equilibria is denoted by a solid filled
circle, the saddle point by an open square and stable (unstable) focus by a filled (open) circle. Stable
limit cycles are designated by solid closed curves and unstable ones by dashed curves.

point by an open square and stable (unstable) focus by a filled (open) circle. Stable limit
cycles are designated by solid closed curves and unstable ones by dashed curves.

Regions (1-4), which were also present for the case e = 1, are accessed when d is suffi-
ciently large. This implies that for sufficiently large cholesterol intake no qualitative differ-
ence between the e = 1 and e = 5 scenario is observed. This can be understood by realizing
that e determines how fast the LDL disappears in the presence of macrophages. A larger
cholesterol intake counteracts an enhanced value of e and therefore the phase portraits (1)-
(4) are still present for d large enough. When we cross the curve D of limit point cycle
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bifurcations from region (2) to (7), we see from Fig. 3(b) that two limit cycles are created,
one stable and one unstable. The equilibria remain of saddle and unstable focus type. There
is bistability as there is one stable limit cycle as well as the line of equilibria l. We remark
that in Fig. 3(a) we can distinguish a stable limit cycle near the unstable focus (diamond) and
the orbit starting near the saddle that eventually arrives in l. When crossing the homoclinic
curve (Hom) from region (7) one enters region (6), where two stable limit cycles are present
and the two type II equilibria remain of the same type as in (6); the system again exhibits
multistability. Region (5) can be accessed by crossing the curve D of limit point cycle bifur-
cations in which a stable and an unstable limit cycle collide, leaving the system with a single
stable limit cycle and the stability of equilibria unaltered.

The dynamics in the remaining region (8) can be explored if one crosses the curve D
of limit point cycle bifurcations from region (4). In this case the stability of the equilibria
remain unaltered and a pair of limit cycles, one stable and one unstable, is created. Again
multistability is found. This time between the stable focus, equilibria of class I and the stable
limit cycle. In Fig. 3(a)(8) the stable equilibrium and limit cycle are shown.

3.3.2 Bifurcation diagram in the (σ ,d)-plane

Instead of considering the bifurcations of system (3.1), we can also study the bifurcations in
the (σ ,d)-plane, where σ determines the wall shear stress which is an important quantity as
it determines the biomechanical effects. Moreover, the parameter d sets the timescale in the
model and σ is slowly varying in the self-consistent model B. The diagram obtained for this
set of parameters will therefore also be useful in analyzing the dynamics of model B, which
is the subject of the next section. We first briefly discuss Fig. 3.4 which shows the bifurcation
curves for varying σ and d. As can be seen by comparing Fig. 3.4(a) and (b) with Figs. 3.1
and 3.2 the diagrams are very similar. The labels (1)-(4) correspond to the portraits that
were shown in Fig. 3.1. The marginal fixed point (0,M0,0) exists for all parameter values
and is a global attractor below the saddle node-curve (S). Above the S-curve there are the
two nontrivial fixed points of type II. One is a saddle whose stable manifold is a separatrix
for the basin of attraction between the marginal fixed point and another steady state. This
second steady state is stable for sufficiently high values of σ . For decreasing values of σ

we encounter a subcritical Hopf bifurcation and the only attractor is the invariant line l of
marginally stable equilibria. The Hopf curve meets the S-curve at a Bogdanov-Takens bi-
furcation from where also a homoclinic bifurcation curve emerges. There exists an unstable
periodic solution for parameter values between the Hopf and the homoclinic curve. Note
that the Hopf curve crosses the d-axis at d ≈ 0.8. This intersection point moves to very high
values of d when decreasing b. Increasing b, on the other hand, shifts the Hopf curve and
BT-point to negative values of σ . Next we set e = 2 and keep d and σ as bifurcation param-
eters. The main qualitative change in the bifurcation diagram is that the Hopf curve close to
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the BT-point is now supercritical. This is accompanied by the appearance of a generalized
Hopf (GH) and a neutral saddle (NS) point on the Hopf and homoclinic curves, respectively.
These codimension-two bifurcation points are connected by a short curve corresponding to
a curve of limit point cycles (D) bifurcations. This implies that there is a region with stable
oscillations delimited by the Hopf (H), homoclinic (Hom) and (D) curve. We note that for
higher values of e the (D) curve exhibits a cusp bifurcation.
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Figure 3.4: Bifurcation diagrams for e = 1 (a) and e = 2 (b). The significance of the curves is as
follows: saddle node curve (dashed blue), Hopf curve (solid green), homoclinic curve (solid black)
and the curve of double limit cycles (dashed red). Codimension-two bifurcation points are Bogdanov-
Takens (BT), Generalized Hopf (GH), neutral homoclinic loop (NS) indicated by light blue markers.
The sign for second Lyapunov coefficient for GH point is negative. The sign for critical normal form
coefficients, s =sign(a1/b1) is positive for e = 1 and negative for e = 2 (See Appendix A).

3.4 Slow-fast analysis of model B

The system (3.5) constitutes a slow-fast system with a small parameter ξ . Slow-fast systems
have attracted much interest lately. The complicated geometry of slow manifolds near a
folded node was numericaly studied in (Desroches et al. 2008). The applications of slow-
fast dynamics, and the immediately related ramped-bifurcation theory, to climate models
has recently lead to the surprising prediction of a so-called compost bomb instability by
(Wieczorek et al. 2011). We apply a similar analysis here. The equations (3.5)(a-c) constitute
the fast system. The slow system (d) is analyzed by scaling time τ = ξ t, where τ is the slow
time scale. The new system of differential algebraic equations can be summarized as

ξ ẋ = f (x,σ), σ̇ = g(x,σ), (3.6)

where x = (m,M,L) are the fast variables and f (x,σ) and g(x,σ) are smooth and continu-
ously differentiable functions given by the system (3.5). According to Fenichel’s first theo-
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rem, the reduced slow system in the limit of ξ → 0 is given as:

0 = f (x,σ), σ̇ = g(x,σ). (3.7)
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Figure 3.5: (a,c) with ξ = 0.0002 and (b,d) with ξ = 0.002; Slow manifold calculated for two different
values of ξ using fixed values for parameters, which are already mentioned in this paper. The numerical
solution (black), approximation of slow manifold (red) are shown along with the critical manifold
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The critical manifolds are obtained by solving the equations f (x,σ) = 0 and read

P0
0 = {(m,M,L) | m = 0,M = M0,L = 0}

and P1
0 = {(m,M,L) | m = m+

0 (σ),M = M+
0 (σ),L = L∗0(σ)}.

The time evolution of the reduced (one-dimensional) system, is obtained by evaluating
g(x,σ) on the slow manifold P1

0 , which yields

σ̇ =−3bM+
0 (σ)L∗0(σ)σ

2

(
1−
(

σ

α

) 2
3
)
. (3.8)
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The slow manifolds P¸
(0,1) exist by the virtue of geometric singular perturbation theory,

e.g. see (Arnold and Jones 1994). The superscripts in the manifold P¸
(0,1) stand for the

two different classes of equilibria that we mentioned earlier. For the type I equilibria, this
manifold is invariant implying P¸

(0,1) = P0
0 (dashed black line in Fig. 3.5). For the nontrivial

equilibria we find the first and second order perturbations in ξ by the substitution P1
¸ (σ) =

P1
0(σ)+ξ P1

1(σ)+ξ 2P1
2(œ) (Kaper and Kaper 2002, Gear et al. 2005, Wieczorek et al. 2011,

Guckenheimer et al. 2012) and find:

O(ξ ) : (Dx f )P1
1 = (DP1

0 )g,

O(ξ 2) : (Dx f )P1
2 = (DP1

1)g+(DP1
0)((Dxg)P1

1)−
1
2
(D2

x f )(P1
1,P

1
1), (3.9)

where Dx f is 3× 3 matrix of partial derivatives ∂ fi/∂x j, (DP1
0 ) is 3× 1 matrix of partial

derivatives ∂P1
0 /∂xi, (Dxg) is 1× 3 matrix of partial derivatives ∂g/∂xi. When we solve

Eqs. (3.9) we obtain:

P1
1 = {(m,M,L) | m = m+

1 (σ),M = M+
1 (σ),L = L∗1(σ)} and

P1
2 = {(m,M,L) | m = m+

2 (σ),M = M+
2 (σ),L = L∗2(σ)},

where M+
i (σ),m+

i (σ) denote the i-th order approximation of the stable equilibrium. For
details of the calculations we refer the reader to Appendix B.

3.4.1 Dynamics with shear stress

In the full system we show several characteristic simulations starting with (m,M,L,R) =
(1,1,1,0.99) for various values of d. These initial values are chosen such that the orbit
does not always jump immediately to the marginal fixed point. The first case is with low
d. For any positive σ there is no nontrivial steady state and the orbit quickly returns to
the marginal fixed point, see Fig. 3.6(a). The net change of R is small and the artery stays
open. The second case is for medium values of d, i.e. above the curve S, but below the
Hopf curve H. Then it depends on the choice for α which scenario occurs as it determines
the initial σ value. For d = 0.6 and α = 0.05 the nontrivial steady states are both unstable
and the trajectory shows a transient outburst of monocytes but then the orbit approaches the
marginal fixed point, see Fig. 3.6(b). Here too, the artery radius remains large. Changing
α = 0.13, we observe oscillations whose amplitude slowly diminishes until σ is too large and
nontrivial dynamics is no longer supported, see Fig. 3.6(c). For higher values of d, there is a
stable nontrivial steady state. The orbit displays damped oscillations while converging to it.
Then R decreases and σ increases so that the steady state moves and the orbit tries to follow
it until σ comes close to a critical value determined by the (S) curve, see Fig. 3.6(d). In the
latter two cases the final radius R is considerably smaller. In Fig. 3.7, we have presented two
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Figure 3.6: Time-evolution σ , the monocytes, ox-LDL macrophage and concentrations for (a) d = 0.2;
(b,c) d = 0.6; (d) d = 1.2. We choose ξ = 0.002 and α = 0.05 and all other parameters are mentioned
in the text except α = 0.13 in (c). The vertical dashed line indicates that σ crossed the critical value.
Note the different time-scales of the various simulations.

graphs obtained with two different initial conditions with e = 2. In Fig. 3.7(a), the initial
value for radius is 0.99 and in Fig. 3.7(b) we set R(0) = 0.999 and changed the value of α

accordingly.

3.5 Physical interpretation

In this section we discuss the physical interpretation of the phase portraits in regions (1-4)
and bifurcation diagrams. The small regions are not discussed as they will be very hard to
find experimentally. In both models A and B, a high value of cholesterol intake (d) increases
the oxidized-LDL particle concentration, which in turn increases the volume of the plaque.
The two parametric bifurcation diagrams in this paper, shed more light on the ingestion rate
of macrophages and effects of endothelial shear stress. We employed the functional form of

1
(1+σw/σ0)

in the evolution of the monocytes to model the effect that low shear stress at the
endothelium causes more plaque accumulation. It is well established that low or oscillatory
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Figure 3.7: (a) with R(0) = 0.99, (b) with R(0) = 0.999; Time-evolution of shear stress, monocytes,
ox-LDL and macrophages concentrations for d = 1.0,e = 2,α = 0.35 and with two different initial
conditions. The vertical dashed line indicates that σ(t) crosses a critical values. In (b), since σ is
initially very low, first the Hopf curve is crossed (shown dotted) while in (a), due to a larger initial
perturbation, only crossing of the S-curve can be detected.

wall shear stress is a plaque promoting condition (Gijsen et al. 2008, Slager et al. 2005).
Regions of high shear stresses do not experience plaque growth while regions of low and
oscillatory wall shear stress do.

We first comment on the bifurcation diagrams corresponding to model A and next discuss
the consequences for model B. It is evident from Figs. 3.1, 3.2 and 3.4 that region 1 is the
healthy region in model A. The critical value of d increases (following the saddle-node curve)
with wall shear stress (see Fig. 3.4) and decreases with b, whose value determines how fast
macrophages are transformed into foam cells. The dependence of the critical value of d on
σ is as expected, as high shear stress is in general favorable to diminish plaque growth and
the dependence of dcrit on b is also no surprise as faster ingestion of LDL by macrophages
will result in enhanced plaque formation. The marginally attracting manifold l corresponds
to both monocytes and ox-LDL concentrations zero. Perturbing the system in this state will
only alter the macrophage concentration to a new constant value.

In region 2 model A has an unstable node. In the (b,d) diagram this region corresponds
to conversion rates of macrophages that are sufficiently large to deplete the cholesterol in the
plaque and therefore the plaque will only experience growth during a small period of time,
after which the plaque turns stationary again. In the (σ ,d)-diagram, region 2 correponds to
wall shear stress values that are sufficiently low not to have any other stable states except
the invariant line l. This region marks a parameter range in which plaques do not grow
indefinitely, but behave similarly to region 1 in which a perturbation in LDL can lead to a
limited decrease of the artery radius.

In region 3 model A has an unstable limit cycle and a stable focus. The presence of a
stable focus indicates that the plaque may start to grow indefinitely, depending on the initial
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conditions. If the intial values of the monocytes, macrophages and LDL are such that they
are in the region of attraction of the focus, the plaque will grow indefinitely with oscillations
in the concentrations of the plaque constituents that gradually die out. When the initial con-
ditions are outside the attraction zone of the focus, a limited plaque growth is established,
which is in general preceeded by transient oscillations in the concentration of plaque con-
stituents. The same reasoning is true for region 3 in the (σ ,d)-plane, which is surprising
since a large σ value is considered to lead to less plaque growth. In our model, σ is also
responsible for the recruitment of monocytes from the blood in the plaque. Increased values
of σ imply an impeded recruitment of monocytes and hence only a moderate population of
macrophages. These macrophages ingest LDL, but due to the small value of b = 0.7, the
LDL survives long enough to enhance the LDL concentration and subsequently this leads
to an increased monocyte concentration. The oscillations that are created will in general die
out to zero, but for particular initial values they can approach a constant nonzero value and
the plaque will grow indefinitely. We should stress here that the bifurcation diagram Fig. 3.4
was made for b = 0.7. When b > 1 the BT-point will disappear and the dependence of the
dynamics on σ is in accordance with expectations. This would suggest that for real arteries
b > 1.

If the system is in region 4, the plaque will in general grow indefinitely, although for
certain initial conditions the plaque growth ends in finite time. Region 4 can be accessed
for high values of σ or high values of the ingestion rate b. The fact that large values b are
detrimental can easily be comprehended. The larger the value of b the more macrophages
are converted into foam cells and consequently a large plaque growth results. The depen-
dence on σ is explained similarly to the behavior in region 3. In region 4 the wall shear
stress is large enough to sustain a certain amount of monocytes that induces a small popula-
tion of macrophages. Therefore the LDL particles can survive long enough to attract more
monocytes and LDL molecules into the plaque, which leads to a growing plaque volume for
b = 0.7. Again we remark that this dependence on σ disappears for b > 1.

In model B all solutions will finally reach the invariant manifold l. So we discuss the
transients that arise when the system is perturbed from its initial state, that we take to be on
l. Small perturbations to the system in this state will again die out, but the artery radius will
decrease a little. Still, several consecutive perturbations can lead to sigificant reduction in
artery radius.

For model B the dynamics in region 2 stabilizes after transient oscillations in the con-
stituents of the plaque. The wall shear stress first increases as depicted in Fig. 3.6(b), and
then stabilizes to a constant value. This means that here the radius of the artery has decreased
and subsequent perturbations in the plaque constituents may cause further reductions in the
artery size. For short times, the unstable limit cycle implies a continuous periodic growth
of plaque constituents, but eventualy the radius reduction of the artery, or equivalently, the
growth of σ , will come to a halt, when σ(t) crosses the S-curve. Starting from region 3 or
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4 in model B corresponds to assuming higher values of α and hence a higher volume flux
through the artery. Depending on the value of b we find that the radius reduction increases
with α , as was the case for the results presented here for b = 0.7, or decreases with α , which
was the case for b = 1 which was presented in (Bulelzai and Dubbeldam 2012).

3.6 Conclusions

The evolution of atherosclerotic plaque is explored by varying different parameters which
affect its growth in arteries. We explored codimension-two bifurcation diagrams for a model
of atherosclerosis in which the wall shear stress was assumed to be a parameter. We showed
that the dynamics is governed by a Bogdanov-Takens point that acts as an organizing center.
Depending on the value of e, a parameter that controls at what rate oxidized LDL disappears
from the plaque, the order of homoclinic and the Hopf curve emanating from the BT-point
changes. Crossing of homoclinic and Hopf curves gives rise to a few extra regions in the
bifurcation diagram which are so tiny, however, that observing these in experiments will be
extremely difficult.

The bifurcation analysis was next used to analyze a self-consistent model in which the
shear stress was no longer a parameter, but evolved dynamically. By using techniques from
slow-fast systems, we explored the growth of plaques for this more realistic model. Depend-
ing on the values of the conversion rate b of the macrophages we find that larger plaques
results from higher blood velocities (b < 1), or larger plaques correspond to smaller blood
velocities (b ≥ 1), suggesting that b > 1 is the relevant parameter regime.

Our analysis reveals that before plaques start to grow they will generally go through a pe-
riod where the concentrations of the plaque constituents oscillate, before the plaque starts to
grow significantly. If this behavior is robust and remains even in more complicated models,
this precursor of the onset of artery occlusion could be an indicator that might eventually be
used in a clinical environment. Of course, one should realize that the model we investigated
in this paper lacks a lot of components that will modify, at least quantitatively but possibly
also qualitatively, the behavior of the system. For example, the shape of the plaque is entirely
neglected and this will lead to changes in the flow profile and the wall shear stress is there-
fore no longer constant along the artery. Moreover, cytokines and HDL particles have not
been taken into account, which have been shown to influence plaque growth (Ougrinovskaia
et al. 2010). The bifurcation study we performed here illustrates its relevance to identiy-
ing parameter regions that are clinically sensible and makes predictions about the dynamical
behavior of plaques that may be put to a clinical test.
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3.8 Appendix A

To calculate the stability of the equilibria of class I, we shift the equilibria (0,M0,0) to the
origin O, by introducing M̄ = M−M0. We may then cast equations (3.1) in the following
form ṁ

˙̄M
L̇

= A

m
M̄
L

+


a

1+σ
mL+O(||m,M̄,L||3)

−bM̄L+bM0L2 +O(||m,M̄,L||3)
− d

f 2 m2− eM̄L+O(||m,M̄,L||3),

 , (3.10)

where we defined the matrix A by

A =

−c− ε 0 0
c 0 −bM0
d
f 0 −eM0−1

 . (3.11)

The eigenvalues of A are easily found to be λ1 = −(ε + c), λ2 = −(eM0 + 1), λ3 = 0. The
corresponding eigenvectors are given by v1 = (− f (−eM0−1+ε+c)

d , f (−eM0−1+ε+c)c+dbM0
d(ε+c) ,1)T ,

v2 = (0,bM0/(eM0 +1),1)T , and v3 = (0,1,0)T .

3.8.1 Equilibria of Type II

Equilibria II are given as:

L∗ =
(ε + c)(1+σ)

a− (1+σ)(ε + c)
,

M± =
cm∗(1+L∗)

bL∗
,

(m∗)2 +m∗
[

f − db
ec

+
(1+σ)(1+d)b(ε + c)

eac

]
+

f b(1+σ)(ε + c)
eac

= 0. (3.12)

Solving the quadratic equation for m∗ gives two values m+ and m−, which satisfy:

m± =− f − db
ec +

(1+σ)(1+d)b(ε+c)
eac

2
±
√

∆

2
,
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where ∆ =

[
f − db

ec
+

(1+σ)(1+d)b(ε + c)
eac

]2

−4
b f (1+σ)(ε + c)

eac
.

Since the equation is quadratic in m∗, the two roots have either both positive or both neg-
ative. In order for equilibria (II) to exist and being both positive, the following conditions
must hold:

C1: a > (1+σ)(ε + c) C2: f − db
ec +

(1+σ)(1+d)b(ε+c)
eac < 0 C3: ∆ > 0.

The conditions C2 and C3 can be summarized in a condition imposed on d

d≥dcrit :=
f eca+(1+σ)(c+ ε)b+2

√
b(1+σ)(c+ ε) f eca

b(a− (1+σ)(c+ ε))
.

These equilibria are born from a saddle-node bifurcation as shown in (Bulelzai and Dubbeldam
2012). Here we describe a generic bifurcation of codimension-two to unfold the dynamics
these equilibria govern.

3.8.2 Bogdanov-Takens singularity calculations

The system (3.1) at equilibria type II passes through Bogdanov-Takens singularity. We would
like to obtain the normal form by center manifold reduction. On the center manifold, the
dynamics is described by the reduced equations x′ = y,y′ = a1x2 + b1xy. We will compute
the critical normal form coefficients a1 and b1 and show that a1 is never zero, while b1 can
vanish. For the computation, we know that the double zero eigenvalues are located where

the parameters (d,e) pass through the values dcrit =
f aec+b(c+ε)(1+σ)±2

√
f aecb(c+ε)(1+σ)

b(a−(c+ε)(1+σ)) and

ecrit =
ab3(c+ε)(1+σ)3

f c(a2−(c+ε)(1+σ)(a+b(1+σ)))2 . We chose ecrit value for the calculation of normal form
and not bcrit as the equation is linear in e. The value for dcrit implies a sharp turn (collision

of equilibria type II). The value for m± at this point is
√

f aecb(1+σ)(ε+c)
aec . To calculate the

critical coefficients, involved in the degeneracy conditions in Bogdanov-Takens bifurcation
analysis, we follow (Kuznetsov 1999). The Jacobian matrix at these critical values, is given
by:

Jcrit =


0 0 f ((−ε−c)σ−c+a−ε)2A

b(1+σ)2a2

c − b(ε+c)(1+σ)
a − c f ((−1−σ)c+(−1−σ)ε+a)2A

a2b(1+σ)2(ε+c)

dcrit f
(

f + f A
ab(1+σ)

)−2
− ecrit(ε+c)(1+σ)

a−(1+σ)(ε+c)
−ecritc f A−b2(1+σ)2(ε+c)

b2(1+σ)2(ε+c)

 , (3.13)

where A = a2−(ε + c)(1+σ)(a+(1+σ)b). At this bifurcation point, two eigenvalues are
zero, and there exist two linearly independent (generalized) eigenvectors q0,1 ∈ R3 for Jcrit ,
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and two eigenvectors p0,1 ∈ R3 for its transpose such that

Jcritq0 = 0, Jcritq1 = q0, JT
crit p1 = 0, JT

crit p0 = p1.

The eigenvectors are given by:

q0 =


(ε+σ ε+c+σ c)b

ac

1

0

 ,

p1 =



(a−(1+σ)(ε+c))ca2

−(1+σ)3(ε+c)2b2+(1+c+ε)(a−(1+σ)(ε+c))a(1+σ)b+(a−(1+σ)(ε+c))a2

− (1+σ)(ε+c)((−ε−c)σ−c+a−ε)ba
−(1+σ)3(ε+c)2b2+(1+c+ε)(a−(1+σ)(ε+c))a(1+σ)b+(a−(1+σ)(ε+c))a2

(−b(1+σ)2(ε+c)+((−ε−c)σ−c+a−ε)a)
2
((−ε−c)σ−c+a−ε)2 f c

(−(1+σ)3(ε+c)2b2+(1+c+ε)((−ε−c)σ−c+a−ε)(1+σ)ab+((−ε−c)σ−c+a−ε)a2)(1+σ)2ba

 ,

and the generalized eigenvectors are given by:

p0 =


1

−(1+σ)(ε+c)b+ac
ac

g0

 ,

q1 =


g1

g2

b2a(1+σ)3(ε+c)
f(−b(ε+c)σ2−(ε+c)(a+2b)σ+(−a−b)ε+(−a−b)c+a2)((−ε−c)σ−c+a−ε)2c

 .

where the lengthy expressions g0,g1,g2 are given by:

g0 =
−(a2−(1+σ)(ε+c)a−b(1+σ)2(ε+c))

2
(a−(1+σ)(ε+c)) f

(a3+((1+c+ε)b−ε−c)(1+σ)a2−b(1+σ)2(1+c+ε)(ε+c)a−(1+σ)3(ε+c)2b2)(ε+c)(1+σ)2ba3×[(
(−1+ c)ε + c2

)
a3− (ε + c)(1+σ)

(
(1+ c+ ε)b+(−1+ c)ε + c2

)
a2

+b(1+σ)2 (1+ ε)(ε + c)2 a+b2 (1+σ)3 (ε + c)3
]
,
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g1 = 1(
−(1+σ)3(ε+c)2b2+(1+c+ε)(a−(1+σ)(ε+c))a(1+σ)b+(a−(1+σ)(ε+c))a2

)
((−1−σ)c−σ ε+a−ε)c2a3 ×[

−(1+σ)7 (ε + c)5 b5 +2
(
(1+ c+ ε)a− 1

2 (c+2ε +2)(ε + c)(1+σ)
)
(ε + c)3 (1+σ)5 ab4

−
(
(1+ c+ ε)2 a+(ε + c)

(
c2−2c− ε2−4ε−1

)
(1+σ)

)
(ε + c)(a− (1+σ)(ε + c))(1+σ)3 a2b3

+
(
(1+ c+ ε)

(
c2 +(−1+ ε)c−2ε

)
a− (ε + c)

(
c3 +(1+2ε)c2 +

(
−1+ ε2− ε

)
c−2ε−2ε2

)
(1+σ)

)
(a− (1+σ)(ε + c))(1+σ)2 a3b2 +

(
c2 +(1+ ε)c− ε

)
(a− (1+σ)(ε + c))2 (1+σ)a4b+

(a− (1+σ)(ε + c))2 ca5
]
,

and

g2 = 1(
−(1+σ)3(ε+c)2b2+(1+c+ε)(a−(1+σ)(ε+c))a(1+σ)b+(a−(1+σ)(ε+c))a2

)
((−ε−c)σ−c+a−ε)ca2 ×[

−(1+σ)6(ε + c)4b4 +2
(
(1+ c+ ε)a− 1

2 (c+2ε +2)(ε + c)(1+σ)
)
(ε + c)2(1+σ)4ab3

−(a− (1+σ)(ε + c))
(
(1+ c+ ε)2a+(ε + c)

(
c2−3c− ε2−4ε−1

)
(1+σ)

)
(1+σ)2 a2b2

+(1+ c+ ε)(c−2)(a− (1+σ)(ε + c))2 a3 (1+σ)b− (a− (1+σ)(ε + c))2 a4
]
.

The coefficients a1 and b1 involved in the degeneracy conditions, are given as:

a1 = 〈p1,B(q0,q0)〉 and b1 = 〈p0,B(q0,q0)〉+ 〈p1,B(q0,q1)〉,

where B(., .) is the multilinear form of the Hessian of (3.1), and for two vectors u and v is
calculated as :

B(u,v) =
[

a(u1v3+u3v1)

(1+L∗)2(1+σ)
− 2am+u3v3

(1+σ)(1+L∗)3 ,− b(u2v3+u3v2)

(1+L∗)2 + 2bM+u3v3

(1+L∗)3 ,− 2d f u1v1

( f+m+)3 − e(u2v3 +u3v2)
]
.

Calculating the coefficients at the critical values of parameters, we obtain:

a1 = − (1+σ)4(ε+c)3b4

(a+(1+σ)b)(−(1+σ)3(ε+c)2b2+(1+σ)a((−ε−c)σ−c−ε+a)(1+c+ε)b+a2((−ε−c)σ−c−ε+a)) f c
,

For all positive parameters, it is evident that the critical normal form coefficient a1 is nonzero.
The condition BT.1 is thus satisfied. The other parameter is calculated as:

b1 = − ((1+σ)3(ε+c)2b2−(1+σ)a(a−(1+σ)(ε+c))(1+c+ε)b+a2(a−(1+σ)(ε+c)))(ε+c)2b3(1+σ)3

f c(−(1+σ)3(ε+c)2b2+(1+σ)a(a−(1+σ)(ε+c))(1+c+ε)b+a2(a−(1+σ)(ε+c)))
2 .

This parameter may change sign, resulting in a (simple) degenerate BT bifurcation. The
condition BT.2 is satisfied only except when b1 6= 0. So, on this point, there is a codimension-
three bifurcation point. This point is a value of b such that:

c =
−2b2σ 2ε−abσ−2abσ ε−4b2σ ε−2b2ε−2abε+a2+ba2−ab±√g4

2b(1+σ)(a+b+bσ)
,

where,

g4 = a4−2a3bσ −2a3b−2a4b+b2a4 +σ 2b2a2−2a3b2σ +4b3σ 2a2 +8a2b3σ +2a2b2σ +4b3a2 +b2a2−2a3b2.

One of these values is positive. Since, we considered ecrit instead of bcrit for normal
form computation, we can easily change them to understand the results in this paper. For
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the parameters, we chose in the first part of this paper, where b was varied along with d,
the value of e at which a codimension-three bifurcation occurs is found to be approximately
e = 1.7. Similarly, in the later part of this paper, when we varied σ and d, the value of e at
which a codimension-three bifurcation occurs is e = 1.45. This value following the above
calculations agrees with our Matcont computations (?).

3.9 Appendix B

We calculated the first order approximation for slow manifold using Eq. (3.9) by solving the
following set of equations simultaneously:

P1
1 =


0 0 am±0 (σ)

(1+σ)(1+L∗0(σ))
2

c − bL∗0(σ)

1+L∗0(σ) − cm±0 (σ)

L∗0(σ)(1+L∗0(σ))

d f

( f+m±0 (σ))
2 −eL∗0(σ) − ecm±0 (σ)(1+L)

bL∗0(σ) −1




m±1 (σ)

M±1 (σ)

L∗1 (σ)

= g


d

dσ
m±0 (σ)

d
dσ

M±0 (σ)

d
dσ

L∗0(σ)



For the second order approximation for slow manifold, the following system was solved
simultaneously (coming from Equation (3.9)):

P1
2 =


0 0 am±0 (σ)

(1+σ)(1+L∗0(σ))
2

c − bL∗0(σ)

1+L∗0(σ) − cm±0 (σ)

L∗0(σ)(1+L∗0(σ))

d f

( f+m±0 (σ))
2 −eL∗0(σ) − ecm±0 (σ)(1+L)

bL∗0(σ) −1




m±2 (σ)

M±2 (σ)

L∗2 (σ)

= g


d

dσ
m±1 (σ)

d
dσ

M±1 (σ)

d
dσ

L∗1(σ)



+




d
dσ

m±0 (σ)

d
dσ

M±0 (σ)

d
dσ

L∗0(σ)



[ 0 ∂g

∂M |P1
0

∂g
∂L |P1

0

]
m±1 (σ)

M±1 (σ)

L∗1 (σ)




−1
2


0 0 a

(1+σ)(1+L∗0)
2

0 0 0

0 −e ecm±0
bL∗0

2




m±1
2
(σ)

M±1
2
(σ)

L∗1
2 (σ)

 .
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Chapter 4

Atherosclerotic plaque growth by shear
stress dependent low-density lipoprotein transfer:
the effect of recirculation

We can’t solve problems by using the same kind of thinking
we used when we created them.

Albert Einstein

Abstract

In atherosclerosis low-density lipoproteins accumulate in a plaque that is formed in the
wall of an artery. To prevent atherosclerosis or to slow down its progression, a better
understanding of all parameters influencing its time evolution is essential.

In this paper we develop a finite element model that predicts the time evolution of atheroscle-
rosis in medium and large sized arteries by treating the plaque growth as a moving
boundary problem. The permeability of the endothelium layer is taken to be shear stress
dependent in agreement with clinical findings. The blood flow is governed by the incom-
pressible Navier-Stokes equations and the low density lipoproteins are convected with the
blood while diffusing. In the plaque the LDL particles are assumed to be instantaneously
oxidized and subject to diffusion only. The computed blood velocity profiles are shown
to be in good agreement with published work on pulsating flows for short times and with
results on non-pulsating flows for fixed stenosis.

It is found that flow reversal downstream of the stenosis reduces the wall shear stress in
the zone of recirculation. This leads to a rise in the concentration of low-density lipopro-
teins in this zone and consequently to a reduction of the low-density lipoproteins flux from
the artery to the intima. The lumen radius reduction was found to increase linearly in
time for the first few years with a growth rate depending on the recirculation. The lumen
area reduction for first few years of growth is found to match the experimental studies.
For longer times the high shear stresses impede plaque remodeling in the radial direc-
tion, the plaque will broaden and experience diminished growth. Our results confirm that
Poiseuille flow is a good first approximation to model atherosclerotic plaque growth in
the presence of blood flow.
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4.1 Introduction

The transport of molecules across the vascular interface is a vital physiological process in
the micro-circulation of blood in large and medium-sized arteries. The interface between the
blood flowing region of the artery, often referred to as the lumen, and the wall of the artery
is called the endothelium. The endothelium is a thin layer of endothelial cells which control
the permeability of the arterial wall. Once the endothelium is damaged or malfunctioned,
the low-density lipoproteins (LDL) which are carried with the flowing blood, may permeate
into the outer layer of the arterial wall, known as the intima (Nielsen 1996, Ross 1993).
Oxygen radicals, which are present in the blood can, due to their small size, easily enter the
intima, where they can oxidize the LDL which are then converted to oxidized low-density
lipoproteins (ox-LDL). This is the onset of atherosclerotic disease. There is a whole series
of biochemical events that take place once oxidized LDL has initiated plaque formation. The
immune system acts to suppress the inflammation caused by oxidized LDL in the intima,
which in fact enhances the plaque evolution. First the artery tries to accommodate the plaque
by remodeling outward (away from the lumen), but eventually also inward remodeling takes
place which in its turn affects the blood flow. The constriction formed by the plaque leads
to a recirculation region behind the plaque, which was found to increase plaque growth.
During the later stages of plaque growth a thin fibrous cap is formed. Rupture of this cap
leads to stroke and myocardial infarction (Ross 1993, Ethier 2002, Pedley and Luo 1995),
which is one of most common causes of death in the Western world. In order to understand
the evolution of plaques, and in particular the remodeling of the artery and its relation with
the blood flow, mathematical models are imperative. In this paper we present a qualitative
mathematical model that focuses on the remodelling of the plaque region and studies the
effect of blood recirculation on plaque growth.

We employ clinical investigations of the accumulation of ox-LDL in the intima (Nielsen
1996, Ross 1993) and generalize previous numerical work concerned with the fluid phase
momentum and mass transport (Rappitsch and Perktold 1996a, Rappitsch et al. 1997) in
which the artery wall was stationary to a moving boundary problem. In a recent work of
(Fok 2012), intimal thickening was treated as a free boundary problem in which a radial
cross section was considered and a semi-analytical model for the lumen radius was derived.
Our aproach differs from this in that we study the interaction of blood flow on the evolution of
plaques and we are particularly interested in axial direction and assume a radially symmetric
situation. PDE models for early lesion growth were considered in (Calvez et al. 2009, Khatib
et al. 2012). In (Calvez et al. 2009), the effect of the presence of a stenosis has been studied
for short times and (Khatib et al. 2012) concentrated on reaction-diffusion processes and
proves the existence of traveling concentration waves.

Since arterial wall permeability has been found to be influenced by wall shear stress (Caro
et al. 1971, Ogunrinade et al. 2002), a number of studies have investigated wall shear stress
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dependent transport properties (Rappitsch and Perktold 1996a, Rappitsch et al. 1997, Sun
et al. 2006). In these studies the transport of LDL particles and oxygen was modelled and it
was found that low wall shear stress can indeed significantly increase (ox)-LDL accumula-
tion in the arterial wall. In this paper we also take wall shear stress dependence into account.
In (Bulelzai and Dubbeldam 2012, Ougrinovskaia et al. 2010)), simple heuristic ODE mod-
els were developed, out of which (Bulelzai and Dubbeldam 2012) predict the remodelling
and occlusion of the artery.

In this paper we improve on those simplified models by numerically solving the Navier-
Stokes equations in an axisymmetric domain that is changing with time. We validate our
model by comparing our numerical results with other results from the literature for fixed
stenosis. This comparision shows excellent agreement. The main result of our investigation
of the moving boundary problem is that although the growth of the plaque region shows
only mild dependence on the flow recirculation, significant enhancement can be found in the
flux of LDL from the lumen into the plaque and the ox-LDL concentration downstream of
the stenosis. This effect is attributed to the lower wall shear stress in the recirculation zone,
which leads to higher influx in the region affected by atherosclerosis. So although global
differences are minor, the local composition of the plaque can differ significantly as a result
of coupling between blood flow and plaque growth.

We organize this paper as follows. In Section 2 we introduce the mathematical model,
which consists of incompressible Navier-Stokes equations, the LDL transport equation and
a diffusion equation for ox-LDL particles. We also present the equation for the movement of
the endothelial wall in the lumen, the geometry and initial and boundary conditions.

In Section 3, we present our numerical findings for fixed Reynolds (Re) and Peclet (Pe)
numbers. Results include the calculation of velocities, shear stresses, fluxes and concentra-
tions of LDL and ox-LDL over the time. We obtained these results using the Finite Element
based package COMSOL 3.5. In order to quantify the effects of the recirculation zone, we
compare results of the full model with those in which a Poiseuille velocity profile is imposed.
We summarize our numerical findings in Section 4.

4.2 The model

We first introduce the mathematical model that accounts for fluid dynamics in the arterial
lumen and arterial wall movement. In Fig. 4.1 we schematically show the geometry consid-
ered. The lumen is denoted by Ω1 =

{
(r,z,θ)|0 < r < R(z, t), z ∈ [−lu, lp + ld ], θ ∈ [0,2π]

}
,

where lu is the length of the artery upstream of the plaque; the length of the artery in the
downstream direction is denoted by ld and lp is the fixed width of the plaque region. The
function R(z, t) describes the moving boundary that separates the region occupied by the
blood flowing through the artery, called the lumen, from the region inside the artery wall,
called the intima. The initima is defined as:
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Ω2 =
{
(r,z,θ)|R(z, t)< r < R0, z ∈ [−lu, lp + ld ], θ ∈ [0,2π]

}
.

We assume axial symmetry and therefore θ -dependence will be ignored. The assumption of
axial symmetry for biological flows is justified as long as the Reynolds number is less than
a critical Reynolds number calculated by Jamison et al.(Sheard et al. 2009). The function
R(z, t) that constitutes the boundary between Ω1 and Ω2 is easily seen to give rise to the
boundary ∂Ωw = {(r,z,θ)|r = R(z, t),z ∈ [−lu, lp + ld ],θ ∈ [0,2π]}.

Length is made dimensionless by applying nondimensionalization with respect to the
radius of the lumen (at z =−lu) R0. Velocities (denoting the radial velocity with u and axial
velocity with v) are expressed with respect to U0, which is the average velocity of the blood
through the artery at z = −lu, and a reference time tref is given by R0/U0. The pressure p
can be expressed relative to ρbU0

2 with ρb the blood density; the definition of the Reynolds
number Re = ρbU0R0

µ
then completes a nondimensionalized description. In summary the

relation between dimensionful quantities (without a tilde) and dimensionless quantities (with
tilde) is as follows

r̃ =
r

R0
, z̃ =

z
R0

, ũ =
u

U0
, ṽ =

v
U0

, t̃ =
tU0

R0
, p̃ =

p
ρbU0

2 , Re =
ρbU0R0

µ
,

where the parameter µ is the dynamic viscosity.
We next turn to the dynamical properties of our system. The bulk blood flow is gov-

erned by the incompressible Navier-Stokes equations; the LDL particles are modeled by a
convection-diffusion equation and the oxidized-LDL concentration, which is only present
in the plaque, is modeled by a diffusion equation. The LDL is convected with the velocity
of the blood which is calculated from the Navier-Stokes equations in Ω1 and is further also
subject to diffusion. We assume that as soon as the LDL is transfered through the endothelial
layer and enters the intima, it immediately gets oxidized and evolves according to a diffu-
sion equation. The blood flow is assumed to be incompressible, isothermal, laminar and
Newtonian, in a two-dimensional axisymmetric blood vessel. From now on we will drop the
tilde symbol on the dimensionless quantities and any reference made to the velocities (u,v),
coordinates (r,z), pressure and time will always imply the dimensionless quantity.

In cylindrical (dimensionless) coordinates, the model equations are:

1
r

∂

∂ r
(ru)+

∂v
∂ z

= 0, (4.1a)

∂u
∂ t

+u
∂u
∂ r

+ v
∂u
∂ z

=−∂ p
∂ r

+
1

Re

(1
r

∂

∂ r

(
r

∂u
∂ r

)
+

∂ 2u
∂ z2 −

u
r2

)
, (4.1b)

∂v
∂ t

+u
∂v
∂ r

+ v
∂v
∂ z

=−∂ p
∂ z

+
1

Re

(1
r

∂

∂ r

(
r

∂v
∂ r

)
+

∂ 2v
∂ z2

)
. (4.1c)



4.2. The model 57

Line of Symmetry

.. . .
plaque

lumen

r = 0z
r

z = 0

Ω1 c1

Ω2
lu lp ld

R0

c2 intima

∂Ωw

t̂

n̂

Figure 4.1: A schematic representation of the idealized artery that we consider. The endothelium layer
corresponds to the boundary ∂Ωw.

Equation 4.1(a) is the continuity equation, and Equations 4.1(b,c) are the Navier-Stokes
equations that describe the flow in the presence of axial symmetry in the blood domain
Ω1. The radial component of the velocity is denoted by u and the axial component (in the
z-direction) by v;

The evolution of the concentration of LDL particles in the lumen (Ω1), which we desig-
nate by c1, is governed by a convection-diffusion equation

∂c1

∂ t
+u

∂c1

∂ r
+ v

∂c1

∂ z
=

1
Pe

(1
r

∂

∂ r

(
r

∂c1

∂ r

)
+

∂ 2c1

∂ z2

)
. (4.2)

Equation (4.2) is nondimensionalized by a expressing the LDL concentration with re-
spect to a reference concentration C0. The dimensionless Peclet number Pe, which controls
the relative importance of convection with respect to diffusion, is defined as Pe = U0R0

D1
. Here

the parameter D1 is the diffusion constant for the LDL in the lumen. As LDL is assumed
to be oxidized instantaneously on entering Ω2 there will only be ox-LDL in the intima. The
ox-LDL concentration is denoted by c2. Since there is no blood flow in the intima, c2 will
only diffuse in region Ω2. In dimensionless form the diffusion equation in Ω2 reads

∂c2

∂ t
= d f

(1
r

∂

∂ r

(
r

∂c2

∂ r

)
+

∂ 2c2

∂ z2

)
. (4.3)

Equation (4.3) was made dimensionless by again expressing the concentration with re-
spect to C0. The parameter d f is the dimensionless diffusion coefficient d f =

D2
U0R0

, with D2

the diffusion coefficient of c2 in the intima. The system of differential equations (4.1-4.3)
will be coupled through a common time-dependent boundary constituted by the endothelial
layer ∂Ωw(t).

4.2.1 Initial and Boundary conditions

In this subsection we first supply inital and boundary conditions on the stationary boundaries.
Next the boundary conditions at the moving boundary ∂Ωw are discussed. We take the
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following initial conditions:

u(0,r,z) = 0, v(0,r,z) = 2(1− r2),

c2(0,r,z) = 0, c1(0,r,z) = 1.

At the inlet, the blood flow profile is assumed to be fully developed laminar flow and the
concentration c1 is a given constant, whereas c2 obeys a Neumann boundary condition:

v(r) = 2(1− r2), c1 = 1,
∂c2

∂ z
= 0, at z =−lu/R0. (4.4)

At the outlet boundary, zero surface traction force is assumed and a vanishing concentration
gradient:

−pno +µ
∂u
∂no = 0,

∂c1

∂ z
=

∂c2

∂ z
= 0 at z = L/R0, (4.5)

where no is the outward pointing unit normal to the outlet boundary. At the wall ∂Ωw, a
no-slip condition is prescribed. The axi-symmetric setting implies that at r = 0 a Neumann
condition is satisfied both by (u,v) and by c1, which yields

u = 0,
∂v
∂ r

= 0,
∂c1

∂ r
= 0 at r = 0.

At the moving wall ∂Ωw, the (dimensionless) wall flux Jc1 of LDL from the lumen into the
intima is taken as:

Jc1 =
Ĵc1

J0
=−∂c1

∂n

∣∣∣∣
∂Ωw

= k1ξ (|τw|)c1, (4.6)

where Ĵc1 is the dimensionful flux and J0 =
D1C0

R0
is a reference flux; the dimensionless diffu-

sive permeability k1 is defined as k1 =
C0 k̂1

J0
, with k̂1 the dimensionfull permeability constant.

The quantity k1 is also known in the literature as the Sherwood-number and commonly ab-
breviated as Sh, a notation that we will also adopt in this paper. We further notice that the
flux Jc1 does not depend on the flow velocity due to the no slip conditions.

The boundary condition (Equation 4.6) is in accordance with clinical observations by
(Niehaus et al. 1977) that the LDL influx is proportional to the LDL concentration in the
blood. Clinical observations further suggest that low wall shear stress enhances atheroscle-
rosis (Slager et al. 2005, Sakllarios et al. 2010, Rappitsch and Perktold 1996b). We include
the function ξ (|τw|) in Equation (4.6) to model the dependence of the permeability on wall
shear stress. Its functional form was taken as

ξ (|τw|) =
1

1+ |τw|/τ0
. (4.7)
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in correspondence with (Bulelzai and Dubbeldam 2012). The parameter τ0 in Equation (4.7)
is the value of the wall shear stress at which the value of ξ , and therefore the LDL flux
from the lumen to the intima, is reduced to half its value without wall shear stress. We note
that a flux condition depending on the wall shear stress is not new and was, for example,
also applied in (Rappitsch and Perktold 1996a) and (Quarteroni et al. 2002). However, in
that case oxygen transport was modelled and therefore a different functional dependence
on τw was chosen in which the permeability increases with wall shear stress. Moreover,
in (Rappitsch and Perktold 1996a) and (Quarteroni et al. 2002) simulations were only per-
formed for boundaries fixed in time.

In region Ω2 the ox-LDL only diffuses. At the moving wall ∂Ωw, c2 satisfies the follow-
ing boundary condition:

Jc2 =
Ĵc2

J0
=−D2

D1

∂c2

∂n

∣∣∣∣
∂Ωw

=−k1ξ (|τw|)c1 + k2c2. (4.8)

This flux boundary condition implies that we assume the LDL which diffuses through the
wall, is immediately converted into ox-LDL in addition there is some leakage of ox-LDL
into the lumen. This leakage of will be very small, since due to processes taking place in the
plaque it will be much more difficult for ox-LDL to escape from the plaque region than it is
for LDL to enter Ω2. The permeability k2 will therefore in general be much smaller than k1

and hence we neglect the k2c2 term in our numerical computations.

4.2.2 Moving Geometry

In order to facilitate comparison with the literature with fixed stenosis, we introduce the
function h(z) = R0−R(z, t = 0) that defines ∂Ωw(t) at time t = 0,

h(z) =

{
ze−a0z2

for 0≤ z≤ lp/R0,

0 otherwise.
(4.9)

Here a0 is a parameter determining the initial shape of the plaque region. We derive the
evolution of the boundary ∂Ωw(t), by finding an evolution equation for R(z, t). To proceed
we make the crucial assumption that the evolution of R only occurs on a very long time scale.
This allows to impose no slip boundary conditions for u and v

u = 0, v = 0, on ∂Ωw(t). (4.10)

To derive the evolution equation for R(z, t) we define the function f (r,z, t)≡r−R(z, t) as
in (Crank 1984). The level curve f (r,z, t) = 0 implicitly defines the boundary ∂Ωw(t). The
evolution of f is governed by
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Figure 4.2: A schematic representation of the plaque bounded by the implicit relation f (r,z, t) = 0,
which defines R(z, t) implicitly. This representation of the boundary can be used to derive an evolution
equation for R(z, t). In our model we assume that the interface only moves in the radial direction.

∂ f
∂ t

+∇ f ·w = 0, (4.11)

where w is the velocity of the boundary. Equation (4.11) is used generally for moving bound-
ary problems, such as the confined Muskat problem. In that problem, which can be applied
to model tumor growth (Pozrikidis 2010), the velocity of the wall is always in the direction
of the normal n. Here we follow a different route, however. Since the plaque will be covered
by a fibrous cap whose elastic characteristics are unknown and also evolve in time, we make
the simplifying assumption that the wall only moves in the radial direction; see also Fig. 4.2.
Moreover, the plaque growth is supposed to be proportional to the initial shape of the plaque
h(z). The major advantage of this assumption is that it removes instabilities such as so-called
“fingering regions” that are commonly present in the muskat problem (Gazolaz et al. 2013),
but not observed for plaques (Pherson et al. 1992). Since our model is only qualitative as we
ignore many processes such as cap formation and smooth muscle cell proliferation, taking
place in the intima, this assumption will only quantitatively modify our results. Our model
indeed incorporates the sugestion already put forward by (Sandler and Bourne 1963) that the
rate of accumulation of atherosclerotic tissue is proportional to the accumulated amount of
(oxidized) LDL in the plaque.

We can now recast Equation (4.11) in the form

(∇ f · r̂)wr =−
∂ f
∂ t

=
∂R
∂ t

, (4.12)

where wr is the velocity of the boundary in the radial direction and r̂ is the unit vector in the
radial direction. We use that the velocity wr is proportional to the total incoming flux times
h(z), that is, wr = γ (k1ξ (|τw|)c1− k2c2)h(z), with the dimensionless constant γ proportional
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to the volume of a mole of oxidized LDL-particles relative to the standard volume R3
0. The

value of the proportionality constant will be determined later by the requirement that the
plaque evolves on a time scale of about 10 years. If we substitute the expression for wr in
Equation (4.12) and use that f (z,r, t) = r−R(z, t), we find

∂R
∂ t

=−γ h(z) [k1ξ (|τw|)c1− k2c2] . (4.13)

Equation (4.13) determines the evolution of the plaque boundary R(z, t). It is supple-
mented with the initial condition R(z,0) = R0−h(z), and automatically satisfies R(z, t) = R0

at z = 0 and z = lp/R0.
We notice that in the limiting case for which z-dependence of c1, c2 and ξ is absent,

Equation (4.13) predicts a linear decrease in time of R(z, t). This result differs from the
time dependence found in (Bulelzai and Dubbeldam 2012), where the plaque volume was
found to grow linearly with time and consequently the arterial radius to decrease as a square
root of time. The reason for this is that although there was no z-dependence in (Bulelzai
and Dubbeldam 2012), the inward flux was supposed to be independent of the radius of the
artery, whereas here we consider the inward flux to be proportional to R(z, t).

4.3 Methods

4.3.1 Numerical Details

We implemented our model in Comsol Multiphysics 3.5 which is a finite element package for
the solution of PDEs. We coupled the Navier-Stokes equations for the blood flow in the artery
to a convection-diffusion equation for the LDL concentration in the lumen and a diffusion
equation for oxidized LDL in the intima. The movement of the endothelium is taken into
account by a applying a moving mesh implementation which is based on an Arbitrary Euler-
Lagrangian formulation (with a Winslow smoothing method). The model is discretized in
space using default setting second order Lagrangian elements for the velocity and linear
order elements for the pressure and the concentrations c1 and c2 on an unstructured triangular
mesh. To suppress spurious oscillations in regions with high mesh Peclet numbers, crosswind
diffusion was added to the convection-diffusion equation with its parameter δcd = 0.35 for
linear elements as described in (Krakauer 2007).

The resulting spatially discrete model, which consists of 105 elements with a refined
mesh near the moving boundary, is integrated in time using a BDF scheme from DASPK
(Brenan et al. 1996) with an adaptively chosen time stepping scheme. The accuracy of this
procedure is governed by specifying absolute and relative tolerances whose values we choose
10−7 and 10−3, respectively.
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4.3.2 Validation and comparison with published work

To validate the numerical results before solving the model, we compare our numerical results
with those of (Ismail et al. 2008) and (Rappitsch and Perktold 1996a). We use these two
references to validate two different aspects of our model. First, the flow and the moving
geometry are validated and next the convection-diffusion of the LDL into the plaque.

Validation of velocity profile in the presence of a moving wall

In (Ismail et al. 2008), pulsatile blood flow in a slightly tapered geometry with a tapering
angle φ�1 is studied. The stenosis is assumed to be overlapping, that is, a stenosis is
prescribed at a certain interval of z values, just as in our model. For all other values of z a
slightly tapered channel is assumed, whose radius R(z, t) = (mz+ b)a1(t) varies both with
time and with z. Initially a1(t) = 0 and the geometry of the channel outside the stenotic area
is simply R(z,0) = mz+b, where b is the radius of the artery at z = 0 and m is related to the
tapering angle φ , via tan(φ) = m.

In (Abdullah and Amin 2010), (Chakravarti and Mandal 2000) and (Ismail et al. 2008),
the Navier-Stokes equations were approximately solved for a pressure that was changing
periodically in time, but with the extra assumption that for very small arteries the pressure
does not depend on radius. This assumption was justified in (Pedley and Luo 1995). We
have simulated the same tapered geometry (small sized artery) as in (Ismail et al. 2008)
with the same boundary conditions and time dependence of the pressure, but in contrast to
(Ismail et al. 2008) we do not use the assumption that the pressure is independent of radius.
Rather we solve the complete Navier-Stokes equations (including the ∂ p

∂ r term) for different
tapering angles φ for the two-dimensional axi-symmetric case. A comparison is presented
in Fig. 4.3, which depicts both the radial and axial velocity as a function of the normalized
radius x = r

R(z,t) at two different times. We find excellent agreement between our results and
those of (Ismail et al. 2008). This validates our numerical results for short times.

Validation of convection-diffusion equation

For the validation of the solution of the convection-diffusion equation especially near the
wall, stationary computations for the case of a fixed stenosis were carried out and compared
with the results of (Rappitsch and Perktold 1996a). In this paper, two models for oxygen
diffusion through the endothelium have been studied. In one model the wall permeability
was a constant, whereas in the other model a shear-dependent wall permeability was sup-
posed. We implemented our convection-diffusion model in COMSOL for the special case
of a non-moving geometry and for both a constant permeability and a permeability with the
same functional form as in (Rappitsch and Perktold 1996a). All parameters were chosen
in agreement with (Rappitsch and Perktold 1996a). Our computations were performed us-
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Figure 4.3: Velocity profiles obtained at different locations in a tapered channel with tapering angle
φ and pulsatile blood flow. At the horizontal axis x = r

R(z,t) is plotted to facilitate comparison with
(Ismail et al. 2008).

ing quadratic elements for the velocity and cubic elements for convection-diffusion equation
combined with the SUPG method1. The results and the comparison are shown in Fig. 4.4(a)
for a fixed permeability and in (b) for a permeability that increases linearly with wall shear
stress. Our results corroborate Rappitsch’s results and further validate our model. Notice that
the minimum concentration is at the peak of the constriction, which is located at z = 3.36
for both cases. There is an additional broad maximum in Fig. 4.4(b) that is caused by the re-
circulation behind the constriction causing a low wall shear stress and consequently a small
flux into the intima resulting in a larger oxygen concentration near the wall.

1The local constriction for this simulation we used the second degree Bezier curve as the stenotic curve was not
mentioned in (Rappitsch and Perktold 1996a)
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Figure 4.4: Normalized wall concentration for oxygen. In (a) the permeability is constant and in (b) it
varies linearly with wall shear stress.

Table 4.1: Numerical Values used in the simulations (this paper) with their units

Parameter Description Value Units
k̂1 LDL permeability 3×10−8 (Nielsen 1996) cm/s
k̂2 ox-LDL permeability 0 cm/s
lp Length of stenosis 1.42 (Rappitsch and Perktold 1996a) cm
ld Downstream length 72.14 (Rappitsch and Perktold 1996a) cm
lu Upstream length 4.62 (Rappitsch and Perktold 1996a) cm
L End point of artery 73.56 (Rappitsch and Perktold 1996a) cm
R0 Reference radius 0.71 (Rappitsch and Perktold 1996a) cm
C0 Reference LDL concentration 2.6×10−6 (Goldstein and Brown 1977) mole/cm3

γ̂ = γR3
0 Volume coefficient 7.0×103 cm3/mole

U0 Reference velocity 4.52 cm/s
ρb Blood density 1.05 (Rappitsch and Perktold 1996a) g/cm3

µ Dynamic viscosity (Blood) 0.035 (Rappitsch and Perktold 1996a) Poise
D1 Diffusion coefficient (Blood) 1×10−6 (Dabagh et al. 2009) cm2/s
D2 Diffusion coefficient (Intima) 1×10−6 cm2/s
τ0 Shear stress parameter 500 dyne/cm2

a0 Plaque shape parameter 2.02
Re Reynolds number 100
Pe Peclet number 3.2×106

Sh Sherwood number 0.0213

4.4 Results and Discussions
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The model (4.1-4.3) was simulated in combination with a moving mesh to investigate
the influence of time dependent constriction on a compliant artery, generalizing the study of
(Rappitsch and Perktold 1996a) to the case of a progressing plaque. The main parameters
in the problem are the Reynolds number, Peclet number, the Sherwood number Sh and the
parameter γ , which determines the volume taken by oxidized LDL particles in the plaque.
The values of most of the parameters are available in the literature and are presented in Table
4.1. The value of γ̂ = γR3

0 depends besides the volume of oxidized-LDL particles on the
elasticity of the arterial wall. Since we do not have a consistent theory how to calculate γ

from first principles we will simply set γ to the value in Table 4.1, as this leads to the correct
timescale for the evolution of the plaque in the artery. In (Bulelzai and Dubbeldam 2012), a
similar parameter was introduced to fix the time scale of the plaque evolution.

In all our simulations we use the parameter values given in Table 4.1, unless mentioned
otherwise. We first present the full model results and next discuss the dependence on Re, the
flow profile and the Peclet number. All numerical results were verified for several choices of
mesh spacing and values of the absolute and relative accuracy. The results presented were
obtained using a relative accuracy of 10−3 and an absolute accuracy of 10−7. Triangular
linear elements were used for the concentrations, quadratic for velocity and linear elements
for the pressure. The percentage of stenosis is calculated as (1− A1

A2
)× 100, where A1 is

lesion diameter or area and A2 is diameter or area at the reference site (Ota et al. 2005). We
will mean stenosis percentages in terms of diameter if not stated otherwise in this paper. We
follow (Rappitsch and Perktold 1996a) for stenosis percentage convention.

In Fig. 4.5 we display results of the numerical simulation of the model (4.1-4.3). The
axial velocity as well as the stream lines are shown for 3 different (dimensionless) times
t1, t2, t3, which correspond to a diameter reduction of the lumen of 30% (t1 = 1.21× 108) ,
50% (t2 = 2.04×109) , 70% (t3 = 3.13×109). It can be seen from Fig. 4.5(a) and (d), which
refer to 30% stenosis, that there is hardly any recirculation in this case and consequently only
a very narrow boundary layer. In fact from the streamlines shown in (d) it appears that there
is no recirculation region at all. However, this is a consequence of the fact that only limited
number of streamlines is shown as Fig. 4.5(a) shows that the curve for z = 2 attains slightly
negative values near r = 1, evidencing the presence of a small recirculation zone. The time t1
for which 30% stenosis is reached is equivalent to 6.2 years, which is qualitative agreement
with numerical calculations by (Liu and Tang 2010). For larger times and hence for greater
stenosis presented in (b) and (e) for the 50% case and in (c) and (f) for 70% lumen reduction,
the constriction is large enough to produce a significant recirculation zone behind the plaque.
This can easily be seen from the stream profiles (e) and (f) and can also be inferred from (b)
and (c) as v takes negative values for r close to 1. Because the stenosis grows in time, the
recirculation is enhanced as well and negative values of v can be found for rather large values
of z in Fig. 4.5(c).
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Figure 4.5: The axial velocity as a function of r for three different degrees of stenosis (a-c) and the
corresponding streamlines (d-f). The picture is not to scale, the vertical axis is blown up by a factor
of 25 for presentation purposes. The plaque is confined to interval [0,2]. In (a) the stenosis is 30%
and the velocity is slightly negative near z = 2 and r = 1, although this cannot be discerned from the
corresponding stream function (d). For 50% stenosis ((b) and (e)) v is negative near the end of the
plaque region at z = 2. For 70% stenosis ((c) and (f)) the larger recirculation zone is evident and
negative velocities are present in a boundary layer near r = 1 and a large number of z values.

To examine the validity of our results for large Re, we compare the calculated velocity
profiles of our model at Re = 100 with computations carried out by (Ahmed and Giddens
1983) and (Varghese et al. 2007) for different constrictions at Re = 500 (not shown here).
Surprisingly, we find perfect agreement for z = 2 and 50% stenosis; see Fig. 4.5(b). For
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other values of z the agreement is still rather good. This suggests that our results remain
valid beyond the Reynolds number Re = 100 for which we carried out our computations.

We next turn to the plaque itself, which resides in the interval [0,2]. The function R(z, t)
defines the plaque boundary and is shown in Fig. 4.6. The shape approximately remains the
same as the boundary movement was assumed to be proportional to the initial shape of the
plaque, as defined in Equation (4.9). Only for very high degrees of stenosis the plaque starts
to deform. The modeling assumption that the plaque can not extend beyond z = 2, prevents
the plaque from growing further in the axial direction, although we allow the LDL-flux to be
nonzero everywhere in order to facilitate comparison with other numerical works.

To investigate the details of plaque growth and the effect of wall shear stress on the
progression of plaque we calculated the wall shear stress and the flux of LDL into the intima.
Our results our depicted in Fig. 4.7 for three different degrees of stenosis.

From Fig. 4.7(a,c,e) and the insets of the figures it can be seen that for small negative z
the wall shear stress decreases, this is due to the plaque that is already felt by the flow via the
boundary layer before actually reaching the constriction. Due to the presence of the plaque
starting at z= 0 the wall shear stress increases for small positive z until it reaches a maximum
near the peak of the occlusion. Then the wall shear stress rapidly drops attaining a minimum
for the value of z corresponding to the separation point. Since this happens in Fig. 4.7(a), (c)
and (e) it demonstrates the presence of a recirculation zone for all three cases including the
30% stenosis. Just after the separation point τw increases reaching a maximum after which
τw decreases again reaching 0 at end of the recirculation zone. It then gradually increases
till it reaches the same constant value it had at the entrance of the artery at z =−6.5. When
comparing Fig. 4.7(a), (c) and (e), the most conspicuous difference is the shift of the second
minimum τw = 0 to larger z values for increasing times, and hence increasing degrees of
stenosis. The maximum of the curves is, of course, also increasing for increasing stenosis.
The corresponding flux curves all reach a maximum at the separation points where τw = 0
and have a minimum at the maximum constriction where τw is maximal. The flux into the
intima was calculated in (Rappitsch and Perktold 1996a) for oxygen. Our results are in
qualitative agreement with their findings.

In Fig. 4.8, the evolution of the LDL concentration is presented for the 3 different times
t1, t2, t3 as was done for the velocity in Fig. 4.5. Fig. 4.8(a) shows non-monotonic behavior
of the LDL concentration as a function of the axial coordinate z; the corresponding density
profiles are depicted in Fig. 4.8(e-g). From (a) and the enlargement in (b) it can be seen that
the z dependence of the LDL concentration at the wall is very similar to that of Fig. 4.4(a).
The LDL concentration rises from z = 0, the location where the plaque starts, till it reaches
a maximum at the peak of the stenosis. The maximum is followed by a relatively sharp de-
cline in the LDL concentration due to a separation point in the flow that is close to the point
of maximal stenosis. The concentration then gradually increases again in the recirculation
zone as here the flow is in the negative z-direction. When the recirculation zone ends, the
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Figure 4.6: The plaque shape for different degrees of stenosis. The function R(z, t) remains regular up
to very high degrees of stenosis.

concentration attains another local maximum after which it decreases again with z. Since the
permeability decreases with |τw| in our model, it is not surprising that the broad maximum
that appeared for large z in the model of oxygen transport of (Rappitsch and Perktold 1996a)
in which the permeability was assumed to increase with τw, is absent here; see for compari-
son also Fig. 4.4. Near the local maximum of the concentration some fluctuations can be seen
which were also observed in (Quarteroni et al. 2002); see also Fig. 4.8(b). The continuous
growth of the plaque leads to an expanding recirculation zone that is reflected in the second
maximum in c1 moving to the right with increasing time. In the corresponding concentration
density profile Fig. 4.8(e) the region with a very low LDL concentration can be discerned
as a dark region. The increasing size of the dark region in Fig. 4.8(f-g) is evidence for the
growing recirculation zone. In Fig. 4.8(c) we show the LDL concentration for a fixed value
of z = 14 as a function of the radial coordinate. Nonmonotonicity appears for the case of
70% stenosis, which reflects again the presence of recirculation at z = 14. For shorter times
and hence smaller stenosis, there is no recirculation and at z = 14 as the recirculation zone
so much smaller.

We stress that although the plaque cannot grow beyond z = 2 in our model as we assume
the artery to be healthy apart from [0,2], the recirculation could constitute a risk for spreading
of the plaque in the axial direction. For completeness we also show the concentration c2 of
ox-LDL in the intima in (d), which is rather smooth. The insets show, however, that the
although c2 is maximal at the top of the constriction for 30% stenosis, this maximum shifts
to larger z values, which is caused by the wall shear stress evolution as was presented in
Fig. 4.7.
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Figure 4.7: The normalized wall shear stress τw/τ0 as a function of z for 30% (a), 50% (c) and
70% (e) stenosis. In (b), (d), (f), the corresponding fluxes are shown. It is clear that the wall flux is
large determines by the wall shear stress, as the curves follow each other: vanishing wall shear stress
corresponds to a maximum in the flux and a maximum in the wall shear stress leads to a minimum in
the flux.

Finally, we emphasize that there is only a very small difference between the maximum
and minimum values of the concentration, as compared to the average LDL concentration
in the lumen. This is due to the small value of the Sherwood number Sh = 0.0231, or
equivalently, the small permeability (k̂1) of the endothelial layer. In Fig. 4.13, it is shown
that the concentrations may have a high value if the sherwood number is large.
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Figure 4.8: (Dimensionless) LDL concentration as a function of the axial length (a) and a zoomed-
in picture (b). The concentration c1 as a function of the radial coordinate (c) displays nonmonotonic
behavior for large times. The concentration c2 varies only gently as a function of z (d). In (e-g) the
accompanying concentration profiles for LDL (c1) in the lumen and for ox-LDL (c2) in the intima are
displayed. For a convenient presentation we have scaled the radial direction in (e-g) with a factor of
12.

4.4.1 Comparison with experiments

In (Stadius et al. 1992), different measurements on the time evolution of plaques in rabbits
were performed. By sacrificing rabbits with a 2% cholesterol diet, the intimal area of iliac
arteries were monitored over 40 days. (Fok 2012) presented a mathematical model for the
reduction in intimal area by the evolution of smooth muscle cells and was compared with
(Stadius et al. 1992). As clinical data on human evolution of plaques is scarce, we compared
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Figure 4.9: Comparison of model with animal studies (Stadius et al. 1992) and a model of intimal
reduction through smooth muscle cell death (Fok 2012). The calculated graphs for different values of
endothelial permeability (k̂1) are obtained at peak of stenosis (at z = 0.4). The dotted curve is from
(Fok 2012) with parameter values θ0(0) = π/8, α = 0.02 and β = 24.

our time dependent results with both (Stadius et al. 1992) and (Fok 2012). It is worthwhile
to note that our model has a z-dependent component while in the model of (Fok 2012),
the intimal cross sectional area was considered. We calculate the cross sectional area of
the idealized artery at the peak of stenosis (at z = 0.4) for comparison. In the model of
(Fok 2012), three parameters were adjusted to acheive the agreement with clinical study
from (Stadius et al. 1992). In our model, there is only one parameter k̂1 which may be varied
to fit the experiments. For human arteries, we choose the parameter k̂1 to be 3× 10−8cm/s
from (?). But for rabbit studies, the curves fit best when values of k̂1 are of the order of
10−7cm/s. (Ogunrinade et al. 2002) have mentioned that in rabbits aorta, values for low
permeability lie in the range of 1−2×10−8cm/s and increases to as much as 5×10−7cm/s
for high permeability regions. In Fig. 4.9, we present the comparison for three different
values of k̂1: 6×10−7, 5.5×10−7 and 5×10−7cm/s.

To gain more insight in the exact influence of the recirculation zone, the permeability de-
pendence on τw and the high value of Pe on the progression of atherosclerosis, we developed
two approximate models that we discuss in the following subsection.
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4.4.2 Two simplified models: the zero-convection model and the Poiseuille
model

When we consider the limit Pe→ 0 of the model governed by (4.1-4.3), Equation (4.2) re-
duces to a simple diffusion equation and the blood velocity consequently vanishes in Ω1. The
reduced model will be called the zero-convection model. This model allows us to quantify
the effects resulting from a shear stress dependent permeability, since the wall shear stress
is identically zero throughout the domain. A second simplified model is obtained if we sim-
plify the blood flow by imposing the blood flow to be Poiseuille in Ω1 and to obey mass
conservation. The permeability is taken to depend on wall shear stress through ξ as defined
in Equation (4.7) just as for the full model. As the Poiseuille model has by definition no
recirculation zone it allows us to study the effect of flow recirculation on plaque progression.

We implemented the zero-convection (ZC) model and the Poiseuille model and kept all
parameters the same as for the full model Equations (4.1-4.3) except Pe . For the Poiseuille
model we also keep the same boundary conditions as for the full model, but for the ZC-model
we need to modify the boundary conditions at the non-moving part of the lower bound-
ary, that is, for r = 1 and z ∈ [−lu/R0,0]∪ [lp/R0,L0/R0] we took homogeneous Neumann
boundary conditions as otherwise all LDL will have diffused through the endothelium be-
fore reaching the constriction. This complication does not arise in the convective models, in
which the fast convection process leads to a constant supply of LDL throughout Ω1.

The results are displayed in Fig. 4.10, where we plotted in (a) the concentration c1 as
a function of z for three different degrees of stenosis for the ZC-model and in (b) for the
Poiseuille model. For the ZC-model time was made dimenionless by expressing time with
respect to the reference time tref = 0.157s, whose value was taken the same as for the full
model and the Poiseuille model. In (a) the LDL concentration is seen to be a monotonically
decreasing function of z for all times, whereas for the Poiseuille model (b) c1 exhibits non-
monotonic behavior. This difference arises from the fact that the movement of the wall is
completely determined by c1 in the ZC-model, and hence there is no relation between move-
ment of the wall and the permeability. In the Poiseuille model there is interaction between
the fluid velocity and the influx of LDL into the intima: at positions where the wall shear
stress is high the influx is low and vice versa. But comparing Fig. 4.10(b) with Fig. 4.8(a)
shows that the (local) maximum in the concentration at z = 20 for the Poiseuille model is
independent of the rate of stenosis, whereas it shifts to larger z values for the full model.
Of course, in the ZC-model c1 is depleted for large z as there is no supply of LDL into this
region by convection in contrast to the Poiseuille model. Finally, we remark that the plaque
progresses more slowly in the ZC-model than in the Poiseuille model.

We next compare the Poiseuille model with the full model in Fig. 4.11. Panel (a) displays
the concentration profiles as a function of t for three different values of z for the Poiseuille
model and in (b) the full model results are shown. In Fig. 4.11(a) the concentration curves



4.4. Results and Discussions 73

z z

c1× 100 c1× 100

(a) (b)

Figure 4.10: Dimensionless concentration of LDL-particles at different degrees of stenosis at the mov-
ing boundary ∂Ωw for the zero-convection model (a) and the Poiseuille model (b). The 30% stenosis
degree is reached after 3.76×109, 1.21×109 time-units in ZC and Poiseuille model, respectively. The
50% stenosis degree is reached after 6.18× 109, 2.04× 109 time-units in ZC and Poiseuille model,
respectively.
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Figure 4.11: Dimensionless concentration versus dimensionless time at three different locations down-
stream of the stenosis for the Poiseuille model (a) and the full model (b). Recirculation in (b) leads to
crossings of the concentration curves corresponding to different values of z.

are more or less parallel, whereas in (b) crossings of concentration curves corresponding to
different z occur. This is again evidence for presence of a recirculation zone that extends at
least to r = 0.5.

It is very interesting to see how recirculation affects the growth of the plaque region. To
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this end we investigate the growth of the plaque volume, Vp(t), defined by

Vp(t) = 2π

∫ 2

0

∫ 1

R(z,t)
rdr dz,

(4.14)

in time.
In Fig. 4.12(a), the reduction in the minimal radius of the lumen is shown against time

for the two different models discussed above. It can be seen from Fig. 4.12(a) that the full
model leads to the largest reduction, closely followed by the Poiseuille model. The small
differences between the Poiseuille and the full model are due to the fact that the value of
Rmin is largely determined by the wall shear stress at the top of the constriction. This value
was seen to be only slightly larger in the full model as compared to the Poiseuille model and
therefore the time dependence is very similar in both cases.

In Fig. 4.12(b), the plaque volume is depicted for the different models. Here we see
again the same phenomenon as in (a), but the difference between Poiseuille model and the
full model result is more pronounced. The volume increase of the plaque is, however, not
limited to the increase of the plaque height, but includes growing of the width of the plaque.
Due to presence of a recirculation zone in the full model, the plaque grows much faster in
this region in the full model than in the Poiseuille model. This illustrates that the effect
of recirculation is mainly to extend the plaque in the axial region rather than leading to an
increased plaque height.

In this study, we are only concerned with the evolution in such a way that for longer
times, the flow remains laminar and the evolution of plaques is not influenced by turbulence.
In large sized arteries, realistically the flow Reynolds number becomes higher than what
we have considered here. The impact of a high Reynolds number on the fixed stenosis
is studied by various authors (See(Varghese et al. 2007, Mittal et al. 2001)). We repeated
the simulations for different Reynolds numbers of laminar limit (100-500) but the temporal
changes in LDL transfer remained similar in nature. The obvious change was in the length
of recirculation zone which caused an enhanced growth of the constriction in time. The
length of recirculation zone for high Reynolds numbers’ flow involves simulations which are
called Large Eddy Simulation (LES) ((Varghese et al. 2007, Mittal et al. 2001, Lantz and
Karlsson 2012)). The computational costs increase with increasing Reynolds number due to
the growing length of recirculation zone, which requires larger meshes.

4.5 Conclusions

We have developed a partial differential equations model describing the evolution of atheroscle-
rosis for medium and large sized arteries. In our model the movement of the endothelium is
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Figure 4.12: The minimal value of R(z, t) (a) and the plaque volume Vp (b) as a function of time for
the Poiseuille model and the full model. Both models start at Rmin = 1 which corresponds to stenosis-
free artery, which then decreases linearly with time. In the Poiseuille model the maximal constriction
evolves slightly faster than for the full model. At t ≈ 2.5×109 time steps the minimal radius no longer
grows as the shear stress becomes very large. The plaque then starts to remodel mostly in the axial
direction. The plaque volume (b) first increases quadratically in time, but the growth levels off for
larger times, when the t2 term starts to play a role.

c1×100

z

Figure 4.13: The dimensionless concentration at four different times by varying the parameter k̃1 from
3×10−8 to 3×10−6 while all other parameters were same as in the main model.
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governed by the shear-dependent low-density lipoprotein flux balance. The plaque growth
is studied as a moving boundary problem. Although the model is only qualitative in nature
it illustrates the effects of wall shear stress dependent permeability on plaque growth, by
numerical computation of the movement of the plaque and the transfer of LDL particles.

The model was discretized in space by a finite element method and advanced in time by
a time-stepping scheme. Numerical results were validated with published work on pulsating
flows for short time scales and non-pulsating flow for fixed stenosis.

The flux of low-density lipoproteins across the endothelium was shown to depend rather
strongly on wall shear stress. For the limiting case of Poiseulle flow additional numerical
simulations were performed. LDL concentrations and plaque volume were compared with
the full model results. It was shown that recirculation leads to larger plaque volumes and
is hence detrimental to plaque evolution. Our computations suggest that recirculation leads
predominantly to a broader plaque. Comparison with Poiseuille flows also revealed that as-
suming a Poisseuile flow renders results that compare well with solutions of the full Navier-
Stokes model. This implies that a good estimate of plaque progression can be obtained at
less expense. It also validates results previously obtained in (Bulelzai and Dubbeldam 2012)
with ODE models in which Poiseuille flow was implicitly assumed.

To our knowledge there exist no experimental or clinical data in which systematic mea-
surements of plaque shapes and occlusion areas are recorded in time. Clinical data of plaque
shapes have revealed, however, that atherosclerotic plaques widely vary in shape (Cheng
et al. 2006). The model that we investigated offers opportunities to improve models for
atherosclerosis by taking the plaque geometry into account and can be seen as a step for-
ward to bridge to enormous gap that exists between clinical observations and mathematical
modeling.

Predicting the shape of the plaque could also be a possible way to determine parameters
in the model. This would require data from clinical experiments and extension of the present
model to include processes that have been neglected in this analysis. Extension of the model
to include cap formation, elastic behavior, and biochemical processes such as macrophage
recruitment, proliferation and diffusion is a daunting computational and modelling task in
which close collaboration between the biomedical and the modeling society is demanded.
Important steps on incorporating elasticity have been made by Holzapfel in e.g. (Holzapfel
and Gasser 2000) and more recently by (van der Broek et al. 2011). This gives opportunities
to create more advanced models in the near future.
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Chapter 5
Conclusions

In mathematics the art of proposing a question must be held
of higher value than solving it.

Georg Cantor

This thesis presents models for the evolution of Atherosclerosis. In this study, we pre-
sented time dependent analysis of this disease and discussed criticall parameters, by which
disease evolves rapidly. In the first Chapter, we gave a review of biomechanical and bio-
chemical processes, which are involved in its progression. We also discussed how flow of
blood has an impact on this disease. In Chapter 2, we introduced the model A and model
B with a detailed analysis on how and why this model was chosen. We distinguish between
the two models by incorporating shear stress as a parameter in model A and shear stress as a
dynamic quantity in model B. Furthermore, it was also assumed that all the LDL that enters
into the intima, are oxidized immidiately. It is pertinent to mention here, that we took two
different equations for the evolution of monocytes and macrophages. The LDL supply to the
walls of artery was taken as a parameter. We did not consider diffusion of macrophages out
of the diseased area. The degradation of macrophages was directly added to the foam cells
evolution. Comparing the two models, model A and model B, we find that the bistability
of model A between two different states of equilibria type I and equilibria type II was no
longer present in model B. This means that coupling the blood flow with evolution equations
stabilizes the dynamics of the whole system. Nevertheless, although the threshold value of
the cholesterol intake disappeared in model B, we demonstrated numerically that there is still
a critical value of the LDL-uptake dcrit , which is independent of the shear rate parameter α ,
beyond which the lumen radius will drastically decrease. For high values of α , we see that
plaques take much higher time to reduce the radius of arteries.

In chapter 3, we presented the complete bifurcation picture of codimension two of models A
and model B. We found another critical value (Hopf curve), below which plaques are sub-
jected to higher amounts of infiltration of monocytes recruitment. This thus, contributes to
higher concentrations of plaques in arteries in areas of low endothelial shear stress. Though
we did not cover codim 3 analysis in this thesis, we still found another parameter, that can
influence the phase space and influences the growth of plaques.
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In addition to a one-dimensional time dependent nonlinear system, and Poiseuille flow ve-
locity, we also implemented the incompressible Navier-Stokes equations along with the
convection-diffusion equation for LDL in chapter 4. We implemented a time-dependent
moving boundary analysis for atherosclerosis. In this chapter, we explored different flow
conditions and their impact on the evolution of plaques. The movement of wall of artery was
governed by the flux of LDL. The flux of LDL across the endothelium was shown to de-
pend strongly on wall shear stress. LDL concentrations and plaque volume were compared
with the full model results. It was shown that recirculation leads to larger plaque volumes
and is hence detrimental to plaque evolution. Our computations suggest that recirculation
leads predominantly to a broader plaque and suggests importance of the inclusion of plaque
geometry in models for atherosclerosis.

5.1 Recommendations

The model that we investigated offers opportunities to improve models for atherosclerosis
by taking the plaque geometry into account. It can be seen as a step forward to bridge to
enormous gap that exists between clinical observations and mathematical modeling. There
is also need to take into account the effects of elastic behavior of arteries in the model as ar-
teries have this tendency to regulate themselves to the changing flow conditions. Our current
investigations aim at including the elastic properties of the arterial wall in a fashion simi-
lar to the methods first proposed by Holzapfel in (Holzapfel and Gasser 2000) and recently
improved upon by (van der Broek et al. 2011). Clinical data will remain indispensable to
construct increasingly realistic models and to obtain precise values of the model parameters,
such that quantitatively predictive models can be realized in the near future.
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Gazolaz, D., Graneroro-Belinchó, R. and Illera, R.: 2013, The confined muskat problem: differences
with the deep water regime, arXiv:1209.1575v2 .

Gear, C., Kaper, T., Kevrekidis, I. and Zagaris, A.: 2005, Projecting to a slow manifold: Singularly
perturbed systems and legacy codes, SIAM Journal on Applied Dynamical Systems, 4(3) pp. 711–
732.

Gerrity, R.: 1981, Monocytes and atherogenesis, Am. J. Pathol. 103 pp. 191–200.

Gijsen, F., Wentzel, J., Thury, A., Mastik, F., Schaar, J., Schuurbiers, J., Slager, C., van der Giesen,
W., de Feyter, P., van der Steen, A. and Serruys, P.: 2008, Strain distribution in human coronary
arteries relates to shear stress, Am. J. Physiol. Heart Circ. Physiol. 295 pp. H1608–H1614.

Goldstein, J. and Brown, M.: 1977, The low-density lipoprotein pathway and its resolution to
atherosclerosis, Annu. Rev. Biochem. 46 pp. 897–930.

Gotlieb, A. I.: 2007, http://www.asip.org/edu/documents/hs/gotlieb-additional notespages.doc.

Guckenheimer, J. and Holmes, P.: 1983, Nonlinear oscillations, dynamical systems, and bifurcations
of vector fields, (Volume 42), Springer-Verlag New York Inc. .

Guckenheimer, J., Johnson, T. and Meerkamp, P.: 2012, Rigorous enclosure of a slow manifold, SIAM
Journal on Applied Dynamical Systems, 11(3) pp. 831–863.

Hansson, G. and Libby, P.: 2006, The immune response in atherosclerosis: a double edged sword, Nat.
Immunol. 6 pp. 508–519.

Holzapfel, G. A. and Gasser, T. C.: 2000, A new constitutive framework for arterial wall mechanics
and a comparative study of material models, J. Elasticity 61 pp. 1–48.

Hulthe, J., Bokemark, L., Wikstrand, J. and Fagerberg, B.: 2000, The metabolic syndrome, ldl particle
size and atherosclerosis, Atheroscl. Thromb. Vasc. Biol. 20 pp. 2140–2147.

Ibragimov, A., Neal, C. M., Ritter, L. and Walton, J.: 2005, A mathematical model of atherogenesis as
an inflammatory response, Math Med Biol. 22 pp. 305–333.

Ismail, Z., Abdullah, I., Mustapha, N. and Amin, N.: 2008, A power-law model of blood flow through a
tapered overlapping stenosed artery, Applied Mathematics and Computation, 195(2) pp. 669–680.

Kaper, H. and Kaper, T.: 2002, Asymptotic analysis of two reduction methods for systems of chemical
reactions, Physica D: Nonlinear Phenomena, 165(1) pp. 66–93.

Khatib, N. E., Genieys, S., Kazmierczak, B. and Volpert, V.: 2009, Mathematical modeling of
atherosclerosis as an inflammatory disease, Phil. Trans. R. Soc. A 367 pp. 4877–4886.

Khatib, N. E., Genieys, S. and Volpert, V.: 2007, Atherosclerosis initiation modeled as an inflammatory
process, Math. Model. Nat. Phenom. 2 pp. 126–141.



82 BIBLIOGRAPHY

Khatib, N. E., Génieys, S. and Volpert, V.: 2012, Reaction-diffusion of atherosclerosis development, J.
Math. Biol. 65, 349 .

Koskinas, K., Chatzizisis, Y., baker, A., Edelman, E., Stone, P. and Feldman, C.: 2009, The role of
low endothelial shear stress in the conversion of atherosclerotic lesions from stable to unstable
plaque, Curr. Opin. Cardiol. 24 pp. 580–590.

Krakauer, J.: 2007, The complex dynamics of stroke onset and progression, Curr Opin Neurol. 20(1)
pp. 47–50.

Krombach, F., Münzing, S., Allmeling, A., Gerlach, J., Behr, J. and Dörger, M.: 1997, Cell size
of alveolar macrophages: an interspecies comparison, Environ. Health Perspect. 105 Suppl 5
pp. 1261–1263.

Kruth, H., Huang, W., Ishii, I. and Zang, W.: 2002, Macrophage foam cell formation with native low
density lipoprotein, J. Biol. Chem. 37 pp. 34574–34580.

Kuvin, J. and Kimmelstiel, C.: 1999, Infectious causes of atherosclerosis, American heart journal,
137(2) pp. 216–226.

Kuznetsov, Y.: 1996, Elements of applied bifurcation analysis, Springer Berlin .

Kuznetsov, Y.: 1999, Numerical normalization techniques for all codim 2 bifurcations of equilibria in
ode’s, SIAM journal on numerical analysis, 36(4) pp. 1104–1124.

Landau, L., Lifchits, E., Landaou, L. and Pitaevski, L.: 1987, Course of Theoretical Physics, vol.6,
Butherworth-Heinemann.

Lantz, J. and Karlsson, M.: 2012, Large eddy simulation of ldl surface concentration in a subject
specific human aorta, J. Biomech. (45) pp. 537–542.

Levesque, M. and Nerem, R.: 1985, The elongation and orientation of cultured endothelial cells in
response to shear stress, J. Biomech. Eng. 107 pp. 341–347.

Li, Z.-Y., Howarth, S., Tang, T. and Gillard, J.: 2006, How critical is fibrous cap thickness to carotid
plaque stability, Stroke 37 pp. 1195–1999.

Libby, P., Ridker, P. and Maseri, A.: 2002, Inflammation and atherosclerosis, Circulation, 105(9)
pp. 1135–1143.

Lipowsky, H.: 2005, Microvascular rheology and hemodynamics, Microcirculation 12 pp. 5–15.

Liu, B. and Tang, D.: 2010, Computer simulations of atherosclerotic plaque growth in coronary arter-
ies, Mol. Cell Biomech. 07 pp. 193–202.

Llodra, J., Angeli, V., Liu, J., Trogan, E., Fisher, E. and Randolph, G.: 2004, Emigration of monocyte-
derived cells from atherosclerotic lesions of mice characterizes regressive, but not progressive,
plaques, Proc. Natl. Acad. of Sci. 101 pp. 11779–11784.

Luscher, T., Tanner, F. and Noll, G.: 1996, Lipids and endothelial function: effects of lipid-lowering
and other therapeutic interventions, Curr. Opin. Lipidol. 7 pp. 234–40.

Mach, F.: 2005, Inflammation is a crucial feature of atherosclerosis and a potential target to reduce
cardiovascular events, Atherosclerosis: Diet and Drugs, A. v. Eckardstein, ed., Springer-Verlag,
Berlin pp. 697–722.



BIBLIOGRAPHY 83

Malek, A., Alper, S. and Izumo, S.: 1999, Hemodynamic shear stress and its role in atherosclerosis, J.
Am Med. Assoc. 282 pp. 2035–2042.

Maoz, H., Plliack, A., Barak, V., Yatziv, S., Birian, S., Giloh, H. and Treves, A.: 1986, Parameters
affecting in vitro maturation of human monocytes to macrophages, Int. J. Cell Cloning 4 pp. 167–
185.

Mckay, C., Mckee, S., Mottran, N., Mulholland, T. and Wilson, S.: 2005, Towards a model of
atherosclerosis, Available online at Strathclyde University .

Mittal, R., Simmons, S. and Udaykumar, H.: 2001, Application of large-eddy simulation to the study
of pulsatile flow in a modeled arterial stenosis, J. biom. eng., 123(4) p. 325.

Niehaus, C., Wootton, R., Lewis, R., Nicoll, J., Williams, A., Coltart, D. and Lewis, B.: 1977, Influence
of lipid concentrations and age on transfer of plasma lipoprotein into human arterial intima, The
Lancet 310 (8036) pp. 469–471.

Nielsen, L.: 1996, Transfer of low density lipoprotein into the arterial wall and risk of atherosclerosis,
Atherosclerosis 123 pp. 1–15.

Ogunrinade, O., Kameya, G. and Truskey, G.: 2002, Effect of fluid stress on the permeability of the
arterial endothelium, Ann. Biomed. Eng. 30 pp. 430–446.

Ota, H., Takase, K., Rikimaru, H., Tsuboi, M., Yamada, T. and A. Sato, a. S. T.: 2005, Quantitative
vascular measurements in arterial occlusive disease, Radiographics, 25(5) pp. 1141–1158.

Ougrinovskaia, A., Thompson, R. and Myerscough, M.: 2010, An ode model of early stages of
atherosclerosis: Mechanisms of the inflammatory response, Bull. Math. Biol. 72 pp. 1534–1561.

Parthasarathy, S., Barnett, J. and Fong, L.: 1990, High-density lipoprotein inhibits the oxidative modi-
fication of low-density lipoprotein, Biochim. Biophys. Acta 1044 pp. 275–283.

Pedley, T. and Luo, X.: 1995, Fluid mechanics of large blood vessels, Shaanxi People’s Press.

Pherson, D. M., Johanson, M., Alvarez, N., Collins, N., Armstrong, S., Kieso, R., Thorpe, J., Marcus,
M. and Kerber, R.: 1992, Variable morphology of coronary atheroclerosis: Characterization of
atherosclerotic plaque and residual arterial umen size and shape by epicardial achocardiography,
JACC 19 pp. 593–399.

Pozrikidis, C.: 2010, Numerical simulation of blood and interstitial flow through a solid tumor, J. Math.
Biology, 60(1) pp. 75–94.

Quarteroni, A., Veneziani, A. and Zunino, P.: 2002, Mathematical and numerical modeling of solute
dynamics in blood flow and arterial walls, SIAM J. Numer. Anal. Vol. 39, No. 5 pp. 1488–1511.

Rappitsch, G. and Perktold, K.: 1996a, Computer simulation of convective diffusion processes in large
arteries, J. Biomech. 29 pp. 207–215.

Rappitsch, G. and Perktold, K.: 1996b, Pulsatile albumin transport in large arteries: a numerical simu-
lation study, J Biomech Eng. 118(4) pp. 511–519.

Rappitsch, G., Perktold, K. and Pernkopf, E.: 1997, Numerical modeling of shear-dependent mass
transfer in large arteries, Int. J. Numer. Methods Fluids 25 pp. 847–857.

Ross, R.: 1986, The pathogenesis of atherosclerosis - an update, N Engl J med 314 pp. 488–500.

Ross, R.: 1993, Atherosclerosis: a defense mechanism gone awry, Am. J. Pathol. 143 pp. 987–1002.



84 BIBLIOGRAPHY

Ross, R. and Glomset, J.: 1976a, The pathogenesis of atherosclerosis, N. Engl. J. Med. 295 pp. 369–
373.

Ross, R. and Glomset, J.: 1976b, The pathogenesis of atherosclerosis, N. Engl. J. Med. 295 pp. 420–
425.

Ross, R. and Harker, I.: 1976, Hyperlipidemia and atherosclerosis, Science 193 pp. 1094–1100.

Sakllarios, A., Siogkas, P., Tsakanikas, V., Stefanou, K., Michalis, L. and Fotiadis, D.: 2010, Simula-
tion of the effect of tachycardia on atherosclerotic plaque development based on the ldl transport
in coronary arteries, Computing in Cardiology, IEEE pp. 329–332.

Sandler, M. and Bourne, G.: 1963, Atherosclerosis and its origin, Academic Press.

Schwartz, S. and Reidy, M.: 1987, Common mechanism of proliferation of smooth muscle in
atherosclerosis, Hum. Pathol. 18 pp. 240–248.

Shaaban, A. M. and Deurinckx, A. J.: 2000, Wall shear stress and early atherosclerosis: A review, JKR
174 .

Sheard, R., Ryan, G. and Fouras, A.: 2009, The validity of axisymmetric assumptions when investi-
gating pulsatile biological flows, ANZIAM Journal, 50 pp. C713–C728.

Slager, C., Wentzel, J., Gijsen, F., Thury, A., der Wal, A. V., Schaar, J. and Serruys, P.: 2005, The role
of shear stress in the destabilization of vulnerable plaques and related therapeutic implications,
Nature clinical practice cardiovascular medicine, 2(9) pp. 456–464.

Stadius, M., Rowan, R., Fleischhauer, J., Kernoff, R., Billingham, M. and Gown, A.: 1992, Time
course and cellular characteristics of the iliac artery response to acute balloon injury. an angio-
graphic, morphometric, and immunocytochemical analysis in the cholesterol-fed new zealand
white rabbit, Arteriosclerosis, Thrombosis, and Vascular Biology, 12(11) pp. 1267–1273.

Sun, N., Wood, N., Hughes, A., Thom, S. and Xu, X.: 2006, Fluid-wall modeling of mass transfer in
an axisymmetric stenosis: effects of shear-dependent transport properties, Ann. Biomed. Eng. 34
pp. 1119–1128.

Upchurch, G., Welch, G. and Loscalzo, J.: 1996, Homocysteine, edrf and endothelial function, Journal
of Nutrition 126(4), 1290.

van der Broek, C., van der Horst, A., Rutten, M. and van de Vosse, F.: 2011, A generic constitutive
model for the passive porcine coronary artery, Biomech. Model Biomechanobiol. 10 pp. 249–258.

Varghese, S., Frankel, S. and Fischer, P.: 2007, Direct numerical simulation of stenotic flows. part 1.
steady flow, J. Fluid Mech. 582(1) pp. 253–280.

Wang, H.: 2001, Analytical models of atherosclerosis, Atherosclerosis 159 pp. 1–7.

Wieczorek, S., Ashwin, P., Luke, C. and Cox, P.: 2011, Excitability in ramped systems: the compost-
bomb instability, Proceedings of the Royal Society A: Mathematical, Physical and Engineering
Science, 467(2129) pp. 1243–1269.

Xing, X., Baffic, J. and Sparrow, C.: 1998, Ldl oxidation by activated monocytes: characterization of
the oxidized ldl and requirement of metal ions, J. Lipid Res. 39 pp. 2201–2208.

Yang, N. and Vafai, K.: 2006, Modeling of low-density lipoprotein (ldl) transport in the artery- effects
of hypertension, Int. J. Heat Mass Transfer 49 pp. 850–867.



BIBLIOGRAPHY 85

Zohdi, T.: 2005, A simple model for shear stress mediated lumen reduction in blood vessels, Biomech.
Model Mechanobiol. 4 pp. 57–61.

Zohdi, T., Holzapfel, G. and Berger, S.: 2004, A phenomenological model for atherosclerotic plaque
growth and rupture, J. Theor. Biol. 227 pp. 437–443.





Summary

Atherosclerosis is a disease in which low density lipoproteins (LDL) accumulate in the arterial wall due
to an inflammatory response, which is triggered by the oxidation of LDL molecules that are already
present in the arterial wall. Progression of atherosclerotic plaques involves many components which
includes, macrophages, monocytes, LDL, oxidized-LDL, cytokines etc. Clinical data is scarce for the
long term evolution of plaques, therefore, mathematical models provide an alternative to enhance our
knowledge in predicting and analyzing the complex processes in the advancement of atherosclerosis.
In this thesis, we study different simplified mathematical models and analyse the long term behavior
of evolution of plaques. One model we studied, consisted of ordinary differential equations that could
be coupled and decoupled to the blood flow. Another model was also developed, which consisted of
partial differential equations and that treats the artery wall as a moving boundary problem.

The ordinary differential equations (ODE) model consisted of nonlinear coupled equations for
oxidized-LDL, monocytes, macrophages, foam cells and radius of the artery (which can also be trans-
lated into an equation for endothelial shear stress). The model is distinguished by model A which is
decoupled to the blood flow and model B, which is coupled to blood flow. The model B we call in the-
sis to be self-consistent system. Both models are time dependent and do not take account of geometry
of the artery. Both these models have many parameters, which affect the growth of concentrations in
time. A bifurcation analysis was therefore presented in this thesis to understand the impact of vary-
ing parameters on the system. For this purpose, a complete codimension two bifurcation analysis was
carried out and singularities in the system were discussed. We found that the system, model A, can
also have a codimension three bifurcation point (the degenerate Bogdanov-takens point). In model A,
bistability and multistability was found to depend on the value of the parameter e. The parameter e is
the ingestion rate of oxidized-LDL particles by macrophages in the equation for oxidized-LDL. The re-
gions of stable and unstable equilibria and limit cycles were depicted with the two parameter diagrams.
These regions were presented for cases with ingestion rate vs. LDL intake and shear stress vs. LDL
intake. A threshold value dcrit was found for the LDL particles beyond which occlusion of the plaque
seems inevitable. Two other critical parameter values for ingestion rates were also found. These values
bcrit and ecrit were presented along with the Hopf curve as a function of parameters (d,b) and (σ ,d),
which constitute a critical curve in the system. In model B, the multistability was disappeared and the
attachment of blood flow profile stabilized the dynamics of the artery. For understanding the long term
response of the suspended system in model B, we have carried out a slow-fast system analysis. This
shows that the stable healthy state of (0,M0,0,R0) may be perturbed for short amount of times, but



ultimately the suspended system always comes to a stationary point. This all depends on the values of
parameters d,b,e. The reduction in radius was found to be proportional to cholesterol intake parameter.
For longer times, the radius goes quasi-static suggesting the results to be physically viable.

A complex time dependent moving endothelium model was also presented in an axi-symmetric
setting in order to understand the role played by the geometry in the problem. To this end, the Navier-
Stokes equations for blood flow were coupled with the convection-diffusion equation for LDL in lumen
and a diffusion equation for oxidized-LDL in intima. These equations were coupled to a common
boundary (the endothelium) and solved to study the long term effects of recirculation on LDL. The
flux of low-density lipoproteins across the endothelium was shown to depend rather strongly on wall
shear stress. For the limiting case of Poiseuille flow additional numerical simulations were performed.
LDL concentrations and plaque volume were compared with the full model results. It was shown
that recirculation leads to larger plaque volumes and is hence detrimental to plaque evolution. Our
computations suggest that recirculation leads predominantly to a broader plaque. Comparison with
Poiseuille flows also revealed that assuming a Poiseuille flow renders results that compare well with
solutions of the full Navier-Stokes model. This implies that a good estimate of plaque progression can
be obtained at less expense. It also validates results obtained in ODE model in which Poiseuille flow
was implicitly assumed.

For a better mechanical understanding of remodeling of the artery, the stress-strain analysis may
also be carried out. For this purpose, fluid-structure interaction (FSI) technique should be applied to
the axisymmetric model we proposed.

For a quantitative and realistic model the clinical data is vital to understand the growth of plaques.
Such data will remain indispensable to construct increasingly realistic models and to obtain precise
values of the model parameters, such that qualitatively predictive models can be realized in near future.
Future close collaboration between clinical researchers and applied mathematicians will therefore be
essential for progress in the this field.



Samenvatting

Atherosclerose is een ziekte waarbij LDL-cholesterol zich ophoopt in de aderwand. Dit wordt veroorza-
akt door een ontstekingsreactie die ontstaat als gevolg van oxidatie van LDL cholesterol dat in de
vaatwand is binnen gedrongen .

Het verloop van atherosclerose is een ingewikkeld proces, waarbij zeer veel biochemische com-
ponenten een rol spelen, zoals bijvoorbeeld monocyten, macrofagen, cytokinen, LDL en HDL choles-
terol, NO en nog een groot aantal andere. Bovendien is er ook nog een biomechanische component
die atherosclerose beı̈nvloedt, namelijk de afschuifspanning op de vaatwand. Al deze interacties leiden
tot een complex fenomeen dat bovendien plaatsvindt op een tijdschaal van 15 tot 20 jaar. Deze tijd-
schaal is veel langer dan de tijdschaal waarop de biochemische processen plaatsvinden en dit maakt
atherosclerose-progressie daarom een veel tijdschalen probleem. Hoewel klinische experimenten al
een aantal aspecten van atherosclerose aan het licht hebben gebracht, is het nog steeds niet duidelijk
hoe de progressie ervan precies in zijn werk gaat. In dit proefschrift hebben we bestudeerd hoe math-
ematische modellen gebruikt kunnen worden bij het voorspellen van de groei van de karakteristieke
plaques die ontstaan als LDL zich in de aderwand ophoopt.

We hebben in dit proefschrift twee simpele modellen ontwikkeld die de ontwikkeling van atheroscle-
rose kunnen voorspellen. Het eerste model gebruikt een eenvoudig gewone differentiaalvergelijkingen
model. Het tweede, model bestaat uit een eindige elementen model waarin de Navier-Stokes vergeli-
jkingen op een eenvoudige manier gekoppeld worden aan de groei van de plaque. Het voordeel van
het model dat bestaat uit gekoppelde niet-lineaire gewone differentiaalvergelijkingen is dat een bifur-
catie analyse kan worden uitgevoerd. Dit is hier gedaan voor het codimensie-twee geval. Onze analyse
toont aan dat de dynamica kan worden begrepen uit deze bifurcatie-analyse. Het systeem bevat een
Bogdanov-Takens bifurcatie als organizerend punt in het bifurcatiediagram. Het blijkt dat er voor het
onstaan van atherosclerose inderdaad een drempelwaarde voor de inname van LDL cholesterol is en
dat deze drempelwaarde afhangt van levensduur van de macrofagen. Verder vinden we dat er gebieden
zijn in de parameterruimte waar er oscillaties zijn in de macrofaag, monocyt en LDL concentratie.
Als er in de toekomst experimenten mogelijk zijn die dergelijke bevindingen kunnen bekrachtigen of
weerleggen, geeft deze bifurcatiestudie een extra instrument om het parametergebied waarop het model
geldig is af te bakenen.

Het gewone differentiaalvergelijkingen model hebben we vervolgens uitgebreid door dit model
op een zelfconsistente manier te koppelen aan de bloedstroming door de ader. Dit aangepaste model
is hier bestudeerd door middel van numerieke simulaties en een langzame variëteiten analyse. Deze



berekeningen laten zien dat de reductie in de aderradius afhangt van een aantal parameters, zoals de
levensduur van de macrofagen en de snelheid waarmee macrofagen de LDL kunnen wegvangen. Vanuit
een mathematisch standpunt is de dynamica in dit systeem erg interessant. Wanneer er geen koppeling
is met de bloedstroming blijken er meerdere stabiele evenwichten te bestaan, die in het model met de
koppeling aan de bloedstroming weer verdwenen zijn. In het gekoppelde geval wordt de dynamica die
uit het ongekoppelde model na voren kwam, successievelijk doorlopen. Dit doet erg denken aan de
zogenaamde ’ramped’ bifurcaties waarin de bifurcatie parameter langzaam in de tijd verandert en die
bijvoorbeeld in de klimaatmodellen een rol spelen.

In het partiële differentiaalvergelijkingen model dat we ontwikkeld hebben, beschouwen we de on-
twikkeling van een plaque in een axi-symmetrische setting. We modelleren een plaque waarvan de rand
in de tijd beweegt en berekenen met eindige elementen de plaats van de plaque. Op deze manier bestud-
eren we het effect van recirculatie en separatie van de bloedstroming op de ontwikkeling van plaques
in het simpele geval dat alleen LDL het plaque-volume bepaalt. Het blijkt dat recirculatie resulteert
in bredere plaques. Een vergelijking met resultaten voor Poiseuille-stroming laat bovendien zien dat
de resultaten voor het volledige model en het Poiseuille model goed overeenkomen. Dit betekent dat
voor toekomstige simulaties op rekentijd kan worden bespaard, omdat de Poseuille stroming een goede
“proxy” is voor het stromingsprofiel in het bloed, in de onderzochte axisymmetrische configuratie.

Om uiteindelijk een kwantitatief wiskundig model te krijgen voor de beweging van de aderwand
in de tijd, is een aantal aanpassingen nodig in het huidige model. Ten eerste zal de modelering van
de eigenschappen vaatwand moeten worden verbeterd, zodat ook de elasticiteit van de vaatwand kan
worden betrokken bij de studie. In het bijzonder kan dan vervorming van de ader aan de buitenkant,
zogenaamde “outward remodeling” worden bestudeerd. Verder is een goed contact tussen klinische
onderzoekers en wiskundigen essentieel om te zorgen dat de belangrijke effecten worden meegenomen
in de modellen en voor de bepaling van de vele parameters die de wiskundige modellen bevatten. Als
aan deze voorwaarden voldaan wordt kan er nog grote vooruitgang worden geboekt in het begrijpen en
modelleren van de processen die bij de ontwikkeling en progressie van atherosclerose een rol spelen.
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friends have given me so many parties, so many outside tours and so much time I have spent that it
will be difficult to forget a single friend. These friends include Faisal (man having heaven in his mind),



Seyab (the coolest Gengiz Khan), Laiq (the passionate traveler), Devender (the party boy), Cheema
(the ABBU), Fakhar (the cool mind), Imran (the generous man), Kazmi (the humblest man), Humayun
(the great man), Iftikhar (the lovely bird), Rafiullah (the serious man), Bilal (the singer), Faisal Karim
(the player!), Abdul (the sweet melody), Sarfaraz Muneer (the IKKA), Sajad (the golden man), Ahson
Jabbar (the rebellion), Rajab (the jolly man), Haider (the courageous man), Fahim (the cricketer), Nick
(the fighter), Zubair (the hunk with beard), Tabish (the finisher), Usama (the President), Umer Ijaz (the
Bro) and others (Pardon if I forget anyone here!). Muneerah, my especial thanks to you for bringing
love and passion in my life. You have been a great friend and yes, who can forget those delicious
mexican meals!

On this note, I also like to mention my previous teachers Prof.Dr. Zakaullah Khan and Prof.Dr. Noor
Mustafa Sheikh who created interest in me, to pursue higher studies. I must praise the encouragements
from my family members, Bajjo (divine), Aapi (rhythmic), Bi aapa (endurance), Bhai jan (ahm ahm!),
Tahir bhai (ahm ahm!), Asif (the ultimate dignity) and all kids of our home (all shonu paras!). I thank
my dearest friends who kept in touch with me from Pakistan, they include, Ghayor (the furious), Kashif
(the furious), Fahad (the coolness), Habib (the logic), Umair (the Einstein), Hussein Mangi (the lover),
Asim Soomro (the passionate), Pir Tanveer (the kindness) and others.

“Nobody ever figures out what life is all about, and it doesn’t matter. Explore the world. Nearly
everything is really interesting if you go into it deeply enough.”– Richard P. Feynman

M.A.K. Bulelzai
TU Delft

November 18, 2013
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