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Abstract

External and internal flows involving flexible structures exhibit interaction between fluid and the ac­
companying structure. Such phenomenon is observed in aerodynamic lifting/control surfaces, civil
structures and cardiovascular systems. Analytical treatment of fluid­structure interaction is not a trivial
task. Therefore, FSI problems are generally handled using experimental and computational analysis.
Commercial numerical FSI software suites use partitioned FSI to solve problems in the above men­
tioned applications. In partitioned FSI, physics pertaining to fluid and structure domains are simulated
separately in CFD and CSM solvers respectively. One way of coupling of fluid and structure domain
in partitioned FSI is through interpolation of kinematic/kinetic quantity from solid/fluid to fluid/solid
domain at the boundary between fluid and structure domains in a sequential manner. This sequential
process can be represented mathematically using a root finding problem or fixed point problem with the
location of the fluid­structure interface as unknown. Root finding problems employing Newton­Raphson
iterations exhibit faster convergence in comparison to fixed point problems employing Gauss­Seidel it­
erations for strongly coupled FSI with large deformations.

IQN­ILS(interface quasi­Newton with inverse Jacobian from a least squares model) framework is
a novel method to treat root finding problem, wherein the Jacobian is constructed using extrapolated
location of the interface from previous iterations in a least squares fashion. In this research, IQN­ILS
framework is employed on a FSI benchmark case — Cylinder with trailing flap to evaluate its robustness.
This evaluation is performed on a test­bench comprising of OpenFOAM as CFD solver, CalculiX as
CSM solver and preCICE as partitioned coupling library. Forces computed on the flap using IQN­ILS
framework are plagued with numerical noise. It was not the case when the above mentioned FSI
benchmark is treated with fixed point iteration, at the cost of longer computation time. Therefore, this
research was involved with the investigation of numerical noise in force data obtained using IQN­ILS
framework and addressing the same. Various strategies ranging from playing with the displacement
tolerance to relative number of degrees of freedom on the fluid­structure interface were attempted.
Although these strategies helped in reducing the noise in force data, it was difficult to identify the cause
of noise in IQN­ILS framework. In spite of these noise prevention strategies, the force data obtained
using IQN­ILS framework is still noisier than that of fixed point iteration.

However, the mechanism for noise generation in IQN­ILS framewok was understood. It was ob­
served that the extrapolation of displacement in a least­square fashion from previous iterations seems
to impose a minuscule noise on interface displacement. When these updated displacements at the
flap interface are used to compute the force on the flap, the minuscule noise in displacement gets
amplified when it is differentiated with respect to time. This issue is especially aggravated when a
smaller time step is employed for the simulation. To counteract this issue, the displacements at flap
interface can be smoothened before being interpolated to the CFD solver. To this end, three filtering
techniques were proposed in this research to smoothen the displacements — Smoothing spline filter,
Savitzky Golay filter, Sinusoidal curve fitting filter. Results from Smoothing spline filter and Savitzky
Golay filter were promising when tested on a displacement series that was already computed by the
test­bench. However, these filters were not tested in a live simulation. It requires the routines for the
above mentioned filters to be integrated in preCICE through python callback interface.
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1
Introduction

The functioning of various man­made and natural systems are governed by the same laws of physics.
Existence of such systems is dictated by the four fundamental forces varying from electromagnetism,
strong and weak interactions at microscopic level to gravitation at macroscopic level; and their inter­
action with one another. Natural systems have had millions of years of head start to adapt itself to
this concoction of forces. Through acquisition of knowledge over a past couple of millennia, humanity
has been able to catch up with nature in shaping the earth. Still, most of the complex phenomenon
involving interaction of multiple branches of physics elude our understanding to this day. Sometimes,
naturally occurring solutions to these complex problems have been copied by humans in the design of
such complex systems. For example, the design of the nose of the Shinkansen 500 train is inspired
from the shape of beak of kingfisher bird to reduce sonic booms when travelling at high speeds through
narrow tunnels[2]. And, the design of ornithopter based drones is inspired by the flapping wings of
insects to produce high lift at low Reynolds’s number[3]. Still it is vital to keep pursuing research in
these complex phenomena in hopes of coming up with solutions that are much more optimized than
their natural counterparts, which is what multi­physics research strives to achieve.

Multi­physics is an interdisciplinary area, encompassing many science and engineering disciplines
that treat coupled processes or systems involving multiple physical models[4]. The two examples
discussed above can be construed as multi­physics problems. Analytical treatment of multi­physics
systems is a tricky affair, owing to the absence of closed form of solutions. Therefore, they are generally
studied using experimental or numerical simulations. The focus of this research is on computational
simulation of multi­physics phenomena, specifically the fluid structure interaction. The flapping wing
aerodynamics of ornithopter discussed earlier is a fluid structure interaction problem. Fluid Structure
Interaction deals with the study of external and internal flows involving flexible structure that can
interact with the fluid. Such phenomenon is observed in aerodynamic lifting/control surfaces, civil
structures and cardiovascular systems.

IQN­ILS(Interface Quasi Newton with Inverse Jacobian from a Least Squares model) algorithm
discussed in [5] is a state of the art FSI coupling algorithm that reduces the computational time required
for resolving strongly coupled systems by a significant margin (30% ­ 80% faster) in comparison to the
traditional algorithms[6]. However, most of the commercial FSI packages still employ the traditional
methods for resolving FSI problems. IQN­ILS algorithm is mostly employed in academia and open
source packages. In view of promoting the use of IQN­ILS algorithm in the industry, it was decided
to narrow down this research to the IQN­ILS algorithm, specifically the evaluation of its robustness,
where robustness of an algorithm is the measure of its stability and accuracy. And, the standard
FSI benchmark — Cylinder with trailing flap is chosen to test the robustness of IQN­ILS algorithm.
Therefore the goal of this research is:

This research aims to evaluate the robustness of IQN­ILS algorithm by testing
it with various FSI benchmarks from the Cylinder with Trailing flap test case.

However due to complications involved in achieving the above objective, it has been revised to
tackle the complications that arose during the middle stages of this research. Therefore the revised
objective for this research is:

1



2 1. Introduction

This research aims to investigate the noise formation in forces from FSI3
benchmark and address it using noise filters.

The workflow involved with this research can be broadly split into four stages, which were docu­
mented in the following four chapters as follow. In chapter 2, a review of the literature relevant to
this research has been provided. Chapter 3 depicts the various milestones involved in the construction
and validation of the test­bed required for performing numerical experiments with IQN­ILS algorithm.
Chapter 4 is concerned with investigation and prevention of noise generated by the IQN­ILS algorithm
in FSI3 benchmark. Chapter 5 deals with the mitigation of noise generated by the IQN­ILS algorithm
using three noise filtering frameworks. In addition to the four chapters mentioned above, the final
chapter consists of a summary of various conclusions made during the course of this research, and the
recommendations made by the author for future research in this field.



2
Partitioned Fluid Structure

Interaction

In this chapter, a summary of the literature pertaining to partitioned fluid structure interaction, specif­
ically the various temporal coupling frameworks and their effectiveness in regard to convergence. In
section 2.1, a concise account of balance laws of continuum mechanics is provided. A brief description
of competing philosophies in numerical simulation of fluid structure interaction is provided in sec­
tion 2.2. Section 2.3 describes the various steps involved in realizing any partitioned FSI simulation.
In sections 2.4 and 2.5, a summary of various tight temporal coupling frameworks is provided. Finally,
section 2.6 discusses the parameters that affect the stability of temporal coupling frameworks, and
benchmarks the effectiveness of tightly coupled frameworks discussed in sections 2.4 and 2.5.

2.1. Balance laws of Continuum Mechanics
Behaviour of matter can be categorised into microscopic and macroscopic scale. Microscopic scale deals
with phenomena at atomic level, whereas macroscopic scale deals with behaviour of bulk of matter that
is visible to naked eye. Behaviour at macroscopic scale is a consequence of the behaviour at microscopic
scale. Many engineering applications involve interpreting the behaviour at macroscopic scales, where
one is not interested in the behaviour of atoms and molecules. In such cases, approximation of response
at microscopic scales through suitable statistical functions serves as a good model for the macroscopic
response, and have been recently adopted in CFD for resolving complex flow phenomena, see for
example [7, 8].

Another approach to model macroscopic behaviour of matter, pioneered by Augustin­Louis Cauchy
in 19th century, is through fundamental balance laws of Continuum Mechanics and the relevant consti­
tutive relations. Here, the matter is assumed to be uniformly distributed in space without voids, thereby
allowing the representation of kinematic and kinetic quantities as continuous functions in space[10].
Thus, continuum mechanics can be described as the study of interaction between action(kinetic quan­
tities) on matter and response(kinematic quantities) of matter on a macroscopic scale. It follows that
matter has two states or configurations. Initial configuration at time 𝑡 = 0 is termed as reference
configuration and deformed configuration after the application of force at time 𝑡 > 0 is called as cur­
rent configuration[11]. Let 𝐗 and 𝐱 be the position vectors in reference and current configurations
respectively, related by the mapping 𝐱 = 𝝌(𝐗, 𝑡) as shown in figure 2.1. Then the deformation gradient
tensor for the transformation is defined as:

𝐅 ∶= 𝜕𝐱
𝜕𝐗 = 𝛁𝐱 [9] (2.1)

Kinematic and kinetic fields can be expressed in the form of Lagrangian or Eulerian description. In
Lagrangian description, the properties of a group of particles in a matter are tracked from the reference
to current configuration. Whereas in Eulerian description, the properties are tracked at fixed locations
in space from initial to final time. In Lagrangian description, displacement is normally used as the
fundamental variable to describe other fields. It is defined as:

3



4 2. Partitioned Fluid Structure Interaction

Figure 2.1: Continuum Mechanics — Configurations of Matter[9]

𝐮(𝐗, 𝑡) ∶= 𝜒(𝐗, 𝑡) − 𝐗 [9] (2.2)

In Eulerian description, velocity is normally employed as the fundamental variable to describe other
fields. It is defined as:

𝐯 ∶= 𝜕𝜒(𝐗, 𝑡)
𝜕𝑡 [12] (2.3)

Consider 𝑓(𝐱, 𝑡) to be a physical quantity that is flowing through matter. Let 𝑔(𝐱, 𝑡) be the source
on the surface bounding the matter and ℎ(𝐱, 𝑡) be the source within the matter. The above mentioned
fields can be either of scalar, vector or tensor valued functions. The position vector can be with respect
to reference or current configuration. Also, consider 𝜔 and 𝜕𝜔 to be the volume and surface area of
the matter respectively. If 𝑣𝑛 is the speed at which the boundary moves along its normal direction
𝐧(𝐱, 𝑡), and 𝐯(𝐱, 𝑡) be the velocity field of matter over which the physical quantity is to be determined,
then the generalized balance law is expressed as:

𝐷
𝐷𝑡 [∫Ω

𝑓(𝐱, 𝑡)dV] = ∫
𝜕Ω
𝑓(𝐱, 𝑡) [𝑣𝑛(𝐱, 𝑡) − 𝐯(𝐱, 𝑡) ⋅ 𝐧(𝐱, 𝑡)]d𝐒 + ∫

𝜕Ω
𝑔(𝐱, 𝑡)d𝐒 + ∫

Ω
ℎ(𝐱, 𝑡)dV[9] (2.4)

The temporal derivative term on LHS is known as material derivative. If reference coordinates are
used, then the material derivative is simply:

𝐷
𝐷𝑡 [𝑓𝑖𝑗…(𝐗, 𝑡)] ∶=

𝜕
𝜕𝑡 [𝑓𝑖𝑗…(𝐗, 𝑡)] [9] (2.5)

If current coordinates are used, then the material derivative is defined as:

𝐷
𝐷𝑡 [𝑓𝑖𝑗…(𝐱, 𝑡)] ∶=

𝜕
𝜕𝑡 [𝑓𝑖𝑗...(𝐱, 𝑡)] +

𝜕
𝜕𝑥𝑘

[𝑓𝑖𝑗...(𝐱, 𝑡)]
𝑑𝑥𝑘
𝑑𝑡 [9] (2.6)

In the remainder of this chapter, material derivative for any physical quantity 𝑓(𝐱, 𝑡) other than
position vector 𝐱 and displacement 𝐮 shall be concisely represented as ̇𝑓(𝐱, 𝑡). The generalized balance
law in (2.4) was framed for a matter occupying certain space, i.e. finite body. If the integrands in
(2.4) are continuous in 𝜔 and 𝜕𝜔, localization principle can be employed to transform the integral
balance law into its differential or local form. This implies that microscopic behaviour is identical to
macroscopic behaviour for a matter in continuum mechanics. This approximation holds well as long as
the dimensions of the finite body are much larger than the characteristic lengths(interatomic spacings
in solids, mean free paths in fluids) in microscopic scale[10].
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2.1.1. Localized balance laws in Eulerian description
In Eulerian description fields are expressed with respect to current coordinates. As mentioned earlier
the temporal derivatives that shall be used to compose the balance laws are the material derivatives.
If 𝜌(𝐱, 𝑡) is the mass density in current coordinates than conservation of mass is expressed as:

𝜌̇ + 𝜌𝛁 ⋅ 𝐯 = 0 [9] (2.7)

For incompressible flow, density of a particle moving along a streamline is constant, i.e. the material
derivative 𝜌̇ = 0. Thus the conservation of mass reduces to a compatibility condition:

𝛁 ⋅ 𝐯 = 0 (2.8)

Let 𝝈(𝐱, 𝑡) be the Cauchy stress tensor due to surface forces and 𝐛(𝐱, 𝑡) be the body force density.
Then the conservation of linear momentum is expressed as:

𝜌𝐯̇ − 𝛁 ⋅ 𝝈 − 𝜌𝐛 = 0 [9] (2.9)

The Cauchy stress tensor becomes symmetric from conservation of angular momentum, i.e.:

𝝈 = 𝝈𝑇 [9] (2.10)

If 𝑒(𝐱, 𝑡) is the internal energy per unit mass, 𝐪(𝐱, 𝑡) is heat flux and 𝑠(𝐱, 𝑡) is energy source per
unit mass, then conservation of energy is expressed as:

𝜌𝑒̇ − 𝝈 ∶ (𝛁𝐯) + 𝛁 ⋅ 𝐪 − 𝜌𝑠 = 0 [9] (2.11)

The above mentioned localized form of balance laws are valid only when the fields are continuous
and if volume of the finite body does not change with respect to time.

2.1.2. Localized balance laws in Lagrangian description
In Lagrangian description fields are described with respect to reference coordinates. If 𝜌0 is the mass
density in reference coordinates then conservation of mass is expressed as:

𝜌det(𝐅) − 𝜌0 = 0 [9] (2.12)

In reference configuration, Piola­Kirchhoff stress tensor of first type will be used in lieu of Cauchy
stress tensor. It is defined as:

𝐏 ∶= det(𝐅)𝝈𝐅−𝑇 [9] (2.13)

Therefore, conservation of linear momentum is expressed as:

𝜌0𝐱̈ − 𝛁∘ ⋅ 𝐏𝑇 − 𝜌0𝐛 = 0 [9] (2.14)

Conservation of angular momentum is expressed as:

𝐅𝐏𝑇 = 𝐏𝐅𝑇 [9] (2.15)

Finally, conservation of energy is expressed as:

𝜌0𝑒̇ − 𝐏𝑇 ∶ 𝐅̇ + 𝛁∘ ⋅ 𝐪 − 𝜌0𝑠 = 0 [9] (2.16)

Unlike Eulerian representation of balance laws, localized Lagrangian conservation laws are applicable
for varying volume of finite body with respect to time. Still, these laws are applicable for continuous
fields only.
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2.1.3. Lagrangian or Eulerian Description?
Both types of interpretation of Continuum Mechanics balance laws are equally valid for modelling the
behaviour of a continuous matter. So far in the discussion of balance laws no comment was made on
the nature of matter. Based on the ability to resist shear force, matter can be classified into fluid and
solid. Fluids cannot resist shear force indefinitely, and will flow along the direction of applied shear
force[10]. Whereas, solids attain a new configuration that is in equilibrium with the applied force.
Once the force is removed, some solids return to their original resting configuration, whereas others
remain in their new configuration. Irrespective of the ability to regain original configuration or not, the
deformed configuration of the structure will be in the proximity of its original configuration, i.e. matter
does not leave or enter solid domain. Therefore for transient mechanical analyses of solids, number of
numerical calculations required for resolving Lagrangian description of governing laws will not increase
exponentially with time, since there is no need to add new degrees of freedom to keep track of new
matter.

In fluid dynamics, for any fluid domain of interest old matter leaving the domain is replaced by new
matter entering the domain. And, for external flows boundaries of the flow domain are at the discretion
of the user. Accurate prediction of properties of the fluid at boundaries of a flow domain is not a trivial
task. Therefore, boundaries of the flow domain that are far away from the area of interest have to be
employed. Approximate values of properties at such far field boundaries will have a negligible impact
on the solution at the area of interest. Also, if the flow is dominated by convection, then matter enters
and leaves the domain frequently. Large flow domain in combination with the need to account for
new matter frequently makes resolution of Lagrangian description of balance laws highly unfeasible.
Therefore for external flow analyses, Eulerian description of balance laws is employed for numerical
fluid simulations in the industry. Owing to the philosophy of analysing the fluid properties at specific
locations in a given region, the cost of numerical fluid simulations is independent of the rate at which
fluid enters and leaves the flow domain.

2.1.4. Constitutive relations
The balance laws of continuum mechanics on its own are not a well defined problem. To obtain any
meaningful results from the governing laws, they have to be supplemented with constitutive relations.
As discussed earlier, governing laws are identical for solid and fluid material. It is through constitutive
relations that a distinction is made between solids and fluids. Thus, a well posed problem can be
formulated for any continuous matter by employing appropriate constitutive relations for that material.
Normally, constitutive relations are formulated as mathematical models from the empirical research
on behaviour of appropriate materials. In isotropic Newtonian fluids for instance, a linear relationship
between stress tensor and velocity gradient was proposed by Stokes. If 𝐋 ∶= 𝛁𝐯 is the velocity gradient
in Eulerian description, then the general deformation law for isotropic Newtonian fluids is defined
as[13]:

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 (
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

) + 𝛿𝑖𝑗𝜆𝛁 ⋅ 𝐋 (2.17)

where 𝑝 is the pressure arising from momentum exchange due to collisions of atoms; 𝜇 and 𝜆
are the first and second coefficients of viscosity respectively. The incompressible form of the Eulerian
representation of balance laws in combination with the above described constitutive relation for stress
tensor are the famous Navier­Stokes equations. Likewise, different types of constitutive relations are
available for different types of solid materials. Let 𝐂 ∶= 𝐅𝑇𝐅 be the right Cauchy­Green strain tensor
and 𝐄 ∶= 1

2(𝐂 − 𝐈) be the Green­Lagrange strain tensor. If 𝐒 ∶= det(𝐅)𝐅−1𝝈𝐅−𝑇 is the Piola­Kirchhoff
stress tensor of second type, then the constitutive relation for St.Venant­Kirchhoff material is described
as:

𝐒 = 𝜆(tr𝐄)𝐈 + 2𝜇𝐄 [11] (2.18)

where 𝜆 and 𝜇 are referred to as Lame’s first and second parameters. They are analogous to the
coefficients of viscosity in Stoke’s law. The constitutive relations for Newtonian fluid and St.Venant­
Kirchhoff material were described with respect to Eulerian and Lagrangian frame of references respec­
tively. Alternate formulations for the above mentioned constitutive relations are available with respect
to other reference frames.
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2.2. Numerical Fluid Structure Interaction
From section 2.1, it can be seen that the balance laws of continuummechanics are non­linear partial dif­
ferential equations, whose analytical treatment is possible only after simplifying the underlying physics
phenomenon and the associated boundary conditions, E.g: Potential flow theory, Euler­Bernoulli beam
theory. Analytic solution of such balance laws for complex physical phenomenon with real­life com­
plex boundary conditions is impossible as of this writing. Presently, solutions of such system of partial
differential equations are obtained by transforming it into a system of linear algebraic equations using
discretization, and solving it. Unlike closed­form of solution from analytical analyses, in discretization
solution is obtained only for certain discrete locations in the domain. Therefore, analytical solution, if
available, can be considered as truth, and subject to appropriate refinements for various discretization
parameters, numerical solution can converge to analytical solution. Owing to the complexity of mod­
elling multiple types of matter in a given domain, solution of problems in Fluid Structure Interaction is
generally obtained using the above mentioned numerical procedure. Based on how different matter
are handled in any FSI simulation, numerical FSI can be classified into monolithic and partitioned FSI.

2.2.1. Monolithic FSI
In monolithic FSI, fluid and structure domains are treated as single entity with respect to the balance
laws of continuum mechanics, i.e. Eulerian or Lagrangian description of the balance laws is employed
for both the domains. It follows that identical schemes has to be employed for the discretization of
spatial and temporal terms in the balance laws. It is through constitutive relations for the balance laws,
that a distinction is made between the fluid and structure domain. By treating fluid and solid matter
as a single entity, the physics governing the FSI is inherently coupled, resulting in solutions that are
close to the ground truth. Systems involving fluid and structure domains are said to be coupled when
the kinematic and dynamic boundary conditions at the interface of both the domains are equal. See
section 2.3 for more information on coupled systems. However, creation of a monolithic FSI solver is
not a trivial task, requiring the software architect to be adept in multiple disciplines of Mechanics, in
this case — Solid and Fluid Mechanics. As the name monolith implies, monolithic FSI solver is not
modular in nature, i.e. existing CFD and CSM codes cannot be repurposed for numerical FSI simulation
in monolithic approach. Owing to the above two reasons, commercial monolithic FSI solvers are not
available as of this writing. Development of monolithic FSI solvers is currently an active field of research,
see for example [14–18].

2.2.2. Partitioned FSI
In partitioned FSI, fluid and structure domains are treated as separate entities with respect to the
balance laws of continuum mechanics. Thus, unlike monolithic FSI solver, partitioned FSI solver in­
volves integration of multiple single­physics solvers. Owing to the reasons described in section 2.1.3,
Eulerian and Lagrangian balance laws are the de­facto mathematical models in CFD and CSM solvers
respectively. Due to the ability to incorporate balance laws of different reference frames, partitioned
FSI solver is capable of repurposing the above mentioned physics solvers for FSI. Since, partitioned
FSI builds on decades of research involved in the development of commercial single­physics CFD and
CSM solvers, proper implementation of partitioned FSI is not as complex as building a monolithic FSI
solver. However, by considering the fluid and structure domain as separate entities, the physics of the
respective domains are not inherently coupled in partitioned FSI. This generates partitioning error in
the computed quantities. If partitioning error is removed from the system, then the solutions obtained
using partitioned FSI is equaivalen to its monolithic counterpart. Depending on the application, the
consequence of such physics decoupling ranges from a minor deviation against the ground truth to a
completely non­physical solution. Subject to additional computational runtime, different strategies are
available to enforce multi­physics coupling in partitioned FSI. Efficiency improvement of multi­physics
coupling in partitioned FSI is the subject of this thesis.

2.3. Partitioned coupling
Partitioned FSI is realized by integration of CFD and CSM solver though partitioned coupling. There are
three aspects to partitioned coupling — spatial coupling, mesh motion and temporal coupling.
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Figure 2.2: Partitioned Coupling — Representative Domain[19]

Figure 2.3: Partitioned Coupling — Spatial coupling of non­matching meshes[22]

2.3.1. Spatial coupling
As shown in figure 2.2, any FSI problem has fluid domain (Ω𝑓) and structure domain (Ω𝑠) bounded by
non­common boundaries Γ𝑓 and Γ𝑠 respectively, and a common boundary Γ at the fluid­structure inter­
face. Balance laws of continuum mechanics with constituent relations distinguishes only the behaviour
between fluid and structure domain. It is through domain decomposition that a spatial distinction is
made between the fluid and structure domain. Substructuring techniques[20] are the most common
form of domain decomposition employed in FSI owing to its ability to treat the CFD and CSM solvers
as black box physics solvers[21]. Since the fluid and structure solver are treated as isolated entities in
structuring methods, it is through boundary conditions at the interface that a CFD solver acknowledges
the presence of a structure domain, and the CSM solver acknowledges the presence of a fluid domain.
The act of communication of boundary conditions between the fluid and structure domains on the
interface is referred to as spatial coupling. In section 2.1, it was mentioned that the balance laws of
continuum mechanics requires the space that it models to be a continuum. Thus spatial coupling can
be thought as a mechanism to enforce continuity at the fluid­structure interface.

Among substructuring techniques, Dirichlet­Neumann partitioning is widely employed for spatial
coupling in FSI. Let 𝐭Γ = 𝝈Γ ⋅ 𝐧Γ be the traction exerted by the fluid on the structure at the interface,
and 𝐮Γ be the displacement of the structure domain at the interface. Due to different mesh resolutions
for the fluid and structure domain, non­matching mesh typically exists at the interface as shown in
figure 2.3. In such cases, data has to be interpolated from one domain to the other domain before
spatial coupling can be executed. Let 𝐬Γ = 𝑡(𝐭Γ) be the interpolated traction from fluid to structure
domain at the interface, and 𝐝Γ = 𝑢(𝐮Γ) be the interpolated displacement from structure to fluid
domain at the interface. Thus, for realizing Dirichlet­Neumann partitioning, equilibrium(kinetic) and
compatibility(kinematic) conditions have to be satisfied. The equilibrium condition is described as:
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𝐏Γ ⋅ 𝐧Γ = 𝐬Γ (2.19)

The compatibility condition for viscous fluid (no­slip boundary) is described as:

𝐯Γ = 𝐝̇Γ (2.20)

The compatibility condition for inviscid flow (impermeable boundary) is described as:

𝐯Γ ⋅ 𝐧Γ = 𝐝̇Γ ⋅ 𝐧Γ (2.21)

Finally, the compatibility conditions for the pseudo­structure of the fluid mesh are described as:

𝐱̃Γ = 𝐱̃Γ,0 + 𝐝Γ
̇𝐱̃Γ = 𝐝̇Γ

(2.22)

Pseudo­structure of a fluid mesh is an attribute of fluid mesh motion, and shall be appropriately
treated in the next section. Many interpolation schemes are available for the interpolation functions
𝑡(𝐭Γ) and 𝑢(𝐮Γ). See [22] for a comprehensive review of various interpolation schemes in FSI.

2.3.2. Mesh motion
If displacement of the structure domain from the initial position is very small, then for the initial interface
boundary defined on Γ0 the viscous flow compatibility condition can be approximated as:

𝐯Γ0 = 𝐝̇Γ0 (2.23)

The above approximation in combination with the Eulerian form of balance laws is referred to as
transpiration approach[23], which was employed for aeroelastic analyses around vibrating bodies. In
case of large structural displacments, Eulerian form of the balance laws cannot be employed, since
the differential equation was formulated for fixed volume. Whereas, support for flow domain motion
and deformation is inbuilt in Lagrangian description. Viscous flow domain is generally characterized
by high velocity gradients in the proximity of an obstacle, leading to formation of vortices. In regions
of vorticity, mixing or intersection of fluid occurs. For such scenarios, Lagrangian form of the balance
laws fails, since the mesh warps and distorts, which is not the case with Eulerian form of balance laws.
Therefore, it can be seen that both forms of the balance laws of continuum mechanics have their pros
and cons. By combining the benefits of both the forms of balance laws, ALE1 form of the balance laws
was formulated to tackle fluid mesh motion[24].

Let 𝐱̃ represent the position vector of a mesh node. If, ̇𝐱̃ = 0 in Eulerian description, and ̇𝐱̃ = 𝐯
in Lagrangian description, then in ALE description ̇𝐱̃ ≠ 𝟎; ̇𝐱̃ ≠ 𝐯. The velocity of mesh motion is any
arbitrary value, hence the adjective arbitrary in ALE. Temporal derivative for a physical quantity 𝐟 in
ALE formulation is defined as:

̇̃𝐟 = 𝜕𝐟
𝜕𝑡 +

̇𝐱̃ ⋅ 𝛁𝐟 (2.24)

With the above definition for temporal derivative, the ALE form of the balance laws can be framed
as:

̇𝜌̃ + 𝜌𝛁 ⋅ 𝐯 = 0
𝜌 ̇𝐯̃ − 𝛁 ⋅ 𝝈 − 𝜌𝐛 = 0

𝝈 = 𝝈𝑇

𝜌 ̇𝑒̃ − 𝝈 ∶ (𝛁𝐯) + 𝛁 ⋅ 𝐪 − 𝜌𝑠 = 0

(2.25)

Since spatial derivatives here are identical to its Eulerian counterpart, no modification is required
for spatial discretisation when translating from Eulerian to ALE formulation. However, in addition to

1Arbitrary Lagrangian Eulerian
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the modification specified for the temporal derivatives in (2.24) for ALE formulation, temporal deriva­
tives, including the mesh velocity for moving meshes, should also satisfy DGCL2, i.e. the procedure
to compute geometric parameters such as mesh velocity should be independent of nature of mesh
motion[25]. Any higher order temporal discretization for fixed mesh will at least be first order accurate
for moving meshes, if DGCL is satisfied[26]. See [25] for various temporal discretization schemes that
satisfy DGCL; and [27] for a comprehensive treatment of ALE description including the ALE forms of
constitutive relations and their applications in fluid and solid mechanics.

As far as the arbitrary motion for the fluid mesh is concerned, many models mimicking the behaviour
of solid matter are available. Such models are also referred to as pseudo­structure models. Based on
the pseudo­structure compatibility condition discussed in previous section, the fluid mesh displacement
for the non­interface nodes can be mathematically described as:

𝐊Ω𝑓⧵Γ𝐱̃Ω𝑓⧵Γ = 𝐊Γ𝐱̃Γ (2.26)

where 𝐊 is the stiffness matrix of the pseudo­structure. See [23] for a summary of various pseudo­
structure models available for the fluid mesh motion.

2.3.3. Temporal Coupling
After employing appropriate spatial and temporal discretization schemes, the non­linear partial differ­
ential equations discussed in previous sections can be transformed to a system of non­linear algebraic
equations. For an incompressible laminar flow using ALE formulation of the balance laws, the system
of algebraic equations for the fluid domain can be concisely described with respect to the unknown
variables at current time step as:

𝐹(𝐯𝑛 , 𝑝𝑛 , ̇𝐱̃𝑛 , 𝐝̇𝑛Γ) = 0 (2.27)

Similarly, for the structure domain the Lagrangian form of the balance laws can be discretized into
a system of algebraic equations as:

𝑆(𝐮𝑛 , 𝐮̇𝑛 , 𝐬𝑛Γ) = 0 (2.28)

And, the discretized form of the pseudo­structure model for the fluid mesh is described as:

𝑀(𝐱̃𝑛 , 𝐝𝑛Γ) = 0 (2.29)

In the above equations, values at previous time step are not written for convenience. Thus, a
FSI problem involves solving a coupled three field system of algebraic equations, which along with
the equilibrium and compatibility conditions form a well defined problem. Dirichlet­Neumann type of
temporal coupling involves the following steps in resolving the three field problem:

1. Make a prediction for the interface displacement 𝐝𝑛Γ
2. With predicted interface displacement (𝐝𝑛Γ), obtain fluid mesh displacement (𝐱̃𝑛) from (2.29) and
velocity ( ̇𝐱̃𝑛) that satisfies DGCL.

3. With prescribed interface velocity (𝐝̇𝑛Γ) and fluid mesh velocity ( ̇𝐱̃𝑛), solve for flow velocity (𝐯𝑛)
and pressure (𝑝𝑛) from (2.27).

4. From updated flow velocity (𝐯𝑛) and pressure (𝑝𝑛), calculate Cauchy stress tensor using (2.17).
Calculate interpolated traction (𝐬𝑛Γ) on the interface of the structure domain by 𝐬𝑛Γ = 𝑡(𝝈𝑛Γ ⋅ 𝐧Γ).

5. Using interpolated interface traction (𝐬𝑛Γ), solve for structure displacement (𝐮𝑛) and velocity (𝐮̇𝑛).
Using interpolation (𝑢(𝐮𝑛Γ)), obtain the updated interface displacement (𝐝̂𝑛Γ) for the current time
step.

For brevity, steps 1 – 4 can be condensed as:

𝐬𝑛Γ = 𝐹𝑓(𝐝𝑛Γ) (2.30)

2Discrete Geometric Conservation Law
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Also, step 5 can be condensed as:

𝐝̂𝑛Γ = 𝐹𝑠(𝐬𝑛Γ) (2.31)

Thus, the entire temporal coupling process can be condensed in the form of a fixed­point non­linear
equation as:

𝐝̂𝑛Γ = 𝐹𝑠 ∘ 𝐹𝑓(𝐝𝑛Γ) (2.32)

When the above equation is satisfied, the partitioning error is removed from the system. Thus,
temporal coupling can be understood as an operation to reduce partitioning error in the system. To
realize black box partitioned coupling, the three field solvers involved in the fixed­point equation are
treated as isolated entities. According to [28], temporal coupling process can be classified into loose
and tight coupling. In loose coupling, for each time step of an FSI simulation, steps 1–5 described in
D­N temporal coupling cycle are executed only once. For certain applications one cycle of D­N temporal
coupling is not sufficient to completely eliminate partitioning error. This can causes incomplete physics
coupling between the flow and structure domain. Tight coupling in contrast involves multiple D­N
temporal coupling cycles until the partitioning error is completely eliminated, resulting in complete
physics coupling between the flow and structure domain, whose solution at each time step will be
equivalent to the one obtained from a monolithic FSI simulation. It goes without saying that tight
coupling is much more expensive than loose coupling. In [29], loose and tight couplings are also
referred to as explicit and implicit couplings respectively.

There are many types of loose coupling schemes. Earliest loose coupling schemes for FSI were
conceived by Farhat et al. in [30]. They were originally developed for coupled transient aeroelastic
problems. The basic loose coupling scheme is the CSS3 scheme. It is identical to the D­N temporal
coupling cycle with 𝐝𝑛+1Γ = 𝐝̂𝑛Γ . If the fluid and structure behaviour exhibit significant difference in
temporal scales, then [30] recommends employing the CSS scheme with sub­cycling in the flow domain.
This allows the usage of much smaller time step values in the flow domain. For simulations in parallel
environments, [30] advocates the use of CPS4 scheme, where the flow and structure physics are
significantly decoupled. Therefore, it is accurate only for very small time steps. Also, [30] proposed
the ISS5 scheme, which is the improved version of CSS scheme. In ISS, the flow solver and structure
solver are marched forward in time with same time step, but at different instances of time. It has
significantly higher accuracy than the CSS scheme. Diagrammatic versions of the above mentioned
loosely coupled schemes are illustrated in figure 2.4.

As mentioned earlier, tight coupling is realized by multiple sub­iterations of D­N temporal coupling
cycles for each time step on the fixed point equation. Such tight coupling procedure is referred to as
fixed point iteration. The degree of non­linearity in any three field problem for FSI is a consequence
of the behaviour of matter in a given application. For applications with significant non­linearity, fixed
point iterations either converge slowly or simply fail[31]. For such scenarios, the fixed point equation
can be reformulated into a root finding problem as:

𝑅(𝐝𝑛Γ) ∶= 𝐹𝑠 ∘ 𝐹𝑓(𝐝𝑛Γ) − 𝐝𝑛Γ = 0 (2.33)

The above mentioned function for root finding problem is nothing but the interface residual, i.e.
𝑅(𝐝Γ) = 𝐫Γ. Description of the interface residual is given in section 2.4. The solution of the above
mentioned non linear equation can be obtained using Newton­Raphson iteration. Various tight coupling
frameworks are available for fixed point iteration as well as Newton­Raphson iteration. Irrespective of
either type of iterations, most of the tightly coupled frameworks employ multiple loosely coupled CSS
cycles in a time step. Literature review of various tightly coupled frameworks employed in resolving
strongly coupled FSI is given in sections 2.4 and 2.5.

2.4. Fixed Point Iterative Frameworks
As mentioned in the previous section, each time step of the partitioned coupling has multiple fixed­point
iterations for tight coupling. Such fixed­point iteration is also referred to as sub­iteration[32]. Thus,

3Conventional Serial Staggered
4Conventional Parallel Staggered
5Improved Serial Staggered
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(a) CSS scheme (b) CSS with subcycling scheme

(c) CPS scheme (d) ISS scheme

Figure 2.4: Temporal Coupling — Schematics of loosely coupled schemes[26]

for any time step in partitioned coupling, a sub­iteration for fixed point iteration is mathematically
described as:

𝐝̂𝑖Γ = 𝐹𝑠 ∘ 𝐹𝑓(𝐝𝑖Γ) (2.34)

The current time step superscript 𝑛 shall be ignored for concise relations in the remainder of this
chapter. In the basic form of fixed point iteration, the displacement prediction for the succeeding
sub­iteration is 𝐝𝑖+1Γ = 𝐝̂𝑖Γ. The interface residual for a fixed point iteration is defined as:

𝐫𝑖Γ ∶= 𝐝̂𝑖Γ − 𝐝𝑖Γ (2.35)

Since partitioning error cannot be calculated for black box partitioned coupling, the interface residual
can be thought as an indicator for the amount of partitioning error in the system. Thus, flow and
structural physics are expected to be completely coupled when lim𝑖→∞ 𝐫𝑖 = 0. A better way to formulate
a stopping criteria is by employing the euclidean length of a vector, also referred to as 2­norm. Thus,
the stopping criteria for fixed point iteration is described as:

‖𝐫𝑖Γ‖ < 𝜖 (2.36)

where 𝜖 is the convergence/coupling tolerance, whose value is arbitrary. The lower the tolerance
value, the lesser is the iterative error in the coupling framework. Once the converged displacement
is obtained for a time step, it is used as the initial value for the sub­iterations in next time step, i.e.
𝐝0𝑛+1,Γ = 𝐝̂∗𝑛,Γ.

2.4.1. Relaxation methods
The fixed point iteration in its basic form is prone to divergence[32]. Richardson type of fixed point
iteration with under­relaxation is recommended for such scenarios. In Richardson iteration, the dis­
placement prediction for the next time step is described as:

𝐝𝑖+1Γ = 𝜔𝑖𝐝̂𝑖Γ + (1 − 𝜔𝑖)𝐝𝑖Γ (2.37)
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where 𝜔𝑖 is the relaxation parameter. 𝜔𝑖 > 1 is over­relaxation. 𝜔𝑖 < 1 is under­relaxation. 𝜔𝑖 = 1
means no relaxation is employed. In sub­iterations with fixed relaxation, 𝜔𝑖 is a constant. Whereas
sub­iterations with Aitken’s relaxation employ a dynamic relaxation parameter. Aitken’s relaxation was
originally devised for efficient computational algorithms by Irons and Tuck in [33]. Aitken’s dynamic
relaxation parameter is defined as:

𝜔𝑖+1 ∶= −𝜔𝑖
𝐫𝑖Γ ⋅ (𝐫𝑖+1Γ − 𝐫𝑖Γ)
‖𝐫𝑖+1Γ − 𝐫𝑖Γ‖2

(2.38)

Since Aitken’s relaxation parameter is recursively computed from its value at previous sub­iteration,
a fixed relaxation parameter has to be employed for the initial sub­iteration. [33] recommends em­
ploying the final relaxation parameter from previous time step for the fixed relaxation parameter in the
initial sub­iteration of the current time step. For Steepest descent relaxation, the dynamic relaxation
parameter is defined as:

𝜔𝑖 ∶= −
𝐫𝑖Γ ⋅ 𝐫𝑖Γ
𝐫𝑖Γ ⋅ 𝐉𝑖Γ𝐫𝑖Γ

(2.39)

where 𝐉Γ is the interface Jacobian. It is defined as:

𝐉Γ ∶=
𝜕𝐫Γ
𝜕𝐝Γ

(2.40)

Like Aitken’s relaxation, initial sub­iteration with fixed relaxation is required before employing steep­
est descent relaxation. Exact computation of interface Jacobian is expensive[32], and various methods
to approximate the above mentioned Jacobian will be treated in the next section.

2.5. Newton Raphson Iterative Frameworks
Unlike fixed point iteration, Newton Raphson iteration does not employ relaxation for obtaining the
solution of a root finding problem. Therefore, using a correction Δ𝐝𝑖Γ, the interface displacment for the
next sub­iteration is defined as:

𝐝𝑖+1Γ ∶= 𝐝𝑖Γ + Δ𝐝𝑖Γ (2.41)

And, the displacement correction is obtained from the interface Jacobian and interface residual as:

𝐉𝑖ΓΔ𝐝𝑖Γ = −𝐫𝑖Γ (2.42)

Once the converged displacement is obtained for a time step, it is used as the initial value for
the sub­iterations in next time step, i.e. 𝐝0𝑛+1,Γ = 𝐝̂∗𝑛,Γ. In contrast to the non­linear nature of the
root finding problem in (2.33), the above equation is a linear problem for the solution of interface
displacement correction. Thus, any iterative method can be employed for the solution of the system
of linear equations. Depending on how the inverse of interface Jacobian is obtained, various Newton
Raphson iterative frameworks for FSI are available.

2.5.1. Jacobian/Matrix free Newton Krylov method
In Jacobian free Newton Krylov method, any Krylov subspace method can be employed for obtaining
the displacement correction. Thus for any sub­iteration 𝑖, the residual for the Krylov subspace method
at 𝑗𝑡ℎ linear iteration is defined as:

𝓻𝑗Γ ∶= −𝐫𝑖Γ − 𝐉ΓΔ𝐝𝑗Γ (2.43)

Also in the GMRES6 version of Krylov subspace method, the displacement correction at each linear
iteration can be expanded into the span of its Krylov subspace basis as[34]:

Δ𝐝𝑗Γ = Δ𝐝0Γ +
𝑗−1

∑
𝑡=0
𝛽𝑡(𝐉Γ)𝑡𝓻0Γ (2.44)

6Generalized Minimal Residual method
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where 𝛽𝑗 are the extrapolation coefficients that minimizes the linear residual, i.e.:

𝜷𝑗 = argmin
𝛽𝑗
‖𝓻𝑗Γ‖ (2.45)

In this framework, the product of interface Jacobian and linear residual can be approximated using
finite differences as[35]:

𝐉Γ𝓻0Γ ≈
𝑅(𝐝𝑖Γ + 𝛿𝓻0Γ) − 𝐫𝑖Γ

𝛿 (2.46)

where 𝛿 is a small perturbation. The GMRES iterations are repeated until the linear residual ap­
proaches a very small value. With the computed interface displacement correction, the interface dis­
placement for the next sub­iteration is obtained from (2.41). Since Jacobian is not computed explicitly
in this framework, this method is referred to as Jacobian Free Newton Krylov. If no pre­conditioner
is used for Krylov Subspace method, then this framework is also referred to as Matrix Free Newton
Krylov. This framework is also referred to as FD­MFNK in [32]. Let 𝐹′𝑠 and 𝐹′𝑓 refer to the Jacobian of
the output of the structure and flow solver with respect to the interface displacement. Then the MFNK
framework in [32] describes the interface Jacobian and residual product as:

𝐉Γ𝓻0Γ = 𝐹′𝑠 ∘ 𝐹𝑓(𝐝𝑖Γ)𝐹′𝑓(𝐝𝑖Γ)𝓻0Γ −𝓻0Γ (2.47)

However, the computation of 𝐹′𝑓(𝐝𝑖Γ) involves quantities from different black box solvers, thereby
making its calculation a challenging task. Therefore, for the MFNK framework in [32], it is approximated
as:

𝐹′𝑓(𝐝𝑖Γ) ≈
𝜕𝐹𝑓(𝐝𝑖Γ)
𝜕𝐯𝑖Γ

1
Δ𝑡 (2.48)

2.5.2. Interface Newton­Krylov/GMRES method
Michler et al. proposed a black box coupling framework for FSI that builds on the JFNK framework in
[36]. Rather than expanding the interface displacement correction as a span of its Krylov subspace
basis, a simple vector extrapolation is employed for the interface displacement correction as:

Δ𝐝𝑗Γ =
𝑗

∑
𝑡=0
𝜓𝑡(𝐝̂𝑡Γ − 𝐝𝑖Γ) (2.49)

Also, the product of interface Jacobian and residual is not approximated here with a matrix free
method for the determination of interface displacement correction. Instead, secant method is employed
in lieu of Newton Raphson method, where the derivatives in the Jacobian matrix are approximated by
first order finite difference discretization. The finite difference approximation of the interface Jacobian
is described as:

𝐉𝑗Γ ≈
𝐫𝑗Γ − 𝐫𝑖Γ
𝐝̂𝑗Γ − 𝐝𝑖Γ

(2.50)

From (2.43), (2.49) and (2.50), the linear residual for interface GMRES framework can be reformu­
lated as:

𝓻𝑗Γ = −𝐫𝑖Γ −
𝑗

∑
𝑡=0
𝜓𝑡(𝐫𝑡Γ − 𝐫𝑖Γ) (2.51)

The extrapolation coefficients (𝝍) are again obtained such that it minimizes the linear residual as:

𝝍𝑗 = argmin
𝜓𝑗
‖𝓻𝑗Γ‖ (2.52)

With the updated extrapolation coefficients, the updated linear residual is obtained. The linear
iterations are repeated until the norm of the linear residual converges to a linear tolerance value, i.e:
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‖𝓻𝑗Γ‖ < 𝜖0 (2.53)

Using the extrapolation coefficients of the final linear iteration, the displacement correction is calcu­
lated using (2.49). With the updated displacement correction, the interface displacement for the next
non­linear iteration is computed using (2.41). The sequence of multiple linear iterations followed by a
single non linear iteration is repeated multiple times until the interface residual converges to tolerance
𝜖. [36] recommends employing fixed or dynamic relaxation for the linear iterations to improve stability.

2.5.3. Interface Quasi Newton Method
Degroote et al. have recently proposed another black box coupling framework for FSI in [5], that builds
on the reduced order model for the linear iterations of JFNK, described in [37]. Reduced order model
is an extension of inexact Newton methods summarised in [35]. Its stated that the linear iterations
need not be solved to a stricter linear tolerance, especially if such linear iterations are for initial sub­
iterations of a time step. In [37], instead of employing lenient linear tolerance for linear iterations, a low
fidelity mathematical model that models only the added fluid mass was employed for their version of
inexact Newton JFNK framework. This low fidelity mathematical model was referred to as reduced order
model. Owing to the simplicity of this reduced order model, any direct method can be employed for
obtaining the displacement correction. Thus in contrast to JFNK and interface GMRES method, interface
Quasi Newton methods have one linear iteration for each sub­iteration. Degroote et al. modified this
reduced order model to support black box partitioned coupling in [5], which they termed it as IQN­ILS7

framework. Suppose i is the current sub­iteration and k represent the set of sub­iterations from initial
sub­iteration till the previous sub­iteration i.e. 𝑘 ∈ {0, 1, ..., 𝑖 − 2, 𝑖 − 1}. For current sub­iteration, two
vectors Δ𝐫𝑘Γ and Δ𝐝̂𝑘Γ are defined as:

Δ𝐫𝑘Γ ∶= 𝐫𝑘Γ − 𝐫𝑖Γ
Δ𝐝̂𝑘Γ ∶= 𝐝̂𝑘Γ − 𝐝̂𝑖Γ

(2.54)

The matrices 𝐕𝑖 and𝐖𝑖 for the current sub­iteration can be constructed by concatenation of vectors
Δ𝐫𝑘Γ and Δ𝐝̂𝑘Γ respectively, i.e.:

𝐕𝑖 ∶= [Δ𝐫𝑖−1Γ Δ𝐫𝑖−2Γ … Δ𝐫1Γ Δ𝐫0Γ ]
𝐖𝑖 ∶= [Δ𝐝̂𝑖−1Γ Δ𝐝̂𝑖−2Γ … Δ𝐝̂1Γ Δ𝐝̂0Γ]

(2.55)

V,W matrices require at least two values of 𝐫Γ and 𝐝̂Γ for computation. Thus, the first two sub­
iterations of a time step have to be executed using fixed point framework with relaxation before the
employment of IQN­ILS framework. Suppose 𝑁 is the dimension of the interface displacement. If more
than 𝑝 sub­iterations with IQN­ILS framework is required for convergence, then the earliest columns
on the right hand side of the matrices are to be deleted. Thus the highest possible dimension for the
𝐕𝑖 and 𝐖𝑖 matrices is 𝑁 × 𝑁. By ensuring that 𝑖 ≤ 𝑁, if Δ𝐫𝑘Γ corresponding to different sub­iterations
are linearly independent, then these set of vectors is the basis for space 𝐷 ⊆ ℝ𝑁. Thus any residual
difference vector can be expressed as the span of the above mentioned basis i.e.:

Δ𝐫Γ ≈
𝑖

∑
𝑘=0

𝛼𝑘(Δ𝐫𝑘Γ ) = 𝐕𝑖𝜶𝑖 (2.56)

where 𝜶𝑖𝑇 ∶= [𝛼0 𝛼1 … 𝛼𝑖−1 𝛼𝑖] is the vector of extrapolation coefficients to be determined. For
convergence, the desired interface residual has to be a vector of zeros, i.e. Δ𝐫Γ = 𝟎 − 𝐫𝑖Γ. Thus, the
system of equations to determine 𝜶𝑖 is:

𝐕𝑖𝜶𝑖 = −𝐫𝑖Γ (2.57)

Since 𝑖 ≤ 𝑝, it forms an over­determined system of equations, and a unique solution is only possible
for the extrapolation coefficients when −𝐫𝑖Γ lies in the column space of 𝐕𝑖. If not, then an approximate
7Interface Quasi Newton with Inverse Jacobian from a Least Squares Model



16 2. Partitioned Fluid Structure Interaction

solution can be obtained by an orthogonal projection of −𝐫𝑖Γ on the column space of 𝐕𝑖. This is per­
formed through least squares minimization. Various procedures are available to perform least squares
minimisation. Ordinary least squares gives a closed solution for 𝜶𝑖 as:

𝜶𝑖 = −(𝐕𝑖𝑇𝐕𝑖)−1𝐕𝑖𝑇𝐫𝑖Γ (2.58)

Other methods for least squares minimization are QR decomposition, Singular Value decomposition
etc. The ordinary least squares method becomes unstable for higher number of columns in 𝐕𝑖. Thus,
the extrapolation coefficients were calculated in [5] using QR decomposition. In QR decomposition a
rectangular matrix is decomposed into a product of orthogonal matrix (𝐐) and upper triangular matrix
(𝐑), i.e.:

𝐕𝑖𝑁×𝑖 = 𝐐𝑖𝑁×𝑖𝐑𝑖𝑖×𝑖 (2.59)

Another advantage of QR decomposition is its inherent capability to identify the columns in 𝐕𝑖
matrix that are linearly dependent. The columns in 𝐕𝑖 matrix need not be linearly independent. This
is possible if the root finding problem is non linear or if round­off errors are encountered[38]. The
diagonal element corresponding to the linearly dependent column will be zero in the R matrix from QR
decomposition. Therefore, the columns corresponding to linear dependency in 𝐕𝑖 have to be removed
before solving equation 2.57. This is referred to as QR­filtering. In [5], QR­filtering was performed
by identifying rows in 𝐑 whose diagonal element is zero; and eliminating the column corresponding
to that row from 𝐕𝑖. This QR­filtering is repeated until the resulting upper triangular matrix from
QR­decomposition of 𝐕𝑖 is non singular. On substituting (2.59) in (2.57):

𝐐𝑖𝐑𝑖𝜶𝑖 = −𝐫𝑖Γ (2.60)

Inverse of an orthogonal matrix is its transpose. Thus:

𝐑𝑖𝜶𝑖 = −𝐐𝑖𝑇𝐫𝑖Γ (2.61)

Since 𝐑 is an upper triangular matrix, 𝜶 can be obtained using back substitution. From (2.35):

𝐝Γ = 𝐝̂Γ − 𝐫Γ (2.62)

Since spanning of vectors is a linear function, the above equation can be written as:

Δ𝐝Γ = Δ𝐝̂Γ − Δ𝐫Γ (2.63)

Δ𝐝Γ is the parameter required for obtaining 𝐝𝑖+1Γ from (2.41). As discussed earlier, Δ𝐫Γ = −𝐫𝑖Γ is
desired. Δ𝐝̂Γ corresponding to Δ𝐫Γ = −𝐫𝑖Γ can be obtained using the computed extrapolation coefficients
from (2.61) as:

Δ𝐝̂𝑖Γ = 𝐖𝑖𝜶𝑖 (2.64)

On substituting (2.64) in (2.63), the displacement correction using IQN­ILS framework for the
current­sub­iteration is described as:

Δ𝐝𝑖Γ = 𝐖𝑖𝜶𝑖 + 𝐫𝑖Γ (2.65)

This displacement correction is employed in (2.41) to obtain the interface displacement for the next
sub­iteration, i.e. 𝐝𝑖+1Γ = 𝐝𝑖Γ + 𝐖𝑖𝜶𝑖 + 𝐫𝑖Γ. Components of 𝐫𝑖Γ that lie in the column space of 𝐕𝑖 are
dampened significantly using IQN­ILS in comparison to fixed point iteration. Components of 𝐫𝑖Γ that
lie outside the column space of 𝐕𝑖 are dampened at the same rate as fixed point iterations. Another
version of interface quasi Newton method was developed by Vierendeels et al. where the inverse of
the approximated interface Jacobian is not required. This framework is referred to as IBQN­LS8. For
more details about its implementation, see [39].

8Interface Block Quasi Newton with Jacobian from a Least Squares model
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2.5.4. Interface Jacobian construction using data from multiple time steps
Suppose, a time series has 𝑛+1 samples, i.e. 𝐭 = {𝑡0, 𝑡1, … , 𝑡𝑛}. If 𝑛 is the latest time step and 𝑖 is the
currently active sub­iteration in the latest time step, then for 𝑘𝑡ℎ sub­iteration in 𝑚𝑡ℎ time step Δ𝐫𝐤𝑚,Γ
be defined as:

Δ𝐫𝐤𝑚,Γ ∶= 𝐫𝐤𝑚,Γ − 𝐫𝐢𝑛,Γ (2.66)

And, Δ𝐝̂𝑘𝑚,Γ can be defined as:

Δ𝐝̂𝑘𝑚,Γ ∶= 𝐝̂𝑘𝑚,Γ − 𝐝̂𝑖𝑛,Γ (2.67)

If time step is smaller such that the interface displacements for those consecutive time steps can
approximate a continuous curve, then Δ𝐫𝐤𝑚,Γ and Δ𝐝̂𝑘𝑚,Γ can be employed for the construction of inverse
interface Jacobian. For 𝑖𝑡ℎ sub­iteration the 𝐕𝑖𝑛 and 𝐖𝑖

𝑛 are defined as:

𝐕𝑖𝑛 ∶= [Δ𝐫𝑖−1𝑛,Γ Δ𝐫𝑖−2𝑛,Γ … Δ𝐫𝑘𝑛−1,Γ Δ𝐫𝑘−1𝑛−1,Γ … Δ𝐫𝑘𝑚,Γ Δ𝐫𝑘−1𝑚,Γ …]
𝐖𝑖
𝑛 ∶= [Δ𝐝̂𝑖−1𝑛,Γ Δ𝐝̂𝑖−2𝑛,Γ … Δ𝐝̂𝑘𝑛−1,Γ Δ𝐝̂𝑘−1𝑛−1,Γ … Δ𝐝̂𝑘𝑚,Γ Δ𝐝̂𝑘−1𝑚,Γ …]

(2.68)

Again, the number of columns in the above matrices should be less than the number of degrees of
freedom on the interface. Other than the first time step, relaxation need not be employed for the first
sub­iteration of a time step. Since the 𝐕1𝑛 and𝐖1

𝑛 matrices are partially constructed before the start of
IQN­ILS framework in the current time step, it is expected that fewer sub­iterations are required for the
convergence of interface displacement[6]. IQN­ILS framework with inverse Jacobian update from 𝑚
previous time steps shall be termed as IQN­ILS(m). With higher number of columns in the 𝐕𝑖𝑛 matrix,
there is higher probability for the columns to be linearly dependent of one another, which is a potential
disadvantage with construction of inverse Jacobian from multiple time steps. Similar technique can
be employed for accelerating the convergence of linear and non­linear iterations in interface GMRES
framework, which shall be termed as interface GMRES(m).

2.6. Robustness and Efficiency of temporal coupling frameworks
Based on the intensity of interaction between the physics models of different matter in a continuum,
[28] classifies multi­physics coupling such as FSI into weak and strong coupling. For clarity, suppose
the system of balance equations and its associated constitutive relations discussed in section 2.1 for a
continuum involving structure and fluid domain be simplified into a semi­discrete form as[40]:

𝐰̇ = 𝐀𝐰 = ( 𝐀𝑠 𝐀𝑠𝑓
𝐀𝑓𝑠 𝐀𝑓 )( 𝐰𝑠𝐰𝑓 ) (2.69)

In the above equation, 𝐰𝑠 and 𝐰𝑓 represents the degrees of freedom of the flow and structure
domain, 𝐀𝑠 and 𝐀𝑓 represents the spatial discretization of the structure and fluid domain, 𝐀𝑠𝑓 and
𝐀𝑓𝑠 represents the spatial coupling between degrees of freedom of different domains. Other than the
non­zero entries for the interface degrees of freedom, the off block matrices in 𝐀 are sparse in nature.
According to [28], when off­diagonal block matrices are negligible with respect to the diagonal block
matrices in 𝐀, then the physics coupling is deemed to be weak. Otherwise, if off­diagonal matrices are
quite significant, then the physics coupling is deemed to be strong. Unsteady aeroelastic problems[41]
constitute a weakly coupled FSI, whereas blood flow in blood vessels[42] constitute a strongly coupled
FSI.

For a matrix with significant off­diagonal entries, it cannot be a symmetric positive definite matrix,
resulting in numerical instability issues when iterative methods are employed to obtain its solution[34].
Hence, obtaining the solution of a strongly coupled partitioned FSI is not a trivial task. Due to partial
physics coupling in loosely coupled frameworks, they are highly prone to divergence for strongly coupled
FSI[43]. Therefore, loosely coupled frameworks are typically employed for weakly coupled FSI. Also it
was concluded in [43] that tightly coupled frameworks require more sub­iterations to resolve strongly
coupled FSI in comparison to weakly coupled FSI. As long as smaller spatial and temporal discretizations
are employed, accuracy of the solution obtained from any partitioned FSI simulation can be ensured.
Owing to the issues related to strongly coupled FSI, stability is the limiting factor that affects the
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robustness of any tightly coupled partitioned FSI frameworks. Thus, in addition to the tightly coupled
frameworks discussed in sections 2.4 and 2.5, many other frameworks were developed with the view
of addressing the numerical instability associated with a strongly coupled partitioned FSI simulation.

2.6.1. Paramters influencing stability of tightly coupled frameworks
The strength of the physics coupling is related to certain paramters. These parameters can be physical
— fluid­structure mass ratio[43], Mach number (fluid compressibility)[44], non­dimensional structural
stiffness[45] or numerical — non­dimensional time step[45].

In [45], partitioning error was used as a metric to analyse the behaviour of fixed point iterations
for a stongly coupled FSI involving the 1D axisymmetric unsteady flow in a flexible tube of circular
cross­section. After Fourier decomposition of the partitioning error, it was found that the fixed point
iteration tend to amplify smooth error modes and decay rough error modes. Also, it was found that
fixed point iterations become more unstable with smaller structural stiffness and time step.

[44] studies the effect of added fluid mass and compressibility on the stability of fixed point iterations
as well as interface GMRES framework for a strongly coupled FSI involving a channel flow with a flexible
wall at the base. Here, added fluid mass is an abstract mathematical quantity, that is a function of
the principal eigenvalue of the Poincaré­Steklov operator of the flow solver in [44]. It was found that
the ratio of added fluid mass to structural mass affects the stability of fixed point iterations. As long
as that ratio is smaller than 1, fixed point iteration is stable. And, for time step approaching zero,
the added mass for incompressible flow approaches to a constant, whereas for compressible flow it
approaches zero. Owing to the presence of added fluid mass irrespective of the time step size, it was
concluded that fixed point iteration for incompressible flow is conditionally stable. By employing fixed
point iteration with under­relaxation, it can be made unconditionally stable for incompressible flow. In
another article by Van Brummelen, it was concluded that interface GMRES can tolerate higher added
fluid mass than fixed point iterations[46].

2.6.2. Performance of tightly coupled frameworks
Efficiency and robustness goes hand in hand to judge the desirability of any tightly coupled partitioned
FSI framework for the industry. For problems of industrial scale involving large number of degrees of
freedom, where very long simulation time within the black box flow and structure solvers is the norm,
it is desirable for the coupling framework to have as few sub­iterations as possible. Therefore number
of sub­iterations per time step, averaged over the entire duration of the FSI phenomena, is employed
as the metric to benchmark the efficiency of various coupling frameworks.

In [32], fixed point iteration frameworks as well as the JFNK (FD MFNK and MFNK) coupling frame­
works were benchmarked for the driven cavity with flexible bottom and the pressure wave in flexible
tube test cases. For the driven case with stiffer base, Aitken’s relaxation framework was found to be the
most efficient. Whereas for the case with flexible base, FD MFNK and Aitken’s relaxation were equally
efficient. For the much strongly coupled pressure wave in flexible tube test case, the JFNK coupling
frameworks required fewer sub­iterations than Aitken’s relaxation framework.

In [6], Aitken’s relaxation framework was benchmarked with interface GMRES and quasi Newton
frameworks for the 2D cylinder with trailing flap and 3D flexible tube test case. For the 2D cylinder test
case, the IQN­ILS(m) and IBQN­LS(m) frameworks with vector reuse were the most efficient, followed
by Aitken’s framework and interface GMRES(m) framework. Again, for the 3D flexible tube test case, the
quasi Newton frameworks were the most efficient. However, interface GMRES(m) framework is much
faster than the Atkin’s relaxation framework. Thus, among the tightly coupled frameworks discussed
in this chapter, the quasi Newton frameworks appear to be the most efficient.

2.7. Conclusions
An overview of the theoretical aspects involved in the modelling and execution of a numerical FSI
simulation was provided in this chapter. As long as the matter can be approximated as a continuum,
the balance laws of continuum mechanics along with appropriate constitutive relations can model the
behaviour of solids as well as fluids. Direct computation of the aggregated fluid­structure balance laws
was referred to as monolithic FSI simulation. Partitioned FSI simulation in contrast executes an FSI
simulation through the spatial and temporal coupling of balance laws of segregated fluid and structure
domains. A literature review on existing loosely and tightly coupled frameworks, including a brief
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discussion on their effectiveness for weakly and strongly coupled FSI applications was also provided in
this chapter. It was found that fixed point framework with Aitken’s under­relaxation was mostly effective
for relatively weak FSI coupling, whereas for strong FSI coupling, the quasi Newton frameworks were
found to be more effective. Since, this research will be dealing with strongly coupled FSI applications,
and the objective of this research is to evaluate the robustness of IQN­ILS framework, this framework
will be employed for the FSI simulations to be performed in this research.





3
Partitioned FSI Testbed

For executing the author’s research, a testbed involving the assembly of various software packages
has to be formulated. However, before performing numerical experiments with the testbed, it has to
be validated with existing literature to ensure its proper functioning. Therefore, this chapter treats the
formulation and validation of this testbed. In section 3.1 the components of testbed are described.
Section 3.2 discusses the literature to be employed for validating the testbed. Results of flow and
structure solver validation are shown in sections 3.3 and 3.4. Finally, the validation of testbed in its
entirety is executed in section 3.5.

3.1. Testbed Formulation
In line with the requirements of a black box partitioned FSI solver, the testbed consists of three com­
ponents — flow solver, structure solver and the coupling library. Open source packages will be used
for the above three components in order to facilitate the modification of their respective source codes.

3.1.1. Flow solver
For this research, OpenFOAM v19061 is employed as the flow solver. It is the largest open source CFD
platform with multiple C++ libraries for different flow conditions and models. In addition to fluid dynam­
ics, it also offers support for numerical simulation of acoustics, solid mechanics and electromagnetics[47].
The libraries of OpenFOAM are based on the work of Weller et al. in [48].

3.1.2. Structure solver
CalculiX v2.15[49] is chosen as the structure solver. It is an open source CSM solver based on
the finite element discretization of continuum mechanics governing laws[12]. It is capable of resolving
large non­linear deformations on the structure domain, which is vital for resolving strongly coupled FSI.

3.1.3. Coupling Library
Black box partitioned coupling requires the preservation of source codes of the above discussed flow
and structure solver. For this reason, preCICE2 is chosen as the coupling library for this research.
Like OpenFOAM it is a platform with multiple libraries for different types of partitioned multi­physics
simulations[50]. For partitioned FSI coupling, since OpenFOAM and CalculiX are officially supported
at the time of this writing, the flow and structure solvers were chosen retrospectively based on this
official support. A general schematic of functioning of preCICE is portrayed in figure 3.1. It can be
seen that preCICE requires adapters for interfacing with the flow and structure solvers. The current
adapter for OpenFOAM was originally developed for Conjugate Heat Transfer by Chourdakis in [51].
Risseeuw extended the functionality of this adapter to support FSI in [52]. The current adapter for
CalculiX was originally developed for CHT by Yau in [53]. Rusch extended the functionality of this
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Figure 3.1: Schematic of preCICE[50]

Figure 3.2: Cylinder with Trailing Flap — Geometry[55]

adapter to support FSI in [54]. By integrating the above two adapters within their respective physics
solvers, a black box partitioned FSI coupling can be realised.

3.2. Reference Literature for Validation
To ensure that the partitioned FSI testbed formulated in previous section provides accurate results,
it has to be validated with existing literature. It was decided to utilize the numerical FSI benchmark
prescribed by Turek and Hron in [55] for validation. They employed their monolithic FSI solver described
in [17] with finite element spatial discretization for both the flow and structure domain to perform
numerical FSI simulations.

3.2.1. Test Case
The test case involves an incompressible laminar flow on a two dimensional geometry. The geometry
is a cylinder with a trailing flap as shown in figure 3.2. For all intents, the cylindrical portion of the
geometry can be assumed as a void, whereas the flap is the structural domain of the problem. The
structural domain constitutes an elastic compressible solid. The flow domain surrounding the geometry
is illustrated in figure 3.3. The spatial parameters of flow domain as well as the geometry are prescribed
in table 3.1.

3.2.2. Boundary conditions
On the inlet of control volume a parabolic velocity profile is prescribed for the fluid as:
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Figure 3.3: Cylinder with trailing Flap — Flow Domain[55]

Geometry Parameters Value [m]

channel length L 2.5

channel width H 0.41

cylinder centre location C (0.2,0.2)

cylinder radius r 0.05

flap length l 0.35

flap thickness h 0.02

initial flap tip location A (0.6,0.2)

cylinder root location B (0.2,0.2)

Table 3.1: Cylinder with Trailing Flap — Geometry Parameters[55]

𝑣𝑓(0, 𝑦) = 1.5𝑈𝑦(𝐻 − 𝑦)

(𝐻2 )
2 = 1.5𝑈 4.0

0.1681𝑦(0.41 − 𝑦) [55] (3.1)

For the outlet of control volume a constant pressure is prescribed for the fluid. Since the flow is
incompressible, it is not necessary to prescribe an absolute value for the outlet pressure. Therefore,
zero pressure is specified at the outlet. Outlet velocity and inlet pressure of the fluid are considered
to be the extensions of the internal field, and therefore possess zero gradient boundary condition. For
the walls of the geometry and control volume no slip velocity boundary condition is employed. Zero
pressure gradient is employed for the walls.

In the structural domain, the root of the flap is constrained to be fixed, i.e. zero displacement and
slope. To enable 2D analysis in CalculiX, the remaining nodes are constrained to deform in xy plane
by specifying zero displacement in z direction.

3.2.3. Initial condition
[55] recommends employing a gradual acceleration to the flow at inlet for unsteady simulations such
that:

𝑣𝑓(𝑡, 0, 𝑦) = {𝑣
𝑓(0, 𝑦) (1−cos(

𝜋
2 𝑡)

2 ) if 𝑡 < 2.0

𝑣𝑓(0, 𝑦) if 𝑡 ≥ 2.0
[55] (3.2)

Zero internal field is employed for the initial velocity, and pressure field. As for the structure domain
is considered, zero internal field is employed for initial displacement and velocity field.
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Parameters CFD1 CFD2 CFD3

𝜌𝑓[103kgm−3] 1 1 1

𝜈𝑓[10−3m2 s−1] 1 1 1

𝑈̄[m s−1] 0.2 1 2

𝑅𝑒 20 100 200

Table 3.2: Cylinder with Trailing Flap — Flow simulation parameters[55]

Figure 3.4: Cylinder with Trailing Flap — Sample flow mesh with 856 hexahedron cells

3.3. Flow Solver Validation
Three tests — CFD1, CFD2, CFD3 were proposed in [55] to validate the flow solver. CFD1 and CFD2
are steady state simulations, whereas CFD3 is a transient simulation. The material properties of the
fluid as well as the mean inlet velocity for the above three cases are prescribed in table 3.2. Workflow
of any CFD simulation can be split into three sections — Mesh generation, Flow solver computation and
data postprocessing.

3.3.1. Mesh generation
An open source pre/post processing platform Salome v9.3 was employed to generate the meshes
for the flow domain. Seven grids with different number of hexahedron cells were generated to perform
mesh independence study for all the CFD tests. A coarse faithful reproduction of the grids employed
in this study is illustrated in figure 3.4. The number of cells in each mesh is tabulated in table 3.3. The
meshes were generated such that most of the cells are uniformly refined.

3.3.2. Coupled pressure velocity equations
In incompressible flow, density of the fluid is constant. Therefore, density cannot be employed as
a degree of freedom for the flow problem. Thus, in addition to the two flow velocity components,
pressure has to be employed in order to make the system of equations fully determined. However,
due to constant density, utilization of constant pressure field computed from isentropic relation leads
to non physical solution. Due to the absence of an explicit way to calculate the pressure term in the
momentum equation, the discretized system of flow governing equations resembles a strongly coupled
implicit problem as shown in (3.3) for a steady state problem.

𝐀𝐮 = ( 𝐅 𝐁T
𝐁 𝟎 )( 𝐯𝐏 ) = ( 𝐟𝑏𝟎 ) [56] (3.3)

Owing to the above set of equations constituting a saddle point problem, obtaining solution is not
a trivial task[56]. Said difficulty can be circumvented by decomposing the system matrix using Schur’s
complement as shown in (3.4), and decoupling pressure from velocity.

Mesh 1 2 3 4 5 6 7

Cells 13504 30240 54016 84160 121536 165088 216064

Table 3.3: Cylinder with Trailing Flap — Number of flow domain cells
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𝐀 = ( 𝐅 𝐁T
𝐁 𝟎 ) = ( 𝐅 0

𝐁 −𝐁𝐅−1𝐁T )(
𝐈 𝐅−1𝐁T
𝟎 𝐈 ) = 𝐋𝐔 [56] (3.4)

Once decoupled, a prediction for velocity (𝑣⋆)can be made from pressure and velocity at previous
iteration, with which the predicted pressure (𝑝⋆) is computed as shown in (3.5).

( 𝐅 𝟎
𝐁 −𝐁𝐃−1𝐁T )(

𝐯⋆
𝐩⋆ ) = (

𝐟𝑏
𝟎 ) [56] (3.5)

The velocity (𝑣′) and pressure corrections (𝑝′) can be computed from the predicted value, which is
used to compute the corrected pressure and velocity as:

( 𝐈 𝐃−1𝐁T
𝟎 𝐈 ) ( 𝐯

′

𝐩′ ) = (
𝐯⋆
𝐩⋆ ) [56] (3.6)

The predicted velocity satisfies the momentum equation, whereas the corrected velocity satisfies
the continuity equation. This cycle of prediction and correction is repeated until the predicted velocity is
equal to the corrected velocity(𝐯′ = 𝐯⋆), i.e velocity satisfies both continuity and momentum equations.
Since, computation of matrix inverse is an expensive affair, the inverse of matrix 𝐅 associated with finite
volume discretization of convective and viscous terms is approximated with the matrix 𝐃−𝟏.

3.3.3. SIMPLE Family of Algorithms
The SIMPLE3 algorithm is one of the methods to decouple pressure velocity equations developed by
Patankar and Spalding in [57] for transient flow simulation. Thus each time step consists of multiple
prediction and correction steps. Calculation of pressure correction requires knowledge of interpolated
surface velocity corrections arising from the integration of Laplacian term in the momentum equation,
a consequence of finite volume discretization. In the original SIMPLE method this correction was
neglected. This approximation does not have any bearing on the final solution since the correction term
will vanish on convergence. However, when this surface velocity correction is large during the non­final
iterations, such approximation leads to slow convergence or divergence. Thus, under relaxation has to
be employed for both the pressure and velocity field.

The consistent form of the SIMPLE algorithm, SIMPLEC was developed by Van Doormaal and
Raithby in [58]. In SIMPLEC, the weighted mean of the interpolated surface velocity corrections is
approximated by the cell centre velocity correction, thereby leading to increased convergence stability
by recognizing the role of surface velocity correction terms. In fact, under relaxation is not necessary
for the pressure field in SIMPLEC. But, each SIMPLEC iteration will be more expensive than a SIMPLE
iteration.

Maliska and Raithby developed the PRIME4 algorithm in [59]. As the name suggests, in each PRIME
iteration momentum equation is solved explicitly whereas the pressure equation is solved implicitly. A
consequence of this algorithm is the appearance of an additional term in the pressure equation, involv­
ing the difference of interpolated predicted and initial surface velocities, whose function is to diminish
the role of interpolated surface velocity correction term[56]. Therefore, neglecting this minuscule dif­
ference will not significantly affect the convergence stability. However, owing to the explicit treatment
of momentum equation, the time step is restricted by the CFL5 number.

Issa developed the PISO6 algorithm in [60]. It takes advantage of the implicit nature of SIMPLE
algorithm as well as the robustness of PRIME algorithm. One PISO iteration is composed of a single
SIMPLE iteration followed by one or many PRIME iterations[56]. With each additional PRIME iteration,
the value of the corrected difference term discussed in PRIME algorithm decreases further. Thus, with
more PRIME iterations, ignorance of the difference term will have marginal consequence on the stability
of convergence. Irrespective of the above discussed algorithms, each time step requires multiple
iterations of these algorithms. Although, each PISO iteration is computationally more expensive than
SIMPLE algorithm, it might be the case that few PISO iterations are required per time step for a transient
flow problem.
3Semi Implicit Method for Pressure Linked Equations
4Pressure Implicit Momentum Explicit
5Courant Friedrichs Lewy
6Pressure Implicit Split Operator
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3.3.4. Solvers in OpenFOAM
Four OpenFOAM solvers suitable for resolving incompressible laminar flow are icoFoam, simpleFoam,
pisoFoam and pimpleFoam. icoFoam is pisoFoam solver without turbulence modelling, and there­
fore its treatment is avoided. simpleFoam is a steady state flow solver based on SIMPLE/SIMPLEC
algorithm, whereas pisoFoam and pimpleFoam are transient flow solvers based on PISO algorithm.
The difference arises from the fact that pisoFoam uses single PISO iteration for each time step,
whereas pimpleFoam uses multiple PISO iterations for each time step. In table 3.6 the maximum CFL
number for different meshes are prescribed. Since, the CFL number for the transient CFD3 simulations
is much higher than 1 for all the six meshes, it was decided to employ pimpleFoam solver for transient
simulations. pisoFoam and pimpleFoam can also be employed for obtaining the steady state solu­
tion by marching the transient problem to steady state solution. However, it requires multiple linear
equation iterations for each time step, and if one is not interested in the evolution of the flow, then it
is much faster to obtain the steady state solution by solving the boundary value problem without the
temporal terms by any one of the robust linear equation solvers[61]. Therefore, the consistent version
of simpleFoam, activated by enabling the consistent option, is employed for steady state CFD1 and
CFD2 simulations. Also, the consistent version of SIMPLE was employed for the SIMPLE part of the
pimpleFoam solver in CFD3 simulation.

Irrespective of the algorithm employed, the tolerance for the underlying preconditioned Krylov
subspace linear equation solvers are assigned as 10−10. Also, the pressure and velocity tolerance for
the final solution was set as 10−8. The difference between the two tolerances is that the former controls
the iterative error of thee linear equation solver, whereas the latter controls the iterative error of the
pressure­velocity coupling. Since the maximum orthogonality for all the meshes ranged between 35∘
and 45∘, two non orthogonal corrections were employed for each pressure velocity coupling iteration.
And, for each PISO iteration, one PRIME iteration is employed after a SIMPLE iteration, thereby leading
to two pressure corrections in each PISO iteration. Finally, under relaxation factor of 0.9 was employed
for the velocity field if the linear equation solver fails to converge without under relaxation.

Second order Gaussian quadrature integration with linear interpolation is employed for the gradient
terms on cell centres as well as the convective divergence term. For the gradients terms on the surface
centres required for the computation of the Laplacian term as well as the pressure term, Rhie­Chow
interpolation with non orthogonal correction has been employed to avoid the checker­boarding issue
in collocated meshes[56]. Again, Gaussian quadrature integration is employed for the Laplacian term.
Finally, for the transient CFD3 simulation, the second order backward differentiation formula (BDF­2)
was employed for the time marching of the unsteady problem. As observed in [55], the transient
simulation was performed for 10s with time step of 0.005s to obtain a constant amplitude periodic
solution.

3.3.5. Numerical results for CFD simulations
The simulations were executed on a Linux workstation with four physical and four logical processors.
The duration of the simulation for all the CFD tests are enclosed in table 3.4. It can be seen that
the transient CFD3 simulation becomes prohibitively expensive with increased number of mesh cells.
Owing to huge computational resource requirement, it was decided to not perform CFD3 test for Mesh
7.

Once the simulations are performed, to benchmark with the reference solution in [55], lift and drag
force exerted on the entire geometry by the flow is calculated using the inbuilt post­processing tool in
OpenFOAM. The lift and drag forces for the CFD1 and CFD2 tests are tabulated in table 3.5. For both
CFD1 and CFD2 tests, drag and lift values monotonously approach a stationary solution with increase
in mesh refinement, thereby guaranteeing a mesh independent solution. From here on, the solution
of the mesh with highest mesh refinement will be defined as the most accurate solution. The most
accurate solution is within 1% of the reference lift and drag values, whose accuracy can be further
improved with higher mesh refinement. Therefore, it can be concluded that the flow solver has been
validated for steady state simulations.

Mean, amplitude and frequency of the periodic forces are required for benchmarking with the refer­
ence data of transient CFD3 simulation. Mean is calculated from the average of maximum and minimum
force in the last period. Amplitude is calculated from the difference between mean and either of maxi­
mum or minimum force in the final period. Frequency is calculated from the reciprocal of the final time
period with respect to mean value. The numerical results for CFD3 test are enclosed in table 3.6.
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Mesh CFD1[s] CFD2[s] CFD3[s]

1 9 33 1543

2 33 115 6435

3 178 378 28460

4 620 1189 95522

5 1613 2336 222151

6 3462 4424 425273

7 6814 6626 –

Table 3.4: Cylinder with Trailing Flap — Duration of CFD simulations

CFD1 CFD2
Mesh

Drag[N] Lift[N] Drag[N] Lift[N]

1 14.2069 1.0966 140.1994 10.1370

2 14.2474 1.1065 138.6452 10.2618

3 14.2640 1.1106 137.7676 10.3286

4 14.2719 1.1127 137.3638 10.3649

5 14.2769 1.1140 137.1505 10.3937

6 14.2799 1.1148 137.0221 10.4120

7 14.2822 1.1155 136.9413 10.4281

Reference 14.29 1.119 136.7 10.53

Deviation[%] 0.0546 0.3146 0.1765 ­0.9680

Table 3.5: Cylinder with Trailing Flap — Numerical results of CFD1 and CFD2 tests

Drag Lift
Mesh

Mean[N] Amp.[N] Freq.[s−1] Mean[N] Amp.[N] Freq.[s−1]
CFL No.

1 464.5753 3.3826 4.3120 ­38.2553 351.9974 4.3130 4.9166

2 463.1878 5.5173 4.3808 ­19.9316 466.6350 4.3817 7.6982

3 453.5805 5.6218 4.3969 ­15.3234 462.2827 4.3969 10.3256

4 448.2779 5.6255 4.4048 ­14.1977 454.4851 4.4044 12.9693

5 445.5134 5.6084 4.4089 ­13.0372 450.3650 4.4089 15.5965

6 443.9086 5.6138 4.4117 ­12.3057 447.9352 4.4116 18.233

Ref. 439.45 5.6183 4.3956 ­11.893 437.81 4.3956 –

Dev.[%] 1.0146 ­0.0801 0.3665 3.4701 2.3127 0.3640 –

Table 3.6: Cylinder with Trailing Flap — Numerical results of CFD3 test
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Figure 3.5: Cylinder with Trailing Flap — Mesh refinement study using drag and mean drag force for steady and unsteady
simulations from CFD2 and CFD3 benchmarks respectively

The solution for Mesh 1 seems to be an outlier in comparison to the CFD3 results for the remaining
meshes. This can be attributed to poor mesh resolution to simulate vortex shedding. For the remaining
meshes, all the parameters of lift and drag forces appear to approach a stationary solution, indicat­
ing that mesh independent solution can be established with further mesh refinement. The lift mean
and amplitude exhibit deviation of greater than 1% from reference values. By observing the spatial
convergence of lift mean and amplitude for different meshes, this deviation can be attributed to the
unavailability of CFD3 results for Mesh 7. Whereas, drag mean is around 1% of the reference solution,
whose accuracy can be further improved with higher mesh refinement. And, the frequency of unsteady
lift and drag forces is within 1% of the reference data.

Mesh refinement studies have been done to verify if the spatial discretization error is in agreement
with theoretical prediction. For the central discretization scheme, the discretization error is proportional
to the square of the representative cell size. Let the error in the computed quantity be defined as
𝑒𝑟𝑟(𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦) ∶= 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒. For a 2D mesh, the representative cell size
can be approximated as Δ𝑥 ≈ 𝑀𝑒𝑠ℎ 𝐴𝑟𝑒𝑎/√𝐽, where J is the number of cells in the fluid mesh.
If measurements of a quantity are available for meshes of different refinements, then the order of
discretization can be determined as:

𝑂(𝑒𝑟𝑟) ∶= log 𝑒𝑟𝑟2 − log 𝑒𝑟𝑟1
logΔ𝑥2 − logΔ𝑥1

(3.7)

Drag and mean drag force from CFD2 and CFD3 test shall be employed for obtaining the order
of discretization error in steady and unsteady simulations. The plots of this analysis are portrayed in
figure 3.5. Similar discretization order has been observed for the six finest meshes in steady state
simulation. The averaged discretization order is 2.019. For the unsteady study, similar discretization
order has been observed for the four finest meshes. The O(err) value computed using the first two
meshes was 0.141 which is quite different from its counterparts. This could mean that the refinement of
Meshes 1 and 2 are not good enough to accurately model the vortex shedding. Therefore, the averaged
discretization order computed was 1.991 using O(err) from five finest meshes. Mesh refinement study
for both the steady and unsteady simulation indicated that the spatial discretization order is 2, which
is in line with the expected value for the second order spatial discretization schemes mentioned in
section 3.3.4.

A qualitative comparison between the most accurate transient solution and the reference data is
illustrated in figure 3.6. Both the lift and drag has a phase offset with respect to the reference data,
indicating that fluctuations in the flow field were triggered at different instances. For accurate mod­
elling of the onset of vortex shedding, the spatial discretization should be very fine. Therefore, there
exists a phase difference between the observed and reference lift and drag. However, the measured
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Figure 3.6: Cylinder with Trailing Flap — Drag and Lift Evolution from 9s to 9.6s in CFD3 test. —– : Mesh 6; – –: Reference
data. Reference data digitally reconstructed from [55].

Parameters CSM1 CSM2 CSM3

𝜌𝑠[103kgm−3] 1 1 1

𝑔[m s−2] 2 2 2

𝐸𝑠[106kgm−1 s2] 1.4 5.6 1.4

𝜈𝑠 0.4 0.4 0.4

Table 3.7: Cylinder with Trailing Flap — Structural simulation parameters[55]

unsteady lift and drag are qualitatively identical to that of reference ones. Owing to the qualitative and
quantitative agreement of the most accurate solution with the reference solution, the flow solver is
deemed to be validated for transient flow simulations. Also, this batch of flow meshes will be employed
for validation of the testbed in 3.5. An earlier batch of meshes with very high aspect ratio cells in the
far­stream were initially employed for flow solver validation. See appendix A for more details about the
initial batch of flow meshes and the reason for its exclusion.

3.4. Structure Solver Validation
Three tests — CSM1, CSM2, CSM3 were proposed in [55] to validate the structure solver. CSM1 and
CSM2 are static loading simulations, whereas CSM3 is a dynamic loading simulation. In static analysis,
the rate of application of force is so small that the time dependent inertial term in the governing
equation can be neglected, resulting in the equilibrium of the structure. For dynamic analysis, the force
is thought to be applied instantaneously upon the commencement of simulation, leading to additional
contribution from inertial term,resulting in dynamic response of the structure. For the partial structural
tests, only the action of gravitational force on the beam in isolation is considered. The structure material
is assumed to be a St. Venant­Kirchoff material, i.e isotropic linear elastic tensor with two independent
parameters — Young’s modulus [𝐸𝑠] and Poisson’s ratio [𝜈𝑠]. Parameters of the simulation are enclosed
in table 3.7.

3.4.1. Mesh Generation
Again, Salome was employed to generate the mesh for the structural domain consisting of the flap
behind the cylinder. Linear hexbricks with 2 × 2 × 2 integration points were employed for discretizing
the spatial domain to perform finite element simulations. A representative structural mesh with its
elements and nodes is portrayed in figure 3.7. Seven grids with different number of quadratic hexbrick
elements were generated to perform mesh independence study. Number of elements and nodes in
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Figure 3.7: Cylinder with Trailing Flap — Structural mesh with 70 linear hexahedrons

Mesh 1 2 3 4 5 6 7

Elements 70 280 1120 4480 17920 71680 286720

Nodes 216 710 2538 9554 37026 145730 578178

Table 3.8: Cylinder with Trailing Flap — Number of structural domain elements and nodes

each mesh is tabulated in table 3.8.

3.4.2. Finite Element Solver
CalculiX is a finite element analysis solver based on the finite element method. Earliest known for­
mal definition of FEM can be traced back to the work of Clough in [62]. FEM was initially developed
as a computational framework to numerically obtain the solution of boundary value problems in static
analysis. Primarily formulated for tackling problems in structural engineering analysis, FEM was later
incorporated in other engineering disciplines like electromagnetism, heat transfer and fluid dynamics.
Weak form of the conservation laws of continuum mechanics is discretized into elements, where each
element is an entity of its own, and unknown kinematic quantities are sampled discretely using shape
functions on the nodes of an element. Discretized conservation laws along with its appropriate con­
stitutive additives for such individual elements, relating kinematic and kinetic quantities, are grouped
into a single system of equations as:

𝐊𝐮 +𝐌𝐮̈ = 𝐅 [12] (3.8)

where 𝐊 ∶= ∑
𝑒
𝐋T𝑒𝐊𝑒𝐋𝑒; 𝐌 ∶= ∑

𝑒
𝐋T𝑒𝐌𝑒𝐋𝑒 and 𝐅 ∶= ∑

𝑒
𝐋T𝑒𝐅𝑒𝐋𝑒 are the aggregated stiffness matrix,

mass matrix and force vector respectively[12]. Damping term is not required for the CSM analyses,
and therefore is not considered here. The unknown kinematic quantity at nodes, the displacement
vector 𝐮 is obtained by employing a linear equation solver. In CalculiX, SPOOLES7 is employed by
default to obtain solution of linear equations. SPOOLES is an object oriented sparse matrix library
developed by Ashcraft and Grimes in [63] that resolves system of linear equations directly by the
factorization of the system matrix. Integral quantities in 𝐊𝑒 , 𝐌𝑒 and 𝐅𝑒 are obtained discretely through
the weighted sum of values at 2 × 2 × 2 integration points using Gaussian quadrature scheme.

3.4.3. Solver Setup
Analysis for linear hexahedral mesh with 2 × 2 × 2 integration points is performed by using the C3D8
option for mesh element type. For large deformations, quadratic terms in strain tensor cannot be
ignored, resulting in the appearance of non­linear terms in (3.8). The solution of non linear equations
is obtained by employing Newton Raphson iterations in SPOOLES solver. This is activated in CalculiX
by employing NLGEOM parameter in the run file. Static analysis is triggered in Calculix using the
STATIC parameter. For dynamic analysis, temporal discretization is also required. In CalculiX, this
is accomplished through the 𝛼­method, a derivative of the Newmark implicit temporal discretization.
Dynamic analysis with a time step of 0.005s is activated in CalculiX by employing the DYNAMIC
parameter.

3.4.4. Numerical results for CSM simulations
The duration of the simulation for all the CSM tests are enclosed in table 3.9. Unlike the flow simulations,
only 1 processor was employed for CSM tests. Owing to the nature of dynamic loading simulation, the

7Sparse Object Oriented Linear Equations Solver
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Mesh CSM1[s] CSM2[s] CSM3[s]

1 0.033 0.024 16.9840

2 0.095 0.068 65.7220

3 0.301 0.239 274.965

4 1.263 0.992 1157.42

5 5.981 4.900 5682.72

6 31.37 24.44 26537.7

7 169.8 131.9 151114

Table 3.9: Cylinder with Trailing Flap — Duration of CSM simulations

run time for dynamic analyses is approximately 103 times longer than its static counterparts.
Displacement calculated at point A on the tip of flap will be compared with reference data in [55] for

all the CSM tests. Numerical results for CSM1 and CSM2 tests are enclosed in table 3.10. Irrespective of
number of mesh elements, displacements for both CSM1 and CSM2 tests become stationary at higher
mesh refinement. Also, the most accurate result is within 1% of the reference values of CSM1 and
CSM2 tests. Thus, the structural solver has been validated for static analyses.

Numerical results for the CSM3 test encompassing the mean, amplitude and frequency of displace­
ment are tabulated in table 3.11 for the final cycle of the displacements. Again, the solution becomes
stationary at higher mesh refinements. Like in the case of static analyses, the most accurate solu­
tion for CSM3 test is within 1% of the reference solution. Similar to the procedure in section 3.3.5, a
mesh refinement study can be performed to determine the order of spatial discretization. The mesh
refinement study for steady and unsteady simulations shall be performed with respect to the vertical
displacement and mean vertical displacement from CSM2 and CSM3 benchmarks respectively. The
plots of this analysis are portrayed in figure 3.8. Other than the O(err) corresponding to the last two
meshes, the measured discretization orders are similar. For the steady state simulation, the averaged
discretization order was found to be 2.17. In the unsteady state solution, the O(err) corresponding
to the last three meshes were quite low. This means that for the temporal resolution of 0.005s might
be too coarse for the structural Meshes 5 and above, serving as a bottleneck for the minimization of
spatial discretization error. Perhaps, smaller time step for the above mentioned meshes can result in
higher O(err). In view of the above, the averaged discretization order was computed using Meshes 1–
4. It was found to be 1.764. On observing the averaged O(err) values, the discretization order of the
C3D8 FEM brick discretization can be roughly concluded to be 2.

Qualitative comparison of the measured horizontal and vertical displacement with their reference
counterparts in 3.9 reveal a perfect agreement without any phase offset. It is because the mesh
resolution for Mesh 7 is very fine for the dimensions of the flap, thereby it is capable of accurately
depicting the evolution of displacement field. Owing to qualitative and quantitative agreement of the
most accurate solution with the reference data for CSM3 test, the structural solver is deemed to be
validated for dynamic loading simulations. Also, this batch of structural meshes will be employed for
validation of the testbed in 3.5. An earlier batch of meshes with quadratic hexbricks of 20 nodes were
initially employed for flow solver validation. See appendix B for more details about the initial batch of
structural meshes and the reason for its exclusion.

3.5. Testbed Validation
Three tests — FSI1, FSI2 and FSI3 were proposed in [55] to compare various FSI frameworks. The
above three tests shall be replicated in the testbed described in 3.1, whose results shall be benchmarked
for the purpose of validating the testbed. Both the flow and structural parameters for the above three
benchmarks are mentioned in table 3.12. FSI1 simulation has a steady state solution, whereas FSI2
and FSI3 simulations have a periodic solution. Owing to a very low flow velocity at the inlet for FSI1
benchmark, the mass flow rate is not high enough to trigger the periodic motion of flap. Whereas, the
mass flow rate of the fluid for FSI2 and FSI3 benchmarks are significant enough to sustain the periodic
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Figure 3.8: Cylinder with Trailing Flap — Mesh refinement study using horizontal and mean horizontal displacement for steady
and unsteady simulations using CSM2 and CSM3 benchmarks respectively

CSM1 CSM2
Mesh

𝐮𝑥[mm] 𝐮𝑦[mm] 𝐮𝑥[mm] 𝐮𝑦[mm]
1 ­4.4309 ­52.0084 ­0.2840 ­13.2081

2 ­6.2692 ­61.7612 ­0.4068 ­15.8048

3 ­6.9331 ­64.9246 ­0.4517 ­16.6555

4 ­7.1207 ­65.7929 ­0.4644 ­16.8899

5 ­7.1703 ­66.0216 ­0.4678 ­16.9518

6 ­7.1833 ­66.0821 ­0.4687 ­16.9681

7 ­7.1868 ­66.0983 ­0.4689 ­16.9725

Reference ­7.187 ­66.1 ­0.469 ­16.97

Deviation[%] 0.0026 0.0025 0.0161 0.0146

Table 3.10: Cylinder with Trailing Flap — Numerical results of CSM1 and CSM2 tests

𝐮𝑥 𝐮𝑦Mesh
Mean[mm] Amp.[mm] Freq.[s−1] Mean[mm] Amp.[mm] Freq.[s−1]

1 ­9.0662 9.0661 1.2316 ­51.3101 51.7670 1.2315

2 ­12.7012 12.7014 1.1315 ­60.2519 61.0584 1.1317

3 ­13.8263 13.8263 1.1049 ­62.5821 64.0770 1.1034

4 ­14.1295 14.1291 1.0979 ­63.2929 64.8053 1.0963

5 ­14.2070 14.2067 1.0960 ­63.4639 65.0168 1.0944

6 ­14.2285 14.2280 1.0956 ­63.5083 65.0687 1.0940

7 ­14.2324 14.2321 1.0954 ­63.5220 65.0878 1.0938

Ref. ­14.305 14.305 1.0995 ­63.607 65.16 1.0995

Dev.[%] 0.5073 0.5099 0.37 ­0.1337 ­0.1108 ­0.5163

Table 3.11: Cylinder with Trailing Flap — Numerical results of CSM3 test
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Figure 3.9: Cylinder with Trailing Flap — 𝐮𝑥 and 𝐮𝑦 Evolution from 8s to 10s in CSM3 test. —– : Mesh 7; – –: Reference data.
Reference data digitally reconstructed from [55].

Parameters FSI1 FSI2 FSI3

𝜌𝑓[103kgm−3] 1 1 1

𝜈𝑓[10−3m2 s−1] 1 1 1

𝑈̄[m s−1] 0.2 1 2

𝜌𝑠[103kgm−3] 1 10 1

𝐸𝑠[106kgm−1 s2] 1.4 1.4 5.6

𝜈𝑠 0.4 0.4 0.4

Table 3.12: Cylinder with Trailing Flap — FSI simulation parameters[55]

motion of flap.

3.5.1. Mesh Generation
Partitioned coupling by its very nature, does not require generation of new mesh for simulating fluid
structure interaction. Existing meshes that were generated during flow and structure solver validation
in sections 3.3.1 and 3.4.1 shall be made use of for performing the FSI benchmarks. The nomenclature
for such mesh collections shall be coined as ”Mesh <x>+<y>” for the remainder of this report, where
<x> corresponds to flow mesh number and <y> corresponds to structural mesh number.

3.5.2. Testbed Setup
As discussed in section 3.1.3, the multi­physics coupling library preCICE makes use of adapters to
interface with physics solvers. Adapter configuration files for both the fluid and structure solver serve
the purpose of communicating the spatial information of fluid and solid mesh boundaries neighbouring
the interface as well as physical quantities required for the execution of partitioned coupling to pre­
CICE. As discussed in section 2.3.1, the physical quantities required for fluid structure interaction are
traction and displacement on fluid and solid boundaries adjoining the interface respectively. For the
FSI benchmarks, the outer walls of flap in contact with fluid constitute the interface. As of this writing,
the OpenFOAM adapter is capable of only coupling the force vector at interface to preCICE. Therefore
force computed by the fluid solver shall be used in lieu of traction for performing partitioned coupling.

Another configuration file exists for the sole purpose of configuring the coupling library preCICE
itself, which ultimately tunes the parameters required for a successful spatial and temporal coupling.
The temporal coupling frameworks discussed in chapter 2 are in essence tightly coupled versions of the
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Benchmark 𝝐′𝑑𝑖𝑠𝑝 𝝐′𝑓𝑜𝑟𝑐𝑒 Duration[s] Time Step[s]

FSI1 10−6 10−4 20 10−2

FSI2 10−6 10−2 35 10−3

FSI3 10−6 10−2 20 5 × 10−4

Table 3.13: Cylinder with Trailing Flap — FSI simulation settings

CSS scheme, which is sequential in nature. In sequential coupling, force vector is mapped from face
centres of the fluid interface to the nodes at the structure interface, and displacement vector is mapped
from nodes at the structure interface to face corners of the fluid interface. Global RBF8 interpolation
with thin spline basis functions is employed for force mapping, whereas compact RBF interpolation
with thin spline basis functions is employed for displacement mapping. Owing to the nature of mapped
quantities involved here, the force mapping is conservative, whereas the displacement mapping is
consistent. Whenever, displacement mapping fails due to the RBF linear system not converging, the
displacement mapping is retried with compact­polynomial­c0 basis functions.

Based on analyses from existing literature in section 2.6.2, the IQN­ILS framework was chosen for
performing temporal coupling. Instead of the absolute convergence criterion in equation 2.36, it was
recommended in [64] to employ relative convergence criterion for both displacement and force vector
as stopping criterion for the sub­iterations. The relative stopping criterion for displacement and force
residual are mathematically described as:

‖𝐝̂𝑖Γ − 𝐝𝑖Γ‖ < 𝜖′𝑑𝑖𝑠𝑝‖𝐝̂𝑖Γ‖ (3.9)

‖𝐅̂𝑖Γ − 𝐅𝑖Γ‖ < 𝜖′𝑓𝑜𝑟𝑐𝑒‖𝐅̂𝑖Γ‖ (3.10)

where 𝐅𝑖Γ in the sequential coupling discussed in section 2.3.3 is described as 𝐅𝑖Γ = 𝐹𝑓(𝐝̂𝑖Γ). For
FSI1 benchmark, the relative tolerances for displacement and force were 10−6 and 10−4 respectively.
Whereas relative tolerances of 10−6 and 10−2 were utilized for displacement and force residuals respec­
tively in FSI2 and FSI3 benchmarks. Since the testing conditions for FSI1 benchmark produces steady
state solution, the values for total physical time and individual time step is up to the user’s discretion.
Total physical time of 20s was chosen in order to ensure that there is sufficient time window for the
simulation to produce steady state solution. Since the added mass effect is not significant enough for
FSI1 benchmark, and the transient phase of the solution is of no interest to the user in FSI1 benchmark,
one can get away with a relatively large time step for steady state solution. In view of this, the time
step value for FSI1 benchmark is chosen as 10−2s. In accordance with the settings in [55], the total
physical time and time step for FSI2 and FSI3 benchmarks are prescribed in table 3.13.

A modified version of the original QR filter discussed in section 2.5.3, developed by Haelterman et al.
in [38], is utilized for filtering out data that causes singularity in all the FSI benchmarks. Based on the
recommendation in the user manual for preCICE[65], a limit of 10−2 was chosen for the QR2 filter.
Again, in line with the recommendations in [65], the coupling is allowed to construct V,W matrices
from a maximum of 100 previous sub­iterations or 10 previous time steps, whichever is satisfied first,
in order to accelerate the convergence of the sub­iterations.

Finally, some modifications are required in the workflow of participating physics solvers in order to
execute Fluid Structure Interaction.The ALE formulation of the balance laws discussed in section 2.3.2
is activated through the dynamicMeshDict functionality in pimpleFoam solver. As of this writing,
the OpenFOAM adapter supports only displacementLaplacian mesh motion algorithm. Thus, it is
enabled for FSI benchmarks. This results in an additional variable for the flow solver called cellDis­
placement. This, in conjunction with the variables from coupled pressure velocity equations discussed
in section 3.3.2 form a system of equations, which are solved using the same preconditioned Krylov
subpace solver used in CFD solver validation. For successful spatial coupling from preCICE to Open­
FOAM, the compatibility conditions discussed in section 2.3.1 have to be enforced in conjunction with
DGCL. The viscous fluid compatibility condition is enforced by using movingWallVelocity patch for

8Radial Basis Function
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Mesh 𝐮𝑥[mm] 𝐮𝑦[mm] drag[N] lift[N]

1 + 1 0.02227 0.69902 14.2085 0.80145

2 + 2 0.02236 0.78103 14.2483 0.77489

3 + 3 0.02244 0.80608 14.2656 0.75502

4 + 4 0.02247 0.81344 14.2734 0.76336

Ref. 0.0227 0.8209 14.295 0.7638

Dev.[%] 1.0097 0.9093 0.1513 0.0577

Table 3.14: Cylinder with Trailing Flap — FSI1 benchmark results

the boundary value of the flow velocity at the interface. The pseudo­structure compatibility condition
for the fluid mesh is enforced through fixedValue patch for mesh displacements at face corners of
the fluid interface. This causes the OpenFOAM solver to exclusively adopt values for interface mesh
displacement from the mapped values in OpenFOAM adapter.

Only minor modification is required in the workflow of structure solver to execute Fluid Structure
Interaction. For successful spatial coupling from preCICE to CalculiX, the equilibrium condition
discussed in section 2.3.1 has to be enforced. It is done by making the CalculiX solver to exclusively
adopt the mapped interface force vector from CalculiX adapter in the guise of concentrated loading
boundary condition at the interface nodes. Other than the modifications to the workflow of the par­
ticipating physics solvers, there is no need to tweak the physics solver settings that were employed in
CFD and CSM benchmarks.

3.5.3. Numerical results for FSI simulations
The coupled FSI simulations were performed on a 32 processor node of a compute server with a max­
imum run time of 72 hours for each simulation. Due to the above computing constraints, it was only
possible to perform FSI1 benchmark for four meshes, and FSI2/FSI3 benchmark for three meshes. Lift
and Drag forces computed on the cylinder and flap from OpenFOAM in conjunction with the displace­
ment computed on the tip of flap at point A from CalculiX shall be compared with their reference
counterparts in [55].

The solution for FSI1 benchmark after 20 seconds is tabulated for the four sets of meshes in
table 3.14. The most accurate solution for all the quantities are within acceptable bounds of the
reference data. Also, for all the physical quantities, spatial convergence towards the reference data is
observed. Thus, more accurate solution can be expected with a finer spatial discretization. Hence, the
testbed can be deemed to pass the FSI1 benchmark.

Since FSI2 and FSI3 benchmarks produce periodic solutions, the mean, amplitude and frequency of
the physical quantities are compared with their reference counterparts in [55]. Similar to the unsteady
cases in CFD and CSM validation, the above three statistical quantities were computed for the final
data cycle. The results of FSI2 benchmark are tabulated in table 3.15. With the exception of lift mean
and amplitude, other quantities are around 5% of the reference data. Although the relative error for
lift mean is very high (above 100%), it can be explained by the fact that the magnitude of mean lift is
close to zero, leading to huge relative error for a negligible amount of absolute error. Also, the inability
to perform simulations with meshes of finer spatial discretization hinders accuracy in this benchmark.

The results of FSI3 benchmark are tabulated in table 3.16. The frequency of displacements and
forces are within 5% of the reference results. However, it is not the case with amplitude and mean
values. In fact, they suffer much more in accuracy in comparison to their FSI2 counterparts. It seems
that the meshes of low resolution are over predicting the lift amplitude, because the predicted amplitude
decreases with increase in mesh resolution.

The qualitative comparison of computed forces and displacements with their reference counterparts
for FSI2 and FSI3 benchmarks are portrayed in figures 3.10 and 3.11. From the plots it can be seen
that the reference plots for FSI2 and FSI3 benchmarks were obtained for the time interval [34, 35]𝑠
and [19.5, 20]𝑠 respectively. Unfortunately, the FSI2 and FSI3 benchmarks for Mesh 3+3 configuration
ran out of computation time before it can generate results for all the time steps in the above men­
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𝐮 F
Mesh Axis

Mean[mm] Amp.[mm] Freq.[s−1] Mean[N] Amp.[N] Freq.[s−1]

X ­13.651 12.061 4.10 220.502 78.149 4.14
1 + 1

Y 1.260 76.64 2.1 ­0.247 322.09 2.05

X ­14.947 12.450 3.92 217.799 78.094 3.95
2 + 2

Y 1.249 81.55 2.0 ­0.528 262.99 1.96

X ­15.367 12.743 3.86 217.072 77.540 3.90
3 + 3

Y 1.233 82.73 1.9 ­0.378 251.32 1.94

X ­14.58 12.44 3.8 208.83 73.75 3.8
Ref.

Y 1.23 80.6 2 0.88 234.2 2

X ­5.397 ­2.434 ­1.517 ­3.947 ­5.139 ­2.628
Dev.[%]

Y ­0.211 ­2.644 3.104 142.9 ­7.309 3.085

Table 3.15: Cylinder with Trailing Flap — FSI2 benchmark results
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Figure 3.10: Cylinder with Trailing Flap — Comparison of displacements and forces from FSI2 benchmark between Mesh 2+2
configuration and reference data for time interval 34­35[s]. —–: Reference data; —–: Mesh 2+2 data. Reference data digitally
reconstructed from [55]
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U F
Mesh Axis

Mean[mm] Amp.[mm] Freq.[s−1] Mean[N] Amp.[N] Freq.[s−1]

X ­2.343 2.197 11.27 472.01 21.654 11.55
1 + 1

Y 1.525 31.542 5.55 1.284 245.895 5.55

X ­2.998 2.754 10.93 481.46 24.185 11.15
2 + 2

Y 1.530 35.923 5.49 1.289 182.992 5.49

X ­3.007 2.743 11.08 473.96 24.367 10.60
3 + 3

Y 1.506 36.080 5.47 3.017 167.134 5.46

X ­2.69 2.53 10.9 457.3 22.66 10.9
Ref.

Y 1.48 34.38 5.3 2.22 149.78 5.3

X ­11.790 ­8.432 ­1.682 ­3.643 ­7.531 2.716
Dev.[%]

Y ­1.790 ­4.944 ­3.202 ­35.907 ­11.587 ­2.989

Table 3.16: Cylinder with Trailing Flap — FSI3 benchmark results
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Figure 3.11: Cylinder with Trailing Flap — Comparison of displacements and forces from FSI3 benchmark between Mesh 2+2
configuration and reference data for time interval 19.5­20[s]. —–: Reference data;—–: Mesh 2+2 data. Reference data digitally
reconstructed from [55]
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tioned intervals. Therefore, the qualitative comparison was performed using results from the Mesh
2+2 configuration. The shape of the time series for the computed and reference data look similar with
a phase difference between them. And on further observation of the computed lift force for the FSI3
benchmark, it seems to be affected by noise. Although the effect of this noise on the computation of
lift force is trivial, it might be the case that the noise is larger for other periods, which can have an
impact on the evolution of solution. Finally, based on the quantitative and qualitative analysis it can
be inferred that if high resolution mesh configurations can be employed for benchmarking, then the
deviation for forces is expected to reduce. Thus, it can be concluded that the test­bench is validated for
FSI2 benchmark. As for the FSI3 benchmark is concerned, it can be deemed to be perfectly validated
when the issue of noise can be resolved.

3.6. Conclusions
A brief summary of the physics solvers and the multi­physics coupling library, whose integration results
in the testbed for performing numerical experiments pertaining to partitioned coupling, was given in
section 3.1. However, the testbed has to be validated in order to ensure its proper functioning, before
carrying out any research. To this end, the numerical benchmark involving a fluid structure interaction
between an incompressible flow and elastic solid, proposed by Turek and Hron in [55], was chosen
for validating the author’s testbed in section 3.2. This numerical benchmark involves the simulation of
channel flow around a cylinder with trailing flap, and is split into three components — CFD, CSM and
FSI benchmarks. The flow solver OpenFOAM was validated with CFD tests in section 3.3, whereas the
structure solver was validated with CSM tests in section 3.4. The results of the FSI benchmarking are
enclosed in section 3.5. Some hindrances were faced by the author when trying to validate the testbed.
Owing to the huge computational cost involved in executing a partitioned FSI coupling, the validation
was possible only with a limited number of meshes in comparison to CFD and CSM benchmarks. The
FSI1 benchmark results produced promising results for Mesh 4+4 configuration. However, the FSI
benchmarks with periodic solutions, especially the FSI3 benchmark, were plagued with issues. It
might be due to the poor resolution of the meshes in regards to the treatment of shedding vortices. At
least for FSI2 benchmark, it is predicted that the simulated solution will be closer to reference solution
when high fidelity meshes can be employed. Thus, the testbed can be said to be validated for FSI2
benchmark. For the testbed to be validated for FSI3 benchmark, the noise problem has to be resolved.
Perhaps, it can be resolved by tweaking the various numerical parameters for temporal coupling until the
noise issue has been fixed. To this end, the objective of this research shall be revised from evaluation
of robustness of IQN­ILS framework to Investigation and addressal of noise observed in
force data from FSI3 benchmark. With this is mind, an exhaustive study of the behaviour of noise
for different types of temporal coupling settings will be performed in the next chapter.



4
Investigation of Numerical Noise in

FSI3 Benchmark Forces

This chapter investigates the effect of temporal coupling settings on the numerical noise observed in
the forces computed from the FSI3 benchmark in order to understand the sources that generate such
noise and implement the knowledge obtained from this investigation in the noise filtering methods
discussed in chapter 5. Among the FSI benchmarks with periodic results, the FSI3 benchmark has
higher mass flow rate and lower flap density in comparison to the corresponding parameters for FSI2
benchmark. As discussed in section 2.6.1, higher added mass of fluid in combination with lower mass
of the flap results in stronger coupling for FSI3 benchmark in comparison to FSI2 benchmark. Strongly
coupled FSI problems are more prone to stability issues, which might explain the prevalence of noise
for the force data from FSI3 benchmark.

Before initiating the noise investigation study, it is beneficial to identify a mathematical function
that indicates the degree of smoothness/roughness of a signal. To this end, a mathematical frame­
work based on total variation was used to perform this task. This framework is described in detail in
section 4.1. The hypothesis for the reason behind noise formation in force date is given in section 4.2.
The effect of coupling tolerances as well as IQN­ILS framework settings on noise formation are dis­
cussed in sections 4.3 and 4.4 respectively. Coupled simulations with displacement extrapolation were
investigated in section 4.5 to check if reduced number of sub­iterations results in noisier force signal.
In section 4.6, the role of proportion of degrees of freedom between the fluid and solid interface on
the level of noise is discussed. And, coupled simulations were executed with Aitken’s and fixed under­
relaxation frameworks in section 4.7 to check whether the noisy force signal is specific to IQN­ILS
framework or not. Finally, with the knowledge obtained from the above discussed sections, coupled
simulation with the best settings for IQN­ILS framework shall be executed in section 4.8.

4.1. Total Variation Method
Consider a time dependent periodic signal 𝐠 with 𝑟 + 1 terms, i.e:

𝐠 ∶= [𝑔0 𝑔1 𝑔2 … 𝑔𝑟−1 𝑔𝑟] (4.1)

Let the first instance of maximum and minimum values occur at 𝑙𝑡ℎ and 𝑚𝑡ℎ time step respectively.
Let the vector of these maximum and minimum values in addition to the initial and final value of the
periodic signal be named as 𝐠𝑒𝑥𝑡, i.e.:

𝐠𝑒𝑥𝑡 ∶= [𝑔0 𝑔𝑙 𝑔𝑚 𝑔𝑙+𝑤 𝑔𝑚+𝑤 𝑔𝑙+2𝑤 𝑔𝑚+2𝑤 … 𝑔𝑟] (4.2)

The actual total variation is defined as the sum of absolutes of differences of 𝐠, i.e.:

∑|𝚫𝐠| ∶= [|𝑔1 − 𝑔0| + |𝑔2 − 𝑔1| + … + |𝑔𝑟 − 𝑔𝑟−1|] (4.3)

It is equivalent to measuring the vertical distance traversed by a signal. Also, the expected total
variation is defined as the sum of absolutes of differences of 𝐠𝑒𝑥𝑡, i.e.:

39
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Figure 4.1: Total Variation Method — Illustration of actual total variation and expected total variation

∑|𝚫𝐠𝑒𝑥𝑡| ∶= [|𝑔𝑙 −𝑔0| + |𝑔𝑚 −𝑔𝑙| + |𝑔𝑙+𝑤 −𝑔𝑚| + … + |𝑔𝑚+𝐾𝑤 −𝑔𝑙+𝐾𝑤| + |𝑔𝑟 −𝑔𝑚+𝐾𝑤|] (4.4)

where K is number of periods in the signal. The expected total variation is an alternative inter­
pretation of measuring the vertical distance traversed by the signal. Therefore, for a smooth signal
where it traverses monotonously between the extreme values, the actual total variation and expected
total variation will be the same, as illustrated in figure 4.1 for the initial quarter period of a sine wave,
where 𝑔𝑚−1 < 𝑔𝑚 ∀ 𝑚 ∈ [𝑡0, 𝑡𝑙]. For a signal afflicted with noise, where the noise causes the signal
to vary non monotonously between extreme values, then the actual total variation will be higher than
the expected total variation. Thus, the difference of actual total variation and expected total variation
can serve as an indicator for the amount of noise in the signal. This function can be defined as:

Θ(𝐠) ∶=∑|𝚫𝐠| −∑|𝚫𝐠𝑒𝑥𝑡| (4.5)

This function shall be named as smoothness function. If the signal has no noise as illustrated in
figure 4.1, then the smoothness function for that signal will be zero. If the signal is noisy, then the
smoothness function will have a positive value. And, the value of smoothness function is proportional to
the amount of noise in the signal. This function can detect noise that is wiggly in nature, i.e. the local
slope change by the noise results in non­monotonous curve. For the noise of the staircase type, i.e. the
local slope change by the noise still results in monotonous curve, then the smoothness function cannot
detect it. From the magnified version of a lift plot from a random FSI3 test in figure 4.3b , it can be
seen that the typical signature of noise consists of wiggles, which can be detected by the smoothness
function. Thus, the smoothness function will be a suitable mathematical function for determining the
smoothness of force data from coupled FSI simulations.

4.1.1. Sensitivity to noise magnitude
Consider force values at two consecutive time steps in a noisy signal as 𝐹1 and 𝐹2. These forces can
be decomposed into its physical value and noise as:
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𝐹1 ∶= 𝐹1† + 𝐹1‡

𝐹2 ∶= 𝐹2† + 𝐹2‡
(4.6)

where 𝐹† is the physical value and 𝐹‡ is the noise. Thus the variation for that time interval can be
defined as:

Δ𝐹 ∶= Δ𝐹† + Δ𝐹‡ (4.7)

Since the smoothness function is a relative parameter, in order for it to generate a meaningful value,
the variation due to noise i.e. Δ𝐹‡ should at least be of similar order of magnitude as the variation due
to actual physical value i.e. Δ𝐹‡. The noise variation in turn is dependent on magnitude of noise. Thus,
the smallest noise that can be detected by the total variation method has to be estimated in order to
ensure that the ignored noise is trivial enough for smoothness analysis. To this end, total variation
method was performed on a single cycle of sine wave. A sine series of 106 samples has been created.
Sine wave was chosen for this analysis because the force plots observed in section 3.5.3 are sinusoidal
in nature. For a fixed time period, higher number of samples result in smaller variation for a time step.
Also, from figure 4.1, by measuring the vertical distance of curve segments OA,AB,BC it can be seen
that the variation becomes smaller as the curve approaches maxima or minima. Therefore, for total
variation method to function, it is expected that the minimum variation of noise (Δ𝐹‡𝑚𝑖𝑛) is of similar
order of magnitude as minimum variation of actual value (Δ𝐹†𝑚𝑖𝑛), which occurs at signal minima or
maxima. A vector with 106 random values that are of order of magnitude of O(1) was generated.
This vector was then scaled by amplitudes ranging between 10−10 and 1010 in order to generate noise
vectors of different magnitudes. In addition to the original sine series of 106 samples, other series of
103, 104, 105 terms were obtained as subsets of the original series with larger spacing.

Let 𝐠† be the sine series and 𝐠‡ be the scaled noise series with amplitude 𝜉. Noise afflicted sine wave
is generated by adding 𝐠† and 𝐠‡. The smoothness function values as well as the total variation due
to noise are plotted for the noise afflicted sine wave with different number of samples in figures 4.2a –
4.2d. As expected, for a fixed period the total variation method can detect smaller noise as the number
of samples in a signal increases. For the signal with 106 samples, the total variation method was able
to compute a meaningful smoothness function value for noise of all orders of magnitude involved in
the analysis. Total variation method on 𝐠105 , 𝐠104 and 𝐠103 is sensitive from 𝜉𝑚𝑖𝑛 of 10−8, 10−6 and
10−4. Also, in the above mentioned figures, the total variation due to noise and smoothness function
value start to become similar when the magnitude of noise vector increases. This is expected, since for
noise with large 𝜉, ∑ |𝚫𝐠‡| >> ∑ |𝚫𝐠†|, resulting in Θ(𝐠) ≈ ∑ |𝚫𝐠‡|. Since, the sensitivity of the total
variation method was examined for discrete values of 𝜉 at 10−10, 10−9, 10−8 etc.; it could be the case
that the actual value of 𝜉𝑚𝑖𝑛 lies between the discrete values. Therefore an optimization study was
performed for 𝐠105 , 𝐠104 and 𝐠103 to determine 𝜉𝑚𝑖𝑛 that corresponds to Θ(𝐠) > 10−10. These values
are tabulated in the first three rows of table 4.1. These values were also highlighted in the figures 4.2b
– 4.2d.

4.1.2. Noise threshold analysis for FSI3 benchmark force data
In order to apply the findings from this section to smoothness analysis of force data, the smoothness
function was again evaluated for noise afflicted sine wave with 104 samples, but with different number
of cycles. From the force results for FSI3 simulation of Mesh 2+2 configuration in table 3.16, with time
step being 5 × 10−4s, and drag and lift frequency approximately being 11 and 5.5 respectively; the
number of cycles required to mimic drag and lift signal for 104 samples (t=5s) are 55 and 28 respectively.
Therefore, two additional noise afflicted sine wave was constructed with 55 and 28 cycles. The steps
followed for smoothness function evaluation of single period noise afflicted sine wave was repeated
for the above two mentioned signals. The smoothness function and total noise variation plot for these
signals are enclosed in figures 4.2e and 4.2f. It can be seen that 𝜉𝑚𝑖𝑛 increases with higher number
of cycles in a signal. This is expected, since increasing the number of cycles for a fixed time window
results in larger variation of physical value for a time step, thereby requiring noise variation of larger
magnitude to be detected by total varaition method. From table 4.1, it can be seen that total variation
method is sensitive to noise that is at least 2.3204×10−4 times drag amplitude and 9.2837×10−5 times
lift amplitude for smoothness analyses of drag and lift data respectively from FSI3 benchmark of mesh
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Figure 4.2: Total Variation Method — Smoothness function value and Total Variation of noise for a sine wave afflicted with
noise of different scales/amplitude. —– : Smoothness function value; —– : Total variation of noise vector; ⋆ : Minimum noise
amplitude sensitive to TVM
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Signal Minimum Noise Amplitude

105 samples; 1 period 4.2250 × 10−9

104 samples; 1 period 2.3487 × 10−7

103 samples; 1 period 3.8106 × 10−5

104 samples; 28 periods 9.2837 × 10−5

104 samples; 55 periods 2.3204 × 10−4

Table 4.1: Total Variation Method — Minimum noise sensitive to TVM for sine series of different number of samples with one
period. Series with 104 samples is also tested with 28 and 55 periods to determine the sensitivity of TVM to lift and drag force
from FSI3 benchmark

2+2 configuration. From table 3.16, the drag and lift amplitude were approximately 24N and 183N
respectively. Therefore, using total variation method, it is possible to perform smoothness comparisons
with drag and lift noise being as low as 5.569 × 10−3N and 0.017N respectively for any time step.

4.2. Hypothesis for noise formation
As mentioned in previous section, the zig­zag pattern of noise is its characteristic signature. Thus,
the frequency of this zig­zag corresponds to the time step of the simulation, indicating that the noise
is temporal in nature. The study of mechanisms involved in spatial and temporal coupling is a good
starting point to understand how noise can creep into force. Interface force is computed in flow solver
as a function of pressure and wall shear stress at the interface. From (2.17), the shear stress vector
for Newtonian fluid at interface of cell i is:

𝝉Γ(𝑖) = 𝜇(𝛁𝐯𝑖 + 𝛁𝐯𝑇𝑖 ) ⋅ 𝐧Γ(𝑖) (4.8)

where 𝐧Γ(𝑖) is the normal vector of the face of cell i corresponding to the interface. The wall shear
stress can be obtained as:

𝜏Γ(𝑖),𝑤 = 𝝉Γ(𝑖) ⋅ 𝐭Γ(𝑖) (4.9)

where 𝐭Γ(𝑖) is the tangential vector of the face of cell i. The force at face of cell i is then computed
as:

𝐅Γ(𝑖) = 𝑝𝑖𝐝𝐀Γ(𝑖) + 𝜏Γ(𝑖),𝑤𝐝𝐀Γ(𝑖)
𝐅Γ(𝑖) = 𝑝𝑖𝐝𝐀Γ(𝑖) + 𝜇(𝛁𝐯𝑖 + 𝛁𝐯𝑇𝑖 ) ⋅ 𝐧Γ(𝑖) ⋅ 𝐭Γ(𝑖)𝐝𝐀Γ(𝑖)

(4.10)

Thus it can be seen that the force at the wall is a function of velocity gradients at the interface.
Noise, observed in the force is temporal in nature. (4.10) does not seem to be a explicit function of
time. But the velocity gradient of interface cell i is a function of velocity at its faces. Since, one of the
faces is the fluid­structure interface, the velocity gradient is a function of interface velocity, i.e.:

𝛁𝐯𝑖 = 𝐅(𝐯Γ(𝑖)) (4.11)

From the kinematic condition at the interface in (2.20):

𝐯Γ(𝑖) = 𝐝̇Γ(𝑖) (4.12)

Substituting (4.11) and (4.12) in (4.10):

𝐅Γ(𝑖) = 𝑝𝑖𝐝𝐀Γ(𝑖) + 𝜇(𝐅(𝐝̇Γ(𝑖))) ⋅ 𝐧Γ(𝑖) ⋅ 𝐭𝐚Γ(𝑖)𝐝𝐀Γ(𝑖) (4.13)

Now, interface force can be seen as a function of derivative of interface displacement. Thus, if noise
occurs in interface force, the only source for it is the derivative of interface displacement, assuming
the flow solver is perfectly capable of computing the other quantities in (4.10) without noise. And, if
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the interface displacement has noise, then the derivative of interface displacement has noise. Let, the
interface displacement be decomposed as:

𝐝𝑚,Γ = 𝐝†𝑚,Γ + 𝐝‡𝑚,Γ (4.14)

On applying BDF­2 temporal discretization to interface displacement:

𝐝̇𝑚,Γ =
3
2𝐝

†
𝑚,Γ − 2𝐝†𝑚−1,Γ +

1
2𝐝

†
𝑚−2,Γ

Δ𝑡 +
3
2𝐝

‡
𝑚,Γ − 2𝐝‡𝑚−1,Γ +

1
2𝐝

‡
𝑚−2,Γ

Δ𝑡 (4.15)

For FSI benchmark Δ𝑡 = 0.0005. Thus:

𝐝̇𝑚,Γ = 2 × 103 (
3
2𝐝

†
𝑚,Γ − 2𝐝†𝑚−1,Γ +

1
2𝐝

†
𝑚−2,Γ) + 2 × 103 (

3
2𝐝

‡
𝑚,Γ − 2𝐝‡𝑚−1,Γ +

1
2𝐝

‡
𝑚−2,Γ) (4.16)

From the above equation, it can be seen that the first derivative of noise 𝐝‡𝑚,Γ is scaled by three
orders of magnitude, which is a significant value. This implies that minuscule error in interface dis­
placement on differentiation manifests as significant noise in force data. It is the reason, why the
noise was only observed in interface force in figure 3.11. As for the noise in interface displacement
is concerned, it can be caused by round­off error, modelling error, iterative error, discretization error
etc., i.e.:

𝐝‡𝑚,Γ = 𝐝‡𝑚,Γ,𝑟𝑜𝑢𝑛𝑑−𝑜𝑓𝑓 + 𝐝‡𝑚,Γ,𝑚𝑜𝑑𝑒𝑙 + 𝐝‡𝑚,Γ,𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 + 𝐝‡𝑚,Γ,𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 + 𝐝‡𝑚,Γ,𝑚𝑖𝑠𝑐 (4.17)

4.2.1. Round­Off Error
Round­off error is caused as a consequence of machine precision. Machine precision is the smallest
number that can be represented by a computer. This causes the accuracy of the solution to be limited
by the machine precision. This error only comes into picture, when the other sources of numerical
error have been addressed.

4.2.2. Modelling Error
Modelling error occurs when the model approximates certain aspects of the physical phenomenon. Non
linear version of the structural governing equations were employed in the CalculiX solver. And, the
St.Venant Kirchoff’s model for the constitutive relation is an appropriate model for modelling isotropic
elastic material. Thus, it can be concluded that modelling error is negligible in 𝐝‡𝑚,Γ.

4.2.3. Discretization error
Discretization error is a combination of spatial and temporal discretization error within the structure
solver and spatial coupling error from RBF interpolation when the interface displacement is coupled from
the structure domain to fluid domain. However, the error arising from the RBF interpolation is ultimately
a function of spatial discretization error. Therefore error generated from RBF interpolation can be
categorized under 𝐝‡𝑚,Γ,𝑠𝑝𝑎𝑡𝑖𝑎𝑙−𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛. Within the structure solver, the spatial discretization error
in interface displacement is independent of time step, if the time step is sufficiently small. The mesh
refinement study in section 3.4.4 showed that the spatial discretization is of second order. And, the
alpha method employed for temporal discretization is second order accurate. Therefore the derivative
of discretization error is:

𝐝̇‡𝑚,Γ,𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
𝑂(Δ𝑡2)
Δ𝑡 + 𝑂(Δ𝑥

2)
Δ𝑡 (4.18)

𝐝‡𝑚,Γ,𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙−𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 decreases with smaller time step. However, by reducing the time step,
the error from spatial discretization and other sources are amplified. If the temporal discretization
error is much smaller than the spatial discretization error and iterative error to begin with, than further
reduction in Δ𝑡 would only amplify the noise in interface force.
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𝜖′𝐝 𝜖′𝐅 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
10−6 10−2 4.9 1.893 × 10−7 3.312 × 10−3 568.651 15344.922

10−4 10−4 8.9 1.551 × 10−8 4.328 × 10−5 79.417 1696.299

Table 4.2: Cylinder with Trailing Flap — Mean number of sub­iterations, Mean interface residuals and Smoothness of Drag/Lift
data for FSI3 simulations on Mesh 1+1 configuration with different coupling tolerances for time interval 15 ­ 20 [s]

4.2.4. Iterative error
Iterative errors are associated with solutions obtained using iterative methods. In partitioned FSI,
iterative methods are employed at two levels. At the first level, iterative methods like fixed point
and Newton­Raphson iterations are used to treat the partitioning error. At the second level, iterative
methods within the flow and structure solver treat the flow field and structure field error respectively.
In applications related to development of partitioned coupling methods, the iterative error in fluid
and structural solvers are kept low in comparison to the iterative error of the partitioning framework.
Therefore, in this research 𝐝‡𝑚,Γ,𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒 is dominated by the partitioning error.

Miscellaneous error
Any sources of error other than the four mentioned sources shall be categorized as 𝐝‡𝑚,Γ,𝑚𝑖𝑠𝑐.

4.2.5. Synthesis
From the discussion so far in this section, it can be seen that for small temporal and spatial discretization
in the structure solver, the dominant error in 𝐝‡𝑚,Γ is expected to be the iterative error. And, for this
research the dominant error in iterative error is the partitioning error. However, the miscellaneous
error cannot be predicted a priori. Therefore, the remainder of this chapter will focus on finding the
optimal parameters for IQN­ILS algorithm that can produce the least partitioning and miscellaneous
error, thereby minimizing the occurrence of noise in interface force.

4.3. Effect of coupling tolerances
Tweaking the coupling tolerances of temporal coupling is the fundamental way to control the iterative
error. If convergence is possible, then a stricter coupling tolerance will reduce the partitioning error.
Since preCICE also supports CPS scheme, one can assign values for both 𝜖′𝑑𝑖𝑠𝑝 and 𝜖′𝑓𝑜𝑟𝑐𝑒. Since,
the implicit temporal coupling is sequential, 𝜖′𝑓𝑜𝑟𝑐𝑒 is not expected to affect the partitioning error. Only
𝜖′𝑑𝑖𝑠𝑝 will play a main role in affecting partitioning error. The amount of noise with respect to 𝜖′𝑑𝑖𝑠𝑝 shall
be measured.

4.3.1. Mesh 1+1 configuration
FSI 3 benchmark was repeated for Mesh 1+1 with 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4, which is compared with
the original results obtained using 𝜖′𝐝 = 10−6, 𝜖′𝐅 = 10−2. Results for 𝑡 = [15, 20]𝑠 of this comparison
are enclosed in table 4.2. It can be seen that the simulation with higher 𝜖′𝐝 has much lower noise.
This is because ‖𝐫Γ,𝐝‖ is an order of magnitude smaller for 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4 in comparison to
𝜖′𝐝 = 10−6, 𝜖′𝐅 = 10−2. The lesser ‖𝐫Γ,𝐝‖ is possible because of stricter 𝜖′𝐅 in 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4.
Thus, it can be seen that a stricter 𝜖′𝐅 can indirectly influence ‖𝐫Γ,𝐝‖ by forcing the temporal coupling
framework to perform more sub­iterations. However, the test for 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4 required nearly
double the amount of sub­iterations in comparison to 𝜖′𝐝 = 10−6, 𝜖′𝐅 = 10−2. Therefore for Mesh 1+1
configuration, the cost for obtaining ‖𝐫Γ,𝐝‖ that is one order of magnitude lower is twice the number of
sub­iterations. Still, converging to a smaller interface residual resulted in lesser noise, which is in line
with the hypothesis.

4.3.2. Mesh 2+2 configuration
FSI 3 benchmark was repeated for Mesh 1+1 with 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4, which is compared with
the original results obtained using 𝜖′𝐝 = 10−6, 𝜖′𝐅 = 10−3. Results for the 𝑡 = [11.445, 16.445]𝑠 of
this comparison are enclosed in table 4.3. In this case, the comparison is for an earlier time interval
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𝜖′𝐝 𝜖′𝐅 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
10−6 10−3 6.8 8.705 × 10−8 4.124 × 10−4 164.547 13687.118

10−4 10−4 12.5 3.447 × 10−7 1.118 × 10−4 12100.711 223963.376

Table 4.3: Cylinder with Trailing Flap — Mean number of sub­iterations, Mean interface residuals and Smoothness of Drag/Lift
data for FSI3 simulations on Mesh 2+2 configuration with different coupling tolerances for time interval 11.445 ­ 16.445 [s]

because the FSI3 benchmark with 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4 ran out of computation time. The results
observed for Mesh 2+2 configuration are in contrast to the results for Mesh 1+1 configuration. Noise
observed for 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4 is much larger than noise observed for 𝜖′𝐝 = 10−6, 𝜖′𝐅 = 10−3.
‖𝐫Γ,𝐝‖ is much higher for 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4 in comparison to 𝜖′𝐝 = 10−6, 𝜖′𝐅 = 10−3. This is
because ‖𝐫Γ,𝐅‖ = 1.118 × 10−4 for 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4 is greater than the mandated 𝜖′𝐅 = 10−4. This
implies that the sub­iterations did not converge for some time steps. Even if the sub­iterations have
not converged, ‖𝐫Γ,𝐝‖ = 3.447×10−7, which is still lower than the 𝜖′𝐝 for the simulation with 𝜖′𝐝 = 10−6,
𝜖′𝐅 = 10−3 that produced less noise.

This warranted a detail investigation. The forces for both the simulations are plotted for 𝑡 =
[16.2, 16.25]𝑠 in figures 4.3a and 4.3b. The drag and lift data for 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4 is plagued
with huge numerical artefacts for 𝑡 = [16.2075, 16.2185]𝑠. To understand more about these artefacts
the scattered plots for 𝐫Γ,𝐝 and 𝐫Γ,𝐅 for 𝑡 = [16.2, 16.25]𝑠 are shown in figures 4.3c and 4.3c. Within
these plots, the interval corresponding to 𝑡 = [16.2075, 16.2185]𝑠 are bounded by shaded black lines.
Both the scatter plots indicate that the 𝐫Γ,𝐝 and 𝐫Γ,𝐅 are generally lower for 𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4 in
comparison to 𝜖′𝐝 = 10−6, 𝜖′𝐅 = 10−3. However, for the time step just after 𝑡 = 16.2075[𝑠], 𝐫Γ,𝐝 is of
the order of 10−5, which is highlighted in the plot. Since it is lower than 𝜖′𝐝 for the simulation with
𝜖′𝐝 = 10−4, 𝜖′𝐅 = 10−4, the temporal coupling deemed that time step to be converged and proceeded
to the next time step. This is a special event, where a stricter 𝜖′𝐅 did not force the temporal coupling
to perform additional sub­iterations. Consequentially, it can be clearly seen from the force plots that
for time step at 𝑡 = 16.2075[𝑠], where 𝐫Γ,𝐝 is in the order of 10−5, noise is triggered in both drag and
lift data. This is because higher 𝐫Γ,𝐝 amounts to higher partitioning error, and the partitioning error
further gets amplified under temporal derivative in the guise of iterative error. Thus, this observation
is in line with the hypothesis.

4.3.3. Synthesis
Based on the results for investigation of coupling tolerances on Mesh 1+1 and Mesh 2+2 configurations,
it can be concluded that smaller 𝐫Γ,𝐝 results in lesser noise in the force data. And, no relationship can
be observed between 𝐫Γ,𝐅 and noise in the force data. Thus, manipulation of 𝜖′𝐝 is the reliable way to
control the amount of noise in force data. Therefore, stricter 𝜖′𝐝 will result in lesser noise in the force
data. And, it is recommended to use a higher value for 𝜖′𝐅 to avoid the wasteful expenditure of precious
sub­iterations. Use of stricter 𝜖′𝐅 is also dangerous because there is a higher probability for the columns
to be identical in 𝐕𝑖 matrix of IQN­ILS framework, causing them to be eliminated frequently by the QR
filter, resulting in non convergence of IQN­ILS framework. Therefore, the optimal coupling tolerances
for IQN­ILS framework are 𝜖′𝐝 = 10−6, 𝜖′𝐅 = 10−3.

4.4. IQN­ILS framework settings
In [65], many parameters that influence the performance of IQN­ILS algorithm were specified. It was
concluded in previous section that the QR filtering, which is one of the mentioned parameters in the
above citation, can play a role in influencing the rate of convergence of sub­iterations, thereby dictating
the level of noise in the solution. In addition to QR­filter the other parameters that can play a role in
noise generation are maximum allowable columns in V,Wmatrices and maximum number of time steps
allowed for construction of V,W matrices. Therefore, the effect of the above three IQN­ILS settings
on noise in the force will be analyzed in this section.
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Figure 4.3: Cylinder with Trailing Flap — FSI3 benchmark force and residual comparison of Mesh 2+2 configuration with different
coupling tolerances. —–/∘ : 𝜖′𝐝 = 10−6 , 𝜖′𝐅 = 10−3; – –/∘ : 𝜖′𝐝 = 10−6 , 𝜖′𝐅 = 10−3



48 4. Investigation of Numerical Noise in FSI3 Benchmark Forces

QR filter 𝑘̄ Deleted columns ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
QR2/10−2 6.84 3.5047 8.859 × 10−8 4.137 × 10−4 180.606 13892.357

QR1/10−6 5.8 2.9151 2.002 × 10−7 4.536 × 10−4 102.681 5353.251

Table 4.4: Cylinder with Trailing Flap—Mean Number of sub­iterations, deleted columns, residuals per time step; and Smoothness
of Drag/Lift data for FSI3 simulations on Mesh 2+2 configuration with QR­1 and QR­2 filtering for time interval 15 ­ 20 [s]

4.4.1. Type of QR­filter
As of this writing preCICE supports two types of QR filter — QR1 and QR2. The reason for employing
QR filter in IQN­ILS framework is discussed in section 2.5.3. As described earlier, QR1 filter is based on
eliminating columns in V,W matrices that causes singularity in upper triangular matrix (R matrix) from
the QR decomposition of Vmatrix. QR2 filter is a novel QR filtering technique developed by Haelterman
et al. in [38]. [65] recommends using QR­2 filter with limit of 10−2 or QR­1 filter with limit of 10−6.
Thus FSI3 simulations using the above two filters shall be compared. Typically, QR­filtering is expected
to affect only the number of sub­iterations required for convergence. It was shown in section 4.3.2
that non converged sub­iterations can introduce numerical effects. Therefore to do a fair comparison,
the coupling tolerances 𝜖𝑟𝑒𝑙,𝑑𝑖𝑠𝑝 = 10−6, 𝜖𝑟𝑒𝑙,𝑓𝑜𝑟𝑐𝑒 = 10−3 were chosen in order to ensure that all the
sub­iterations in the time window of comparison have converged. The results of this comparison are
tabulated in table 4.4 for 𝑡 = [15, 20]𝑠. It can be seen that fewer sub­iterations are required for
convergence in the simulation with QR1­filtering. The lower number of sub­iterations for QR­1 filter
can be attributed to lesser number of columns being deleted in V,W matrices. Also, less noise is
observed for the simulation with QR­1 filter. This is despite ‖𝐫Γ,𝐝‖ and ‖𝐫Γ,𝐅‖ being similar for both the
simulations. It means that the partitioning errors for both the simulations are similar. Therefore, the
additional noise generated by QR­2 filter cannot be from 𝐝‡𝑚,Γ,𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑣𝑒. Thus, this additional noise from
QR­2 filter can be classified under 𝐝‡𝑚,Γ,𝑚𝑖𝑠𝑐. In view of the above results, it was decided to employ
QR­1 filter for rest of the analyses in this chapter.

4.4.2. Maximum number of columns in V,W matrices
In section 2.5.3, a hard limit was prescribed for number of previous sub­iterations, with which the
V,W matrices are constructed, i.e. the maximum number of columns in the above mentioned matrices
should be lesser than the number of degrees of freedom on fluid structure interface. The Mesh 2+2
configuration has 580 degrees of freedom on the structure interface. Thus, the number of sub­iterations
reused for IQN­ILS temporal coupling in previous analyses — 100, is sufficiently below the hard limit of
580. It was decided to check if the maximum limit on the number of columns in V,W matrices has an
influence on the noise in force data. FSI3 benchmark was repeated for Mesh 2+2 configuration, where
the maximum number of columns in V,W matrices is restricted to 50. The results of this comparison
are tabulated in table 4.5. There is only marginal difference in the amount of noise observed for lift and
drag data. Also, the average number of sub­iterations and averaged residuals are marginally different.
This marginal difference can be attributed to the maximum number of previous time steps allowed
for construction of interface Jacobian. Average number of sub­iterations per time step is 5.8 for both
the cases. Thus, with 10 time steps being reused, the number of columns in V,W matrices due to
reuse from previous time steps is on average 58. For the test with 100 permitted columns, the V,W
matrices will have 64 columns(58 + 6). Whereas for the test with 50 permitted columns, only the
columns associated with the 50 latest sub­iterations out of 64 previous sub­iterations shall be recorded
in the V,W matrices. If the V,W matrices are different, then the computed extrapolation coefficients
will be different, resulting in the computed forces for the two cases being different. However, as seen
in the results, this phenomenon only causes a marginal change to the existing noise in lift and drag
data. Therefore, it can be concluded that the parameter governing the maximum number of permitted
columns in V,W matrices has a marginal influence on the amount of noise in force data. Thus this
parameter can have any value, as long as it is lower than the hard limit discussed earlier.

4.4.3. Maximum number of time steps reused in V,W matrices
In section 2.5.4, it was discussed that the number of sub­iterations required to attain convergence
can be reduced by reusing data from previous time steps in the construction of V,W matrices. As
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Max columns 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
100 5.8 2.002 × 10−7 4.536 × 10−4 102.681 5353.251

50 5.819 1.981 × 10−7 4.527 × 10−4 89.681 5656.754

Table 4.5: Cylinder with Trailing Flap — Mean number of sub­iterations, coupling tolerances per time step; and Smoothness of
Drag/Lift data for FSI3 simulations on Mesh 2+2 configuration with 100 and 50 max number of columns in V,W matrices for
time interval 15 ­ 20 [s]

Max time steps/columns 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
5/25 6.1 1.629 × 10−7 4.528 × 10−4 88.931 4568.524

10/50* 5.807 1.954 × 10−7 4.519 × 10−4 85.117 5308.252

20/100 5.81 2.225 × 10−7 4.678 × 10−4 173.206 9896.387

30/150 5.991 2.656 × 10−7 4.768 × 10−4 273.477 15264.047

Table 4.6: Cylinder with Trailing Flap — Mean number of sub­iterations, coupling tolerances per time step; and Smoothness of
Drag/Lift data for FSI3 simulations on Mesh 2+2 configuration with 5, 10, 20 and 30 max number of reused time steps in V,W
matrices for time interval 15 ­ 20 [s]

shown in (2.68), the oldest and newest vectors are on the rightmost and leftmost sides of the V,W
matrices respectively. A limit can be specified for the maximum number of time steps employed for
the construction of V,W matrices. If this limit is large, then it might be the case that the extrapolation
in IQN­ILS is more biased towards past flow field, resulting in noise creation in force data. All the
FSI3 tests discussed so far had data reused from at most 10 time steps for the construction of V,W
matrices. It was not certain if this is the optimal value for the maximum number of time steps reused.
Therefore, FSI3 benchmark was repeated for Mesh 2+2 configuration with maximum number of reused
time steps — 5, 20 and 30. If data has to be reused from higher number of previous time steps, then
the maximum number of permitted columns discussed in section 4.4.2 should be scaled proportionately
as well. The results for the test involved in this comparison are tabulated in table 4.6. Data from 25,
50, 100 and 150 latest sub­iterations out of 36, 64, 122 and 186 averaged previous sub­iterations was
reused for the simulation involving reuse of data from 10, 20 and 30 previous time steps respectively.
This shows that a significant proportion of the available data from time step reuse criterion has been
employed for all the cases, thus ensuring a fair comparison.

From the results, it can be seen that the number of time steps reused has a significant influence on
the noise in force data when more than 10 time steps are reused. The noise magnitude in the signal
seems to be directly proportional to the number of time steps reused (above 10) for the construction
of V,W matrices. The average number of sub­iterations per time step appear to be similar for the
cases involving 10 and 20 reused time steps. Whereas, it is higher for the case involving 5 and 30
reused time steps. Thus, for this particular FSI problem, higher number of reused time steps causes
the vector extrapolation within IQN­ILS framework to be more biased to older solution, which might be
the reason for larger noise. Thus, 10 seems to be the optimal value for number of time steps reused
in the construction of V,W matrices, which shall be employed for further analyses in the remainder of
this report.

4.4.4. Synthesis
Each IQN­ILS parameter investigated in this section, exhibited different levels of noise in force for
different values of those parameters. However, the additional noise generated by tweaking with these
parameters did not seem to affect the partitioning error. Therefore, the generated noise that was
observed for these investigations can be classified under 𝐝‡𝑚,Γ,𝑚𝑖𝑠𝑐.

*Data different from the second row in table 4.5 owing to the flow solver tolerance being 10−10. Results in table 4.5 were
estimated with the flow solver tolerance being 10−8.
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Extrapolation Order 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
constant 5.8 2.002 × 10−7 4.536 × 10−4 102.681 5353.251

2nd order 4.535 1.121 × 10−7 4.428 × 10−4 291.918 19100.721

Table 4.7: Cylinder with Trailing Flap — Mean number of sub­iterations, coupling tolerances per time step; and Smoothness of
Drag/Lift data for FSI3 simulations on Mesh 2+2 configuration with and without displacement extrapolation for time interval 15
­ 20 [s]

4.5. Effect of displacement extrapolation
FSI simulations that were discussed so far employed constant extrapolation from previous time step
in order to obtain the initial interface displacement for the first sub­iteration of next time step, i.e.
𝐝0𝑚,Γ = 𝐝

𝑘𝑓𝑖𝑛𝑎𝑙
𝑚−1,Γ. Initial value extrapolation can be employed to improve the prediction of initial interface

displacement for any time step[66]. The first order extrapolation is defined as:

𝐝0𝑚,Γ = 2𝐝
𝑘𝑓𝑖𝑛𝑎𝑙
𝑚−1,Γ − 𝐝

𝑘𝑓𝑖𝑛𝑎𝑙
𝑚−2,Γ (4.19)

whereas second order extrapolation is defined as:

𝐝0𝑚,Γ = 2.5𝐝
𝑘𝑓𝑖𝑛𝑎𝑙
𝑚−1,Γ − 2𝐝

𝑘𝑓𝑖𝑛𝑎𝑙
𝑚−2,Γ + 0.5𝐝

𝑘𝑓𝑖𝑛𝑎𝑙
𝑚−3,Γ (4.20)

Since a better prediction for initial interface displacement can be made using extrapolation, it can
result in fewer sub­iterations for each time step. And, by requiring fewer sub­iterations, the coupling
residuals has more chances to converge for a fixed maximum number of sub­iterations. Thus, FSI3
simulation for Mesh 2+2 configuration was performed with and without displacement extrapolation in
order to investigate the effectiveness of initial value extrapolation. Second order displacement extrap­
olation was employed for the simulation with initial value extrapolation. The results of this analysis
for 𝑡 = [15, 20]𝑠 are shown in table 4.7. The employment of displacement extrapolation has indeed
reduced the required number of sub­iterations. However, the noise seems to be amplified when dis­
placement extrapolation is used, in spite of the final coupling tolerances being similar for both the
simulations. This can be due to the IQN­ILS framework reusing information from multiple previous
time steps (10 time steps in this case) to build columns for V,W matrices. Due to displacement ex­
trapolation, the computed column corresponding to the initial sub­iteration of a time step might be
incoherent in comparison to the columns from previous time steps. In spite of reduction in required
number of sub­iterations, displacement extrapolation will not be employed for further studies in this
section owing to noise amplification, which is in odds with goals of this research.

4.6. Effect of relative number of interface degrees of freedom
In [67], it was recommended to execute Quasi Newton acceleration on coarser grid for a robust cou­
pling. In this research, the root finding problem was defined for interface displacement. Therefore, the
V,W matrices in IQN­ILS framework were constructed using interface displacements. This means that
for a robust coupling, the number of degrees of freedom on the structure interface should be lesser
than the number of degrees of freedom on the fluid interface. Therefore, in this section the effect of
relative number of interface degrees of freedom on noise in force data shall be evaluated.

4.6.1. Interface degrees of freedom
For this analysis, it is important to know what constitutes an interface degree of freedom. The face
centres on the fluid interface correspond to locations of the interface degrees of freedom on the fluid
mesh, whereas the nodes on the solid interface correspond to locations of the interface degrees of
freedom on the solid mesh with respect to force coupling. Also, the face vertices on the fluid interface
correspond to locations of the degrees of freedom on the fluid mesh, whereas the nodes on the solid
interface again correspond to locations of the interface degrees of freedom on the solid mesh with
respect to displacement coupling. For two dimensional analysis, each location mentioned above will
have two dimensions of force and displacement for force and displacement coupling respectively. Since
the number of face centres is lower than number of face vertices, number of face centres on the fluid
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(a) Mesh 2+2

(b) Mesh 2ref1+2

(c) Mesh 2ref2+2

Figure 4.4: Cylinder with Trailing Flap — Illustration of Mesh 2+2 configurations with different levels of local refinement near
flap interface
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interface will serve as the critical parameter for evaluating the robustness of IQN­ILS algorithm. Keeping
the above conventions in mind for interface degrees of freedom; the Mesh 2 configuration of the solid
mesh has 580 degrees of freedom on its interface, and the Mesh 2 configuration of the fluid mesh has
296 degrees of freedom on its interface.

4.6.2. Local refinement in fluid Mesh 2
For a robust sequential IQN­ILS coupling involving the construction of V,W matrices using interface
displacement vector, the number of degrees of freedom on the fluid interface is expected to be more
than the number of degrees of freedom on the solid interface. It is not the case for the fluid Mesh2
in conjunction with solid Mesh2. Perhaps, the noise observed in FSI3 simulation for Mesh 2+2 con­
figuration can be due to the IQN­ILS coupling not being robust. Thus, two additional fluid meshes —
Mesh 2ref1 and Mesh2ref2 were created using local refinement for the cells on the interface of fluid
Mesh2. For Mesh 2ref1, each interface cell on the original configuration was split into two; whereas for
Mesh 2ref2, each interface cell on the original configuration was split into four. Therefore, after local
refinement, Mesh 2ref1 and Mesh2ref2 have 592 and 1184 interface degrees of freedom respectively.
Mesh 2ref1+2 has similar number of degrees of freedom on fluid and solid interface, whereas Mesh
2ref2+2 will have more than twice the number of degrees of freedom on the fluid interface in compar­
ison to the solid interface. The three mesh configurations in this analysis — Mesh 2+2, Mesh 2ref1+2,
Mesh2ref2+2 are illustrated in figure 4.4.

4.6.3. Numerical results
Since the fluid meshes involved in the configurations — Mesh 2+2, Mesh 2ref1+2, Mesh 2ref2+2 have
different spatial discretization near the interface, it is prudent to present the displacement and force
data for the above three configurations. This data is tabulated in table 4.8. Lift and Drag amplitude
for the mesh configuration without local refinement (Mesh 2+2) is lower in comparison to the mesh
configurations with local refinement (Mesh 2ref1+2, Mesh2ref2+2). The other quantities appear to be
similar for all the mesh configurations. Since the spatial discretization in the base Mesh 2 configuration
is not fine to begin with, the observed quantities for all the configurations deviate from the reference
literature data. The drag and lift plot for the final second of the simulation are plotted for all the mesh
configurations in figure 4.5. From the plots, it can be seen that the three signals are not in phase.
The phase shift is due to the minor differences in frequency among the signals accumulating over a
large duration. A strange phenomenon was observed for the lift plot of Mesh 2 + 2 configuration (see
highlighted portion in the lift plot), where it exhibits kinks on the advancing side of extreme values in
the signal; which is not the case for Mesh 2ref1+2 and Mesh 2ref2+2 configurations. This could be
the reason for the lift amplitude being small for Mesh 2+2 configuration.

The total variation of the lift and drag force as well as averaged final residuals for the final 5s of
the simulation are tabulated in table 4.9. It can be seen that the Mesh 2ref2+2 configuration has
least noise for drag and lift data. This result is in line with the recommendation in [67]. However,
marginally higher noise is observed in the lift data for Mesh 2ref1+2 configuration in comparison to
the Mesh 2+2 configuration, which is in contrast to the recommendation. A clear reason for the lowest
observed noise in Mesh 2ref2+2 configuration could not be explained. However, the mesh 2ref2 +
2 configuration requires more sub­iterations for convergence, resulting in longer computation times.
Since, the observed noise in the force data is low for Mesh 2ref2+2 configuration, it was decided to
perform further analyses using this configuration.

4.6.4. Synthesis
Least noise was observed in force data for Mesh 2ref2 + 2 configuration. However, the amount of
partitioning error appears to be the same for all the mesh configurations. Therefore, the additional
noise in force observed for the Mesh 2+2 and Mesh2ref1 + 2 configuration can be classified under
𝐝‡𝑚,Γ,𝑚𝑖𝑠𝑐.
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u F
Mesh Axis

Mean[mm] Amp.[mm] Freq.[s−1] Mean[N] Amp.[N] Freq.[s−1]

X ­2.998 2.754 11.13 481.54 24.243 11.39
2 + 2

Y 1.530 35.923 5.49 1.540 183.521 5.49

X ­3.113 2.855 11.07 481.85 27.588 11.30
2ref1 + 2

Y 1.522 36.527 5.47 1.902 189.020 5.47

X ­3.100 2.841 11.06 482.00 27.991 11.26
2ref2 + 2

Y 1.527 36.449 5.46 1.631 189.108 5.46

X ­2.69 2.53 10.9 457.3 22.66 10.9
Ref.

Y 1.48 34.38 5.3 2.22 149.78 5.3

Table 4.8: Cylinder with Trailing Flap — FSI3 benchmark results for Mesh 2+2, Mesh 2ref1+2, Mesh2ref2+2 configurations

Mesh 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
2 + 2 5.807 1.954 × 10−7 4.519 × 10−4 85.117 5308.252

2ref1 + 2 5.714 3.347 × 10−7 4.821 × 10−4 84.977 6359.040

2ref2 + 2 6.148 4.692 × 10−7 4.592 × 10−4 54.790 3149.060

Table 4.9: Cylinder with Trailing Flap — Mean number of sub­iterations, coupling tolerances per time step; and Smoothness of
Drag/Lift data for FSI3 simulations on Mesh 2+2, Mesh 2ref1+2 and Mesh2ref2+2 configurations for time interval 15 ­ 20 [s]
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4.7. Comparison of IQN­ILS with Aitken’s and Fixed point frame­
works

Although, the IQN­ILS method falls under the family of Newton Raphson Iterative frameworks, it can
also be interpreted as fixed point iterative method. The basic fixed point iteration method is equivalent
to newton raphson iteration if:

𝐉−1𝑘,Γ,𝑓𝑖𝑥𝑒𝑑 = −𝐈 (4.21)

For fixed point iteration with constant/dynamic(Aitken’s) under­relaxation, the equivalency condition
is:

𝐉−1𝑘,Γ,𝑢𝑛𝑑𝑒𝑟−𝑟𝑒𝑙𝑎𝑥𝑒𝑑 = −𝜔𝑘𝐈 (4.22)

where 𝜔𝑘 = 𝜔𝑘−1 for constant under­relaxation and 𝜔𝑘 = −𝜔𝑘−1
𝐫𝑘−1Γ ⋅(𝐫𝑘Γ−𝐫𝑘−1Γ )
‖𝐫𝑘Γ−𝐫𝑘−1Γ ‖2 for Aitken’s under­

relaxation. Whereas for IQN­ILS framework, the inverse of the interface Jacobian is approximated as
[38]:

𝐉−1𝑘,Γ,𝐼𝑄𝑁 = 𝐖𝑘(𝐕𝑘𝑇𝐕𝑘)−1𝐕𝑘𝑇 − 𝐈
𝐉−1𝑘,Γ,𝐼𝑄𝑁 = 𝐖𝑘(𝐕𝑘𝑇𝐕𝑘)−1𝐕𝑘𝑇 + 𝐉−1𝑘,Γ,𝑓𝑖𝑥𝑒𝑑

(4.23)

By comparing (4.21) and (4.23), it can be seen that the inverse Jacobian for IQN­ILS framework is a
sum of the inverse Jacobian for fixed point iteration and 𝐖𝑘(𝐕𝑘𝑇𝐕𝑘)−1𝐕𝑘𝑇 . Therefore the components
of interface residual that lie in the column space of 𝐖𝑘(𝐕𝑘𝑇𝐕𝑘)−1𝐕𝑘𝑇 experience additional rate of
convergence. And, for components that lie outside the column space, IQN­ILS method is equivalent to
fixed point iteration. If the V,W matrices become a square matrix after 𝑁 sub­iterations, then all the
components of interface residual will lie in the column space of 𝐖𝑘(𝐕𝑘𝑇𝐕𝑘)−1𝐕𝑘𝑇 , thereby resulting
in increased rate of convergence for all components. Since the above three mentioned frameworks
are a form of Newton­Raphson Iteration in one way or another, it is interesting to see if Aitken’s and
Fixed under­relaxation frameworks can generate noise in force or not. To this end, FSI3 benchmark
for Mesh 2ref2+2 configuration is repeated with fixed under­relaxation and Aitken’s under­relaxation.
As mentioned earlier, since fixed and Aitken’s under­relaxation requires large number of sub­iterations
for convergence, the above two simulations shall be performed for a small time window.

4.7.1. Numerical results
All the tests involved in this comparison are simulated for the time interval 3.308s – 3.808s. Mesh
2ref2+2 configuration was employed for this analysis. Since earliest instance of noise is observed in this
time interval for IQN­ILS framework, it was chosen for comparing IQN­ILS framework with Aitken’s and
fixed under­relaxation framework. For all the cases, simulation was restarted from flow and structure
field at 3.308s. Theses field were obtained using IQN­ILS framework until the above mentioned time.
In case of fixed under­relaxation framework, 0.05 was chosen as the relaxation factor, since it was the
highest possible value for which the simulation does not fail for the above mentioned time interval. To
maintain similarity in comparison, the initial relaxation value was also chosen as 0.05 for the IQN­ILS
and Aitken’s under­relaxation frameworks.

The results of the noise analysis are enclosed in table 4.10. As expected IQN­ILS framework requires
least number of sub­iterations for convergence, whereas fixed under­relaxation framework requires
the highest number of sub­iterations. Also, the fixed under­relaxation framework has the least amount
of noise. This implies that the displacement prediction routines within IQN­ILS and Aitken’s under­
relaxation play a role in generating noise. This noise especially seems to be more pronounced for the
Aitken’s under­relaxation framework. The averaged force residual for fixed under­relaxation framework
is of one order of magnitude lower in comparison to other frameworks. This could be the consequence
of constant under­relaxation within the sub­iterations of fixed under­relaxation framework, where the
variation in force is performed monotonously over large number of sub­iterations.
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Coupling Framework 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
IQN­ILS 5.148 5.259 × 10−7 3.811 × 10−4 3.336 116.672

Aitken’s under­relaxation 31.338 5.850 × 10−7 3.293 × 10−4 17.019 985.477

Fixed under­relaxation 134.153 9.750 × 10−7 5.274 × 10−5 0.915 21.695

Table 4.10: Cylinder with Trailing Flap — Mean number of sub­iterations, coupling tolerances per time step; and Smoothness of
Drag/Lift data for FSI3 simulations on Mesh 2ref2+2 configuration with IQN­ILS, Aitken’s and Fixed under­relaxation temporal
coupling frameworks for time interval 3.308 ­ 3.808 [s]
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Figure 4.6: Cylinder with Trailing Flap — Force comparison for Mesh 2ref+2 configurations with different temporal coupling
frameworks. —– : IQN­ILS; —– : IQN­ILS­Optimized; —– : Fixed under­relaxation

4.7.2. Synthesis
Of all the three frameworks compared in this analysis, fixed point under­relaxation with constant relax­
ation factor, had the least noise. In fact, it can be assumed to be almost noise free. The partitioning
error for all the three frameworks are of similar magnitude. Therefore, the additional noise observed
for IQN­ILS and Aitken’s under­relaxation can be classified under 𝐝‡𝑚,Γ,𝑚𝑖𝑠𝑐.

4.8. FSI3 simulation with optimal settings
Of all the analyses performed so far in this chapter using IQN­ILS temporal coupling framework for Mesh
2+2 configuration, the simulation on Mesh 2ref+2 configuration with QR­1 filter, displacement tolerance
of 10−6 and force tolerance of 10−3 exhibited least noise. In section 4.3, it was shown that the noise
starts diminishing with stricter displacement tolerance. Thus, simulations were tried with displacement
tolerance below 10−6. However, it was observed that once the displacement residual is of the order of
10−6, it stagnates, causing the sub­iterations to not converge, irrespective of maximum permitted sub­
iterations in a time step. Displacement residual stagnating around 10−6 might be due to the filtering
tolerance (10−6) of QR­1 filter discussed in section 2.5.3 being of similar order of magnitude; causing
the columns in V,W matrices, that can predict more accurate interface displacement to be eliminated.

Another reason for displacement residual stagnating could be that the components in interface
residual that lie outside the column space of interface Jacobian matrix are the only significant compo­
nents remaining, which are not treated by the IQN­ILS framework. Perhaps, the remaining components
in the interface residual can be treated using fixed point iteration with constant under­relaxation. This
is referred to as Anderson temporal coupling framework, which is not available in preCICE as of this
writing.

In view of the above, FSI3 simulation was attempted with a QR­1 filtering tolerance of 10−8 with
displacement tolerance of 10−7 and force tolerance of 10−3 to investigate the former theory. IQN­ILS
simulation with these settings shall be referred to as optimized IQN­ILS. When the simulation was
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Coupling Framework 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
IQN­ILS 5.329 5.279 × 10−7 3.928 × 10−4 2.173 110.170

IQN­ILS optimized 10.449 7.485 × 10−8 1.345 × 10−4 0.766 44.936

Fixed under­relaxation 136.418 9.745 × 10−7 5.381 × 10−5 0.073 19.375

Table 4.11: Cylinder with Trailing Flap — Mean number of sub­iterations, coupling tolerances per time step; and Smoothness of
Drag/Lift data for FSI3 simulations on Mesh 2ref+2 configuration with IQN­ILS, Optimized IQN­ILS and Fixed under­relaxation
temporal coupling frameworks for time interval 3.389 ­ 3.808 [s]

Coupling Framework 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
IQN­ILS 6.21 4.685 × 10−7 4.768 × 10−4 16.085 962.329

IQN­ILS optimized 7.86 6.097 × 10−8 2.633 × 10−4 10.288 362.101

Table 4.12: Cylinder with Trailing Flap — Mean number of sub­iterations, coupling tolerances per time step; and Smoothness
of Drag/Lift data for FSI3 simulations on Mesh 2ref+2 configuration with IQN­ILS and Optimized IQN­ILS for time interval 13 ­
14.5 [s]

started from rest, the optimized IQN­ILS simulation crashed. This can be due to the lenient QR­1 filter­
ing tolerance causing singularity in the V,W matrices for the ramp up phase of the boundary conditions
(0­2s), when sub­iterations are not expected to converge. When the optimized IQN­ILS simulation was
restarted from flow and structure fields at 3.308 s, it did not crash. Force data for the initial 1000 time
steps from optimized IQN­ILS simulation, is compared with the IQN­ILS and fixed under­relaxation re­
sults from section 4.7.1 in figure 4.6. Within first 150 time steps, significant noise was observed for the
optimized IQN­ILS simulation. This was due to the sub­iterations not converging for those instances.
From 3.389s onwards, the sub­iterations of optimized IQN­ILS simulation have started converging.
Thus, in the next section the numerical analysis of IQN­ILS framework with optimized settings shall be
performed for results from 3.389s.

4.8.1. Numerical results
The results of optimized IQN­ILS simulation in comparison with IQN­ILS and fixed point under­relaxation
frameworks for interval 3.389 ­ 3.808 [s] are tabulated in table 4.11. On average, simulation with op­
timized IQN­ILS settings requires twice the number of sub­iterations in comparison to the simulation
with standard IQN­ILS settings for convergence. And, the forces obtained using optimized IQN­ILS
settings exhibit less noise in comparison to standard IQN­ILS settings. Still, the noise observed for
optimized IQN­ILS settings is high in comparison to noise for the simulation with fixed under­relaxation
framework. This is in spite the averaged displacement residual for optimized IQN­ILS simulation being
an order of magnitude lower than that of simulation with fixed point under­relaxation. This finding is
a strong evidence for one of the conclusions made in section 4.7 that the least sq.

Due to higher number of sub­iterations required for convergence, the simulation with optimized
IQN­ILS settings managed to run till 14.5755 s before running out of allotted computation time. Thus
comparison of simulation with optimized and standard IQN­ILS settings shall be made for the time
interval 13 ­ 14.5 [s] in order to analyse noise in the periodic region of the force data. The results for
this comparison are tabulated in table 4.12. As expected, the simulation with optimized IQN­ILS settings
has less noise in comparison to the one with standard IQN­ILS settings. Also, for this time interval, the
average number of sub­iterations required for convergence is only 27% larger for optimized IQN­ILS in
comparison to standard IQN­ILS. Therefore, to obtain a force data with less noise, it is recommended
to use the optimized settings for IQN­ILS simulation, provided that the initial flow and structure fields
are from the periodic region of the fluid­structure interaction. These initial fields can be obtained using
standard IQN­ILS settings. Do note that the optimized iQN­ILS settings are applicable only for the FSI3
benchmark of the cylinder with trailing flap test case using the Mesh 2ref2+2 configuration.
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4.9. Conclusions
The influence of various temporal coupling settings on the noise in force data has been documented
in this chapter. For relativistic comparison of noise levels, a mathematical tool called total variation
method was employed to determine the smoothness function defined in section 4.1. Signal with lower
smoothness function is deemed to have lesser noise. A hypothesis was proposed in section 4.2, wherein
the error in interface displacement, if any, will amplify by three orders of magnitude for Δ𝑡 = 0.0005𝑠 on
differentiation. Since, force acting on the flap is a function of first derivative of interface displacement,
minuscule error in interface displacement will amplify into significant error in force, which manifests as
noise. The findings in section 4.3 support the above mentioned hypothesis indirectly by showing that
smaller interface residual leads to smaller iterative error, resulting in lower noise in force data. It is
beneficial to have stricter displacement tolerance for lesser noise, subject to the sub­iterations converg­
ing to the said tolerance. Several other settings of the temporal coupling framework were investigated
to check their influence on noise in sections 4.4 ­ 4.8. From these analyses, it was concluded that IQN­
ILS(10) framework on Mesh 2ref2 + 2 configuration with QR­1 filtering tolerance of 10−8 exhibited the
least noise in force data. But, the optimized IQN­ILS framework still generated more noise in force
data in comparison to fixed point iteration with constant under­relaxation. This marks the end of the
first half of the revised objective for this research, To investigate sources of noise in force data
from FSI3 benchmark. However, the number of sub­iterations required for fixed point framework
are couple of orders of magnitude larger than IQN­ILS framework. Therefore, it is beneficial to find
ways to reduce or remove the error in interface displacement before it is being coupled with the flow
solver, which is nothing but the other half of this research objective. It shall be treated in the next
chapter.



5
General Numerical Noise Filtering

Framework

It was concluded in the previous chapter that the force data from FSI3 benchmark with the optimized
IQN­ILS framework still possessed higher noise in comparison to that of fixed under­relaxation frame­
work. Thus, this chapter will discuss about strategies to predict the occurrence of noise/artefacts in
force data a priori before the force has been computed and implement a fix that can eliminate or
dampen this noise using a mathematical framework.

5.1. Noise onset prediction in Force Data
It was shown in section 4.2 that the force acting on the flap is a function of the first derivative of
interface displacement. Therefore, for predicting the onset of noise in force data, we can rely upon
minuscule noise in displacement data. However, the interface displacement residual does not paint a
complete picture of the error in interface displacement, since it is just an image of the error in interface
displacement. Thus, displacement data of individual interface nodes are also required to predict the
onset of noise in force data. For this study, force and displacement data obtained using IQN­ILS and
fixed under­relaxation temporal coupling frameworks shall be analysed. For the IQN­ILS framework
the coupling tolerances were 𝜖𝑟𝑒𝑙,𝑑𝑖𝑠𝑝 = 10−4, 𝜖𝑟𝑒𝑙,𝑓𝑜𝑟𝑐𝑒 = 10−4. Also, displacement extrapolation was
enabled for the analysis. These settings were chosen in order to trigger noise of larger magnitude,
resulting in a clear distinction between data from IQN­ILS and fixed under­relaxation frameworks.
These comparisons shall be done for the time interval – 3.308 ­ 3.808 [s].

5.1.1. Numerical acceleration
Drag and lift data has been plotted for the simulations with IQN­ILS and fixed under­relaxation frame­
works in figures 5.1a and 5.1b respectively. As expected the force data for IQN­ILS framework has
noise, with the drag having marginal noise and the lift having significant noise. This is also indicated
by the smoothness function values for the forces from two frameworks in table 5.1. However, when
observing the displacement data for the node located at (0.284,0.19)m, both appear to have a smooth
profile. This is also indicated by the smoothness function values of the displacement data being zero
for both IQN­ILS and fixed under­relaxation frameworks. The same phenomenon was observed for the

Coupling Framework 𝑘̄ ‖𝐫Γ,𝐝‖ ‖𝐫Γ,𝐅‖ Θ(𝚫𝐅𝑥,Γ) Θ(𝚫𝐅𝐲,𝚪)
IQN­ILS 6.163 3.012 × 10−7 5.864 × 10−5 12.447 1166.77

Fixed under­relaxation 134.153 9.750 × 10−7 5.274 × 10−5 0.915 21.695

Table 5.1: Cylinder with Trailing Flap — Mean number of sub­iterations, coupling tolerances per time step; and Smoothness of
Drag/Lift data for FSI3 simulations on Mesh 2ref+2 configuration with IQN­ILS and fixed under­relaxation framework for time
interval 3.308 ­ 3.808 [s]
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Figure 5.1: Cylinder with Trailing Flap — Force, displacement and acceleration comparison for Mesh 2ref+2 configurations with
different temporal coupling frameworks. Displacement and Acceleration were computed for the node located at (0.284,0.19)m.
—– : IQN­ILS; —– : Fixed under­relaxation
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Coupling Framework Θ(𝚫𝐝𝑥,Γ) Θ(𝚫𝐝𝑦,Γ) Θ(𝚫𝐚𝑥,Γ) Θ(𝚫𝐚𝑦,Γ)
IQN­ILS 0 0 2.490 5.536

Fixed under­relaxation 0 0 1.587 0.467

Table 5.2: Cylinder with Trailing Flap — Smoothness of displacement and acceleration data for FSI3 simulations on Mesh 2ref+2
configuration with IQN­ILS and fixed under­relaxation framework for time interval 3.308 ­ 3.808 [s] at the node located at
(0.284,0.19)m

remaining 289 nodes on the structure interface. Thus, it is not possible to make any prediction on the
onset of noise using just the displacement at interface nodes on the structure owing to its minuscule
magnitude. In section 4.2 it was mentioned that noise in displacement data can get magnified due to
differentiation with respect to time when time step is smaller than 1s. Second derivative of interface
displacement will make it easier to distinguish 𝐝‡𝑚,Γ (error) from 𝐝‡𝑚,Γ (error­free). Therefore, numerical
acceleration obtained through second numerical differentiation of displacement data can be useful in
predicting the onset of noise in force data.

Acceleration at the structure can be calculated numerically using finite differences of the interface
displacement with respect to time. For the initial time step, acceleration is obtained using second order
forward difference of displacement, i.e.:

𝑎0𝑥∨𝑦,Γ ∶=
𝑑2𝑥∨𝑦,Γ − 2𝑑1𝑥∨𝑦,Γ + 𝑑0𝑥∨𝑦,Γ

Δ𝑡2 (5.1)

Acceleration for intermediate time steps is obtained using the second order central difference of
displacement, i.e.:

𝑎𝑚𝑥∨𝑦,Γ ∶=
𝑑𝑚+1𝑥∨𝑦,Γ − 2𝑑𝑚𝑥∨𝑦,Γ + 𝑑𝑚−1𝑥∨𝑦,Γ

Δ𝑡2 ∀ 𝑚 ∈ {1, 2, … , 𝑛 − 1} (5.2)

And, the acceleration for the final time step is obtained using second order backward difference of
the displacement , i.e.:

𝑎𝑛𝑥∨𝑦,Γ ∶=
𝑑𝑛𝑥∨𝑦,Γ − 2𝑑𝑛−1𝑥∨𝑦,Γ + 𝑑𝑛−2𝑥∨𝑦,Γ

Δ𝑡2 (5.3)

The numerical acceleration for both the directions are plotted for the node located at (0.284,0.19)m
in figures 5.1e and 5.1f. It can be seen that the numerical acceleration possess noise. The amount
of noise present in numerical acceleration for both IQN­ILS and fixed point acceleration are tabulated
in table 5.2. The amount of noise in interface acceleration is higher for the simulation using IQN­ILS
framework. For horizontal acceleration, the noise for both the frameworks are marginally different;
whereas for vertical acceleration, the noise is significantly different.

5.1.2. Correlation analysis between numerical acceleration and force data
In table 5.1 it was shown that the force exerted by the fluid on the flap is relatively noise free for
the simulation using fixed under­relaxation framework in comparison to IQN­ILS framework. And, in
previous section it was shown for a node on the flap interface that numerical acceleration using fixed
under­relaxation has less noise in comparison to IQN­ILS framework. This was also observed for the
remaining 289 nodes. From the above two statements, it can be inferred that either less noise in force
exerted by the fluid domain is the reason for less noise in acceleration of the node on the structure
interface or less noise in acceleration on a structure interface node is the reason for less noise in force
exerted by the fluid domain. If the latter is true, then it will also be in agreement with the hypothesis
made in section 4.2. To ascertain if the former or latter is true in the above inference it is beneficial to
perform a correlation analysis between the force and numerical acceleration data. Before performing
correlation analysis, couple of modifications were made to the force and acceleration data for simplic­
ity. Instead of performing correlation analysis for horizontal and vertical components separately, the
magnitude of force and acceleration shall be considered. And, the force and acceleration magnitudes
obtained using fixed under­relaxation framework shall be considered as reference data, i.e. force and
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Nodes x[m] y[m] 𝑚𝑎𝑥(𝑃(𝑎Γ, 𝐹Γ)) delay value (q)

D 0.339 0.19 0.519 4

E 0.425 0.19 0.531 4

F 0.515 0.21 ­0.326 4

A 0.6 0.20 ­0.152 6

avg. all nodes N/A N/A ­0.447 4

Table 5.3: Cylinder with Trailing Flap — Maximum cross­correlation coefficient between relative acceleration and relative force
on Mesh 2ref+2 configuration for time interval 3.308 ­ 3.808 [s]

acceleration magnitudes obtained using IQN­ILS framework are subtracted by the corresponding mag­
nitudes from fixed point under­relaxation. The relative force and acceleration magnitudes obtained
after the above two operations, shall be employed for correlation analysis.

Suppose 𝑎𝑚Γ ∶= √(𝑎𝑚𝑥,Γ)2 + (𝑎𝑚𝑦,Γ)2
𝐼𝑄𝑁

− √(𝑎𝑚𝑥,Γ)2 + (𝑎𝑚𝑦,Γ)2
𝑟𝑒𝑓

and 𝐹𝑚Γ ∶= √(𝐹𝑚𝑥,Γ)2 + (𝐹𝑚𝑦,Γ)2
𝐼𝑄𝑁

−

√(𝐹𝑚𝑥,Γ)2 + (𝐹𝑚𝑦,Γ)2
𝑟𝑒𝑓
, then the cross­correlation coefficient for a delay of q time steps is defined as:

𝑃(𝑎Γ, 𝐹Γ) ∶=
∑𝑛𝑚=0(𝑎𝑚Γ − 𝑎Γ)(𝐹

𝑚+𝑞
Γ − 𝐹Γ)

√∑𝑛𝑚=0(𝑎𝑚Γ − 𝑎Γ)2√∑
𝑛
𝑚=0(𝐹

𝑚+𝑞
Γ − 𝐹Γ)2

(5.4)

The above coefficient can range from ­1 to 1, with negative values implying negative correlation and
positive values implying positive correlation. If P is ­1 or +1 then there is a high correlation between
the two time series. If 𝑃 = 0 then there is no correlation between the two time series. Two identical
signals if out of phase will have low correlation. In such cases, a non zero delay value can be employed
to compensate the phase shift.

5.1.3. Numerical Results
Relative acceleration was numerically computed for four randomly selected nodes on the flap inter­
face. The locations of these four nodes are tabulated in table 5.3. Also, the average value of relative
acceleration for these interface nodes was computed. In figure 5.2, the relative accelerations as well
as relative force are plotted in order to visually correlate the perturbations. The vertical lines clearly
show that large noise spikes in relative acceleration occur at the same time in most of the nodes. This
is also further proven by the presence of spikes at similar intervals in the average relative acceleration
plot. And, whenever these large spikes occur in relative acceleration, noise spikes were also observed
in the relative force data in the proximity of the vertical lines. This indicates there is some sort of
relationship between the numerical acceleration and force data. Also in table 5.3, the maximum corre­
lation coefficient and the delay in time steps are plotted. Positive correlation was observed for nodes D
and E. Whereas negative correlation was observed for nodes F and A. And the strength of correlation
seems to decay for nodes beyond the midpoint. Especially for node A, which is on the trailing edge
of flap, there appears to be no correlation. A negative correlation coefficient is observed for the data
averaged over all nodes. Since its value is relatively strong, we can conclude that the noise in interface
acceleration on most of the nodes exhibit a relationship with the noise in force data. Also the maximum
correlation coefficient for nodes D, E, F and the averaged data were observed when the relative force
data is shifted backward in time by four time steps. This is in agreement with the noise spikes in force
data appearing few time steps after the red lines in figure 5.2. Thus, it can be concluded that negligi­
ble noise in interface displacement data amplify in interface acceleration data, which when coupled to
the flow solver can cause perturbations in the force data. Hence, the above finding also validates the
hypothesis made in section 4.2.
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Prerequisites Description

h Number of previous time steps required by the smoothing operator for noise filtering

N Total number of nodes on the flap interface

n Total number of time steps

w Relevant parameters for the smoothing operator

Table 5.4: General Noise Filter Framework — Description of filter prerequisites

5.2. General framework for noise filter in interface displacement
Based on the conclusion made in the previous section, it can be reasoned that by reducing the noise in
the acceleration numerically computed on the nodes of the flap interface, the force data will exhibit less
noise during a partitioned FSI simulation. And, noise in the numerical acceleration can be dampened
by filtering out the noise in interface displacement. To this end, a general framework has been created
for filtering out noise from interface displacement data. This framework can be integrated with any
temporal coupling framework within preCICE through its python Callback interface (see [68] for more
information). As of this writing, this integration is pending. Therefore, it is not possible to comment
on its effectiveness in regards to dampening the noise in force data.

Algorithm 1 General Noise Filter Framework to smoothen displacement data at all interface nodes

Require: : ℎ,𝑁, 𝑛, 𝑡, 𝑤
for 𝑖 ← 1 to 𝑁 do
𝑑𝑥 ← 𝑈𝑥[∶, 𝑖]
𝑑𝑦 ← 𝑈𝑦[∶, 𝑖]
for 𝑗 ← ℎ + 1 to 𝑛 do
𝑑𝑥𝑡𝑒𝑚𝑝 ← 𝑆(𝑑𝑥[𝑗 − ℎ ∶ 𝑗], 𝑡[𝑗 − ℎ ∶ 𝑗], 𝑤)
𝑑𝑦𝑡𝑒𝑚𝑝 ← 𝑆(𝑑𝑦[𝑗 − ℎ ∶ 𝑗], 𝑡[𝑗 − ℎ ∶ 𝑗], 𝑤)
𝑑𝑥 ← 𝑑𝑥𝑡𝑒𝑚𝑝[ℎ + 1]
𝑑𝑦 ← 𝑑𝑦𝑡𝑒𝑚𝑝[ℎ + 1]

end for
𝑈𝑥[∶, 𝑖] ← 𝑑𝑥
𝑈𝑦[∶, 𝑖] ← 𝑑𝑦

end for

The pseudocode for the general noise filter framework is portrayed in algorithm 1. The prerequi­
sites for this framework are tabulated in table 5.4. This general framework has a smoothing operator
𝑆 which filters out noise by replacing the existing displacement for current time step with extrapo­
lated displacement from ℎ previous time steps. Three types of smoothing operators were investigated
to perform this extrapolation. They are Smoothing spline filter, Savitzky­Golay filter and Sinusoidal
curve­fitting filter. Detailed information and their effectiveness in filtering out noise from interface dis­
placement shall be discussed in the remaining sections of this chapter. As discussed in section 5.1.1,
computed numerical acceleration shall be employed for judging the effectiveness of above mentioned
filters in dampening noise. Integration of this framework with preCICE requires an addition inner loop
in the algorithm so that the extrapolation process can be performed for each sub­iteration in IQN­ILS
framework. This filtering can be done on interface displacement data for all nodes before they are
coupled to the flow solver. If it works as intended, then another side benefit of this filtering framework
is potential reduction in number of sub­iterations required for convergence of IQN­ILS framework. In
previous chapter, it was concluded that IQN­ILS framework generates less noise in force data when
the displacement tolerance is stricter. However, convergence of IQN­ILS framework is not a trivial task
for stricter displacement tolerance due to the issue of some components of interface residual lying out­
side the column space of inverse of interface Jacobian. Therefore, the general noise filter framework
proposed in this chapter aims to achieve less noise in force data while employing a relatively lenient
displacement tolerance.
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5.3. Smoothing spline filter
A spline function is a set of polynomial up to degree 𝑛, defined for all the time intervals encompassing
a time series, that are piece­wise continuous up to an arbitrary order of continuity 𝐶𝑜; 𝑜 < 𝑛[69].
Through various algorithms, this spline function can be employed to interpolate a discrete time series.
Discrete time series can also be interpolated using polynomial interpolation. However, when polynomial
interpolation is performed with higher degrees, the interpolated values exhibit oscillations near the
boundaries of a time series. This is described as Runge’s phenomenon[70]. To avoid the above
mentioned issue, polynomial spline interpolation enables the utilization of lower degree piece­wise
continuous polynomials to interpolate a discrete time series. The most common polynomial spline
interpolation is the natural cubic spline which is a spline of the smallest polynomial degree that has
continuity 𝐶2. Continuity of at least 𝐶2 is required for the spline to have least bending. Consider a
discrete time series 𝐠 with 𝑟 + 1 samples, whose spline function 𝑠(𝑡) is defined for 𝑡 ∈ [𝑡0, 𝑡𝑟]. Let the
cubic polynomial for 𝑟 time intervals in the above mentioned spline function be defined as:

𝑠𝑚 ∶= 𝑎𝑚 + 𝑏𝑚(𝑡 − 𝑡𝑚) + 𝑐𝑖(𝑡 − 𝑡𝑚)2 + 𝑑𝑖(𝑡 − 𝑡𝑚)3 (5.5)

The coefficients in the above family of polynomials are obtained by enforcing the following conditions
required for natural cubic spline.

𝑠𝑚(𝑡𝑖) = 𝑔𝑚 = 𝑠𝑚−1(𝑡𝑚), 𝑚 = 1,… , 𝑟 − 1
𝑠̇𝑚(𝑡𝑚) = 𝑠̇𝑚−1(𝑡𝑚), 𝑚 = 1,… , 𝑟 − 1
𝑠̈𝑚(𝑡𝑚) = 𝑠̈𝑚−1(𝑡𝑚), 𝑚 = 1,… , 𝑟 − 1

𝑠̈0(𝑡0) = 𝑠̈𝑟−1(𝑡𝑟) = 0

(5.6)

The natural cubic splines can be employed for interpolating a discrete time series, i.e. the spline
function passes through the samples of the discrete time series. However the smoothing operator in
the general noise filtering framework requires smoothing of the time series. This can be executed by
minimization of:

argmin
𝑠(𝑡𝑚)

𝑟

∑
𝑚=0

(𝑚𝑖 − 𝑠(𝑚𝑖))2 + 𝜅∫𝑠(𝑡)2𝑑𝑡 (5.7)

where 𝜅 is the smoothing parameter. For 𝜅 > 0, the family of polynomials obtained using the
above minimization is referred to as cubic spline smoothing. When 𝜅 = 0, it is equivalent to cubic
spline interpolation. The algorithms involved in the automatic estimation of smoothing parameter and
executing cubic smoothing spline are beyond the scope of this research. See [71], for more information
on polynomial smoothing spline algorithms utilized in SciPy.

5.3.1. Setup in SciPy
Smoothing spline filtering is performed using the UnivariateSpline function in SciPy library of
Python3. As shown earlier in this section, in addition to the interface displacement vector, time vector
is also required for using smoothing spline smoother. The additional parameters for the smoothing
operator such as smoothing parameter, weights etc. are set to their default values. The default value
for 𝜅 is equal to ℎ. The relative acceleration magnitude at the structure interface described in 5.1.2
shall be used for evaluating the effectiveness of smoothing spline filter.

5.3.2. Numerical results
The smoothing spline filter is executed for varying values of ℎ. The smoothness function shall be em­
ployed again for comparing the smoothness of the averaged relative interface acceleration obtained
with and without smoothing spline filter. The results of this analysis are tabulated in table 5.5. It can be
seen that the smoothing spline filter is capable of dampening the noise in interface acceleration magni­
tude across all nodes on the structure interface. Also, when more previous time steps are employed to
extrapolate interface displacement, the noise in averaged relative interface acceleration decreases. The
least noise was observed when interface displacement from 21 previous time steps were employed in
the smoothing operator. However, for ℎ > 21, the noise in the averaged relative interface acceleration
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Filter h 𝜅 Θ(𝐚Γ)
No Filter N/A N/A 7.421

Smoothing Spline 5 5 6.258

Smoothing Spline 10 10 4.875

Smoothing Spline 15 15 4.671

Smoothing Spline 20 20 4.031

Smoothing Spline 21 21 4.022

Smoothing Spline 25 25 5042.877

Table 5.5: Cylinder with Trailing Flap — Smoothness function of averaged relative interface acceleration with and without
smoothing spline filter

is amplified, indicating the shortcomings of extrapolating interface displacement from larger number
of time steps. Also, the plot of averaged relative interface acceleration with and without smoothing
spline filter are portrayed in figure 5.3. It can be seen that the magnitude of the spikes are smaller for
the scenarios with smoothing spline filter (h=10,20). And, the magnitude of spikes are much smaller
for ℎ = 20 in comparison to ℎ = 10 when smoothing spline filter is employed. However, on further
examination of the plot for ℎ = 20, it can be seen that the spikes of lesser magnitude are superim­
posed with a sinusoidal wave of increasing amplitude, whose period is approximately equal to 20 time
steps, which is the h value. As seen in the plot for h=25, when this superposition is left unchecked,
the amplitude of the sinusoidal wave grows exponentially with time. Suppose instead of 1000 samples
in the current scenario, if there are 5000 samples, then it is probable that the smoothing spline filter
with ℎ = 20 would exhibit a similar phenomenon, thereby leading to non physical values for interface
acceleration. For more information the gradual amplification of noise for ℎ > 21, see section 5.6. Such
phenomenon is not noticeable for the smoothing spline filter with ℎ = 10. Moreover, the data storage
requirement for the smoothing spline filter with ℎ = 10 would be halved in comparison to the scenario
with ℎ = 20. Therefore, based on the analysis presented in this section, it is recommended to rely
upon interface displacement data from 10 previous time steps for the smoothing spline filter.
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5.4. Savitzky­Golay filter
Savitzky Golay filter is a popular numerical smoothing and differentiation algorithm developed by Sav­
itzky and Golay in [1]. In this noise filtering technique, noise is filtered out by performing a polynomial
interpolation on small time windows of a time series through minimisation of least squares. Savitzky­
Golay filter requires odd number of terms in this time window. And, it should be a contiguous subset of
the time series to be smoothened. If 𝑙 is the number of terms in the time window, then 𝑙 < ℎ. Unlike
the computation of extrapolation coefficients for least squares minimisation in the IQN­ILS framework,
an alternative algorithm based on convolution has been employed in lieu of the expensive QR decom­
position in Savitzky­Golay filter. Suppose a time series 𝐠 has ℎ samples, then convolution using time
window with 𝑙 samples is described as:

𝑔∗𝑗 =
1
𝑀

𝑙−1
2

∑
𝑚=− 𝑙−12

𝑒𝑚𝑔𝑗+𝑖 ∀𝑗 ∈ [ 𝑙 − 12 , ℎ − 𝑙 − 12 ] (5.8)

where 𝑔∗𝑗 is the smoothened value, 𝑒𝑖 are the convolution coefficients and 𝑀 is the normalization
factor. Convolution is analogous to weighted average of the samples in the time window, with the
exception that some of the weights can also be negative. The methodology to compute the coef­
ficients/normalization factor for smoothing using least squares polynomial interpolation is shown in
[1]. The convolution table containing the convolution coefficients and normalization factor for all pos­
sible time window sizes of cubic polynomial smoothing is tabulated in appendix C. Unlike smoothing
spline filter, Savitzky Golay filter does not require the independent time vector to perform interpolation.
However, it requires all the samples in a time series to have identical time step.

5.4.1. Setup in SciPy
Savitzky­Golay filtering is performed using the savgol_filter function in SciPy library of Python3.
The additional parameters for this function are the length of time window 𝑙, order of the polynomial,
and mode parameter. The mode parameter decides what values are assigned for samples outside the
interval [ 𝑙−12 , ℎ −

𝑙−1
2 ]. The horizontal and vertical displacements for the current time step are the last

terms in the 𝑑𝑥𝑡𝑒𝑚𝑝 and 𝑑𝑦𝑡𝑒𝑚𝑝 arrays of the general filtering framework in pseudocode 1. The last
terms are definitely outside the Savitzky­Golay time window of [ 𝑙−12 , ℎ −

𝑙−1
2 ] . Therefore, the Savitzky­

Golay filter cannot compute the smoothened value of interface displacement for current time step.
Default value for mode is interp. In the interp mode, samples outside the interval [ 𝑙−12 , ℎ −

𝑙−1
2 ]

are assigned values based on cubic polynomial interpolation from the smoothened samples within the
interval. Thus, the smoothened value for the current time step is obtained as a cubic interpolation from
the nearest smoothened samples that are obtained using convolution.

5.4.2. Numerical results
The Savitzky­Golay filtering is executed for various values of ℎ and 𝑙. For a particular value of 𝑙, the
effectiveness of noise dampening is marginally affected by ℎ value. Therefore, in the results for all
possible 𝑙 values, the ℎ values were selected such that it resulted in the least noise in the averaged
relative interface acceleration after an optimization study. Some of the results of this analysis are
tabulated in table 5.6.

The filter with time window length of 21 samples has the least noise in relative interface acceleration.
And, as observed for the smoothing spline filter, the noise in averaged 𝐚Γ decreases with more number
of samples in the time window up to 23 samples. For filtering with time window of 23 samples or
higher results in additional noise in averaged 𝐚Γ. The results of Savitzky­Golay filter for 𝑙 = 11, 21, 25
are portrayed in comparison to data without filtering in figure 5.4. For the scenarios with 𝑙 = 21, 25
the noise has been dampened, but the noise seems to be superimposed with a sinusoidal wave that
increases in amplitude. Especially, for the filtering with 𝑙 = 25, the noise due to the sinusoidal artefact is
much larger in comparison to the actual numerical noise. These observations are similar in comparison
to the ones made for smoothing spline filtering. For more information on the gradual amplification of
noise for 𝑙 > 21, see section 5.6. Therefore, the recommended time window length for performing
Savitzky­Golay filtering is 11 samples. As for the data from ℎ previous time steps is concerned, it can
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Filter l h Θ(𝐚Γ)
No Filter N/A N/A 7.421

Savitzky­Golay 5 16 7.094

Savitzky­Golay 11 17 4.874

Savitzky­Golay 15 26 4.710

Savitzky­Golay 21 22 4.053

Savitzky­Golay 25 30 1551.326

Table 5.6: Cylinder with Trailing Flap — Smoothness function of averaged relative interface acceleration with and without
Savitzky­Golay filter

be assigned any value that is greater then the number of samples in time window of Savitzky­Golay
filtering. Again, higher value of ℎ requires more computational memory. Thus, it is prudent to choose
ℎ that is in the neighbourhood of 𝑠 value.
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5.5. Sinusoidal curve fitting filter
The displacement plots in figure 5.1 resemble a sinusoidal wave of varying amplitude. This served as
a motivation to fit sinusoidal curves for all time intervals within the time series in view of smoothening
interface displacement in the general noise filtering framework. Suppose a time series 𝐠 has ℎ samples.
Let the sine function to approximate the samples within the time interval be defined as 𝜁:

𝑔(𝑡, ℧) ∶= 𝜁 sin(𝜂𝑡 + 𝜙) + 𝜏 (5.9)

where 𝜁 is the amplitude, 𝜂 is the angular frequency, 𝜙 is the phase angle and 𝜏 is the offset. ℧ is
nothing but the set of above mentioned parameters. Let the residual for the curve fitting be defined
as:

𝑟𝑚 ∶= 𝑔(𝑡𝑚) − 𝑔(𝑡𝑚) (5.10)

Then the sinusoidal curve fitting is performed by computing the parameters in ℧ such that the
residual is minimized using least squares. It is executed by solving the below mentioned system of
over determined equations.

2
ℎ

∑
𝑚=0

𝑟𝑚
𝜕𝑟𝑚
𝜕℧𝑗

= 0 (5.11)

Since sine function is non linear, the system matrix is non linear. Therefore, it is not possible
to obtain a closed form of solution for the parameters. The parameters are obtained in an iterative
fashion. The curve fitting routine of SciPy uses Levenberg–Marquardt algorithm to resolve non­linear
least squares minimization. The details of LM algorithm are beyond the scope of this research. See
[72, 73] for more information about this algorithm.

5.5.1. Setup in SciPy
Curve fitting optimization is executed in python using curve_fit function in SciPy library. A model
sine function similar to the one in (5.9) with its independent variable and parameters is created. The
only difference is that the angular frequency is treated as an independent variable since the optimization
was much more troublesome when it is employed in optimization. The frequency is computed from ℑ
previous samples using the procedure discussed in section 3.3.5. Since at least one period of samples is
required to compute the frequency, the curve fitting optimization can only start after ℑ time steps that
correspond to the first period. As, the optimization continues, the frequency is computed for one whole
period with respect to the interface displacement in the current time step. Both interface displacement
and time samples are required for performing curve fitting. Initial values for amplitude, phase angle
and offset have to be provided. Initial estimate of amplitude is computed as √2𝜎(𝐠), where 𝜎(𝐠) is the
standard deviation of 𝐠. Initial estimate of offset and phase angle is assumed as 𝐠 and 0 respectively.

5.5.2. Numerical Results
The sinusoidal curve fitting is employed for various values of ℎ. The results of this analysis are tabulated
in table 5.7. For all scenarios, the sinusoidal curve fitting filter resulted in addition of noise to the original
relative interface acceleration. This higher smoothness function value can be attributed to the large
but infrequent spikes in relative interface acceleration as shown in figure 5.5. The original reasoning
for the random spikes in sinusoidal filtering was attributed to the shift in the computed frequency at
the instance of spike occurrence. Therefore, the sinusoidal curve fitting optimization was repeated, but
this time the frequency of the signal employed for non­linear least squares minimization is constrained
to be fixed. This fixed frequency was computed from the last period of the signal. The plots for this
analysis are portrayed in figure 5.6. It can be seen that the spikes still exist.

On further investigation, a warning text was shown by the curve_fit function when the noise
filtering is being performed using ℎ = 10 for the node located at [0.58, 0.19]𝑚. It stated, ”Covariance of
the parameters could not be estimated”. The horizontal and vertical acceleration plots for this node have
been plotted in figure 5.7. In the neighbourhood of 𝑡 = 3.7[𝑠], a huge numerical artefact is observed
for horizontal acceleration. This matches with the location of the spike for ℎ = 10 in figure 5.6. Further,
when the calculated parameters were investigated, it was found for 𝑡 = 3.693[𝑠] that the predicted
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Filter h Θ(𝐚Γ)
No Filter N/A 7.421

Sine Fit 5 17.116

Sine Fit 10 8.8302

Sine Fit 15 14.729

Sine Fit 20 24.834

Sine Fit 25 29.474

Sine Fit 30 50.697

Table 5.7: Cylinder with Trailing Flap — Smoothness function of averaged relative interface acceleration with and without
sinusoidal curve fitting filter

amplitude jumps from −9.828 × 10−4 to −3.942 × 10−4, and the predicted phase angles jumps from
−1.292 to 9.631 × −7 for the sine curve fitting of horizontal interface displacement, resulting in this
large artefact.

For the scenarios with higher ℎ value, the noise is superimposed on a sinusoidal wave. For more
information the gradual amplification of noise for ℎ > 21, see section 5.6. Also, due to non linear least
squares minimization, this filtering is observed to be computationally more expensive than the other
two noise smoothing operators.
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Figure 5.7: Cylinder with Trailing Flap — Horizontal and vertical interface acceleration for node located at (0.58,0.19) on Mesh
2ref2+2 configuration smoothened with sinusoidal curve fitting filter using fixed frequency for time interval 3.308 ­ 3.808 [s]

5.6. Sine wave superposition in noise filter
For all the three smoothing filter operators, when larger number of previous samples are employed
for smoothing, it was generally observed that although the actual noise in the signal is dampened
more significantly, it was also responsible for causing sinusoidal superposition in relative interface
acceleration. To investigate this issue further, the averaged smoothened horizontal and vertical interface
displacements are compared to their original counterparts in figures 5.8 and 5.9. It can be seen that the
smoothened interface displacement oscillates around the original interface displacement, resulting in
the sinusoidal superposition phenomenon. This is because of successive smoothing of time steps using
smoothened values from previous time steps. Smoothing causes the interpolated value to diverge from
the true interface displacement. It results in the systemic error slowly creeping into the measurements
resulting in the sinusoidal superposition by the general noise filtering framework. When the filters are
integrated with preCICE, it is expected that the fluid solver will generate different interface force for
the smoothened displacement, which causes the structure solver to give different displacement for
next sub­iteration. As long as the displacement tolerance is satisfied, the systemic error will not creep
into the solution.
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5.7. Conclusions
In section 5.1, the hypothesis for the reasoning behind noise formation in force data was proven using
correlation analysis between the averaged relative interface acceleration and force magnitudes. A
general noise filtering framework to dampen the noise in interface displacement was proposed in 5.2
in hope of obtaining noise free force data from the fluid solver. Three noise smoothing operators for
the general noise filtering framework — Smoothing spline filter, Savitzky­Golay filter and Sinusoidal
curve fitting filter were discussed in sections 5.3, 5.4 and 5.5 respectively. Smoothing spline and
Savitzky­golay filter showed promising results when the smoothing is performed using less number
of previous interface displacement samples. Huge spikes were observed at arbitrary locations for
sinusoidal curve fitting filter. This is because of the non linear least squares minimization failing for
certain combination of variables and parameters. And, all three filters exhibited sinusoidal superposition
phenomenon when the smoothing is performed with larger number of previous interface displacement
samples. This is due to a systemic error generated by repeated smoothing at every time step in the
absence of correcting mechanism by sub­iterations in the solvers. The performance of these filtering
frameworks were computed on interface displacements that was already computed. Unfortunately,
complete fulfilment of the second half of revised research objective requires these filtering frameworks
to be integrated with preCICE, which could not be finished due to time constraints.



6
Conclusions and Recommendations

The original objective of this research was to evaluate the robustness of IQN­ILS temporal coupling
framework for partitioned FSI. It fell through when the forces computed on the flap in the Cylinder
with trailing flap benchmark test case was plagued with noise for certain combinations of fluid and
structure parameters. Also, filtering techniques were developed towards the end of this research in
view of smoothing out the noise generated by IQN­ILS framework.

6.1. Conclusions
Flow and structure solvers — OpenFOAM and CalculiX were validated in view of utilizing them for par­
titioned FSI. OpenFOAM was validated with the CFD benchmarks from [55]. CalculiX was validated
with the CSM benchmarks from [55]. A FSI test­bed has been formulated by integrating OpenFOAM and
CalculiX with their respective adapters within preCICE. The FSI simulations in the above mentioned
test­bed were performed with IQN­ILS temporal coupling framework. This test­bed was validated for
the steady state FSI1 benchmark prescribed in [55]. However, complications arose when validating the
transient benchmarks FSI2 and FSI3. With the allocated computational resources, the FSI benchmarks
were only possible for Mesh 1+1, Mesh 2+2 and Mesh 3+3 configurations. Due to the poor resolution
of the meshes mentioned above, the computed quantities were on average 10% off the reference data.
And, the forces computed in the FSI3 benchmark exhibited significant noise, which is not desired for
robustness evaluation. Since, the investigation and addressal of the force noise from FSI3 benchmark
was feasible in this research, it was adopted as the revised objective for this research.

A hypothesis was proposed in section 4.2, wherein the error in interface displacement, if any, will
amplify by three orders of magnitude for Δ𝑡 = 0.0005𝑠 on differentiation. Since, force acting on the
flap is a function of first derivative of interface displacement, minuscule error in interface displace­
ment will amplify into significant error in force, which manifests as noise. The findings in section 4.3
support the above mentioned hypothesis indirectly by showing that smaller interface residual leads to
smaller iterative error, resulting in lower noise in force data. Several other settings of the temporal
coupling framework were investigated to check their influence on noise in sections 4.4 ­ 4.8. From
these analyses, it was concluded that IQN­ILS(10) framework on Mesh 2ref2 + 2 configuration with
QR­1 filtering tolerance of 10−8 exhibited the least noise in force data. But, the optimized IQN­ILS
framework still generated more noise in force data in comparison to fixed point iteration with constant
under­relaxation. In fact, the forces computed using this framework were noise free. Among all the
noise prevention measures that was attempted, fixed point iteration with constant under­relaxation is
the only measure that is capable of preventing noise in force data. However, this is at the cost of
excessive amount of expensive sub­iterations in comparison to IQN­ILS framework. Even though this
preventive measure satisfies the first part of revised objective, it is not much of an improvement over
the status quo in industrial applications.

A general noise filtering framework was proposed as a noise mitigation measure for the force noise
in IQN­ILS framework. The noise mitigation is performed by eliminating or dampening the minuscule
errors in interface displacement before it is coupled with the fluid solver. Three noise filters were pro­
posed to function as the smoothing/filtering operator in this framework. They were smoothing spline
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filter, Savitzky­Golay filter and sinusoidal curve fitting filter. These filters were tested on an interface
displacement series that was already computed. Smoothing spline and Savitzky­Golay filter showed
promising results in regards to dampening the noise in interface displacement. However, the effective­
ness of these filters in removing noise from force data was not tested, since it requires integrating the
noise filtering framework with preCICE, which is pending as of this writing. Unfortunately, this means
that the second half of the revised objective has only been partially fulfilled.

6.2. Recommendations
Based on the work during this research, the author proposes the following recommendations with the
hope of improving the quality of life experience with preCICE, OpenFOAM, CalculiX and the noise
filtering frameworks proposed in this research for future researchers.

• User guides and tutorials for dynamic mesh formulation of the OpenFOAM solvers are sparse as
of this writing. Invocation of dynamic mesh formulation within OpenFOAM can be much more
streamlined, thereby making it easier for third party programs to utilize it.

• Due to the above issue additional sub routines have to be developed within OpenFOAM adapter of
preCICE to support dynamic mesh formulation for FSI. At this moment, only Laplacian smoothing
mesh motion is supported. High aspect ratio cells near the trailing edge of flap get distorted in
FSI2 and FSI3 benchmarks. If support for RBF interpolation mesh motion is introduced, the
above mentioned issue can be relieved. Until then, it is recommended that the flow mesh does
not employ very high aspect ratio cells.

• In quasi 2D coupling, there is an issue with the coupling of second order elements of structure
with the fluid cells at the interface. The force from the fluid face centre is not equally distributed
among the vertex and edge centred nodes at certain locations on the upper flap surface. Resolving
this will allow the employment of second order elements in structure mesh for FSI simulations.

• Restarting simulations with CalculiX is limited. Binary files required for CalculiX is created
when the simulation finishes. Addition of feature to save the latest binary file within the STEP
function of CalculiX can fix it.

• Aitken’s framework exhibited significantly higher noise in the force data. Due to time constraints
it could not be investigated. Further investigation of noise generation in Aitken’s framework is
desirable.

• Implementation of multi­level/fidelity optimization to preCICE is beneficial for performing FSI
simulations on finer meshes like Mesh 5+5 configuration and above.

• Trigonometric definition of sine function has been employed for formulating the sinusoidal curve
fitting filter. This resulted in crash of the curve_fit optimization in SciPy when the initial
frequency guess is farther away from correct value. Adopting the series definition of sine function
in a future version can circumvent this issue during curve fitting optimization.

• Integration of the noise filtering framework with preCICE is useful for evaluating the effective­
ness of the proposed filters in a live simulation. This can be executed through the python callback
interface in preCICE.



A
Laplacian Mesh Motion Insufficiency

As mentioned in section 3.3.5, the CFD solver validation was initially performed with a different batch
of flow meshes. Here too, seven grids with different number of hexahedron cells were generated to
perform mesh independence study for all the CFD tests. A coarse faithful reproduction of the grids
employed in this study is illustrated in figure A.1. Also, the number of cells in each mesh is tabulated
in table A.1.

The spatial distribution of mesh cells in the older batch of fluid meshes were designed such that
it accurately captures the viscous and vortex shedding effects from the geometry. In comparison to
the new batch of flow meshes, it has finer spatial discretization near the geometry, and coarser spatial
discretization away from the geometry. Another consequence of this optimization is the high aspect
ratio cells in the wake region. On average, the new batch of flow meshes have 25% more cells than
the old batch. This results in faster computation time for the older batch of flow meshes.

CFD1, CFD2, CFD3 benchmarks were performed for these meshes. With the exception of tolerances
for linear equation solver and final pressure, velocity; identical solver settings that were discussed
in section 3.3.4 were employed for the benchmarks here as well. The linear equation solver and
final pressure­velocity tolerances employed in this section were 10−7 and 10−6 respectively. Thus the
tolerances employed for the older batch of meshes are not as strict as the ones employed for the new
batch of meshes. The results of CFD1 and CFD2 tests are tabulated in table A.2. The most accurate lift
and drag forces are within the acceptable limits of the reference solution. With the exception of drag
from CFD2 test, the results for old batch are less accurate than the ones from new batch for steady
state benchmarks. This can be attributed to the lenient tolerances employed for old batch of flow
meshes. See table 3.5 for the CFD1 and CFD2 benchmark results for the new batch of flow meshes.

The CFD3 benchmark results for the old batch of fluid meshes are enclosed in table A.3. Again,
the results are within the acceptable limits of the reference solution. However, it was not the case for
the mean lift force obtained from the most refined new flow mesh. This can be due to the finer spatial
discretization near the geometry for the old mesh, resulting in accurate modelling of vortex shedding.
See table 3.6 for the CFD3 benchmark results for the new batch of flow meshes.

FSI benchmarks were attempted for old batch of flow meshes in conjunction with new batch of
structure meshes discussed in section 3.4.1. Unfortunately, it was not possible to exploit the accurate
modelling of vortex shedding from the old batch of flow meshes for FSI benchmarks. The FSI2 and FSI3
benchmarks failed for the Mesh 3+3 configuration. The failure of these benchmarks can be attributed

Figure A.1: Cylinder with Trailing Flap — Sample of earlier iteration of flow mesh with 672 hexahedron cells
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Mesh 1 2 3 4 5 6 7

Cells 10752 24192 43008 67200 96768 131712 172032

Table A.1: Cylinder with Trailing Flap — Number of flow domain cells in older batch of flow meshes

CFD1 CFD2
Mesh

Drag[N] Lift[N] Drag[N] Lift[N]

1 14.1861 1.1061 137.4459 10.7630

2 14.2294 1.1066 136.9534 10.5592

3 14.2474 1.1082 136.7952 10.4590

4 14.2568 1.1099 136.7292 10.4153

5 14.2627 1.1113 136.6971 10.4005

6 14.2667 1.1123 136.6804 10.3989

7 14.2698 1.1131 136.6712 10.4026

Reference 14.29 1.119 136.7 10.53

Deviation[%] 0.1413 0.5255 0.0211 1.2102

Table A.2: Cylinder with Trailing Flap — Numerical results of CFD1 and CFD2 tests for old batch of meshes

Drag Lift
Mesh

Mean[N] Amp.[N] Freq.[s−1] Mean[N] Amp.[N] Freq.[s−1]

1 451.0747 1.2841 7.9234 12.5865 212.2857 7.9145

2 443.9379 5.0896 4.3565 ­33.7309 388.9900 4.3481

3 441.9272 5.4231 4.3893 ­13.7305 422.6083 4.3883

4 441.2345 5.6532 4.4056 ­12.8724 433.5968 4.4046

5 440.8654 5.7489 4.4116 ­12.1553 438.8452 4.4109

6 440.6069 5.7858 4.4143 ­12.0130 441.3366 4.4136

Ref. 439.45 5.6183 4.3956 ­11.893 437.81 4.3956

Dev.[%] ­0.2632 ­2.9804 ­0.4252 ­1.0086 ­0.8055 ­0.4084

Table A.3: Cylinder with Trailing Flap — Numerical results of CFD3 test for old batch of meshes
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(a) Cell Skew plot without magnification

(b) Cell Skew plot of magnified portion

Figure A.2: Cylinder with Trailing Flap — Cell Skew Plot for FSI2 benchmark at 8.34s

to localized poor mesh quality, causing the flow solver to crash. The cell skewness and cell distortion
plot for FSI2 and FSI3 benchmark respectively, at the instance of failure are enclosed in figures A.2 and
A.3 respectively. The FSI2 simulation failure can be attributed to a single cell in the highlighted portion
having very high skewness, whereas the FSI3 simulation failure can be attributed to couple of cells in
the highlighted region having negative cell distortion. Both the failures are due to high aspect ratio
cells in the downstream region of flap, which seem to behave poorly with the Laplacian mesh motion
algorithm. In view of these issues, the new batch of meshes, that was discussed in section 3.3.1, were
developed such that very high aspect ratio cells are avoided by ensuring uniform cell shape across the
entire flow domain, thereby allowing the author to perform FSI2 and FSI3 benchmarks.



84 A. Laplacian Mesh Motion Insufficiency

(a) Cell Distortion plot without magnification

(b) Cell Distortion plot of magnified portion

Figure A.3: Cylinder with Trailing Flap — Cell Distortion Plot for FSI3 benchmark at 4.075s



B
2D FSI with Quadratic Elements

A passing mention of CSM tests on old batch of structural meshes composed of quadratic hexbricks
was made in section 3.4.4. Indeed, CSM benchmarks were successfully performed for this batch of
meshes. Mesh 1 configuration of such family of meshes is illustrated in figure B.1. Based on the
recommendation in [12], quadratic hexbricks (C3D20) with 2 × 2 × 2 reduced integration points were
employed for these meshes to avoid the issue of shear locking in slender beams. Six meshes with
different number of quadratic hexbrick elements were generated to performed mesh independence
study. Number of elements and nodes in each mesh is tabulated in table B.1.

The original batch of structural meshes were initially chosen for its capability to accurately represent
non linear deformations in comparison to linear hexbrick structural meshes discussed in section 3.4.1.
CSM1, CSM2 and CSM3 benchmark results for this batch of meshes are enclosed in tables B.2 and
B.3 respectively. All the benchmark results are in good agreement with its reference counterparts.
The most refined linear hexbrick mesh from the new batch of structural meshes has more number
of elements than the most refined quadratic hexbrick mesh from the old batch of structural meshes.
As expected, the CSM1 and CSM2 benchmark results for Mesh7 of linear hexbrick family of meshes is
more accurate than the results for Mesh6 of quadratic hexbrick family of meshes. However, it is not the
case for CSM3 bechmark results. In spite of lower number of elements, Mesh 5 results for quadratic
hexbrick configuration are more accurate than the Mesh 7 results for linear hexbrick configuration. See
tables 3.10 and 3.11 for the CSM benchmark results of linear hexbrick family of meshes.

Unfortunately, it was not possible to employ the old batch of structural meshes for FSI benchmarks.
All three FSI benchmarks for the old batch of structural meshes in conjunction with old batch of fluid
meshes crashes within few initial sub­iterations. This can be attributed to the presence of nodes on
the midpoints of elements, resulting in additional row of nodes on the interface of the flap. The
benchmarks prescribed in [55] are two dimensional in nature. However, OpenFOAM and CalculiX
are three dimensional solvers. In order to perform 2D simulation with these solvers, mesh of 1m
thickness had to be employed for both the solvers. Also, the third dimension along z axis had to be
constrained in both the solvers in order to mimic a 2D simulation. The problem arises in the spatial
coupling of force from the fluid interface to structure interface. Assuming that there is no void between
the fluid and structure interface, and the edges of fluid cell coincide with the edges of solid elements;

Figure B.1: Cylinder with Trailing Flap — Old iteration of structural mesh with 70 quadratic hexahedrons

85



86 B. 2D FSI with Quadratic Elements

Mesh 1 2 3 4 5 6

Elements 70 280 1120 4480 17920 71680

Nodes 678 2333 8583 32843 128403 507683

Table B.1: Cylinder with Trailing Flap — Number of structural domain elements and nodes in old batch of structural meshes

CSM1 CSM2
Mesh

Ux[mm] Uy[mm] Ux[mm] Uy[mm]

1 ­7.1527 ­65.9166 ­0.4666 ­16.9240

2 ­7.1789 ­66.0554 ­0.4684 ­16.9611

3 ­7.1842 ­66.0839 ­0.4687 ­16.9686

4 ­7.1865 ­66.0960 ­0.4689 ­16.9719

5 ­7.1875 ­66.1013 ­0.4690 ­16.9733

6 ­7.1879 ­66.1034 ­0.4690 ­16.9738

Reference ­7.187 ­66.1 ­0.469 ­16.97

Deviation[%] ­0.0127 ­0.0052 0.0002 ­0.0226

Table B.2: Cylinder with Trailing Flap — Numerical results of CSM1 and CSM2 tests for old batch of structural meshes

Ux Uy
Mesh

Mean[mm] Amp.[mm] Freq.[s−1] Mean[mm] Amp.[mm] Freq.[s−1]

1 ­14.2020 14.2017 1.09683 ­63.4274 64.9164 1.09529

2 ­14.2271 14.2266 1.09577 ­63.5029 65.0454 1.09417

3 ­14.2309 14.2305 1.09555 ­63.5116 65.0707 1.09394

4 ­14.2325 14.2321 1.09545 ­63.5203 65.0853 1.09384

5 ­14.2339 14.2336 1.09541 ­63.5247 65.0908 1.09380

Ref. ­14.305 14.305 1.0995 ­63.607 65.16 1.0995

Dev.[%] 0.4967 0.4994 0.3720 0.1295 0.1061 0.5184

Table B.3: Cylinder with Trailing Flap — Numerical results of CSM3 test for old batch of structural meshes
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(d) Lift distribution on lower interface

Figure B.2: Cylinder with Trailing Flap — Force distribution across midpoint and vertex nodes of upper and lower flap interface
for FSI1 benchmark on old Mesh 1+1 configuration at 2s

force has to be mapped from one face centre on the fluid interface to three nodes on the structure
interface, for a fixed x and y location; i.e the midpoint node coincides with face centre, whereas the
vertex nodes are 0.5m away from the face centre in z direction. Conservative force coupling does
not guarantee a faithful reproduction of force distribution from fluid interface to the solid interface.
The force distribution plots on the interface nodes of the flap for the FSI1 benchmark on old Mesh
1 configuration for the fluid in conjunction with the quadratic hexbrick Mesh1 configuration for the
flap at 2s are enclosed in figure B.2. The forces are equally distributed amongst the midpoint nodes
and vertex nodes on the lower interface. Whereas for six nodes on the upper interface, forces for
midpoint nodes are different from forces for vertex nodes. RBF interpolation ensures that the force
distribution is preserved along x and y axis during mapping. However, 2D force mapping requires the
force on midpoint node to be equal to the force on vertex node for a fixed x and y location. This can be
attributed to the global RBF interpolation having issues in executing 2D mapping between pseudo 3D
meshes. Since FSI1 benchmark has a steady state solution, and the forces involved in the coupling are
of lesser magnitude in comparison to other FSI benchmarks, the FSI1 simulation for this configuration
was able to generate a steady state solution. But the computed horizontal displacement at point A was
about an order of magnitude lower than the reference solution. Also, this configuration is expected to
fail for FSI2 and FSI3 benchmarks owing to the magnitude of the coupling quantities involved. Thus,
it would be a futile exercise in employing quadratic hexbrick mesh for FSI validation.

To circumvent the above mentioned issue, a partial force mapping was attempted by coupling
the force from face centres of the old batch of fluid meshes to only the vertex nodes on the solid
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Mesh Ux[mm] Uy[mm] drag[N] lift[N]

1 + 1 0.0223 0.8685 14.1870 0.7299

2 + 1 0.0227 0.8758 14.2302 0.7316

Ref. 0.0227 0.8209 14.295 0.7638

Dev.[%] 0.1701 ­6.6848 0.4533 4.2197

Table B.4: Cylinder with Trailing Flap — FSI1 benchmark results for old batch of fluid and structure meshes

interface. The results for FSI1 benchmark for Mesh 1+1 and Mesh 2+1 configurations are enclosed
in table B.4. Very good results were observed for FSI1 benchmark for horizontal displacement and
force. Yet, coupling fluid meshes with quadratic hexbrick Mesh 2 and finer grids resulted in the failure
of simulation. This can be attributed to the very large number of structure nodes on the interface for
C3D20 brick elements in comparison to the face centres on the fluid interface, causing issues similar
to the ones discussed in section 4.6. Therefore, in view of all the issues faced with quadratic hexbrick
meshes, it was decided to employ linear hexbrick meshes for performing FSI benchmarks.



C
Convolution table for Savitzky Golay

Filter using Cubic Polynomials

Points/l 25 23 21 19 17 15 13 11 9 7 5
j­12 ­253
j­11 ­138 ­42
j­10 ­33 ­21 ­171
j­9 62 ­2 ­76 ­136
j­8 147 15 9 ­51 ­21
j­7 222 30 84 24 ­6 ­78
j­6 287 43 149 89 7 ­13 ­11
j­5 343 54 204 144 18 42 0 ­36
j­4 387 63 249 189 27 87 9 9 ­21
j­3 422 70 284 224 34 122 16 44 14 ­2
j­2 447 75 309 249 39 147 21 69 39 3 ­3
j­1 462 78 324 264 42 162 24 84 54 6 12
j 467 79 329 269 43 167 25 89 59 7 17
j+1 462 78 324 264 42 162 24 84 54 6 12
j+2 447 75 309 249 39 147 21 69 39 3 ­3
j+3 422 70 284 224 34 122 16 44 14 ­2
j+4 387 63 249 189 27 87 9 9 ­21
j+5 343 54 204 144 18 42 0 ­36
j+6 287 43 149 89 7 ­13 ­11
j+7 222 30 84 24 ­6 ­78
j+8 147 15 9 ­51 ­21
j+9 62 ­2 ­76 ­136
j+10 ­33 ­21 ­171
j+11 ­138 ­42
j+12 ­253
NORM 5175 805 3059 2261 323 1105 143 429 231 21 35

Table C.1: Savitzky Golay Filter — Convolution coefficients and normalization factors for cubic polynomial smoothing[1]
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