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Preface 
What's fascinating about researching personal transportation is that almost everyone has not 
only experience with it, but also strong opinions and frustrations. These rarely align - what 
one person loves can be another's major irritation. Often these issues involve scaling or 
common pool problems, making them incredibly complex to fully understand. 

Transportation, at its core, is about the division of resources: land, energy, money, time, 
noise, and environmental impact. While new innovations are frequently celebrated, they 
almost always come with significant drawbacks or scaling problems. True dominant 
solutions are rare; there are no silver bullets. 

Self-driving cars, and specifically the upcoming robotaxi sector, will follow this pattern. I 
believe they will revolutionize the market, making some people declare them the best 
invention since sliced bread while others insist that "vroeger was alles beter", as we say in 
Dutch. This is typical of paradigm-shifting transportation modes (and even some that aren't - 
remember the overwhelming stacks and stacks of shared bikes?). 

This research aims to provide a broader perspective on autonomous vehicles and, hopefully, 
prevent some of the avoidable problems this new mode of transport will introduce. 

No research stands alone, and I'm indebted to several people. For enabling my research: 
Igmar Coenen, who developed the Verkeersmodel MRDH and answered countless questions; 
Toru Seo, developer and maintainer of UXsim, for creating and supporting his remarkable 
traffic simulation package; and many more random people from Nebraska that has been 
thanklessly maintaining projects since 2003. 

We truly stand on the shoulders of giants. 

I'm grateful to my supervisors, Jan Anne Annema and Jan Kwakkel - or as I addressed them in 
emails: Jan (Anne). They gave me considerable freedom to explore this research in my own 
way, accepting my sometimes unconventional methods. Jan Anne responded to my oblivious 
questions not just with "Google this" but with actual papers and materials, while Jan 
contributed both his unmatched technical expertise and impressive patience in structuring 
my occasionally very incoherent ramblings. 

Special thanks to Christiaan Ouwehand, one of my closest friends, for reviewing and 
providing feedback on numerous drafts and ideas, and to my father, for reading every word 
diligently, sometimes twice, and being genuinely excited about it. 

Finally, I want to thank my support network, in the largest extend. You have seen me balls to 
the wall excited, deeply frustrated, and everything in between. You have been there, indulged 
me, supported me. You know who you are. Thanks. 
 

Ewout ter Hoeven 
Delft, November 2024 
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Abstract 
Background: The introduction of autonomous vehicles (AVs) could fundamentally transform 
urban transportation, but their system-level effects on cities remain poorly understood. 
Previous research has focused primarily on individual adoption decisions or specific impacts 
like congestion, without capturing the complex interactions between adoption patterns, 
modal shifts, and transportation system performance. 

Goal: This study investigates how autonomous vehicles might affect urban mobility 
problems, considering both modal shifts and induced demand, and examines which policies 
could effectively mitigate potential negative impacts while preserving benefits. 

Method: An agent-based model combined with mesoscopic traffic simulation was developed 
to simulate travel behavior in Rotterdam, Netherlands. The model integrates empirical data 
on population distribution, travel patterns, and network characteristics with a mode choice 
framework accounting for heterogeneous time valuations. A full-factorial analysis explored 
144 scenarios varying AV costs, perceived time value, space efficiency, and induced demand. 
Eight representative scenarios were then tested against nine policy combinations including 
congestion pricing and speed reductions. 

Results: AV adoption patterns appear to depend more strongly on space efficiency than cost 
or comfort advantages. A critical threshold around a density factor of 0.5 (compared to 
conventional vehicles) emerged - below this threshold, high AV adoption can maintain 
system performance, while above it, increased adoption tends to degrade network 
performance regardless of other characteristics. The model also revealed that AVs compete 
more directly with sustainable transport modes than with private cars, potentially 
undermining urban sustainability goals. Traditional policy interventions showed limited 
effectiveness across different scenarios, with localized restrictions proving particularly 
inadequate for managing system-level impacts. 

Conclusions: Autonomous vehicles may represent neither an inherent solution nor an 
inevitable problem for urban mobility. Their impact appears likely to depend on the 
interaction between their operating characteristics, adoption patterns, and policy 
frameworks. The significant variations between potential futures - ranging from improved 
mobility to system strain - emphasize the importance of proactive policy consideration in AV 
development. Results suggest that cities should focus on ensuring space-efficient AV 
operations rather than just regulating costs or access, while developing more dynamic and 
comprehensive policy frameworks to manage the transition. 

Keywords: autonomous vehicles, urban mobility, agent-based modeling, traffic simulation, 
mode choice, transportation policy, modal shift, induced demand 
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1.  Introduction 
The introduction of the automobile fundamentally transformed human transportation and 
urban development in the 20th century. While providing unprecedented mobility and 
economic opportunities, the widespread adoption of cars has also led to significant 
challenges in urban environments. These include traffic congestion, parking scarcity, air and 
noise pollution, and safety concerns for pedestrians and cyclists. As we progress into the 
21st century, a new technological revolution is on the horizon: self-driving cars. 

Self-driving cars, also known as autonomous vehicles (AVs), represent a potential paradigm 
shift in urban transportation. Unlike the gradual evolution of traditional automobiles, AVs 
promise to radically alter not just how we drive, but also patterns of vehicle ownership and 
use. The transition from private ownership to a Mobility-as-a-Service (MaaS) model, where 
self-driving "robotaxis" become the dominant form of motorized road transport, could 
reshape our cities in profound ways. 

Proponents of AVs highlight numerous potential benefits. For individual travelers, the ability 
to engage in other activities while in transit could significantly alter the perceived cost of 
travel time. From an urban planning perspective, the promise of solving pervasive parking 
problems is particularly appealing, as AVs could simply move on to their next passenger 
instead of occupying valuable urban space. Furthermore, optimized routing and platooning 
capabilities could increase road network efficiency and potentially improve safety. Fagnant & 
Kockelman (2015) suggest that AVs could reduce crashes by up to 90% through elimination of 
human error, while also improving fuel efficiency and reducing congestion through smoother 
traffic flow. Meanwhile, research from Duarte & Ratti (2018) suggests that shared 
autonomous vehicles could provide the same mobility with just 30% of the current vehicle 
fleet in cities like Singapore. 

However, the introduction of AVs also raises important questions and potential concerns. 
While each individual AV might offer improvements over traditional cars in terms of efficiency 
and environmental impact, the aggregate effect on urban systems remains uncertain. 
Historical precedent suggests that improvements in transportation technology often lead to 
induced demand, resulting in increases in total distance traveled. 

As Lee et al. (1999) explain, it's crucial to distinguish between induced traffic and induced 
demand when considering transportation improvements. Induced traffic refers to short-run 
changes in travel patterns - movements along an existing demand curve as travelers respond 
to reduced travel costs. Induced demand, on the other hand, represents long-run structural 
changes that shift the entire demand curve, such as land use changes or economic 
development spurred by improved accessibility. AVs could generate both: immediate 
behavioral changes through lower perceived travel costs and longer-term systemic changes 
by enabling new travel patterns. 

Recent research has begun to explore these system-level impacts, but significant gaps 
remain in our understanding. Talebian & Mishra (2018) developed sophisticated models 
predicting AV adoption based on diffusion of innovations theory, incorporating social 
networks and peer effects. However, their work focused primarily on individual adoption 
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decisions rather than collective urban impacts, and didn't account for the complex 
interactions between adoption patterns and transportation system performance. 

Fagnant & Kockelman (2015) provided a comprehensive review of opportunities and barriers 
for AV implementation, estimating potential societal benefits of $2,000 to $4,000 per vehicle 
annually. However, their analysis relied heavily on expert opinion and theoretical arguments 
rather than simulation of actual urban systems. The dynamic effects of AV adoption on travel 
behavior and urban mobility patterns remained largely unexplored. 

Metz (2018) specifically investigated congestion impacts, highlighting how the self-regulating 
nature of urban traffic means that congestion benefits might be temporary as improved 
mobility attracts previously suppressed trips. However, this work focused mainly on 
conceptual arguments rather than quantitative analysis, and didn't explore how different AV 
operating characteristics might influence these dynamics. 

Perhaps most concerningly, emerging evidence suggests that AVs might compete more 
directly with sustainable transport modes than with private cars. In their analysis of recent 
transit ridership declines, Graehler et al. (2019) found that the introduction of ride-hailing 
services was associated with a 1.7% decrease in bus ridership per year and a 1.3% decrease 
in heavy rail ridership. This suggests that new mobility technologies may primarily attract 
users away from public transit rather than reducing private car use - a pattern that could be 
even more pronounced with cheaper, more convenient autonomous vehicles. 

What's missing from current research is an integrated analysis that connects individual 
adoption decisions with system-level transportation impacts while accounting for the spatial 
and temporal dynamics of urban mobility. Previous studies have either focused on adoption 
patterns without detailed transportation modeling (Talebian & Mishra, 2018), analyzed 
potential impacts without modeling adoption mechanisms (Fagnant & Kockelman, 2015), or 
explored specific effects like congestion without capturing the full range of system 
interactions (Metz, 2018). 

This study aims to fill this gap by developing an agent-based model that combines detailed 
transportation simulation with dynamic adoption behavior. By modeling individual travel 
decisions, their collective impact on system performance, and the resulting feedback on 
future decisions, we can better understand how the introduction of AVs might reshape urban 
mobility patterns. Our approach is novel in three key ways: 

1. It integrates mode choice decisions with mesoscopic traffic simulation, allowing us to 
capture both immediate behavioral responses and resulting system-level effects 

2. It explicitly models competition between AVs and sustainable transport modes like 
cycling and public transit, addressing concerns raised by empirical studies of similar 
mobility innovations 

3. It explores how different AV operating characteristics (like space efficiency and 
perceived time value) might create distinct future scenarios, enabling more nuanced 
policy analysis 

This approach allows us to address our primary research question: 

Which undesired urban problems might the introduction of self-driving cars cause, 
considering the modal shift and induced demand, and what policies can effectively 
mitigate undesired impacts? 
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To answer this overarching question, we explore several key sub-questions: 

A. How can a traffic and mode choice model represent the system that shows the 
tradeoffs and potentially undesired effects of self-driving cars? 

B. How could self-driving cars be adopted under different future uncertainties? 
C. Which potential undesired system effects are amplified and which are reduced by the 

introduction of self-driving cars? 
D. Which potential policies are most effective in minimizing which undesired system 

effects while maintaining benefits under different uncertainties? 

By addressing these questions, this research aims to provide insights for urban planners, 
policymakers, and transportation engineers as they prepare for the advent of self-driving 
cars. Understanding the potential system-wide effects of AVs is crucial for developing 
proactive strategies to maximize their benefits while mitigating unintended negative 
consequences in our urban environments. 

The remainder of this thesis is structured as follows: Section 2 describes the methodological 
approach, including the rationale for combining agent-based modeling with mesoscopic 
traffic simulation. Section 3 presents the model design and validation, demonstrating how 
the system can be represented to explore AV adoption effects. Section 4 details the 
experimental design used to investigate different scenarios and policy interventions. Section 
5 presents the results of these experiments, examining AV adoption patterns, system-level 
effects, and policy effectiveness. Finally, Section 6 discusses the implications of these 
findings for urban transportation planning and policy, while Section 7 concludes with key 
insights and recommendations for future research. Supporting material is provided in five 
appendices: Appendix A provides a complete model description following the ODD protocol, 
Appendix B lists key modeling assumptions, Appendix C discusses model limitations, and 
Appendix D details the experimental setup. 
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2. Methods 
This study employs agent-based modeling (ABM) combined with mesoscopic traffic 
simulation to investigate the system-level effects of autonomous vehicle adoption in urban 
environments. Agent-based modeling was chosen over alternatives like pure equation-based 
approaches or aggregated flow models because it allows explicit representation of 
heterogeneous decision-making and captures emergent system behavior from individual 
choices. This is particularly important for studying AV adoption, where individual-level factors 
like value of time preferences and car ownership interact with system-level effects like 
congestion to create complex feedback loops. Alternative methods like system dynamics 
could capture some feedback mechanisms but would miss the spatial granularity and 
heterogeneity essential for understanding urban mobility patterns. 

The model was developed following the Modeling & Simulation lifecycle (Law, 2014) and 
structured according to the ODD (Overview, Design concepts, Details) protocol (Grimm et al., 
2020). The complete ODD protocol description is provided in Appendix A. Peer and supervisor 
feedback was incorporated throughout the development process, and Ockham's razor was 
applied to minimize unnecessary complexity while maintaining essential dynamics. 

The modelling approach in this study can be seen as having three interconnected layers that 
address the research subquestions. The first layer consists of dynamic processes - the daily 
movements of travelers choosing their transport modes and navigating through traffic, with 
continuous feedback between individual decisions and network conditions. The second layer 
contains experimental variables that represent key uncertainties about autonomous vehicles 
(like their cost and efficiency) and potential policy interventions (such as congestion pricing). 
While these variables remain constant during each simulation, they are systematically varied 
between simulations to explore different future scenarios. The third layer provides validated 
baseline data, including population distribution, road networks, and travel patterns, which 
remains constant across all scenarios to ensure meaningful comparisons. 

These layers build upon each other to systematically address each research subquestion: the 
dynamic processes layer demonstrates how to represent the system (subquestion A), the 
experimental variables layer enables exploration of adoption patterns (B) and system effects 
(C), while both layers together allow testing policy interventions (D). This layered structure 
ensures that while scenarios explore uncertain aspects of future mobility, they remain 
grounded in validated current travel patterns and infrastructure constraints. 

For subquestion A (how to represent the system), the model builds upon the traditional four-
step transportation demand model (McNally, 2007), but implements it within an agent-based, 
discrete-event controlled framework. The mesoscopic traffic simulation approach was 
chosen as a middle ground between microscopic and macroscopic models. While 
microscopic simulation could provide more detailed vehicle interactions, it would be 
computationally prohibitive at the city scale needed for this research. Conversely, 
macroscopic models would miss important dynamics like intersection delays and route 
choice that affect system performance. The mesoscopic approach, a middle-ground 
approach between microscopic individual vehicle modeling and macroscopic flow-based 
modeling, provides sufficient detail to capture congestion effects and travel time variations 
while remaining computationally tractable for large-scale scenario analysis. 
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The first two steps — trip generation and trip distribution — are derived from empirical data: 
trip generation rates from the Dutch National Travel Survey (ODiN 2023) and trip distribution 
from V-MRDH origin-destination matrices. This grounds the model in validated travel patterns 
while allowing modification of behavioral parameters to explore AV scenarios. The latter two 
steps — mode choice and route assignment — are modeled dynamically through agent 
behavior and traffic simulation, enabling investigation of how travelers might respond to new 
mobility options. 

For mode choice, a rational utility-maximization approach based on perceived costs 
(including both monetary costs and time weighted by individual value of time) was selected 
over alternatives like random utility models or rule-based approaches. This choice was driven 
by three key considerations: First, the lack of stated preference data for AVs made calibrating 
more complex choice models speculative. Second, the research focus on system-level 
effects meant that capturing broad behavioral patterns was more important than precise 
individual choices. Third, the value of time framework provides a clear mechanism for 
exploring how AVs might change travel behavior through reduced perceived time costs. While 
this approach simplifies some aspects of real-world decision making, it captures the 
essential trade-offs between time, cost, and comfort that drive mode choice. 

This hybrid approach was chosen over alternatives like pure activity-based models because it 
provides a robust framework for exploring mode choice shifts while maintaining 
computational tractability. While an activity-based approach might better capture complex 
trip chains and scheduling decisions, the lack of empirical data about how activities might be 
restructured around AV availability made such an approach speculative. For this, stated 
preference (SP) survey data would have been needed, which wasn't available for the modes 
and spatial and temporal scope of this research. Instead, the model focuses on validated trip 
patterns while allowing behavioral adaptation through mode choice and routing decisions. 

For subquestion B (adoption patterns), the model employs a full-factorial analysis of four key 
uncertainties: AV costs, perceived value of time in AVs, AV space efficiency, and induced 
demand. These specific uncertainties were selected based on literature review and 
stakeholder consultation as the factors most likely to influence adoption patterns or cause 
interesting system-level effects. The factorial design creates 144 unique scenarios (4×3×4×3 
levels), enabling systematic exploration of how these factors interact to drive or inhibit AV 
adoption. This approach was chosen over alternatives like Monte Carlo or Latin Hypercube 
sampling because it its simplicity makes scenarios directly comparable and human 
interpretable between variables variations. 

To address subquestion C (system effects), the model collects multiple metrics across all 
scenarios, tracking both direct transportation impacts (like mode shares and network 
speeds) and broader urban effects (like parking demand and vehicle kilometers traveled). The 
mesoscopic traffic simulation component, implemented using a modified version of UXsim 
1.6.0, was specifically chosen to balance computational efficiency with adequate 
representation of congestion and network effects. This level of detail allows examination of 
both localized impacts and system-wide patterns while remaining computationally feasible 
for the large number of scenarios explored. 

For subquestion D (policy effectiveness), eight representative scenarios were selected from 
the full scenario space to test nine different policy combinations, creating 72 scenario-policy 
combinations. The scenarios were chosen to span the range of possible futures identified in 
the full factorial analysis, while the policies represent different approaches to managing AV 
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adoption, varying in both intervention type (pricing vs. speed control) and spatial scope. This 
focused approach allows detailed analysis of policy effectiveness while remaining 
computationally manageable. 

The model was implemented in Python using Mesa 3.0.0b1 for agent-based modeling and a 
modified version of UXsim for traffic simulation. Mesa was selected for its ability to handle 
large agent populations and flexible scheduling, while UXsim implements Newell's simplified 
car-following model, providing an appropriate balance between computational efficiency and 
traffic dynamics representation. Data sources include population and vehicle ownership 
statistics from CBS, road network data from OpenStreetMap, cycling and public transport 
travel times from Google Maps API, and origin-destination matrices from the V-MRDH 
transport model. 

Model verification and validation followed a systematic approach combining multiple 
techniques. Verification included continuous integration testing, git version control with 
detailed commit messages, and manual validation of key metrics. Validation against current 
travel patterns used Dutch National Travel Survey (ODiN) 2023 data for mode shares and trip 
distributions. The simulation represents approximately one million residents of Rotterdam, 
with each agent representing a platoon of 10 actual travelers for computational efficiency. 
Section 3.6 dives deeper into this, and a full list of modeling assumptions and their 
justifications is available in Appendix B, while model limitations and validation challenges are 
discussed in detail in Appendix C. 

The novelty of this approach lies in its integration of multiple modeling scales and data 
sources. While previous studies have examined either mode choice or traffic simulation 
aspects of AV adoption, this research combines both within a single modeling framework. 
This enables analysis of feedback loops between individual travel decisions and system-level 
performance, capturing emergent behaviors that simpler models might miss. 
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3. Model description 
The model simulates travel behavior in the Rotterdam urban area over the course of one day, 
focusing on mode choice decisions and their collective impact on the transportation system. 
It consists of three main components: (1) an agent-based model for traveler decision-making, 
(2) a mesoscopic traffic simulation for vehicle movements, and (3) a discrete event system 
for scheduling and coordination, with a lot of data feeding into the model. 

This section shows how such a system can be represented, answering subquestion A. 

3.1 Spatial and temporal structure and scope 
The model is designed to simulate a medium-sized city over the course of a day. Rotterdam 
was selected as the study area for several key reasons. First, its size (approximately 1 million 
inhabitants in the study area) makes it large enough to exhibit complex urban mobility 
patterns while remaining computationally manageable. Second, it currently already faces 
typical urban transportation challenges including congestion, parking scarcity, and 
competing demands for limited road space. Third, it offers a diverse transportation 
ecosystem with well-developed alternatives to car travel, including an extensive public transit 
network (buses, trams, and metro) and significant cycling infrastructure, making it ideal for 
studying modal shifts. Fourth, it has relatively high car usage for a major city in The 
Netherlands, enabling potential model shifts from all modes. 

Spatial structure 

The spatial structure of the model operates at two complementary scales. At the finer level, 
the study area is divided into 125 four-digit postal code (PC4) areas, which roughly 
correspond to neighborhoods. This resolution was chosen because it provides sufficient 
granularity to have broad heterogeneity in road networks, population densities, car 
availability and travel patterns. These 125 regions created 125 * (125 - 1) = 15,500 possible 
origin-destination pairs for trips, which ensures a highly heterogeneous set of travel options 
for agents. In combination with the relatively large number of agents (a under thousand), 
which were needed for representative traffic simulation anyway, this reduces stochastic 
noise. 

These postal code areas are nested within 21 larger traffic analysis zones from the V-MRDH 
transport model, allowing for integration with regional travel demand data and validation 
against existing mobility patterns. 

The road network, derived from OpenStreetMap, comprises 1,575 nodes and 3,328 edges, 
including all roads from tertiary level upward. This network structure balances detail and 
computational efficiency - major and minor arterials are included to accurately model traffic 
flow, while local streets are omitted as their impact on system-level dynamics is minimal. The 
network also includes planned infrastructure improvements like the new A16 motorway and 
Blankenburg tunnel to ensure relevance for near-future scenarios. 
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Fig 3.1: The main study area, divided into 21 MRDH regions and 125 postal code areas 

Temporal structure 

Temporally, simulations typically run from 05:00 to 24:00 with 5-minute time steps. This 
temporal scope was chosen to capture both peak and off-peak travel patterns, covering all 
significant periods of travel activity (the excluded overnight period accounts for less than 1% 
of daily trips according to ODiN data). Furthermore, it gives the traffic network time to ramp 
up to peak congestion and recover afterwards, and allow for stabilization of traffic patterns 
between peak periods. 

The model uses discrete event simulation to activate agents with high temporal precision 
even if they are only activated a few times (3.5 on average) over a full day. A multi-scale 
temporal structure allows each component to have the temporal resolution it needs. While 
the overall system state is synced in 5-minute intervals, individual agents can initiate trips at 
any point in continuous time, derived from ODiN-based hourly probabilities distributed 
uniformly over that hour. The traffic simulation operates at several nested frequencies: 
vehicle platoons (representing 10 vehicles each, by default) are updated every 10 seconds for 
position and speed calculations, route choices are recomputed every 150 seconds (2.5 
minutes) through Dynamic User Equilibrium (DUO), and network-wide metrics are collected 
at 15-minute intervals. Each of those temporal resolutions was determined comparing the 
performance-accuracy tradeoff, until a good balance was found between numerical accuracy 
and computational speed. The discrete event framework ensures that traveling agents 
complete their journeys regardless of system time steps, providing realistic travel times and 
allowing for natural emergence of peak spreading and congestion patterns. 

  

• PopulatK>n-wetghted centroids 
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Extensibility 

While these parameters were used in the model implementation, it's worth noting that most 
source data is available for the entire Netherlands. The scripts to generate the 
OpenStreetMap network are designed to work with any urban area, and population data is 
available nationwide at the postal code level. The only data currently limiting the spatial 
scope are the origin-destination matrices from the V-MRDH model, which provide sufficient 
resolution only for the Rotterdam metropolitan region. Similarly, while this study focuses on 
single-day simulations, the model structure could accommodate multi-day runs, as trip 
probability data is available for every day of the week. This extensibility ensures that the 
modeling framework could be adapted for other cities or longer time periods in future 
research. 

3.2 Key submodels 
The model consists of two main submodels: the agent mode-choice model and the traffic 
simulation model. These submodels interact through agent decisions, which influence traffic 
flow and congestion patterns, which in turn affect mode choices of future agents. Various 
input data are entered into the submodels, which can be seen as a third submodel in itself. 
The conceptual model in Fig. 3.2 illustrates the key variables and interactions between 
submodels. 

 
Fig 3.2: Conceptual model displaying the submodels, variables and their interactions 

The model’s submodels interact through a series of information flows and feedback loops, as 
illustrated in Figure 3.2. At its core, the model combines individual travel decisions with 
system-level traffic dynamics. 

The process begins with input data feeding into both agent behavior and traffic simulation. 
Population data and trip patterns determine where and when agents travel, while the road 
network provides the physical infrastructure for the traffic simulation. For each potential 
journey, the agent first determines possible origins and destinations from empirical OD 
matrices, then evaluates available transport modes using a utility-based choice model. 
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When agents choose conventional cars or AVs, their trips feed into the mesoscopic traffic 
simulation as vehicle demand. The traffic simulation then calculates network conditions 
including congestion, delays, and travel times, which feed back into agents’ future mode 
choices through updated travel times. For non-motorized modes (bicycle) and public transit, 
travel times remain fixed based on Google Maps API data, as these modes are assumed to be 
largely unaffected by congestion. 

This creates two main feedback loops: a direct loop where traffic conditions influence 
immediate mode choices, and an indirect loop where accumulated trips affect network 
performance over time. 

External factors like population distribution, mode-specific costs, and value of time 
heterogeneity influence these dynamics but remain constant during each simulation run. This 
allows the model to explore how different scenarios and policies might affect the complex 
interactions between individual travel choices and system-level transportation performance. 

Input data 
To enable realistic simulation of both individual travel decisions and emergent system-level 
effects, the model integrates multiple empirical data sources that inform agent behavior and 
validate aggregate outcomes. 

Population and vehicle data 
Population distribution and vehicle ownership data from CBS (2023) were used at the 4-digit 
postal code (PC4) level, representing approximately one million residents across 125 postal 
code areas. Car ownership varies significantly by area (19-65%, averaging 31.5%), enabling 
heterogeneous mode availability among agents. 

Travel times and costs 
Data for non-car modes was collected using the Google Maps Distance Matrix API for all 
15,500 possible origin-destination pairs between postal codes, captured on a typical 
Thursday morning (2024-09-17, 08:00). For cars, travel times are calculated dynamically by 
the traffic simulation based on network conditions. Travel costs were derived from multiple 
sources: 

• Car: Variable costs of €0.268/km based on Nibud data (Nibud-car-costs). 
• Public Transit: Distance-based pricing following NS tariff structure (€0.169/km base 

rate, with declining rates for longer distances above 40 km, which turned out to not be 
present in the final simulation area). 

• Bicycle: Assumed zero marginal cost. 
• Autonomous Vehicles: Base fare €3.79 plus €1.41/km and €0.40/min, derived from 

Waymo pricing analysis as of September 2024 in Los Angeles (Waymo-pricing). 
 
Road network 
The network was extracted from OpenStreetMap (September 2024) and processed to include 
a detailed inner-city network with all roads from tertiary level upward, and a simplified 
surrounding network with major roads only. The complete network consists of 1,575 nodes 
and 3,328 edges, including attributes like speed limits, number of lanes, and road types. 
Roads under construction, including the new A16 motorway and Blankenburg tunnel, were 
included to represent near-future conditions. 

https://www.nibud.nl/onderwerpen/uitgaven/autokosten/
https://github.com/EwoutH/Waymo-pricing
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Trip generation and distribution 
Temporal trip patterns were derived from the Dutch National Travel Survey (ODiN 2023). The 
data shows a distinct sharp morning peak between 8 and 9 o’clock, and a little more spread 
out evening peak between 16 and 18 o’clock on weekdays. These patterns were used to 
create hourly trip generation probabilities for agents, to ensure agents start their trips at 
representative times. 

Trip distribution 
V-MRDH transport model for spatial distribution, which provides origin-destination matrices 
for different time periods (morning peak, evening peak, and off-peak). These matrices were 
processed to create probability distributions for trip destinations given each origin based on 
all transportation modes combined, so that the mode choice could be modelled internally as 
an agent decision rather than using mode-specific matrices. 

Value of Time 
Base values from KiM (2023) were used: 

• Car: €10.42/hour 
• Bicycle: €10.39/hour 
• Public Transit: €7.12/hour 
• AV: Scaled from car value using an adjustable factor (explored in scenarios) 

Individual variation was introduced by applying agent-specific factors drawn from a 
lognormal distribution (mean 1.0, standard deviation 0.5, capped at 4.0), reflecting 
heterogeneous time valuations while maintaining reasonable bounds. 

Section 6 of Appendix A provides more details on the input data sources, processing steps 
and motivation behind certain choices. 

Agent behavior 
Agents represent individual travelers with heterogeneous characteristics including home 
location, car ownership, possession of driver’s license, and value of time (drawn from a 
lognormal distribution). Each agent generates a set of trips based on empirically-derived 
hourly probabilities, with destinations chosen according to origin-destination matrices from 
the V-MRDH model. 

The model implements an agent-based version of the traditional four-step transportation 
demand model (McNally, 2007), adapting it for individual-level mode choice decision making 
while maintaining validated travel patterns. The first two steps (trip generation and 
distribution) are externally modelled based on empirical data, while the latter two steps 
(mode choice and route assignment) are modeled internally through agent behavior and 
traffic simulation. The four steps are implemented as follows: 

Firstly, trip generation relies on hourly probabilities derived from ODiN 2023 data, with agents 
generating trips through generate_trip_times(). 

Secondly, trip distribution assigns destinations using origin-destination probability matrices 
from the V-MRDH model through time_to_od_dict(). The matrices vary by time period 
(morning peak, evening peak, off-peak) to capture different travel patterns throughout the 
day. 
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Third, mode choice is implemented in choice_rational_vot(), where agents choose 
between available modes (conventional car, autonomous vehicle, bicycle, public transit) 
based on a rational choice model that minimizes comfort-adjusted perceived costs: 

The perceived cost 𝐶𝐶𝑝𝑝,𝑚𝑚 for a trip using mode 𝑚𝑚 is calculated as: 

𝐶𝐶𝑝𝑝,𝑚𝑚 = �𝐶𝐶𝑚𝑚,𝑚𝑚 + 𝑇𝑇𝑚𝑚 ⋅ 𝑉𝑉𝑚𝑚� ⋅ 𝛼𝛼𝑚𝑚 

where: 

• 𝐶𝐶𝑝𝑝,𝑚𝑚 is the perceived cost for mode 𝑚𝑚 
• 𝐶𝐶𝑚𝑚,𝑚𝑚 is the monetary cost for mode 𝑚𝑚 
• 𝑇𝑇𝑚𝑚 is the travel time for mode 𝑚𝑚 
• 𝑉𝑉𝑚𝑚 is the value of time for mode 𝑚𝑚 
• 𝛼𝛼𝑚𝑚 is the comfort factor for mode 𝑚𝑚 

Finally, route assignment for car and AV trips is handled by the UXsim traffic simulation. 
Other modes use fixed routes from Google Maps API data, which don’t need to be modeled 
explicitly. 

Trip chains are implemented as simple two-leg journeys (outbound and return), with mode 
availability constrained by previous choices (e.g., if departing by car, the return trip must also 
be by car). 

Traffic Simulation 
The traffic simulation component uses UXsim, a mesoscopic traffic simulator that 
implements a version of Newell’s simplified car-following model. This model represents 
traffic flow as a kinematic wave, a balance between microscopic (individual vehicle) and 
macroscopic (flow-based) modeling. This approach provides computational efficiency while 
maintaining sufficient detail to model traffic dynamics and measure congestion at both link 
and area levels. 

When agents choose car or AV as their travel mode, they are added to the traffic simulation 
as vehicles. For computational efficiency, vehicles are grouped into platoons of 10 vehicles, 
approximating the behavior of the actual 991,575 residents with about 100,000 agents. Each 
vehicle’s driving behavior in a link is expressed as: 

𝑋𝑋(𝑡𝑡 + 𝛥𝛥𝑡𝑡,𝑛𝑛) = min{𝑋𝑋(𝑡𝑡,𝑛𝑛) + 𝑢𝑢𝛥𝛥𝑡𝑡,𝑋𝑋(𝑡𝑡 + 𝛥𝛥𝑡𝑡 − 𝜏𝜏𝛥𝛥𝑛𝑛,𝑛𝑛 − 𝛥𝛥𝑛𝑛) − 𝛿𝛿𝛥𝛥𝑛𝑛} 

where 𝑋𝑋(𝑡𝑡,𝑛𝑛) denotes the position of platoon 𝑛𝑛 at time 𝑡𝑡, 𝛥𝛥𝑡𝑡 denotes the simulation time step 
width, 𝑢𝑢 denotes free-flow speed of the link, and 𝛿𝛿 denotes jam spacing of the link. This 
equation represents vehicles traveling at free-flow speed when unconstrained, while 
maintaining safe following distances when in congestion. 

Traffic behavior at intersections is handled by the incremental node model, which resolves 
conflicts between competing flows by processing vehicles sequentially based on predefined 
merge priorities. This approach maintains consistency with the kinematic wave model while 
efficiently managing complex intersection dynamics. Since OpenStreetMap data lacked 
explicit intersection information, merge priorities were set to default values, giving each 
incoming lane equal priority. 

https://arxiv.org/abs/2309.17114
https://doi.org/10.1016/S0191-2615(00)00044-8
https://doi.org/10.1016/j.trb.2011.03.001
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For route choice, UXsim employs a Dynamic User Optimum (DUO) model with stochasticity 
and delay. The attractiveness 𝐵𝐵𝑜𝑜

𝑧𝑧,𝑖𝑖  of link 𝑜𝑜 for vehicles with destination 𝑧𝑧 at time step 𝑖𝑖 is 
updated as: 

𝐵𝐵𝑜𝑜
𝑧𝑧,𝑖𝑖 = (1 − 𝜆𝜆)𝐵𝐵𝑜𝑜

𝑧𝑧,𝑖𝑖−𝛥𝛥𝑖𝑖𝐵𝐵 + 𝜆𝜆𝑏𝑏𝑜𝑜
𝑧𝑧,𝑖𝑖  

where 𝜆𝜆 is a weight parameter and 𝑏𝑏𝑜𝑜
𝑧𝑧,𝑖𝑖  indicates whether link 𝑜𝑜 is on the shortest path to 

destination 𝑧𝑧. This formulation allows vehicles to gradually adapt their routes based on 
evolving traffic conditions, rather than instantly responding to changes in travel times. 

Road characteristics are differentiated by road type, with motorways having lower jam 
densities (0.14 vehicles/meter/lane) than local streets (0.20 vehicles/meter/lane). 

 
Fig 3.3: The road network used in the traffic simulation 

3.3 Model interaction and behavior 
The model contains several important interaction patterns and feedback loops that drive its 
behavior. Three key dynamics emerge as particularly significant: congestion-based 
stabilization, mode choice reinforcement, and spatial-temporal patterns. 

https://doi.org/10.1016/S0191-2615(00)00005-9
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Congestion-based stabilization 
The primary stabilizing feedback loop operates through traffic congestion. When agents 
choose car or AV modes, they contribute to network traffic, which affects travel times through 
the kinematic wave model. These updated travel times then influence subsequent mode 
choices through the perceived cost calculation. This creates a negative feedback loop: as 
more agents choose motorized modes, congestion increases, leading to longer travel times 
and higher perceived costs, which makes these modes less attractive to subsequent agents. 
This mechanism helps prevent the system from reaching gridlock, though it can still occur in 
extreme scenarios (as seen in Section 5.2 with inefficient AVs). 

Mode choice reinforcement 
While congestion provides negative feedback, the model also contains positive feedback 
through trip chaining. Once an agent chooses a car for an outbound trip, they must use it for 
the return journey, as the vehicle needs to return home. This creates a form of path 
dependency where initial mode choices constrain future options, potentially amplifying the 
impact of factors that influence initial choices (like weather or time of day). 

Spatial-temporal dynamics 
The interaction between trip generation and network conditions creates distinct spatial-
temporal patterns. While the ODiN-derived trip probabilities generate similar morning and 
evening peaks, the actual system behavior differs significantly. As shown in Section 3.5.2, the 
evening peak experiences more severe congestion than the morning peak, despite similar trip 
generation rates. This emergent behavior arises from the interaction between more dispersed 
evening destinations (versus concentrated morning commute patterns), accumulation of 
delay effects throughout the day, and trip chain constraints limiting mode-switching options. 

Tipping point behavior 
The model exhibits notable tipping points related to AV adoption and system performance. 
These emerge from the interaction between density-dependent congestion (varying by road 
type), heterogeneous value of time among agents (following a lognormal distribution), and 
mode-specific comfort factors. These mechanisms interact to create sharp transitions in 
system behavior. As shown in Section 5.1, when AV costs drop below certain thresholds, the 
system can rapidly shift from one stable state to another, particularly when AV density factors 
are favorable. This occurs because the initial adopters (those with high value of time) reduce 
congestion enough to make AVs attractive to additional users, creating a cascading effect. 

Critical transitions 
The model reveals potential critical transitions in urban mobility patterns, particularly around 
AV adoption thresholds. Three distinct system states become apparent: 

1. Car-dominated equilibrium: With expensive AVs, the system maintains a stable mix 
of modes similar to current patterns. 

2. Mixed transition state: As AV costs decrease, the system enters a less stable state 
with shifting mode shares. 

3. AV-dominated state: With very cheap AVs and favorable density factors, the system 
can tip into a new equilibrium with high AV usage. 

These transitions are particularly interesting because they depend on multiple interacting 
factors. The tipping points are not determined by any single variable but emerge from the 
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interaction between costs, perceived time value, vehicle density, and the underlying 
feedback loops in the system. 

These interaction patterns and emergent behaviors help explain many of the results observed 
in Sections 5 and 6, particularly the non-linear responses to policy interventions and the 
existence of distinct future scenarios depending on AV characteristics. The combination of 
stabilizing feedback through congestion, reinforcing feedback through trip chains, and tipping 
point dynamics through heterogeneous adoption creates a rich system behavior that can’t be 
predicted from individual components alone. 

3.4 Limitations 
The model has important limitations that should be considered when interpreting its results. 
Three major limitations are highlighted in this section, as well as several minor limitations 
that may affect specific aspects of the model. The distinction is made by what effect we 
expect the limitation to have on the results: major limitations are expected to have a 
significant impact on the model’s ability to accurately represent reality, while minor 
limitations are expected to have a more limited impact, as least in the specific scope and 
goal of this research. 

Appendix C: Limitations provides a comprehensive overview of all limitations, including their 
potential impact on the model. 

Major limitations 
The primary limitation is its temporal scope - the model simulates only a single day and does 
not capture long-term effects such as land use changes, vehicle ownership decisions, or 
evolving destination patterns. While this allows for detailed analysis of immediate system 
responses to AV introduction, it may miss important feedback loops that develop over longer 
timeframes. 

A second key limitation lies in the travel demand model’s static nature. Unlike activity-based 
approaches, the model does not account for how the availability of AVs might fundamentally 
alter trip timing, destination choices, or activity patterns. Trip generation and distribution are 
based on current travel patterns, which may not accurately reflect behavior in a future with 
widespread AV adoption. 

The mode choice model represents a third major limitation, implementing a simplified 
rational choice framework that may not fully capture the complexity of real-world travel 
decisions. While heterogeneity is introduced through varying values of time, the model does 
not account for habitual behavior, psychological factors, or complex preferences beyond a 
single comfort factor per mode. This could lead to more extreme or more gradual modal shifts 
than might occur in reality. 

Minor limitations 
There are several smaller limitations. Regarding agent behavior and interactions, the model 
lacks several important behavioral mechanisms. Agents do not learn from or adapt their 
behavior based on previous experiences, such as experienced travel times or costs. There are 
no direct agent-to-agent interactions, meaning social influence processes and informal 
arrangements like household car sharing are not captured. The model also simplifies mode 
choice to just four options (car, bike, AV, transit), omitting potentially important alternatives 
like walking or e-scooters. Additionally, while parking occupancy is tracked, parking 
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availability and search time are not dynamically modeled into mode choice decisions, which 
could underestimate the full costs of car-based travel in dense urban areas. 

The representation of transportation infrastructure and networks presents another set of 
limitations. The traffic simulation does not explicitly model traffic signals, intersection 
priorities, or detailed merging behaviors, which may affect the accuracy of congestion 
patterns particularly in dense urban areas. Public transit is represented through fixed travel 
times rather than explicit schedules and routes, preventing the model from capturing 
capacity constraints or service frequency effects. Similarly, bicycle and transit routes are 
based on travel times from a single Thursday morning, not accounting for variations 
throughout the day or week that might influence mode choice. 

External factors that could significantly impact travel behavior are also simplified or omitted. 
The model does not account for weather conditions, seasonal variations, or incidents that 
could affect both mode choice and traffic patterns. External traffic entering and leaving the 
study area is implemented through fixed origin-destination matrices with simple time-of-day 
factors, not responding dynamically to changing conditions within the model. Furthermore, 
the underlying origin-destination matrices from the V-MRDH model are at a relatively coarse 
spatial resolution, potentially missing important local variations in travel patterns, especially 
for shorter trips. 

3.5 Default behavior 
The default behavior of the model represents the current situation in Rotterdam without 
autonomous vehicles. This scenario serves as a reference point for comparing the effects of 
AV adoption and policy interventions, and serves as validation for the model’s ability to 
reproduce existing travel patterns. 

3.5.1 Mode choice 
Mode choice is the main decision-making process for agents in the model. Figure 3.4 shows 
the mode distribution of modes throughout the day, showing how agents choose between 
car, bicycle and public transit without AVs being present. 

 
Fig 3.4: Mode distribution of all trips in the default scenario 

The absolute trip distribution shows two clear peaks in travel demand: a sharp morning peak 
around 8:00 and a broader evening peak between 16:00-18:00, consistent with the input 
distribution from the ODiN data. During these peak periods, all modes see increased usage, 
though their relative proportions remain fairly stable. 
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Looking at peak hours, suggesting that congestion may be a factor in mode choice, but the 
effect is relatively minor compared to the overall distribution. the normalized mode shares, 
cycling is consistently the dominant mode, accounting for 55-60% of all trips throughout the 
day. Car usage represents about 25-35% of trips, showing slight variations during peak hours, 
while public transit maintains a relatively stable share of 10-15%. Car usage does decrease 
slightly during the day, and especially during the evening rush hours, and recovers slightly in 
the evening. The stability of these proportions throughout the day suggests that while the 
absolute number of trips varies significantly, the relative attractiveness of different modes 
remains consistent. 

3.5.2 Trip distributions 
Details about each trip show how travel times, distances, costs, and perceived costs are 
distributed across different modes in the default scenario. Figure 3.5 displays the 
distributions of these metrics for all trips in the default scenario. 

Fig 3.5: Trip distributions for all trips in the default scenario 

The travel time distribution shows the bike to be the dominant mode for most short trips, 
under 20 minutes. Cars do have a significant share of trips in this region, but also extend 
further. Transit is almost not used for trips under 10 minutes, which is expected as public 
transit is generally not suited for very short trips. 

In terms of distance, most bicycle trips are concentrated in the 1-5 km range, while car trips 
show a more gradual distribution extending into the longer distances. Transit journeys have a 
flatter distribution, suggesting it’s chosen more often for longer trips. 

Notable is that cars take up the majority of the very short trips, which is an artifact of the 
model implementation: Bike and public transit goes from 4-digit postal code (PC4) centroid to 
PC4 centroid, while cars can go from any road node to any road node, which includes the 
shortest trips. While this skews the data slightly, it does not affect the overall mode shares 
since it averages out over all travel time and distances. 

The cost distribution reflects the model’s assumptions about mode costs: bicycle trips incur 
no monetary costs, car costs show a roughly log-normal distribution, and transit costs 
display similar pattern. These monetary costs combine with time costs to create the 
perceived cost distribution, where car journeys show the highest total costs despite often 
having shorter travel times than transit. 

Finally, all metrics follow a similar log-normal distribution, with a long tail of high values. This 
is consistent with the ODiN data on actual travel patterns and logical since the V-MRDH 
model is calibrated on ODiN, among others. Also note how the perceived costs distribution is 
perfectly smooth, which is a nice confirmation that agent’s indeed correctly make decisions 
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to minimize their perceived costs, and the comfort-factor doesn’t add too much noise 
besides skewing the distribution in favor of cars and against bicycles. 

3.5.3 Network metrics 
The network-level metrics show how traffic, congestion and delays are distributed throughout 
the day in the default scenario. Figure 3.6 displays the total traffic volume, average speed, 
delay factor, and vehicle density across the road network. 

 
Fig 3.6: Network metrics for all trips in the default scenario 

The total traffic volume exhibits clear morning and evening peaks, with particularly high 
volumes in Prins Alexander (10) and Capelle aan den IJssel (31). These areas experience 
significantly higher traffic volumes than other regions. These extreme values are likely due to 
a combination of high car ownership rates (see Fig A.2 in Appendix A.6 input data), 
substantial external traffic from surrounding municipalities (see Fig A.13), and ongoing major 
infrastructure projects around the Terbregseplein interchange and new A16 motorway 
construction. 
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Fig 3.7: Network metrics for all trips in the default scenario (without outlier regions Prins 
Alexander (10) and Capelle aan den IJssel (31)) 

To better observe patterns in other regions, Figure 3.7 excludes these outlier areas. In the 
inner-city areas, particularly Rotterdam Centrum (1), Noord (3), and Kralingen (4), show 
moderate but consistent traffic volumes throughout the day. Average speeds in these areas 
remain relatively low (10-15 km/h) compared to outer regions (20-25 km/h), with the average 
speed dropping below 10 km/h briefly in the morning peak and for longer periods during the 
evening peak, with very high vehicle densities, especially in the evening peak. 

The delay factor (actual travel time divided by free-flow travel time) shows that in these three 
inner-city areas, delays are consistently high during the evening peak, with journeys taking up 
to times the free-flow travel time. This suggests that congestion is a significant issue in these 
areas, particularly during peak hours. Krimpen aan den IJssel (34) is another notable outlier, 
which is notoriously limited by the Algera bridge, which is a major bottleneck in the area 
(oeververbindingen.nl, capellebouwtaandestad.nl). Some of the traffic towards the Algera 
bridge piles up in Capelle aan den IJssel (31), which could help explain the high traffic 
volumes and delays in that area. 

These metrics demonstrate that while the transportation network functions efficiently during 
most hours, certain areas - particularly the inner city of those limited by natural barriers - 
experience significant congestion and delays during peak periods. It’s great to observe that 
the model captures complex traffic behavior relatively well, like a short morning peak, 
extensive evening peak, and specific congestion points. 

3.6 Validation 
The validation of complex agent-based models requires evaluating multiple aspects of model 
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accuracy, validation focuses on determining whether the model can meaningfully address its 
intended research questions. This section examines the model's validity through four key 
aspects: mode choice distribution, travel patterns, network behavior, and systematic 
validation procedures, building on the behavior observed in sections 3.3 and 3.5. For each 
aspect, we compare model behavior against available empirical data, identify limitations, 
and assess implications for the model's ability to examine AV adoption effects. The validation 
results suggest the model captures key urban mobility dynamics adequately for exploring 
system-level changes, while specific numerical predictions should be interpreted with 
appropriate caution. 

Mode choice validation 
The model's default behavior was validated against ODiN 2023 data for the Rotterdam area. 
In the inner city (Noord, Kralingen, Rotterdam Centrum, Feyenoord, Delfshaven), the model 
produces mode shares of 11.3% car, 82.3% bicycle, and 6.5% transit, compared to empirical 
values of 13.4%, 69.9%, and 16.7% respectively. For the broader study area, the model shows 
25.4% car, 65.1% bicycle, and 9.5% transit usage, versus empirical values of 37.7%, 49.0%, 
and 13.3%. 

While the model shows some deviation from empirical data, particularly overestimating 
bicycle usage and underestimating car use, these differences are consistent with the model's 
focus on short to medium-term effects. The model doesn't capture certain car-favoring 
factors like weather, cargo requirements, and multi-stop trips, which likely explains the lower 
car mode share. However, the relative order of mode preferences and general patterns align 
with observed behavior, suggesting sufficient validity for examining modal shifts. 

Travel pattern validation 
Temporal travel patterns show strong alignment with empirical data, particularly in capturing 
peak hour characteristics. The model reproduces the sharp morning peak (8:00-9:00) and 
broader evening peak (16:00-18:00) observed in ODiN data, both in terms of timing and 
relative magnitude. This validation is particularly important as these temporal patterns drive 
the emergence of congestion and system-level effects. 

Trip distance distributions follow expected log-normal patterns, with bicycles dominating 
shorter trips (1-5 km) and motorized modes becoming more prevalent at longer distances, 
consistent with ODiN data. The distance distributions for each mode also align with the V-
MRDH model's origin-destination patterns, providing additional confidence in the spatial 
distribution of trips. 

The journey duration distributions show plausible relationships between modes, with 
bicycles being most competitive for trips under 20 minutes and transit becoming more 
prevalent for longer journeys. While direct validation of travel times against measured data 
was not possible, the relative differences between modes and the overall patterns align with 
expectations from urban transportation theory and observed behavior in similar cities. 

Network behavior validation 
The traffic simulation component demonstrates plausible behavior in several key aspects. 
Known congestion points, such as the Algera bridge bottleneck in Krimpen aan den IJssel and 
the Terbregseplein interchange, show appropriate congestion patterns. The model captures 
expected phenomena like longer delays during evening peaks compared to morning peaks, 
and higher congestion in dense urban areas versus peripheral regions. 
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Network speeds in the default scenario average 25 km/h, decreasing to 10-15 km/h in 
congested inner-city areas during peak hours, which aligns with typical urban traffic patterns. 
While precise validation against measured traffic data was not possible due to data 
availability constraints (commercial entities not willing to share data), these patterns are 
consistent with general urban traffic behavior and sufficient for examining relative changes 
under different scenarios. 

Suitability for research questions 
The model's components can be evaluated against the requirements for answering each 
research question: 

For subquestion A (how to represent tradeoffs and effects), the model combines validated 
mode choice behavior with traffic simulation at appropriate scales. While not perfect, the 
validated mode shares and travel patterns indicate the model captures important aspects of 
urban mobility decisions, and the network behavior shows plausible congestion and 
feedback effects. The modular design enables exploration of different effects by modifying 
individual components. 

For subquestion B (AV adoption under uncertainties), the model provides a validated 
representation of current travel behavior as a baseline, with explicit parameterization of key 
AV characteristics (cost, value of time, density). While AV-specific behavior cannot be 
validated due to its future nature, the model's representation of existing mode choice 
mechanisms offers a reasonable foundation for exploring potential responses to this new 
option. The heterogeneous value of time implementation helps capture varying adoption 
patterns, though actual adoption behavior may differ. 

For subquestion C (system effects), the model's network behavior shows key expected 
characteristics. The reproduction of known congestion patterns, peak hour dynamics, and 
area-specific traffic flows suggests the model can represent relevant system-level effects. 
The geographic (125 postal codes) and temporal (5-minute) resolution allows examination of 
both local and system-wide impacts, though some local effects may be oversimplified. 

For subquestion D (policy effectiveness), the model combines plausible travel behavior with 
network responses, enabling evaluation of policy interventions. The representation of 
different urban areas and travel patterns allows assessment of spatially and temporally 
targeted policies. However, the model necessarily simplifies policy implementation details 
and may not capture all behavioral responses to interventions. 

In summary, while the model has clear limitations, its components align with key aspects 
needed to explore the research questions. Like in most simulation studies exploring human 
behavior and uncertainties, focus on relative changes rather than absolute predictions 
should be the focus, making the model a useful, if imperfect, tool for examining potential 
impacts of autonomous vehicles on urban transportation systems.  
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4. Experimental design 
Two main experiments were conducted to explore the potential impacts of autonomous 
vehicles and evaluate policy interventions: a scenario analysis investigating uncertainties in 
AV adoption and its effects, to answer subquestion B (looking at mode shares) and C (looking 
at high-level KPIs), and a policy analysis testing interventions across selected scenarios, to 
answer subquestion D. 

 
Fig 4.1: Conceptual model including scenario uncertainties and policy levers 

Figure 4.1 shows how the scenario and policy variables will influence the system. The 
scenario variables will influence the number of AV cars generated, the frequency with which 
travelers plan trips, the AV costs and the travelers value of time when using an AV. The policy 
variables will influence the AV price and the maximum allowed speeds. 

4.1 Scenario analysis 
To answer subquestions B and C, a systematic exploration of key uncertainties was needed. 
A full-factorial design was chosen over alternatives like Monte Carlo or Latin Hypercube 
sampling for several reasons. First, factorial designs enable systematic exploration of 
interactions between variables while maintaining interpretability - each scenario represents a 
clear combination of parameter values that can be directly compared to others. Second, the 
logarithmic spacing of certain variables (particularly costs) allows exploration of non-linear 
effects that might be missed with uniform sampling. Third, the relatively small number of 
levels per variable (3-4) made a full factorial computationally feasible while still capturing the 
variations of interest. Future research may expand on this by either exploring interesting 
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areas in this space in higher resolution (to find thresholds) or outside it (to explore extreme 
value scenarios). 

The scenario analysis explored four key uncertainties: 

1. AV Cost Factor (4 levels: 1.0, 0.5, 0.25, 0.125) 
• Relative cost of using AVs compared to current Waymo prices 

2. AV Value of Time Factor (3 levels: 1.0, 0.5, 0.25) 
• Perceived value of time spent in AVs versus conventional vehicles 

3. AV Density (4 levels: 1.5, 1.0, 0.5, 0.333) 
• Space efficiency of AVs relative to conventional vehicles 

4. Induced Demand (3 levels: 1.0, 1.25, 1.5) 
• Potential increase in overall travel demand 

 
The AV cost factor spans from current prices to one-eighth of current costs, with values 
decreasing by a factor of two at each step. This logarithmic spacing reflects the expectation 
that cost differences matter more at lower price points, where they might trigger significant 
changes in adoption patterns. The current prices are based on Waymo's pricing in Los 
Angeles as of September 2024, providing a real-world baseline for comparison. 

The value of time factor explores how users might perceive time spent in AVs differently from 
conventional vehicles. A factor of 1.0 represents equivalent time value to current cars, while 
lower values (0.5 and 0.25) represent scenarios where time in AVs is perceived as less costly, 
due to the ability to work, rest, or engage in other activities. 

AV density represents how efficiently autonomous vehicles might utilize road space, 
measured as the relative space required per person transported compared to current 
vehicles. Values above 1.0 indicate less efficient operation (due to increased safety margins 
or lower occupancy), while values below 1.0 represent improved efficiency. This efficiency 
could be achieved through various mechanisms: higher occupancy from better ride-
matching, reduced following distances through platooning or faster reaction times, smaller 
vehicles optimized for urban trips, or combinations thereof. For instance, a density factor of 
0.5 might represent either doubled average occupancy, halved following distances, or a mix 
of improvements. The range spans from 1.5 (cautious operation, increased empty trips) to 
0.333 (high road efficiency, multi-person occupancy and/or few empty trips). By treating 
density as an outcome-based metric rather than specifying implementation details, the 
model remains relevant regardless of which solutions are used and will emerge. 

Induced demand factors were chosen based on historical precedent from major 
transportation improvements, ranging from no increase (1.0) to a 50% increase (1.5) in trip 
generation. This range captures both conservative and aggressive estimates of how improved 
mobility might stimulate additional travel, and simultaneously how demand might grow in 
general due to external factors. 

This design resulted in 144 unique combinations (4×3×4×3), each representing a possible 
future scenario. Each scenario was simulated for a full day (19 hours) with consistent base 
parameters including road network configuration, population distribution, and external traffic 
patterns. 
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4.2 Policy analysis 
To answer subquestion D, eight representative scenarios were selected from the scenario 
analysis results, ranging from "current situation" to "extreme progress" in AV adoption: 

Scenario AV cost AV density Induced demand 
Current situation 1.0 1.5 1.0 

Moderate progress 0.5 1.0 1.125 
Extensive progress 0.25 0.5 1.25 

Extreme progress 0.125 0.333 1.5 
Private race to bottom 0.125 1.5 1.25 

Mixed race to bottom 0.125 1.0 1.25 
Shared race to bottom 0.125 0.5 1.25 

Dense progress 0.25 0.333 1.125 

Table 4.1: Overview of selected scenarios for policy analysis 

These scenarios were chosen to span the range of plausible futures identified in the scenario 
analysis, with particular attention to cases that showed interesting or concerning system-
level effects. The selection includes both optimistic scenarios where technological progress 
leads to efficient, affordable AVs, and more problematic scenarios where cheap but 
inefficient AVs could create new urban challenges. 

These scenarios were tested against nine policy combinations: 

Policy Area Speed Reduction Tariff (€) Timing 
No policy City None 0 - 

Autoluw peak Autoluw -20 km/h 5 Peak 
Autoluw day Autoluw -20 km/h 5 Day 

City peak City -20 km/h 5 Peak 
City day City -20 km/h 5 Day 

City speed only City -20 km/h 0 - 
City peak tariff City None 5 Peak 

City day tariff City None 5 Day 
All out City -20 km/h 10 Day 

Table 4.2: Overview of policy combinations for policy analysis 

The policy combinations were designed to test both the individual and combined effects of 
two main intervention types: speed reductions and congestion pricing. Speed reductions of 
20 km/h represent a significant but feasible change in urban speed limits, in line what cities 
as Amsterdam are doing by lowering speed limits from 50 km/h to 30 km/h. The pricing levels 
(€5 and €10) were chosen to be substantial enough to influence behavior while remaining 
within ranges seen in existing congestion pricing schemes, in line with congestion pricing in 
cities as New York, which $15 in peak hours and $3.75 off-peak. 

Geographic targeting was included through two spatial scales: the "autoluw" area 
representing Rotterdam's central low-traffic zone (affecting about 13% of the population), 
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and city-wide implementation covering all 125 postal code areas. Temporal variations were 
explored through peak-hour (7:00-9:00 and 16:00-18:00) versus all-day (6:00-19:00) 
implementation, the current definitions used in The Netherlands for peak hours and daytime. 

This created 72 scenario-policy combinations (8×9), allowing examination of policy 
effectiveness under different future conditions. Each combination was evaluated using 
multiple metrics including mode shares, network performance, and total vehicle kilometers 
traveled, enabling analysis of both intended and unintended policy effects. 

Both experiments used the same base model configuration, differing only in the manipulated 
variables. Results were collected on journey details (origin, destination, mode, costs), traffic 
conditions (speed, density, flow), and parking occupancy, enabling comprehensive analysis 
of system-level effects. 
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5. Results 
This section presents the findings from two major experiments: a full-factorial analysis 
exploring 144 scenarios of AV adoption, and a focused policy analysis testing 72 
combinations of scenarios and interventions. The results are organized in three parts that 
directly address our research subquestions. 

First, Section 5.1 examines AV adoption patterns and modal shifts across different scenarios, 
answering subquestion B about how self-driving cars will be adopted under different 
uncertainties. Section 5.2 analyzes the system-level effects including congestion, network 
performance, and total vehicle kilometers traveled, addressing subquestion C about which 
urban problems are amplified or reduced by AVs. Both are based on the scenario analysis as 
described in section 4.1, but looking at different outcome metrics. 

Finally, Section 5.3 evaluates the effectiveness of various policy interventions across 
different scenarios, answering subquestion D about which policies can effectively mitigate 
negative impacts while preserving benefits. This section is based on the policy analysis as 
described in section 4.2. 

Section Subquestion Experiment Metrics 
5.1: AV adoption 
& modal shift B Scenario 

analysis 
AV mode share, mode-distance share, 
modal shift patterns 

5.2: System 
effects C Scenario 

analysis 
Network performance, congestion levels, 
vehicle kilometers traveled, travel times 

5.3: Policy 
effectiveness D Policy 

analysis 
Mode shares, network performance, 
system-wide metrics 

Table 5.1: Overview of which section answers which subquestion by which experiment 
examining which metrics 

Interpreting the results 
Many of the results will be displayed in dimensionally-stacked heatmaps. In each, one metric 
is displayed for all 144 scenarios. There are two x-axes and two y-axes, one for each of the 4 
uncertainties from which the scenarios are derived: 

• Inner (upper) x-axis: The AV Value of Time (VoT) factor, ranging from 1.0 to 0.25 (lower 
means less valuable). 

• Outer (lower) x-axis: The AV Cost Factor, ranging from 1.0 to 0.125 (lower means 
cheaper). 

• Inner (left) y-axis: Induced Demand factor, ranging from 1.0 to 1.5 (higher means more 
demand). 

• Outer (right) y-axis: AV Density factor, ranging from 1.5 to 0.333 (lower means less 
space per person kilometer taken up). 

Each value (tile) in the heatmap represents the metric value for the corresponding scenario. 
The structure and order is identical for all heatmaps, allowing for visual comparison of 
different metrics across the scenarios. Generally, outcomes preferred by (most) stakeholders 
are displayed in green, while undesired outcomes are displayed in red, with the reference 
scenario (no AVs) being the yellow midpoint. If the preferred direction of a metric is not clear, 
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brown indicates low values and blue indicates high values, with white being the reference 
scenario. 

5.1 AV adoption & modal shift 
To understand how autonomous vehicles might be adopted in urban environments and their 
impact on existing transportation modes, we first analyze the uptake of AVs and resulting 
changes in mode shares across our scenario space. This will answer subquestion B, under 
which circumstances AVs are likely to be adopted and how they affect the use of other 
modes. 

AV adoption 
Fig 5.1 shows the mode share and mode-distance share of AVs in the 144 scenarios. The 
mode share represents the percentage of total trips made by AVs, while the mode-distance 
share represents the percentage of total distance traveled by AVs. 

  

Fig 5.1: Mode share and mode-distance share of Avs in different scenarios 

In the scenarios to close to current pricing, Avs are only marginally adopted, for between 
0.7% and 1.6%. While this is between 25.000 to 60.000 daily trips, it’s not significant in the 
total of 3.5 million daily trips in the area. The density factor plays a small but notable role 
here, with AV adoption being about half if total travel demand increases by 50%. 

While the AV density and passenger’s value of time have some effect on the adoption of Avs, 
reducing the costs is what really drives AV adoption. Halving the costs increases the adoption 
by more than 5x, floating between 5 and 12 percent. Halving it again leads to another major 
increase up to 33%, which is also the first time the AV density starts to play a significant role. 
A density of 0.5 or 0.333 leads to significantly higher adoption, which will be further explorer 
in section 5.2. 

The AV distance share, which is the share of total distance traveled by AVs, shows very 
similar patters, being a slightly higher in the high-adoption scenarios. 

Finally, with the price being reduced to one-eight (0.125) or the current costs, Avs are cheap 
enough to be massively adopted. However, this has two pre-requisites: the value of time has 
to be at most 0.5, and the density has to be at most 0.5. With an density of 1.0 or 1.5 or a 
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value of time of 1.0, the adoption is still significant in the 15 to 35 percent ranges, but won’t 
reach the massive 65%+ adoption that otherwise is reached. 

Modal shift 
Fig 5.2 shows the mode share of cars, bicycles, and public transit in the 144 scenarios, which 
allows us to see how the adoption of AVs affects the use of other modes. 

   
Fig 5.2: Mode share of cars, bicycles, and public transit in different scenarios 

Looking at the mode shares of the other modalities, we see again those two distinct futures 
depending on the density of AVs. If AVs operate inefficiently, bike and transit shares remain 
high, and car share slightly reduces as AVs get cheaper. However, with high density AVs, bike 
and transit share drop very steeply while car share remains relatively high. Notably, there 
even is a spot in which the car share increases, with very high density AVs that are still 
relatively expensive (a cost factor of 0.5 or 0.25). We will explore this further in 5.2. 

It’s also remarkable that as AVs get cheaper and more dense, the modal shift from cyclist and 
transit starts earlier and happens faster than the modal shift from cars. 

Finally, the induced demand doesn’t seem to matter very much for the mode shares. While in 
the likely near-future scenarios with expensive AVs the induced demand lowers car and AV 
share with high induced demand, as AVs get cheaper and adoption increases, the density 
dictates the mode shares more than the induced demand. 

5.2 System effects 
With the modal shift and AV adoption patterns established, we now turn to the system-level 
effects of these changes. This section addresses subquestion C, exploring which undesired 
urban problems are amplified or reduced by the introduction of self-driving cars. 

Road network performance and congestion 
Fig 5.3 shows the average car speed, average AV speed, and average network speed in the 
144 scenarios. These metrics provide insights into the overall efficiency of the road network 
and the impact of AV adoption on traffic flow. 

Dimensionally-stacked heatmap of mode share car 
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Fig 5.3: Average car speed, average AV speed, and average network speed in different 
scenarios 

In almost all scenarios, the average car speed is reduced compared to the reference scenario 
without AVs. While about 25 km/h in the reference scenario, it drops to about 18 km/h with 
25% more overall demand and below 15 km/h with 50% more demand, suggesting significant 
congestion. AVs get cheaper, mean car speeds slow down further, in some cases below 5 
km/h. With very cheap AVs we see the a similar split as before: with a density of 1.5 and 1.0 
the city comes to a griding halt, while a density of 0.5 boosts the speeds back to the reference 
scenario, suggesting that AVs add about as much road capacity as they take up. Only with a 
density of 0.333, the speeds are significantly higher than the reference scenario, suggesting 
that AVs can significantly increase road capacity. 

AV speeds show many of the same traits: Higher induced demand lowers speed, cheaper AVs 
also lower speed, and the same density split, but with one remarkable difference: with a 
density of 0.333, average AV speeds are significantly higher than the cars. Especially when 
AVs are expensive, this suggests that people only use AVs when they are relatively fast, and 
provide significant time savings over bicycles and public transit. As AVs get cheaper, their 
average speed drops, suggesting both net congestion and that people are taking AVs also for 
trips with less time savings. Especially with an AV cost of 0.25, the AV VOT factor has very 
significant impact on the AV speed, suggesting that people with a low VoT are willing to take 
AVs even if they are slower than other, more expensive modes (including cars). 

Finally, the average speeds of all vehicles on the network show the same trend, with it being 
notable that network speeds will only increase when AVs are both very cheap and very dense. 
All other scenarios show a significant decrease in network speed, with the most extreme 
scenarios showing speeds well below 10 km/h. 

Figure 5.4 shows the average delay compared to free-flow speeds, and shows very similar 
patterns. In the reference scenario, vehicle trips take about 70% more time than when they 
would be able to travel at free-flow speeds. This increases to 120% and almost 200% with 
25% and 50% more demand, respectively. Cheaper AVs don’t provide any benefits until they 
are prices below one eight of the current pricing, and only with a density of at least 0.5. 
Densities of 1.0 and 1.5 in that case can blow up average delays to over 500%, meaning only 
one-sixth of the average free-flow speed is achieved. 

Dimensionally-stacked heatmap of mean network speed Dimensionally-stacked heatmap of mean car speed 
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Fig 5.4: Average delay (compared to free flow) in different scenarios 

Vehicle distance traveled 
Total vehicle distance traveled is useful as a high-level metric because it can act as a proxy 
for many other metrics, like congestion, emissions, energy use, and wear and tear on the road 
network. Fig 5.5 shows the total network distance traveled and the average network delay in 
the 144 scenarios. 

 

Fig 5.5: Total network distance traveled and average network delay in different scenarios 

Interesting, the total network distance traveled only increases slightly with more demand in 
scenarios with close to current pricing, indicating the network is already close to its 
maximum capacity. With AVs getting cheaper and adopted, we see the same split as in 
previous metrics, but in a surprising direction. The total vehicle distance decreased 
significantly, to under half of the reference scenario, with very cheap AVs and non-dense AVs. 
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While maybe surprising on the surface level, it is consistent with the conceptual model: Slow 
moving vehicles don’t cover a lot of distance, and a city in gridlock doesn’t move a lot of 
vehicles. 

With higher densities, cheap AVs and low value of time, the induced demand starts to matter 
a lot more, scaling practically linearly with the induced demand factor. This suggests that the 
speeds on the network are sufficient to accommodate all vehicles that want to travel, leading 
to large distances covered. 

Especially the implication of high speeds with high milage could have severe negative effects 
in a city. Even if only EVs are considered and not the negative externalities of ICE cars, 
collisions causing injuries, energy usage, noise pollution, road wear and tear, and 
microplastics from tire wear could all be significantly increased. 

Travel time and perceived costs 
Finally, it’s interesting to look at the average travel time and the perceived costs of the trips, 
since those are two of the potential benefits of AVs. These are shown in Fig 5.6. 

 
Fig 5.6: Average travel time and average perceived costs in different scenarios 

The mean travel time degrades immediately with induced demand. Without any induced 
demand, we see average travel times increase relatively soon, with an AV costs of 0.5 already 
leading to notable decreases, as long as the density is 0.5 or 0.333. With a density of 1.0 or 
1.5, the opposite happens, and there isn’t a single scenario in which AVs with that density 
improve average travel times. The huge potential of AVs are reached if the density reaches 
0.333, almost slashing the average travel time for all travelers in half. A density of 0.5 is also 
enough as long as induced demand is low. 

One very interesting observation is that the AV Value of Time is really important in that last 
case, and that deserves some further explanation. If the VoT factor for AVs is 0.5 or lower, we 
see that the AV travel times massively decrease, but not if the VoT factor is 1.0. 
Understanding this requires looking back at Fig 5.2, which shows a large modal shift from 
cars to AVs only occurs with those lower VoTs. So if the AV VoT factor is still 1, a significant 
shift from bikes and public transit to AVs happens, increasing AV share to around 30%, but 
most people keep driving their cars, and some people even shift from other modalities to 
cars. This means the total number of regular cars on the road is not reduced and in a few 
cases even increases, while adding some AVs to the mix. Even if these AVs have optimal 
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density, it still leads to a net increase in car density and thus an increase in congestion and 
travel times. 

The results in the lower right corner indicate that the metrics improve somewhat again as AVs 
get cheaper and VoT gets lower, but this isn’t the case. For both metrics the results there 
should be disregarded, since not enough travelers were even able to finish their journey to 
give a representative picture of these two metrics (data for these metrics could only be 
collected when a journey was finished, and many travelers simply weren’t able to before the 
simulation ended at midnight). 

5.3 Policy effectiveness 
To address subquestion D about which policies can help mitigate negative impacts of AV 
adoption while preserving benefits, we evaluated the effectiveness of eight representative 
scenarios under nine different policy combinations as described in Section 4.2. This section 
presents the results of the policy analysis, focusing on the impact of speed limit reduction 
and congestion pricing policies on mode shares, network performance, and total vehicle 
kilometers traveled. 

Similar heatmaps as in the previous sections are shows, but now with the different scenarios 
on the y-axis and the different policies on the x-axis. Ideally, a policy would lead to better 
outcomes than the reference policy of doing nothing. 

AV adoption and modal shift 
Fig 5.7 shows the mode share of cars, AVs, bicycles, and public transit in the 72 scenario-
policy combinations. This allows us to see how the policies affect the adoption of AVs and the 
use of other modes. 
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Fig 5.7: Mode share of cars, AVs, bicycles, and public transit in different scenarios and 
policies 

All policies do reduce the AV share, except the speed reduction on its own (even when 
applied to the whole city, like in policy 5). The comprehensive all out policy, which induces a 
high €10 tariff on all AV trips within the city and reduces the speed limit by 20 km/h on all 
roads, reduces AV share the most in all scenarios, bringing it down to about 10% at most. The 
city-day policy (8), proves the AV share can also be significantly reduced with a lower tariff, 
and the city-day-tarif policy (7) shows that the speed reduction is not necessary, a city wide 
tarif dusing the day (6-19h) is reduces AV share on its own. 

Looking at the other modalities, the policies mostly dampen the modal shifts from the other 
modalities to AVs. In some cases, the policies decrease bike and transit use, which is likely 
caused by reduced congestion and thus more regular car use, but this will be further explored 
in the next section. None of the policies actually reduce car use, and in some cases even 
increase it. 
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System effects 
Network performance 

  

  

Fig 5.8: Average car speed, average AV speed, average network speed, and average delay in 
different scenarios and policies 

Most policies are surprisingly ineffective in increasing the average car speed, except mainly 
the all-out (8) and the city-day (4) policies, somewhat. It shows that a city wide tariff 
combined with a maximum speed reduction can increase car speeds in the moderate-
progress and private- and mixed-race-to-the-bottom scenarios (1, 4 and 5). A tariff on its own 
(7) is less effective, and all other policies don’t noticeably help car speeds, showing the small 
“autoluw” area and tariffs only at rush hours are not very effective. 

AV speeds don’t share this trend, and get almost universally worse with each policy in each 
scenario. Only policy 7, with only a tariff, can get AV speeds up in some scenarios, likely 
because relatively more fast routes are taken, since network speeds don’t show significant 
improvements. 

Finally, there is no policy that improves any of the speed metrics in each scenario. Policies 
that help in heavily congested scenarios, mainly by getting inefficient AVs off the road, do 
active harm in other scenarios, where high-density AVs get replaced with cars that are less 
efficient. No strategy is dominant on any metric, let alone on all. There is no silver bullet. 

Note that the delay metric is lower with the speed limit reduction, but the average network 
speed is also lower. This is due to the way delay is measured: it’s a ratio of the actual travel 
time divided by the free-flow travel time. If the free-flow travel time is higher (due to the speed 
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limit reduction), the delay will be lower, even if the actual travel time is higher. It might 
influence the perception of congestion, since the difference between the actual travel time 
and the free-flow travel time is smaller, but it doesn’t actually reduce congestion. 

Vehicle distance traveled 

 

Fig 5.9: Total network distance traveled and average network delay in different scenarios and 
policies 

Vehicle distance traveled is a very mixed bag. A few more drastic policies, like the city-day (4) 
and all-out (8) increase the distance traveled on practically in all cases. These were the 
policies that were effective in increasing network speeds, which shows here. 

No policies effectively reduce vehicle distance. It shows that more comprehensive policies 
are needed that also target other modalities than AVs, which also might need to be more fine-
grained, dynamic and/or adaptable if reducing vehicle milage is a goal. 

Travel time and perceived costs 

  

Fig 5.10: Average travel time and average perceived costs in different scenarios and policies 

There is no single policy that manages to reduce travel time significantly. It shows just 
slapping a price and speed reduction on AVs at some time in some area doesn’t help in that 
regard. Only in the moderate and extensive progress scenarios (1 and 2) some of the more 
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aggressive policies seem to reduce travel times slightly, with notably the city-peak pricing 
policy (3) having a positive effect for the first time. 

Perceived costs show a largely the same patterns, but in this case the more comprehensive 
policies (4 and 7, 8) are able to reduce the perceived costs somewhat in scenarios 1, 2 and 7. 
In all other scenarios and all other policies generally increase the perceived costs, showing 
again that there is no silver bullet. 

5.4 Overview 
The results from the scenario and policy analysis delivers some distinct insights in how 
autonomous vehicles might be adopted, what the potential undesired effects are, and which 
policies might help mitigate those effects. The main findings are: 

First, AV adoption appears to be primarily driven by cost, with significant adoption only 
occurring when costs drop below half of current levels. The value of time spent in AVs plays a 
secondary but important role, particularly in determining whether people switch from cars to 
AVs. When AVs are very cheap (one-eighth of current costs) and time is perceived as more 
valuable in them (VOT factor of 0.5 or lower), adoption can reach over 65% of trips. However, 
this high adoption scenario only materializes if AVs can operate efficiently (density factor of 
0.5 or lower). 

Second, the density of AVs emerges as a critical factor that creates two distinct futures. With 
inefficient AVs (density factors of 1.0 or 1.5), increased adoption leads to severe congestion, 
with average network speeds dropping below 10 km/h in extreme cases. Conversely, with 
efficient AVs (density factors of 0.333 or 0.5), the system can accommodate high adoption 
while maintaining or even improving traffic flow. This bifurcation suggests that the success of 
AVs in urban environments may depend more on their space efficiency than their cost or 
comfort advantages. 

Third, the modal shift patterns reveal that cyclists and transit users are more likely to switch 
to AVs than car users when AVs become cheaper. This suggests that AVs might compete 
more directly with sustainable transport modes than with private cars, potentially 
undermining urban sustainability goals. The effect is particularly pronounced when AVs are 
both cheap and space-efficient, leading to significant reductions in bicycle and transit mode 
shares. 

Fourth, induced demand plays a complex role. Its effects are most noticeable in scenarios 
with efficient AVs, where the additional capacity enables the system to accommodate more 
trips. In scenarios with inefficient AVs, the system is already so congested that induced 
demand has limited additional impact. This suggests that the relationship between AV 
adoption and induced demand is non-linear and heavily dependent on AV operating 
characteristics. 

Fifth, vehicle distance traveled reveals complex patterns depending on AV efficiency and 
speed. In scenarios with inefficient AVs (density 1.0-1.5), total vehicle kilometers decrease 
significantly as congestion reduces speeds, sometimes to less than half the reference 
scenario. Conversely, with efficient AVs (density 0.333-0.5), vehicle kilometers can increase 
substantially, scaling almost linearly with induced demand. This divergence is particularly 
pronounced when AVs are very cheap (cost factor 0.125) and perceived time costs are low 
(VOT factor 0.25-0.5), suggesting that efficiency improvements could lead to significantly 
more vehicle travel. 
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Sixth, policy analysis reveals that most of the policies evaluated are ineffective or even 
counterproductive across different scenarios. Speed reductions alone (policy 5) show 
practically no benefit on any metric, failing to improve network performance or encourage 
sustainable mode choices. The “autoluw” area policies (1 and 2) prove too limited in scope to 
affect system-wide metrics meaningfully. Even city-wide peak-hour congestion pricing (policy 
6) shows minimal positive impact, only marginally reducing AV adoption without improving 
overall system performance. 

More comprehensive policies, like the city-day (4) and all-out (8) interventions, show some 
ability to influence system behavior but often with significant trade-offs. While they can 
increase car speeds in scenarios with inefficient AVs (density 1.0-1.5), they simultaneously 
reduce AV speeds and increase total vehicle distance traveled. In scenarios with efficient AVs 
(density 0.333-0.5), these same policies can actually harm system performance by 
discouraging the use of more efficient vehicles. The city-wide tariff policy (7) demonstrates 
that speed reductions are often unnecessary - pricing alone can achieve similar effects with 
less disruption to network performance. 

Perhaps most tellingly, no policy consistently improves all metrics across different scenarios. 
Policies that help in heavily congested scenarios with inefficient AVs actively harm 
performance in scenarios with efficient AVs. Even when policies successfully reduce AV 
adoption, they often fail to improve - and sometimes worsen - key metrics like average travel 
time, perceived costs, and network efficiency. This suggests that simple, static policies 
targeting AVs alone may be insufficient for managing the complex dynamics of future urban 
transportation systems. 
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6. Discussion 
After having shown the model results, in the discussion we contextualize these findings 
within existing research, examines their implications, and identifies areas for future 
investigation. 

6.1 Key findings in context 
First, the five key findings presented in 5.4 will be reflected upon and placed in scientific 
context. 

Cost-driven adoption with critical thresholds 
Our finding that significant AV adoption only occurs when costs drop below 50% of current 
levels aligns with previous research by Talebian & Mishra (2018), who found that aggressive 
price reductions (15-20% annually) were necessary for widespread adoption. However, our 
results reveal a more nuanced relationship between cost and adoption than previously 
identified. While Talebian & Mishra found a relatively straightforward relationship between 
price reductions and adoption rates, our results show distinct tipping points where adoption 
accelerates rapidly, particularly when costs fall below 25% of current levels. While four 
variable levels is by far not enough to estimate a clear adoption pattern, it might imply an S-
curve pattern, which does occur more often in technology adoption (Rogers, 1962). 

This non-linear adoption pattern emerges from the interaction between cost reductions and 
other system factors, particularly AV density. The simulation deliberately separated these 
factors to understand their individual impacts - in reality, cost reductions might come from 
the same technological advances that improve operational efficiency. This separation 
revealed that even dramatic cost reductions alone are insufficient to drive high adoption in 
urban environments if AVs operate inefficiently. 

The critical role of AV density 
Perhaps our most significant finding is the identification of AV density as the critical factor 
determining system outcomes. This aligns with but substantially extends previous research. 
While Fagnant and Kockelman (2015) estimated that cooperative adaptive cruise control 
could increase lane capacities by 1-80% depending on market penetration, their analysis 
focused primarily on the positive potential of efficient operations. Our results demonstrate 
that inefficient AVs can actually reduce system capacity, creating a stark bifurcation in 
possible futures. 

Importantly, our model treated density as an outcome-based metric rather than specifying 
how it’s achieved. A density factor of 0.5 could result from various combinations of: - Smaller 
vehicle sizes - More efficient vehicle spacing through faster reaction times - Better routing 
and scheduling to reduce empty trips - Network-level optimizations - Higher average 
occupancy through ride-sharing 

This approach allows the results to remain relevant regardless of which technological or 
operational solutions ultimately emerge. The critical threshold identified (density factors 
below 0.5) provides a clear target for AV developers and policymakers, while remaining 
agnostic about how this target is achieved. 
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Modal shift patterns 
Our observation that cyclists and transit users are more likely than car users to switch to AVs 
challenges common assumptions about AV adoption patterns. While this aligns with 
research on current ride-hailing services (Graehler et al., 2019), the magnitude of the shift in 
our simulations is notably larger. This difference likely stems from two factors: 1. The model’s 
important role of travel time value, which captures how AVs might make longer trips more 
acceptable by enabling productive use of travel time. 2. The explicit modeling of trip chains, 
which reveals how car ownership creates “lock-in” effects that resist modal shifts 

This finding has particularly important implications for cities like Rotterdam with high cycling 
mode shares. Previous research has often focused on car-to-AV transitions, potentially 
underestimating the risk to sustainable transport modes. 

System-level effects 
The emergence of distinct futures based on AV density adds important nuance to debates 
about induced demand. Our results align with Metz’s (2018) observation that AVs’ impact will 
largely depend on whether they operate as private or shared vehicles. However, our findings 
suggest that the critical factor isn’t ownership models per se, but rather the resulting space 
efficiency of operations. 

The interaction between induced demand and AV efficiency revealed in our results extends 
Lee et al.’s (1999) work on equilibrium responses to transportation improvements. While their 
research suggested 10-20 years for full equilibrium adaptation, our results indicate that the 
speed and nature of this adaptation may vary dramatically depending on AV operating 
characteristics. In scenarios with efficient AVs, the system can accommodate significantly 
more induced demand, while inefficient AV scenarios show rapid degradation of service 
levels even without additional demand. 

The relationship between AV density and vehicle kilometers traveled (VKT) revealed in our 
results adds important nuance to previous research on transportation system impacts. VKT 
can serve as a proxy for multiple urban externalities including particulate emissions, noise, 
infrastructure wear, and safety risks - effects that persist even with zero-emission vehicles. 
Importantly, the source of improved AV density significantly influences these impacts. If 
density improvements come from increased vehicle occupancy, total VKT could decrease as 
trips are combined. However, if improvements stem from technical efficiency gains like 
smaller vehicles or reduced following distances, VKT will likely remain high or increase as the 
freed capacity enables more trips. 

Policy effectiveness 
The limited effectiveness of traditional policy interventions across different scenarios 
represents a novel finding with important implications. While previous research has focused 
on optimal policy design for specific AV scenarios, our results suggest that policies optimized 
for one scenario may be counterproductive in others. This creates a fundamental challenge 
for policymakers: how to design interventions that remain effective across multiple possible 
futures. 

The finding that smaller-scale interventions (like the “autoluw” area policies) had minimal 
impact aligns with network theory predictions about the limitations of localized traffic 
interventions in connected systems. However, the observation that even city-wide 
interventions showed limited effectiveness in many scenarios suggests deeper challenges in 
managing AV adoption through traditional policy tools. It should be noted that the focus of 
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this research was to explore the adoption patterns and uncertainty space, and was chosen to 
limit the policy analysis in scope. There might be other policies that are effective on more 
metrics among more scenarios. 

6.2 Policy implications 
The complex dynamics revealed by this research pose significant challenges for 
policymakers, requiring a fundamental rethinking of traditional transportation policy 
approaches. The results suggest several key areas where policy intervention is critical, but 
also reveal why conventional approaches may be insufficient. 

The primacy of space efficiency in determining system outcomes suggests that this should be 
the central focus of AV regulation. While previous policy discussions have emphasized 
safety, liability, and data privacy (Fagnant & Kockelman, 2015), our results indicate that 
space efficiency requirements may be equally important for urban environments. Cities 
should establish clear performance metrics for AV operations that focus on their space 
consumption per passenger, rather than treating all AVs as equivalent. This might involve 
differentiated road pricing based on vehicle occupancy, dedicated infrastructure access for 
high-efficiency services, or operational requirements for minimum passenger densities in 
certain areas. 

However, the implementation of such policies faces several challenges. First, space 
efficiency is an emergent property of multiple factors, including vehicle size, operational 
patterns, and passenger occupancy. Policy frameworks need to focus on outcomes rather 
than prescribing specific technological solutions, allowing innovation while ensuring system-
level benefits. Second, the measurement and enforcement of such requirements requires 
new monitoring capabilities and regulatory frameworks. Third, policies need to account for 
the transition period where conventional and autonomous vehicles share the road network. 

The vulnerability of sustainable transport modes to AV competition represents another 
crucial policy challenge. Traditional approaches to protecting public transit and cycling have 
focused on infrastructure provision and operational priority. While these remain important, 
our results suggest they may be insufficient in the face of cheap, comfortable AVs. Cities 
need more comprehensive approaches that integrate AVs into a sustainable mobility 
ecosystem rather than treating them as competitors to be restricted. This might involve 
designing AV services specifically to complement rather than replace existing sustainable 
modes, using them to solve first/last mile challenges or serve areas with poor transit 
coverage. 

The stark differences between scenarios with different AV characteristics necessitate 
adaptive policy frameworks. Static regulations designed for current conditions may become 
either too restrictive or too permissive as AV technology evolves. Instead, cities need 
dynamic policy frameworks that can adjust automatically based on observed system 
performance. This represents a significant departure from traditional transportation policy, 
which typically changes slowly and reactively. The development of such adaptive frameworks 
requires not just new policy tools, but also new institutional capabilities for monitoring and 
responding to changing conditions. 

The potential for increased vehicle kilometers traveled in high-efficiency AV scenarios 
suggests that cities need policies addressing absolute mobility levels, not just focusing on 
traditional metrics like congestion and travel times. For instance, road pricing could 
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differentiate between single-occupancy and shared AVs, rewarding higher vehicle occupancy 
rather than just operational efficiency. Infrastructure access policies could prioritize AVs that 
demonstrably reduce total vehicle kilometers through trip chaining or ride-sharing, rather 
than treating all AVs equally. VKT should also probably be normalized by some factors, like 
weight. Such policies would need to carefully balance the mobility benefits of efficient AVs 
against their potential to induce additional vehicle travel and associated externalities like tire 
wear, noise, and infrastructure degradation - impacts that persist even with zero-emission 
vehicles. 

The limited effectiveness of localized interventions revealed in our simulations suggests the 
need for coordinated policy approaches across different spatial scales. While cities may be 
tempted to implement restrictions in specific problematic areas, our results indicate that 
such approaches may simply shift problems elsewhere in the network. System-level policies 
that address both supply and demand aspects of AV operations are likely to be more 
effective. This might involve coordinated pricing schemes across entire urban regions, 
integrated planning of AV services with public transit networks, and consistent regulations 
across jurisdictional boundaries. 

Perhaps most importantly, cities need to plan carefully for the transition period. The potential 
for rapid shifts in travel patterns once certain thresholds are crossed (in cost, comfort, or 
efficiency) means that cities cannot wait to observe problems before responding. Proactive 
planning should include clear triggers for policy interventions based on monitored metrics, 
strategies for protecting vulnerable users during the transition, and mechanisms for adjusting 
existing infrastructure and services as travel patterns change. 

6.3 Future research 
This study’s findings, while showing several dynamics of AV adoption in urban environments, 
also highlight important areas for future research. Both the methodological approach and the 
results suggest promising directions for deeper investigation, which can be divided into two 
categories: improvements to the current modeling approach and broader research needs in 
the field of urban transportation transitions. 

Model and study improvements 
The most pressing opportunity for methodological improvement lies in the agent behavior 
model. While the current rational choice framework provided useful insights, it likely 
oversimplifies the complexity of travel decisions, particularly regarding new technologies like 
autonomous vehicles. An activity-based travel demand model would better capture the 
interdependencies between trips and daily activity patterns. This isn’t merely a matter of 
adding complexity - understanding how AVs might reshape daily activity patterns is crucial for 
predicting their systemic impacts. For example, the ability to work while traveling could 
fundamentally alter the relationship between home and workplace location choices, a 
dynamic the current model cannot capture. 

Implementing such an activity-based approach would require carefully designed stated 
preference studies. Current revealed preference data, while valuable for validating existing 
travel patterns, cannot capture how people might respond to technologies that don’t yet exist 
in their full form. These studies should investigate not just mode choice in isolation, but how 
different AV service configurations might influence activity scheduling, destination choices, 
and the perceived value of travel time. The heterogeneity in these responses - how different 
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demographic groups might value and use AVs differently - could significantly affect adoption 
patterns and system-level outcomes. 

The traffic simulation component, while adequate for examining system-level effects, could 
benefit from more detailed representation of intersection dynamics. The current approach 
using default merge priorities may underestimate the potential for local congestion points, 
particularly in dense urban areas where intersection capacity often constrains network 
performance. More sophisticated modeling of traffic signals, turn movements, and yielding 
behavior could reveal additional challenges or opportunities in managing mixed autonomous 
and conventional vehicle traffic. However, this increased detail would need to be balanced 
against computational constraints - the ability to run large numbers of scenarios was crucial 
for understanding system behavior under uncertainty. Data availability might also be a 
challenge here. 

The most significant data limitation was the lack of time-varying travel times for non-car 
modes. While bicycle and transit travel times are generally more stable than car travel times, 
they do vary throughout the day, particularly for transit where service frequencies change. 
Collecting this data was prohibitively expensive with current API pricing models, but future 
research could benefit from partnerships with transit agencies and mobility data providers to 
obtain more comprehensive temporal coverage. This would be particularly valuable for 
understanding how AV services might compete with or complement public transit during 
different times of day. 

Broader research directions 
Beyond improving the current model, this study points to several crucial areas requiring 
broader investigation. Perhaps most fundamental is the need to understand the long-term 
dynamics of AV adoption and its impacts on urban form. While our model focused on 
transportation system effects, the potential for AVs to reshape land use patterns could be 
equally significant. The relationship between transportation and land use has historically 
been bidirectional - new transportation technologies enable new development patterns, 
which in turn influence travel demand. Understanding these feedback loops in the context of 
AVs requires integrating transportation models with land use and economic models over 
longer time horizons. Either find a few orders of magnitude in computational efficiency, or 
prepare your supercomputer. 

The limitations of static policies revealed in our results suggest an urgent need for research 
into adaptive policy frameworks. Traditional transportation policies often change slowly and 
reactively, but our findings indicate that AV adoption could create rapid shifts in travel 
patterns once certain thresholds are crossed. Future research should explore how cities can 
develop policies that automatically adjust based on observed conditions - for example, 
dynamic pricing schemes that respond to both congestion levels and AV adoption rates. This 
requires not just technical solutions but also investigation of the legal and institutional 
frameworks needed to implement such adaptive approaches. 

The stark differences we observed between scenarios with different AV operating 
characteristics highlights the need for research into the determinants of AV space efficiency. 
While our model treated density as an outcome-based metric, understanding how to achieve 
higher density through vehicle design, operational strategies, and policy incentives is crucial. 
This might involve detailed studies of AV behavior in mixed traffic, optimization of fleet 
operations, and analysis of the trade-offs between individual vehicle performance and 
system-level efficiency. 
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Social equity implications of AV adoption deserve particular attention in future research. Our 
results suggesting that cyclists and transit users might be more likely to switch to AVs than 
car users raises important questions about the distribution of benefits and burdens. If AVs 
primarily attract users away from sustainable modes rather than private cars, this could 
exacerbate rather than alleviate urban transportation problems. Research is needed on how 
policies can ensure that AV services complement rather than compete with sustainable 
transport modes, and how the benefits of automation can be equitably distributed across 
different demographic groups. 

Finally, the interaction between AVs and other emerging technologies requires deeper 
investigation. Our model treated AVs as an isolated technological change, but in reality, they 
will develop alongside other innovations in energy systems, communications infrastructure, 
and shared mobility services. Understanding these interactions is crucial for both public 
policy and private investment decisions. For example, the potential for AVs to serve as mobile 
energy storage units could significantly influence both transportation and energy system 
planning, while integration with mobility-as-a-service platforms could affect adoption 
patterns and service models. 

These research directions suggest that while this study has provided valuable insights into 
potential AV impacts and policy responses, many important questions remain. Future work 
will need to combine detailed technical analysis with broader systemic thinking to help cities 
navigate the transition to automated mobility. It’s important to recognize the heterogeneity of 
different urban environment and their existing policies: not cities are alike. The complexity of 
urban transportation systems and the potentially transformative nature of AVs demand 
research approaches that can capture both immediate operational impacts and longer-term 
structural changes. 
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7. Conclusions 
This research demonstrates that autonomous vehicles' impact on urban mobility problems 
appears to depend more strongly on their space efficiency than on cost or comfort 
advantages. While previous research has focused on adoption rates and individual benefits, 
our findings suggest that the system-level effects of AVs may create distinct trajectories in 
possible urban futures, primarily influenced by their density factor - the space required per 
person transported relative to conventional vehicles. The model indicates a potentially 
critical threshold around a density factor of 0.5, below which AVs can maintain system 
performance even at high adoption rates. Above this threshold, increased AV adoption tends 
to degrade network performance regardless of other characteristics. 

However, even scenarios with highly efficient AVs present significant challenges: they tend to 
induce substantially more vehicle kilometers traveled, which could increase energy 
consumption, road wear, tire particle emissions, and noise pollution even with zero-emission 
vehicles. Our research only looked at short-term modal shifts, the increased mobility and 
reduced perceived cost of travel time might also encourage urban sprawl, potentially 
undermining other sustainability goals. This suggests that every potential AV future brings its 
own set of challenges that require careful consideration and management. 

Another notable - and somewhat concerning - finding is that AVs appear to compete more 
directly with sustainable transport modes than with private cars. This competition intensifies 
as AVs become cheaper and more comfortable, potentially affecting cycling and public 
transit usage. The model suggests this shift might begin even before significant car-to-AV 
transitions. If accurate, this could create a transition period in which AVs exacerbate rather 
than alleviate urban transportation problems. 

The limited effectiveness of traditional policy interventions across different scenarios 
suggests that cities may need to consider new approaches to transportation policy. Static, 
spatially-limited interventions showed particular limitations in the model, while even 
comprehensive city-wide policies demonstrated constraints in simultaneously preserving 
benefits and mitigating negative impacts. This indicates that managing AV adoption might 
require more finegrained steering mechanisms and/or more dynamic policy frameworks, 
though further research would be needed to determine optimal approaches. 

Several crucial aspects of AV integration remain poorly understood and warrant further 
investigation. The interaction between AV operations and parking behavior could significantly 
affect urban space use and travel patterns, particularly during the transition period with 
mixed autonomous and conventional vehicles. The logistics of charging infrastructure may 
constrain operational efficiency and influence service patterns. Personal preferences, habits, 
and psychological factors in adoption decisions likely play a more complex role than our 
rational choice model captures. Perhaps most importantly, the long-term effects on land use 
patterns and urban development remain uncertain, as improved mobility could reshape 
where people choose to live and work. 

This research suggests that autonomous vehicles may represent neither an inherent solution 
nor an inevitable problem for urban mobility. Rather, their impact appears likely to depend on 
the interaction between their operating characteristics, adoption patterns, and policy 
frameworks. Further research will be crucial to validate these findings and explore additional 
factors that could influence AV integration into urban transportation systems. 
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The significant variations between potential futures revealed by this research - ranging from 
improved mobility to system strain - emphasize the potential importance of early policy 
consideration in AV development. The network effects and behavioral patterns identified in 
our model suggest that early trajectory decisions could have lasting implications. 
Governments, regulators and industry stakeholders should start working on truly 
understanding this vastly complex system, and on how to steer to a future in which AVs 
support urban sustainability, connectivity, and livability, rather than letting market forces spin 
the wheel of fortune.  
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Appendices 
Appendix A: Model description 
The model description follows the ODD (Overview, Design concepts, Details) protocol 
(Grimm et al., 2006, 2020). This protocol provides a standardized format for describing agent-
based models, ensuring clarity and reproducibility. 

1. Purpose 
The purpose of this model is to simulate the introduction and adoption of self-driving cars 
(autonomous vehicles, AVs) in urban environments, specifically focusing on the Rotterdam 
area in the Netherlands. The model aims to explore the system-level effects of AVs on urban 
transportation, including changes in mode choice, traffic patterns, and potential unintended 
consequences. By simulating individual agent behaviors and their collective outcomes, the 
model seeks to answer the following key questions: 

1. How does the introduction of self-driving cars affect mode choice and travel patterns 
in urban areas? 

2. What are the potential undesired effects of self-driving cars on urban transportation 
systems? 

3. How do different policies influence the adoption and impact of self-driving cars? 
The model is designed to provide insights for urban planners, policymakers, and 
transportation engineers to support decision-making in preparation for the widespread 
adoption of autonomous vehicles. 

2. Entities, State Variables, and Scales 
2.1 Entities 
The model consists of the following main entities: 

1. Travelers (Agents): Represent individual residents of the urban area who make travel 
decisions. 

2. Urban Model: Represents the overall simulation environment, including the 
transportation network and global variables. 

3. UXsim World: Represents the traffic simulation environment, including road network 
and vehicle movements. 

4. Journeys: Represent individual trips made by travelers. 
2.2 State Variables 
2.2.1 Traveler (Agent) State Variables 

• unique_id: Unique identifier for each agent 
• pc4: 4-digit postal code of the agent’s location 
• mrdh65: MRDH (Metropoolregio Rotterdam Den Haag) region number 
• mrdh65_name: Name of the MRDH region 
• has_car: Boolean indicating whether the agent owns a car 
• has_license: Boolean indicating whether the agent has a driver’s license 
• has_bike: Boolean indicating whether the agent has a bicycle (default is True) 
• available_modes: List of available transportation modes 
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• currently_available_modes: List of currently available transportation modes 
• vot_factor: Value of time factor (lognormally distributed) 
• value_of_time: Dictionary of value of time for different modes 
• current_location: Current location (postal code) of the agent 
• current_vehicle: Current vehicle being used by the agent 
• traveling: Boolean indicating whether the agent is currently traveling 
• reschedules: Number of times the agent has rescheduled trips 
• journeys_finished: Number of completed journeys 
• costs: Total costs incurred by the agent 
• time_costs: Total time costs incurred by the agent 
• trip_times: List of scheduled trip times 
• destinations: List of trip destinations 
• journeys: List of Journey objects representing completed and ongoing trips 

2.2.2 Urban Model State Variables 
• step_time: Time step of the simulation (in hours) 
• start_time: Start time of the simulation (in hours) 
• end_time: End time of the simulation (in hours) 
• choice_model: Type of mode choice model used 
• enable_av: Boolean indicating if AVs are enabled in the simulation 
• av_cost_factor: Cost factor for AVs 
• av_vot_factor: Value of time factor for AVs 
• ext_vehicle_load: External vehicle load factor 
• uxsim_platoon_size: Platoon size for UXsim traffic simulation 
• car_comfort: Comfort factor for cars 
• bike_comfort: Comfort factor for bicycles 
• av_density: Density factor for AVs 
• induced_demand: Factor for induced demand 
• policy_tarif: Tariff for policy implementation 
• policy_tarif_time: Time period for policy tariff 
• policy_speed_reduction: Speed reduction factor for policy 
• policy_area: Area where policy is applied 
• available_modes: List of available transportation modes 
• transit_price_per_km: Price per kilometer for public transit 
• car_price_per_km_variable: Variable cost per kilometer for cars 
• car_price_per_km_total: Total cost per kilometer for cars 
• av_initial_costs: Initial costs for using an autonomous vehicle 
• av_costs_per_km: Cost per kilometer for autonomous vehicles 
• av_costs_per_sec: Cost per second for autonomous vehicles 
• default_value_of_times: Default values of time for different modes 
• comfort_factors: Comfort factors for different modes 
• pop_dict_pc4_city: Dictionary of population by postal code 
• mrdh65s: List of unique MRDH regions in the simulation 
• pc4s: List of unique postal codes in the simulation 
• trips_by_hour_chance: Dictionary of trip probabilities by hour 



       

55 
 

• trips_by_mode: Dictionary tracking the number of trips by mode 
• trips_by_hour_by_mode: Nested dictionary tracking trips by hour and mode 
• uxsim_data: Dictionary storing UXsim simulation data 
• parked_per_area: Dictionary tracking parked vehicles by area 
• parked_dict: Dictionary tracking parked vehicles over time 
• successful_car_trips: Counter for successful car trips 
• failed_car_trips: Counter for failed car trips 

2.2.3 UXsim World State Variables 
• name: Name of the simulation 
• deltan: Platoon size (number of vehicles per platoon) 
• reaction_time: Reaction time of vehicles 
• duo_update_time: Time interval for dynamic user equilibrium updates 
• duo_update_weight: Weight for dynamic user equilibrium updates 
• duo_noise: Noise factor for route choice 
• eular_dt: Time step for Eulerian traffic state computation 
• eular_dx: Spatial step for Eulerian traffic state computation 
• random_seed: Seed for random number generation 
• tmax: Total simulation duration 
• node_pc4_dict: Dictionary mapping postal codes to network nodes 
• node_mrdh65_dict: Dictionary mapping MRDH regions to network nodes 

2.2.4 Journey State Variables 
• agent: Reference to the agent making the journey 
• origin: Origin of the journey (postal code) 
• destination: Destination of the journey (postal code) 
• mode: Chosen mode of transport 
• start_time: Start time of the journey 
• travel_time: Estimated travel time 
• end_time: End time of the journey 
• distance: Journey distance 
• cost: Monetary cost of the journey 
• perceived_cost: Perceived cost (including time value) 
• comf_perceived_cost: Comfort-adjusted perceived cost 
• used_network: Boolean indicating if the journey used the road network 
• available_modes: List of available modes for this journey 
• perceived_cost_dict: Dictionary of perceived costs for all available modes 
• started: Boolean indicating if the journey has started 
• finished: Boolean indicating if the journey has finished 
• act_travel_time: Actual travel time (for car/AV journeys) 
• act_perceived_cost: Actual perceived cost (for car/AV journeys) 
• o_node: Origin node in the road network 
• d_node: Destination node in the road network 
• vehicle: Vehicle object for car/AV journeys 
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2.3 Scales 
• Spatial scale: The model covers the Rotterdam urban area, represented by 125 4-digit 

postal code (PC4) regions within 21 MRDH (Metropoolregio Rotterdam Den Haag) 
areas. 

• Temporal scale: The simulation typically runs from 5:00 to 24:00 (19 hours) with a 
default step time of 5 minutes (1/12 hour). 

• Population scale: The model simulates approximately 100,000 agents, with each 
agent representing a platoon of vehicles (default size 10), approximating the actual 
population of 991,575 in the area. 

3. Process Overview and Scheduling 
The model follows a discrete event simulation approach, with the following main processes: 

1. Initialization: 
• Set up the simulation environment and parameters 
• Create agents and assign them to locations based on population data 
• Initialize the road network and traffic simulation (UXsim) 
• Assign car ownership and driver’s licenses based on postal code data 

2. Generate trip times and destinations: 
• Each agent generates a set of trip times based on hourly probabilities 
• Destinations are assigned for each trip based on origin-destination matrices 

3. Start journey: 
• Determine available modes for the journey 
• Choose origin and destination nodes (for car and AV trips) 
• Select travel mode using the specified choice model 
• Schedule the trip in the traffic simulation (for car and AV trips) 

4. Execute simulation step: 
• Update the traffic simulation (UXsim) 
• Collect data on traffic conditions and parking 

5. Finish journey: 
• Update agent’s location and available modes 
• Schedule the next journey if available 

6. Add external vehicle load: 
• Add vehicles representing external traffic at specified intervals 

7. Data collection and analysis: 
• Collect data on mode choices, travel times, and system-level metrics 
• Analyze and visualize results 

The simulation uses a combination of time-step and event-based scheduling. The Urban 
Model steps forward in discrete time intervals (default 5 minutes), while individual agent 
actions and vehicle movements are scheduled as events. 

4. Design Concepts 
4.1 Basic Principles 
The model is based on several key principles and theories from transportation modeling and 
urban systems: 
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1. Mode choice theory: The model implements a rational choice framework for mode 
selection, based on the concept of utility maximization (Ben-Akiva and Lerman, 1985). 
Agents choose their travel mode by comparing the perceived costs (including both 
monetary and time costs) of available options. 

2. Traffic flow theory: The UXsim component of the model is based on kinematic wave 
theory and car-following models, specifically using a mesoscopic version of Newell’s 
simplified car-following model (Newell, 2002). 

3. Induced demand: The model incorporates the concept of induced demand, which 
suggests that improvements in transportation systems can lead to increased travel 
(Downs, 1962; Cervero, 2003). 

4. Value of Time (VOT): The model uses the concept of Value of Time from 
transportation economics to represent how agents trade off time and money in their 
travel decisions (Small, 2012). 

5. Dynamic User Equilibrium (DUE): The traffic simulation component uses a DUE 
approach to model route choice, reflecting the idea that travelers adjust their routes 
based on experienced travel times (Wardrop, 1952). 

4.2 Emergence 
The model is designed to reveal emergent phenomena at the system level, including: 

• Modal shift patterns as a result of individual mode choices 
• Traffic congestion patterns emerging from individual trip decisions and route choices 
• Parking demand distribution across the urban area 
• Potential unintended consequences of AV adoption, such as increased total vehicle 

kilometers traveled 
4.3 Adaptation 
Agents in the model adapt their behavior in several ways: 

• Mode choice: Agents select their travel mode based on the perceived costs and 
available options for each trip. 

• Route choice: For car and AV trips, routes are dynamically updated based on traffic 
conditions (implemented in the UXsim component). 

• Trip chaining: Agents adapt their available modes based on their previous trips, 
reflecting constraints such as needing to return home with the same mode they left 
with. 

4.4 Objectives 
Agents in the model aim to minimize their perceived travel costs, which include both 
monetary costs and time costs weighted by their individual Value of Time. This objective is 
expressed in the choice_rational_vot method of the Traveler class. 

4.5 Learning 
The current model does not implement explicit learning mechanisms for individual agents. 
However, the Dynamic User Equilibrium approach in the traffic simulation component 
represents a form of collective learning, where the system as a whole adapts to changing 
conditions. 
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4.6 Prediction 
Agents make implicit predictions about travel times and costs when choosing their mode of 
transport. These predictions are based on current information about the transportation 
network and their personal experiences (represented by their Value of Time and other 
parameters). 

4.7 Sensing 
Agents are assumed to have perfect information about: - Their own attributes (e.g., car 
ownership, driver’s license) - Available transportation modes - Travel times and costs for 
different modes 

The model does not currently implement limitations on sensing or information availability, 
which could be an area for future refinement. 

4.8 Interaction 
Agents interact indirectly through their impact on the transportation system: - Car and AV 
trips contribute to traffic congestion, affecting travel times for other agents - Vehicle parking 
affects the availability of parking spaces in different areas 

Direct agent-to-agent interactions are not currently modeled. 

4.9 Stochasticity 
The model incorporates stochasticity in several ways: 

• Trip generation: The number and timing of trips for each agent are determined 
probabilistically based on hourly trip probabilities. 

• Value of Time: Each agent’s Value of Time factor is drawn from a lognormal 
distribution. 

• Initial conditions: Agent attributes like car ownership and possession of a driver’s 
license are assigned probabilistically based on data for each postal code area. 

• Traffic simulation: The UXsim component includes stochastic elements in route 
choice and traffic flow. 

• Origin-destination pairs: Trip destinations are chosen probabilistically based on origin-
destination matrices. 

4.10 Collectives 
The model does not explicitly represent collectives or agent groups. However, agents are 
implicitly grouped by their postal code and MRDH region, which influences their trip patterns 
and available transportation options. 

4.11 Observation 
The model collects and outputs various data for analysis: 

• Mode choice distribution (overall and distance-weighted) 
• Trips by mode and time of day 
• Traffic conditions (from UXsim), including speed, density, and flow 
• Parking demand by area over time 
• Journey details for each completed trip, including origin, destination, mode, travel 

time, and costs 
• System-level metrics such as total vehicle kilometers traveled, average speeds, and 

congestion levels 
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This data is saved in various formats (Python pickle files, Feather files) for further analysis and 
visualization. 

5. Initialization 
The model is initialized with the following steps: 

1. Set up the simulation environment with specified parameters (e.g., number of agents, 
start and end times, time step, policy variables). 

2. Load geographical and population data for the Rotterdam area from various sources 
(CBS, MRDH, OpenStreetMap). 

3. Create agents and assign them to postal code areas based on population distribution. 
4. Assign car ownership and driver’s licenses to agents based on data for each postal 

code. 
5. Generate trip schedules for each agent based on time-of-day probabilities. 
6. Initialize the UXsim traffic simulation component with the road network data. 
7. Set up initial parking distribution based on car ownership in each area. 
8. Initialize data collection structures for various metrics. 

The initial state can vary between simulation runs due to the stochastic elements in agent 
creation, attribute assignment, and trip generation. 

6. Input data 
The model uses several external data sources as input for agent and system behavior: 

6.1 Population data by 4-digit postal code (PC4) from CBS 
Population data from the CBS is used to distribute agents across the urban area (CBS-
postcode). The Dutch 4-digit postal code areas are used, which roughly represent a 
neighbourhood each. This gives heterogeneity in the system and enables adequate travel 
counts and traffic pressure on the network. In the 125 PC4 areas, there are in total 991,575 
residents. The population in each area gets scaled down with the platoon size (10 by default), 
resulting in approximately 100,000 agents in the simulation. 

https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/gegevens-per-postcode
https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/gegevens-per-postcode
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Fig A.1: Population count for each PC4 area (number) and population density (color) 

6.2 Car ownership and driver’s license data by postal code (CBS) 
Car ownership is also sourced from the CBS per PC4 area. For each area, a certain 
percentage of agents gets assigned a car as additional available mode. On average that’s 
35.4% and varies between ~19% and ~65% per area. This enables heterogeneity among 
agents and enables realistic mode choices. 
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Fig A.2: Car ownership per inhabitant for each PC4 area 

The full analysis for both the population and car ownership data is available in the 
prototyping/pc4.ipynb notebook. 

6.3 Road network data from OpenStreetMap 
The road network data was extracted from OpenStreetMap (OSM) using the OSMnx library 
(version 2.0.0b2) on September 30, 2024. The network consists of two distinct components: a 
detailed inner-city network covering the city area and a broader surrounding network covering 
supporting area. This dual-network approach allows for higher resolution within the primary 
study area while still allowing traffic to flow in and out of the city. 

The inner-city network includes all roads from tertiary level and above (motorways, trunks, 
primary, secondary, and tertiary roads, including their respective link roads), which are all 
arterial roads to allow traffic to flow accurately. The surrounding network includes only major 
roads (secondary level and above) to reduce computational complexity, since precise traffic 
flow is less critical in these areas (and are not included in the measurements). Roads under 
construction, particularly the new A16 motorway and Blankenburg tunnel, were included to 
ensure the network represents the near-future situation. 

The downloaded networks contained: - City network: 44,464 nodes and 56,236 edges - 
Supporting network: 48,674 nodes and 57,024 edges - Combined raw network: 93,138 nodes 
and 113,260 edges 

Since the computational complexity scales quadratically with the number of edges, the raw 
networks were simplified to reduce the number of nodes and edges. This was done by 
eliminating nodes with degree 2, which are not intersections, and consolidating intersections 
within a certain distance threshold. 
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Population weighted averages: 
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https://www.github.com/gboeing/osmnx
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These networks were processed through the following steps: 1. Projection to a unified 
coordinate reference system (EPSG:28992, Amersfoort / RD New) 2. Network attribute 
assignment, including: - Speed limits (derived from OSM maxspeed tags) - Number of lanes 
(from OSM lane tags) - Road type classification - Network identification (city or surrounding 
area) 3. Intersection consolidation using variable tolerances: - 10-meter tolerance for the city 
network - 50-meter tolerance for the surrounding network 4. Network simplification while 
preserving essential attributes (length, travel time, lanes) 

The final processed network contains 1,575 nodes and 3,328 edges, which was both suitable 
for the research problem and feasible to simulate. Each edge in the network contains the 
following key attributes: - Length (meters) - Speed limit (km/h) - Number of lanes - Road type 
(motorway, trunk, primary, secondary, tertiary) - Network identification (city or surrounding) - 
Travel time (seconds, calculated from length and speed limit) 

 
Fig A.3: The processed road network showing hierarchical road types (line width) and network 
components (color). The main network (red) includes tertiary and larger roads within 
Rotterdam, while the supporting network (blue) includes secondary and larger roads in the 
surrounding area. 
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During simulation, the network is used by the UXsim traffic model to: - Calculate shortest 
paths between origins and destinations - Simulate traffic flow and congestion - Track vehicle 
movements and area-based metrics - Apply speed reductions in policy scenarios 

The simplified network structure proved particularly efficient for the mesoscopic simulation 
approach, allowing for city-scale simulations while maintaining adequate detail for analyzing 
both local and system-wide effects of autonomous vehicles and policy interventions. 

The full analysis is available in the network/create_network.ipynb notebook. 

6.4 Travel time and distance data for public transit and cycling (from Google Maps API) 
Travel times and distances for non-car modes (public transit and cycling) were collected 
using the Google Maps Distance Matrix API. Data was gathered for all possible origin-
destination pairs between the 125 postal code areas in the Rotterdam urban area, resulting in 
15,500 unique combinations for both cycling and public transit. This fell withing the free tier 
of the API, which allows for up to 40.000 elements travel time requests per month, costing 
$156.25 for the complete matrix in both modes, within the $200 free monthly credit Google 
provides. 

The data collection was performed for Thursday, September 17, 2024, at 08:00, representing 
typical weekday conditions. While for bycicle the travel time is relatively stable, for public 
transit it can vary due to the frequency of the services and more data collections would be 
needed to capture proper early morning, late evening and weekend travel times. The travel 
times on a Thursday morning are when the highest frequency of trips are made, and provide 
generally the fastest travel times, representing the optimal conditions for public transit. 

The API provided both travel time (in seconds) and distance (in meters) for each origin-
destination pair. For transit, this includes walking to/from stops, waiting times, and any 
transfers. For cycling, it assumes use of the standard cycling infrastructure and average 
cycling speeds. 

Centroid-to-centroid measurements between postal code areas where made, initially only 
between the 21 MRDH regions (420 pairs), which lead to visible noise in even the high-level 
KPIs. It also didn’t allow within-region travel, which is a significant part of the trips. Also, 
some of the centroids were really unfortunately placed (right between stations for example), 
which with the low number of points resulted in unexpected behavior. Therefore, the 
resolution was increased to 4-digit postal code level, and OD lookup tables for all 15.500 
pairs between the geographical centroids of the 125 PC4 areas was created. This directly lead 
to practically eliminating the noise in the KPIs, and allowed for trips to other PC4 areas within 
the same MRDH region. 

To validate and gain insights into the collected data, an exploratory analysis was performed, 
including histograms, box plots, and scatter plots of travel times and distances for both 
modes. Notably: 

Fig A.4 shows the distribution of cycling travel times are more skewed towards shorter 
durations, with a median and mean below 40 minutes, while transit travel times were more 
evenly distributed, with a median and mean above 50 minutes. 



       

64 
 

 
Fig A.4: Distribution of travel times between the 15.500 centroid-pairs for cycling and public 
transit. 

Fig A.5 shows a scatter plot of travel times versus bird’s-eye distances for both modes. It 
shows cycling having a clear maximum speed and relatively linear relationship between time 
and distance, while public transit has a lesser correlation, with a lot of variation in travel 
times for similar distances, and now clear minimum or maximum speeds. 

 
Fig A.5: Scatter plot of travel times versus distances between the 15.500 centroid-pairs for 
cycling and public transit. 

The full analysis is available in the travel_api/travel_time_distance_google.ipynb 
notebook. 

6.5 Trip generation probabilities by hour (derived from ODiN 2023 data) 
Trip generation probabilities were derived from the Dutch National Travel Survey (ODiN) 2023 
dataset to create temporal patterns of travel demand. The ODiN survey provides detailed 
information about travel behavior in the Netherlands, including the timing of trip starts 
throughout the day. Since it is a survey, the data is not perfect, and more care was taken to 
ensure the data was cleaned properly and representative for this research. 
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While ODiN offers a wealth of data, the focus was on the timing of trips, which was used to 
create hourly trip generation probabilities for the simulation model. The data was aggregated 
to count the number of trips starting in each hour of the day, resulting in a distribution of 
travel demand over time. 

 
Fig A.6: Heatmap showing the number of trips by hour and day of the week. The color intensity 
indicates the number of trips, with lighter colors representing more trips. 

The heatmap in Figure A.6 shows several distinct temporal patterns: - A sharp morning peak 
(8:00-9:00) and more spread out evening peak (16:00-18:00) peak hours on weekdays - Lower 
(especially on Sunday) but more spread out travel demand during weekends - Very low travel 
activity between midnight and 5:00 - Relatively consistent patterns Monday through Thursday 
(except with a small lunch peak on Wednesday, probably due to school schedules) - Slightly 
different pattern on Fridays, with a less pronounced evening peak, more spread out through 
the afternoon - Weekend travel starting later in the day and more evenly distributed 

For use in the simulation model, the trip generation probabilities were calculated by: 1. 
Counting the number of unique travelers per day of the week 2. Counting trips starting in each 
hour 3. Dividing the hourly trip counts by the number of unique travelers to get the probability 
that an individual starts a trip in that hour 4. Averaging the probabilities for Monday through 
Thursday to get representative weekday patterns (done in the Model itself, any day or 
combination of days can be selected there). 

Since there are relatively large steps between some hours, 15-minute intervals were also 
explored to see if more smoother steps could be achieved. 
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Fig A.7: Heatmap showing the number of trips by quarter-hour and day of the week. 

However, as can be seen in the quarter-hour heatmap, there are very distinct pattern in which 
the whole, and in a lesser extent half, hours are over-represented. This is likely caused by 
people rounding their travel times to the nearest hour in the survey, and the data was 
therefore kept in hourly bins. 

As a default value the travel distribution is averaged over Monday to Thursday, as weekdays 
are when the largest congestion and travel demand is expected, and thus most interesting for 
this research. The number of trip for each hour of each day was normalized over the number 
of the number of people taking trips that day, to create a lookup table giving the probability of 
a person starting trip starting in a specific hour of a specific day. 
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Fig A.8: Average probability of an individual starting a trip by hour during weekdays (Monday-
Thursday). 

Using these lookup tables, the start time, end time (and thus duration) and day of the week 
could be varied in the model, while always initiating a representative number of trips. Many 
initial tests were only performed on a few hours (like 7:00-11:00), while the full 05:00-24:00 in 
which significant travel demand is present was used for all experiments. 

The full analysis is available in the prototyping/ODiN_analysis.ipynb notebook. 

6.6 Origin-destination matrices for the Rotterdam area (V-MRDH model) 
Origin-destination (OD) matrices were obtained from the V-MRDH 3.0 transport model 
(October 2023 version), which provides detailed travel demand data for the Rotterdam-The 
Hague metropolitan area. The V-MRDH model divides The Netherlands into 65 traffic analysis 
zones with varying sizes - smaller zones in dense urban areas and larger zones in peripheral 
regions. This model was selected because it: - Provides validated OD patterns based on 
extensive traffic counts and travel surveys - Captures different time periods (morning peak 7-
9h, evening peak 16-18h, and off-peak) - Contains separate matrices for different transport 
modes (car, bicycle, public transport) - Covers both internal traffic within Rotterdam and 
external traffic to/from surrounding areas 
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Fig A.9: The 65 traffic analysis zones defined in the V-MRDH model, with decreasing 
resolution farther from the MRDH area. Numbers indicate zone identifiers. 

The OD matrices were processed in several steps: 

1. Data extraction and normalization: 
• Raw matrices were extracted for each mode and time period 
• Values were normalized to create probability distributions for each origin zone 
• Total travel demand was preserved while converting absolute numbers to 

relative flows 
2. Area selection and filtering: 

• 21 zones covering the Rotterdam city area were selected as internal zones 
• 13 surrounding zones were designated as external zones for modeling boundary 

traffic 
• Remaining peripheral zones were excluded from the simulation 

3. Creation of lookup tables: 
• Probability matrices were created for trip distribution in different time periods 
• Separate tables were made for internal-internal and internal-external flows 
• Data was stored in efficient dictionary format for quick runtime lookup 

da&les65areasfor~~~~area. ~ l~~Md~rn;::' resolution the farthe, 

• Bulteogeb!ed o: ~~=OP 
• Buitengeb1::; 

e 1nvloedsgabiedveffijnd 
• lnvloedsge bledveffijndvmh 
• l~RVMK 

• ::::bledVMH 



       

69 
 

 
Fig A.10: Travel demand visualization by mode (total, car, bicycle, public transport) between 
zones in the Rotterdam area. Line thickness indicates trip volume. 

The matrices revealed several interesting patterns, used for both model validation and input: 

First, the modal split varies significantly by area. In the inner Rotterdam area (Noord, 
Kralingen, Rotterdam Centrum, Feyenoord, Delfshaven), the model split was 13.4% car, 
69.9% bicycle and 16.7% public transport. In the (full study area) of broader Rotterdam, the 
split was 37.7% car, 49.0% bicycle and 13.3% public transport. These modal splits were used 
to validate and kalibrate the model. 

Secondly, distinct time-of-day patterns were present, as shown in the figure below. 
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Fig A.13: Comparison of internal demand (green) and external car traffic (red) patterns. 

Notable is large external traffic from the directly neighboring zones, especially from the east 
and south. 

Finally, the processed OD data serves three main purposes in the model: 

1. Trip distribution: When agents generate trips, destinations are selected 
probabilistically based on the normalized OD matrices for the appropriate time period. 

2. External traffic: Car traffic entering and leaving the study area is simulated based on 
the external zone matrices, scaled by time-of-day factors. 

3. Validation: The modal split and spatial distribution patterns provide reference values 
for validating model behavior. 

One limitation is that the matrices represent current travel patterns, which may not fully 
reflect behavior in future scenarios with autonomous vehicles. However, they provide a 
validated baseline for trip distribution patterns, while mode choice is handled separately by 
the agent behavior model. This is in line with the short to medium term scope of this research. 

The full analysis is available in the v_mrdh/v_mrdh_od_demand.ipynb notebook. 

6.8 Value of Time data 
The model uses Value of Time (VoT) data from the Dutch Institute for Transport Policy 
Analysis (KiM)’s 2023 study on travel time valuation (KiM-valuation). Default values per mode 
were set at: - Car: €10.42 per hour - Bicycle: €10.39 per hour - Public Transit: €7.12 per hour - 
Autonomous Vehicle: Scaled from car VoT using the av_vot_factor parameter. Experimental 
values of 1.0, 0.5, and 0.25 were used, resulting in the following VoT values: - AV VoT factor 
1.0: €10.42 per hour - AV VoT factor 0.5: €5.21 per hour - AV VoT factor 0.25: €2.61 per hour 

Internal total demand and external car traffic in the research area 

"" 

https://www.kimnet.nl/publicaties/publicaties/2023/12/04/nieuwe-waarderingskengetallen-voor-reistijd-betrouwbaarheid-en-comfort
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To capture heterogeneity in how individuals value their time, each agent’s personal value of 
time is drawn from a lognormal distribution with parameters μ = -0.1116 and σ = 0.4724, 
capped at 4 times the default value. These parameters were chosen to produce a distribution 
with: - Mean of 1.0 (preserving the base VoT values on average) - Standard deviation of 0.5 
(representing reasonable variation between individuals) - Maximum of 4.0 (preventing 
extreme outliers) 

The resulting distribution is shown in Figure A.x: 

 
Fig A.14: Distribution of agents’ Value of Time factors. 

An agent’s final VoT for each mode is calculated by multiplying the mode’s default value by 
their personal VoT factor. For example, an agent with a VoT factor of 1.5 would value car 
travel at €15.63 per hour (1.5 × €10.42). This heterogeneous valuation leads to varied mode 
choices among agents even when faced with identical travel options. 

Note that the VoT factor is consistent for all modes, meaning that an agent who values their 
time highly for car travel will also value their time highly for other modes. 

For autonomous vehicles, an additional av_vot_factor parameter scales the car VoT before 
applying the agent’s personal factor. This represents potential differences in how time is 
valued in AVs compared to conventional cars, for example due to the ability to engage in 
other activities while traveling. The av_vot_factor is one of the key uncertainties explored in 
the scenario analysis. 

All VoT values are converted from euros per hour to euros per second in the model for 
computational efficiency, since travel times are tracked in seconds. The values represent 
2022 price levels and include VAT, following standard Dutch transportation analysis practice. 
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This implementation of heterogeneous Values of Time helps capture realistic variation in 
travel preferences and mode choices among agents. It also prevents hard tipping points in 
mode choice, where small changes in travel times or costs could lead to large shifts in 
behavior. 

6.9 Data storage, preprocessing, and integration 
The model integrates multiple data sources through a centralized Data class in data.py, 
which is initialized once at model startup and made available throughout the simulation. This 
section describes how different data sources are processed and utilized within the model. 

The following key data structures are loaded and processed during model initialization: 

1. Travel time and distance data 
• Stored in pickle files: travel_time_distance_google_{mode}.pkl and 

travel_time_distance_google_{mode}_pc4.pkl 
• Available for modes: “transit” and “bicycling” 
• Contains matrices of travel times and distances between origins and 

destinations 
• Distances are converted from meters to kilometers during loading 
• Used by agents to determine travel times and costs for non-car modes 

2. Geographic information 
• Loaded from polygons.pkl 
• Contains three key polygons: city_polygon, area_polygon, autoluw_polygon 
• Converted to GeoSeries with EPSG:28992 projection 
• Used for spatial queries and policy implementation zones 

3. Population and area data 
• Population data: population_data_pc4_65coded.pkl 
• Areas data: areas_mrdh_weighted_centroids.pkl 
• Various mapping dictionaries maintained for cross-referencing: 

• mrdh65_to_name: Maps region numbers to names 
• pc4_to_mrdh65: Maps postal codes to MRDH regions 
• mrdh65_to_pc4: Maps MRDH regions to lists of postal codes 

4. Car ownership and licenses 
• Stored in rijbewijzen_personenautos.pkl 
• Contains car ownership and driver’s license rates by postal code 
• Used to assign cars and licenses to agents based on their location 

5. Trip generation data 
• Trip probabilities: trips_by_hour_chances.pickle 
• Trip count distribution: trip_counts_distribution.pickle 
• Used to generate realistic temporal patterns of trip starts 

6. Origin-destination matrices 
• Stored in od_chance_dicts_periods.pickle 
• Contains matrices for different time periods (morning peak, evening peak, off-

peak) 
• Used to determine trip destinations based on origins 
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Several data transformations are performed during initialization, the most notable: 

1. Geographic filtering 
• Centroids are calculated for both postal codes and MRDH65 regions 
• Areas are classified as “in_city”, “in_area”, or “autoluw” based on polygon 

containment 
• Limited to populated areas within the city (21 specific MRDH65 regions) 

2. Origin-destination processing 
• OD matrices are normalized to create probability distributions 
• Destinations outside the study area are assigned zero probability 
• Same-location trips are handled specially based on area size 
• Probabilities are renormalized after filtering 

3. Travel time data 
• Conversions from raw units to model units (meters to kilometers, etc.) 
• Creation of lookup dictionaries for efficient runtime access 
• Validation of data completeness for all required origin-destination pairs 

A trade-off was made here between pre-processing data for efficiency and maintaining 
flexibility for future extensions. While much data was pre-processed to reduce runtime 
overhead, some of the more destructive processing (like selecting and aggregating) was done 
on data initialization, to allow for easy modification and extension of the model, without 
needed to alter data files themselves. 

7. Submodels 
Aside from the two main submodels for mode-choice and traffic simulation discussed in 
section 3.2, the model has several smaller submodels that handle specific aspects of the 
simulation. 

7.1 Trip Generation 
Trips are generated for each agent using the following process: 

1. For each hour in the simulation period, generate a trip with probability given by 
trips_by_hour_chance. 

2. Ensure an even number of trips by potentially adding or removing a trip. 
3. Assign destinations based on origin-destination probability matrices, differentiating 

between peak and off-peak hours. 
4. Schedule the trips as events in the simulation. 

7.2 Mode Choice 
The mode choice model is implemented in the choice_rational_vot method of the Traveler 
class. It calculates the perceived cost for each available mode: 

perceived_cost = monetary_cost + travel_time * value_of_time[mode] 
comf_perceived_cost = perceived_cost * comfort_factor[mode] 

The mode with the lowest comfort-adjusted perceived cost is chosen. 

7.3 Traffic Simulation 
The traffic simulation uses UXsim, a mesoscopic traffic simulator that implements a version 
of Newell’s simplified car-following model. This model represents traffic flow as a kinematic 
wave, a state between microscopic (individual vehicle) and macroscopic (flow-based) 

https://arxiv.org/abs/2309.17114
https://doi.org/10.1016/S0191-2615(00)00044-8
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modeling, providing computational efficiency while maintaining key traffic dynamics and the 
ability to measure traffic and congestion on a link or area level. 

The driving behavior of a platoon consisting of 𝛥𝛥𝑛𝑛 vehicles in a link is expressed as: 

𝑋𝑋(𝑡𝑡 + 𝛥𝛥𝑡𝑡,𝑛𝑛) = min{𝑋𝑋(𝑡𝑡,𝑛𝑛) + 𝑢𝑢𝛥𝛥𝑡𝑡,𝑋𝑋(𝑡𝑡 + 𝛥𝛥𝑡𝑡 − 𝜏𝜏𝛥𝛥𝑛𝑛,𝑛𝑛 − 𝛥𝛥𝑛𝑛) − 𝛿𝛿𝛥𝛥𝑛𝑛} 

where 𝑋𝑋(𝑡𝑡,𝑛𝑛) denotes the position of platoon 𝑛𝑛 at time 𝑡𝑡, 𝛥𝛥𝑡𝑡 denotes the simulation time step 
width, 𝑢𝑢 denotes free-flow speed of the link, and 𝛿𝛿 denotes jam spacing of the link. This 
equation represents vehicles traveling at free-flow speed when unconstrained, while 
maintaining safe following distances when in congestion. 

Traffic behavior at intersections is handled by the incremental node model, which resolves 
conflicts between competing flows by processing vehicles sequentially based on predefined 
merge priorities. This approach maintains consistency with the kinematic wave model while 
efficiently managing complex intersection dynamics. The OpenStreetMap data didn’t contain 
explicit intersection information, merge priorities were left at their default values, giving each 
incoming lane equal priority. 

For route choice, UXsim employs a Dynamic User Optimum (DUO) model with stochasticity 
and delay. The attractiveness 𝐵𝐵𝑜𝑜

𝑧𝑧,𝑖𝑖  of link 𝑜𝑜 for vehicles with destination 𝑧𝑧 at time step 𝑖𝑖 is 
updated as: 

𝐵𝐵𝑜𝑜
𝑧𝑧,𝑖𝑖 = (1 − 𝜆𝜆)𝐵𝐵𝑜𝑜

𝑧𝑧,𝑖𝑖−𝛥𝛥𝑖𝑖𝐵𝐵 + 𝜆𝜆𝑏𝑏𝑜𝑜
𝑧𝑧,𝑖𝑖  

where 𝜆𝜆 is a weight parameter and 𝑏𝑏𝑜𝑜
𝑧𝑧,𝑖𝑖  indicates whether link 𝑜𝑜 is on the shortest path to 

destination 𝑧𝑧. This formulation allows vehicles to gradually adapt their routes based on 
evolving traffic conditions, rather than instantly responding to changes in travel times. 

Road characteristics are captured through differentiated jam density parameters based on 
road hierarchy, with motorways having lower jam densities (0.14 vehicles/meter/lane) than 
local streets (0.20 vehicles/meter/lane). This reflects the different spacing requirements at 
different operational speeds and road types. Each link’s behavior is governed by a triangular 
fundamental diagram that relates traffic flow to density, characterized by the free-flow speed, 
jam density, and resulting capacity. 

The model uses a hybrid simulation approach: Mesa’s discrete event simulation manages 
agent decisions and scheduling, while UXsim handles continuous traffic flow dynamics. 
Synchronization between the two systems occurs at 5-minute intervals, where agents make 
mode choices based on current network conditions, new vehicle trips are added to UXsim, 
traffic flow is simulated, and the updated network conditions inform future agent decisions. 
Network performance data is collected at 15-minute intervals using UXsim’s area-based 
analysis capabilities, allowing for evaluation of both localized congestion effects and 
network-wide performance metrics. 

7.4 Parking 
Parking is modeled by tracking the number of parked vehicles in each MRDH region: 

• When a car trip starts, a parking space is freed in the origin area. 
• When a car trip ends, a parking space is occupied in the destination area. 

The parked_per_area dictionary is updated in real-time, and the parked_dict stores the 
parking situation over time for later analysis. 

https://doi.org/10.1016/j.trb.2011.03.001
https://doi.org/10.1016/S0191-2615(00)00005-9
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7.5 Cost Calculation 
Travel costs are calculated differently for each mode: 

• Car: Distance-based cost using a fixed price per kilometer 

• distance * car_price_per_km_variable 
• AV: Initial cost plus distance and time-based costs 

• av_initial_costs + distance * av_costs_per_km + travel_time * 
av_costs_per_sec 

• Bike: Assumed to be zero 

• Transit: Distance-based cost with a non-linear pricing scheme, simulating real-world transit 
pricing: 

  ranges = [(40, 1), (80, .979), (100, .8702), (120, .7), 
          (150, .48), (200, .4), (250, .15), (float('inf'), 0)] 

• In practice, the vast majority of trips are under 40 kilometers, and thus priced at 
the full rate, but this allows to extend the model further. 

7.6 Value of Time 
Each agent’s Value of Time is calculated as: 

vot_factor = min(np.random.lognormal(mean=-0.1116, sigma=0.4724), 4) 
value_of_time = {mode: default_vot[mode] * vot_factor for mode in modes} 

This creates heterogeneity in how agents value their time, influencing their mode choices. It 
prevents sharp tipping points in mode choice and allows for more realistic variation in travel 
preferences. For more details and sources, see the Value of Time data section. 

7.7 External Vehicle Load 
External vehicle traffic is modeled based on origin-destination matrices: 

• Vehicles are added at the start of each hour based on time-of-day probabilities. 
• The number of vehicles is scaled by ext_vehicle_load factor. 
• Origins and destinations are chosen from predefined external and internal areas. 

7.8 Scenario & Policy Implementation 
The model includes several scenario uncertainties and policy levers that can be adjusted: 

Scenario uncertainties 
1. AV cost factor: Scales the fixed, time based and distance based cost of using 

autonomous vehicles. 
2. AV Value of Time factor: Scales how users perceive time spent in AVs. 
3. AV Density factor: Scales the number of AVs that get generated, as a proxy for the 

space (per person) an AV takes up on the road. 
4. Induced demand factor: Scales the overall trip generation rates. 

Policy levers 
1. Congestion pricing: 

• policy_tarif: Sets the pricing level. 
• policy_tarif_time: Determines when the pricing is active (e.g., peak hours, all 

day). 
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• policy_area: Defines the geographical area where the pricing is applied. 
2. Speed reduction: 

• policy_speed_reduction: Probability of reducing speed on a given road. 
• policy_area: Defines the area where speed reductions are applied. 

These scenario uncertainties and policies levers can be combined and varied into different 
scenarios and policies to explore their impacts on the transportation system. The scenarios 
and policies explored in this research are discussed in Appendix D. 

7.9 Journey Management 
The Journey class encapsulates all information about a single trip: 

• It tracks the origin, destination, mode, costs, and timings of each trip. 
• For car and AV trips, it interfaces with the UXsim traffic simulation to schedule vehicle 

movements. 
• It handles the logic for trip chaining, ensuring that agents return to their original 

location and maintaining mode consistency (e.g., if an agent leaves with a car, they 
must return with a car). 

7.10 Data Collection and Analysis 
The model collects data at multiple levels: 

• Agent level: Individual trip details, mode choices, and costs. 
• Network level: Traffic conditions from UXsim (speed, density, flow) for each network 

link. 
• System level: Aggregated metrics like mode shares, total vehicle kilometers traveled, 

and parking occupancy. 
Data is collected at regular intervals and stored for post-simulation analysis. The 
process_results function in the UrbanModel class handles the aggregation and storage of 
this data. 
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Appendix B: Assumptions 
This appendix lists the most important assumptions made in the model design and 
implementation. 

Agent behavior 
1. Rational decision-making: Agents make mode choices based on minimizing comfort-

adjusted perceived costs, including monetary costs and time costs weighted by their 
value of time, and a comfort factor. 

2. Perfect information: Agents have complete knowledge of travel times and costs for all 
available modes. 

3. Heterogeneous value of time: Each agent’s value of time is drawn from a lognormal 
distribution, representing varying sensitivities to travel time, and differs by mode (KiM 
2023). 

4. Trip generation: The number and timing of trips for each agent are determined 
probabilistically based on hourly trip probabilities derived from ODiN 2023. 

5. Trip chaining: Agents always return to their origin location after each outbound trip, 
creating simple two-leg trip chains. 
• ODiN 2022 data showed 43.8% of trips start at home, 43.8% end at home (total 

87.6%), and only 12.4% are neither. 
6. Mode availability: An agent’s available modes depend on car ownership, possession of 

a driver’s license, and the previous leg of their trip chain. 
• Notably, if a car is used for the first leg of a trip, it must be used for the return leg 

as well. 
7. Bicycle ownership: All agents are assumed to have access to a bicycle. 
8. No en-route mode switching: Once a mode is chosen for a trip, it cannot be changed 

during the journey. 
9. No trip cancellation: Agents do not cancel trips due to high costs or unavailable 

modes. 
10. No carpooling or ride-sharing: Each car or AV trip represents a single agent. 

Traffic model 
1. Mesoscopic simulation: Traffic is modeled at a medium level of detail, balancing 

computational efficiency with realistic traffic dynamics. 
2. Platoon-based representation: Vehicles are grouped into platoons (of 10 by default) 

for computational efficiency, with each agent representing multiple actual vehicles. 
3. Dynamic User Equilibrium: Drivers choose routes based on experienced travel times, 

updating their choices periodically. 
4. Simplified intersection behavior: Detailed intersection dynamics (e.g., traffic signals, 

turn lanes) are not explicitly modeled. 
5. Constant road capacity: Road capacities do not change due to weather, incidents, or 

other temporary factors. 
6. Homogeneous vehicle types: All vehicles are assumed to have the same physical 

characteristics and performance. 
7. External traffic: Traffic entering and leaving the study area is modeled based on fixed 

origin-destination matrices and time-of-day factors. 

https://www.kimnet.nl/publicaties/publicaties/2023/12/04/nieuwe-waarderingskengetallen-voor-reistijd-betrouwbaarheid-en-comfort
https://www.kimnet.nl/publicaties/publicaties/2023/12/04/nieuwe-waarderingskengetallen-voor-reistijd-betrouwbaarheid-en-comfort
https://www.cbs.nl/nl-nl/longread/rapportages/2024/onderweg-in-nederland--odin---2023-onderzoeksbeschrijving
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Data 
1. Population distribution: Agent locations are based on actual population data at the 4-

digit postal code level, as reported by the CBS for 2020 (CBS-postcode). 
• In total 991.575 people live in the simulation area. 

2. Car ownership and driver’s licenses: Distribution of car ownership and driver’s 
licenses is based on 4-digit postal code level data (CBS-mobility). 
• On average, 31.5% of agents in the simulation area own a car, and thus have car 

as a mode option. This varies per postal code area. 
3. Road network: The road network is derived from OpenStreetMap data, on September 

30, 2024, using OSMnx 2.0.0b2. It includes ternary roads and larger roads, with speed 
limits, lane counts and lengths. 
• The road network contains 1575 nodes and 3328 edges. 

4. Travel times and distances: Non-car mode travel times and distances are based on 
Google Maps Distance Matrix API data (Google-Maps-API), on Thursday 2024-09-17 at 
08:00 (a normal workday without major construction). 
• Note that cycling and public transit times are relatively stable throughout the 

day, while car travel times can vary significantly. 
5. Trip generation rates: Hourly trip probabilities are derived from the Dutch National 

Travel Survey (ODiN 2023). 
6. Origin-destination patterns: Origin-destination lookup is based on matrices from the 

V-MRDH transport model. 
• Only the total values for all modes are used, not the per-mode values, since 

mode-choice is integrated in the model. 
7. Value of Time: Default values of time for different modes are based on Dutch 

transportation studies (KiM-valuation). AV is assumed to be the same as car (and 
varied in experiments with the AV VOT factor). 
• The default value of times are €10.42 for car, €10.39 for bike, and €7.12 for 

transit. 
8. Default AV costs are based on own research, as no public data was available. A survey 

was put out on Reddit, on which a linear regression model was estimated (Waymo-
pricing). 
• The default AV costs are €3.79 plus €1.41 per kilometer and €0.40 per minute. 

Other 
1. Static land use: The model assumes no changes in land use or population distribution 

during the simulation period. 
2. No seasonal variations: The model does not account for seasonal changes in travel 

behavior or weather conditions. 
3. No special events: The impact of large events (e.g., sports matches, festivals) on travel 

patterns is not considered. 
4. Constant fuel/energy prices: The model assumes static prices for fuel and energy 

throughout the simulation. 
5. No technological improvements: The model assumes constant vehicle efficiency and 

performance over time. 
• AV density and costs can be adjusted to represent technological improvements. 

6. Simplified AV behavior: Autonomous vehicles are assumed to operate similarly to 
human-driven vehicles, with adjustments only to cost structure and value of time. 

https://www.cbs.nl/nl-nl/dossier/nederland-regionaal/geografische-data/gegevens-per-postcode
https://www.cbs.nl/nl-nl/maatwerk/2023/35/auto-s-kilometers-en-rijbewijzen-per-pc4
https://www.github.com/gboeing/osmnx
https://developers.google.com/maps/documentation/distance-matrix/overview
https://www.cbs.nl/nl-nl/longread/rapportages/2024/onderweg-in-nederland--odin---2023-onderzoeksbeschrijving
https://www.mrdh.nl/verkeersmodel
https://www.kimnet.nl/publicaties/publicaties/2023/12/04/nieuwe-waarderingskengetallen-voor-reistijd-betrouwbaarheid-en-comfort
https://github.com/EwoutH/Waymo-pricing
https://github.com/EwoutH/Waymo-pricing
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7. No adaptation of public transit: The public transit system is assumed to remain 
constant, not adapting to changes in demand or competing modes. 
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Appendix C: Limitations 
Agent behavior 
The Agent mode-choice model is the most limited part of the model, mainly because of data-
availability and computational constraints. Ideally an activity-based model would be used, 
but this would require carefully designed surveys with large sample sizes, which weren’t 
available. 

Some specific limitations include: 1. Limited behavioral complexity: The model does not 
capture complex decision-making processes, psychological factors, or habitual behaviors 
that may influence mode choice. - Implementing more complex behavioral models needs 
carefully designed stated-preference (SP) studies, which also collects socio-economical 
data. Only revealed-preference studies were available, but different to fit to scenarios and 
modalities that currently do not exist. 2. Lack of sociodemographic factors: Beyond value of 
time, the model does not consider how factors like age, income, or household composition 
affect travel behavior. - Data for these factors is available, but would only make sense to use 
with proper stated-preference studies (or other calibrated models). 3. Simplified trip 
chaining: The model only implements simple two-leg trip chains, not capturing more complex 
trip patterns (e.g., home-work-shop-home). - More complex trip chaining would also require 
additional data on activity patterns. 4. No long-term adaptation: Agents do not learn or adapt 
their behavior over time based on experiences. - Implementing learning behaviors would 
require longer simulation periods, for which compute budgets where out of scope for this 
study. 5. Limited mode options: The model considers only four modes (car, bike, transit, AV), 
not including options like walking, e-bikes, or shared mobility services. - Adding more modes 
would require additional data and increase the complexity of the mode choice model. 6. 
Limited social considerations: The model does not account for social influence on mode 
choice or household-level decision making. - Social factors like peer effects and household 
car sharing could significantly impact AV adoption patterns. 7. No explicit parking behavior: 
While parking occupancy is tracked, parking availability and search time are not incorporated 
into mode choice decisions. - This could underestimate the full costs of car-based travel, 
especially in dense urban areas. 

One interesting thing to note is that for most metrics, like congestion, it doesn’t matter how 
the agents make their decisions, as long as they are consistent. The model is about the 
system-level effects of the decisions, rather than the individual decisions themselves. Of 
course the feedback loops and stabilizing mechanisms would be different for different 
decision-making models, leading to different system-level outcomes. 

Highly recommended for future research is to conduct a stated-preference study, which can 
be used to calibrate the model to real-world data. Learning mechanisms and an activity-
based model would also be beneficial to capture more realistic agent behavior. 

Traffic Model 
The traffic model mainly lacks in details on crossings and intersections, which are not 
specifically modeled. The remainder of the model is relatively detailed, but still has some 
limitations: 

1. Limited network detail: The mesoscopic approach does not capture detailed vehicle 
interactions or traffic signal operations. 
• A more detailed microscopic simulation would be computationally intensive for 

a city-scale model. 
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2. Simplified parking model: Parking is modeled at an aggregate level, not considering 
specific parking locations or search time. Parking costs were also not included. 
• Detailed parking modeling would require extensive data on parking supply, 

which wasn’t accurately available. 
3. No consideration of freight traffic: The model focuses on passenger transport, not 

explicitly modeling freight movements. 
• Freight transport is a relatively small part of urban traffic, but could be included 

in future versions. 
4. Limited representation of public transit: Transit is modeled simplistically, not 

capturing details of transit routes, schedules, or capacity constraints. 
• Detailed transit modeling would require integration with a separate transit 

simulation model. 
• Peak hour capacity constraints and crowding effects are not considered. 

5. No modeling of active modes infrastructure: The model does not consider the impact 
of bicycle lanes or pedestrian infrastructure on mode choice and traffic flow. 
• Bicycle and public transport don’t face many delays due to congestion, so the 

impact of infrastructure is limited. 
• It was found that bicycle travel times are remarkable consistent with distance for 

bicycle trips (see travel_time_distance_google.ipynb), so an explicit model was 
not deemed necessary as long as the lookup tables have enough detail. 

6. Simplified intersection dynamics: The model uses default merge priorities and does 
not include traffic signal timing or turn lane specifications. 
• While adequate for system-level analysis, this may affect the accuracy of local 

congestion patterns. 
7. Homogeneous vehicle characteristics: All vehicles within a mode are assumed to have 

identical performance characteristics. 
• In reality, different vehicle types (e.g., electric vs. conventional) could affect 

traffic flow and mode choice. 
Data 
Data availability is always a limitation in ABM models, and this model is no exception. 
Especially validation data for congestion, mode choice and AV pricing was hard to come by. 
Some specific limitations include: 

1. Temporal specificity of travel time data: Google Maps API data used for non-car modes 
represents conditions at a specific time, not capturing variations throughout the day. 
• Collecting time-varying data for all origin-destination pairs would be prohibitively 

expensive (current lookups were 156.25 USD, within a 200 USD free tier). 
2. Aggregation of origin-destination data: Trip distribution is based on larger traffic 

analysis zones used by V-MRDH, not capturing fine-grained variations in travel 
patterns. 
• More detailed O-D data was not available. A problem is that the more fine-

grained the data, the more sparse it becomes, decreasing the signal-to-noise 
ratio. 

3. Simplified representation of transit costs: The transit cost model uses a simplified 
distance-based approach, not capturing the complexity of real-world fare systems. 

https://www.mrdh.nl/verkeersmodel
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• Implementing detailed fare structures for all transit operators would require 
extensive data collection, which was out of scope. 

4. Limited validation data: The model lacks comprehensive data for validating results, 
especially for future scenarios involving autonomous vehicles. 
• Detailed validation data for emerging transportation technologies is inherently 

limited. Behavior was examined to see if it was plausible, but no real-world data 
was available to compare to. 

5. Static infrastructure data: The road network and transit services are based on a single 
snapshot, not capturing planned changes or maintenance effects. 
• While major planned infrastructure (like the new A16) was included, smaller 

changes could affect local travel patterns. 
6. Limited calibration data: While mode shares could be validated against ODiN data, 

detailed validation of traffic patterns was constrained by data availability. 
• Attempts to obtain commercial traffic data for validation were unsuccessful. 

Other 
The main other limitation is the lack of long-term dynamics and feedback loops. The model is 
a static scenario analysis, not capturing how the system might evolve over time. This was a 
conscious choice in the model scope, since this study was primarily about how the urban 
transportation system might respond to AV adoption and policy interventions, and how 
people might make different day-to-day decisions based on these changes. 

Some specific limitations include: 1. Static scenario analysis: The model simulates a single 
day, not capturing longer-term evolving dynamics of AV adoption and system adaptation. - 
Long-term dynamic simulations would require additional assumptions about technology 
adoption and system changes, increasing uncertainty. 2. Limited policy options: While the 
model includes some policy levers (congestion pricing, speed reductions), it does not cover 
the full range of potential policy interventions. - Implementing a wider range of policies was 
consciously avoided, since this study was primarily about the system-level effects of AVs. 3. 
No feedback between transportation and land use: The model does not capture how changes 
in the transportation system might influence land use patterns over time. - Land use requires 
long-term simulations and detailed urban planning models, which were out of scope. 4. 
Limited environmental impact assessment: The model does not directly calculate emissions 
or other environmental impacts of transportation choices. - Adding detailed environmental 
impact modeling would require additional data on vehicle characteristics and emissions 
factors. However, the distance traveled by car and AV is available, which is a good proxy for 
emissions. 5. No consideration of equity impacts: The model does not explicitly address how 
changes in the transportation system affect different socioeconomic groups. - Equity analysis 
would require more detailed sociodemographic data and additional post-processing of 
model outputs. 6. Simplified AV implementation: The model treats AVs essentially as 
cheaper, more comfortable cars, not capturing potential transformative impacts on urban 
form or travel behavior. - The exact impacts of AVs are still uncertain, and more complex 
representations would require speculative assumptions. - Density is used as a proxy for the 
space an AV takes up on the road and the average number of people in a car. This is a 
simplification, but a good first-order approximation. 7. Limited geographic scope: The model 
focuses on the Rotterdam area, potentially missing broader regional or national-level 
impacts. - Expanding the geographic scope would require significantly more data and 
computational resources. Other regions could be relatively easily added, population and 
network data is available for the whole of the Netherlands. OD-matrix data would need to be 
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added if going beyond the MRDH area. 8. Weather and seasonal effects: The model does not 
account for how weather conditions or seasonal patterns affect mode choice and traffic flow. 
- This could be particularly relevant for cycling behavior and AV operations. 9. Time-of-day 
variations: While trip generation varies by hour, mode characteristics (like transit 
frequencies) are static throughout the day. - This simplification could affect the accuracy of 
off-peak travel patterns, especially for transit in weekends, evenings, and nights. 
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Appendix D: Experimental setup 
This appendix describes the experimental setup used in this study. Two main experiments 
were conducted: a scenario analysis exploring uncertainties in autonomous vehicle (AV) 
adoption and a policy analysis testing various interventions across different scenarios. 

1. Scenario Analysis 
The scenario analysis employed a full-factorial design to explore four key uncertainties 
related to the adoption and impact of autonomous vehicles. These uncertainties were 
represented by the following variables: 

1. AV Cost Factor (av_cost_factor): Represents the relative cost of using AVs compared 
to the current cost AVs (as operated by Waymo in Los Angeles in September 2024 
(Waymo-pricing), see Appendix B for more details). 

2. AV Value of Time Factor (av_vot_factor): Reflects how users perceive time spent in 
AVs compared to conventional vehicles. 

3. AV Density (av_density): Represents the space efficiency of AVs on the road 
compared to conventional vehicles. 

4. Induced Demand (induced_demand): Reflects the potential increase in overall travel 
demand (either due to the introduction of AVs or other mobility or macroeconomic 
factors). 

Note that AV density represents the average space a single person transported with an AV 
takes up on the road (a lower value means more people can be transported with the same 
road space). How that density is achieved is not relevant for the simulation outcomes, but it 
can be for interpretation. AV density can be improved by either increasing the average 
number of people in a car (picking up more people on the way, driving less empty between 
trips) or taking up less road space (smaller vehicle sizes, faster reaction times, platooning). 
The table below shows the values used for each variable in the full-factorial design: 

Variable Values 
av_cost_factor 1.0, 0.5, 0.25, 0.125 
av_vot_factor 1.0, 0.5, 0.25 
av_density 1.5, 1.0, 0.5, 0.333333 
induced_demand 1.0, 1.25, 1.5 

This design resulted in a total of 4 × 3 × 4 × 3 = 144 unique combinations, each representing a 
possible future scenario for AV adoption and its impacts. 

The scenario analysis was executed using the run_model.py script, which implemented the 
full-factorial design and managed the parallel execution of simulations for each combination 
of variables. 

Other relevant model settings for the scenario analysis included: 

• Time step: 5 minutes (1/12 hour) 
• Simulation period: 5:00 to 24:00 (19 hours) 
• Choice model: Rational value of time 
• AVs enabled: Yes 
• External vehicle load: 0.8 

https://github.com/EwoutH/Waymo-pricing
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• UXsim platoon size: 10 
• Car comfort factor: 0.5 
• Bike comfort factor: 1.33 

2. Policy Analysis 
The policy analysis was designed to test the effectiveness of various policy interventions 
across different AV adoption scenarios. This analysis used a set of predefined scenarios and 
policies, as specified in the scenarios_policies.py file. 

2.1 Scenarios 
Eight scenarios were defined, representing different possible futures for AV adoption and its 
impacts. Table A.2 summarizes these scenarios: 

Scenario Key Descriptio
n 

av_cost_facto
r 

av_densit
y 

induced_deman
d 

0_current Current 
situation 

1.0 1.5 1.0 

1_moderate_progress Moderate 
AV 
progress 

0.5 1.0 1.125 

2_extensive_progress Extensive 
AV 
progress 

0.25 0.5 1.25 

3_extreme_progress Extreme 
AV 
progress 

0.125 0.333333 1.5 

4_private_race_to_the_botto
m 

Cheap, 
inefficient 
AVs 

0.125 1.5 1.25 

5_mixed_race_to_the_botto
m 

Cheap 
AVs, mixed 
efficiency 

0.125 1.0 1.25 

6_shared_race_to_the_botto
m 

Cheap, 
efficient 
AVs 

0.125 0.5 1.25 

7_dense_progress Efficient 
AVs, 
moderate 
demand 

0.25 0.333333 1.125 

All scenarios used an av_vot_factor of 0.5. 

2.2 Policies 
Nine different policy combinations were tested, varying in their approach to speed reduction, 
congestion pricing, and geographical scope. Table A.3 summarizes these policies: 

Policy Key Area Speed Reduction Tariff Tariff Time 
0_no_policy City 0 0 Day 
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Policy Key Area Speed Reduction Tariff Tariff Time 
1_autoluw_peak Autoluw 1 5 Peak 
2_autoluw_day Autoluw 1 5 Day 
3_city_peak City 1 5 Peak 
4_city_day City 1 5 Day 
5_city_speed_reduction City 1 0 Day 
6_city_peak_tarif City 0 5 Peak 
7_city_day_tarif City 0 5 Day 
8_all_out City 1 10 Day 

Where: - “Autoluw” refers to a specific low-traffic area within the city (Rotterdam-
verkeerscirculatieplan), and city indicates the entire city area (all roads in the main network). 
- Speed Reduction: The fraction of roads in that area that get a 20 km/h maximum speed 
reduction (0 meaning 0% of roads, 1 meaning 100% of roads) - Tariff: Congestion charge in 
euros per trip, if either the origin or destination is in the area - Tariff Time: “Peak” = applied 
during peak hours (7:00-9:00 and 16:00-18:00), “Day” = applied throughout the day (6:00-
19:00) 

https://www.rotterdam.nl/verkeerscirculatieplan
https://www.rotterdam.nl/verkeerscirculatieplan
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Fig D.1: The network with the autoluw area highlighted in green. 

The following PC4 areas are within the autoluw area (and thus potentially affected by the 
policies): 

• Rotterdam Centrum (1): [3011, 3016, 3015, 3012, 3014, 3013] 
• Delfshaven (2): [3022, 3021, 3023] 
• Noord (3): [3039, 3041, 3037, 3032, 3038, 3036, 3035, 3033] 
• Kralingen (4): [3031] 

AV pricing, if enabled for the autoluw area, will affect about 13% of the agents in the 
simulation. 130.835 of 991.575 inhabitants live in the autoluw area, of which: - Rotterdam 
Centrum (1): 38.705 - Delfshaven (2): 31.410 - Noord (3): 52.420 - Kralingen (4): 8.300 

The city area covers the all 125 PC4 areas in the research area and thus all agents. 

2.3 Experimental Design 
The policy analysis involved running simulations for all combinations of the 8 scenarios and 9 
policies, resulting in 72 unique experiments. This was implemented in the run_model_2.py 
script, which managed the execution of simulations for each scenario-policy combination. 
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For each combination, the script: 1. Combined the scenario and policy parameters 2. 
Generated a unique suffix for the output files 3. Checked if the simulation had already been 
run (to avoid duplication) 4. Executed the simulation if needed 

The simulations were run in parallel across multiple cores to improve computational 
efficiency. 

3. Data Collection and Analysis 
For both the scenario and policy analyses, each simulation run collected the following data: 

1. Journey details: Origin, destination, mode, travel time, costs, etc. 
2. Traffic conditions: Speed, density, and flow for each network link 
3. Parking occupancy over time 

This data was saved in various formats (Feather files for journey data, Python pickle files for 
UXsim and parking data) for subsequent analysis. 

The collected data allowed for the evaluation of various metrics, including: - Mode share 
distributions - Network performance (average speeds, congestion levels) - Parking demand 
patterns - Total vehicle kilometers traveled - Distribution of travel times and costs 

These metrics were used to assess the impacts of different AV adoption scenarios and the 
effectiveness of various policy interventions. 
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