Power Grid Simulation with
GPU-Accelerated
Iterative Solvers and Preconditioners

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen op vrijdag 26 augustus 2011 om 10:00 uur

door Shiming XU,
Master in Computer Science, Tsinghua University, China

geboren te Xinxiang, China

Dit proefschrift is goedgekeurd door de promotor:
Prof. dr. ir. A. W. Heemink

Copromotor:
Dr. ir. H. X. Lin

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr. ir. A. W. Heemink Technische Universiteit Delft, promotor
Dr. ir. H. X. Lin Technische Universiteit Delft, copromotor
Prof.dr. W. M. Zheng Tsinghua University, China

Prof.dr. C. Shen Tsinghua University, China

Prof.dr.ir. C. Vuik Technische Universiteit Delft

Prof.dr.ir. H. J. Sips Technische Universiteit Delft

Dr.ir. M. Popov Technische Universiteit Delft

This thesis has been completed in partial fulfillment of the requirements of Delft
University of Technology (Delft, The Netherlands) for the award of Ph.D. degree. The
research described in this thesis was carried out in the Delft Institute of Applied
Mathematics, Delft University of Technology. The research work was partially
supported by EU Asia Link Programme under grant CN/ASIA-LINK/020, the
National Natural Science Foundation of China (Grant No. 60703055) and the National
Basic Research Program of China (Grant No. 2010CB951903).

Published and distributed by: Shiming Xu
E-Mail: auhgnist@gmail.com

ISBN 978-94-6186-006-4
Copyright © 2011 by Shiming Xu

All rights reserved. No part of the material protected by this copyright notice may be
reproduced or utilized in any form or by any means, electronic or mechanic, including
photocopying, recording or by any information storage and retrieval system, without
written permission of the author.

Summary

This thesis deals with two research problems. The first research problem is motivated
by the numerical computation involved in the Time Domain Simulation (TDS) of Power
Grids. Due to the ever growing size and complexity of Power Grids such as the China
National Grid, accelerating TDS has become a stringent need for the online analysis
of these large systems. Hence the first part of the research includes the acceleration
of the TDS by means of Iterative Solvers and Preconditioners which exploit the sparsity
structure of the Power Grid. The second research problem is motivated by the recent trend
of using Graphics Processing Units (GPUs) in High Performance Computing (HPC). By
using TDS as a sample application, the second part of research involves the design and
implementation of Krylov subspace solvers and general-purpose preconditioner which can
fully exploit the performance potential of GPUs.

TDS is of crucial importance to the analysis and control of Power Grids. The mathe-
matical model of the Power Grid can be represented by a series of nonlinear Differential
Algebraic Equations. With numerical time integration by an implicit scheme and lin-
earization by Newton’s Method, the major computation in TDS is the solution of a series
of Jacobian matrices based linear systems. With the large size of the Power Grid and
the need for fast simulation for online analysis, it is desirable to use iterative solvers and
preconditioners for the solution of these linear systems. This thesis tackles the numerical
problem in TDS from two aspects: design of high-performance preconditioner to the spe-
cific characterization of the TDS problem, and development of multi-step techniques for
the iterative solution of a series of linear systems based on the Jacobian matrices.

We start with the analysis of the sparsity pattern of the Jacobian matrix and its
relationship to the Power Network and admittance matrix. The parts in the Jacobian
matrix which corresponds to the dynamic parts (i.e., the differential equations) of the
Power Grid and has a block-diagonal form. The Schur complement of the dynamic part
has virtually no fill-in in the algebraic part which corresponds to the connectivity of
the buses in the Power Network. We then formulate a multilevel preconditioner for the
Jacobian matrix based on the static sparsity pattern in the matrix and the analysis of the
network topology. We show that multilevel structure based on independent sets (INDSET)
can serve as an efficient preconditioners for TDS in terms of both memory efficiency and
convergence property.

To accommodate matrix and right hand side changes during the simulation, we fur-
ther transform the Jacobian matrix in an additive form of Y + Ay, where Y is a static
matrix and Ay is a block-diagonal, low rank matrix which changes from linear system to
linear system. Based on this transformation, effective preconditioner re-use, also called
preconditioner updating, is derived, through dynamically adopting the changes of Ay into
the preconditioner initially constructed for Y itself. This results in much more efficient
iterative methods for TDS of Power Grid.

Furthermore, we explore the potential of matrix spectral deflation as another multi-

i

ii SUMMARY

step technique for TDS. To accommodate dynamic changes in the linear operator, GCRO-
DR is used. With the additive form of Y+ Ay, we achieve a more computationally feasible
form for the updates of the deflation matrices in GCRO-DR. Spectral analysis shows that
eigenvalues of both large and very small magnitude appear for the preconditioned TDS
matrices, hence we propose the use of a heuristics to dynamically choose among the largest
and smallest eigenvalues (or Rits values) used for deflation. The experiments show that the
dynamic eigenvalue choice could greatly benefit convergence due to the dynamic changes
in the matrix spectra of TDS. We also show that preconditioner updates and deflation can
be used together which leads to a combined effect on the reduction of the total iteration
count in TDS.

GPU based accelerated HPC systems are becoming popular due to the high perfor-
mance potential and good efficiency of GPUs. Iterative Algorithm and Preconditioners
are the two fundamental components of Krylov subspace solvers. However, porting them
to GPU platform remain a challenge especially for preconditioners. In this thesis we target
at porting of Krylov subspace solvers on GPU and the design of GPU-efficient precondi-
tioners. Firstly we discuss the two major parts of computation involved in Krylov solvers:
(1) the generation of Krylov subspace basis through Sparse Matrix-Vector multiplications
(SpMV), and (2) orthogonalization by modified Gram-Schmidt method. We show that
both parts can be efficiently implemented on GPU with high performance.

On GPU platform, incomplete factorization based preconditioners, such as Incomplete
LU or Incomplete Cholesky, have not been successfully implemented due to the “sequen-
tialness” and limited parallelism in their preconditioning process. While inverse form
based preconditioner such as A-biconjugate allows higher parallelism and better perfor-
mance on GPUs, it introduces too much fill-ins. We aim to design a preconditioner that
can achieve high performance while maintaining good memory efficiency and convergence
property of the incomplete factorizations. We use recursive multilevel structure retrieved
from the elimination tree and A-biconjugate algorithm to achieve this. Multilevel struc-
ture is constructed based on INDSETs by symbolic analysis of the elimination tree. For the
preconditioning of the last-level reduced system, we use A-biconjugation. The proposed
preconditioner, denoted as ML-AINV, features preconditioning operation which involve a
series of matrix-vector products. Through experiments with TDS problems and test ma-
trices from various other applications, we show that ML-AINV achieves the design goal in
both aspects: (1) its good convergence property is similar to incomplete factorizations,
and (2) it obtains high performance by SpMV based preconditioning on GPUs.

Samenvatting

In dit proefschrift worden twee problemen onderzocht. De eerste is het versnellen van de
Tijd Domein Simulatie (TDS) van energienetwerken door middel van iteratieve methoden
met preconditionering waarbij de speciale ijle matrix structuur van de energienetwerken
wordt benut. Het tweede probleem is gemotiveerd door de recente trend van het ge-
bruiken van Graphics Processing Units (GPUs) in High Performance Computing (HPC).
Het betreft ontwerpen en implementeren van Krylov subspace solvers en algemene pre-
conditionering die de prestatie potentiaal van GPUs volledig kunnen benutten, met name
voor toepassingen van het TDS probleem.

TDS is van groot belang voor de analyse en operatie van energienetwerken. Het math-
ematische model van energienetwerken kan worden gerepresenteerd als een serie van stelsel
van niet-lineaire Differentiaal Algebraische Vergelijkingen. Bij gebruik van de Newton lin-
earisatie en impliciete integratie methoden is de voornaamste taak bij TDS het numerieke
oplossen van een serie van lineaire systemen met Jacobiaan matrices. Vanwege de grootte
van het energienetwerk en de behoefte aan snelle simulatie is het gewenst iteratieve meth-
oden met preconditionering voor het oplossen van deze lineaire systemen te gebruiken.
In dit proefschrift wordt dit probleem op twee fronten aangepakt: (1) het ontwerpen
van hoge prestatie preconditioneringsmethode speciaal gericht op de karakteristieken van
TDS; en (2) het ontwikkelen van multi-stappen technieken voor het efficiént oplossen van
een serie van lineaire systemen met tijd- en toestand-athankelijke Jacobiaan matrices.

We begonnen met het analyseren van de ijle structuur van de bijbehorende Jacobiaan
matrix van het elektriciteitsnetwerk. De Jacobiaan matrix bevat een deel dat correspon-
deert met de differentiaalvergelijkingen die het dynamische gedrag (van bijv. een genera-
tor) van het elektriciteitsnetwerk beschrijven. Dit deel heeft de vorm van blok-diagonale
matrices. Het Schur-complement van dit dynamische deel levert nauwelijks vul-ins op in
het algebraische deel van de matrix dat correspondeert met de lijn-verbindingen in het
elektriciteitsnetwerk. Vervolgens hebben we een multilevel preconditioneringstechniek
voor de Jacobiaan matrix gepresenteerd die gebaseerd is op het statische ijle patroon van
de matrix en de analyse van de topologie van het netwerk, We laten zien dat de multilevel-
structuur via een rangschikking met onafhankelijke knopenverzamelingen (INDSET) een
efficiénte preconditionering in zowel geheugen-gebruik als in convergentiesnelheid oplevert.

Bij TDS moet er achter elkaar een serie van lineaire systemen worden opgelost waarbij
de matrices en de rechterhand vectoren per tijdstap en vaak ook per iteratie binnen
eenzelfde tijdstap veranderen. Om deze dynamische veranderingen efficiént op te vangen
hebben we de Jacobiaan matrix in een toegevoegde vorm van Y + Ay herschreven, waarbij
Y een statische matrix is en Ay een blok-diagonaal matrix van een lage rang die van
lineair systeem tot lineair systeem veranderd. Gebaseerd op deze transformatie wordt er
vervolgens een methode van efficiént hergebruik van eerder berekende preconditionering,
genaamd preconditionering updates, ontwikkeld. Deze methode past dynamisch aan de
veranderingen in Ay in de oorspronkelijk geconstrueerde preconditionering voor Y. Het

il

v SAMENVATTING

resultaat is een veel efficiéntere iteratieve methode voor TDS van energienetwerken.

We hebben verder de matrix spectrale deflatie als een andere multi-stappen techniek
voor TDS onderzocht, hierbij wordt GCRO-DR gebruikt om de dynamische veranderingen
in de lineaire operator op te vangen. De toegevoegde vorm Y + Ay blijkt opnieuw een
geschikte rekenkundige formulering voor updaten van de deflatie matrices in GCRO-DR.
Spectrale analyse laat zien dat zowel grote als zeer kleine (in absolute waarde) eigenwaar-
den tegelijkertijd voorkomen in de gepreconditioneerde TDS matrices. Daarom hebben we
een heuristiek voorgesteld om dynamisch de grootste en de kleinste eigenwaarden (ofwel
Ritz waarden) voor deflatie te selecteren. Experimenten laten zien dat deze heuristiek
voor de selectie van eigenwaarden voor deflatie zich effectief aan de dynamische verander-
ing in de TDS matrix spectra weet aan te passen met als resultaat een grote verbetering
in de convergentiesnelheid. We hebben ook aangetoond dat de technieken van updaten
van preconditioneringsmatrices en deflatie geintegreerd kunnen worden wat resulteert tot
een gecombineerd effect in het verder reduceren van het totaal aantal iteraties in TDS.

HPC systemen met GPU versnellers zijn steeds populairder aan het worden vanwege
het potentieel van hoge rekensnelheid en gunstige prestatie-prijs verhouding van de GPUs.
Iteratieve algoritmen en preconditioneringen zijn de twee fundamentele componenten van
Krylov subspace solvers. Echter, het porteren van hen op GPU platforms blijft een uitdag-
ing vooral met betrekking tot preconditioneringen. Daarom onderzoeken we het porteren
van Krylov subspace solvers naar GPU platform en ontwerpen GPU-efficiente precondi-
tionering. Eerst analyseren we de twee belangrijkste onderdelen van de berekeningen met
betrekking tot Krylov subspace solvers: (1) het genereren van een Krylov basis via ijle
matrix-vector producten (SpMV), en (2) orthogonalisatie met de gemodificeerde Gram-
Schmidt methode. We laten zien dat beide efficiént kunnen worden geimplementeerd op
GPUs met een hoge prestatie.

Op GPU platforms waren preconditioneringen gebaseerd op onvolledige factorisatie,
zoals Incomplete LU of Incomplete Cholesky, tot nu toe nog niet succesvol geimplementeerd
vanwege de beperkte parallellisme in het preconditioneringsproces. Hoewel precondi-
tionering gebaseerd op inverse vorm zoals A-biconjugate hoge parallellisme bezit, heeft
deze een groot nadeel vanwege te veel vul-ins. We mikken daarom op het ontwerpen van
een preconditionering met een hoge prestatie (dat is hoge Flop/s) en tegelijkertijd de goede
geheugen-efficiéntie en convergentie eigenschappen van onvolledige factorisatie worden be-
houden. Hiervoor gebruiken we een recursief multi-level structuur en het A-biconjugate
algoritme. De multi-level structuur is geconstrueerd gebaseerd op INDSETs via symbolis-
che analyse van de eliminatie boom. Voor de preconditionering van het laatste level van
het recursief gereduceerde systeem gebruiken we A-biconjugate. De gepresenteerde pre-
conditionering, genaamd als ML-AINV, bestaat uit een serie van matrix-vector producten.
De resultaten uit de experimenten met de TDS problemen en testmatrices van verschei-
dene toepassingen laten zien dat ML-AINV de doelstellingen hebben gerealiseerd, namelijk:
(1) convergentie eigenschappen vergelijkbaar met die van preconditioneringsmethode met
onvolledige factorisaties, en (2) hoge (Flop/s) prestatie op GPUs met de SpMV gebaseerde
preconditioneringen.

Contents

Summary

Samenvatting

1 Introduction

1.1
1.2
1.3

Power Grid Simulation
Krylov Solvers and GPU computing
Research Motivations
1.3.1 Time Domain Simulation
1.3.2 GPU-based Preconditioners and Krylov Solvers
1.3.3 Outline

2 Introduction to Power Grid Simulation

2.1
2.2

2.3

24
2.5

Introductiono
Time Domain Simulation,
2.2.1 Power Grid Components
Jacobian Matriceso
2.3.1 Schur Complement in Jacobian Matrices
Application of Iterative Solvers in TDS
Simulation and Cases in TDS,

3 Jacobian Matrices and Iterative Solvers

3.1
3.2

3.3

3.4
3.5

4.1
4.2

4.3

Introduction
Krylov Solvers
3.2.1 Convergence Properties of CG and GMRES
3.2.2 Arnoldi Process, Long Recurrence and Restarts in GMRES
3.2.3 Preconditioners
GPU computing
3.3.1 Introduction to CUDA
3.3.2 CUDA Workflow
GPU and Iterative Solvers
SUMMATY . . . o v v ot e e e e e

Multilevel Preconditioner for TDS

Introduction
Multilevel Preconditioner
4.2.1 Multilevel Framework
4.2.2 Multilevel Structure based on INDSETs
Multilevel Preconditioner for TDS

17
17
17
19
19
20
21
23
24
24
26

vi

CONTENTS

4.4 INDSET based on Power Network
4.4.1 Basic Heuristics
4.4.2 Fill-in Guidance and Large Block Sizes

4.5 Experiments L
4.5.1 INDSET Search
4.5.2 Characteristics of Multilevel Preconditioners

4.6 SUMMATY e

Preconditioner Updates for TDS

5.1 Introduction
5.2 Formulation of Y + Ay
5.3 Preconditioner Updatein TDS,
5.3.1 Introduction to Preconditioner Updates
5.3.2 Updating Preconditioners in TDS
5.4 Experiments
5.4.1 Test Cases and Settings,
5.4.2 CompariSon
5.5 Summary

Matrix Spectra Deflation for TDS

6.1 Overview
6.2 Introduction to Deflation
6.2.1 Computing Eigenvalues and Eigenvectors
6.2.2 Deflation Algorithms oL
6.2.3 Limitation of Deflation L.
6.3 Analysis of Matrix Spectra L
6.3.1 PreconditionerstoY and Y +Ay
6.3.2 Y Matrices
6.3.3 (Y +Ay) Matrices o
6.4 Deflationin TDS
6.4.1 Eigenvalue Choices
6.5 Combining Deflation and Preconditioner Updates
6.6 Experiments L
6.6.1 Basic Comparison with GMRES
6.6.2 Subspace Utilization oL
6.6.3 Progressive Deflation00
6.6.4 Principal Angle Analysiso
6.6.5 Deflation of Largest and Smallest Eigenvalues
6.6.6 Deflation with Preconditioner Updates
6.7 Summary

SpMV Optimization with CUDA

7.1 Introductiono
7.1.1 Krylov Solvers and Sparse Matrix-Vector Products (SpMV)
7.1.2 SpMV- State of the Art
7.1.3 Outline o

7.2 GPU Cache System

7.3 SpMV on CUDA

7.3.1 Sparse matrix formats and SpMV00

CONTENTS vii

7.3.2 Analysis of ELLPACK format 90

7.4 Caching in SpMV L 92
7.4.1 Caching on GT-200 92

7.4.2 Caching Optimization on GF-100 93

7.5 Optimization - Bandwidth Reduction 95
7.5.1 Locality in Accessing © oo 95

7.5.2 Index Compression 96

7.6 Performance Evaluation 98
7.6.1 Effect of Bandwidth Reduction with GT-200 98

7.6.2 GF-100 based Optimization 100

T7 SUMMATY . . o o o e e 103

8 Iterative Solver and Preconditioner on GPU 105
8.1 Imtroduction 105
8.2 [Iterative Solverson GPU 106
8.2.1 Generation of Krylov Subspace — SpMV Operations 108

8.2.2 Long-Recurrence Krylov Solvers — Orthogonalization 108

8.3 Symbolic Analysis of Preconditioners 110
8.4 AINV Preconditioner 111
8.5 Memory-Efficient Preconditioners on GPU 114
8.5.1 SpMV based Substitution. 0L 115

8.5.2 Multilevel Preconditioner with AINV 117

8.5.3 Comparison of ML-AINV and SpMV based Substitution 121

8.6 Experiments 122
8.6.1 Test on Jacobian Matrices from TDS 123

8.6.2 Test of ML-AINV on Matrix Test Suite 124

8.7 SUmmary 126

9 Conclusions and Outlook 127
9.1 Conclusions 127
9.2 Outlook e 129
Acknowledgements 139

Curriculum Vitae 141

viii CONTENTS

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8

5.1
0.2

6.1
6.2
6.3

7.1
7.2
7.3
7.4

8.1
8.2

Power System — A Schematics L. 2
Affected region shown on map.. 2
Satellite image of the affected region (night). 2
From application to architecture — the scope 3
Transmission Line — Mathematical Model 9
Model for synchronous machine. 10
Jacobian matrix for IEEE 39 bus system. 00000 11
Spectra of TDS Jacobian matrices — Effect of preconditioning 21
Statistics of Theoretical Performance of GPU and CPU 22
Performance and power usage of top 5 machines in Top-500. 22
CUDA - GPU Architecture and Thread Hierarchy 24
CUDA Workflow 25
Multilevel preconditioning process. oL 28
INDSET on the network of IEEE 39 bus reference system. 30
Multilevel structure for the Jacobian matrix of IEEE39 system. 32
Effects of INDSET searching algorithms on 2K system. 37
Effects of INDSET searching algorithms on 10188 system. 37
Effects of INDSET searching algorithms on West-US system. 37
Preconditioner memory usage and condition number relationship for 2K

System. 40
Preconditioner memory usage and iteration count relationship for 10188

SYStem.o e 41
Structure of Ay matrix 49

Comparison of iteration counts between Preconditioner Updating strategies 56

Spectra Analysis for IEEE39 65
Spectra Analysis for 2Ko oo 66
Heuristics function f(a) on the complex plane 74

Schematic comparison between cache organization on GT-200 and GF-100 87

Matrix storage formats. 89
Sample matrix sparsity pattern and its storage scheme in ELLPACK. . . . 89
SpMV of Matrices in an Reduced Bandwidth form 95
SpMV Speedup - GPU v.s. CPU 109
Performance comparison between CPU and GPU based MGS 109

X

X

LIST OF FIGURES

8.3
8.4
8.5
8.6
8.7

Elimination tree of “orsirr_1” treated with RCM and ND permutations . . . 111
ETREE- Fill-in Characterization 111
Sparsity of resulting matrices of A-biconjugate algorithm on “orsirr_1”. . . 114
ETREE- Example for Transitive Reduction 116
Sparsity pattern of 2K with ML-AINV permutation 123

List of Tables

2.1
2.2

3.1

4.1
4.2

5.1
5.2
2.3
0.4
2.5

6.1
6.2

6.3

6.4

6.5
6.6
6.7
6.8

6.9

6.10
6.11
6.12
6.13

6.14

7.1
7.2
7.3
7.4
7.5

Power Networks 14
Time Domain Simulation Cases 15
Quantitative comparison between GPU architectures 25
Power Networks 36
Preconditioner’s construction and solving time with iteration and memory

consumption information.o oL 38
TDS cases for Preconditioner Updates tests 53
Preconditioner Update — Basic Settings 53
Preconditioner Update results 53
Preconditioner Update results o4
Preconditioner Update results 25
Power systems and test cases used in deflation experiments 63
Extreme values in spectra for preconditioned augmented Y matrices for

2K-STABLE case 67
Extreme values in spectra for preconditioned augmented Y matrices for

Dongbei-B case 67
Extreme values in spectra for preconditioned augmented Y matrices for

10188 case 68
Comparison of A and overhead in applying (I —CCH) 71
GMRES and GCRODR — Basic Comparison 76
Comparison of GCRO-DR and GMRES- constant vector space size 7
Comparison of GCRO-DR and GMRES- constant non-deflation vector space

SIZE . . L 78
Principal Angle results — Startup Process Analysis 80
Principal Angle results — Stationary Status 81
Effect of deflating both small and large eigenvalues 81
Choice among extreme eigenvalues 81
Cosines of the principal angles between U and eigenvector spaces (G, and

Hi) o o o 82
Effect of combining preconditioner updates and deflation 83
Quantitative comparison between GPU architectures 88
Test matrices for SpMV— Characteristics. 91
Assembly-level Timing Analysis in GT-200 92
Performance results of SpMV when a pseudo vector of z is used for GT-200. 93
Cache line accesses in x for matrices. 96

x1

xii

LIST OF TABLES

7.6
7.7

7.8
7.9
7.10
7.11
7.12
7.13

8.1
8.2
8.3
8.4
8.5
8.6
8.7

Applicability of column index compression for SpMV 97
Reduction ratio in accessed memory amount for SpMV using Index Com-

PreSSION. v v i i e 97
Matrices permutated by RCM — Performance Results 99
Evaluation of Index Compression on tpseudos - « - « = = « o« v o 0oL 99
Configuration L 100
Performance results on SpMV speedups 101
Performance Enhancement for GF-100 (GTX-480) GPU 102
Performance Comparison — GT-200 and GF-100 GPUs 103
Test matrices for SpMV and Krylov subspace bases generation 108
Test Platforms - CPU and GPU 123
Symbolic analysis of TDS matrices 123
ML-AINV characteristics on TDS Jacobian matrices 124
Matrix test suite for ML-AINVo oo 124
Convergence comparison between ML-AINV, |LU-C and SuperILU 125

Performance comparison between ML-AINV and SuperILU 125

Chapter 1

Introduction

1.1 Power Grid and Time Domain Simulation

Power Grid is one of the most fundamental infrastructures of our society. It generates
power in the form of electricity and delivers it through a network to end users. A schemat-
ics of the Power Grid is shown in Fig.1.1. A Power Grid mainly consists of three parts:
(1) electricity generation, (2) power transmission, i.e., the Power Network, and (3) con-
sumption. Electricity are generated from various sources, such as thermal/hydro electric
power plants. The power transmission is usually carried out by networks of power lines,
voltage transformers, etc. End users include as factories, home users, etc, which consume
the electricity in various ways.

In real life, huge amount of electricity is generated at any given moment and it cannot
be stored effectively and must be consumed at the same time. According to [21], the
averaged electricity generation in China is 4.24 x10% kilo-Watts in year 2009. Such
amount of electricity is transferred to end users and consumed at the same time. Hence the
electricity distribution should always stay at a balanced status. None of these three major
components of the Power Grid is stationary and their status is subjected to changes over
time. The power grid hence should be kept at a stable status, to accommodate dynamic
behavior such as power line changes, electricity usage fluctuations, etc.

Dynamic changes in the power grid happen all the time. But certain changes, especially
failure of major power lines, could have vast, even catastrophic aftermath. The blackout
in 2003 across the eastern parts of US and Canada [2] was caused by an outburst at a
power plant and cascading power line/plant failures, and affected more than 55 million
people and costed billions of dollars. The study the dynamic behavior of power grids is of
crucial importance to the maintenance of the Power Grid at stable status and avoidance of
system-level failures. While experiments with real-life power grids is generally not possible
due to very limited availability, analysis by means of simulation is the most popular and
cost-effective way for understanding its behaviors.

Simulation of power systems in time domain using digital computers involves the
numerical integration in time domain, based on discretization and mathematical model for
components in the Power Grid. The dynamic behavior of Power Grids can be characterized
in a series of Differential Algebraic Equations (DAEs). These DAEs are of highly nonlinear
nature, and in numerical simulation they are usually linearized with the Newton’s method.
Computationally, the solution of a series of Jacobian matrix-based linear systems is the
major numerical problem.

With the emerging need for fast, even online analysis and control [19] for large, es-

1

2

INTRODUCTION

Figure 1.1: Power System — A Schematics

Figure 1.2: Affected region shown on map.

Figure 1.3: Satellite image of the affected region (night).

1.1

1.2 KRYLOV SOLVERS AND GPU COMPUTING 3

Scientific Applications

L

Numerical Algorithms

il

Parallel Computers

Figure 1.4: From application to architecture — the scope

pecially nation-wide Power Grids, Time Domain Simulation (TDS) has become a more
important and demanding computational task. How to speed up the process of solv-
ing Jacobian based linear systems holds the key to effective Power Grid modeling and
analysis. To achieve this, iterative solvers and accompanying preconditioning techniques
are applied to the solution of these linear systems, as in [67, 68, 49, 41, 58, 44]. In the
related research field of Power Flow study, iterative solvers are also widely adopted, as
in [75, 48, 24, 93]. By using iterative solvers, the computational amount and simulation
time can be potentially reduced, as compared with full factorization scheme for each and
every Jacobian matrix.

1.2 Iterative Solvers and GPU-based Accelerated Com-
puting

[terative Solvers based on Krylov subspace, together with Preconditioners, represent an
important category of numerical algorithms which are widely used in various scientific
applications, including TDS of Power Grids. These algorithms usually reduce the norm of
the error residue in the Krylov subspace. To achieve practical convergence, preconditioners
are usually adopted. General-purposed preconditioners such as those based on incomplete
factorization including incomplete Cholesky (IC), incomplete LU (ILU) are among the
most popular.

Accelerators, especially Graphics Processing Units (GPU) are widely adopted in High
Performance Computing (HPC) systems in recent years [5, 16, 15]. Compared with tra-
ditional CPU, GPU has the advantage of much higher peak floating point performance,
memory bandwidth and better efficiency in terms of performance-per-watt. Contrary to
traditional CPU, the parallelism exposed by GPU is fine-grained, usually data-level mas-
sive parallelism. Each GPU thread carries out relatively simple operations, while there
are tens of thousands of concurrent threads running at the same time per GPU chip. The
huge count of threads is necessary for hiding the latency of each thread. Unlike traditional
CPU-based computation, for GPU based computation it is necessary to consider in terms
of the total throughput rather than the performance/latency of each thread.

GPU has been widely used in various scientific applications [3]. Due to the fundamen-
tal difference of the throughput-oriented architecture of GPUs as compared with CPUs,
scientific applications usually should be re-programmed or even re-designed to accommo-
date the GPU platform. This is reflected in Fig.1.4. When new parallel architecture such
as GPU emerges for scientific computing, algorithms and applications have to be adapted
to better utilize the potential of the new architecture. On the other side, scientific ap-
plications, as the consumer of computational power, also affect the design and evolving

4 INTRODUCTION 1.3

direction of the hardware architecture.

There have been numerous works on porting iterative solvers to the GPU platform, es-
pecially within the recent decade, such as those in [37, 36, 81, 25]. The major limitation of
these works is in the lack of preconditioner algorithm which can fully exploit the computa-
tional potential of GPUs. Most frequently used preconditioners in these works are either
diagonal Jacobian or block diagonal preconditioners. This is mainly due to these trivially
constructed preconditioners have inner parallelism which are direct match for GPUs. But
ignoring all the off-diagonal elements can be very inefficient when better convergence or
more precise preconditioner is desired. Due to the fact that the preconditioning operation
associated with the triangular matrices is mainly sequential in the substitution process,
the traditional, general-purposed preconditioners based on incomplete factorization such
as |C and ILU, have so far not been successfully ported to GPU.

1.3 Research Motivation and Outline

This thesis focuses on two research topics: (1) efficient solution of Jacobian-based linear
systems in Time Domain Simulation of Power Grids, (2) numerical solution of linear
systems on GPU-based platforms with Krylov subspace solvers and preconditioners. This
section outlines the research direction on both topics and outlines the rest of the thesis.

1.3.1 Time Domain Simulation

The solution of a sequence of linear systems based on Jacobian matrices is the central
numerical problem for TDS. To enhance the convergence of iterative solvers on these lin-
ear systems, we set out on two different tracks of study: preconditioner centric approach
and iterative solver centric approaches. We develop two different categories of techniques
for this problem. The first category includes preconditioner for a single Jacobian matrix-
based linear system: we design multilevel preconditioner for Jacobian matrices in TDS.
By analyzing the sparsity pattern of the Jacobian matrices, a multilevel structure is con-
structed based on off-line analysis of the Power Network topology. An algebraic multilevel
preconditioner is then constructed upon this multilevel structure.

TDS involves solving a sequence of linear systems. Hence the second category of tech-
niques include multi-step techniques to reuse information between linear solving process.
Further analysis of the Jacobian matrices reveals its inner relationship with the admit-
tance matrix. The additive formulation for the Jacobian matrix based on admittance
matrices enables multi-step techniques of Preconditioner Updates and Spectra Deflation.
Instead of traditional dishonest preconditioner strategy, we propose the use of precondi-
tioner updates to accommodate dynamic changes in the Jacobian matrices. The Arnoldi
process embedded in GMRES and GCR algorithms exposes extreme eigenvalues of the
Jacobian matrices. Hence the eigenvectors are retrieved and used for speeding up the
solution of consecutive linear systems by spectra deflation.

1.3.2 GPU-based Preconditioners and Iterative Solvers

Iterative Solvers and Preconditioner are used in TDS of Power Grids, as well as many
other scientific applications. We target GPU accelerated iterative solvers and precondi-
tioner as a research focus in this thesis. Krylov subspace solvers mainly rely on matrix-
vector products for the generation of Krylov subspace bases. We propose optimization

1.3 RESEARCH MOTIVATIONS 5)

of Sparse Matrix-Vector Multiplication on various GPU architectures based on matrix
profile reduction and cache-specific optimizations on GPU.

Incomplete factorization based preconditioners such as |C and ILU has not been suc-
cessfully ported to GPUs. To fully exploit the massive parallelism on GPU while maintain
good convergence properties, we design preconditioners which satisfy: (1) close relation-
ship with incomplete factorizations in both formulation and convergence properties, and
(2) high performance on GPU with inverse-based preconditioning operations. The pro-
posed preconditioner can be applied to matrices from various applications and serve as a
general-purposed preconditioning framework on GPU.

1.3.3 Thesis Outline

The following part of the thesis is organized as follows. Chapter 2 gives a short introduc-
tion to the mathematical model of Power Grid Simulation and the application of iterative
solvers in it. Chapter 3 briefly introduces iterative solvers, preconditioners, and their
relationship with GPU-based high performance computing. Chapter 4 discuss the design
and implementation of multi-level preconditioner for Jacobian matrices in TDS of Power
Grids. Chapter 5 and Chapter 6 cover the preconditioner-based multi-step techniques
in TDS. Chapter 5 discusses preconditioner updating algorithms in TDS, while Chap-
ter 6 discusses matrix spectra-based deflation using GCRO-DR. Chapter 7 and Chapter 8
are dedicated to the iterative solver and preconditioner on GPU. Chapter 7 focuses on
the basic operation of the Sparse Matrix-Vector Multiplication (SpMV), for the genera-
tion of Krylov subspace, its optimization on GPU-based platforms. Chapter 8 proposes
general-purposed preconditioners based on multilevel framework and approximate inverse.
Chapter 9 gives conclusions and outlooks for future research.

6

INTRODUCTION

1.3

Chapter 2

Power Grid Modeling and
Simulation

2.1 Introduction

This chapter begins with a short introduction to the Time Domain Simulation of Power
Grids in Section 2.2. Mathematical models for some basic components within the Power
Grid are described, including synchronous machine, power network model, etc. The main
numerical computation involved in TDS is the solution of the Jacobian matrix based
linear systems. We further analyze the properties of the Jacobian matrices in Section
2.3. Analysis show that the Jacobian matrices feature sub-structures which are based on
the linkage relationship in the power network. Section 2.4 surveys relevant works in the
application of iterative solvers and preconditioners in Power Grid computation. Finally
in Section 2.5 we introduce the Power Grid systems and cases for the experiments in
following chapters.

2.2 Time Domain Simulation of Power Grids

The dynamic behavior of Power Grids can be characterized by a set of Differential Al-
gebraic Equations (DAE’s), as shown in Egs.2.1 and Eqs.2.2. Egs.2.1 characterizes the
dynamic behavior of the Power Grid, while Eqs.2.2 contains the algebraic equations,
which characterizes the constraints on the balanced relationship in the Power Grid, usu-
ally Kirchhoff’s circuits laws. The status of the Power Grid is described by two sets of
variables: X and V. X is the vector variables of dynamic components (such as states
in the synchronous machines, including rotor angle, rotor speed, transient voltages at
d-/g-axis of synchronous machines, etc.); V' is the vector of algebraic variables, usually
bus voltages in the Power Network.

X = f(X,V) (2.1)
0=g(X,V)

Typically, by discretization in time-domain by At and application of implicit integra-
tion with trapezoidal rule, and application of Newton-Raphson method, we obtain the
following algorithm for TDS. We use ¢ to represent the discretized time points in the

7

8 INTRODUCTION TO POWER GRID SIMULATION 2.2

simulation. The outer loop is the iteration over time steps. Based on {Vt}’ i.e, system
t

X
Vie
number of Newton iterations, indexed by the variable of ¢ (inner loop from line 5 to 15).

(1)
The Newton iterations are considered to have converged if [AV%)] is sufficiently small.

t

states at time step ¢, the calculation of , i.e., states at step ¢ + 1 may involve a

Input: System model for dynamic components: f(X,V)
System model for balanced relationship: g(X, V)
Initial system state: Xy, Vj
Simulation step: At
Total simulation time steps: Tiqs

Output: Dynamic behavior: [Xt} for 0 <t < Thax

Vi
11«0
2 while t < T, do
3 71— 0;
Xt(—(l)—)l _ [Xt] .
o | v vl
5 while 7True do
Form Jacobian matrix A® ;
Calculate error as [(i)T(L) ONE
7 : g(Xt—l—l’ Vt+1) o
Solve: [(ZJ;’(‘ .| = — A AXt(—Z@—)l ;
8 9(Xi1: Vi) AV
AX(Z')
if t(JZSl is sufficiently small then
9 AV
[Xt+1:| _ Xt(_?l
10 Vit Vt(i)l '
11 break ;
12 end
x V)] [ax
13 vt il Lav
14 t—1+1;
15 end
16 t—1t+1;
17 end

18 Vi

return [XZ} for 0 <@ < Thag;

Algorithm 1: Time Domain Simulation

TDS algorithm involves two levels of iterations. The outer iteration is governed by
the simulation time. It carries on at the time step of A; until the simulation duration
is reached. At each time step, a non-linear problem has to be solved. Hence Newton’s
method is applied and an iterative process is used to compute the system status for the
next time step.

2.3 JACOBIAN MATRICES 9

Vk 49/\ ‘/m Zem

B/2 N S B/2

Figure 2.1: Transmission Line — Mathematical Model

The solution of the linear system on line 8 usually consumes more than 70% of the
computational time during the whole simulation. Hence the major numerical problem
involved in TDS is the solution of a sequence of Jacobian matrix based linear systems.

2.2.1 Power Grid Components and Models

The distribution of electricity in the Power Grid is through Power Network. The Power
Network composes of inter-linked electrical buses [4], transmission lines, transformers, etc.
Electrical bus (or ‘bus’ for short) serves as conceptual node in the Power Network. All
other devices are connected to buses. Electrical generators and loads (for consumption of
electricity) are connected to a bus. Buses are inter-liked together by transmission lines,
transformers, etc. The Power Network can be viewed as a randomly sparse graph, with
buses as vertices and transmission lines as edges. The circuit-level model of transmission
line is shown in Fig.2.1.

The Power Network then can be abstracted as an admittance matrix. Each bus cor-
responds to one row/column of the matrix. The element in the matrix is non-zero if and
only if the two corresponding buses are connected.

Electrical generators are the most important dynamic component in the Power Grid
simulation. For electrical generators, we consider the Park-Concordia model [59] for
synchronous machines. The basic scheme for the synchronous machine is shown in Fig.2.2.
Depending on the details for modeling of generators, various model orders * are adopted.
The experiments in this thesis involve generator order from 2 to 5. Normally models with
order 4 or higher are usually used. The detailed models for the generator is beyond the
discussion of the thesis. Please refer to [59, 63] for more details.

2.3 Analysis of Jacobian Matrices

Following the implicit integration and trapezoidal rule, the Jacobian matrix formed in
Line 6 of the TDS algorithm at time step ¢ in Newton iteration 1, i.e., J@ and the part
of the right hand side (i.e., fy(f)) are defined as follows:

*Generator orders denote the simplification levels to the characterization of the dynamic process of
the generator, with higher orders include more details and less simplification.

10 INTRODUCTION TO POWER GRID SIMULATION 2.3

a

Figure 2.2: Model for synchronous machine.

o — == SR —SHEH) 23)
JZ — n 2 ?X 2 8\/; 23
(2218)) (22),2,)
fr(f) :Xt(?l — Xi—
At @) 100
7{f(Xt+17 ‘/t—I—l) + f(Xta VZ)} (24)

In our system we use phase angle and amplitude of bus voltages for the algebraic
variable V: 0 and v, where 6 is the vector of angles and v is the vector of amplitudes at
buses. Then V in Eqgs.2.1 and Eqs.2.2 is defined as [0y, 60, ,0,,v1, 09, - ,v,]7 where
V; is the voltage at bus with index 7. In Eqs. 2.2 we use the active power P and reactive
power () for describing the balanced relationship within the system.

Then in Egs.2.3, the Jacobian matrix can be divided into four sub-matrices: Ji i, Ji 2,
Ja1 and Jao. Ji ;1 has the following characteristics:

e The relationship among these components, i.e., generators, excitors, etc, are local.
Each component corresponds to a block structure on the diagonal of .J; ;.

e The size of each block depends on the specific component type. For example, a
4-order synchronous machine, i.e., generator corresponds to a 4 x 4 block. The
diagonal blocks are usually very small, and dense.

e Inter-block connection is sparse. This is due to that dynamic components are rarely
inter-connected. Synchronous machines are not inter-connected. Actually in the
models used in our experiments, the only possible connection exists between the
generator and its associated components such as excitor. In this case, it does not
break the general statement that the sparsity pattern of J; ; is block-diagonal. Hence

2.3 JACOBIAN MATRICES 11

0
20«&.(*

Figure 2.3: Jacobian matrix for IEEE 39 bus system.

the factorization or inverse of J;; can be computed with very low computational
overhead.

Jo.o marks the differentials related to the active/reactive power to the algebraic vari-
ables, i.e., bus voltage angles and amplitudes. Hence the structure of J, 5 is closely related
to the topology of the Power Network. Non-zero elements only exist when the two buses
are connected. If two buses are not connected in the network, the value corresponding to
the power variable and the voltage variable should be 0. We further divide .J; 5 into four
subparts. Based on definitions above, .J55 can be formulated as:

na=22 =B B 25

From the analysis above, we know that each subpart of .J; 5 has the sparsity pattern de-
fined by the graph of the Power Network. We can also arrange the vector of active/reactive
power and V' in an bus-wise way, i.e. : V = [0y, vy, 603,09, -+ ,0,,v,]. In this case, matrix
J22 would be composed of blocks of size 2 x 2, and the connection between the blocks is
the same as the Power Network topology.

Ji12 and Jy; mark the inter-relationship between dynamic components and buses in
the network, the structure of these two matrices are coherent with the actual connection
between physical entities such as generators, buses, HVDC devices, etc.

e When a single-ended device, such as a generator is associated, there will only be
non-zero elements between the rows/columns corresponding to that device, and the
rows/columns corresponding to the bus to which the device is connected.

e A double-ended dynamic device, such as an HVDC device is connected to two buses.
Then the non-zero elements only appear on the rows/columns that are related to
the device and the buses it connects.

As an example, Fig.2.3 shows the Jacobian matrix structure for a reference system
from IEEE with 39 buses (dynamic components only include 4-order generators). The
sub-blocks of the matrix are shown. Note the block-diagonal formulation of .J;, the
identical substructures in J, 5, and the inter-relationship between these two parts.

12 INTRODUCTION TO POWER GRID SIMULATION 2.4

2.3.1 Schur Complement in Jacobian Matrices

If we take the Schur complement of J;; in Jy9, the resulting matrix would be : Jyo —
JonJy ! J12. Here we present an important sparsity pattern analysis of the Jacobian ma-
trix.

Theorem 1. The fill-in caused by Schur complement of Jy1 in Joo is virtually nil.

Proof. For the r-th row in Jy 5, if the bus it corresponds to is not linked with any dynamic
components, then the row is zero. If the bus it corresponds to is connected with a
dynamic component, then this row has only non-zero in the columns that corresponds
to the dynamic components in J; ;. Similarly in J; 5, the c-th column in J; 5 will have
non-zeros i.f.f. the bus it corresponds to is connected to a dynamic component, and only
in the rows that corresponds to the components in J; ;. Without losing the generality,
we assume that the inverse of J; ; is a block diagonal matrix with dense diagonal blocks.
Then the Schur complement of .J;; in J; 5 is by definition:

S =Jo1JiiJis (2.6)

and an element in S:

Suw =Ry x Ji1 x C, (2.7)

R, is the u-th row of J,; and C, the v-th column of J; 5. S, , # 0 i.f.f. bus associated
with u and bus associated with v are connected to the same dynamic component. If this
dynamic component is single-ended such as a generator, then the non-zero elements in S
will be on the diagonal parts of each of the 4 sub-parts in J,5 (each featuring the same
graph of the network topology). If this dynamic component is double-ended such as a
HVDC component, then the ensuing non-zero elements in S will be on both the diagonal
of the sub-parts in Jy o and those positions in the sub-parts of J, » that corresponds to the
buses the component is connected to in the network. Either way, S does not contain any
element in Jy 5 that is not included in the sparsity pattern defined by the Power Network
topology. Hence the theorem is proved. O

We will apply the theorem above to the construction of multilevel preconditioner for
the Jacobian matrices and it also serves as a foundation of the further discussion in this
thesis.

2.4 Application of Iterative Solvers in TDS

Traditionally the solution of Jacobian matrix-based linear systems are solved using direct
solvers ([59, 76, 40]). The associated computation accounts for more than 70% of the
total computation in the whole TDS process. Due to the fact that the Jacobian changes
from iteration to iteration, the factorization has to be carried out for each matrix. With
more demanding simulation requirements such as the introduction of more precise models,
simulation of large-scale Power Grids, multi-step simulation techniques as in [74, 92], larger
Jacobian matrices would ensue, resulting in even higher computational cost with direct
solving techniques.

To tackle the growing computation demand with direct solving schemes, several works
([49, 41, 58, 44]) have been focusing on applying iterative solvers such as GMRES [72]

2.5 APPLICATION OF ITERATIVE SOLVERS IN TDS 13

and accompanying preconditioning techniques to TDS and related problems. Due to the
important role that preconditioners play in the convergence of the iterative solving process,
many research works on designing efficient preconditioning techniques have been carried
out recently. It is shown in [58] that with ILU and dishonest preconditioner technique,
iterative methods could achieve 66.4 times speedup against LU-based direct methods, and
for TDS problems GMRES is the most robust among GMRES, BiCG, CGSquared, and CG-
Stab. In [41] GMRES-E and normalization preconditioning has been presented to deal with
ill-conditioned systems. This work includes the initial idea of reusing matrix spectrum
information across linear system solving processes by deflation. But it has the drawback
that the change of Jacobian is not well perceived. In [48], inexact Newton’s method
is accompanied by GMRES with varying precision to reduce computation time; (block)
diagonal and ILU preconditioners are adopted. Chebyshev polynomials are used to speed
up preconditioners in [44] and parallelization issues are also addressed.

Several previous works ([67, 68, 58]) utilizes iterative solvers with the dishonest pre-
conditioning strategies. The preconditioner constructed for the Jacobian matrix at certain
iteration, and is reused for further Jacobian matrices. This approach is called “dishonest
preconditioners”. Although this is an immediate way for reusing information and save
overall computation cost, the effect of preconditioner might be compromised due to the
fact that the preconditioner constructed based on previous Jacobian matrices does not
effectively reflect up-to-date information in the Jacobian matrices, resulting in higher it-
eration counts. To alleviate this problem, some preconditioner reconstruction schemes
are proposed, in which the preconditioner is re-built from time to time. Popular re-
construction scheduling schemes include: periodical reconstruction, iteration count-based
heuristics, etc. However, although the optimality in the scheduling is of crucial impor-
tance, the proposed schemes are usually empirical and lacks both theoretical and technical
support.

In other aspects of Power Grid computation, such as Power Flow, iterative solvers
and preconditioning have also been applied. Similar to TDS, in Power Flow problem, a
nonlinear problem is solved with Newton’s method, and with each Newton step a Jacobian
based linear system is to be solved. The main motivation of the use of iterative methods
is the computational concern of direct methods, especially for large scale Power Grid
analysis. [75, 48, 24, 93] uses iterative solvers to the solution of a sequence of Jacobian
matrix-based linear systems which arise from Power Flow computation. In [93], iterative
solvers are used to solve Power Flow problems for system size of up to 20000 buses.
Preconditioned iterative solvers are effective solution techniques for these problems.

[terative solvers and preconditioners have been successfully applied to Power Grid
analysis, including TDS problems. But the current works are limited in two aspects. First,
iterative solvers and preconditioners are simply applied to TDS problems as replacement
for direct methods, but they do not exploit the specific characteristics of TDS problem,
such as characteristics of the Jacobian matrices, etc. Second, there are very limited work
on the multi-step techniques for TDS. Despite the simplicity of the popular approach of
“dishonest preconditioner”, it is potentially problematic in that there is no guarantee of
the quality of preconditioner when applied to each and every Jacobian matrix. In this
thesis we tackle the limitation of existing works by designing Jacobian matrix-specific
preconditioners and multi-step techniques to reuse information more effectively across
linear systems in TDS.

14 INTRODUCTION TO POWER GRID SIMULATION 2.5
System Line Generator Matrix
game Bus Count Count Count Size =
2K @ 1165 1408 216 3194 21108
Dongbei 488 683 64 1104 7208
10188 ¢ 10188 11905 1072 25308 160877
West-US ¢ 5330 8271 N/A

“Detailed model of Hebei province, China; 4-order generator model without excitor or
governer

bSimplified model for northeast provinces in China; 2-order generator model without exciter
or governer

“Highly simplified model of Chinese national grid; 5-order generator model without excitor
or governer

dSimplified Model for western United States grid; network analysis only, no information of
generators available

Table 2.1: Power Networks

2.5 Simulation and Cases in TDS

One major issue with carrying out simulation for Power Grids is the lack of large scale
models which are from real-life and hence satisfy requirements such as it should accept a
stationary status in Power Flow. New simulation techniques should also be verified with
actual measurements and reference waveform from the standard simulation process, such
as that achieved by a commercial software as PSS.

In this thesis we mainly consider the simulation of large scale Power Grids. These
include two regional Power Grid and a simplified national Power Grid of China. A ref-
erence system from the IEEE library is used: IEEE39. All the power systems used for
static network analysis is listed in Tab.2.1.

We denote an instance of scenario which is simulated as a simulation case, or case
for short. A case corresponds to a sequence of events which could potentially happen for
the Power Grid. A case have a certain simulation duration. For example, for a 5 second
simulation duration, the dynamic behavior of the Power Grid for 5 seconds is simulated.
A standard set of simulation cases shown in Tab.2.2 are derived from the Power Grids in
Tab.2.1. By default, the simulation step size, i.e., A; is taken as 0.01 second by default,
if not stated otherwise.

These simulation cases are used in this thesis in Chapter 4, Chapter 5 and Chapter 6
for the evaluation of multilevel preconditioner and various multi-step techniques such as
preconditioner updates and matrix spectra deflation.

2.5

SIMULATION AND CASES IN TDS

Case System Case
Name Description
9OK-STABLE 9K A three-phase fault on a single QQOkY bus; 'the fault'
occurred at 1s and cleared at 1.5s; 10s simulation duration
A three-phase fault on a single 220kV bus; the fault
2K-UNSTABLE 2K occurred at 1s and cleared at 1.2s; the simulation was
terminated at 2.8s due to damping
A three-phase fault on a single 500kV bus; the fault
10188 10188 occurred at Os and cleared at 0.06s; the fault resistance
was 0+0.1j; 5s simulation duration
Dongbei-B Dongbei A single 220kV branch tripp'ed at 1.0s; 10s simulation
duration
A three-phase fault on a single 220kV bus; the fault
Dongbei-F Dongbei | occurred at 0s and cleared at 0.06s; the fault resistance

was 04-0.1j; 10s simulation duration

Table 2.2: Time Domain Simulation Cases

15

16

INTRODUCTION TO POWER GRID SIMULATION

2.5

Chapter 3

Iterative Solvers and Accelerated
Computing with GPUs

3.1 Introduction

The problem of solving linear systems based on large sparse matrices occurs in various
scientific applications. Krylov subspace solvers are the most important algorithms for
this problem. The performance and convergence properties of iterative solvers and ac-
companying preconditioning techniques are hence of great importance to the solution of
scientific problems.

General-Purposed computing with Graphics Processor Units (GP-GPU) is a trend
for High Performance Computing (HPC) in recent years. GPU poses great interest to
scientific computation due to its potential for higher performance and better efficiency.
Yet programming on GPU, especially when high performance is desired, poses special
problem as compared with conventional CPU platforms. It is important to port and design
iterative solvers and preconditioning techniques which are suitable for GPU architecture
so that they can be effectively accelerated by GPU platforms.

In this chapter we give a brief survey into the Krylov subspace iterative solvers, pre-
conditioners and GPU computation. Introduction to iterative solvers and preconditioning
framework also serves as a basis for the preconditioner design and multi-step simulation
techniques in following chapters. Section 3.2 covers introduction to the iterative solver
framework, GMRES algorithm, preconditioners, and other relevant issues. Section 3.3
introduces General-Purposes computing on GPU (GP-GPU) and NVIDIA CUDA plat-
form. Section 3.4 gives a brief survey of the state-of-the-art work on the application of
GPU in numerical linear algebra. Design and implementation of iterative solvers and
preconditioners on GPU platform is included. Section 3.5 summarizes the chapter.

3.2 Krylov Iterative Solvers

Solution of large sparse matrix based linear systems of form Ax = b usually require iter-
ative solvers based on Krylov subspaces. Due to the large size of the matrices, complete
factorization based direct solvers may incur overhead which is inhibitively high or compu-
tationally intractable so that iterative solvers are the only practical choice. The Krylov
subspace is defined as follows (with r as the initial residue vector):

17

18 JACOBIAN MATRICES AND ITERATIVE SOLVERS 3.2

{r,Ar,--- A™r} (3.1)

The Conjugate Gradient algorithm (CG , [56]) is designed to solve Symmetric Positive
Definite matrix based linear systems by minimizing the A norm of the residue: |||/ 4. For
general non-symmetric matrices, algorithms such as GMRES [73] and BiCG [30] can be
applied. GMRES minimizes the residue norm in the Krylov subspace. Here we list two
algorithms: GMRES and CG .

Input: Sparse matrix Aé
Right hand side b
Initial guess

Output Solution x

[uny

’I"O(—b A.%'O,

2 v 1 normalized rg ;

3 for i — 1 to m do

4 'ljﬂ— A ?Z ;

5 Orthogonalize EZ against ij, for 1 <j<i;
6 | if | w;|l2 <ethen

7 ‘ Break ;

8 end

9 Update Hebbenberg matrix H ;

10 z+1<— normalized wZ ;

11 end

12 Yme— argmin;Hﬂ er—H Y |2 ;
13 T2+ Y " Y Vi
14 return 7 ;

Algorithm 2: GMRES

Input: Sparse matrix AA
Right hand siéde b
Initial guess

Output Solution x

1 r0<—b Aaco7

2 Po<— normalized rg ;
3 for i +— 0 to n do

4 Oéi — <r17ri> 9
(Ap p)
5 $i+1<—90 +ao; Py
6 i1 T —;A D
(r i1, " Tit1) |
B o {rusnten)
7 IR <T’1,T’Z> N
Pit1—Tiy1 +5i Pi;
9 end

10 return z; ;

Algorithm 3: CG

3.2 KRYLOV SOLVERS 19

3.2.1 Convergence Properties of CG and GMRES

The convergence of CG algorithm greatly depends on the eigenvalue distribution on the
real axis. Simple yet elegant theoretical convergence bounds exist, such as arguably the
most popular one in [52] shown in Eqs.3.2; or the less referenced yet tighter bound shown
in Egs.3.3.

[k — @olla VE(A) = 1*
EEE 2(\//1(A)+1) (32)

|2k — 20| a

< min max |p(\; 53
||17_ZL'0||A - p(0)=1 1<j<n ‘p(J)‘ ()
deg(p)=k
In BEqs.3.2, || - |4 is the A-norm, and k(A) is the condition number of A, ie., jme

where A, and \,,;, are the largest and smallest eigenvalue, respectively. For generally
non-normal matrices as the Jacobian matrices in TDS, there exists convergence bound
described in [73], as shown in Eqs.3.4.

72| Ve V|| '

4" — min < k(V) min max |[p(\; 3.4

ol pl0)=1 7]l < (V) min - max [p(A;)| (3.4)
deg(p)=F deg(p)=h

Where V' is the matrix of column eigenvectors. Due to that retrieving the full V'
matrix is usually computationally intractable, hence is the analysis of the spectrum of V.
Because the formulation of Eqs.3.4 is complex, it is hardly used in practice for convergence
analysis. In actual scenarios, as a generally applicable rule, reducing the condition number
by eliminating both very large and very small (close to origin) eigenvalues in GMRES
by means of preconditioning or spectra deflation can enhance convergence and reduce
iteration counts.

3.2.2 Arnoldi Process, Long Recurrence and Restarts in GMRES

In GMRES, an Arnoldi process is embedded. Arnoldi iteration has the property of cap-
turing the extreme eigenvalues of A by similarity transformation. Through the analysis
of the reduced upper Hessenberg matrix, the extreme value of the original matrix A can
be revealed. By analyzing the spectrum of matrix H,,, extreme eigenvalues of A could
be estimated. Eigenvalue/vector estimates to that of A by H,, are called Rits values and
Rits vectors.

AV, =V, H,, (3.5)

In the CG algorithm, because of the symmetry in A, it results in a 3 term recurrence
form. The counterpart of Arnoldi process for symmetric matrices is called Lanczos process.
In GMRES, since A is not symmetric, the recurrence is related to all the existing bases
generated. Since the bases are of length n, in practice the Arnoldi process, hence GMRES,
requires restarts, as is in other long recurrence based algorithms such as GCR [47]. When
GMRES restarts, by default the previous generated bases are discarded. This is equivalent
to starting GMRES with another residue vector with a smaller norm. This process discards
a lot of information and there are several ways to retain and reuse some of the information.
Here we list 2 approaches to reuse information from previous restarts.

20 JACOBIAN MATRICES AND ITERATIVE SOLVERS 3.2

e Keeping a small number of vectors (directions) of the Krylov subspace before GMRES
restart, to guide Arnoldi process after restart, as in [29]

e Retain information about Rits value and Rits vectors, and use them for spectral
deflation, as in GMRES-E and GMRES-DR [65]

In this thesis, spectral deflation is considered for speeding up the solution of the
sequence of Jacobian matrix-based linear systems, where a non-static Jacobian, special
algorithm variants have to be used to tackle the gradual changing spectra of the matrix.

3.2.3 Preconditioners

Because the convergence of iterative solvers greatly depends on properties of the matrix A,
i.e., the structure of the spectrum, preconditioning is needed to speed up the convergence
by using a preconditioner to amend the spectra structure of the matrix. A preconditioner
M is constructed based on A, hence the linear system is transformed:

M 'Ar = M1 (3.6)

The effective matrix used for the iterations would be M~tA. M should satisfy the
following criteria:

e Easy to compute based on A

e Constructed in such a way that the application of applying M !, i.e., precondition-
ing operation should be simple

e The effective matrix, M 1A should have a good spectra structure

Ideally, M should be a good approximation to A so that M 1A is close to the identity
matrix. On the matrix spectra level, M~ A has much more condensed spectrum than A.
M can also be on the right side of A or a two-sided operator on A:

(AM~)(Mz) =b (3.7)
(M;YAM Y (Mx) = Mt (3.8)

We call Egs.3.6 the left preconditioning scheme, Eqs.3.7 the right preconditioning
scheme, and Eqs.3.8 the left-right preconditioning scheme. Note that the effective matrix
used for iteration in these three schemes are actually different. When A is a symmetric
operator, such as an SPD matrix, we would expect the left-right preconditioning scheme
is used and M; = M!| so that the symmetry of the effective matrix used for iterations is
kept, so that iterative solvers such as CG still apply. This is the case when an incomplete
Cholesky factorization is used for the preconditioning of an SPD matrix.

Incomplete Factorization based Preconditioners

A wide range of preconditioners which are popular and general-purposed are incomplete
factorization based ones, for example, incomplete Cholesky factorizations (1C [30]) and in-
complete LU factorization (ILU [30]). ILU preconditioners are used for the preconditioning
of nonsymmetric matrices.

3.3 GPU COMPUTING 21

04

*
200
- 0.2
L - .| *
100 . . a. » .
Oqaos 0 R T)
* * *
-100} . * .
*
—-200 L L L . . -0.2
0 200 400 600 800 1000 1200
*
113 _0'40 0.2 04 0‘6 0.8 1 1‘2 14
a. Un-preconditioned 2 040 » 2

b. Preconditioned with ILU(107%,10)

Figure 3.1: Spectra of TDS Jacobian matrices — Effect of preconditioning

In ILU, the term “incomplete” means that the factorization process is incomplete and
approximate. Suppose that the incomplete factorization is as: A ~ LU. Then a non-zero
error matrix exists as: £ = A — LU.

Variants of ILU preconditioner exists. High performance ILU implementations such as
SuperILU [12] relies on symbolic analysis and CPU-based vectorization for high perfor-
mance preconditioning.

Fig.3.1 shows the spectra of the Jacobian matrix from 2K-STABLE case in TDS (see
Chapter 2 for details). Spectra of un-preconditioned matrix and that preconditioned by
ILU(107%,10) are shown. The effect of condensed spectrum in terms of iteration counts
can be observed clearly: using GMRES(40), the un-preconditioned system cannot reach
convergence within 500 iterations, while the preconditioned one reaches convergence in
35 iterations (here 107!Y is used as the convergence bound).

3.3 GPU, Accelerated Computing, and Iterative Solvers

High Performance Computing (HPC) plays a crucial role in various scientific applications.
With the exponential growth [8] in computational capability of microprocessors and the
wide adoption of computer clusters, wide availability of HPC to ordinary researchers has
become a fact. In recent years, accelerators such as GPUs have been widely used in HPC
systems of various sizes [16, 15]. GP-GPU [5] is now widely used for various scientific
applications. Out of the top ten HPC computers in TOP500 [17] (list in 2010-Nov [18]),
four systems integrates accelerators, with three of them using Graphics Processing Units
(GPUs). Another important criteria for modern HPC systems is power efficiency, i.e.,
Performance-per-Watt. Performance per Watt is calculated as the floating operation
count that an HPC machine generate when consuming 1 watt of electricity. Green500
[14] is the popular ranking list for performance per watt among the supercomputers.
On the most recent list of Green500 (2010-Nov) [13], eight of the top ten machines use
accelerators as the main number crunching device. Among them five are GPU-based
systems.

On the chip-level comparison between GPUs and CPUs, GPU shows much higher
potential of peak floating point capability and memory bandwidth. Fig.3.2 (courtesy
of NVIDIA) shows the developing trend in both peak performance and peak memory
bandwidth for state-of-the-art CPU and GPU chips. For efficiency comparisons, Fig.3.3
shows the performance and power usage comparison between the top five machines in the
TOP500 list (in Nov.-2010). GPU-equipped machines (including Tianhe-1A, Nebulae and
Tsubame) have a very clear lead in efficiency in terms of performance per watt.

22

JACOBIAN MATRICES AND ITERATIVE SOLVERS

Theoretical
GFLOP/s
1500
~o—NVIDIA GPU Single Precision
1250 ==+=NVIDIA GPU Double Precision
=e—Intel CPU Single Precision
~=+=Intel CPU Double Precision
1000
750
TeslaC2050
500
250
0 =
Pentiuni4
Sep01 Jan-03 Jun-04 Oct-05 Mar07 Jul-08

Dec-09

* Wide bars show the peak performance, while narrow bars show the power usage.

a. Peak FLOPS Comparison

Theoretical GB/s
200

180

—g=CPU
160

w=@=GPU
140

7

120

/

100 /

80 /

60— /
/

40

Westmere

0

Bloomfield,
] Woodcrest
¢ 2 4 Prescott

Harpertown

Northwaood

2003 2004 2005 2006 2007 2008 2009 2010

3.3

b. Peak Memory Bandwidth Comparison

Figure 3.2: Statistics of Theoretical Performance of GPU and CPU

2500

2000

1500

Gigaflops

1000

500

il

Tianhe-1A

Jaguar

Nebulae Tsubame Hopper Il

Megawatts

Figure 3.3: Performance and power usage of top 5 machines in Top-500

3.3 GPU COMPUTING 23

Despite the huge potential benefit of using GPU in HPC systems, GPU poses a differ-
ent scenario in terms of both architecture and programmability as compared with tradi-
tional CPU platforms. The parallelism exposed by GPU is fine-grained, usually data-level
massive parallelism. Each computational thread carries relatively simple operations, while
there are tens of thousands of concurrent threads running at the same time for each GPU
chip. The huge amount of threads is necessary for hiding the latency of each thread.
Hence unlike traditional CPU-based computations, for GPU it is necessary to consider
the total throughput rather than the performance/latency of each single thread.

Furthermore, utilizing GPUs for scientific computing requires programmers mapping
computational tasks to GPUs. This involves programming in GPU-related API [3, 9] or
languages [10]. While many scattered works of GP-GPU exist as early as in 1970’s (see
[66] for references), wide adoption and acceptance of GP-GPU has only become a fact in
recent five years, with the introduction of more general-purposed GPU design and better
support for data types such as double-precision. On the hardware side, state-of-the art
GPUs are capable of much higher peak performance compared with their contemporary
CPU counterparts both in the single-precision and double-precision floating operation
capabilities, and in memory bandwidth. On the software side, programmability is much
enhanced with widely-accepted API/libraries such as CUDA[3], OpenCL[9].

In GP-GPU related research in this thesis, we use the most popular GP-GPU platform:
NVIDIA CUDA, mainly based on 2 factors: (1) CUDA is arguably the most mature GP-
GPU platform up to date, (2) CUDA has very good technical support and the widest
adoption among GP-GPU communities.

3.3.1 Introduction to CUDA

In CUDA, the GPU is abstracted as a massively parallel processor. As shown in Fig.3.4.a,
on the GPU chip, multiple Multiprocessors (SM) exist, each comprising of some Proces-
sors, and resources such as registers, caches, Shared Memory (ShMem). Besides the GPU
chip, there is a large off-chip DRAM memory.

A CUDA-based program is composed of a main program on the CPU and several
subsequent calls to GPU-based subprograms, called kernels. As shown in Fig.3.4.b, each
kernel consists of a hierarchy of threads: (1) a kernel call corresponds to a thread grid,
(2) a grid is a collection of blocks, and (3) a block consists of a collection of threads.
Programmer specifies the task of a single thread, hence the threads are homogeneous in
the logic of the computation, but different in the specific data each of them is working on.
Hence the programming paradigm of CUDA is Single-Program with Multiple Data, i.e.,
SPMD, which is also widely used in MPI-based applications. CUDA schedules threads
to multiprocessor at the granularity of blocks, i.e., threads within the same block will be
executed on the same Multiprocessor. Threads can claim Multiprocessor resources such
as registers, ShMem, etc. These claims are resolved at compile time and might cause
resource contention and failure of compilation. When scheduled to a Multiprocessor,
threads within the block will be executed until finish. Threads within the same thread
block are then scheduled to the Processors at the granularity of warps, i.e., 32 threads.
There is a hardware-specific upperbound on the total number of concurrent threads to be
scheduled onto 1 single Multiprocessor at the same time. There may be tens of thousands
of concurrent threads on the GPU. Hence CUDA on GPU is massively parallel with
fine grain parallelism, in which the optimization for throughput is dominant over the
performance of a specific thread.

24 JACOBIAN MATRICES AND ITERATIVE SOLVERS 3.4

Host Device
Device
Muitiprocessor N ord
-
Kernel 1 ‘ > Block Block Block
(0,0) 1,0) (2,0)
Multiprocessor 2
Multiprocessor 1 Block . i Block Block
(o, 1')/ 1,1 v (21)
 eraz,
Instruction 7
Unit Kernel 2 — >
' N N B
~ Block (1, 1)

a. GPU Architecture b. CUDA Thread Hierarchy
Figure 3.4: CUDA — GPU Architecture and Thread Hierarchy

In Tab.3.1 we list the 2 GPU architecture used for CUDA experiments in this thesis.
GT-200 is the first NVIDIA GPU to include Double-Precision support. GF-100 is the
latest NVIDIA GPU (in year 2010) with a renewed design in both Multiprocessor and
memory subsystem. The timing results in Tab.3.1 are based on both results in [84] and
similar micro-benchmark results on GTX-480 GPU.

3.3.2 CUDA Workflow

When using CUDA, the programmer implements functions to be executed on CUDA
devices through .cu files. Also the code that calls CUDA kernels on the host, i.e., CPU,
has to be implemented. CUDA toolkit will compile both files and link them together
to an executable file. This process is shown in Fig.3.5. Green blocks in the figure are
included in CUDA toolkit. CUDA compiler compiles .cu files into .ptx files, which are
assembly-level files for the CUDA kernels. PTX format based assembly code is very close
to the binary code to be executed on the device. Usually it has a 1-to-1 mapping between
these two instruction sets. Analyzing PTX level codes gives us more potential for detailed
analysis and low-level manipulation for performance enhancements on GPU.

3.4 Utilizing GPU in Sparse Linear System Solvers

Linear system solvers, especially for large scale sparse linear systems, play a very im-
portant role in scientific computing and numerical linear algebra. While GPU has been
proven to be effective with high performance in dense matrix-based linear algebra such as
factorization, etc [78, 39, 6], so far the work on the solution of sparse matrix based linear
systems with GPUs is limited.

The major problem with sparse solvers on GPU is that sparse matrix structure poses
special problems for effective parallelization on GPUs, including: (1) irregularity in data

3.4

GPU AND ITERATIVE SOLVERS 25

Series GT-200 GF-100
GPU Year 2008 2010
Name Tesla C1060 GeForce GTX-480
SP count per SM 8 32
SM Count 30 15
Concurrent Thread Count per SM 1024 1536
Concurrent Thread Count 30720 23040
Memory Bandwidth ~80 GB/s ~115 GB/s
Shared Memory 16 KB per SM 16/48 KB per SM
Size 16/48 KB per SM
L1 Data Cache Hit Latency N/A 80 cycles
Size 768 KB
L2 Data Cache Hit Latency N/A 212 cycles
Size ~ 5KB per SM 12 KB per SM
L1 Texture Cache Hit Latency 258 cycles 220 cycles
Size 256 KB None (unified Data Cache)
L2 Texture Cache | Hit Latency 366 cycles 427 cycles
Miss Latency 547 cycles 632 cycles
Size 4 GB 1.5 GB
Global Memory Latency 506 cycles 319 cycles

Table 3.1: Quantitative comparison between GPU architectures

Application

Source code
[#cu

Source code
(.cpp)

File

Nvidia Toolkit

libcuda.a

.

NVIDIA PCI-E

b

Host C
code

C/C++ compiler

Executable

GPU

Figure 3.5: CUDA Workflow

libcuda

&

cudafe + nvopencc

ik

=

26 JACOBIAN MATRICES AND ITERATIVE SOLVERS 3.5

access pattern and program branches, and (2) limited parallelism in the construction
and substitution process. GPU has shown limited speedup in the factorization phase as
indicated in [55]. Due to that the full factorization is used only once in the solution phase,
the benefit of using GPU is therefore limited.

Unlike factorization in direct solvers, preconditioners which are based on incomplete
factorizations are used for m times during the solution of the linear system, where m
is the number of iterations required for convergence. Preconditioners that can be fully
utilize the potential of GPU platforms is of crucial importance to the overall performance
of the iterative solver on GPUs.

There have been several works in applying GPU to iterative solvers. They can be
divided into two categories: implementation of the iterative solvers, and design of new
preconditioners that can effectively utilize performance potential of GPU. Without pre-
conditioning, the iterative solver can be directly implemented on GPU platform without
much hassle. Since the algorithmic core of iterative solvers such as CG and GMRES mainly
consists of level-1 BLAS operations and matrix-vector products. The implementation of
the solvers is straightforward. The main problem for iterative solvers on GPU is the
pursuit of higher performance through optimization. We dedicate Chapter 7 to this issue.

The preconditioner design on GPU is a major issue for effective iterative solver on
GPU. Up to now the works on this topic are still rare and lacks generality. Especially for
general-purposed preconditioners such as |C or ILU, there is no counterpart implementa-
tion on GPU. This is mainly due to the preconditioning operation of these preconditioners
relies on substitution which lacks sufficient parallelism on GPU. The pioneering work in
[37] [36] used Jacobian preconditioners which is trivial in construction and precondition-
ing. Work in [81] used Block ILU preconditioner to exploit block-level parallelism to
match that of GPUs. This can be seen as a generalized block-Jacobian preconditioner
which ignores all the off-diagonal data in the matrix. Hence these (block) Jacobian pre-
conditioners are limited in generality and convergence properties. Work in [25] utilizes
the specialized matrix formulation from Poisson equations for the construction of precon-
ditioners on GPU. No effective work has been propose on the incomplete factorization
based preconditioners on GPU as of Nov. 2010.

3.5 Summary

In this chapter we briefly introduced basics of iterative solvers and preconditioners. We
also gave a introduction to GP-GPU and CUDA platform. Iterative Solvers can be im-
plemented on GPU with good match for the GPU architecture. On the contrary, general
purposed preconditioners such as |C or ILU face specific problem on GPUs, due to limited
inherent parallelism. Until now, limited work has been done on the design of parallel
incomplete factorization based preconditioners on GPU. In this thesis, we dedicate two
chapters to iterative solver and preconditioners on GPU. Chapter 7 focuses on optimiza-
tion on the core operation in iterative solvers, i.e., Sparse Matrix-Vector multiplication
(SpMV) on GPU. Chapter 8 considers iterative solver and preconditioner on GPU, focusing
on the design of GPU-efficient preconditioners based on incomplete factorizations.

Chapter 4

Multilevel Preconditioner for
Jacobian Matrices in TDS

4.1 Introduction

Multilevel techniques are known to be able to solve large systems effectively with good
memory efficiency ([71, 27]), especially for systems with regular structures. In this chapter
we apply multi-level approach to the preconditioning of Jacobian matrices in Time Domain
Simulation (TDS) of Power Grids. Multilevel preconditioners proposed in this chapter
are constructed based on the algebraic structure of the Jacobian matrices. Specifically,
Independent Set (INDSET) are retrieved by analyzing the matrix structure and power
networks. Multilevel preconditioners are constructed by using the specific structure of
the parts in the Jacobian matrix corresponding to the Dynamic components in the power
network and the recursive Independent Set structure on the network.

This chapter is organized as follows. In Section 4.2 we give a short introduction to the
multi-level preconditioning framework based INDSET’s and algebraic structure of the TDS
Jacobian matrices. In Section 4.3 we analyze the characteristics of both the dynamic parts
and algebraic parts of the matrix, and apply the multilevel framework to it. We present the
technique of applying INDSET search based on power system network to the construction
of multilevel preconditioner. To reduce the memory usage and preconditioning overhead of
the preconditioner, we propose the use of fill-in guidance in INDSET searching algorithms in
Section 4.4. Experiments and results are included in Section 4.5. Section 4.6 summarizes
the chapter.

4.2 Multi-level Preconditioners

Unlike traditional scenarios in which multilevel techniques are applied to, such as Finite
Difference or Finite Element, Jacobian matrices arise in TDS composes of randomly sparse
structures. Hence for TDS problem we consider the construction of algebraic multilevel
structure based on the matrix sparsity pattern. In this section we examine the general
algebraic structure of multilevel method and its application in preconditioning in Section
4.2.1 and give the recursive algebraic multilevel framework based on INDSET’s in Section
4.2.2.

Part of content in this chapter has been published as conference paper [85] and accepted as journal
paper [90]

27

28 MULTILEVEL PRECONDITIONER FOR TDS 4.2

~~ N

\
! 0" Level
[}

1

1

[
1

1% Level

3" Level

Innermost Preconditioning Backward Substitions

Figure 4.1: Multilevel preconditioning process.

4.2.1 Multilevel Preconditioning Framework

In multilevel framework, a hierarchical structure is constructed based on the original
problem domain defined as M. In a multilevel framework with [levels, a series of sub-
domains are created recursively, i.e., M, is retrieved from M;, for i =0,...,[—1. M;’s
satisfy:

M() DM DOMyD...D M[(41)

Each M; is a direct reduced system of M;_1, and a reduced system of M itself. In a
matrix form, the original matrix is A, and M, corresponds to the set of the column/row
indices in A. We denote the system on level i as A; and let the system on the 0" level as
Ag = A, then a multilevel structure can be constructed recursively. Based on A;, i.e., the
system on level 7, a permutation matrix P; is constructed so that:

D, F,
RAP = |:Ez C'z'] (42)
I; D; L

In which C; corresponds to the nodes on level i + 1, i.e., those in domain M, ., and
D; to those left on level 4, i.e., those in M, 1 — M;. Also /LH =C; — EiDl-_lﬂ, which is
the Schur complement of D; in P;A; P, will serve as the system on level i + 1.

When used for preconditioning, for the sake of fast speed and low memory usage, an
approximation to /LH is used as the system on level-(i + 1), denoted as A;;;. Also the
inverse of D; is usually approximated and values may be dropped in the Schur complement.

The scheme of the preconditioning process is illustrated in Fig.4.1 in a classical V-
cycle form with 4 levels. The V-cycle process is carried out per preconditioning operation.
On level ¢ suppose A;, P;, v; and u; are the matrix, the permutation, the vector to be
preconditioned, and the preconditioned vector, respectively. Then we have:

(PAPT)(Pui) = P, (4.4)

If we write this equation in block matrix form, and divide Pu; and Pv; into u}, u!
and v} and v/, according to the way P;A; P! is divided into blocks, we get:

D; F;| |u;| |v
= ol [i] = 1] (45

4.2 MULTILEVEL PRECONDITIONER 29

The resulted form is as:

D, F, | |u v}
[Ai+1:| |:ul/:| = |:’U{/ . EiD-_IU/:| (46)

The forward elimination results in a system: A, u = v — E;D;v}. This is the system
on level i + 1 and subjected to recursive processing. When w is retrieved, the backward
substitution will be used for calculating wu;:

up = Dy (v — Fy) (4.7)

In this way the preconditioned vector of u; can be retrieved and used for the precon-
ditioning on higher level, if there is any.

On the innermost level, the preconditioned vector can be obtained by an inexact solver
based on the original last level system and the vector to be preconditioned. Usually an
incomplete factorization can be used, or an iterative solver with a low precision can be
adopted.

The overall preconditioning process with multilevel preconditioning consists of 3 steps
(suppose that the preconditioner has [+ 1 levels):

1. Transform v, i.e., the vector to be preconditioned, onto the innermost level to v;, by
recursive forward elimination by [times;

2. Precondition v; on the innermost level, to retrieve the preconditioned vector wu;; this
process usually involves an inexact solve with low precision;

3. Transform wu; back to the outmost level, by recursive backward substitution by [
times, to retrieve the preconditioned vector w.

The recursive forward elimination process will traverse each D, " and E;, and the
backward substitution will traverse each D, Y and F;. Hence the preconditioner has to
keep record of the approximate to D;’s (denoted D, 1/), E;’s and F}’s on each level. On the
innermost level, the memory traversal scheme depends on the specific strategy adopted:
(1) if an inexact direct solver is adopted, the incomplete factorization of the last level
system will be traversed once only; (2) if an iterative solver is adopted, the incomplete
factorization and the last level system itself will be traversed m times, where m is the
iteration count required for convergence.

4.2.2 Multilevel Structure based on INDSETs

The effectiveness of multilevel methods is greatly affected by how the system size is
reduced across the levels. Previous works on multilevel preconditioners mostly focus on
problems with regular structures [27]. It is ideal if the size of M;,; can be reduced
exponentially as in multi-grid methods, so that a small last-level system can be attained
which is easy to process. But for the problems with irregular structures such as Jacobian
matrices of TDS, an algebraic structure has to be constructed.

In this thesis we consider a representative way to choose M, ; out of M; so that
D; can be organized into an INDependent SET (INDSET) of small, dense supernodes
[71, 1]. M4 will contain the vertices that are not in the INDSET. So to attain good size
reduction from M; to M1, we usually try to maximize the coverage of INDSET in M.
Fig.4.2a shows a maximal INDSET in grey on the network graph of IEEE 39 bus reference

30 MULTILEVEL PRECONDITIONER FOR TDS 4.3

@ @

@ B—® @ b. INDSET vertices elimnated
a. Network of IEEE 39 bus reference system

Each bus corresponds to a vertex; each line corresponds to an edge in the graph.
Bus numbers are shown.

Figure 4.2: INDSET on the network of IEEE 39 bus reference system.

system, which can not be augmented by adding any other vertex/bus without breaking
the independency relationship. For the multilevel structure of previous section, if the
vertices in the INDSET of M, are eliminated from the graph, new edges should be added
to the reduced system of M, 1, which is called the elimination graph in graph theory (see
[70, 61]). The process of adding new edges corresponds to the introduction of non-zero
elements (also called fill-in’s) in the reduced system in the Schur complement operation
mentioned in previous section. Fig.4.2b gives the resulting graph with the vertices in the
INDSET in Fig.4.2a eliminated.

4.3 Multilevel Preconditioner for Jacobian Matrices
based on INDSET

In this section we consider how to construct Multilevel Preconditioner for Jacobian Ma-
trices. The preconditioner is constructed based on the sparsity pattern of the Jacobian
matrix. From the analysis in Chapter 2 we know that: (1) in the Jacobian matrix, no
extra fill-in occurs for the Schur complement of the dynamic part in the algebraic part of
the matrix, and (2) the sparsity pattern of the algebraic part of the matrix holds tight
relationship with the Power Network topology. Based on these two analysis, we construct
a multilevel preconditioner for the whole Jacobian matrix.

As in Chapter 2, the Jacobian matrix is split into blocks as follows. .J; ; corresponds
to the dynamic equations, while .J; 5 to algebraic equations.

Jl 1 Jl 2
J = ’ ’ 4.8
{Jz,l JQ,J (48)

By taking the Schur complement of J; ; in .J5 9, we have matrix Jég = J2’2_J2’1J1_711 J12.
By Theorem 1 in Chapter 2, we know that J,5 and J;, have the same sparsity pat-
tern. Jy o has four parts, and each part corresponds the graph as defined by the network
topology. Hence we can construct multilevel structure based on the static, non-changing
network topology, and map the structure back to Jy o for the construction of a multilevel
preconditioner.

4.3 MULTILEVEL PRECONDITIONER FOR TDS 31

A multiple level structure involves INDSET searching recursively on the network topol-
ogy. On each level, a maximal INDSET is found and eliminated from the network graph.
We also treat the graph as an elimination graph. When INDSET is removed from the
graph, new edges are introduced to the graph. This process corresponds to the computa-
tion of Schur-complement. Fill-ins are introduced by elimination of the INDSET from the
matrix. The recursive INDSET searching process represents a symbolic analysis process
as in conventional Cholesky factorization [46]. The recursive INDSET searching process
corresponds to that proposed in Section 4.2.1.

We map the recursive INDSET search result to Jy,. Note that J;, is divided into
four sub-blocks, each with the same structure as the network topology. Without loss of
generality, we assume an INDSET S in the network topology composed of blocks. There
are no connection among the blocks in S. Then we map each block in S to a block in
J5 5. Suppose that the block B in S contains buses with number b; to b; (block size of).
The mapping of B to J;, is B, which contains the following rows/columns in .J5 (note
that the resulting block in J;, corresponds to 2/ rows/columns in Jy5):

by,- -, b, by +n,--- by +n (4.9)

Each block in S corresponds to a block in J;,. Hence the whole set of S can be
mapped to J; 5, with each block of size [in S mapping to a set of rows/columns in Jj,
with size of 2. It is easy to prove that this set is an INDSET by the graph defined by Jj ,.
We denote the mapping of INDSET S on the network topology in J;, as S’. Note that
S’ will contain only blocks of even sizes: if S composes of only single buses, S" will only
contain blocks with size of 2.

The structure of the multilevel preconditioner for J based on INDSET’s is as follows.
The first level of the preconditioner for the Jacobian matrix is dedicated to dynamic
components, i.e., J; ;. The second level and beyond are constructed based on the INDSET
searching results for the network topology. Hence the i-th level of the INDSET on the
network corresponds to (i+1)-th level variables for the preconditioner. A block in INDSET
on the topology with s buses with indices of By, ..., By corresponds with 2s positions in
Jacobian matrix with index of d+ By,d+ Bs,...,d+ Bs,d+ N+ By, d+ N+ B, ..., and
d+ N + B, (d is the size of J; 1, N is the bus count). As an example, the Jacobian matrix
of IEEE-39 bus system for multilevel is shown in Fig.4.3, with the INDSET’s permuted to
the beginning at the beginning on each level. Note the independence of buses on each
level of the multilevel structure.

Under the context of preconditioning, some values may be dropped in the process of
computing the Schur complement. Since D,’s are dense, we do not need to drop values
in the diagonal blocks. Using the notation in Section 4.2.2, we calculate D; ' precisely,
but drop from each E;D; L and E;D; 'F, the values that are lower than a threshold 6,
compared with the 2-norm of the corresponding row. Notice that even with some values
dropped, the INDSET searching result can still be applied it, since dropping of values
in the matrix does not break the INDSET property. Note that due to the small size of
the blocks, the computation associated with inverses of D, ! is marginal. On the inner
most level, we are left with a linear system with a much smaller size, for which we
use an incomplete factorization as the preconditioning on the inner most level. Other
preconditioner candidates are also possible, such as approximate inverse preconditioners.

The preconditioning operation for Jacobian matrix follows the routine in Section 4.2.2.
Firstly, the right-hand side is transformed, combining the dynamic part into the algebraic
part on the first level, and is recursively transformed into the algebraic-related multilevel,

32 MULTILEVEL PRECONDITIONER FOR TDS 4.4

Figure 4.3: Multilevel structure for the Jacobian matrix of IEEE39 system.

until the inner most level. Secondly, on the inner most level, the preconditioning with the
incomplete factorization is carried out. Lastly, the preconditioned vector is transformed
recursively back through levels, to the outermost level, and the preconditioning operation
is completed.

4.4 INDSET on Power Network — Searching Algo-
rithms

In this section we present INDSET searching based on the power network topology. We
start with the original power grid network, using it as the initial graph (denoted as
G(V,E)) for INDSET searches. We also treat this graph as an elimination graph. When
a maximal INDSET is found for G, the vertices in the INDSET are removed and fill-edges
caused by eliminating them are added to the graph. We denote the vertices which are
not in the INDSET as V', and the set of new fill-edges E’. The resulting graph G’ is a
subgraph of G(V', E|J E’). We carry on recursive INDSET search based on G’, to retrieve
an recursive algebraic multi-level structure. This structure is then mapped back to the
Jacobian matrix as proposed in Section 4.2.2.

On each level of the recursive structure for multilevel, we try to maximize the size of
INDSET, in order to achieve good system size reduction. For a general random network
such as power networks, searching for the maximum INDSET is an NP-hard problem.
Since the problem of finding the minimum reduced system size involves finding a series of
maximum INDSET coverage, it is also NP-Hard. For the INDSET problem on a single level,
heuristics are applied as in [71, 31, 54, 26] which all treat INDSET searching problem as a
combinatorial optimization problem and try to maximize INDSET coverage and reach at
a maximal solution. These algorithms are general purpose and none of them takes into
account the context that the INDSET result is used for multilevel preconditioning, which
implies: (1) a recursive INDSET structure is constructed, with each level corresponding
to an INDSET searching problem; (2) INDSET result influences the preconditioner in com-
putational complexity, precision, and memory usage; (3) optimal, i.e., maximum INDSET

4.4 INDSET BASED ON POWER NETWORK 33

selection on a certain level does not necessarily generate a most effective reduction across
levels. It is worth to mention that although in [71] the INDSET searching results are used
for multilevel preconditioner, the algorithms themselves are general purposed. Given the
context of multilevel preconditioning, it is important to devise good heuristics which can
take into consideration of the issues above.

In this section, brief introduction to the heuristics are given in Section 4.4.1. We
include 2 complementary heuristics based on the degrees of the vertices, namely Node
Degree with Local Optimals (NDLO) and Vertex Cover (VC). Fill-in control and block-
based INDSET are introduced in Section 4.4.2. Fill-in control provide better heuristics for
lowering memory usage for tie-breaking scenarios. Using dense blocks of vertices instead
of single vertices as components of the INDSET can result in more effective system size
reduction for the multilevel structure.

4.4.1 Heuristics for INDSET Searching

In the following we introduce the simple heuristics for INDSET searching. NDLO(Node-
Degree with Local Optimals) and VC(Vertex Cover) are classical INDSET searching algo-
rithms. They are heuristics based on the degree of the vertices in the graph. NDLO starts
from vertices with small degrees and put them in the INDSET. As a side-effect, the imme-
diate neighbors of that vertex are excluded from the INDSET. “Local Optimal” in NDLO
implies that the edges associated with the vertex and its neighbors are also removed from
the graph hence the degrees of the vertices that are still in the graph are affected as a
consequence.

VC tries INDSET searching from the opposite direction. It removes the vertex with the
highest degree, along with the associated edges from it. The vertex removed is excluded
from the INDSET. VC algorithm carries on until there is no edge left in the graph. Then
the remaining vertices compose of an INDSET.

Input: Network Graph G(V, E)
Output: Independent Set of Nodes S
S —¢;
while G not empty do
v « least-connected vertices in G,
S SU{vh
N, « immediate neighbors of v;
Delete v and N, and related edges from G;

end
return S;

o N & ok W N =

Algorithm 4: NDFLO

Input: Network Graph G(V, E)
Output: Independent Set of Nodes S
while E # () do
v «— vertexes with largest degree in G;
Delete v from G and delete edges of v from F;

end
return remaining vertexes in G,

Algorithm 5: VC

(S N VN

NDLO and VC takes two different, somehow complementary approaches. NDLO chooses

34 MULTILEVEL PRECONDITIONER FOR TDS 4.4

candidates with low degrees for INDSET, excluding their neighbors on the way. VC ex-
cludes vertices with higher degrees and stops when edges are all eliminated. NDLO and VC
are greedy algorithms and the INDSET they return are maximal INDSET’s. For Power Net-
works, the degree of the nodes are not high on the average. There are many tie-breaking
scenarios that one has to deal with when choosing candidate vertices.

4.4.2 Fill-in Guidance and Large Block Sizes

Since every fill-edge on the graph potentially corresponds to an non-zero element in terms
of matrix, reducing the total non-zero edge count in the multilevel structure on the network
can reduce the non-zero element storage usage for the multilevel preconditioner. The
high memory usage of the preconditioner translates directly to various problems, such
as lower overall performance, etc. To reduce the total memory usage by the multilevel
preconditioner, we design new heuristics by introducing fill-in control to NDLO and VC.
We provide the fill-in control as a tie-breaking mechanism: when there are more than 1
candidates with the same of degree, choose the one which causes less fill-in’s (for NDLO)
or avoid the one which causes more fill-in’s (for VC). We denote these two algorithms
NDLOF(Node-Degree with Local Optimal and Fill-in control) and VCF(Vertex Cover with
Fill-in control).

Input: Network Graph G
Output: Independent Set of Nodes S

1S« ¢;

2 while G not empty do

3 V* « least-connected vertices in G}

4 v« vertex in V* that introduces least fill-in’s;
5 | S SU{vh

6 N, «— immediate neighbors of v;

7 Delete v and N, and related edges from G;

8 end

9 return S,

Algorithm 6: NDLOF

Input: Network Graph G(V, E)
Output: Independent Set of Nodes S
while F # () do
V* « vertexes with largest degree in G;
v« vertex in V* that introduces most fill-in’s;
Delete v from G and delete edges of v from E;
end
return remaining vertexes in G;

Algorithm 7: VCF

S UL R W N =

Furthermore we propose the use of dense block based INDSET instead of single vertices
based INDSET. In general, there are 3 benefits for using blocks based INDSET for multilevel
preconditioners:

e For sparse problems like the Jacobian matrices of TDS, there is a large potential for
achieving a large coverage of dense supernodes, so that a much larger system size
reduction over levels can be achieved. From the formation of TDS Jacobian matrix

4.5 EXPERIMENTS 35

in Chapter 2, we know that they are very sparse matrices, which can be exploited
by a small, dense blocks-based multilevel scheme.

e The exact inverse of D; can be calculated in an exact way with little computational
cost and memory usage, which is also beneficial to the overall preconditioner quality.

e Adopting blocks of vertices for INDSET can enhance both system size reduction and
numerical stability. If only single-vertex based nodes are allowed, dense supernodes,
especially cliques may pose difficulties for system size reduction; as is shown in
[1, 85], allowing supernodes in INDSET selection can enlarge INDSET coverage and
hence result in more effective system size reduction. Inverting a diagonal element
may introduce numerical instability when its absolute value is very small; Diagonal
blocks (which corresponds to an supernode of size over 1) can be introduced to avoid
possible loss in precision and stability in the situation that the diagonal values are
small ([1]).

The integration of block-based INDSET is straight forward for VC algorithm: instead
of stopping VC when the edge set is empty, we now stop when all the sub-parts in the
graph are small enough. We propose the algorithm of VCBF(Vertex Cover with Blocks and
Fill-in control). Allowing blocks of vertices in INDSET’s also introduce problems from two
different aspects: (1) combinatorially it is infeasible to generate all candidates for INDSET,
especially when the block size is large; (2) allowing a very sparse block will introduce
much memory and computational overhead in inverting it, which could be unjustifiable in
general. In the following section we evaluate the effect of the various INDSET algorithms.
For VCBF, we only test VCBF(2). With VCBF(2), blocks are dense by themselves, and
the evaluation for the VCBF stopping criteria is simple: degree of vertices be not higher
than 1.

Input: Network Graph G
Block size threshold bsize

Output: Independent Set of Nodes S
1.5« ¢;
2 Vp, « vertex within blocks smaller than bsize;
3 S—SUVvy;
4 for vertex block G, that’s larger than bsize in G do
5 V* « vertexes with largest degree in G ;
6 v« vertex in V* that introduces most fill-in’s ;
7 Delete vertex of largest degree from G ;
8 S — SU VCBF(G], bsize) ;
9 end
10 return S;

Algorithm 8: VCBF

4.5 Experiments and Results

In this section we show the experiments and results of INDSET searching algorithms on
power networks and the characteristics of the multilevel preconditioners. Our experiments
are based on large, operational power grids. The power systems used for INDSET searching
experiments are listed in Tab.4.1. We also include a simplified model of western United

36 MULTILEVEL PRECONDITIONER FOR TDS 4.5
System Line Generator Matrix
Name Bus Count Count Count Size e
2K @ 1165 1408 216 3194 21108
10188 ° 10188 11905 1072 25308 160877
West-US ¢ 5330 8271 N/A

“Detailed model of He Bei province, China; 4-order generator model without excitor or
governer

*Highly simplified model of Chinese National Grid; 5-order generator model without excitor
or governer

“Simplified Model for western United States grid; no information of generators available

Table 4.1: Power Networks

States power grid, to demonstrate the effect of INDSET searching algorithms, but due to
the lack of the complete model such as generators and loads, there is no simulation case or
Jacobian matrices available for it. For the solution based on the multilevel preconditioners,
we use BILUM [1] as the standard platform for comparison.

4.5.1 INDSET Searching on Power Network

We implemented aforementioned INDSET searching algorithms, including NDLOF, VCF,
VCB(2), and VCBF(2). VCB is the counterpart of VCBF without fill-in control. VCB(2)
allows block sizes of 2. NDLO and VC are also implemented and tested as references.
BILUM’s built-in greedy algorithm for INDSET searching was skipped due to its poor
performance.

The 6 algorithms are divided into 3 groups: NDLO and NDLOF, VC and VCF, VCB(2)
and VCBF(2) (i.e., organized in a fill-in control disabled/enabled way), and tested on the
systems in Tab.4.1. Fig.4.4, Fig.4.5 and Fig.4.6 show the performance of different INDSET
searching algorithms on 2K, 10188, and West-US system, respectively as described in
Table 4.1.

We compare different INDSET searching algorithms by two criteria: (1) system size
reduction, i.e., the size of the system on certain level, and (2) total number of edges in
the graph. As is indicated in Section 4.2.2; on each level of the multilevel structure, when
the INDSET is eliminated from the graph, potentially fill-edges have to be added for the
next level graph. To distinguish them from traditional power lines in terms of Power
Network, we denote these edges as “virtual lines”. We use “Total Line” to include the
original power lines in the original network and the “virtual lines” introduced on each
level. The number of “Total Lines” sets an upper bound for the memory usage of the
multilevel structure of the preconditioner.

Among NDLO, VC and VCB(2), VCB(2) achieves the most effective system size reduc-
tion with lowest total line count. For 2K, on level 8, VCB(2) obtains a reduced system
size that is 1/5 of that obtained by VC or NDLO; for 10188 and West-US, this ratio is
about 1/3 and 1/2, respectively. VC performs slightly better than NDLO with marginal
improvements.

For NDLO, VC, VCB(2) and their fill-in control enabled counterparts, the ones with
fill-in guidance perform better by achieving a lower last-level size at the same level. For
2K the last-level size obtained by NDLOF is 30% lower than that by NDLO. The gap
between last-level sizes obtained by algorithms with fill-in control and those without it

Last Level Size

Last Level Size

EXPERIMENTS 37

Last Level Size

L 7500
1000 7000
P—
\.\. T es00]
9 6000 A 1
) O il
100 \\ = 5500 /:C/‘ — :,,: —
‘ @ 5000 Zab= el .
S %'\. £ i i I
—=—NDLO N — @ 4500 / —=—NDLO H
—e— NDLOF N L 4000_41// —e—NDLOF ||
104 ——VvC N T —a—\/C
—v—VCF B 3800 —v—VCF
—<—VCB(2) = 3000 —<—VvecB@) ||
VCBF(2) VCBF(2)
P | 2500 —F——
0 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
Level Level
Figure 4.4: Effects of INDSET searching algorithms on 2K system.
T 60000
10000-4\I
+— 55000
c —
.\' 3 50000 ——]
1000 ; © oo P = e
- c ’/v/‘?‘,
Tl g 40000
100 4 NpLO = Q00 / —=—NDLO ||
—e— NDLOF w ! —e— NDLOF
—4—VC S 30000 —A—VC =
104 —v—VCF o —v— VCF
—<—VCB(2) P 25000 —<—vecB@) M
VCBF(2) VCBF(2)
——F— 20000 ——
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Level Level
Figure 4.5: Effects of INDSET searching algorithms on 10188 system.
10000 1— 30000 ,
25000 Z
= S
c gu
8 4
20000
(@)
1000 o
£ 15000 // —=—NDLO |
— —e— NDLOF
© ——\C
O 10000 —v—VCF
[—<—VCB(2)
—>— VCBF(2)
100 +— 5000 -— T 1 1 T
0 0 1 2 3 4 5 6 7 8
Level Level

Figure 4.6: Effects of INDSET searching algorithms on West-US system.

38 MULTILEVEL PRECONDITIONER FOR TDS 4.5

oK Construction Solving Tteration s
Time (ms) Time (ms) Count
| ILU-0 | 4 | 206 | 117 21109
ILU(10=%,10) 40 108 35 39903
ILU(10°,50) 416 68 11 149262
ILU(1075,100) 1428 68 8 280399
VCBF(2)(1074,10) 36 8 3 27757
VCBF(2)(107°,20) 36 4 2 27779
NDLO(10~%,10) 52 12 4 34451
NDLOF(10~%,10) 44 12 4 31533
a. Result for 2K system.
Construction Solvin Tteration
10188 Time (ms) Time (H%S) Count nns
‘ ILU-0 ‘ 36 ‘ No Convergence ‘ 160877 ‘

ILU(10~4,20) 356 1928 58 378845
ILU(107°,50) 1748 720 17 796366
ILU(1075,100) 6900 544 10 1465791
VCBF(2)(107%,10) 320 688 26 212543
VCBF(2)(107°,20) 324 244 9 216262
NDLO(10~4,10) 428 832 27 246577
NDLOF(10=4,10) 404 724 25 232396

b. Result for 10188 system.

Table 4.2: Preconditioner’s construction and solving time with iteration and memory
consumption information.

tends to widen across levels, which is due to the reason that adopting fill-in strategy for
choosing candidates properly could benefit the sparsity of reduced systems hence resulting
in more effective independent set searching in later levels. Results are consistent with the
priority between heuristics by showing a marginal lead in reduction achieved by fill-in
enabled algorithms across three algorithms pairs.

Notable decrease in memory usage is observed across the 3 algorithm pairs. For 2K the
reduction from VC to VCF is 15%, and for 10188 10%. VCB(2) and VCBF(2) algorithm
pair experienced the least reduction for both 2K and 10188: 4% and 5%, respectively.
West-US has experienced lower enhancements.

Another thing to note is that moving from VC to VCB(2) (or VCF to VCBF(2)) generally
results in increase in the total line count and decrease in the last level size.This implies
that using large block sizes will generally introduce more fill-in’s at the sake of smaller last
level size. With smaller last level size, the preconditioner for the last level system could
occupy less space. Yet this trade-off point of the memory usage within the multilevel
structure and the last level system is unclear.

4.5.2 Characteristics of Multilevel Preconditioners

The convergence behavior and related information of the GMRES iterations using different
preconditioners are shown in Tab.4.2 (all multilevel preconditioners have 9 levels). The

4.5 EXPERIMENTS 39

timing is measured with BILUM and SPARSKIT [11]. 2K system is easy to solve: GMRES
with ILU-0 can achieve convergence in 117 iterations. But for faster convergence, LU
with low dropping threshold parameters has to be adopted, and large fill-in’s appear to
be the key factor. For 2K ILU(107%,100), which uses up to 10 times memory space of
that used by VCBF(2), still cannot achieve comparable convergence speed. For 10188,
GMRES with ILU-0 fails to give converge. When using ILU preconditioners, there is a
strong correlation between convergence speed and the amount of fill-in’s, while a similar
correlation exists for multilevel preconditioners between the speed and the value-dropping
parameter. Fill-in count threshold does not seem to be a severe constraint for convergence
for multilevel preconditioners. The reasons are: (1) in Schur complements not many fill-
in’s are introduced when using these INDSET algorithms, and (2) the last-level system of
the multilevel preconditioner is small, so for a moderate fill-in count upper bound, the
convergence property is mainly decided by the value-dropping threshold. The fact that ILU
preconditioners cannot achieve similar convergence speed as their multilevel counterparts
within practical/comparable memory budget gives us further justification to adopting
multilevel preconditioners for solving large Jacobian matrix based linear systems.

Given a set of similar parameters, e.g., the same value-dropping threshold with similar
memory usage, CPU time required by multilevel preconditioners are about 1/10 that of
non-multilevel ones for the 2K and about 1/3 for the 10188. Construction time for ILU
preconditioners increases drastically when lowering value-dropping threshold. Besides,
per-iteration time for preconditioners (both ILU and multilevel ones) is generally propor-
tional to the amount of memory used by the preconditioner. For 10188, since NDLO and
NDLOF achieves almost the same last-level size, the performance advantage of NDLOF
over NDLO on a per-iteration basis is due to the difference in preconditioner sizes: the
preconditioner size of NDLOF is lower than that of NDLO by 5.7%, while it performs
about 6% faster per iteration. This shows that reducing the size of preconditioner can
reduce the overall computation time, if the loss in preconditioner quality (if there is any)
could be amortized.

Fig.4.7 shows the condition number comparison between various preconditioners for
2K. It shows a clear trade-off between the quality of the ILU preconditioner and the
memory it uses. Comparatively, multilevel preconditioner achieves a condition number of
the preconditioned matrix of similar magnitude with much less memory consumption. It
also shows the difference in fill-in amount between NDLO and NDLOF clearly affects the
total number of non-zeros in the preconditioner but not the condition number. Although
condition number cannot serve as a direct evaluation for convergence, it does show the
clustering of the eigenvalues of the preconditioned system to (1, 0) on the complex plane,
especially when the condition number is close to 1. Fig.4.8 shows the details of trade-off
between convergence iteration count and the preconditioner’s memory usage for 10188.
There is a clear trade-off between convergence speed and the size of the preconditioner
for ILU. The convergence is very slow for iterations using |LU with fill-in count upper
bound below 15 (per row for L and U). But for all the 3 multilevel preconditioners,
only 10 fill-in’s per row are allowed in ILU. Lowering the value-dropping threshold will
introduce extra fill-in’s by a small percentage, but can boost the preconditioner quality
significantly (the iteration count drops from 26 to 6); also considering the memory used by
the preconditioner remains within 1.6 times that of the original matrix, we conclude that
multilevel preconditioners are more memory-efficient compared with the non-multilevel
counterparts. Furthermore, for NDLO and NDLOF, we can see virtually no difference in
convergence speed, but a reduction of 14181 elements in the memory space used by the

40 MULTILEVEL PRECONDITIONER FOR TDS 4.6

500

L wu-o

100 T GO

.\ JT (‘ 0.5 7_0)

N Pt

’\“-4 A0 [
\0.6 ’50\)

[6)]
o

()]

) OF -

4 4 A
) y woL07 (o wutd
1

VCF-2(10*10)
0.5 .

Condition Number
)

2 4 6 8 10 12 14 16

Preconditioner Element Count (x103)

Figure 4.7: Preconditioner memory usage and condition number relationship for 2K sys-
tem.

preconditioner, which is about 5.8% of the total size of the preconditioner. The marker
with name BILUM corresponds to the result obtained by the built-in INDSET search
algorithm of BILUM.

4.6 Summary

In this chapter we applied multilevel technique to the preconditioning of Jacobian matri-
ces in TDS. Specially we use INDSET based algebraic multilevel structure, based on the
structure of the Jacobian matrices. Based on the sparsity pattern of the matrix and its
direct relationship with the network topology, we carry out INDSET searching based on
the power network and map it to the construction of the multilevel preconditioner. For
the INDSET searching, Fill-in control and block sizes beyond 1 both yield good system size
reduction and memory usage. Compared with traditional LU preconditioners, multilevel
preconditioners based on INDSET have much better memory efficiency and preconditioner
quality.

Multilevel preconditioners are also famous for the parallelism for preconditioning op-
erations. Chapter 8 explores the parallelization of multilevel preconditioners based on
INDSET and approximate inverse preconditioners for the last-level system.

4.6

Iteration Count

60

50

40

30

20

WY

20)

-2) 19

o510 ’\(ﬂ

\ wut (9

gL\

)W

5% AD)

10

WO

1518

A0)

e

NoLOF

A0

Lot 0o

50)

10 20

30 4

0 50

60

70 8

0 90

Preconditioner Element Count (x104)

SUMMARY

41

Figure 4.8: Preconditioner memory usage and iteration count relationship for 10188 sys-

tem.

42

MULTILEVEL PRECONDITIONER FOR TDS

4.6

Chapter 5

Multi-Step Technique —
Preconditioner Updates for TDS

5.1 Introduction

This chapter and the next chapter discusses applying multi-step techniques to Time Do-
main Simulation (TDS) of Power Grids. TDS requires the solution of a sequence of linear
systems, which occur both in various Newton steps in the same time step and at multiple
time steps. During this process, reusing information generated from the solving process
would speedup the overall TDS process. We consider the application of preconditioner up-
dating technology and its application in TDS. Applying preconditioner updates requires
Jacobian matrices which does not undergo significant change from step to step. Most
popular are additive changes to the Jacobian, in which works such as [77] can be applied.

To achieve this, firstly we prove that the formulation of TDS matrices can be trans-
formed into the form of Y + Ay. Y is a transformed matrix of Y, i.e., the original admit-
tance matrix of the power network and Ay is a block diagonal matrix. The Jacobian-based
linear system is in turn transformed as a linear system based on Y + Ay . This formulation
gives the additive change to the Jacobian, and the applicability of preconditioner updat-
ing algorithms. It also enables more computationally feasible deflation by Krylov solvers,
which provides another dimension of speedups for multi-step technique. Deflation-based
techniques covered in the next chapter.

This chapter is organized as follows. Section 5.2 reformulate the conventional TDS
problem into linear systems of form Y +Ay. Section 5.3 briefs on Preconditioner Updates,
analyzes the specific case of preconditioner updates in TDS, and proposes new precondi-
tioner updating algorithms for TDS. Section 5.4 includes experiment results and analysis
of preconditioner updates in TDS. Section 5.5 concludes the chapter.

5.2 Formulation of Y + Ay for TDS Matrices

In TDS, at each Newton step at certain time steps, a linear system is solved based on the
Jacobian matrix J. We divide J into 4 sub-blocks, in which J; ; corresponds to dynamic
part of the power system and .J5 5 corresponds to the algebraic part.

43

44 PRECONDITIONER UPDATES FOR TDS 5.2

Jr =0 (5.1)

Jii Ji2 T by
' X = 5.2
[JQJ J2,2:| Lﬁz} lbz] ()

In further discussion, we follow and extend the notations used for Power Grid models
as in Chapter 2:

V : the column vector of bus voltages, i.e., Vi’s. V; is the voltage at bus ¢, for 1 < i < n;
n is the total bus count.

V : formulation of Vj’s into a diagonal matrix, with V(i,4) = V;.

I : the column vector of bus currents, i.e., I,’s. I, is the injected current on bus ¢, for
1 << n.

I : formulation of I;’s into a diagonal matrix, with 1(4,4) = I;.

v : the column vector of bus voltage amplitudes, i.e., ¥;’s. ¥; is the amplitude of the
voltage on bus 7, for 1 <1 < n.

0 : the column vector of bus voltage angles, i.e., §,’s. 6; is the angle of the voltage on bus
i, for 1 <i<n.

A : formulation of the angle of the bus voltages into a diagonal matrix, with A(i, i) = el

We use a dot to denote the value/matrix to be a complex variable, as in V, V, ete.
Variables without a dot such as v, € are real variables. Furthermore, we use a bar over
a complex variable to denote the complex conjugate of the variable. If the variable is
a matrix rather than a scalar value, then the resulting matrix has every element as the
complex conjugate of the corresponding element in the original matrix. Also by definition
it holds that: V; = v;e?® and V; = v;e 9% . We formalize the definition as follows:

Vi Vi
Vy) Va

Un Un,
9 1 _6] 0 1
02 . €j 02

5.2 FORMULATION OF Y + Ay

45

Note that V, f[, A and V are scaling matrices. Hence we have: V=VxA=AxV.

Also for the complex conjugate matrices, we have V=V x A = A x V.

By circuits’ law, injection of currents I is defined by the voltage and the admittance
between buses. It can be calculated as (Y;x denotes the admittance between bus ¢ and

bus k):

=YV
}:/1,1 }:/1,2 s }:/1,71 ‘/1
Yor Yoo ... Yo, Va
- X .
le,l }'/1,2 e Y'Ln Vn
And the power injection at bus i:
B=Vid
= (v;e79%) Z Yi,s(vsejes)
1<s<n
Then the derivatives for power at bus i are:
oP, B (vie*jei)Yi,k(ejgk), i1 £k
Oue | (e)Yia(e?®) + (e77%) 3o o oay, Yis(vse?®™), i =k
OP; _ [j(vie)Y (vne’™), i#k
00k (e)Y (0pe?®) — j(0e %) Y o o, Yis(vse?), i =k

We can re-write Egs.5.11 and Eqs.5.12 in matrix form as:

OF 5V s+ hxi
v
E;—Igzj(VxYxV—fo[)

Further, we have:

(5.7)

(5.8)

(5.9)
(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

46 PRECONDITIONER UPDATES FOR TDS 5.2

or =

VXY xA+AxI 1
5 VXY xA+Ax (5.16)
L
Vi
- . L .
:VxAx(Y+ .)XA (5.17)
L
Vn
I
Vi
- . L .
:VX(Y+ o)XA (5.18)
L
Vi
For ‘?9—1;, we have:
aP - . . -~ .
— = VxY xV-VxA (5.19)
00
i ;
Vi
< /. L)
:jV(Y—i— . >><V (5.20)
L
L Vi 4
We denote:
I
v
I
Ay = o (5.21)
A
Vn

We denote P the complex power: P = P + j@, where j is the complex root of -1,
(i.e., unit of imaginary numbers). By definition of derivatives in complex functions and
separation of real and imaginary parts, we have:

3_P_3_P_j@
gy 9]
oP _ P 00 (5.22)
90 — o0 J o0

The parts in 5.22 represent sub-blocks in J3 5:

or op
Jop = [3_& %} (5.23)
v 90

Since the part corresponding to the network parts in the Jacobian matrix in Chapter
2 is as in Eqs.5.23, Eqgs.5.24 shows Jy o with the Schur complement of J;; as A, which is
formed by sub-parts of Ay, Ay, As, and Ay.

5.2 FORMULATION OF Y + Ay A7

B or + Al orP + AB
Jog+ A = [g_gg A g_(g) +A4] (5.24)
OP OP
— Real(—jV x A x (V + Ay) x V) (5.26)
— I'mag (V x A x (V +Ay) x V) (5.27)
OP P
= Real (V < A x (V4 Ay) x A> (5.29)
0Q oP
20 = Imag(ae) (5.30)
= —Imag (—jV x A x (Y +Ay) x V) (5.31)
= Real (V x A x (V +Ay) x V) (5.32)
0Q opP
5 = —]mag(%> (5.33)
= —Imag (V x A x Y +Ay) x A) (5.34)
(5.35)

Note Theorem 1 in Chapter 2 for the sparsity pattern the Schur complement of Ji;
in Jyo, stating that sub-parts of A are diagonal matrices. Specifically, denote that the
Schur complement in %—f, %—g, % and % are Ay, Ay, Az and Ay, respectively. Then these
matrices only have non-zero elements on the main diagonals. Subsequently we can carry
out the following transformations.

0 0 0 0
(a—];+A1) —j(a—ff+A3) — <a_]; —ja—g)‘F(Al — jAs3) (5.36)
v (@—f —J %> +(A) - jAQ)Al = (V+Ay) + V(A = jAYATT (5.37)

Note that (A; — jA3) is a diagonal matrix. Together with V-1 and A~! as diagonal
scaling matrices, it is immediate that V‘l(Al -7 A;;)A‘l is a diagonal matrix. We denote
it as Ay p.

Similarly, we have:

48 PRECONDITIONER UPDATES FOR TDS 5.2

or oQ or .9Q
N R N L
G (G — 350+ (B =380 70 = (7 4 85 + GT) (8 = 18T (59

(A2 —jAy) (5.38)

We denote Ay as (jV)71(Ay — jA)V™L Tt is clear that like Ay and Ay 5, Ay
is also a complex diagonal matrix. We specify the solution part and corresponding parts
in the right-hand side as 6,, dg, 0» and dg, respectively. Then the linear system can be
viewed as in Eqgs.5.40. Note that Eqs.5.40 corresponds to the first level system in the
multi-level structure presented in Chapter 4.

y B {3& 12: %:%iij X {gg] = :g;: (5.40)
(&2 530) (D] oo
{% iﬁl Eg—+A3§ iX } X [&;6] = f;g (5.42)

It can then be deduced that:

Real (V) Imag(V)} !

+ A (+ A3) x V-] [Real(A) —Imag(A)} - -
—Imag(V) Real(V) ;

{% T (58 A x v X | Imag(h) Real(h)
[Real(}f) —]mag(Y)] [Real(Ay) + AL —Imag(Ay) + A
Imag(Y) Real(Y) Imag(Ay) + A Real(Ay)(+ A%
5.43

- In Eqs.5.43 A}, Ay, Ay and A} are generated by Ay, Ay, Az and Ay with V, V and
A. Due to the fact that V, V and A are all scaling matrices, A}, A, AL and A} are all
diagonal matrices.

Theorem 2. [80] The Jacobian matriz-based linear system in TDS can be transformed
into the form of (Y + Ay)x = b, with Y as a matriz which is based on the admittance
of the Power System network, and Ay an relatively low-rank matriz with non-zeros on 3
diagonals.

Proof. We denote Y and Ay as:
Real(Y) —Imag(Y)
Y = . . 44
Lmag(Y) Real(Y') (5.44)

. / —_— y /
Real(Ay) + Ay —TImag(Ay) + Ag} (5.45)

Ay = [Imag(Ay) + AL Real(Ay)+ A

Further, we denote the “scaling” matrices as:

5.3 PRECONDITIONER UPDATE IN TDS 49

a. Blocked form b. Element-wise form

Figure 5.1: Structure of Ay matrix

oo Real(V) Imag(V) a
e {—Imag V) Real(V)]

f Real(A) —Imag(A) -1
= [Imag(A) Real(A) } (5.47)

(5.46)

We apply V, and Ap to the left and the right side of the linear system in Eqs.5.42.
The result linear system is as follows:

res) <-4

Hence the Jacobian-based linear system is transformed into a linear system based on
Y + Ay, as in Eqs.5.48. Y is the transformed admittance matrix of the original matrix.
The sparsity pattern of Ay satisfies that there is only non-zero on the main-diagonal and
the n-th diagonal below/above the main diagonal. This completes the proof. Ol

Note that Ay can also be seen as a matrix with sub-blocks as diagonal matrices. Y is
static and non-changing during the simulation, while Ay changes from step to step. At
each step, we can transform the original linear system into formulation in Eqs.5.48. By
solving this transformed linear system, its solution is mapped back to the original linear
system based on the full Jacobian matrix, hence the entire system is solved.

Similar to Chapter 4, we can also form the matrix in an element-wise manner rather
than block-wise: we align the voltage v and angle 6 of each bus to be adjacent. This is
equivalent to a diagonal reordering on the matrix in Eqs.5.48. In the reordered form, Ay
is a block-diagonal matrix, with non-zeros only present on 2 x 2 diagonal blocks. The
structure of Ay matrix in blocked format and element-wise format is shown in Fig.5.1.

5.3 Preconditioner Update and Application to TDS

In this section firstly a brief introduction to preconditioner updates is given in Section
5.3.1. After that, algorithm variants tailored to TDS simulation are presented in Section
5.3.2.

50 PRECONDITIONER UPDATES FOR TDS 5.3

5.3.1 Introduction to Preconditioner Updates

We consider updating an existing incomplete factorization of a given matrix A when A
undergoes an additive change of A 4. We use LDU to denote the (incomplete) factorization
with L and U unitary on the main diagonal and D is a diagonal scaling matrix. By [77]
it can be deduced as:

AR LDU (5.49)

A+ A4 R LDU+ Ay (5.50)
LDU + Ax = L(DU + L7'Ay) (5.51)
2 L(DU + Ay) (5.52)

2 L(DU + triu(Ay)) (5.53)

LDU + Ay = (LD + AU YU (5.54)
R (LD + AU (5.55)

2 (LD + tril(A,))U (5.56)

The approximations due to omitting elements are labeled. Label @ denotes the
approximation brought by incomplete factorization. When we assume that L™! is close
to I, we can further take the approximation of @. If we want to maintain the sparsity of
DU + A 4 and contain all the non-zero in the upper triangular part, further approximation
labeled as @ is taken, omitting the non-zero elements in the strict-lower part of DU + A4
by keeping only the upper-triangular part of A4. Approximation @ and @ are the
counterparts of @ and @ respectively, by operating on L rather than U.

We also propose the use of another form of preconditioner updates which keeps more
information by considering the effects of the whole matrix of A4 in Eqs.5.52, rather than
only the upper-triangular part of it as in Eqs.5.53. Following Eqs.5.52, we have:

LDU + Ay L(DU -+ AA) (557)

LL*U* (5.58)

lle Qe

In which, L* and U* is the exact LU decomposition of (DU + A4). Exact factorization
implies no data loss as brought about by approximation @ (or similarly by @). We
use @ as the label for the algorithm in Eqs.5.58. Note that this process is not an
approximation and does not introduce extra information loss. Whether it is feasible for
the full factorization depends on 3 factors:

e Computational overhead of the factorization
e Sparsity pattern of L*, especially its non-zero element count

e Sparsity pattern of U*, especially its non-zero element count as compared with U

If pivoting is used for incomplete factorization, then we have the following settings:

5.3 PRECONDITIONER UPDATE IN TDS o1

PA R LDU (5.59)

P(A+ AL ~ LDU + PA, (5.60)
LDU + PA, 2 L(DU + PAy) (5.61)
2 L(DU + triu(PAL)) (5.62)

LDU + PAA 2 (LD + PALU (5.63)
2 (LD + tril(PA))U (5.64)

Note the use of pivoting matrix in Eqs.5.62. In the following part of this section, we
show that without pivots, it is feasible to use Eqs.5.58 and @ for TDS matrices, without
high computational and memory overhead. Pivoting breaks these properties and hence
not considered in further experiments.

5.3.2 Updating Preconditioners in TDS

The formulation of the linear system for TDS in Y + Ay enables the additive updates to
the preconditioners as introduced in Eqs.5.53 and Eqs.5.58. For Eqgs.5.53 we can directly
apply to the matrix Y + Ay. FEgs.5.58 is subjected to more analysis in feasibility of
complete factorizations for TDS matrices.

As basic settings, we construct preconditioner based on the transformed admittance
matrix of the power network, i.e., Y matrix, and use Ay, i.e., the additive change at
the i-th linear system to update the preconditioner. Note that the preconditioner can be
constructed in an “off-line” manner: it is not subjected to changes during the simulation.
Hence the construction does not bring extra runtime overhead

Feasibility Analysis and Preconditioner Choice

We use the element-wise formulation for Y+ Ay. Note that in the strict lower part of Ay,
there is only non-zero elements on the diagonal with index -1, i.e., immediately close to
the main diagonal, and the non-zero is only present on the rows with even indices. When
applying @, we factorize the matrix of DU + A 4.

Then the factorization with DU + A4 would entail:

e Computation of L* in Eqs.5.58

e Computation of U* in Eqs.5.58

This factorization operation would only involve the linear combination of some adja-
cent rows of DU + A 4. Denote C' as DU + Ay and ¢; the i-th row of C'. Then in the strict
lower part of C', the only non-zero elements would only exist at positions (2 — 1, 2¢), with
1 < i < n and n is the total bus number. Eliminating these values to form L* and U*
involves combining co; 1 into c¢o;. Then we have:

52 PRECONDITIONER UPDATES FOR TDS 5.4

(1 if i=j

Lij={ g if i mod2=0,j=i—1 (5.65)
L0 otherwise
(Ci,j if i mod2=1,1<}

U =< Cij— cff’f;il iy if i mod 2=0,i<j (5.66)
L0 otherwise

It is immediate that the construction of L* and U* is easy and only involves local
combination of the rows of C'. In runtime, the computation of L* and U* only involves a
little computation and this process is potentially parallel. On the memory usage side, the
linear combination of the rows may introduce extra non-zero elements in the rows with
even indices in U*. Potentially the sparsity pattern of U* would be close to that of C' and
U. We can allocate memory usage in these rows in advance to accommodate these extra
fill-in’s caused by full decomposition of C'.

Preconditioner Choice

The feasibility analysis depends on the specific ILU preconditioner we use for Y.

If we use preconditioner with no pivoting, such as the basic form of Crout-version of
[LU [60] without pivoting, denoted ILU-C, in the strict lower triangular part of (DU+Ay),
only positions at (i,7 — 1) contain non-zero elements for {i|i mod 2 =0, 1 < i < 2n}.
Then we have the following properties:

e Sparsity pattern of L* is exactly that of the lower triangular of (DU + A 4)
e Computing of L* and U* is straightforward

e Computing U* involves linear combination of the (2 % i — 1)-th row and 2i-th row
for1 <i<n

e Sparsity pattern of U* is close to that of C' or U

But if we use preconditioner with pivoting, such as ILU-TP. Then in the strict lower
triangular part of (DU + PA4), potentially non-zero elements can exist in L* at positions
other than the sparsity pattern defined by the strictly lower triangular of PA 4. The actual
positions for extra non-zero elements depend on the structure of the pivoting matrix. Due
to this, we only consider the use of ILU-C preconditioners for the preconditioner updating
operations in this thesis.

5.4 Experiments

We carry out experiments on various TDS cases using Preconditioner Updating algorithms
in Section 5.3. We transform the Jacobian-based linear systems in the form of Eqs.5.48.
Based on Y, we construct preconditioners M for it using incomplete factorizations. Pre-
conditioner Updates are applied to M based on Ay for each step.

5.4 EXPERIMENTS 53

Case Matrix Size | Linear System Count
2K-STABLE 2330 1970
2K-UNSTABLE 2330 647
Dongbei-B 976 3901
Dongbei-F 976 4010
10188 20376 1012

Table 5.1: TDS cases for Preconditioner Updates tests

Case Solver Preconditioner
2K-STABLE GMRES(40) | ILU- C(lO_)
2K-UNSTABLE | GMRES(40) | 1LU-C(10
Dongbei-B GMRES(40) | 1LU-C(

) (
) (

Dongbei-F GMRES(40 ILU-C
10188 GMRES(60 ILU-C

4

?)
102
102
107

Table 5.2: Preconditioner Update — Basic Settings

5.4.1 Test Cases and Settings

The TDS cases used for tests are listed in Tab.5.1. The description of the cases are in
Chapter 2. Tab.5.1 lists the total linear system count, i.e., total Newton step count across
all the time steps. The sizes of the matrices as in Tab.5.1 now equal to 2n, i.e., the size
of Y and Ay.

We denote various Preconditioner Update strategies as follows:

Strategy 1 : use “dishonest preconditioner” strategy as in [68, 58], i.e.: a fixed precon-
ditioner for Y is used and no updates are involved.

Strategy 2 : use updating algorithm @, based on the preconditioner for Y.
Strategy 3 : use updating algorithm @, based on the preconditioner for Y.

Strategy 4 : reconstruct preconditioner at each Newton step

5.4.2 Comparison

We compare the effect of dishonest preconditioner based on dishonest preconditioner and
preconditioner reconstruction strategies based on the settings shown in Tab.5.2. We use
the default 0.01s as the time stepping for the simulation. Restarted GMRES is used.
Tab.5.3 shows the averaged iteration count for different strategies as described above.

Case Strategy-1 | Strategy-2 | Strategy-3 || Strategy-4
2K-STABLE 166.20 46.81 38.33 22.62
2K-UNSTABLE 153.67 60.09 57.39 23.98
Dongbei-B 50.93 34.35 34.26 31.00
Dongbei-F 51.51 34.53 34.46 30.99
10188 288.45 192.05 191.31 74.90

Table 5.3: Preconditioner Update results

54 PRECONDITIONER UPDATES FOR TDS 5.4

Case Preconditioner | Strategy-1 | Strategy-2 | Strategy-3
2K-STABLE ILU-C(107?) 166.20 46.81 38.33
2K-STABLE |LU-C(1O_3) 98.80 44.31 24.05
2K-STABLE ILU-C(107%) 105.19 113.88 36.00

2K-UNSTABLE | ILU-C(1072) 153.67 60.09 57.39
2K-UNSTABLE | [ILU-C(1073) 94.82 47.03 30.56
2K-UNSTABLE | ILU-C(10~%) 101.02 64.96 34.46
Dongbei-B [LU-C(1072%) 50.93 34.35 34.26
Dongbei-B [LU-C(1073) 31.80 22.89 22.71
Dongbei-B ILU-C(107%) 29.97 23.88 23.60
Dongbei-F ILU-C(102) 51.51 3453 34.46
Dongbei-F |LU-C(1O*3) 31.85 23.08 22.74
Dongbei-F ILU-C(107%) 30.09 23.91 23.64

10188 ILU-C(10~%) | 288.45 192.05 191.31

10188 |LU-C(1O_5) 165.57 111.22 111.56

10188 ILU-C(1079) 100.17 79.81 79.88

Table 5.4: Preconditioner Update results

Preconditioner updates achieves significant reduction in iteration count compared with
dishonest preconditioner strategy. Using the basic algorithm as in @, reduction ratio in
total iteration count ranges from 33% to 70%. When using the proposed algorithm of
@, the iteration counts for 2K-STABLE and 2K-UNSTABLE are further reduced by 20%
and 5%, respectively. Note that the iteration count for Strategy-4 is actually the lower
bound for that using preconditioner updates. For Dongbei-B and Dongbei-F, the iteration
counts achieved by preconditioner updates are already very close to the upperbound by
Strategy-4.

Tab.5.3 lists the comparison between different strategies under basic preconditioner
settings. To facilitate preconditioner updates, |LU-C with no pivoting is used. We can
see that preconditioner updates can achieve significant reduction in iteration count. In
2 Dongbei related cases and 10188, reduction ratio in iteration count is about 33%. For
2K cases this ratio is over 70%. Strategy-3, i.e., preconditioner updates with @ benefit
various cases in different way. For 2K-STABLE, the reduction ration of using Strategy-3
compared with Stratetegy-2 is about 20%, while for other cases, this ratio is below 5%.

Effect of Preconditioner Quality

We vary the preconditioner configuration to different dropping tolerance levels, to inves-
tigate the effect of preconditioner quality on updates. Tab.5.4 shows the average iteration
count per linear system for cases in Tab.5.1.

Tab.5.4 shows that: (1) when initial preconditioner dropping threshold is lowered,
iteration count does not always decrease, and (2) preconditioner updates always yields
lower iteration count compared with dishonest preconditioner strategy. For 2K-STABLE
and 2K-UNSTABLE, lowering the dropping threshold for ILU-C from 1073 to 1073 results
increased iteration count. For Dongbei-B and Dongbei-F, lowering the threshold results
in virtually stationary iteration count. This counter-intuitive result is caused by the fact
that the initial preconditioner is constructed based on Y. Assume the error bound for
the initial incomplete factorization is ¢ = Y — LDU. Then the actual error bound is

5.9 SUMMARY 95

Case Preconditioner | Time Step | Strategy-1 | Strategy-2 | Strategy-3
0.01s 166.20 46.81 38.33
2K-STABLE ILU-C(107?) 0.02s 168.04 69.24 55.66
0.05s 170.29 66.93 55.16
0.01s 153.67 60.09 57.39
2K-UNSTABLE | ILU-C(107?) 0.02s 163.71 61.77 51.79
0.05s 164.17 60.62 57.13
0.01s 50.93 34.35 34.26
Dongbei-B [LU-C(1072) 0.02s 57.44 38.12 37.93
0.05s 56.40 38.14 37.79
0.01s 51.51 34.53 34.46
Dongbei-F ILU-C(107?) 0.02s 57.35 38.05 37.81
0.05s 56.16 37.99 37.60
0.01s 288.45 192.05 191.31
10188 ILU-C(107%) 0.02s 280.10 189.65 189.16
0.05s 265.37 179.62 179.96

Table 5.5: Preconditioner Update results

g; = € + Ay, for the i-th matrix. There is no guarantee on ||&;|| even if ||e|| decreases by
lowering the dropping threshold for Y's. In all the cases, preconditioner updates yields
lower iteration count by over 20%. For 2K-STABLE and 2K-STABLE, using @ yields
about 40% further reduction in iteration count than @, while in other cases there is no
obvious advantage.

Effect of Time Stepping

We relax the time stepping of 0.01s to larger sizes of 0.02s and 0.05s. The results are shown
in Tab.5.5. The reduction of iteration counts by preconditioner updates are consistent for
different time step sizes.

Analysis of Simulation Process

To further investigate the effect of preconditioner updating, the average iteration count
per time step is retrieved. Fig.5.2 shows the comparison between different strategies for
2K-STABLE, Dongbei-B and 10188.

We can see that for 2K-STABLE, for certain period of the time, such as from 1s to
1.5s and the time around 5s and 9.5s, Strategy-3 performed better than Strategy-2 in
a more significant way, while at other times, Strategy-3 performs similarly to Strategy-
2. For Dongbei-B and 10188, the difference between the 2 strategies are never obvious.
Generally speaking, Strategy-3 performs better than or on par with Strategy-2 for these
cases.

5.5 Summary

In this chapter we apply the preconditioner updating techniques to TDS. By transforming
the Jacobian matrix-based linear system into a matrix with form of Y + Ay, we introduce

56 PRECONDITIONER UPDATES FOR TDS 5.9

300 T T T 150 T T T
——Strategy—1 ——Strategy—1
— Strategy-2| — Strategy-2|
2501 ——Strategy-3 ——Strategy-3
é 2001 é 100-
g g ~—
£ 150 r‘ g
g g
S 1001 © 50-
o) o)
2 z .
e ’
G0 2 4 _ é 8 10 G0 2 4 _ 6 8 10
Time (s) Time (s)
a. 2K-STABLE with ILU-C(1072) b. 2K-STABLE with ILU-C(10~%)

60

g 3
2
>
1
3
k3
L
3

€ €
3 3
5} Q
O 40f S a0t
c c
o fm, cn [}
= Yt . * il = "
S a0r S a0
5 o
€200 S0
> >
< <
10F ——Strategy—1| 1 10 ——Strategy-1|
Strategy-2| Strategy-2|
——Strategy-3| ——Strategy-3|
00 5 .10 15 20 00 5 .10 15 20
Time (s) Time (s)
. .) : : -3
c. Dongbei-B with ILU-C(107%) d. Dongbei-B with ILU-C(1077)
400 T T T T 200
as0- B 180r 1
- . 160F 1
S 300r S
Q Q 140 4
= 250 2
s s 120% 4
T T
s Zooi? 5 ww—
o | o 8
150 &
g g) 601 4
Z 100f i z
40r 1
S0l ——Strategy-1 i ——Strategy—1
— Strategy-2| 20+ Strategy-2|
——Strategy-3| ——Strategy-3|
% 1 2 3 4 5 % 1 2 _ 3 4 5
Time (s) Time (s)

e. 10188 with ILU-C(10~4) f. 10188 with ILU-C(107?)

Figure 5.2: Comparison of iteration counts between Preconditioner Updating strategies

5.9 SUMMARY o7

preconditioner based on the admittance matrix Y and off-line analysis to the precondi-
tioning of the transformed Jacobian matrices. Further we adopt the additive change to
ILU-C preconditioner constructed based on ILU-C. The proposed algorithms to update the
upper-triangular part of the incomplete factorization introduces little computational over-
head to TDS. Iteration count with GMRES is greatly reduced by introducing updates to
the preconditioners: compared with a previous existing preconditioner updating method,
i.e., “dishonest preconditioners”, the reduction ratio ranges between 20% and 70% across
all preconditioner configurations and test cases. It has been shown that preconditioner
updates serve as an effective multi-step technique to re-use the preconditioner information
of the static analysis of the network and reduce the total computation of the time domain
simulation of Power Systems.

o8

PRECONDITIONER UPDATES FOR TDS

)

Chapter 6

Multi Step Techniques in TDS —
Matrix Spectra Deflation

6.1 Introduction

Time Domain Simulation (TDS) of Power Grids involves solving a sequence of Jacobian
matrix-based linear systems. By transformations, the Jacobian matrix can be formulated
as a derived matrix based on the original admittance matrix of the Power Network. Given
the simulation task in TDS, it is beneficiary to reuse certain information derived from
previous iterations in future linear systems, to reduce the iteration count and overall
computation amount. This chapter discusses the use of matrix spectra deflation in TDS.
GMRES and GCR include restarted Arnoldi process to minimize norm, which reveals
extreme eigenvalues of the Jacobian matrices. The dynamically changes of the Jacobian
matrices pose special problem since the matrix, hence the spectrum changes from system
to system. We consider the use of GCRO-DR and dynamic selection of extreme eigenvalues
to deflate both small and large eigenvalues to accommodate the dynamic matrix changes.
This chapter is organized as follows. Section 6.2 gives a short introduction to spectra
deflation. In Section 6.3, the analysis of the (preconditioned) Jacobian matrices based on
the Y + Ay formulation is given, showing that the Jacobian matrices contain both large
and small eigenvalues during simulation. Section 6.4 discusses how to design effective
deflation algorithm for TDS. Section 6.5 the Preconditioner Updates and Deflation is
combined for better convergence of GCRO-DR. Experiments and analysis are included in
Section 6.6. Section 6.7 concludes the chapter.

6.2 Introduction to Spectra Deflation

Matrix spectra deflation involves enhancing the convergence of iterative solvers by intro-
ducing vectors to “deflate”, i.e., remove unwanted eigenvalues and improve the spectra
of the matrix. The vectors used are usually eigenvectors which are associated with the
unwanted eigenvalues which are close to the origin. The main motivations for spectra
deflation are:

e Spectra of the matrix affect the convergence rate of Krylov solvers. Removing
extreme eigenvalues from the spectra, especially those close to the origin, will benefit
convergence speed greatly.

This chapter is submitted as journal paper [87]

99

60 MATRIX SPECTRA DEFLATION FOR TDS 6.2

e Practical long-recurrence based algorithms such as GMRES require restarts, which
cause the loss of all the Krylov subspace information periodically and result in po-
tential stagnation. Deflation is an effective way to retain information from previous
restarts.

e When solving a series of linear systems as in TDS, either the matrix of the linear
systems is constant with multiple right-hand sides (RHS), or the matrix of the linear
systems also changes, it is desirable to retain certain information generated from
previous linear system solution processes to aid the solution of further systems. In
this case, deflation could also be used.

Although spectra information can be used to speed up the convergence of Krylov
solvers, computing all the eigenvalues and associated eigenvectors of a given matrix is not
a computationally feasible task. Fortunately, extreme values among the eigenvalues can
be retrieved without the effort of computing all the eigenvalues, by an Arnoldi process (or
Lanczos process for symmetric matrices) which is embedded in solvers such as GMRES.
The GMRES iteration generates a upper-Hessenberg matrix H,,, which is the upper m xm
part of the matrix H,, in the following equation:

AV, =V H,y, (6.1)

With the iteration of GMRES carries on, the extreme eigenvalues of H,, (i.e., the largest
and the smallest in norm) converge to those of A. We call the eigenvalues of H,, Rits
values.

6.2.1 Computing Eigenvalues and Eigenvectors

We calculate the eigenvalues of H,, and use it for deflation of A. We denote the eigenvalues
and corresponding eigenvectors of H,,: \; and v;, for 1 <i < m, with [A;] < | X <+ <
|[Am|. Those of A are denoted as A; and V;, for 1 < i < n, with |[A;] < |Ag| <--- < |A,].
Normally we consider the smallest eigenvalues for deflation, but it is also mentioned
that largest eigenvalues can also be retrieved and used in deflation as in [69]. There are
various ways to calculate k smallest eigenvalues of A through H. Here we list two of them:

1. Denote the smallest eigenvalues of A as A; to Ax. To compute them, we calculate
the smallest k eigenvalues of matrix: (Hy, +h2, 1 . H,. " enel,), we denote them and
their corresponding eigenvectors as A, and v,. The formulation for Arnoldi-based

eigenvalue estimation is as in [51].

2. Use a general form of eigenvalue formation: ((AV,,)"V,,)z = $((AV;,)" AV,)z as
used in [64], where (AV,,)H is the conjugate transpose of AV,,. This form tends to
estimate the smallest eigenvalues of A more precisely, i.e., largest values for i Note
that AV,, can be replaced by H,, and in turn the internal QR factorization of H,,:

R, .) .
H,, = Q1 X {T}’ with R, an upper-triangular matrix.

When)\;’s and their corresponding eigenvectors v;’s (also called Rits vectors) are cal-
culated, we can calculate V; simply: V; =V,, X v;.

6.2 INTRODUCTION TO DEFLATION 61

6.2.2 Deflation Algorithms

Generally speaking, there are two approaches for deflation in GMRES. The first way is
through augmenting the Krylov subspace by adding deflation vectors to it. This involves
algorithms such as GMRES-E [65] and GMRES-DR [65]. The second way is through pre-
conditioners built with deflation vectors [28, 38, 42].

Deflation-based Preconditioning

By preconditioning, the corresponding eigenvalues are shifted from their original posi-
tions (which are close to the origin) to (1, 0) in the complex plane. Deflation based on
preconditioning takes this form:

(I —SVVH) Az = (I —5VVH)b (6.2)

Where V is the matrix consisting of deflation vectors, i.e., eigenvectors of A, V is of
size n X k, given there are k eigenvectors. One advantage of this approach is that we
can use whatever vectors for deflation, even if they are not eigenvectors (or they are poor
estimation of them). When they are not actual eigenvectors, effect on convergence is then
compromised.

Deflation Vector used in Krylov Subspace

Another way for deflation falls under Ronald Morgan’s works such as GMRES-E. From
GMRES-E to GMRES-DR, etc. GMRES-E tries to augment the Krylov subspace when a
restart is due. Suppose that we have certain deflation vectors, V; to Vi.. When the restart
of GMRES is due, we orthogonalize the remaining vector against deflation vectors. The
effective subspace used for GMRES-E is:

Span{ry, Arg, ..., A" g, Vi, .. Vi) (6.3)

Alternatively, one can place those deflation vectors in the front of the Krylov subspace.
Orthogonalization is carried firstly with these vectors, then with the basis generated in
current GMRES run. The algorithm developed is called GMRES-DR. The effective subspace
by GMRES-DR is:

Span{Vi, ..., Vi, ro, Arg, ..., A" trg} (6.4)

The effectiveness of both GMRES-E and GMRES-DR depends on the condition that the
vectors used, i.e., V;’s form an invariant subspace for A. If such a condition does not hold,
the effect of speeding up the iterations is lost.

Deflation in Solving Consecutive Linear Systems

There have been some (recent) works on how to use deflation to benefit the scenario that
several consecutive linear systems are to be solved, with constant matrix A or a gradually
changing A. They also fall into 2 categories: (1) deflation through Krylov subspace
augmentation as in [69], and (2) preconditioning by deflation as in [50].

For augmenting Krylov subspace, due to that the loss of the property of Krylov sub-
space will potentially introduce stagnation in convergence, GMRES-E and GMRES-DR can
not be effectively adopted to integrate the eigenvectors generated from previous runs,

62 MATRIX SPECTRA DEFLATION FOR TDS 6.3

since changing either RHS or A will result in breaking the Krylov subspace property of
orthogonality.

In [69], the author proposes the use of any deflation vectors (possibly eigenvectors from
another matrix) in the current linear solving process, without restricting that they should
form an invariant subspace of current matrix A. It uses a variant of GCR , due to that
GCR may allow more relaxed relationship between search subspace and minimization
subspace. A variant of GCR , called GCROT deals with restarting GCR with optimal
truncation (i.e., restarting but keep certain subspace information). A deflation-based
GCR -based algorithm, GCRO-DR is developed to deal with solving consecutive linear
systems.

The work in [50] is exemplary on preconditioning by deflation for consecutive linear
systems. In this section, the preconditioner is augmented, i.e., updated with more spectra
information as more and more linear systems are solved. It also uses GMRES-DR for the
reconstruction of spectra information. It is designed to take into consideration of the
quality of the spectra information, so that inaccurate, un-converged part of the estimated
spectrum is not used. However it does not consider the situation when matrix A is
changing. Experiments in [50] show that with spectra preconditioner of low quality can
even damage the convergence speed. Therefore, we should design a suitable strategy with
more accurate spectra preconditioner for a the case with a changing matrix.

6.2.3 Limitation of Deflation

Deflation alone usually cannot accomplish the task of improving convergence effectively,
and therefore it is usually used in combination with other preconditioners such as |C, ILU.
Hence deflation can be considered as a method for accelerating the convergence of Krylov
solvers.

6.3 Spectra Analysis of Jacobian Matrices in TDS

We apply deflation to Time Domain Simulation (TDS) of Power Grids. We adopt the
transformation in Chapter 5 for the additive formulation of the Jacobian matrices as
the basic setting of deflation in TDS. For each Jacobian-based linear system in TDS, we
transform it into the following form:

(Y +Ay) xz=b (6.5)

Where Y is a transformed matrix of the original admittance matrix Y°. Y° is the
original admittance matrix of the Power Network, which is symmetric and complex. Y
is a transformed form of Y° and is a real valued matrix. ¥ remains the same across the
whole simulation, while both Ay and b change from linear system to linear system.

We first analyze the matrix’s own characteristics from several aspects: (1) Y° be trans-

Re(Y®) ~ Im(Y") noted as Scheme -1
_Im(Y°) Re(YO)} (denoted as Sch [1,-i;1,1]),
_ [=Im(Y®) Re(Y°) —Im(Y®°) Re(Y®)

= | Re(ve) Im(YO)} (denoted as Scheme [-i, 1;1,i]),orY = [Re(Y®) Im(Y®)

(denoted as Scheme [i, -1; 1, 1]); (2) treat Y° in these schemes after diagonal scaling,
(3) treat Y° in these formulations after ILU preconditioners (either ILU-0 or ILU with the
dropping threshold of 1072), which is used in previous chapters.

formed in various ways, i.e., Y = [

Y

6.3 ANALYSIS OF MATRIX SPECTRA 63

System | Bus Count | Size of YV Description
IEEE39 39 78 Standard system as model problem
Dongbei 688 1376 Power grid for Dong Bei in China
2K 1165 2330 Power grid for He Bei in China
10188 10188 20376 | Simplified model for China power grid
a. Power systems
Simulation Lincar "
System Case) System Preconditioner
Duration
Count
IEEE39 v 0.5s 369 Diagonal Jacobian based on Y
Dongbei B 20 s 3901 ILU(1072)
2K STABLE 10s 1970 ILU(107?)
10188 5s 1012 ILU(10~%)

b. Time domain simulation cases

Table 6.1: Power systems and test cases used in deflation experiments

We firstly analyze the spectra of Y matrices, and their spectra after preconditioners
are applied. We also analyze the augmented form of the matrix which is used in time
domain simulation. Since deflation is usually accompanied with preconditioners, this
analysis serves as the base ground for applying deflation to preconditioned TDS matrices.
The following power grids and corresponding time domain simulation cases are used for
spectra analysis and deflation experiments:

IEEE39 : 39 bus reference system.
Dongbei : 488 bus system for Dong Bei of China.
2K : He Bei 1165 bus system.

10188 : China electrical grid with 10188 buses.

IEEE39 is a reference system which is used as a model problem, while other systems are
from our own test set which are used in previous chapters. The corresponding simulation
cases are listed in Tab.6.1. Note that preconditioner configurations and the numbers of
linear systems to be solved are also included.

6.3.1 Preconditioners to Y and Y + Ay

We analyze Y and constructing a preconditioner for it, and re-use the preconditioner for
all the linear systems. We denote the left and right preconditioners M; and M,. The
effective system and right-hand side for Krylov solver are M;\(Y + Ay)/M, and M;\b.

We use two kinds of preconditioners for the experiments and evaluation: (transformed-
point) Jacobian and ILU. For simple model problem, transformed point Jacobian is good
enough for convergence, while larger systems usually require LU for practical convergence
behavior.

The transformed point Jacobian is similar to a traditional point Jacobian precon-
ditioner. Here we retrieve the diagonal part of Y° matrix, denoted Dy., and cast the

64 MATRIX SPECTRA DEFLATION FOR TDS 6.3

transformation which is used for transforming Y° into Y on Dy, to retrieve Dy. Dy is
then used as the preconditioner of Y. Dy is in fact a point-Jacobian preconditioner for Y°.
Hence we call Dy a transformed point Jacobian preconditioner. Dy only possesses non-
zero elements on three diagonals: the main diagonal and the N-th diagonal below/above
the main diagonal, where n is the bus count. The inverse of Dy can be calculated in O(n)
time, hence it only incurs very little computation to compute the multiplicative form of
Dy

6.3.2 Spectra Analysis of Y Matrices

Here we list analysis of spectra over 3 of the selected admittance matrices. We use 3
schemes to transform admittance matrices, and investigate effects of preliminary precon-
ditioners on the spectra. We show the spectra for IEEE39 and 2K system in Fig.6.1 and
Fig.6.2, respectively.

Before any preconditioning, the spectra is widely spread, mainly due to large difference
on the diagonal part of Y. When treated with Scheme 1 (i.e., [1,—i;4,1]), the spectra
is mainly on the right side of the imaginary axis. When treated with Scheme 2 (i.e.,
[—i,1;1,i]), due to the fact that the matrix is symmetric, the spectrum totally falls
on the real axis. When using Scheme 3 (i.e., [i, —1;1,i]), the spectrum is effectively
transformed by: swapping real and imaginary part. Due to that the spectrum is widely
spread in any scheme, it will generally cause slow convergence by iterative solvers without
preconditioning.

When using diagonal preconditioning, i.e., we treat admittance matrices using firstly
the schemes listed above, and secondly, a block-Jacobian preconditioner (in fact, a point-
Jacobian preconditioner for the complex admittance matrix). This effectively reduces the
modula of the largest eigenvalues of the admittance matrices. But the smallest eigenvalues
have become even smaller. Also note that the different schemes now all have little impact
on the spectra.

When treating transposed matrices with the Schemes above, combined with an ILU-0
or ILU(1072) preconditioner , the result is similar to Jacobian preconditioner. The spectra
is now much condensed, with smallest eigenvalues very small. We use ILU(1072) for 2K,
mainly because very large eigenvalues appear when ILU-0 is used. These eigenvalues are
very rare (their total amount is below 10 even for large systems), reflecting the (almost)
singularity of ILU preconditioners.

6.3.3 Spectra Analysis of Augmented Matrices (Y + Ay)

We evaluate the effect of preconditioners constructed using Y on real TDS matrices, i.e.,
matrices with the form Y + Ay. We retrieve the Y + Ay matrices from TDS simulation

Re(Y) Im(Y)
—Im(Y) Re(Y)
preconditioners are used in together with GCRO-DR(or GMRES) for TDS cases. The used
cases are listed in Tab.6.1 (0.01s time stepping is used for all cases).

Tab.6.2, Tab.6.3 and Tab.6.4 show the largest and smallest eigenvalues (in magnitude)
of selected augmented Y matrices treated with LU preconditioner derived from Y, for case
2K-STABLE, Dongbei-B and 10188, respectively. Unlike the preconditioned Y matrices
which are not augmented with Ay, they usually contain eigenvalues large in magnitude.
This is due to that the augmented part, Ay changes some elements largely, especially

process. The matrix Y is effectively transformed as: . Aforementioned

6.3 ANALYSIS OF MATRIX SPECTRA 65

90 1500

+*+m*m*w+u

M

22

270 270 270

90 1500

1000

500

KK A AMI A K K K

270 270 270

270 270 270
c. Scheme [1i,-1;1,1]

Figure 6.1: Spectra Analysis for IEEE39

66

MATRIX SPECTRA DEFLATION FOR TDS

90 1500 90 2

270

a. Scheme [1, -i; 1, 1 |

270 270

270 270
c. Scheme [1i,-1;1,1]

Figure 6.2: Spectra Analysis for 2K

270

90

270

270

1.5

1.5

1.5

6.3

6.3

ANALYSIS OF MATRIX SPECTRA 67

Lincar 1-st 200-th 1500-th
System
1.500E+2 7.57T4E+3 2.024E+6
1.414E+2 1.500E+2 -9.480E+5
1.224E+2 1.414E42 1.504E+2
1.056E+2 1.224E+2 1.392E+2
10 Largest 7.257TE+1 1.056E+2 1.227E+2
Eigenvalues 6.214E+1 7.257TE+1 1.060E+2
5.917E+1 6.214E+1 7.257TE+1
5.889E+1 5.917E+1 6.251E+1
5.417E+1 5.889E+1 6.101E+1
5.061E+1 5.417E+1 5.916E+1
6.122E-1
5.652E-1 4+ 4.612E-2 ¢ 5.652E-1 4+ 4.615E-2 ¢ 5 229Ef)1.7:£|):01??_7186E—3 ;
5.456E-1 4+ 5.044E-2 ¢ 5.466E-1 4+ 5.134E-2 ¢ ’ A 565E—1
10 Smallest | 4.672E-1 4+ 9.115E-3 ¢ 4.672E-1 + 9.129E-3 ¢ 4'056E—1
Eigenvalues | 3.401E-1 + 5.580E-4 i 3.402E-1 + 3.661E-4 ¢ '
3.881E-1
3.142E-1 3.142E-1 3 667E-1
3.109E-1 3.110E-1 9 967E-1
2.645E-1

Table 6.2: Extreme values in spectra for preconditioned augmented Y matrices for 2K-

STABLE case

Linear
System

1-st

200-th

2000-th

10 Largest
Eigenvalues

2.746E+4+1 £ 1.771E+1 ¢
4.619E40 £+ 8.715E-1 ¢
3.844E40 £+ 1.128E-1 ¢
3.689E+40 £+ 1.045E-1 ¢
3.391E+40 £ 5.235E-1 ¢

2.745E+4+1 £ 1.771E+1 3
4.619E40 £+ 8.715E-1 ¢
3.844E40 £+ 1.127E-1 ¢
3.689E+40 £+ 1.046E-1 ¢
3.391E+40 £ 5.235E-1 ¢

2.745E+4+1 £ 1.771E+1 1
4.623E40 4+ 8.451E-1 ¢
3.844E40 £+ 1.147E-1 ¢
3.689E40 4+ 9.871E-2
3.392E4-0 4+ 5.215E-2 ¢

10 Smallest
Eigenvalues

7.189E-1 £+ 1.405E-1 ¢
7.215E-1 £+ 5.886E-2 ¢
5.291E-1 £+ 1.201E-1 ¢
4.648E-1 £+ 6.673E-2 ¢
3.285E-1 4+ 5.655E-2 ¢

7.189E-1 £+ 1.405E-1 ¢
7.215E-1 £+ 5.886E-2 ¢
5.291E-1 £+ 1.201E-1 ¢
4.648E-1 £+ 6.673E-2 ¢
3.285E-1 4+ 5.655E-2 ¢

7.189E-1 £+ 1.405E-1 ¢
7.215E-1 £+ 5.866E-2 ¢
5.291E-1 £+ 1.201E-2 ¢
4.648E-1 £+ 6.659E-2 ¢
3.285E-1 4+ 5.643E-2 ¢

Table 6.3: Extreme values in spectra for preconditioned augmented Y matrices for
Dongbei-B case

68 MATRIX SPECTRA DEFLATION FOR TDS 6.4

Linear

1-st 200-th 1000-th
System
1.624E+2 + 8.180E+1 7 | 1.625E+2 &+ 8.069E+1 i | 1.622E+2 £ 8.130E+1 4
-0.513E+1 -5.088E+1 -5.088E+1
10 Largest 0.439E+1 4.365E+1 4.365E+1
Figenvalues 0.305E+1 3.038E+1 3.038E+1
0.224E+1 2.223E+1 2.223E+1

0.195E+1 £+ 6.712E40 ¢ | 1.946E+2 4+ 6.687E4+0 ¢ | 1.946E+1 + 6.687TE+0
0.194E+4+1 £+ 1.600E+40 ¢ | 1.937TE+2 4+ 1.591E+40 ¢ | 1.937E+1 + 1.592E+0 1

7.342E-2 £+ 1.447E-2 ¢ 7.329E-2 £+ 1.463E-2 ¢ 7.329E-2 £+ 1.470E-2 ¢
1.087E-1 £ 1.611E-2 ¢ 1.086E-1 £ 1.618E-2 ¢ 1.086E-1 £ 1.631E-2 ¢
1.276E-1 £+ 1.373E-2 ¢ 1.275E-1 £ 1.376E-2 1 1.275E-1 £+ 1.413E-2 ¢
1.669E-1 £ 2.583E-2 ¢ 1.669E-1 £ 2.588E-2 ¢ 1.669E-1 £ 2.587E-2 ¢
2.004E-1 £ 2.949E-2 ¢ 2.003E-1 £ 2.962E-2 ¢ 2.003E-1 £ 2.961E-2 ¢

10 Smallest
Eigenvalues

Table 6.4: Extreme values in spectra for preconditioned augmented Y matrices for 10188
case

diagonal ones. Besides, many other eigenvalues are changed too, but in a less significant
way, as shown in the difference between the eigenvalues which can be easily matched
across matrices. For example, for 2K-STABLE, some large eigenvalues appear in the first
matrix, and 1 or 2 very large eigenvalues appears in the 200th and the 1500th matrix.
Especially for the 1500th matrix, a very large and negative eigenvalue appears. The
smallest eigenvalues in the augmented matrices also change, but in these systems, none of
the eigenvalues are very close to 0. Similar scenario happens for Donghei-B and 10188 too,
with eigenvalues of extreme magnitude appears for (preconditioned) ¥ + Ay matrices.

Changed eigenvalues may have negative effect on the convergence of iterative solvers,
especially when the extreme ones are very large or small in magnitude. In this sense, Y
matrix before augmentation may be well preconditioned by off-line analysis, but when
augmented with Ay, its convergence properties may be compromised due to spectra
changes.

6.4 Deflation in TDS

As mentioned before, both GMRES-E and GMRES-DR require a constant matrix A in the
linear systems, otherwise convergence properties would be compromised. For TDS, we
have both the matrix and the right hand side changing from iteration to iteration. We
expect limited applicability of GMRES-E and GMRES-DR to our problem. Hence we adopt
the GCRO-DR [69] to tackle both changing matrix and right-hand sides. As a reference,
we list the outline of GCRO-DR algorithm. We use A to represents the preconditioned
linear system.

6.4 DEFLATION IN TDS 69
Input: Matrix A, RHS b
Parameter n, m, and k
Deflation vectors U (undefined for the first linear system)
Output: Solution of the linear system, x
Deflation vectors U for the next system
17r=>b
2 if U is defined then
3 QR factorize matrix AU ;
4 C=Q;
5 U=U/R;
6 r=UCHr
7 r=r—CCHyr
8 else
9 Carry out GMRES on Az = b with m as restart value ;
10 Retrieve new solution and residue: x and r ;
11 Solve eigenvalue problem for matrix (H,, + h2, +1,mHn_1H emell) ;
12 Find eigenvectors of the k smallest eigenvalues, denote P ;
13 V=V,P;
14 QR factorize matrix H,,V ;
15 C=VnQ;
16 U=V/R,;
17 end
18 1 =20
19 79 = 7T]
20 9 =T ;
21 while |r|2 > ¢ do
22 t1=1+1;
23 Perform Arnoldi process for m — k steps, with matrix (I — CCH)A, and vy = Mﬁ’ to
retrieve Vy,_pi1, Hyp_p, and B,_, = CHTAV,, . ;
24 Normalize columns of U to retrieve U and scaling matrix D: U = UD ;
25 Vin = [U Vm,k] ;
26 Wit = [C Vieit1] ;
A D Bpk .
27 Gl = [Hmk] ’
28 Solve min||WH r;_1 — Gnylls for y ;
29 T =xi—1+ Viny 5
30 ri =71 — Wint1Gny ;
31 Solve a generalized eigenvalue problem: (GHG,,)x = N(GEWH | V,,)x ;
32 Find eigenvectors of the k smallest eigenvalues, store in P ;
33 V =V,P;
34 QR factorize matrix G, P :
35 C=WpnnQ ;
36 U=V/R;
37 end
38 Return solution x and deflation vector set U ;

Algorithm 9: GCRODR

Unlike GMRES-E or GMRES-DR which require the deflation vectors to be an invari-
ant subspace of the matrix, GCRO-DR stores 2 matrices U/ and C and has the following
requirements:

70 MATRIX SPECTRA DEFLATION FOR TDS 6.4

AxU = C
CHx(C = 1T

U is a collection of (column) deflation vectors. U and C' are both of size n x k, where
k is the deflation vector count.

When deflation vectors are not available, such as the scenario of solving the first
linear system, an Arnoldi process is carried out by solving an GMRES process with only
one restart, to retrieve basic information about Rits values and vectors (line 9 to 16).
Otherwise when such deflation vectors are available as U matrix, it is updated and the
corresponding matrix of C' is constructed to maintain the requirements in Eqs.6.6 (line
3 to 7). As the main body, GCRO-DR has an outer-inner iteration scheme like FGMRES.
The inner iteration is an Arnoldi process (usually in the form of GMRES) with a constant
restart value (line 23). At each restart of the inner GMRES, Hessenberg matrix H,, , on
line 23 is retrieved to form a larger, general eigenvalue problem. Also newly generated
Krylov subspace bases recorded in V,, r.q on line 23, is combined with old deflation
vectors (U). Finally Rits values and vectors are generated based on the combined matrix
of G,, (defined on line 27) by solving a generalized eigenvalue problem. Also the constraint
defined in Eqs.6.6 is kept.

GCRO-DR is mainly governed by 3 parameters: (1) m, the total count of the vectors
in the outer iteration of GCRO-DR, where deflation vectors and newly generated bases are
combined as V, in line 25, (2) k, the count of the deflation vectors, and (3) s, the size of
the vector space dedicated to newly generated Krylov subspace bases, i.e., V,,_; on line
23 and 25. Note that m =k + s.

(6.6)

Updates of U and C' at Startup

When calling GCRO-DR with deflation vector U available from previous runs, one has to
make sure that the relations in Eqs.6.6 still hold. If the linear operator A does not change,
there is no need to change U or C'. Otherwise if A is changed since the solution of last
system with GCRO-DR, one has to go through the lines of 3 to 7 in GCRO-DR algorithm.

If new operator A* can be written in a form as additive change to previous operator
A: A* = A+ A, the calculation of line 3 can be greatly simplified. Now we have:

AU=AU+AXxU=C+AxU (6.7)

If A has much lower rank/sparsity, computing of A*U can be much easier.

In the TDS simulation we formulate each linear system as: Y + Agﬁ'), in which ¢ denote
the i-th linear system. Hence when solving the (i + 1)-th linear system, the matrix can
be written as:

Y+ A = (v + AY) + (A — Al (6.8)

Also preconditioners are always applied, with left preconditioner denoted as M;, and
right preconditioner M,. Hence the A x U in the right side of Eqs.6.7 can be written as:
MU (AVTY —ADYy Mt < U (6.9)

In TDS, Agﬁ') is very sparse and not full rank. Yet it is definitely not very low in rank
(due to the fill-in’s caused by dynamic parts). We choose to combine the operations in
Eqs.6.9 from right to left: firstly calculating M, \U, then applying (Agf“) — A%f)), and

6.4 DEFLATION IN TDS 71

Configuration of A (based on A?) Configuration of C'
Data Type Real Complex
Preconditioner None LU N/A
Operator SpMV | SpMV + fwd/bwd substitution MV
Operation Count | 2 - nnzy 2 (nnza +nnzp + nnzy) 12kn

Acronyms:

SpMV : SParse Matrix-dense Vector multiplication
MYV : dense Matrix-dense Vector multiplication

nnz4 : Number of Non-Zero elements in sparse matrix A

Table 6.5: Comparison of A and overhead in applying (I — CC*)

finally applying M, '. The reason for the ordering is that we expect the structural rank

of (Agﬂ) - Agﬁ')) to be much higher than the column count of U. Computation order
starting from U would benefic overall computation amount.

Implementation Details — Inner Arnoldi Process

Note that the inner Arnoldi process is carried out on the matrix of (I — CCH)A, which is
a more complex linear operator than the original A, which might imply preconditioning
operations. Suppose that left preconditioner (M;) and right preconditioner (M,.) are both
used, while the original unpreconditioned matrix is A°. Hence A = M;\A°/M,. The
iterations with (I — CC™)A should avoid generating the matrix of CC*# due to memory
usage concerns. Then generating the next Krylov subspace basis based on vector v should
be carried out in the following steps:

e Apply M, towv

Apply A° to M, \v

Apply M; to A(M,\v), denote the outcome as u

Apply C¥ to u

Apply C to CHu, denote the outcome as w

e Compute u — w, which is (I — CCH)Av

Computational Characteristics compared with (deflated) GMRES

The change of linear operator from A to (I —CC*H)A incurs per-iteration overhead. If A is
not preconditioned and A has a lower per-row non-zero element count (, e.g., comparable
to k), then deflation will incur a comparatively high overhead, since data in C' would be
accessed twice. In this case, in order to lower the total amount of computation, deflation
should achieve reduction of iteration count by a large extent to offset the overhead it
causes. Otherwise if A contains non-trivial preconditioning operations such as ILU, the
inherent computational complexity of operator A is already high, hence potential problem
of the overhead introduced by deflation is mitigated.

72 MATRIX SPECTRA DEFLATION FOR TDS 6.4

6.4.1 Eigenvalue Choices

On line 12 and 32 in GCRO-DR, the % eigenvalues of the smallest magnitude are chosen
for deflation. This is based on the observation that in many cases, especially for SPD
matrices, “smallest” eigenvalues usually cause convergence problems.

From the analysis above for augmented matrices used in TDS, we know that “large”
eigenvalues always appear for the preconditioned system, despite the fact that the precon-
ditioned system using the non-augmented transformed admittance always have eigenvalues
within a certain, small magnitude. These eigenvalues might be on the negative half of the
complex plane, and their effect on convergence could be much more severe than the ones
with the same magnitude but on the positive axis. Hence for the augmented matrices, we
choose to deflate both smallest and largest eigenvalues.

In this subsection we first briefly review the classical convergence theory of Krylov
iterative solvers, and point out the problem we face with non-normal matrices in TDS.
Next we design heuristics for the selection of Rits values for deflation.

Convergence Behavior versus Matrix Spectra

For classical problems such as Hermitian positive definite matrices, simple yet elegant
theoretical convergence bounds exist, such as arguably the most popular one in [52] shown
in Eqs.6.10, or the less referenced yet tighter bound shown in Eqs.6.11.

[k — @olla VE(A) = 1*
| = 2ol 4 - 2(\//1(A)+1) (610)

In Egs.6.10, | - |4 is the A-norm, and x(A) is the condition number of A, i.e., 2=
Using this boundary, we can simplify the problem of Rits value choices by evaluatnilnng
the minimum condition number as a result of deflation. Suppose that k Rits values are
chosen from [: \; < --- < \;. Then we have k + 1 candidate configurations for deflation
to choose from, with the i-th configuration is to deflate eigenvalues corresponding to the

Rits value set: {\ < -+ < N1, Ngi < -+ < AN} The effective condition number for
(@) _ N—kyioa
A= TN

the ¢-th configuration is: & . We have to find the configuration, i.e., number

of 7 to minimize /{(j), which involves very simple evaluation of k + 1 arithmetic divisions
and comparison operations. Since Eqs.6.10 is an upperbound for the more strict bound
as defined in Eqgs.6.11, the heuristics listed above is not guaranteed to be optimal in this

sense.

|21 — 20| a

< min max |p(\; 6.11
|z —wolla = pO)=1 1<j<n Ip(X)] (6.11)
deg(p)=k

For generally non-normal matrices as the augmented admittance matrices used in
TDS, there exists convergence bound described in [73], as shown in Eqs.6.12.

A —1
Irall _ VRV]

- < k(V) min max |p(\; 6.12
Iroll - p(0=1 ol = V) min - max [p(A;)] (6.12)
deg(p)=k deg(p)=k

Where V' is the eigenvector matrix. Due to that retrieving the full V' matrix is in-
tractable, hence is the analysis of the spectrum of V. Due to the complex formulation of
Eqs.6.12; it is hardly used in practice for convergence analysis. Especially when Arnoldi

6.5 DEFLATION IN TDS 73

process only generates several candidate Rits values, we have to introduce heuristics for
choosing among them for deflation, by taking into consideration of the spectra of non-
normal matrices.

Criteria in Choosing Deflation Eigenvalues

Given a non-normal, full rank real matrix, such as the (preconditioned) matrix ¥ + Ay
in TDS, the eigenvalues might exist on any place on the complex plane except the origin.
The only restriction is that the spectrum is symmetric with respect of the real axis. Also
we do not take any assumption of the right hand sides. We use r to denote the magnitude
of the complex number (r > 0), and 6 the angle of it (—7 < 6 < 7). Then the heuristics
for choosing the eigenvalues should satisfy the following criteria:

e Give eigenvalues that are close to the origin (r < 1) high priority
e Give eigenvalues that are very large in magnitude (r > 1) high priority
e Ignore eigenvalues those are close to (1,0) on the complex plane

We define an evaluation function f which takes a complex number (@) as parameter,
and yields a real number for the evaluation of the preference when a is considered for
deflation. Then f should satisfy the following criteria:

e argmin f(a) =1+ 0¢

o f(a) > f(b), when: r(a) > r(b) > 1
o f(a) > f(b), when: r(a) < r(b) < 1

These criteria are formal definitions for previous descriptions for the standards for
choosing deflation eigenvalues.

Heuristics for Eigenvalue Selection

Based on the criteria above. Here we design the heuristics for choosing eigenvalues based
on eigenvalue positions on the complex plane:

fla) = f(r,0) = (% + r%) (sin % + (3 — 1)2) (6.13)

It is easily verifiable that: (1) f(r,0) is a continuous, differentiable function on the
complex plane, and (2) it satisfies the formal requirements mentioned before.

When |r| < 1, f(r,) approaches that of . When |r| > 1, f(r,) approaches r, which
is caused by the exponent of % The purpose of assuring that f(r, #) approaches r when r
is large is to locate a proper trade-off between very small eigenvalues and very large ones.
Note that the definition of condition number for SPD matrices is ’)\\—’11 where A\, and \; are
the largest and the smallest eigenvalue, respectively. Note the most famous convergence
bound for CG methods is defined over condition number. We expect the behavior of f(a)
is coherent with the definition of condition number, hence the classical theory for CG
convergence bound. The topology of the heuristics on the complex plane is as plotted in
Fig.6.3. Note that the axis for the value of f(a) is in logarithmic scale.

We apply this heuristics to the choice of Rits values for deflation for the preconditioned
Y + Ay matrices arisen in TDS.

74 MATRIX SPECTRA DEFLATION FOR TDS 6.5

Real

Imaginary

Figure 6.3: Heuristics function f(a) on the complex plane

6.5 Combining Deflation and Preconditioner Updates

Preconditioner updates in Chapter 5 and Deflation in this chapter are both separate tech-
niques for speeding up the iteration of solving a sequence of linear systems. However, they
represent approaches from different perspectives. Potentially they can have a combined
effect on the reduction of iteration counts. In this section we propose the use of both in
TDS. The preconditioner update is restated as follows (L*U* is the LU decomposition of
(U +Ay)):

Y & LU (6.14)

Y 4+ Ay ~ LU+ Ay (6.15)
LU + Ay = L(U + L' Ay) (6.16)
2 LU+ Ay) (6.17)

R LU (6.18)

The difference when preconditioner update is introduced is that the linear operators
change with a different formulation. More complex computation is involved when these
two techniques are used together. Note that for each GCRO-DR iteration, if a static, non-
changing preconditioner is used, the process of computing C,.., = AU,;4 can be simplified
to an additive form:

Chew = M7 ' AUM Ugg + Cop (6.19)
But with updated preconditioners, i.e., updated M, and/or M, we have:

Chrew — Colg = Ml;elw AnewM;niw Uota — M[:leoldMil Uotd (620)

Told

g Ml_l ((A + Anew)(Mr + Anew)_l - (A + Aold)(Mr + Aold)_l) Uold
(6.21)

6.6 EXPERIMENTS 75

Note that we use M; and M, to denote left and right preconditioners, instead of
the conventional notation of L and U, mainly to distinguish from the notation of U as
deflation vectors in GCRO-DR.

We can see that instead of the simple form in Eqs.6.19, we have a non-trivial form of
Eqs.6.20, in which: (M, + Ayq) " Usa, (M, + Agg) " Upew have to be carried out with the
application of both A+ Aq and A + A,¢,- This is mainly due to the difference between
the inverse operator of (M, + Ayg) ™! and (M, + Anew) ™t This brings extra computation
overhead if preconditioner updates are used in combination with deflation.

Instead of the additive form of Eqs.6.20, we shall use the formulation as C,,.., = AUy,
as shown in Eqs.6.22.

Cnew = Ml;elwAneer_niw X Uold (622)

g]\4[1 ((A -+ Anew)(Mr + Anew)l) Uold (623)

Compared with Eqs.6.21, Eqgs.6.23 is both simpler in formulation and computation.
Hence we use Eqs.6.23 for implementation.

6.6 Experiment Results

In this section we test the effect of deflation by using GCRO-DR on the augmented Y
matrices with right hand sides retrieved from the TDS simulation process of each test
case listed in Tab.6.1. To evaluate the effect on deflation, we compare it with GMRES
based solving process. Preconditioner configuration used for GCRO-DR and GMRES are
kept the same.

For GCRO-DR, 2 parameters have to be decided: m and k. Parameter m is the
total vector space size, including both deflation vector space and newly generated Krylov
subspace, while £ is the size of the deflation vector space. We use s to denote m — k,
which is the size of the newly generated Krylov subspace, i.e., the restart value of the
inner GMRES/Anorldi process.

We evaluate the basic setting for m and k in Section 6.6.1 by comparing GCRO-DR
and GMRES with the same vector space size. Extra investigation include experiments
with 2 scenarios: (1) when the total vector space size is fixed, i.e., m is fixed, we test the
trade-off between k (the size of the deflation vector space size) and s (the space size for
newly generated Krylov subspace bases); (2) when the newly generated Krylov subspace
size s is fixed, we test the effect of introducing more deflation vectors, i.e., increasing k
hence m. In these tests, we only deflate the eigenvalues of the smallest magnitude. We
denote the first scenario as Subspace Utilization test covered in Section 6.6.2, and the
second one as Progressive Deflation test covered in Section 6.6.3.

To further investigate the effect of deflation, we use Principle Angle Analysis, to
analyze the relationship between deflation vector space and the actual eigenvector space.
By computing the cosine value of the Principal Angles between these two spaces, we
grasp the actual effect on the convergence of Rits values/vectors. Section 6.6.6 covers the
Principal Angle analysis results for a specific TDS case.

Section 6.6.5 includes the results for deflating both large and small eigenvalues by
the heuristics introduced in Section 6.4.1. Thorough the simulation process, the choice
for the eigenvalues are not static. Principle Angle analysis shows the deflation process

76 MATRIX SPECTRA DEFLATION FOR TDS 6.6

Case Solver SpMV count | Averaged SpMV Count
IEEE39-v GMRES(40) 37690 102.1
IEEE39-v GCRO-DR(40,20) 12651 34.3
Dongbei-B GMRES(40) 173828 44.6
Dongbei-B | GCRO-DR(40,20) 122084 31.3

2K-STABLE | GMRES(40) 246471 125.1
2K-STABLE | GCRO-DR(40,20) 208759 106.0

10188 GMRES(40) 312409 308.7

10188 GCRO-DR(40,20) 729206 720.6

10188 GMRES(60) 230878 228.1

10188 GCRO-DR(60,20) | 204501 202.1

Table 6.6: GMRES and GCRODR — Basic Comparison

achieves locating accurate eigenvectors on both ends of the spectrum. Finally, Section
6.6.6 includes the evaluation of Preconditioner Updates (PU) and deflation. These two
techniques have a combined effect on convergence. Lower iteration count is achieved when
compared with PU or deflation alone.

6.6.1 Basic Comparison with GMRES

The restart value for GMRES is set as the total vector space size used for GCRO-DR. For
all the cases, we use 40 as the m value for GMRES and GCRO-DR, we use 20 as the k
value for GCRO-DR. For 10188 case, we also test larger m values. The results are shown
in Tab.6.6. For IEEE39-v, the convergence is drastically improved, mainly due to the
small size of the system and the count of extreme eigenvalues are small compared to the
value of k and s in GCRO-DR. Dongbei and 2K are both mid-sized power grid models.
For their corresponding cases, i.e., Dongbei-B and 2K-STABLE, GCRO-DR can reduce the
total iteration count by 13 ~ 19 per linear system, which account for about 30% and 15%
of the total iteration counts, respectively.

When m is 40, except for 10188, other cases all experienced a drop in iteration count
when GCRO-DR is used instead of GMRES. The reason why the 10188 case shows a rise in
iteration count when using GCRO-DR(40,20) compared with GMRES(40) is that with 20
as the restart value for the inner Arnoldi process for GCRO-DR, stagnation is much more
significant compared with GMRES(40) which has double size in Arnoldi process. Even if
deflation is used, slowing down due to the bad spectrum for the effective deflated system
results in large iteration count. When using larger spaces by setting m to 60, even if
the same value of k is used, compared with GMRES(60), GCRO-DR(60,20) shows a 10%
reduction in iteration count.

6.6.2 Subspace Utilization

With a fixed size for total subspace size, m, increasing the subspace size used for deflation
will in effect decrease the size of the subspace used for new bases. With a small value of
k, too few eigenvalues are deflated to have a profound effect on decreasing the iteration
count. But with a value of k which is too large, there is not enough space to contain
newly generated bases, resulting in potential slowdown or even stagnation. The results in
Tab.6.7 are consistent with the analysis.

6.6 EXPERIMENTS 7

Case Solver SpMV count | Averaged SpMV Count
[EEE39-v GCRO-DR(40,5) 13579 36.8
I[EEE39-v | GCRO-DR(40,10) 10578 28.7
IEEE39-v | GCRO-DR(40,20) 6580 17.8
IEEE39-v | GCRO-DR(40,30) 4915 13.3
IEEE39-v | GCRO-DR(40,35) 5917 16.0

Dongbei-B | GCRO-DR(40,5) 130292 33.4

Dongbei-B | GCRO-DR(40,10) | 123774 31.7
Dongbei-B | GCRO-DR(40,20) | 122084 31.3
Dongbei-B | GCRO-DR(40,30) | 138891 35.6
Dongbei-B | GCRO-DR(40,35) | 204365 52.4

2K-STABLE | GCRO-DR(40,5) | 217106 110.2

2K-STABLE | GCRO-DR(40,10) | 200425 101.7
2K-STABLE | GCRO-DR(40,20) | 208759 106.0
2K-STABLE | GCRO-DR(40,30) | 369860 187.8
2K-STABLE | GCRO-DR(40,35) | 799484 405.8
10188 GCRO-DR(60,5) | 221356 218.7
10188 GCRO-DR(60,10) | 196743 194.4
10188 GCRO-DR(60,20) | 204501 202.1
10188 GCRO-DR(60,30) | 225819 223.1
10188 GCRO-DR(60,40) | 138622 137.0
10188 GCRO-DR(60,50) | 297387 293.9

Table 6.7: Comparison of GCRO-DR and GMRES- constant vector space size

For further comparison and analysis. We carry out experiments on how the size of the
deflation vector space affects overall iteration count. We use GCRO-DR(40,k) to evaluate
the iteration count, by varying the value of k£ from 5 to 35. We expect that with a smaller
k, average iteration count would be high due to that not much info is kept between
iterations, and the scenario will be similar to the GMRES run without deflation. We also
expect that with a very large k (close to m, which is 40 here), the iteration count would
be also high, due to that even if much info is kept from previous runs, the Arnoldi process
will have to restart very frequently, resulting in a higher convergence bound, and even
stagnation. We expect to witness an “optimal” value for the size of deflation vector space,
which yields the lowest iteration count. From the test results shown in Tab.6.7 we can
see for IEEE39-v, Dongbei-B, and 2K-STABLE, such optimal value exists. The larger
the system is, the smaller the optimal value is. For IEEE39-v, the value is between 20
and 35, around 30. For Dongbei-B, the values are between 10 and 30, close to 20. For
2K-STABLE, the value is between 5 and 20, around 10.

6.6.3 Progressive Deflation

We fix GCRO-DR restart value s, i.e., the size of the newly generated Krylov subspace, and
vary the size of the deflation space. Hence m = m’ + k. The purpose of this experiment
is to observe the effect of introducing more deflation vectors on convergence behavior.
Another experiment is carried out to evaluate the effect of adding extra deflation
vector space on iteration count. We use IEEE39-v, Dongbei-B and 2K-STABLE and
test iteration count of GCRO-DR(20+k,k) by varying the value of k from 5 to 35. We

78 MATRIX SPECTRA DEFLATION FOR TDS 6.6

Case Solver SpMV count | Averaged SpMV Count
[EEE39-v GCRO-DR(25,5) 15040 40.8
[EEE39-v | GCRO-DR(30,10) 10989 29.8
IEEE39-v | GCRO-DR(40,20) 6580 17.8
IEEE39-v | GCRO-DR(50,30) 5647 15.3
IEEE39-v | GCRO-DR(55,35) 5505 14.9

Dongbei-B | GCRO-DR(25,5) | 150076 385

Dongbei-B | GCRO-DR(30,10) | 135422 34.7
Dongbei-B | GCRO-DR(40,20) | 122084 31.3
Dongbei-B | GCRO-DR(50,30) | 118829 30.5
Dongbei-B | GCRO-DR(55,35) | 118718 30.4
2K-STABLE | GCRO-DR(25,5) | 289983 147.2
2K-STABLE | GCRO-DR(30,10) | 244178 124.0
2K-STABLE | GCRO-DR(40,20) | 208759 106.0
2K-STABLE | GCRO-DR(50,30) | 201768 102.4
2K-STABLE | GCRO-DR(55,35) | 200184 101.6

Table 6.8: Comparison of GCRO-DR and GMRES- constant non-deflation vector space size

expect diminishing iteration count with larger value of k. The extreme of k£ being n is
that the iteration will converge in 1 iteration, but with prohibitively high overhead of
computing and storing the eigenvectors. Experiments give coherent results, as shown in
Tab.6.8. But the effect of some extra deflation subspace diminishes as the total size of
the deflation subspace grows. Introducing too many deflation vectors would introduce
too much overhead per iteration due to inner products, which is a performance issue and
affects overall execution time even if iteration count is lowered.

6.6.4 Principal Angle Analysis

The effect of deflation depends on how well the predicted eigenvectors match the actual
eigenvectors. If they match each other, their associated eigenvalues are in effect deflated
from the linear system used for Krylov iterations.

One major criterion for evaluating the accuracy of eigenvectors is through observing
directly the relationship between the space consisting of the deflation vectors and that of
the desired eigenvectors, by calculating the principal angles [51] between these two spaces.

The subspace defined by deflation vectors in U is denoted as U, while that formed by
the eigenvectors of the [smallest eigenvalues is denoted as G;. We observe the principal
angles between space U and G;. We evaluate these angles by their cosine values. With
larger [, when the cosine value shows visible decrease from 1, the quality of U as an
approximation to G is lost. We can also estimate how many eigenvalues are effectively
removed by deflation.

Start-up Process

When GCRO-DR is carried out on the first linear system, a boot-up process with GMRES is
carried out to set the initial values for Rits value and Rits vectors. Initial values of U and
C' are set. Afterwards, GCRO-DR iterations are carried out. At each restart of the inner
Arnoldi process of GCRO-DR, U and C' are updated. Initially, the quality of Rits values

6.6 EXPERIMENTS 79

and U are poor as estimations to the eigenvalues and eigenvectors to the matrix. This
can be reflected by large principal angles between U and G;. As GCRO-DR progresses, U
gradually becomes better estimation of subspace generated by eigenvectors of the smallest
eigenvalues.

Here we record the cosine of the principal angles between U and G; at each restart
of the Arnoldi process for GCRO-DR. 2K-STABLE is used as an example. GCRO-DR
configurations are: m = 40, k = 20, ILU-C(1072) preconditioner for Y is used. Results
are shown in Tab.6.9.

For simplicity, the cosine values of principal angles up to [= 5 are shown. With each
restart, the principal angles decrease. Before calling GCRO-DR, only a GMRES process is
carried out for the initial estimation of eigenvectors. Hence the cosine of the principal
angle between U and G; before any GCRO-DR iterations is as low as 0.634. With each
restart of inner iteration of GCRO-DR, the cosine of the principal angle between U and G;
gradually approaches 1, while those for G; with ¢ > 1 also increases.

Stationary Status

In this subsection we investigate the principal angles at stationary status during the
simulation. When the principal angles approach 0, less change would be witnessed for the
principal angles due to the fact that deflation is stable. Due to the large number of total
linear systems, most of the simulation would be under stationary status.

Here we record the cosine of the principal angles when the deflation enters stationary
status. The results are shown in Tab.6.10.

We only show the cosine of the last 5 principal angles between U and G, since the
quality of U is mainly reflected by the value of [when the principal angle grows evidently
above 0. Note that we use GCRO-DR(40,20) for all 3 cases shown in Tab.6.10, i.e., k = 20.
We can see that for none of the 3 cases, deflation manage to grasp the full 20 smallest
eigenvalues. But deflation does manage to estimate the eigenvectors which correspond to
the smallest eigenvalues, resulting in significant decrease in iteration count as in Tab.6.6.

6.6.5 Deflation of Largest and Smallest Eigenvalues

Overall effect of deflating both largest and smallest eigenvalues based on Heuristics is list
in the experiment results in Tab.6.11.

Analysis — Choice Distribution among Extreme Eigenvalues

The choice among largest and smallest eigenvalues of each case is listed in Tab.6.12.
GCRO-DR configurations are the same as in Tab.6.11.

The reason that not all chosen eigenvalues are among the extreme ones in the spectra
is that the heuristic does not work solely on the magnitude of the eigenvalues. This is
true especially for eigenvalues around (1 + 07), and when eigenvalues exist on the left side
of the imaginary axis, i.e., with negative real parts.

Principal Angle Analysis

Hereby we analyze the principal angles of between the subspace corresponding to large/small
eigenvalues and the deflation vector space U. Suppose that by Heuristics, k; is the count
of the smallest eigenvalues to be deflated, and ko that of the largest ones. ki and ko are

80

MATRIX SPECTRA DEFLATION FOR TDS

1

2

3

4

5

Before GCRO-DR

0.63356

0.93953
0.59870

0.99603
0.67325
0.18759

0.99933
0.67811
0.19086
0.14840

0.99951
0.70298
0.21374
0.16182
0.07515

1st restart

0.88727

0.98999
0.80252

0.99793
0.96081
0.10734

0.99996
0.96770
0.15461
0.06493

0.99998
0.97541
0.20954
0.14655
0.03897

2nd restart

0.91317

0.99946
0.81993

0.99950
0.99214
0.11787

1.00000
0.99796
0.18100
0.09991

1.00000
0.99874
0.45216
0.17328
0.04538

3rd restart

0.91636

0.99995
0.82403

0.99997
0.99368
0.15190

1.00000
0.99985
0.18643
0.12609

1.00000
0.99993
0.63895
0.17327
0.11791

4th restart

0.95359

0.99998
0.90276

1.00000
0.99389
0.65199

1.00000
0.99999
0.65331
0.16130

1.00000
1.00000
0.86897
0.50758
0.13789

5th restart

0.99415

0.99999
0.98737

1.00000
0.99415
0.97086

1.00000
1.00000
0.97202
0.16827

1.00000
1.00000
0.98439
0.79548
0.13259

6th restart

0.99811

1.00000
0.99560

1.00000
0.99846
0.99266

1.00000
1.00000
0.99814
0.16160

1.00000
1.00000
0.99834
0.88554
0.14035

Table 6.9: Principal Angle results — Startup Process Analysis

6.6

6.6

EXPERIMENTS

Lt | 2 |

5 |

10 |

14 [20

1.00000
0.99999
[EEE39-v

1.00000
1.00000
0.99993
0.99989
0.99977

0.99988
0.99985
0.99981
0.99971
0.99947

0.99978
0.99966
0.99957
0.99944
0.99914

0.99956
0.99934
0.99922
0.99878
0.99803

1.00000
1.00000
2K-STABLE

1.00000
1.00000
1.00000
1.00000
0.99981

1.00000
1.00000
0.99999
0.99971
0.99789

0.99999
0.99995
0.99871
0.99757
0.98383

0.99456
0.98672
0.96481
0.93734
0.84372

1.00000
1.00000
Dongbei-B

1.00000
1.00000
1.00000
1.00000
0.99910

1.99996
1.99987
0.99961
0.99751
0.99521

0.99964
0.99899
0.99789
0.99414
0.98674

0.99411
0.98841
0.98551
0.97744
0.93427

Table 6.10: Principal Angle results — Stationary Status

Averaged Averaged

Case GCRO-DR fteration Count [teration Count Reduction

Configuration (smallest (with heuristics) Ratio
eigenvalue only)

IEEE39-v | GCRO-DR(40,20) 17.9 16.1 10.1%
2K-STABLE | GCRO-DR(40,20) 106.0 85.6 19.2%
Dongbei-B | GCRO-DR(40,20) 31.3 32.7 - 4.5%
10188 GCRO-DR(60,30) 223.1 185.9 28.1%

Table 6.11: Effect of deflating both small and large eigenvalues

Eigenvalues

Case Phase Largest aémallest Other
1 6 13 1
2 2 18 0
[EEE39-v 3 0 920 0
4 2 16 2
2K-STABLE | None 20 0 0
Dongbei-B | None 16 2 2
1 30 0 0
10188 2 29 1 0
3+ 28 2 0

Table 6.12: Choice among extreme eigenvalues

MATRIX SPECTRA DEFLATION FOR TDS

1 2 5
i 5 10 14 20
0.99999 | 0.99994 | 0.99984 | 0.99930 0-99960 gggggg 8338?3
0.99998 | 0.99991 | 0.99967 | 0.99908 . 0.20346
0.99995 | 0.99988 | 0.99947 | 0.99871 0.19420
0.99989 | 0.99945 | 0.99934 | 0.00055 0'09384
0.99975 | 0.99930 | 0.99904 | 0.00016 -
. IEEE30-v: analysis between & and G b. IEEE39-v: analysis between U
and H,
5 10 14 20 : 257 7
1.00000 | 1.00000 | 0.99996 | 0.99996 8.13126
1.00000 | 0.99996 | 0.99995 | 0.99995 0.05325
1.00000 | 0.99996 | 0.99893 | 0.99893 0.04028
0.99993 | 0.99993 | 0.99927 | 0.99927 0.03240
0.99763 | 0.99764 | 0.99763 | 0.99763 -

c. 2K-STABLE: analysis between U/ and G,

and Hy,
1 2 5
Bl 5 10 14 20

HO 188888 188888 1.00000 | 1.00000 | 1.00000 | 0.99986
0.14716 1.00000 | 1.00000 | 1.00000 | 0.99930

0.12705 1.00000 | 1.00000 | 1.00000 | 0.99514

0.04813 1.00000 | 1.00000 | 0.99916 | 0.09522

1.00000 | 1.00000 | 0.99678 | 0.05970

6.6

d. 2K-STABLE: analysis between U/

e. Dongbei-B: analysis between U

and G, f. Dongbei-B: analysis between U and Hy,

Table 6.13: Cosines of the principal angles between U and eigenvector spaces (G, and Hy)

decided by the Rits values and the Heuristics. The ideal case is that U fully contains
both the subspace defined by the eigenvectors of k; smallest eigenvalues and the subspace
defined by the eigenvectors of ko largest ones.

Following the definition of G; as the subspace defined by the eigenvectors of the [
smallest eigenvalues, we define H; as the subspace defined by the eigenvectors of the k
largest eigenvalues. We evaluate at stationary status in the simulation, the cosine values
of: (1) the principal angles between U and G;, and (2) the principal angles between U and
Hy. By varying the values of [and k, the precision of U hence the quality of deflation
vectors can be retrieved. Results are shown in Tab.6.13. Note that similar to Tab.6.10,
we only show the value for the last 5 of the principal angles, to demonstrate the number
of eigenvalues deflated.

We show that principal angle analysis in Tab.6.13 is coherent with the smallest /largest
eigenvalue configuration listed in Tab.6.12. Tab.6.13.a and Tab.6.13.b show that for
[EEE39-v, exactly 2 smallest eigenvalues are deflated, and around 17 largest eigenval-
ues are deflated. This is coherent with the setting in Tab.6.12 in which for IEEE39-v
has 2 smallest, 16 largest, and 2 other eigenvalues chosen for deflation. The results for
2K-STABLE and Dongbei-B are consistent in both tables under similar examinations.

6.7 SUMMARY 83

Case Precondlthner None | PU of ® | Deflation | Both
Configuration

2K-STABLE [LU-C(1072) | 166.20 38.33 111.71 33.78

2K-UNSTABLE | [LU-C(10° %) | 153.67 | 57.39 10453 | 37.45
Dongbei-B [LU-C(10°2) | 50.93 | 34.26 3541 | 23.12
Dongbei-F [LU-C(10 %) | 5151 | 34.46 35.44 | 23.55

10188 ILU-C(10%) [28845 | 191.31 | 133.37 | 109.53

For 2K-STABLE, 2K-UNSTABLE, Dongbei-B and Dongbei-F,
GMRES(40) and GCRO-DR(40,20) are applied. For 10188,
GMRES(60) and GCRO-DR(60,30) are applied.

Table 6.14: Effect of combining preconditioner updates and deflation

6.6.6 Deflation with Preconditioner Updates

In Tab.6.14 we show the results of combining preconditioner updates and deflation with
GCRO-DR. Note that we use non-pivoting ILU-C preconditioners now to utilize the pre-
conditioner update strategy @ proposed in Chapter 5.

Overall, we use: (1) form @ of preconditioner updates, and (2) deflation based on
heuristics of Rits values, which may be largest and smallest in magnitude. We consider
two more TDS cases, i.e., 2K-UNSTABLE and Dongbei-F for comparison. Tab.6.14 show
that Preconditioner Updates and Deflation can both reduce iteration count drastically.
When used together, Preconditioner Update and Deflation have a combined effect in
reducing the overall iteration count.

6.7 Summary

Deflation can be adopted to accelerate the simulation of power systems. By formulating
the TDS into a problem of solving a sequence of linear systems with additive changes to
the matrix. Proper choice among deflation algorithms is necessary, in which GCRO-DR
suites our needs best in that it can both handle changes to the linear operator and right-
hand side vectors. Deflation should be used in combination with preconditioners, in that
deflation cannot handle too many extreme eigenvalues due to high memory usage when
m is impractically large. Since deflation vector and associated Rits value and eigenvalue
of the original matrix has a 1-to-1 matching relationship, too many extreme eigenvalues
would hamper the effects of deflation. With the treatment of preconditioners, extreme
eigenvalues do appear for TDS problem, but at a very low quantity. We show that when
used with a static preconditioner derived from admittance matrix, deflation results in up
to 30% reduction in iteration count, compared with GMRES.

Additive form of linear operators in TDS simulation as proposed in Chapter 5 also
enables more computationally feasible deflation with GCRO-DR. With a non-changing
preconditioner, when GCRO-DR reuses information from previous runs, computation could
be further reduced by calculating the additive part in AU based on the additive form of
A as proposed in Chapter 5.

We also show through detailed analysis of the preconditioned matrices in TDS: when
static preconditioner is applied to augmented linear systems, eigenvalues with large mag-
nitude tend to appear. Based on this, we proposed heuristics which can handle extreme

84 MATRIX SPECTRA DEFLATION FOR TDS 6.7

eigenvalues which are either small or large in magnitude. Experiments show that itera-
tion count could be further reduced by up to 30%, compared with GCRO-DR which only
deflates smallest eigenvalues.

In Chapter 5 and this chapter, multi-step techniques have been proposed to speed
up the solution of a series linear systems based on dynamically changing Jacobian ma-
trices. They represent different approaches in multi-step simulation, with the approach
in Chapter 5 targeting at preconditioner quality and deflation targeting at iterative solv-
ing algorithm. These two techniques both depend on the formulation of Y 4+ Ay of the
Jacobian matrices for the use of dishonest preconditioner and computationally feasible
GCRO-DR algorithm. Also, when combined, Preconditioner Updates and Deflation have
a joint effect on further reduction of the iteration count in TDS process. However, as a
side-effect, higher overhead in each GCRO-DR startup process would ensue due to precon-
ditioner changes. How to combine these two techniques in a more computationally-more
effective way remains a challenge and serves a future research direction beyond this thesis.

Chapter 7

Sparse Matrix-Dense Vector

Multiplication Optimization on GPU
and CUDA

7.1 Introduction

Sparse Matrix and dense Vector multiplication (SpMV) involves the following operation :

y=y+Axux (7.1)

Where A is a sparse matrix of size n x n and z and y are dense column vectors of size
n. SpMV is an important computational kernel used in many scientific applications which
relies on matrix-vector products. In this chapter we consider the optimization of SpMV on
Graphics Processing Units (GPU) architecture. The techniques discussed in this chapter
also serve as the supportive technology for the approximate inverse based preconditioners
in Chapter 8.

7.1.1 Krylov Solvers and Sparse Matrix-Vector Products (SpMV)

Krylov subspace solvers such as GMRES, CG , BiCGSTAB, etc, rely on the generation of
Krylov subspace bases of the form:

{7"0,147"071427"07 . ,Amil'f’o} (72)

Where ry is the initial residue. Matrix A is usually large and sparse. Total count
of non-zero elements in A, denoted nnz, is low compared with n?, where n is the size
of A. The generation of Krylov subspace involves the computation of a series of Sparse
Matrix-Dense Vector products (SpMV).

SpMV also plays a central role in preconditioners that are based on inverse forms. Pre-
conditioning operations with these preconditioners usually are SpMV operations. Because
preconditioners play a crucially important role in the convergence of Krylov solvers, SpMV
is an important computational kernel in this sense.

The main part of this chapter is published as conference paper [88] and journal paper [89]. Relevant
contents are also included in [86] and [91].

85

86 SPMV OPTIMIZATION WITH CUDA 7.2

7.1.2 SpMV- State of the Art

In SpMV, each non-zero element in the sparse matrix A is accessed only once. The values
of the elements in A, x and y are usually floating point numbers, either single-precision
or double-precision. Hence, in total, SpMV involves 2nnz floating point operations (a
multiplication and an addition are counted as 2 operations). Because are 2nnz-+n elements
accessed and there is no reuse of the information of the matrix, SpMV has a very low
computation/data ratio (close to 1). In terms of performance profile, the operation of
SpMV is memory intensive and the performance is memory bandwidth bound.

Performance analysis and optimizations of SpMV have been discussed in many works.
Most of them focus on the reduction of the amount of data involved in accessing the
matrix. These techniques include: (1) Register Blocking and similar ones [79, 83, 37],
(2) Sparsity Pattern-based compression [82, 32|, and (3) data-based compression [57].
Register Blocking is the most popular technique, in which small dense blocks of the matrix
are recorded and accessed, rather than single elements. This reduces the access to the
row/column index information of the non-zero elements. Another important optimization
with Register Blocking is SIMDization, enabled by unrolling of the inner-block iterations.
Also in traditional CPU-oriented era, due to the readily available cache support, the re-use
in the dense vector x is taken care of implicitly by the hardware.

Because of the growing adoption and popularity of accelerated platforms, especially
GPUs, there have been recent works on porting SpMV to these platforms [83, 33, 43]. In
[37] and various other works SpMV is used to construct CG solvers using GPU platforms.
In [43] the authors applied Register Blocking to SpMV on GPU. In [33, 43|, the authors
show that unlike conventional CPUs, effective utilization of the high memory bandwidth
of GPUs require carefully choosing the proper matrix formats based on the matrix sparsity
pattern and detailed tuning.

7.1.3 Outline

This chapter focuses on optimization of SpMV on GPU platforms based on ELLPACK
format. The optimization techniques includes: (1) assembly-level utilization of the cache
features on new GPUs, and (2) optimization in favor of enhancement to locality in ac-
cessing dense vector x. The chapter is organized as follows. Firstly a brief introduction
to the cache architecture on NVIDIA GPUs in Section 7.2, which is the focus of the per-
formance optimization proposed in this chapter. Most-up-to-date GPU architecture, i.e.,
GF-100 series GPUs and relevant features are also included. In Section 7.3 we further
analyze the state-of-art SpMV implementation on CUDA, focusing on its performance
characteristics and ELLPACK formats related SpMV. Section 7.4 focuses on the caching
of the dense vector in SpMV and proposes caching strategies on new GPU architecture
with better caching support. Section 7.5 proposes matrix profile reduction based SpMV
optimization. Reduction in matrix bandwidth enables enhancement of performance in 2
folds: (1) enhanced effect for caching of the dense vector, and (2) reduced matrix data ac-
cess by column information compression. Performance evaluation of various optimization
techniques is included in Section 7.6. Section 7.7 concludes the chapter.

7.3 GPU CACHE SYSTEM 87

SM SM

L1 Texture L L1 Texture
L1 Texture Cache e L1 Texture Cache Cache Cach e Cache
[/

OE

Data
-ache

@

\ \l e /

[[|
/ LR]

‘ 12 Tosurs Cache ‘ “es ‘ L2 Torrs Cace ‘ - -

Memory Bank 1

Memory Bank N

Memory Bank 1

a. Cache on GT-200 b. Cache on GF-100

Figure 7.1: Schematic comparison between cache organization on GT-200 and GF-100

Memory Bank N

7.2 Cache System on GPUs

In Chapter 3 a brief introduction to CUDA platform and GP-GPU was given. Here we
relist relevant GPU architecture details in Tab.7.1. We focus on the Cache subsystem.
Cache is a small amount of memory on CPU/GPU as temporary buffer for data in the
main memory. Compared with main memory, caches have very low access latency and
high bandwidth. Caches are designed to tackle the problem of “memory wall”: accessing
the off-chip memory is long in latency and the total bandwidth is limited. The cause
of the problem is mainly due to: (1) the packaging limitation, i.e., pin-out area of the
processor, and (2) thermal limitation. To alleviate this problem, traditional CPU uses
hierarchies of caches. Current CPU chips usually dedicate over 50% of the total silicon
area to caches. On the contrary, GPUs have always dedicated major part of the on-chip
resource to execution units. Before GF-100, there is no writable cache on the NVIDIA
GPUs: the cache is small in size and only used for read-only data such as texture and
not optimized for access speed. GF-100 introduces writable 2-level caches with large sizes
with much lower latencies. Tab.7.1 shows the timing details of Caches on GPU. Fig.7.1
also shows the schematic comparison between GT-200 and GF-100 series of GPUs.

We can see in Tab.7.1, access through texture caches in both GT-200 and GF-100
GPUs are comparable in latency to accesses to the main memory. On the contrary, for
GF-100, access through data caches is of an order lower latency than the main memory.

7.3 SpMV on CUDA

This section focuses on the existing popular approaches for SpMV on CUDA and GP-GPU
platforms. Matrix storage format has a fundamental impact on SpMV implementation.
ELLPACK format, as a memory bandwidth friendly format in CUDA, usually shows best
performance. In this section a brief introduction to the relevant formats is given. After
that, extensive performance analysis of ELLPACK based SpMV on CUDA is given.

7.3.1 Sparse matrix formats and SpMV

There are many popular storage formats for Sparse Matrices, among them Diagonal format
(DIA) [72], Compressed Sparse Row (CSR), Coordinate format (COO), ELLPACK [53],
and Hybrid format (HYB) [33]. To illustrate different formats, a sample matrix of size
4x4 is shown. The red labels are column indicators, and the blue ones are for rows. Note

88 SPMV OPTIMIZATION WITH CUDA 7.3

Series GT-200 GF-100
GPU Year 2008 2010
Name Tesla C1060 GeForce GTX-480
Memory Bandwidth ~80 GB/s ~115 GB/s
Size 16/48 KB per SM
L1 Data Cache Hit Latency N/A 80 cycles
Size 768 KB
1.2 Data Cache Hit Latency N/A 212 cycles
Size ~ 5KB per SM 12 KB per SM
L1 Texture Cache Hit Latency 258 cycles 220 cycles
Size 256 KB None (unified Data Cache)
L2 Texture Cache | Hit Latency 366 cycles 427 cycles
Miss Latency 547 cycles 632 cycles
Size 4 GB 1.5 GB
Global Memory Latency 506 cycles 319 cycles

Table 7.1: Quantitative comparison between GPU architectures

that indices are zero-based. The storage schemes in various matrix formats are shown
below.

0123
0|1 70 0
110 2 8 0
215 0 3 9
310 6 0 4

For DIA format, elements are stored according to their positions in the diagonals. In
ELLPACK, suppose that there are at most m non-zero elements per row, then column
indices and actual values are to be recorded: each row corresponds to a row in “col_indices”
and “data”. In each row of “col_indices”, the column indices of each non-zero element
in the corresponding row of the matrix are recorded. Structure “data” records values in
a similar way. Hence “col_indices” and “data” are both of n x m size, where n is the
matrix row count. Note that “data” array in both DIA and ELLPACK are recorded in a
column-wise way, i.e., elements in each column are stored in adjacent positions. Also in
these two formats, starred elements in the “data” array represent padding. CSR format is
the most widely used format. COO format extends the “row_ptr” part of CSR, to contain
actual row indices of corresponding non-zero elements. HYB format is a format designed
in [33] to combine ELLPACK format and COO format, to avoid too much padding if
the matrix is stored in ELLPACK only. It contains: (1) an ELLPACK-based part with
size n X m’ where m’ < m, and minimal padding, and (2) a COO part to contain those
elements that cannot be contained ELLPACK, i.e., the j-th non-zero element in each row
where j > m/. In the simple matrix example above, we set m = 2, then there is only one
element at position (2,3) in the original matrix contained by COO part.

Fig.7.2 shows the storage scheme of various matrix formats for the 4 x 4 matrix above.
Note that for ELLPACK format m is 3, while for HYB format m is 2. All row and column
indices are zero based.

7.3 SPMV ON CUDA 89

DIA format:))
x 0 7
. x 2 8
diag_offsets = [—2 0 1} data = 53 9
6 4 x*
ELLPACK format: i i
01 = 1 7 %
. 1 2 * 2 8 «x
col_indices = 02 3 data = 53 9
1 3 % 6 4 =
CSR format:))
row_ptr = [O 2 47 9]
col_indices = 011202313
data = 17285396 4
COO format:]
row_indices = _O 01122 2 3 3_
col_indices = _O 1120 2 31 3_
data = 1 72 8 5 39 6 4
HYB format:))
01 1 7 COO_row_indices [2]
L 2 2 8 =
ELL_col.indices = 0 2 ELL_data = 5 3| COO. colindices — B}
1 3 6 4 COO_data =

Figure 7.2: Matrix storage formats.

¢ =
! N
2
P P,
3 ‘ Thread 1 }[00[Jio[20[3p[40[o[60
L 4 Thread 2 e: 01 :1 21(30|41(51 |61
T Thread 3 |02 i2 22(32|42|%2|62
‘ 3 Thread 4 -): 03[h3[23[3B]43|ds]es
:‘ 6 ‘ ‘ Thread 5 |04 |04 |24[34]44]54 64
‘ 7 l: Thread 6 |05 §5|25|3b[as[§5[65
8 ‘ Thread 7)| 06[6]26]3b| 45|46 66
- Thread 8 i [07|§7[27[ar[47[57[67
o Thread 9)| 08[}8[28]af[48]Fs 68
A Thread 10 e: 09 :lg 29|3b(49(89 (69
Thread 11 > [0A| jA|2A[3A|4A[§A[6A
—L 5 — Thread 12)| 08[}8[28[5[48§68
c Thread 13 !|0C|uc|2c|ae]ac|sc|ed]
} D Thread 14 | 00| iD|20[ab|40|40]eD
] E Thread 15 —): BIBEEIEERE
Thread 16 > [OF |#F|2F[3F|4F[sF|6F
N | v Lo sFlerfatferfs

*n =16, m =7, nnz = 67, Padding= 45, ELLPACK Efficiency: 60%.

Figure 7.3: Sample matrix sparsity pattern and its storage scheme in ELLPACK.

90 SPMV OPTIMIZATION WITH CUDA 7.3

7.3.2 Analysis of ELLPACK format

In SpMV with ELLPACK format, each row of the matrix is assigned to a CUDA thread.
In each thread, there is an iteration over m. The thread first identifies itself and the row
it is assigned to, using the thread identity. Then it iterates over the m non-zero elements
in that row. The pseudo code for a CUDA thread is shown below. At each iteration,
the thread will access the x vector by the column index of the non-zero element, i.e.,
col is the column index and used as an offset to access z vector. The main reason for
high performance of ELLPACK format lies in the coalesced memory access enabled by
ELLPACK format. We will consider this issue and other performance profile of SpMV in
the following sections.

FUNCTION spmv_ell_kernel(Aj, Ax, y, STRIDE)
GENERATE row;
sum = y[row 1;

Aj = Aj + row;

Ax = Ax + row;

FOR i =0 tom-1
val = *Ax;

IF val '= 0.0
col = *Aj;
sum = sum + val *x x[col];

END IF

Aj = Aj + STRIDE;

Ax = Ax + STRIDE;

END FOR
y[row] = sum;
END

Effect of Coalesced Memory Accesses

The high performance of ELLPACK-based SpMV relies on the effect of coalesced memory
accesses. Fig.7.3 shows a sample matrix of size 16 x 16 and its storage scheme in the
main memory. Each row of the matrix corresponds to a row in the storage scheme on
the right. The actual relative positions in the memory of each stored element are also
shown. Highlighted are the actual visited memory locations for the first and the fifth
non-zero element in each row. Each row is assigned to a CUDA thread, it is immediate
that adjacent threads in a warp are accessing adjacent memory positions. This results in
coalesced accesses where the accesses to these positions can be combined in a single global
memory access. Since SpMV is mainly dominated by accesses to the off-chip memory, this
access pattern is crucial in improving the overall performance of global memory accesses to
values in Aj and Ax and that of SpMV. If the initial address of the Aj and Ax are aligned
to 128 byte boundaries, one still has to guarantee that accesses to 2nd, 3rd non-zero
elements in each row are aligned. An easy solution for this is to use the actual row count
as n’, where n’ < n and n’ can be divided by 16 exactly. n’ corresponds to the STRIDE
variable in the pseudo code. In this way, the accesses to the i-th non-zero element in each
row are coalesced. In the example in Fig.7.3, since the row count is already a multiply of
16, there is no padding row at the bottom of the storage scheme.

7.3 SPMV ON CUDA 91

Matrix " - ELLPACK ELLPACK
Occupancy (%) | Efficiency (%)

FEM/Cantiliver 62451 4007383 99.7 85.3
FEM /Sphere 83334 | 6010480 100.0 89.0
FEM/Accelerator | 121192 | 2624331 82.8 78.0
Economics 206500 | 1273389 81.1 71.4
Epidemiology 525825 | 2100225 100.0 99.9
Protein 36417 | 4344765 96.0 83.0
WindTunnel 217918 | 11634424 99.4 98.3
QCD 49152 1916928 100.0 100.0
FEM /Harbor 46835 | 2374001 81.3 74.9
Circuit 170998 | 958936 78.2 87.7
Web 1000005 | 3105536 64.2 99.7

Table 7.2: Test matrices for SpMV— Characteristics.

Padding and Efficiency

Fig.7.3 also shows the padding in the ELLPACK format. Grey part in the storage scheme
contains actual non-zero elements, while white part indicate necessary padding. If the
matrix is to be recorded in ELLPACK format, n’ x m memory space should be allocated,
where m is the maximum number of non-zeros in each row. One can calculate the actual
storage efficiency of the ELLPACK format by dividing nnz by n’ x m. The efficiency of
the matrix in Fig.7.3 is 60%.

To accommodate situations where non-zero element counts in rows vary significantly,
HYB format is proposed in [33]. Based on static performance proportion for ELLPACK
format and COO format, HYB hits an trade-off point by finding the value for m where
the overall performance is the best. If m is found, then elements that can be contained
in ELLPACK, i.e., the first m non-zero elements in each row, while others are contained
in another part recorded in COO. In HYB, the original matrix is in effect split into 2
sub-matrices, one recorded by ELLPACK, while the other by COO format.

We use the default model for splitting ELLPACK and COO used in [33]. We also con-
sider the matrix test suite used in [33, 83] for the performance evaluation. The summary
of these matrices in the suite is listed in Tab.7.2. The percentage of the actual non-zero
element count recorded in ELLPACK in nnz, and the storage efficiency of ELLPACK
data are also shown.

Effect of GPU Occupancy

CUDA programs usually have many thousands concurrent threads executing at the same
time. For memory intensive applications such as SpMV, it is crucially important that
computation latency be hidden in the global memory accesses. One basic yet important
criteria for optimal latency hiding is the occupancy: the proportion of the actual concur-
rent threads count on and the hardware limit of total concurrent thread count. For SpMV,
100% occupancy can be easily achieved through setting the thread block size as: 128 (or
256, 512) for GT-200 and 192 (or 256, 384, 512) for GF-100. (Calculated according to
Tab.7.1). With other thread block sizes, lower occupancy lower than 100% will occur.
Experiments show that lower occupancy always results in lower performance. In this sec-

92 SPMV OPTIMIZATION WITH CUDA 7.4

Single-Precision ‘ Double-Precision
Load column index 506
Load matrix value 506
Hit-1 220
Load value in z Miss-1 427
Miss-2 632
MAD Warp Latency 24 cycles 48 cycles
Issue Rate 4 cycles 32 cycles

Hit-1 : threads in the same warp all hit in the same line in L1 TC

Miss-1 : threads in the same warp all exist in an missing L1 TC line, which is
found in L2 TC

Miss-2 : threads in the same warp all exist in an missing L.L1 TC line, which exists
in main memory (i.e., missing in L2 TC too)

Table 7.3: Assembly-level Timing Analysis in GT-200

tion, all thread block sizes are set to 256, to ensure 100% occupancy across GT-200 and
GF-100 GPUs.

7.4 Caching Vector r in SpMV— Analysis and Opti-
mization

7.4.1 Caching on GT-200

The GT-200 architecture is an example of GPUs without full cache support. There are
3 hardware mechanisms that can be used for caching the dense vector x on GT-200
architecture:

1. Use texture cache and treat x as a 1-D texture
2. Use constant cache, by decorating x as a constant
3. Use Shared Memory as a software-managed cache

Approach 1 is chosen by [33]. Approach 2 is virtually limited by the small size of the
constant memory space, which for all NVIDIA GPUs is 64KB. This translates to 16384
single-precision numbers or 8192 double-precision ones. Since usually the value of n, i.e.,
the length of z is large, constant cache is not sufficient to contain x hence cannot be used
for caching. Approach 3 requires software management of ShMem contents and according
to our experiments and according to indication in [43], it introduces too much overhead
in codes that dedicated to management of the cache. Hence we do not consider Approach
2 and Approach 3 in this thesis. We analyze the effect of caching of = through Texture
Cache to a finer detail, to study the effect of long latency of the Texture Cache on the
overall performance of SpMV. The quantitative timing of the latency for accessing the
main memory, texture cache and MAD operations are listed in Tab.7.3.

In order to quantitatively investigate the effect of caching of SpMV, we breakdown the
computation of SpMV into 2 parts: (1) reading of non-zero elements, including index info

7.4 CACHING IN SPMV 93

‘ Matrix ‘ tpseudo_:v ‘ tall ‘ t:v in tall ‘
FEM/Cantiliver 0.493 | 0.530 7.1%
FEM/Sphere 0.604 | 0.658 | 8.2%
FEM/Accelerator | 0.470 | 0.624 | 25.7%
Economics 0.421 | 0.508 | 17.1%
Epidemiology 0.275 10.324 | 15.1%
Protein 0.652 | 0.703 7.2%
WindTunnel 1.203 | 1.246 | 3.4%
QCD 0.190 | 0.207 8.4%
FEM/Harbor 0.428 | 0.448 4.5%
Circuit 0.231 | 0.310 | 25.4%
Web 0.719 | 0.956 | 24.8%
Geo-Mean 13.1%

* Single precision is used. All time values are in ms. Percentage values of the 4 and 6-th
column show the proportion of the time spent in accessing x in corresponding SpMV
operations. Either ELLPACK or HYB is used for matrix storage; ELLPACK is used

when feasible.

Table 7.4: Performance results of SpMV when a pseudo vector of x is used for GT-200.

and value info, reading and writing of y vector, computations (i.e., MAD operations),
and (2) reading of elements in x. Since SpMV is mainly memory bandwidth bound, we
only focus memory operations in both parts. Part (1) includes all deterministic memory
accesses: reading to indices and values of non-zero elements are coalesced; reading and
writing of y vector are also coalesced (guaranteed when thread block size is the power of
2). Part (2) includes non-deterministic memory accesses: offset into = can be random,
and there is no guarantee that they are coalesced or hit in Texture Cache.

To measure the timing of both parts, we use a pseudo = vector with each element as
a pre-defined constant value. Hence the access to x now can be hardwired into codes,
avoiding access to the actual off-chip dense vector. Then the time required to access dense
vectors (denote as t,) can be calculated as:

ty = tan — tpseudo_:v (73)

Where t,; denotes the time required to perform SpMV with a normal, non-pseudo x
vector, and tpseudo for that of SpMV with a pseudo vector. Tab.7.4 II shows the results
for Berkeley test suite. Single Precision operations are used. t,; is the time for an SpMV
operation with z vector cached by TC. On average about 13% of the time of SpMV is
spent in accessing x.

7.4.2 Caching Optimization on GF-100

As noted in Tab.7.1, with the evolution of the new architecture, NVIDIA has been im-
proving the architecture of GPUs and programming interface (CUDA). New architecture,
called GF-100, has dramatic improvements in the memory subsystem. The overall im-
provement reflects the trend of merging of conventional CPU architecture and GPU ar-
chitecture in programmability, i.e., unified and addressable memory space, coherent cache

94 SPMV OPTIMIZATION WITH CUDA 7.5

hierarchy, etc. They can be summarized into three categories: (1) cache size improve-
ments, (2) much lower access latency to caches, and (3) cache coherence.

For SpMV, there is no re-use of matrix data or y vector data, and there exists only the
re-use of x vector data which is read-only. Hence we do not need cache coherency. Larger
caches will benefit hit ratio when accessing x, and lower latency for accessing the cache
is also beneficiary for latency hiding as mentioned in previous part of this chapter.

While larger caches benefit hit ratio by reducing capacity misses. Unlike in previ-
ous generations, all data accessed are filtered through cache by default. This results in
conflicts between matrix data and z data when using a popular LRU (Least-Recently-
Used) mechanism for cache management, and data in z, which are potentially used again,
are evicted from the cache by the matrix data which is never used again. While PTX
instruction set allows different access patterns for various data types, current CUDA im-
plementations (for up to date version of 3.1) does not expose this feature on the API
level.

To fully exploit the capability of the cache in GF-100 GPUs, we use inline PTX
assembly to differentiate access to matrix data and vector data, so that these accesses
pass through cache in different manners:

1. Let access to matrix data be marked as un-cached, or marked as lowest priority
in cache management, so that they are never cached or evicted first when capacity
conflict happens.

2. Let access to x be fully cached, so that data in x always have higher priority for
staying in cache than matrix data.

Here we give an example about differentiation of memory accesses to various data.
These two lines of codes are to be in-lined to the .cu file, in order to access data at addri
and addr2. The syntax is in PTX assembly.

__asm("ld.ca.f32 %0, [%11;" : "=f" (a) : "1" (addril));
__asm("ld.cv.£f32 %0, [%11;" : "=f" (b) : "1" (addr2));

By the first line of the code, we load a single-precision number to value a from address
addr1, and by the second line, we load a single-precision number to value b from address
addr2. The loading of a is cached, by the PTX inline assembly instruction 1d.ca in
which ca means “cache all”. The loading of b is marked as volatile by 1d.cv, which
means “load-with-cached-as-volatile” and hints that the value at address addr?2 is volatile
and access to it will skip the caches and be directly from main memory.

In SpMV, by reading the matrix data and vector data through different inline assembly
codes, we differentiate the caching strategy of different data, to attain better utilization
of the cache on GF-100 GPUs. Inlining PTX codes corresponds to bypassing the compile
phase and inject PTX codes directly to the ptxas (i.e., PTX assembler), as shown in
Fig.3.5.

We note that future accelerated platforms including GPUs will evolve to feature full
cache support which bear more similarity to conventional CPU caches in latency and size,
just like GF-100. Differentiation in data access pattern with respect to caches provide
potentials for application optimization, provided the programmers have a good knowledge
of the data access pattern for the given application.

7.5 OPTIMIZATION - BANDWIDTH REDUCTION 95

s Fth row—&s

Jth col %

8
nz = 953936 w1t

Figure 7.4: SpMV of Matrices in an Reduced Bandwidth form

7.5 Optimization based on Matrix Bandwidth Re-
duction

In this section we consider SpMV optimization based on Matrix Bandwidth/Profile Re-
duction. There are 2 benefits of matrix bandwidth reduction: (1) improved locality in
accessing x vector, and (2) index compression which is enabled by a reduced matrix band-
width. We use Reverse Cuthill-McKee (RCM) permutation for the bandwidth reduction
in the following, mainly for its simplicity and popularity. Other more sophisticated algo-
rithms are possible and included in future research.

7.5.1 Locality in Accessing ©

Fig.7.4 shows the matrix “Circuit” in Tab.7.2 when permuted using RCM. We denote
BW, as the bandwidth of matrix A. In terms of accessing z, there are two sides of
locality:

1. For the i-th row, the accessed part of the i-th CUDA thread lies within a range of
w elements, with w < BW 4.

2. For the j-th element of z, the threads accessing this element will be adjacent, i.e.,
thread indices would be adjacent to j, within a range of h and h < BW 4.

The first item implies that with a smaller value of w, there will be denser distribution,
and better temporal locality for caches, i.e., values in the same cacheline would be more
likely re-used. The second implies that for the CUDA threads within the same thread
block will access a smaller set of values, improving the hit ratio of the cache.

We evaluate: (1) the memory accessed in = by thread blocks at the granularity of L1
Texture Cache lines, (2) the memory accessed in x by passes at the granularity of L2
Texture Cache lines. We take the sum of the total cache line count used for all thread
blocks (or passes). The results for the matrices in both original forms and permuted forms
with RCM are shown in Tab.7.5 (Single-Precision is used). Results in Tab.7.5 serve as a

96 SPMV OPTIMIZATION WITH CUDA 7.5
Setting-1 Setting-2

Original ;{Néﬁ Original 1\4\83\1/1[

FEM/Cantiliver 24529 24870 7947 7974
FEM/Sphere 53880 52650 12805 12253
FEM/Accelerator 350583 83024 43333 14089
Economics 124117 215952 26941 27599
Epidemiology 194104 197124 67256 67569

Protein 19813 34970 5443 4905
WindTunnel 92246 97338 30225 28899

QCD 36352 36841 9216 8070

FEM /Harbor 18503 17806 8375 5950
Circuit 126246 94675 63445 28136
Web 302480 226034 185659 163377

Setting-1 : L1 Texture Cache line usage at thread block level

Setting-2 : L2 Texture Cache line usage at pass level

Table 7.5: Cache line accesses in 2 for matrices.

qualitative examination for the cache usage of SpMV. By RCM permutations, the cache-
line usage of some matrices have experienced significant drop. The effect on performance
is evaluated in Section 7.6.

7.5.2 Index Compression

When a matrix has a small matrix bandwidth, there is a strong correlation between the
column index ¢ and the row index r for any given non-zero element:

BW < (¢—r) < BWg (7.4)

Where BW; and BWpy are the left bandwidth and right bandwidth of the matrix,
respectively. A smaller number of BW, and BWpg imply a tighter boundary for the
values of (¢ — r) of all the non-zero elements. A smaller upperbound for the values of
(¢ — r) implies potential of compressing the column index information based on the row
index information. In SpMV, since there is an implicit mapping between matrix rows and
CUDA threads, the thread identifies itself by calculating its own thread identity hence the
row number is retrieved. Normally due to the large size of the matrix, values for r have
to be recorded at least in 32-bit integer format. Value range of ¢ usually require same
integer format for storage in ELLPACK. But by recording (¢ — r), we can re-generate
values of ¢ by the value of r and (¢ — r). If it is applicable to record (¢ — r) in a shorter
format, e.g., short (2-byte) or byte (1-byte), we can reduce the accessed memory amount
in the SpMV process, at the overhead of generating values of ¢ on the fly. In this thesis,
we consider using short for the purpose of column index compression.

Column index compression may not be applicable to any matrix, due to the potential
large values for (c—r). When short is used to record (c..r), index compression is applicable
if values of (¢ — r) falls within the boundary of [-32768, 32767]. We investigate the
effect of bandwidth reduction techniques on this issue in Section 7.5.2 and the potential

7.5 OPTIMIZATION - BANDWIDTH REDUCTION 97

Matrix Applicable to | Applicable to Applica'tble to (c—r)
r and ¢ (c—r) with RCM

FEM/Cantiliver Yes Yes Yes
FEM/Sphere No Yes Yes
FEM /Accelerator No No Yes
Economics No Yes Yes
Epidemiology No Yes Yes
Protein Yes Yes Yes
WindTunnel No No Yes
QCD Yes Yes Yes
FEM/Harbor Yes Yes Yes
Circuit No No Yes
Web No No No

Table 7.6: Applicability of column index compression for SpMV

Value Type Single-Precision | Double-Precision

Reduction Ratio 25.0% 16.7%

Table 7.7: Reduction ratio in accessed memory amount for SpMV using Index Compres-
sion.

performance enhancement enabled by column index compression in Section 7.5.2.

Applicability of Index Compression

Tab.7.6 shows the applicability of column index compression for matrices in Tab.7.2, and
the effect of matrix bandwidth reduction. We can see that for the original form of the
matrix, due to the large size of the matrices, a majority of them (7 out of 12) cannot
be recorded using a shorter format for indices. When applying the incremental form
of recording (¢ — r) rather than ¢, the reduction of using short formats apply to 3 more
matrices. Yet still 4 matrices are out of luck, mainly due to the large, random distribution
in the matrix and (¢ — r) exceeds the boundary for short format. By using RCM, only 1
out of the 11 matrices does not accept reduction in storage format for (¢ —). Column
index compression now can be applied to all the other matrices.

As shown in Tab.7.6, matrices generated by FEM applications usually accepts the
formulation of a small matrix bandwidth. Randomly sparse matrices such as “Circuit”
and “Web” have a relatively large bandwidth even after RCM permutation. “Web” does
not accept index reduction even with RCM permutation.

Performance Projection

The ideal case for speeding up SpMV by means of index compression is the reduction
ratio of the accessed data during the SpMV by using shorter storage formats. The ratio
is shown in Tab.7.7, by recording (¢ — r) in short format, instead of recording ¢ in 32-bit
integer format.

The reduction ratio in Tab.7.7 can be used as the upper bound for the speedup of
column index compress on the performance of SpMV. Due to other factors such as runtime
overhead, use of HYB format, the actual speedups would be lower than those in Tab.7.7.

98 SPMV OPTIMIZATION WITH CUDA 7.6

Potentials for Register Blocking

Index Compression can be combined with conventional SpMV optimization techniques
such as Register Blocking in [79]. Actually the reduction of bandwidth usage of index
compression is on par with that of register blocking when using blocks of size 1 x 2 or
2 x 1. We would like to mention that column index compression can be used together
with Register Blocking. When register blocking of size m x k is used, bringing in index
compression would reduce the amount of column index information by 50%. This trans-
lates to 11.1% reduction in the overall accessed matrix data when 2 x 2 block size and
single-precision is used. Utilizing both register blocking and index compression remains
a future work beyond this thesis.

7.6 Performance Evaluation

In this section we evaluate the quantitative performance enhancement of various SpMV
optimizations proposed in previous sections. Based on GT-200 GPU, we first investigate
the effect of reduced matrix bandwidth on performance, including both the effect on
accessing x vector and index compression. Second, the cache-oriented optimization based
on GF-100 architecture is evaluated. The combined effect of reduced matrix bandwidth
and cache-oriented optimization is also evaluated for GF-100 GPU.

7.6.1 Effect of Bandwidth Reduction with GT-200

The experiments are carried out on NVIDIA C1060 GPU (belonging to GT-200 series)
listed in Tab.7.1. The caching of z is through the texture cache which is the only caching
mechanism that can be used for SpMV.

Overall Performance and Accesses to z

We first evaluate the effect of RCM permutation on t,; and t,. We record the values of
t, for matrices before and after RCM permutation. We only test the matrices that have
obtained matrix bandwidth reduction using RCM.

Tab.7.8 lists the performance comparison. We see that speedup in t,; is not achieved
for every matrix with a reduced bandwidth. This is due to the fact that RCM only
performs as a heuristics for reducing t,. Especially when: (1) there are substructures in
the original matrix which are small, dense blocks, such as “Protein”, or (2) the access
pattern into x is already very regular, such as “QCD”, the access to x is already not a
performance issue and there is no significant enhancement for reducing the bandwidth.

For the whole set of matrices that the bandwidth is reduced by RCM, the overall speed
up for t,y is 5% for Single Precision and 7% for Double Precision SpMV operations. The
time dedicated to x accesses is also reduced: 17% and 24%, for single-precision and double-
precision, respectively. If we only count the matrices that have enhanced x accesses,
including: “FEM/Sphere”, “FEM/Accelerator”, “FEM/Harbor”, “Circuit” and “Web”, the
average speedups for ¢, are 8% (single-precision) and 10% (double-precision), while those
for ¢, are 25% (single-precision) and 34% (double-precision). This set of matrices consists
of 5 of the 11 matrices in the test suite in Tab.7.2.

PERFORMANCE EVALUATION 99

. . Bandwidth Speedup for Speedup for
Matrix Bandwidth with RCM | Single-Precision | Double-Precision

FEM/Sphere 44025 5401 1% / 2% 9% / 26%
FEM/Accelerator | 121041 2931 11% / 31% 23% / 89%
Protein 34065 2490 2% | -5% 0% / 0%
WindTunnel 189332 2168 0% / 0% 2% | 5%
QCD 43011 8466 0% / 0% -4% | -8%
FEM /Harbor 25142 671 0% / 0% 1% / 8%
Circuit 170977 8643 10% / 32% 14% / 45%
Web 925210 473703 18% / 76% 3% / 17%
GeoMean 5% / 1% ™% | 24%

GeoMean* 8% / 25% 10% / 34%

The first value of each element in Column 4 and Column 5 is the
speedup in SpMV performance, i.e., ty;; the second is the speedup for
t., i.e., the time spent in accesses to x.

Table 7.8: Matrices permutated by RCM — Performance Results

) Speedup for Speedup for

Matrix Single-Precision | Double-Precision
FEM/Cantliver 18.7% 4.6%
FEM/Sphere 20.8% 15.1%
FEM /Accelerator 12.2% 10.3%
Economics 20.6% 17.3%
Epidemiology 23.1% 11.2%
Protein 12.0% 9.3%
WindTunnel 23.5% 14.7%
QCD 27.3% 6.6%
FEM /Harbor 9.9% 10.1%
Circuit 6.5% 6.7%
GeoMean 16.2% 10.5%

Table 7.9: Evaluation of Index Compression on t,scudo

100 SPMV OPTIMIZATION WITH CUDA 7.6

Matrix Use RCM? | Use Index Compression?
FEM/Cantiliver No Yes
FEM/Sphere Yes Yes
FEM /Accelerator Yes Yes
Economics No Yes
Epidemiology No Yes
Protein No Yes
WindTunnel Yes Yes
QCD No Yes
FEM /Harbor Yes Yes
Circuit Yes Yes
Web Yes No

Table 7.10: Configuration

Index Compression on t,scydo

Tab.7.9 summarizes the speedup on the t,seudo» by column index compression. Note
that 10 out of 11 matrices now accepts index compression, due to the use of RCM. The
speedups for single-precision and double-precision are close to the theoretical speedup
projected in Tab.7.7. While other matrices show speedups close to the projection in
Tab.7.7, three matrices shows much lower speedups, including “Circuit”, “FEM/Harbor”
and “Protein”. For them, the speedups are amortized by several factors. These matrices
use HYB format, rather than pure ELLPACK format. In fact, extra COO part in HYB
format is not characterized by the performance modeling/projection in Tab.7.7. Also
a separate call to COO part introduces extra overhead. These factors tend to result in
lower speedups. Although lower than the ideal speedups in Tab.7.7, the reduced amount of
accessed memory still yields solid speedup in ¢pseuq0 00 average: 16.2% for single-precision
and 10.5% for double-precision.

Overall Speedup

Next we evaluate the overall speedup in t,;, combining the effect of RCM on ¢, and index
compression on tpseudor- 1ab.7.10 gives the configurations for various matrices about
whether RCM is applied and index compression.

Tab.7.10 gives the overall speedup on t,; for all the matrices in Tab.7.2. Note that we
have obtained speedups for all the matrices in the test suite. The geometric mean of the
speedup for single-precision and double-precision is 16% and 12.6%, respectively.

7.6.2 GF-100 based Optimization

In this subsection we consider the quantitative evaluation of Cache-based optimization
effect on SpMV based on GF-100 based GPU. We use NVIDIA GeForce GTX480 for
the tests. First we describe the three strategies for using cache in SpMV on GF-100
architecture.

Strategy-1 : Use texture fetching mechanism for accessing vector data, as used in [33]

Strategy-2 : Use texture fetching mechanism for accessing vector data (as in [33]), and
mark access to matrix data as volatile and avoid contamination to cache

7.6 PERFORMANCE EVALUATION 101

) Speedup for Speedup for

Matrix Single-Precision | Double-Precision
FEM/Cantiliver 11.1% 5.0%
FEM/Sphere 23.0% 10.9%
FEM /Accelerator 17.1% 32.5%
Economics 13.0% 10.6%
Epidemiology 23.1% 9.7%
Protein 9.3% 9.3%
WindTunnel 22.0% 14.4%
QCD 19.0% 10.1%
FEM /Harbor 7.7% 9.7%
Circuit 14.3% 17.8%
Web 18.0% 3.0%
Geo-Mean 16.0% 12.6%

Table 7.11: Performance results on SpMV speedups

Strategy-3 : Filter data in the vector through data cache, and mark access to matrix
data as volatile and avoid contamination to cache

Strategy-1 is the caching strategy for achieving high performance in [33]. We consider
it as the baseline for comparison. When used, Strategy-1 will cause both matrix data and
vector data occupying L2 Cache, while L1 Texture Cache is still dedicated to data in the
dense vector x. Strategy-2 avoids contamination of L2 Cache caused by matrix data, hence
vector data will consume both L1 Texture Cache and L2 Cache. However because the
texture fetching mechanism is used, the latency is high as in GT-200 GPUs. Strategy-3 is
the caching strategy we proposed in Section 7.4. It uses fast L1 Data Cache (configured
to be 48KB) and L2 Cache for accesses to x. Strategy-3 has 2 sides of enhancements: (1)
fast access to x data, and (2) avoidance of contamination of matrix data in the cache.

Tab.7.12 lists the speedup of SpMV execution time between: (1) Strategy-3 and
Strategy-1, and (2) Strategy-3 and Strategy-2. The use of RCM permutation is also
listed. Note that Strategy-2 usually performs better than Strategy-1 (in 20 out of 22
cases, for both Single-Precision and Double-Precision). The caching strategy proposed
in previous section outperforms the original strategy used in [33] by 17% and 14% for
Single and Double-Precision respectively. Comparison between Strategy-2 and Strategy-3
is the comparison between the effect of caching through texture fetching mechanism and
through ordinary data loads. The results show 13.6% and 10.3% speedup when ordinary
data fetches and data caches are used. This is because of the following 2 reasons. First,
L1 Data Cache is configured to 48 KB (4 times the size of L1 Texture Cache), this reduces
capacity misses and enhances hit ratio at the SM level. Second, a hit/miss in data cache
incurs much lower latency than a hit/miss caused by Texture fetches on both L1 and L2,
and this reduces the chance that the data fetch latency is not well hidden by accesses to
the matrix data.

In Tab.7.13 we show the SpMV performance comparison between GF-100 and GT-200
series by taking GeForce GTX-480 and Tesla C1060 as the representative GPU. Overall,
GeForce GTX-480 is faster than Tesla C1060 in SpMV performance by 50% and 75%
for single-precision and double-precision, respectively. Note that Tesla C1060 GPU is
designed for GP-GPU, while GeForce GTX-480 is designed for gaming purposes. These

102 SPMV OPTIMIZATION WITH CUDA 7.6
Speedup for Speedup for
Matri Use Single-Precision Double-Precision
atrix
RCM?
Versus Versus Versus Versus
Strategy-1 | Strategy-2 | Strategy-1 | Strategy-2
FEM/Sphere No 14.1% 8.4% 14.7% 10.6%
FEM/Accelerator || Yes 23.6% 21.2% 9.6% 9.8%
Economics No 23.4% 22.3% 10.2% 9.1%
Epidemiology No 8.4% 10.2% 5.3% 4.7%
Protein No 13.7% 7.8% 14.0% 9.8%
WindTunnel No 18.7% 12.1% 21.3% 9.9%
QCD No 21.9% 16.1% 21.9% 15.7%
FEM /Harbor No 13.9% 7. 7% 11.4% 7.3%
Circuit Yes 30.6% 28.8% 21.0% 20.4%
Web Yes 10.7% 10.6% 8.8% 5.9%
Geo-Mean 17.7% 14.3% 13.7% 10.2%
a. Comparison between different caching strategies
Speedup for Speedup for
Matrix Single-Precision Double-Precision
By By Overall By By Overall
RCM | Strategy-3 | Speedup| RCM | Strategy-3 | Speedup
FEM/Sphere - 14.1% - 14.7%
FEM/Accelerator | 5.0% | 23.6% | 29.8% | 4.9% 9.6% | 15.0%
Economics - 23.4% - 10.2%
Epidemiology - 8.4% - 5.3%
Protein - 13.7% - 14.0%
WindTunnel - 18.7% - 21.3%
QCD - 21.9% - 21.9%
FEM /Harbor - 13.9% - 11.4%
Circuit 0.9% 30.6% 31.8% 1.6% 21.0% 22.9%
Web 4.8% 10.7% 16.0% 5.6% 8.8% 14.9%
Geo-Mean 19.0% 15.0%

b. Overall Speedup

Table 7.12: Performance Enhancement for GF-100 (GTX-480) GPU

7.7 SUMMARY 103

Matrix Single-Precision Double-Precision
C1060 | GTX-480 [Speedup | C1060 [GTX-480 [Speedup
FEM/Sphere 0.6661 0.4203 58.5% 1.0835 0.5579 94.2%
FEM/Accelerator | 0.5665 0.3982 42.3% 0.8141 0.5270 54.5%
Economics 0.5133 0.2972 72.7% 0.6658 0.4035 65.0%
Epidemiology 0.2959 0.1733 70.8% 0.4724 0.2561 84.5%
Protein 0.7753 0.4545 70.6% 1.1226 0.5844 92.1%
WindTunnel 1.2649 0.8217 54.0% 2.0217 1.0825 86.8%
QCD 0.2105 0.1429 47.3% 0.3182 0.1863 70.9%
FEM /Harbor 0.5466 0.3802 43.8% 0.8896 0.4663 90.8%
Circuit 0.2918 0.2381 22.6% 0.4183 0.2912 43.7%
Web 0.9564 0.6203 54.2% 1.3850 0.7630 81.5%
Geo-Mean 52.9% 75.6%

* All timing are in milliseconds.

Table 7.13: Performance Comparison — GT-200 and GF-100 GPUs

two architectures differ in the peak memory bandwidth: Tesla C1060 is lower than GeForce
GTX-480 in memory bandwidth by about 30% and larger in global memory latency, as
shown in Tab.7.1. These hardware differences, together with the firmware differences,
contribute partially to the performance gain in the table. Also the cache subsystem
difference contributes to the difference in that accesses to the dense vector are now faster
and incurs fewer cache misses.

7.7 Summary

GPU accelerated HPC systems have become popular and widely adopted. How to ex-
ploit the performance potentials of GPUs for Krylov subspace solvers depends heavily
on effective optimization of SpMV operations on GPU architecture. Due to the memory
bandwidth bound characteristics of SpMV operations, how to reduce the overall memory
accesses and enhance cache usage is of crucial importance of high performance SpMV on
GPU. With a proper matrix storage scheme and the use of matrix permutation schemes
such as RCM, SpMV operations are able to fully exploit the potential of the high peak
memory bandwidth available on GPUs. Proper matrix format such as ELLPACK for
general sparse matrices is necessary to ensure the coalesced memory accesses and high
performance of SpMV operations. The techniques developed in this chapter serve as the
foundation for Krylov subspace iterative solvers, which uses SpMV for the generation of
subspace bases.

The optimizations proposed in this chapter includes: (1) matrix bandwidth reduction
based optimization, and (2) differentiated cache access for Fermi architecture. Matrix
bandwidth reduction is an effective optimization to SpMV performance on GPUs. It
achieves two aspects of performance enhancements: (1) better locality for accessing the
dense vector z, and (2) column index information compression. The overall speedup is 16%
and 13%, for single-precision and double precision, respectively. On GT-100 GPU with
better cache support, we propose the differentiated strategy for accessing data in A and
x for better utilization and avoidance of cache contamination. By inlining PTX assembly
to CUDA codes to differentiate the accesses to cache, on average we further achieve 19%

104 SPMV OPTIMIZATION WITH CUDA 7.7

and 15% speedup for Single Precision and Double Precision operations respectively.

Column index compression can be combined with conventional Register Blocking tech-
niques, to further reduce the accessed memory amount for index information in ELLPACK
format. Also, cache-based performance modeling can be introduced to the analysis of
GPUs, especially new GPU with more complete cache support such as GF-100. These
two aspects serve as potential gdirections for future researches.

Chapter 8

GPU-based Iterative Solvers and
Preconditioners

8.1 Introduction

In this chapter we discuss the acceleration of preconditioned Krylov subspace iterative
solvers on GPU platforms. There are two major components of Krylov solvers: (1) the
iterative solver algorithm, and (2) the preconditioners. Iterative solvers depend on matrix-
vector products for the generation of Krylov subspace basis. Long recurrence based solvers
such as GMRES include an orthgonalization process. Since these operations contain much
inherent parallelism and very low computation-data ratio, the performance of iterative
solvers is mainly bounded by the available memory bandwidth. The iterative solvers can
be ported to GPU platform without much performance problems. However, precondition-
ers, especially general-purpose ones based on incomplete factorizations such as Incomplete
Cholesky (IC) or Incomplete LU (ILU) factorization, have not been successfully ported to
the GPU platform so far. The main reason for this is the preconditioning operation with
IC or ILU are virtually substitution process which is inherently sequential and contains
limited parallelism. At the same time, preconditioners based on inverse form usually have
low memory efficiency and have not gained much popularity, despite the fact that the
preconditioning operations with them are based on matrix-vector products and can be
efficiently executed on GPU. To utilize GPU for the high performance iterative solvers,
it is crucially important to design general purpose preconditioners which can exploit the
parallelism on GPUs.

In this chapter we propose a new preconditioning framework based on multilevel
framework and approximate inverse preconditioners. The proposed framework, denoted
multilevel approximate inverse preconditioner (ML-AINV), bears close relationship with
incomplete factorizations. We construct multilevel structure based on Independent Sets
(INDSET) and symbolic analysis of the factorization process with elimination tree (ETREE).
With ML-AINV, the preconditioning process includes a series of matrix vector products,
which can be executed on GPU efficiently. Unlike the approximate inverse precondi-
tioner (AINV), ML-AINV achieves good memory efficiency with the multilevel framework.
Contrary to the traditional incomplete factorization preconditioners which rely on sub-
stitutions, the preconditioning of ML-AINV is based on (sparse) matrix-vector products
(SpMV), which can fully exploit the parallelism available on GPUs.

Part of this chapter is published in conference paper [86] and journal paper [91]

105

106 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.2

The rest of the chapter is organized as follows. We analyze the various aspects of the
performance of iterative solvers on GPU platforms in Section 8.2, including the genera-
tion of Krylov subspace basis and the orthogonalization process of long-recurrence based
iterative solvers. On the preconditioner side, before introducing ML-AINV, symbolic anal-
ysis with elimination tree (ETREE) is introduced in Section 8.3. Also as a reference, a
short introduction to approximate inverse (AINV) preconditioner is included in Section
8.4, with the analysis of its shortcoming in terms of memory efficiency. Memory-efficient
inverse-based preconditioning is covered in Section 8.5. Specifically, we propose the de-
sign of ML-AINV in Section 8.5.2. Section 8.5.3 covers the experiments of ML-AINV with
matrices from various application areas, including Power Grid simulation. Comparison of
convergence properties and performance with LU preconditioners is also included. Section
8.7 concludes this chapter.

8.2 Iterative Solvers on GPU-based Accelerated Plat-
forms

Krylov solvers seek the minimization of error norm for a given linear system of Ax = b
within the Krylov subspace :

{TQ,ATQ,...AmTQ} (81)

A is a matrix of size n x n. It is usually a sparse matrix. The sparsity pattern of
A depends on the application area and specific treatment of the numerical discretization
schemes. For example, matrices generated from finite difference applications usually have
regular structures, with non-zero elements only occuring on a few diagonals. Matrices gen-
erated from finite element applications usually have a slightly more randomized structure,
and non-zero element count per row is usually not constant. Power network simulation
usually generates matrices with randomly sparse structure, reflecting the nature of the
actual network topology.

Depending on the properties of A, different iterative solvers are applied for the linear
systems based on A. Here we list two popular iterative solvers: GMRES and CG . GMRES
is a long-recurrence based iterative solver for unsymmetric matrix A. It minimizes error
norm within the Krylov subspace. CG is designed for symmetric positive-definite matrices,
which minimizes the A-norm of the error.

8.2 ITERATIVE SOLVERS ON GPU 107

Input: Sparse matrix Aé
Right hand sEie b
Initial guess

Output Solution x

[uny

’I"O(—b A.’L'0,

2 v 1+ normalized rg ;

3 for i — 1 to m do

4 ’ljﬂ— A ;z ;

5 Orthogonalize 1?1 against Z\j, for1 <j<i;
6 | if | w; |2 < € then

7 ‘ Break ;

8 end

9 Update Hessenberg matrix H ;

10 V414 normalized wl ;

11 end

12 Yme argmin; 16 er—HY |2;
13 ;<—§0 +Z?ll Yi ?Z ;
14 return = ;

Algorithm 10: GMRES

Input: Sparse matrix AA
Right hand side b
Initial guess

Output Solution x

1 r0<—b Aaco7

2 p0<— normalized rq ;
3 for i < 0 to n do

4 QG <r17ri> 9
(Ap p)
5 z+1‘_x +ay pz 5
6 z+1<_'rz —o; A pz s
< i+1, 7 z+1>
e +1, 7 .

7 EZ (ri7i) ;

Pip1—=7iy1 +5i Pi;
9 end

RN
10 return z; ;

Algorithm 11: CG

One major computational task in GMRES, CG , and various other solvers is the genera-
tion of the Krylov subspace. For CG it is on line 1, 4 and 6, and for GMRES on line 4. This
involves the product of A and the current residue r. With a sparse A, the generation of
the next subspace basis vector actually involves a sparse matrix-dense vector multiplica-
tion, i.e., SpMV. In GMRES, due to the use of Arnoldi process and the unsymmetry of the
Hessenberg matrix, restart is used in practice. This is mandatory for any long recurrence
based algorithms used in practice, such as GCR . The long recurrence requires orthogo-
nalization of newly generated basis vector against the basis generated previously, as on
line 5. Besides generation of bases and orthogonalization, other components in GMRES

108 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.2
Name n nnz Application Area
Protein 36417 | 4344765 Protein data bank 1HYS
FEM/Cantiliver | 62451 | 4007383 FEM cantiliver
WindTunnel 217918 | 11634424 Pressurized wind tunnel
Epidemiology | 525825 | 2100225 2D Markov model for epedemiology
Circuit 170998 958936 Motorola circuit simulation
Petro 50400 1585944 Petroleum reservoir simulation
OPF 2063494 | 8130343 Optimal power-flow (optimization)
Cube 101492 | 874378 FEM, electromagnetics
TDS-10188 25308 160159 Time-domain simulation of power network
Parabolic 525825 | 2100225 | Parabolic FEM, diffusion-convection reaction
Table 8.1: Test matrices for SpMV and Krylov subspace bases generation
and CG are level-1 BLAS operations such as linear combinations of vectors and inner

products, which are all basic and easy to compute and will not be subjected to further
analysis. Hence we only focus on the 2 main part of the Krylov solvers: (1) generation of
Krylov subspace basis, and (2) long-recurrence related orthogonalization. Section 8.2.1
reports the performance comparison for the kernel of generation of bases, i.e., SpMV for
various matrices. Section 8.2.2 describes the performance test of the orthogonalization
operation which is required by long-recurrence algorithms such as GMRES.

8.2.1 Generation of Krylov Subspace — SpMV Operations

We test a suite of matrices that are candidates for Krylov solvers. The description of the
matrices is listed in Tab.8.1. They are from various application areas. Some are from the
matrix collection from University of Florida [45] and Matrix Market [22], while others are
from our own simulations, including the TDS simulation Jacobian matrix from the 10188
case.

Fig.8.1 shows the speedup of SpMV operations on GPU compared to on CPU. On CPU
we use traditional CSR format for the performance test. On GPU we use the optimized
SpMV CUDA kernel as described in Chapter 7. Note that from Chapter 7 we know that
the main performance bounding factor for SpMV is the memory bandwidth. Potentially
GPU has a clear lead in the performance for SpMV due to the much higher theoretical
memory bandwidth as compared with CPU. The speedups for each matrix varies for
several reasons: (1) with smaller matrix sizes, the overhead in GPU operations, especially
in kernel invocation, plays a more important factor, (2) various matrix formats such as
ELLPACK, introduce paddings that have negative effects on the SpMV performance for
GPU. The geometric mean of the actual speedup’s reflects the theoretical performance
which is the ratio between the memory bandwidth of GPU and that of CPU.

8.2.2 Long-Recurrence Krylov Solvers — Orthogonalization

GMRES and GCR depend on the long recurrence and require restarts or truncation in
practice. The orthogonalization process involves orthogonalizing a new vector against the
vectors in the orthogonal basis computed in previous iterations. Here we use modified
Gram-Schimidt (MGS) for the orthogonalization because it poses more parallelism. The
adoption of MGS is mainly based on these considerations: (1) it has better numerical

8.2 ITERATIVE SOLVERS ON GPU 109

SpMV Speed-Up

SN &
?‘0@ ‘\i\\‘I ,\o“‘\ '\o\°g o
“‘\(P o \(\6 . ée‘(\ <O

??’ <"

] N 0 < ° o W N
o ¢ & ° IR e

O'

Q'o"b I

Figure 8.1: SpMV Speedup — GPU v.s. CPU

-
o

—— CPU-MGS

—8— GPU-MGS
/./H

P

A
T
/ \i+H—l

1000 o 10600 o '1.(.)'(.)000' ' 1000000 - 1E7)
Vector Length

GFLOPS
a4 N W A OO N ©
/

o
[

Figure 8.2: Performance comparison between CPU and GPU based MGS

stability than the standard Gram-Schimidt process, (2) it has high parallelism in BLAS-1
operations and a lower overall computation amount compared with Householder reflector
based algorithms (see p.g. 158 in [72]). Fig.8.2 shows the performance of MGS orthog-
onalization of a vector against a basis of 32 orthogonal vectors on CPU and GPU using
CUDA. This micro-benchmark mimics the scenario of the orthogonalization process in
GMRES or GCR . We vary the length of the vectors n from 1000 to 107, which corresponds
to matrix size ranging from 103 to 107.

When n is small, the vectors of the entire orthogonal basis can be loaded in the CPU
cache, the performance on CPU is higher than on GPU. The performance on CPU now
translates to the cache bandwidth rather than the memory bandwidth. Because on GPU
there is no cache used for MGS, the CUBLAS performance only saturates when n is large,
with lower performance for short vectors. For long vectors, especially when n exceeds 10°,
GPU shows better performance, and the FLOPS ratio between CPU and GPU is close to
the memory bandwidth ratio of 5. When n is small, CUBLAS based MGS also suffers from
other factors such as high startup overhead, which may be reduced in future CUBLAS

110 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.3

versions.

Note that the performance test for MGS in Fig.8.2 is a micro-benchmark. In Krylov
solvers, due to that SpMV, inner products and other operations are also calculated in
addition to orthogonalization operations. Performance advantages of CPUs by caches in
orthogonalization would be compromised due to the contamination of the data accessed by
other operations, especially SpMV which involves access to matrix data. Hence the actual
performance of CPU-based MGS orthogonalization as shown in Fig.8.2 is the best case
for CPU. Actual performance with CPU may be compromised due to the aforementioned
factors. On the contrary, since no caching is used for the GPU-based version and MGS
is free from cache contamination problems, it closely reflects the actual performance of
orthogonalization operation on GPU.

From Section 8.2.1 and Section 8.2.2 it can be concluded that the major part of the
Krylov solvers can be efficiently implemented on GPUs with CUDA. The main perfor-
mance profile for Krylov subspace generation and orthogonalization with MGS is memory
bandwidth bound. GPU has very high theoretical memory bandwidth compared with
state-of-the art CPU. Especially when the matrix is large, the overhead in GPU opera-
tion can be amortized and the benefit of much higher memory bandwidth translates to 4
to 5 times speedup in various parts of Krylov solvers.

8.3 Symbolic Analysis for Incomplete Factorizations
based Preconditioners

This section and the following two section describes the preconditioner design which is
optimized for GPU platform by efficient utilization of the massively parallelism available
on GPUs. We consider general purposed preconditioners which are based on incomplete
factorization such as Incomplete Cholesky (IC) and Incomplete LU (ILU). Before diving
into any specific preconditioners, in this section we first layout the theoretical framework
for the analysis of the incomplete factorization based preconditioners. We use elimination
tree (ETREE) [46] for the symbolic analysis of the (incomplete) factorization of sparse ma-
trices. ETREE formally determines: (1) the elimination partial order in the factorization,
and (2) transitive reduction for the DAG graph defined by the factorization.

Suppose that A is either a symmetric positive definite matrix, or a structurally sym-
metric matrix which accepts LU(or ILU) factorization without the need for pivoting. Then
ETREE can be used to analyze (incomplete) Cholesky factorization or the (incomplete)
LU factorizations for A. Note that this also applies to un-symmetric matrices which are
nearly symmetric in structure: for these matrices we base the ETREE analysis on the
sparsity pattern of A* = A + AT,

In the following we analyze the non-zero structure of L matrix in 1C(as A ~ LLT)
or in ILU(as A ~ LU). For ILU, the sparsity pattern of U matrix can be analyzed in a
similar way as L, given the assumptions above.

Let G 4 be the graph defined by A, and similarly G, the directed acyclic graph (DAG)
defined by L, Gt the DAG defined by ETREE of A, then following theorems yield:

Theorem 3. Gt is a transitive reduction for Gr,.
Theorem 4. The leaves of the ETREE of matriz A form an INDSET of the G 4.

Theorem 5. Gy, is the transitive closure of Gp and ETREE. G C G, C Gp-1.

8.4 AINV PRECONDITIONER 111

a. With RCM permutation. b. With ND permutation.

Figure 8.3: Elimination tree of “orsirr_1” treated with RCM and ND permutations

Figure 8.4: ETREE- Fill-in Characterization

In Fig.8.3 we illustrate the ETREE of “orsirr_1” matrix of size 1030 [20], with Re-
verse Cuthill-Mckee (RCM) and Nested-Dissection (ND) permutations. RCM produces
an ETREE which is tall and sequential, while ND produces a much shorter, wider and
more balanced ETREE. This improves the inherent parallelism in factorization and per-
conditioning operations.

ETREE is the ideal tool for the analysis of fill-in’s during the elimination/factorization
process. Fig.8.4 shows a sample scenario of fill-in’s being introduced during the elimination
process. Suppose that in G4 there exists an edge between vertex 3 and vertex i (curved
line in solid grey), and no edge exists between vertex 8 (or 9) and vertex . Then through
the elimination process, fill-in would occur between vertex 8 and vertex ¢, and afterwards
between vertex 9 and vertex 7. Fill-in’s are shown in curved, dotted lines in grey in
Fig.8.4. The linkage between nodes are carried up in the elimination tree and through
the elimination process.

8.4 Preconditioners on GPUs — AINV Precondition-
ers

In this section we analyze the A-biconjugate based approximate inverse preconditioner,
AINV [35]. The A-biconjugation process generates matrices: W, Z and D. W and Z are

112 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.4

upper triangular matrices, while D is a diagonal matrix. In the exact factorization, we
have:
WTAZ =D (8.2)

In fact, WT | Z and D correspond to the L, U and D’ in the LDU factorization of A
(A= LD'U) in the following way:

WT — L—l
z =U"! (8.3)
D =D

Dropping values during the A-biconjugation results in incomplete factorization of A
in the inverse form. With the matrices from incomplete factorization, we have: A ~
W-TDZ='. When W', D and Z are used for preconditioning, the effective linear operator
used for iterations is: (D™'WT)A(Z). Here we use left-right preconditioning, with D~'W7T
as the left preconditioner and Z as the right preconditioner.

The preconditioning process using AINV involves matrix-vector products with Z and
W?T. Compared with the substitution process which is the preconditioning with 1C or
ILU, matrix-vector products reveal more fine-grain level parallelism and are suitable for
GPU platforms.

Input: Square matrix A (a; and ¢; is the i-th column and row of A, respectively
Output: Factorized matrices W, Z and D

. =(0) — .
1 W1 (ie,w; =e,; for1<i<n);
. =00
Z 1 (ie., z

i

N

:E\i for 1 <i<mn);

3 fori=1,2,...,n do
4 for j =1,..,n do
i—1 - =(i-1)
5 P =(a;,z)
i—1 — —(@-1)
¢ V= (w7
end
for j=i+1,...,n do
=) (-1 p{™Y @i-1)
9 2,’] :Z] _p‘(ifl) Z)
—() =1) gD (1)
10 Wi =w T i s
11 end
12 end
0
0
(1)
P
return W, Z and D =) ;
13 p%nfl)

Algorithm 12: A-biconjugate

For reference, the algorithm for right-looking version of A-biconjugate (original form as

in [35]) is shown in Algorithm 12. At the beginning, W and Z are initialized as identity
matrices. Denote ’LTJEﬁ and ZEJ) the value of the i-th column of W and Z at the j-th
O):ei. The i-th iteration updates the 7 41

iteration respectively. Then we have w, =z,

8.4 AINV PRECONDITIONER 113

to the n-th column of W and Z with the i-th column of W and Z, respectively. Hence
after the (i — 1)-th and before the i-th iteration, the values for ’LTJk (with 1 < k < 1)
have already been computed in its final form. We can consider the iteration number as a
version number for each column:

1. The final version number for the i-th column of W or Z is (i — 1)

2. At the i-th iteration, we update the columns of number (i + 1) to n from version
(1 — 1) to version i, resulting in the final version of the i-th column.

The updating process involves computing linear combinations of vectors. The value

for combinations are also versioned, namely, pgj). We formulate the values for pgj Vs into
a matrix, and denote as Pj;s. Note that the main diagonal of Py forms D.
- -
0
0 1
W o
Prisi = : : B i— (84)
p” p? Y
0 1 i1 n—1
R R A N

For a given sparse matrix A, the following theorem provides the sparsity pattern of
Pt based on A:

Theorem 6. The sparsity pattern of Pys matriz in A-biconjugate algorithm is the same
as that of L, where L is from the LU (or Cholesky) factorization of A.

Proof. See [4]. O

Fig.8.5 illustrates the sparsity patterns of W7 +Z and Py, for “orsirr_1”, when treated
with RCM and Nested Dissection. From the theorem above it is immediate that the non-
zero elements in Py indicates an upperbound of the memory usage of the incomplete
factorization.

With RCM permutations, the matrix has a low bandwidth/profile, the non-zero ele-
ment in Py is kept low due to the reduced profile, although it results in more non-zero’s
compared with Nested Dissection. However, what is important is not the non-zero ele-
ment in Py but in W and Z. With RCM, the ETREE of “orsirr_1” is almost sequential.
According to Theorem 2, the transitive closure of a “sequential” DAG is a “dense” DAG,
in the sense that the corresponding matrix is dense. This is reflected by the sparsity
pattern of W7 4 Z. The non-zero element count in W7 + Z is almost 14 times that in
Prise (or L). When permuted with Nested Dissection, the height of the ETREE is reduced
by 86% as compared with RCM permutation. The resulting nnz in W7 + Z is reduced
by 75%. But still the nnz in W7 + Z is about 8 times that of Pj;;. Hence generally
speaking, the edge count in the transitive closure of G (i.e., the DAG defined by ETREE)
is on the order of O(h), where h is the height of ETREE. The edge count serves as an
upperbound for the non-zero element count in W and Z. This has 2 implications:

e Reducing the tree height serves as an effective heuristics to reduce the number of
potential non-zero elements in W and Z.

114 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.5

Original matrix

200

400

600

800

1000

wT+z

History of p

200

400

600

800

1000

0 500 1000 500 0 500 1000
nz = 6858 nz = 1035058 nz = 77659

a. With RCM permutation

Original matrix History of p

600

800

1000 kg v A el e e 1
0 500 1000 0 500 1000 0 500 1000
nz = 6858 nz = 225666 nz = 27984

b. With Nested Dissection permutation

Figure 8.5: Sparsity of resulting matrices of A-biconjugate algorithm on “orsirr_17.

e When using AINV instead of ILU or IC, potentially much more severe dropping
would ensue: many more non-zero elements have to be dropped under a certain
memory usage budget. This analysis is also reflected in [34] that Nested Dissection
usually yields better convergence with AINV due to less severe droppings.

From the theoretical analysis above we conclude that the high memory usage of AINV
offsets the advantage of the easy, parallelizable preconditioning operation with AINV.
Even if high parallelism and performance is achieved by matrix-vector products for pre-
conditioning, the total amount of the memory accessed is far more than that with IC and
ILU. Preconditioners is needed for GPU-based platforms that can both utilize the massive
parallelism of GPUs and at the same time have feature good memory efficiency as their
traditional 1C or ILU counterparts.

8.5 Preconditioners on GPUs — Memory Efficient Vari-
ants

We focus on inverse-based preconditioners with incomplete factorization and good memory
efficiency. Traditional ILU or IC preconditioners cannot fully exploit the parallelization
due to that preconditioning operation is based on substitution, which is sequential and
contains limited parallelism. The scalability of these operations on GPU is very limited.
We target inverse-based preconditioner because inverse-based formulation enables sparse
matrix-vector products (SpMV) based preconditioning operations. However, our design

8.5 MEMORY-EFFICIENT PRECONDITIONERS ON GPU 115

of the preconditioner for GPU should overcome the excessive fill-in’s as in approximate
inverse preconditioners such as AINV. Besides, the preconditioners should have good
convergence properties similar to incomplete factorizations, such as ILU or IC.

In this section we propose the design of preconditioner which satisfies the requirements
above: Multi-Level Approximate Inverse preconditioner (ML-AINV). We assume that
with proper preprocessing, pivoting is not needed for the preconditioner construction.
Also without loss of generality, we assume a structurally symmetric matrix A as the
matrix to be preconditioned. Then all the symbolic analysis can be applied to symmetric
matrices in which |C preconditioners are applied. Note that a non-symmetric matrix A
can also be considered as structurally symmetric by using the sparsity pattern of A +
AT, Before introducing the details of ML-AINV, in Section 8.5.1 we shortly introduce an
SpMV based preconditioning scheme, denoted as “SpMV based Substitution”. It is closely
related to ML-AINV in terms of formulation. Afterwards, Section 8.5.2 includes the design
details of ML-AINV preconditioner. Section 8.5.3 compares ML-AINV and “SpMV based
substitution” and points out the innate relationship and differences between them.

8.5.1 SpMV based Substitution for Incomplete Factorizations

The first solution to the limited parallelism in substitution process is to transform the
substitution process based on L (or U) into a series of matrix-vector products without
introducing any extra non-zero elements beyond that of L (or U). The algorithm is
proposed in [23]. Given an existing (incomplete) factorization L, it constructs a series of
lower triangular matrices, each of which can be inverted in place. For lower-triangular
matrix L of size n X n, it can be written as the multiplication of a series of elementary
triangular matrices: L; for 1 < i < n. Except the main diagonal, L; only have non-zero
elements in its i-th column, and the i-th column equals that of L.

L=LLy...L, (8.5)

Based on the transitive closure structure of GG and topological sorting, we can arrange
L into:

L=1LLy...L, (8.6)
= (Limg+1 -+ Liny) (Ling+1 -+~ Ling) « o« (Ling_y41 - - - Liny,) (8.7)
With 0 = mg < my < -+ < myy < my, = n. Bach segment, ie., L7, =

(Lyy41 - Lim;1) for 1 < 4 < k can be inverted in place: (L)™' has the same sparse
structure as L. This is equivalent to that G- is transitively closed.
The substitution process with L can then be transformed into:

INb = (LTL;...LO\b (8.8)
= (L) (L)t (L) (L) T (8.9)

Note that each (L)™' (for 1 < i < k) is explicitly computed with no extra storage
overhead, and the substitution process is transformed into a series of k (sparse) matrix-
vector pruducts (SpMV) operations.

We analyze the implication of property of L} which are transitively closed using ETREE.
For the ETREE shown in Fig.8.6, whether we can merge the vertices under vertex 8 into

116 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.5

-

-

.
e,
e,
S,

o
canse®

o

. o
Stenanser’

-
.
e,

a. Internal Edges

b. External Edges
Figure 8.6: ETREE- Example for Transitive Reduction

a single L} depends whether these nodes form a transitively closed subgraph. This is
equivalent to:

e The subgraph with vertices 1 to 8 are transitively closed by itself. This is the
requirement on the internal structure of the subgraph, i.e.; the diagonal block cor-
responding to the subgraph can be inverted in place.

e The external links from the vertices from 1 to 8 also should satisfy the requirement
of transitive closure.

In Fig.8.6, we assess the combination of vertex 1 to 8 to be included in Lj. If it can
be all included in L}, then: (1) in Fig.8.6.a, all the links of blue-color should be present
in G, and (2) in Fig.8.6.b, all the solid red edges should be present in G, and (3) in
Fig.8.6.b if there is an uplink such as between vertex-3 and vertex-i, then all the dotted
red edges should be present in GG;. Following the analysis above, we can deduce the
theorem below:

Theorem 7. Suppose L is the Cholesky factorization of some matriz A. A subtree under
the vertex i in G can be included in L; which can be inverted in place i.f.f. (1) the
subgraph formed by of all the vertices in the subtree forms a transitive closure, and (2)
for the destination vertex of any uplink, the uplinks are present between the leaves of the
subtree and that destination vertex.

Proof. The subgraph of the vertices in the subtree should satisfy the requirement of tran-
sitive closure. This part is trivial due to the fact that we require that the corresponding
diagonal block in the matrix can be inverted in place. For the second part, suppose that
L} can be inverted in place, and we have an uplink linking to node ¢ starting from a
non-leaf node j in the tree but not from a leaf £ in the subtree under j, then from the
definition of transitive closure: k — j — ¢ implies £ — 4. This implies that the edge be-
tween ¢ and k is present in G(zx)-1. This contradicts with our assumptions above. Hence
for any of the destinations of the uplinks from the subtree, there should be edges between
all the leaves and this destination vertex in G7.

On the reverse part, suppose the tree root is r. If for any destination node ¢ that has
edges from the subtree, there are edges between ¢ and all the leaves of the subtree, then
according to the property of the elimination tree, there are edges between any vertex in the

8.5 MEMORY-EFFICIENT PRECONDITIONERS ON GPU 117

subtree and i. Thus the property of transitive closure is guaranteed for the external edges.
Combined with the fact that the subgraph defined by the subtree vertices is transitively
closed. Therefore inverting the subtree related parts in L is in place, hence can be included
in L. This completes the proof. O

Theorem 8. If a subtree in the elimination tree can be included into LY, then the row
structure of the sub-matriz representing uplinks must be either dense or all zero.

Proof. This follows immediate from Theorem 7 that if there is an edge between some
vertex of this subtree and a vertex above the tree, then every vertex in the subtree
is connected to that vertex. Thus the rows that corresponds to these vertices that are
connected to this tree are dense. For those vertices that are not connected to this subtree,
the corresponding rows are empty, with only zero elements. This completes the proof. O

For solving/preconditioning of non-symmetric matrices with this scheme, we have L
and U matrix which are organized into the the formulation:

L=LL;...L (8.10)
U=UU, ..U (8.11)

Each sub-matrix, i.e., L or U} (for 1 < s < k) is invertible in place. The substitution
process with L and U is transformed into 2k SpMV operations.

We denote the algorithm mentioned above as “SpMV based Substitution”, because that
it combines parts of the L matrix which is used for substitution and achieves equivalent
effect by using a series of SpMV operations. Each subpart of L can be inverted in place,
so the substitution with each of them is converted into an SpMV operation. Each of the
SpMV operation contains much inherent parallelism hence is suitable for platforms similar
to GPU.

One problem of “SpMV based Substitution” is that it computes inverses of each part
based on an existing factorization. Besides, for incomplete factorizations, the value for
k is usually large. Potentially there will be performance degradation with a large value
of k since too many sequential SpMV operations would be involved, with each operation
including too few non-zero elements. The fact that “SpMV based Substitution” only
operates on incomplete factorizations does not allow flexible trade-off between the value
of k and non-zero element count.

8.5.2 ML-AINV—- Multilevel Preconditioner with AINV

We aim to design a preconditioners with fine-grain parallelism and good memory efficiency
for GPU platforms. The proposed preconditioner is based on incomplete factorization and
inverse forms. With inverse-based forms, the preconditioning operation translates into
(sparse) matrix-vector products. For large sized matrices, sparse matrix-vector products
contain inherent parallelism and is potentially high performance on GPUs. To enhance
the memory efficiency and avoid the disadvantages of AINV, we adopt the multilevel
framework used in Chapter 4 (there multilevel scheme was used for efficient precondi-
tioning for TDS). The proposed algorithm is denoted Multi-Level Approximate Inverse
preconditioner (ML-AINV). By using symbolic analysis, ML-AINV construct multilevel
structure based on INDSET’s. The preconditioning of the last-level in the multilevel struc-
ture is based on AINV. Trade-off is achieved by relaxing the memory usage for INDSET

118 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.5

and last-level system by threshold-based strategies. This section discusses all the design
aspects for ML-AINV. In the following part ofthe section, firstly the recursive multilevel
framework based on INDSET’s is introduced. Then the choice for INDSET selection based
on ETREE in ML-AINV is described. The termination of the recursive multilevel structure
is introduced afterwards. Finally the design of ML-AINV is summarized.

Recursive Multilevel Formulation

In ML-AINV, a recursive multilevel structure is constructed based on independent sets
(INDSET). The matrix A is treated as the system on the first level, and it is mapped
onto lower levels in a recursive way. On level i, we formulate the system into the following
blocked form:

D; F;

A pr— |Pi B
P,AP; [Ez Cz} (8.12)
Number 7 is the level index, with Ag being the original matrix. P; is the permutation
matrix to transform A; into the blocked form, with D; composed of small dense diagonal
blocks. The sub-blocks of D; form a maximal block INDSET of G 4,. For the dense structure
of D;, we invert it explicitly. Similar to the formulation in Chapter 4, the formulation

based on Schur complements is:

D; Fi| _ |Di I D;'F,
[Ei CJ - [Ez [] 8 [C; — E;D;'F; (8.13)

We denote S; = C; — E;D;” LF, and it will serve as the matrix for the next level, i.e.,
A;y1. The original matrix A undergoes a recursive process of mapping from A; to A; 1,
until a certain level m, when this process is terminated and we obtain a system on the
inner most level as A,,. Now we treat A,, with a SpMV-based preconditioning technique:
AINV preconditioner. We require that the size of A,, is relatively small to avoid too much
memory usage of AINV as described in Section 8.4.

Selection of INDSET’s — Relaxed Supernodes

The construction of multilevel structure is based on symbolic analysis of the matrix A.
This includes the selection of the INDSET’s at each level, and the criterion for the level
count. ETREE is used for the symbolic analysis. Before the symbolic analysis, we use the
heuristics by METIS [7] to reduce fill-in, shorten ETREE, and enhance parallelism.

The selection of INDSET’s is based on the analysis over ETREE. We use a single vertex
or a dense clique of vertices (or called a supernode, a set of vertices which form a nearly
complete connected subgraph) to construct the INDSET. We relax the requirement of
full connectivity in cliques by including a set of vertices that are almost fully connected.
Define a sparsity of a graph as the proportion of the non-zero element count of the total
element count in the matrix the graph represents. Hence we can define quantitatively the
relaxation over the cliques in terms of sparsity: cliques with sparsity over certain threshold
01 is considered as a relaxed supernode. The value of §; should satisfy: 0 < §; < 1. If
01 is 1, then we require complete connected cliques. The search for cliques is integrated
within the framework of ETREE: we evaluate the sparsity of the sub-tree from bottom
up. This process is described in the following algorithm.

8.5 MEMORY-EFFICIENT PRECONDITIONERS ON GPU 119

Input: matrix A
elimination Tree T
threshold §;
Output: INDSET in G4

18 —0;

2 for [in leaves of T do

3 p « parent of [in T ;

4 while [is not a root of T do

5 evaluate subtree in T rooted at p ;
6 if sparsity higher than 61 then

7 l—p;

8 p « parent of pin T ;

9 end
10 else
11 remove all the other leaves in the subtree under [to avoid unnecessary

evaluation ;

12 S « { vertices in the subtree under [} ;
13 break ;
14 end
15 end
16 end
17 return S ;

Algorithm 13: INDSET searching based on ETREE with relaxed supernodes

Relaxing over the sparsity of supernodes has two side effects: (1) the size of supernodes
can be larger and the resulting D; composes a larger proportion in A;, hence the system
size is reduced to a larger extent to the next level, (2) the overhead of inverting D; would
be higher due to the lowered sparsity of D;.

Termination of Recursive Structure Construction

Suppose that the multilevel structure for A consists of m levels (excluding the out-most
level), the system on the m-th level is denoted as A,,. We treat A,, using AINV, so
that the preconditioning on the innermost level consists of SpMV operations based on the
approximate inverse factorizations of A,,. The decision on the value of m also depends
on the symbolic analysis. The criterion used in ML-AINV is:

e The memory usage of W and Z be within a certain bound based on the memory
usage of L and U. W and Z are the matrices generated from A-biconjugation
process, and L and U are matrices from LU decomposition based on A,,.

To achieve this, we use a controlling threshold: &5 for the evaluation, with 0 < d, < 1.
If the non-zero element count in L + U is higher than the non-zero element count in
WT 4+ Z multiplied by d,, the recursive construction is terminated and A,, is treated as
the last-level system. Otherwise, the recursive construction continues to the (m + 1)-th
level. Note that the computation of the sparsity of L +U and W' 4 Z is immediate from
the ETREE of A,, and G4,,.

120 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.5

Overview of ML-AINV— Construction and Preconditioning

We summarize the construction and preconditioning operation of ML-AINV. The con-
struction of the preconditioner takes 3 phases:

1. Preprocessing: treat A with METIS and apply (diagonal) scaling
2. Symbolic Analysis: construct the multilevel structure
3. Numerical Factorization: construct the multilevel preconditioner numerically

The symbolic analysis process is described in the following algorithm:

Input: matrix A
threshold §;
threshold 65
Output: multilevel structure for A
retrieve elimination tree T of A ;
while A not suitable for AINV with d5 do
retrieve INDSET in A based on T and 47 ;
record vertices in INDSET for matrix D ;
remove vertices and corresponding edges from A ;
remove vertices in D from T ;
end
record vertices left over in the last level ;
return Vertex list in each level ;

Algorithm 14: Symbolic analysis in ML-AINV

© 0w N O bk W -

Numerical factorization takes another parameter, 3, for dropping values to maintain
sparsity. On level i (with system A;), element values in £, F' and C are dropped if they
satisfy the following criteria:

ajr < (53 X aj j (814)

Note that values in D; are never dropped. The numerical factorization process is
described in the following algorithm:

Input: matrix A
level count m
multilevel structure of A
threshold d3
Output: D; 1, FE; and Fj for each level
WT and Z for the last level
1+—1;
while 7 <m do
retrieve matrix D;, E; and F; ;
compute D, L.
compute Ai+1 = CZ - EZD;lﬂ ;
drop values in A;4+1 by d3 ;
end
construct AINV preconditioner based on A,, and ds, to retrieve W7 and Z ;
return D;l E; and Fy for 1 <i<m, WT and Z ;

Algorithm 15: Numerical factorization for ML-AINV

© 0w N o ok W N =

8.5 MEMORY-EFFICIENT PRECONDITIONERS ON GPU 121

The preconditioning process using ML-AINV is similar to that proposed in Chapter 4.
First m recursive mapping from the outer-most level to the inner-most level by a series
of SpMV operations using D; "’s and FE;’s. Then on the innermost level, preconditioning
with AINV preconditioner is carried out by 2 SpMV operations with W7’ and Z. Finally
the preconditioned vector is mapped back to the outer-most level, by a series of SpMV
operations using D, s and F}’s. Specifically the preconditioning on the i-th level is as
follows:

D; F; uy| _ |U
= o) <) - [619
Di 1 D;lF; uy| _ |U
w2) - e10
S; =C; — EZ-Di_lFi. Let w; = D;lvl and we = vy — E;w,. We have:
I D;'F up | |wy
O] - em

Then us is computed, i.e., preconditioned by solving S;us = ws, which incurs recursive
process. When solving/preconditioning is finished from the lower level, the value of us is
available. Then u; can be calculated as:

Uy = wy — D;lFUQ (818)

We denote nnz,4 the number of non-zero elements in matrix A. Then the total memory
usage of ML-AINV preconditioner can be expressed in Egs.8.19 and the total amount of
memory accessed per preconditioning operation in Eqs.8.20.

Z (nnzDi + nnzp, + nnzFi) + (nnzyr + nnzyz) (8.19)
i=1
Z (27%7%2& + nnzp, + nnzFi) + (nnzwr + nnzyz) (8.20)

i=1

8.5.3 Comparison of ML-AINV and SpMV based Substitution

We take a Schur-complement formulation of the problem. Suppose that we have a struc-
turally symmetric matrix A divided into the blocks as follows:

» [DF
PAPT — [E O} (8.21)
_| Lp Up L' F
- [EUDl 1} x [C — EUS'Ly'F (8.22)

If the vertices in D in Eqs.8.21 satisfy the requirement of transitive reduction in Section
8.5.1, the following criteria are satisfied: (1) G, is transitively closed, i.e., LBl has the

122 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.6

same sparsity structure as Lp, and (2) EU, ! has the same sparsity pattern as £. Hence
we compute the values in EU,'Ly! and L' F explicitly, so that the substitution with

Lp o
[EUDl I EU,'LY I

Due to the row structure of E as described in Theorem 6, we can easily deduce that
E, EU,', and EU, 'L, all have the same structure as E: some rows are completely
dense while other are completely empty. Such requirement may be tight, resulting in an
D matrix with a small size.

Compared with SpMV based substitution, the proposed ML-AINV relaxes the require-
ment on D and F, and the last-level system:

can be transformed as an SpMV operation with {

e Relaxed sparsity pattern for D: each diagonal block of D should be dense enough,
and the inverse of D is computed rather than the LU decomposition.

e Relaxed sparsity pattern for E: EU,L' or EU,'Ly' is not recorded, hence no re-
quirement of the transitive closeness of the external links, as posed by Theorem
6.

e Relaxation in last-level system: In ML-AINV, when the system on current level
accepts an A-biconjugate factorization which does not contain too many non-zero
elements compared with an LU decomposition (controlled by a threshold), we treat
it as the last-level system and use AINV for its preconditioning.

From the algebraic representations, ML-AINV can be viewed as a relaxed version of
SpMV based substitution. The main relaxation is in the sparsity pattern on each level
in ML-AINV by allowing potentially more non-zero elements in order to achieve a the
multilevel structure with smaller number of levels.

8.6 Experiments with ML-AINV Preconditioners

In this section we evaluate the ML-AINV preconditioners. We focus on two aspects: (1)
convergence property, and (2) performance. For the convergence property, we compare
the ML-AINV preconditioners with Crout version of ILU (ILU-C) and SuperILU [12]. For
performance tests, we compare ML-AINV performance on GPU platform with the perfor-
mance of SuperILU on CPU. SuperILLU is chosen as the representative on CPU platform.
It exploits multi-core parallelism on CPU platform with supernodal support to achieve
high performance.

Tab.8.2 lists the platform for the performance tests and comparison used throughout
this chapter. The CPU and GPU configurations are up to the state-of-the-art platforms
for computation as of the year 2010.

SuperILU is compiled with GotoBLAS (ver. 2.0), which is the state-of-the-art BLAS
implementation on GPU. ML-AINV relies on inverse-forms for preconditioning, so it uses
sparse matrix-vector multiplication operations (SpMV) on GPU.

In Section 8.6.1 we first test the properties of preconditioners with Jacobian matrix-
based linear systems from TDS. We also test ML-AINV on several sparse matrices from
various scientific applications. Results are included in Section 8.6.2.

The preconditioning overhead of ILU-like preconditioners and ML-AINV are computed
differently. The preconditioning in ML-AINV involves access to D; matrices twice, while
in LU preconditioners the L and U matrices are accessed only once. Hence the time

8.6 EXPERIMENTS 123

Platform CPU GPU
Name Intel i7-920 NVIDIA Tesla C1060
Core Configuration 4 cores 30 Stream Multiprocessors
Cache Organization 32 K8B 15&)1; (f:;);"igor L1 Texture Cache
Peak Memory Bandwidth ~ 16 GB/s ~ 80 GB/s

Table 8.2: Test Platforms - CPU and GPU

System | 07 05 | Level Count
1.0 1.0 7
2K 0.75 | 0.75 5
0.75] 0.5 3
1.0 1.0 10
10188 | 0.75 | 0.75 7
0.75 1 0.5 4

Table 8.3: Symbolic analysis of TDS matrices

for the preconditioning of ML-AINV should be calculated as (with Ts denoted the SpMV
execution time for matrix 5):

l
T=Y" (QTDi_l + Tg, + TFZ,) + Ty + Tyyr (8.23)

=1

8.6.1 Test on Jacobian Matrices from TDS

We test ML-AINV on two matrices from the 2K and 10188 simulation. We vary the value
of 41 and 0 to evaluate the effects of these parameters on the symbolic analysis. Tab.8.3
shows the level count in ML-AINV w.r.t different combinations of values of §; and d,.

When the values of §; and d, decrease, the level count decreases. With a smaller
value of d, the size of each level increases due to the relaxation of the sparsity density of
each supernode, resulting a smaller size for the next level. For a smaller value of d,, the
multilevel structure may terminate earlier. Hence the two parameters have a combined
effect on the level count. Fig.8.7 shows the multilevel structure for the Jacobian matrix
for the 2K system. Boundaries between levels are shown.

° T 0

500 500 1 500 t
i i

1000 k i 1000 “ t
1500 Lo 1500 -

i \
2000 x ; .' 2000 ‘i i
R {
! L

p———

1000
1500

2000 }‘

2500 2500 2500

eI h e

. e e
3000p -+ JI <N B000F ™ = e T'::"’*:T’::-:,. '\% B000F ™ e i s n::"‘“"‘ ek
0 500 1000 1500 2000 2500 8000 0 7500 1000 1500 2000 2500 3000 0500 1000 1500 2000 2500 3000
nz =21106 nz =21106 nz =21106
a. (51 =]_O, (52 =1.0 b. 51 = 075, 52 =0.75 C. (51 = 075, 52 =0.5

Figure 8.7: Sparsity pattern of 2K with ML-AINV permutation

124 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.6

Case Preconditioner — Preconditioning | Iteration
Type o | 0 | 4y Overhead Count
[LU-C 102 20074 24
ILU-C 1073 25349 8

oK ML-AINV | 1.0 | 1.0 | 1072 || 28125 43487 8
ML-AINV | 0.75 | 0.5 | 1072 || 27282 51996 5)
ML-AINV | 1.0 | 1.0 | 1073 || 28584 44030 8
ML-AINV | 0.75 | 0.5 | 1073 || 27361 54532)
[LU-C 1074 172751 78
[LU-C 1075 186686 27

10188 ML-AINV | 1.0 | 1.0 [10~* || 206074 296848 16
ML-AINV | 0.75 | 0.5 | 10~ || 228770 390643 16
ML-AINV | 1.0 | 1.0 | 107° || 207945 298993 8
ML-AINV | 0.75 | 0.5 | 107° || 229805 393128 8

* Parameter 03 in the table is used as the dropping threshold for ILU-C and SuperILU.

Table 8.4: ML-AINV characteristics on TDS Jacobian matrices

Matrix Size nnz Application Area
TDS-10188 25308 | 160159 | Time Domain Simulation of Power Grids
epb3 84617 | 463625 DAE of Heat Transfer
Petro 50400 | 1585944 Petroleum Resevior Simulation
FEM/Cantiliver | 62451 | 4007383 Cantiliver model (FEM)
FEM/Consph | 83334 | 6010480 Con-Sphere (FEM)
filter3D 106437 | 1406808 3D model for optical filter
poisson3Db 85623 | 2374949 3D Poisson problem

Table 8.5: Matrix test suite for ML-AINV

Tab.8.4 shows the timing and preconditioner overhead for ML-AINV with TDS ma-
trices. The value of §3 ranges from 1072 to 107°, depending on the TDS system. Note
that the same value of 43 is used as the dropping threshold in |[LU-C preconditioners. The
effect of lowering the value of 9; and 5 results in more fill-in’s within each level in D;’s
and the preconditioner for the last level, i.e., in W7T and Z. This is reflected in the “nnz”
and “Preconditioning Overhead” columns in Tab.8.4.

Note that the iteration count for ML-AINV and |LU-C with the same dropping threshold
are comparable in general for 2K system. For 10188, ML-AINV generally performs better
than [LU-C, with much lower iteration count and comparable memory usage. Note that
the preconditioning overhead is indeed higher for ML-AINV than for ILU-C. This translates
into the performance comparison in the next subsection.

8.6.2 Test of ML-AINV on Matrix Test Suite

Tab.8.5 shows the characteristics of matrix test suite for the comparison between ML-AINV
and ILU preconditioners. The convergence properties of |LU-C, SuperILU, and ML-AINV
is listed in Tab.8.5. GMRES(50) is used for all the matrices.

Tab.8.6 shows the iteration count required for convergence with |LU-C, SuperILU and
ML-AINV. The same dropping threshold is used for ILU-C, SuperILU, and 3 in ML-AINV.

8.6 EXPERIMENTS 125

ILU-C SuperILU ML-AINV
Matrix g Iter. Iter. Iter.
e Count e Count e Count
TDS-10188 10~* 172751 78 232598 22 206074 16
epb3 1073 1805724 38 3275808 17 2563610 14
Petro 10~* 445079 20 578260 7 833325 17

FEM/Cantiliver 104 24897255 33 3542244 8 29166570 21
FEM/Consph 107° 59927690 10 7112337) 81777830 6
filter3D 104 15225539 45 2018064 8 17293951 25
poisson3Db 1075 32180520 29 22530808 125 39095440 35

* Parameter 0 in the second column is used as the dropping threshold for ILU-C and SuperILU, as well
as the value of d5 for ML-AINV.

Table 8.6: Convergence comparison between ML-AINV, |LU-C and SuperILU

SuperILU ML-AINV
Matrix Performance Time for Performance Time for
(MFLOPS) | Preconditioning Level (GFLOPS) | Preconditioning

TDS-10188 11.93 858.0 5 1.001 12.56
epb3 49.75 2239 10 2.910 29.97
Petro 25.82 313.6 8 2.207 32.67
FEM/Cantiliver 80.51 704.0 7 7.124 202.8
FEM/ConSph 76.19 933.5 12 8.141 133.4
filter3D 53.32 605.6 9 6.135 9.827
poisson3Db 140.2 40160 14 8.565 301.3

* All timing are in milliseconds

Table 8.7: Performance comparison between ML-AINV and SuperILU

The values of §; and d, are chosen as 0.75 and 0.5, respectively. These values result in
as a good balance between performance and overall memory usage. From Tab.8.6 we can
see that the convergence of ML-AINV is on the average better than ILU-C. Also ML-AINV
consumes more memory than |[LU-C on the average. This is due to ML-AINV keeps more
elements in D, I and in the last level system. Compared with ML-AINV, SuperILU achieves
lower iteration counts for some matrices. This is mainly because the more sophisticated
preprocessing and the enabling of pivoting available in SuperILU. For “FEM/Cantiliver”,
“FEM/Consph” and “filter3D”, SuperILLU uses much less memory than ML-AINV. The
main cause for this is the relaxed supernode structure and no control of per-row fill-in
amount control. On the average, ML-AINV and SuperILU have comparable convergence,
and they have a clear lead in this aspect compared with ILU-C.

Tab.8.7 shows the performance of ML-AINV as compared with SuperILU. Note that
SuperILU uses supernodal approach to exploit BLAS based operations which can be
vectorized for performance enhancement on CPUs. The performance of SuperILU for
preconditioning is mainly on the scale of 10 to 100 MFLOPs. The usual performance
of ML-AINV is between the range of 1 to 10 GFLOPs. The performance enhancement
is thus on the average 60 to 100 times. The total time during the iterations which is
used for preconditioning is also shown in Tabh.8.7. Since the iteration count with Super-
ILU and ML-AINV is different, the total time used for preconditioning shows a speedup
range above 3.5 times for “FEM/Cantiliver”, up to about 130 times for “poisson3Db”.
For “FEM/Consph” and “Petro”, speedup is between 7 and 10 times. For the other two

126 ITERATIVE SOLVER AND PRECONDITIONER ON GPU 8.7

matrices except for “poisson3Db”, the speedup is around 60 times. On the performance
side, SpMV based preconditioning shows its good performance effects on GPUs. On the
convergence property side, ML-AINV achieves better or comparable iteration count as
compared with ILU-C. When compared with SuperIL U, ML-AINV achieves over 10 times
higher preconditioning efficiency. One thing to note is that SuperILU generally achieves
smaller iteration count. To further reduce iteration count, ML-AINV can be aided with
certain techniques such as preprocessing to enhance diagonal dominance to alleviate this
problem.

8.7 Summary

In this chapter we design and implement Krylov subspace iterative solvers and precon-
ditioners on GPU based accelerated platforms. To effectively accelerate iterative solvers
and preconditioners on GPU, the algorithm is adapted to match the fine-grain massive
parallelism on GPUs. Basic components in iterative solvers such as CG and GMRES can
be easily implemented on GPU platforms. The most essential operation in these solvers
is the matrix-vector products. Long-recurrence based algorithms also depend on orthog-
onalization operations. Both these operations are suitable for GPU platforms because of
to their memory bandwidth bound characteristics and much inherent parallelism.

On the contrary, preconditioners on GPU, especially non-trivial, incomplete factoriza-
tion based preconditioners have not been successfully implemented on GPU platforms so
far. The fundamental reason is that the preconditioning operations are based on substi-
tutions which contain limited parallelism and are not suitable for GPUs. We propose the
use of matrix inverse based preconditioners to make full utilization of the parallelism on
GPUs. The proposed preconditioner, ML-AINV combines multilevel framework based on
INDSET and A-biconjugate approximate inverse preconditioner. Symbolic analysis with
elimination tree is used to form the multilevel structure. ML-AINV holds tight relationship
with [LU preconditioners and contain inherent parallelism by SpMV-based preconditioning
operations. Experiments with various matrices show that it achieves comparable itera-
tion counts with ILU-C, while the preconditioning performance is of 60 times or higher
than SuperILU with the state-of-the-art CPU. The overall speedup in the time spent in
preconditioning is in the range starting at 3.5 times to as high as 130 times compared
with SuperILLU.

Chapter 9

Conclusions and Outlook

9.1 Conclusions

This thesis mainly dealt with two problems: (1) numerical solution of Jacobian matrix-
based linear systems in Time Domain Simulation (TDS) of Power Grids, and (2) the
design of GPU-efficient Krylov solver and preconditioner. Mathematical model of Power
Grids shows that the dynamic behavior of Power Grids can be characterized by a set
of nonlinear differential algebraic equations (DAE’s). The dynamic part of the DAE
characterizes time differentials of dynamic components such as Power Generators, Motors,
etc, while the algebraic part represents the constrains of the status in the Power Grid,
usually Kirchhoff’s Law.

The numerical integration of TDS results in solving a sequence of Jacobian matrix-
based linear systems, which is the most important numerical task in TDS. Iterative solvers
and preconditioners are applied to the solution of these system. But with a changing
Jacobian matrix, the preconditioner is reconstructed, otherwise a dishonest preconditioner
is used. From the analysis in Chapter 2 we have derived that the sparsity structure of
Jacobian matrices has close relationship with the topology of the Power Network. In
particular, we have two conclusions:

e In the Jacobian matrix, the Schur complement of the dynamic part in the algebraic
part of the matrix is actually nil;

e The sparsity pattern of the algebraic part of the Jacobian matrix is fully character-
ized by the topology of the Power Network.

The results above enable us constructing a multilevel structure for the Jacobian ma-
trix, by static analysis of the Power Network topology. A multilevel structure based on
Independent Sets (INDSET) is introduced and constructed based on the Power Network
topology. The INDSET based multilevel structure is then mapped to the structure of the
Jacobian matrix to form a multilevel preconditioner. Compared with the LU precondi-
tioners, multilevel preconditioner based on INDSET on Power Network shows both good
convergence properties and very low memory usage. By using INDSET with dense vertex
sets (i.e., supernodes) instead of single vertices, multilevel preconditioner achieves more
effective system size reduction in the multilevel framework, and with lower memory usage.

TDS involves solving a sequence of Jacobian matrices based linear systems. With
the Jacobian changing at each step, potentially much computation is wasted due to pre-
conditioner reconstructions and restarted Krylov iterations. Through the analysis of the

127

128 CONCLUSIONS AND OUTLOOK 9.1

Jacobian matrices in Chapter 5, we reveal important properties of the Jacobian matrix
in relation to the admittance matrix. The linear system based on Jacobian matrix can be
transformed into an equivalent linear system with the linear operator as Y + Ay, where
Y is the (transformed) admittance matrix and Ay is a rank-deficient sparse matrix with
only non-zero elements at certain diagonals. Ay changes with each Newton step and
time step, while Y remains unchanged across the simulation. This formulation enables
the design of multi-step techniques for TDS linear systems: (1) preconditioner reuse and
updates, (2) spectra deflation with GCRO-DR.

Since dishonest preconditioners may lose its quality during the simulation process,
in Chapter 5 we explored the effectiveness of preconditioner reuse and updates. An ILU
preconditioner is constructed based on Y, and further applied to actual Jacobian matrices
of form Y 4+ Ay. One benefit is that the preconditioner can be retrieved in an off-line
manner. The sparsity pattern of Ay matrix enables more precise preconditioner updates
with a full decomposition of the augmented upper triangular part. In Chapter 6 we
discussed the use of matrix spectra deflation of Jacobian matrices with GCRO-DR. The
formulation of Y + Ay enables computationally feasible deflation with the easy update of
U and C matrices in GCRO-DR. During simulation, large eigenvalues appear for the spectra
of the Jacobian matrices. To accommodate this, a heuristics based on the norm of the
eigenvalues/Rits values is developed to dynamically choose the eigenvalue for deflation.
We show that combining Deflation and Preconditioner Updates achieves 50% to 70%
reduction in iteration count compared with standard GMRES method.

GPU-based acceleration is an on-going trend in high performance computing. This
brings new frontiers to traditional numerical computing and linear algebra. Due to the
lack of full cache support and throughput-oriented optimization, they pose specific prob-
lem for traditional numerical computation kernels. In this thesis we focus on the solution
of linear systems using GPU. Linear system solution and accompanying preconditioning
techniques plays a central role in the solution of Jacobian-based TDS and many other
scientific applications. In Chapter 7 and Chapter 8 we apply GPU based accelerated
computing to the solution of linear systems by Krylov subspace solvers and precondition-
ers. Computationally, there are 3 major parts in Krylov subspace solvers: (1) generation
of Krylov subspace bases, (2) orthogonalization for long-recurrence based algorithms, and
(3) preconditioning. Chapter 7 focuses on the first part: optimization of the basic oper-
ation used in Krylov subspace solvers — generation of Krylov subspace bases by Sparse
Matrix-Vector multiplication (SpMV). We propose the optimization based on matrix pro-
file reduction to enable 2 optimizations: (1) enhancement over the locality in accessing
the dense vector x, and (2) column index compression. On NVIDIA GT-200 GPU, The
combined speedup by these optimizations is 16% and 13% for Single-Precision and Double-
Precision, respectively. On new GPU architecture (GF-100) with better cache support,
we use inline PTX assembly to differentiate the access to matrix data and vector data,
to exploit the architecture potential and achieve better cache utilization. The speedup
due to better cache utilization for GTX-480 GPU is 19% and 15% for single-precision and
double-precision, respectively.

Long-recurrence Krylov subspace solvers such as GMRES and GCR depend on orthog-
onalization of the newly generated vector against existing orthogonal basis of the Krylov
subspace. Modified Gram-Schmidt is used for the implementation on GPU. Due to the
memory bandwidth-bound nature of this algorithm, compared with state-of-the-art CPU,
GPU shows 5 ~ 7 times speedup in terms of orthogonalization performance for large sized
matrices.

9.2 OUTLOOK 129

Preconditioner is of crucial importance for the convergence of Krylov solvers. General-
purpose preconditioners such as IC and ILU face practical limitation on GPU due to that
IC and ILU have limited parallelism, while GPU relies on massive, fine-level parallelism
for high performance. We design preconditioner with good memory efficiency and inverse-
based preconditioning operations which suits the GPU platform. In particular, in Chapter
8 we propose Multi-Level Approximate Inverse preconditioner (ML-AINV), by combining
multilevel framework with Independent Sets (INDSET) and A-biconjugate approximate
inverse preconditioner (AINV). ML-AINV relies on symbolic analysis with Elimination Tree
for the choice of INDSET’s and the last-level system. In order to ensure effectiveness of
symbolic analysis, Nested Dissection (e.g., using METIS) is used in ML-AINV for a reduced
height of the elimination tree. Algebraically, ML-AINV is closely related to IC or ILU in
that its construction is based on the elimination process. Multilevel structure ensures
good memory efficiency of ML-AINV compared with AINV. The preconditioning with
ML-AINV involves a series of SpMV operations. Since SpMV operations contain inherent
parallelism, the preconditioning with ML-AINV can be efficiently carried out on GPU
platform. Experiments with various matrices show that the preconditioning performance
of ML-AINV ranges from 1 to 10 GFLOPs with NVIDIA GT-200 GPU, and achieving 60
to 100 times speedup as compared with SuperILU on state-of-the-art CPUs. The overall
speedup in the preconditioning operations ranges from 3.5 times to 130 times compared
with SuperILU. In terms of convergence properties, because of the close relationship of
ML-AINV with ILU, the convergence property of ML-AINV is also comparable to |LU-C
and ML-AINV preconditioners.

Through Chapter 7 and Chapter 8 we show that iterative solvers and preconditioners
can fully exploit the massive parallelism on the GPU platforms. Overall speaking, the
computation-data ratio of iterative solvers and preconditioners is low. The bandwidth
bound nature of these operations imply a great potential with GPUs. However the effec-
tive preconditioning on GPU requires careful design, in order to achieve: (1) good memory
efficiency with matrix inverse forms, and (2) massive parallelism of preconditioning oper-
ations. ML-AINV bridges these two contradicting design goals and hit a balance between
memory usage and high performance. With ML-AINV, Krylov subspace solvers can fully
utilize the high performance on GPU platforms.

9.2 Outlook for Future Research

The solution of Jacobian-based linear systems is the most important numerical task in
Time Domain Simulation of Power Grids. But online analysis of running Power Grids
faces several challenging problems.

e Online analysis of Power Grids requires fast, sometimes real-time simulation speed,
which is needed for practical analysis and precaution operations. This poses a
tight upper-bound for the simulation speed due to the real-time requirement. Fully
accelerated simulation with GPUs serves as a potential solution to this problem.

e Usually the online analysis involves several geographically distributed sites, such as
administrative agencies spread across the country. These sites are responsible for
the collection of Power Grid specific information. The simulation could be aided
with these information for better accuracy and carried out concurrently through
several sites. This poses additional communication overhead for the simulation.

130 CONCLUSIONS AND OUTLOOK 9.2

Communication needs to be hidden in computation to alleviate the overhead of
multi-site simulation.

Multi-case simulation of Power Grids yields special interest. This arises from the
practical need for the analysis of a Power Grid. Usually independent simulation cases (to
characterize various situations the Power Grid may undergo) is simulated concurrently.
The naive way for this is to simulate each case independently. But with the analysis of
the inter-relationship among these cases would enable faster simulation or save overall
computation amount. The reuse and updates of preconditioner can be applied to multi-
case simulation, to avoid unnecessary construction of preconditioners. Also the Jacobian
matrices of various cases may bear similarities in spectra structure, hence the application
of spectrum deflation is a potential research direction.

Sparse matrix technology was firstly introduced in the Power Network analysis. Through
the years of study it is now widely used in various other scientific applications. Note that
in Chapter 8 we show that compared with more enhanced preprocessing and pivoting en-
abled preconditioner such as SuperILU, the proposed ML-AINV preconditioner sometimes
suffer from worse convergence properties. Preprocessing to improve diagonal dominance
can be utilized for better robustness and convergence properties, like those in [62].

In practice, the iterative solvers and preconditioners are widely used at the scale from
single machine to multiple machine based clusters with thousands of processor cores.
GPU-accelerated clusters usually involve several, to many GPU-accelerated computing
nodes. The design of preconditioner on a multi-machine, multi-GPU platform can be
achieved by a 2-level structure through domain decomposition. The first level is dedicated
to inter-domain regions (or edge splitters of the graph), while sub-domains resides on the
second level. A global Schur complement S for the first level is formed and a precondi-
tioner is applied to it. Each sub-domain should be non-trivial and ML-AINV preconditioner
is applied. Two-level framework based on domain decomposition and GPU-enabled lo-
cal preconditioner is potentially the fundamental framework for the future research on
iterative solver and preconditioning on GPU-accelerated computer clusters.

Bibliography

[10]
[11]
[12]
[13]
[14]

[15]
[16]
[17]
[18]

[19]

[20]

BILUM: Multi-Level Block ILU Preconditioning Techniques for Solving General
Sparse Linear Systems. http://www.cs.uky.edu/ jzhang/bilum.html.

CBC News Indepth: Power outage. http://www.cbc.ca/news/background/poweroutage// .
CUDA Zone. http://www.nvidia.com/cuda.

Electrical Bus. http://en.wikipedia.org/wiki/Electrical _bus.

GPGPU.org. http://www.gpgpu.org.

Magma. http://icl.cs.utk.edu/magma/.

METIS. http://glaros.dtc.umn.edu/gkhome/metis/metis/overview.

Moore’s Law. http://en.wikipedia.org/wiki/Moore’s_law.

OpenCL. http://www.khronos.org/opencl.

Shading Language. http://en.wikipedia.org/wiki/Shading language.

SPARSKIT. http://www-users.cs.umn.edu/ saad/software/SPARSKIT /sparskit.html.
SuperLU. http://crd.lbl.gov/ xiaoye/SuperLU/.

The Green 500 List - November 2010. http://www.green500.org/lists/2010/11 /top/list.php.

The Green 500 List Environmentally Responsible Supercomputing.
http://www.green500.org.

The Little Green Machine. http://www.littlegreenmachine.org.
Tianhe-1. http://en.wikipedia.org/wiki/Tianhe-I.
TOP500 Supercomputing Sites. http://www.top500.org/.

TOP500 Supercomputing Sites — November 2010.
http://www.top500.org/lists/2010/11.

Transcript - Obama’s Speech on the Economy.
http://www.nytimes.com/2009/01/08/us/politics/08text-
obama.html?_r=1&pagewanted=4.

Matrix ~ ORSIRR 1. http://math.nist.gov/MatrixMarket/data/Harwell-
Boeing/oilgen/orsirr_1.html, 2004.

131

132

[21]

22]

23]

[24]

[25]

[26]

[31]

32]

[34]

BIBLIOGRAPHY

Statistics Brief in China, 2009. National Bureau of Statistics, 2010.

Matrix market. http://http://math.nist.gov/MatrixMarket/, retrieved on 15-Jun-
2010.

Fernando L. Alvarado and Robert Schreiber. Optimal parallel solution of sparse
triangular systems. SIAM Journal on Scientific Computing, 14(2):446-460, 1993.

A.B. Alves, E.N. Asada, and A. Monticelli. Critical Evaluation of Direct and Iterative
Methods for Solving Ax = b Systems in Power Flow Calculations and Contigency
Analysis. IEEE Trans. on Power Systems, pages 702-708, May 1999.

M. Ament, G. Knittel, D. Weiskopf, and W. Strasser. A Parallel Preconditioned
Conjugate Gradient Solver for the Poisson Problem on a Multi-GPU Platform. In
Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro
International Conference on, pages 583 —592, 2010.

Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. Fast local search
for the maximum independent set problem. In Proceedings of the 7th international
conference on Experimental algorithms, WEA’08, pages 220-234, Berlin, Heidelberg,
2008. Springer-Verlag.

O. Axelsson and S. Margenov. On Multilevel Preconditioners which are Optimal with
respect to Both Problem and Discretization Parameters. Computational Methods in
Applied Mathematics, 3(1):6-22, 2003.

J. Baglama, D. Calvetti, G. H. Golub, and L. Reichel. Adaptively Preconditioned
GMRES Algorithms. SIAM Journal on Scientific Computing, 20(1):243-269, 1998.

A. H. Baker, E. R. Jessup, and T. Manteuffel. A Technique for Accelerating the
Convergence of Restarted GMRES. SIAM J. Matriz Anal. Appl., 26:962-984, April
2005.

R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,
R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, 2nd Edition. STAM, Philadelphia,
PA, 1994.

R. Battiti and M. Protasi. Reactive local search for the maximum clique problem.
Algorithmica, 29(4):610-637, 2001.

Mehmet Belgin, Godmar Back, and Calvin Ribbens. A Library for Pattern-based
Sparse Matrix Vector Multiply. International Journal of Parallel Programming, pages
1-26, 2010. 10.1007/s10766-010-0145-2.

Nathan Bell and Michael Garland. Implementing sparse matrix-vector multiplication
on throughput-oriented processors. In Proceedings of the Conference on High Perfor-
mance Computing Networking, Storage and Analysis, SC ’09, pages 18:1-18:11, New
York, NY, USA, 2009. ACM.

Michele Benzi. Preconditioning Techniques for Large Linear Systems: A Survey.
Journal of Computational Physics, (182):418-477, 2002.

[35]

[36]

[37]

[38]

[39]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

BIBLIOGRAPHY 133

Michele Benzi and Miroslav Tuma. A sparse approximate inverse preconditioner for
nonsymmetric linear systems. SIAM J. Sci. Comput., 19:968-994, May 1998.

Jeff Bolz, Ian Farmer, Eitan Grinspun, and Peter Schroder. Sparse matrix solvers
on the gpu: conjugate gradients and multigrid. In ACM SIGGRAPH 2005 Courses,
SIGGRAPH ’05, New York, NY, USA, 2005. ACM.

Luc Buatois, Guillaume Caumon, and Bruno Levy. Concurrent number cruncher: a
gpu implementation of a general sparse linear solver. Int. J. Parallel Emerg. Distrib.
Syst., 24:205-223, June 2009.

Kevin Burrage and Jocelyne Erhel. On the performance of various adaptive precondi-
tioned GMRES strategies. Numerical Linear Algebra with Applications, 5(2):101-121,
1998.

Zhichao Cao, Shiming Xu, Wei Xue, and Wenguang Chen. Improving Dense Linear
Equation Solver on Hybrid CPU-GPU System. In Pervasive Systems, Algorithms,
and Networks (ISPAN), 2009, 10th International Symposium on, pages 556-562.
[EEE Computer Society 2009, 2009.

K.W. Chan. Parallel algorithms for direct solution of large sparse power system
matrix equations. Generation, Transmission and Distribution, IEE Proceedings-,
148(6):615 —622, November 2001.

D. Chaniotis and M.A. Pai. Iterative solver techniques in the dynamic simulation
of power systems. In Power Engineering Society Summer Meeting, 2000. IEEE,
volume 1, pages 609 —613 vol. 1, 2000.

Andrew Chapman and Yousef Saad. Deflated and Augmented Krylov Subspace
Techniques. Numerical Linear Algebra with Applications, 4(1):43-66, 1997.

Jee W. Choi, Amik Singh, and Richard W. Vuduc. Model-driven autotuning of sparse
matrix-vector multiply on gpus. SIGPLAN Not., 45(5):115-126, 2010.

H. Dag and A. Semlyen. A New Preconditioned Conjugate Gradient Power Flow.
IEEE Trans. on Power Systems, 18:1248-1255, Nov. 2003.

Timonthy Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transaction on Mathematical Softwware, 2010. to appear.

Timothy A. Davis. Direct Methods for Sparse Linear Systems (Fundamentals of
Algorithms 2). Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2006.

Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. Variational Iter-
ative Methods for Nonsymmetric Systems of Linear Equations. SIAM Journal on
Numerical Analysis, 20(2):345-357, 1983.

A.J. Flueck and H. Chiang. Solving the Nonlinear Power Flow Equations with an
Inexact Newton Method Using GMRES. IEEE Trans. on Power Systems, 13:267—
273, May 1998.

134

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[59]

[60]

[61]

[62]

[63]

BIBLIOGRAPHY

F.D. Galiana, H. Javidi, and S. McFee. On the Application of a Pre-Conditioned
Conjugate Gradient Algorithm to Power Network Analysis. Power Systems, IEEE
Transactions on, 9(2):629 —636, May 1994.

L. Giraud, S. Gratton, and E. Martin. Incremental Spectral Preconditioners for
Sequences of Linear Systems. Applied Numerical Mathematics, 57(11-12):1164 —
1180, 2007. Numerical Algorithms, Parallelism and Applications (2).

Gene H. Golub and Charles F. van Loan. Matriz Computations. The Johns Hopkins
University Press, 3rd edition, 1996.

Anne Greenbaum. [terative Methods for Solving Linear Systems, volume 17 of
Frontiers in Applied Mathematics. Society for Industrial and Applied Mathemat-
ics (SIAM), 1997.

Roger G. Grimes, David R. Kincaid, and David M. Young. ITPACK 2.0 Users Guide.
Technical Report CNA-150. 1979.

A. Grosso, M. Locatelli, and W. Pullan. Simple ingredients leading to very efficient
heuristics for the maximum clique problem. J. Heuristics, 14:587-612, 2008.

Murat Efe Guney. High-Performance Direct Solution of Finite Element Problems on
Multi-Core Processors. PhD thesis, Georgia Institute of Technology, May 2010.

Magnus R. Hestenes and Eduard Stiefel. Methods of Conjugate Gradients for Solving
Linear Systems. Journal of Research of the National Bureau of Standards, 49(6),
December 1952.

Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris. Optimizing Sparse
Matrix-Vector Multiplication using Index and Value Compression. pages 87-96, May
2008.

AY. Kulkarni, M.A. Pai, and P.W. Sauer. Iterative solver techniques in fast dynamic
calculations of power systems. [Intl. J. of Electrical Power and Energy Systems,
23(3):237-244, 2001.

P. Kundur. Power System Stability and Control. McGraw Hill, New York, 1994.

Na Li, Yousef Saad, and Edmond Chow. Crout Versions of ILU for General Sparse
Matrices. SIAM Journal on Scientific Computing, 25(2):716-728, 2003.

H. X. Lin. A Unifying Graphs Model for Designing Parallel Algorithms for Tridiag-
onal Systems. Parallel Computing, 27:925-939, 2001.

Jan Mayer. A numerical evaluation of preprocessing and ilu-type preconditioners for
the solution of unsymmetric sparse linear systems using iterative methods. ACM
Trans. Math. Softw., 36:1:1-1:26, March 2009.

F. Milano, L. Vanfretti, and J. C. Morataya. An Open Source Power System Virtual
Laboratory: The PSAT Case and Experience. IEEE Trans. on Education, 51(1):17—
23, 2008.

[64]

[65]

[66]

[67]

[70]
[71]
[72]

73]

[74]

BIBLIOGRAPHY 135

Ronald B. Morgan. A Restarted GMRES Method Augmented with Eigenvectors.
SIAM Journal on Matriz Analysis and Applications, 16(4):1154-1171, 1995.

Ronald B. Morgan. GMRES with Deflated Restarting. SIAM Journal on Scientific
Computing, 24(1):20-37, 2002.

John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron
Lefohn, and Timothy J. Purcell. A survey of general-purpose computation on graph-
ics hardware. Computer Graphics Forum, 26(1):80-113, 2007.

M. A. Pai, P. W. Sauer, and A. Y. Kulkarni. A Preconditioned Iterative Solver for
Dynamic Simulation of Power Systems. Proc. ISCAS’95, 2:1279-1282, 1995.

M.A. Pai and H. Dag. Iterative Solver Techniques in Large Scale Power System
Computation. Proc. of IEEE Conf. on Decision and Control, 4:3861-3866, 1997.

Michael L. Parks, Eric de Sturler, Greg Mackey, Duane D. Johnson, and Spandan
Maiti. Recycling Krylov Subspaces for Sequences of Linear Systems. SIAM Journal
on Scientific Computing, 28(5):1651-1674, 2006.

S.V. Partner. The Use of Linear Graphs in Gaussian Elimination. SIAM Review,
3:119-130, 1961.

Y. Saad. ILUM: A Multi-Elimination ILU Preconditioner For General Sparse Matri-
ces. SIAM Journal of Scientific Computing, 17:830-847, 1996.

Yousef Saad. Iterative Methods for Sparse Linear Systems. STAM, 2nd edition, 2003.

Yousef Saad and Martin H. Schultz. GMRES: A Generalized Minimal Residual
Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific
and Statistical Computing, 7(3):856-869, 1986.

M. La Scala, G. Sblendorio, and R. Sbrizzai. Parallel-in-time implementation of tran-
sient stability simulations on a transputer network. Power Systems, IEEE Transac-
tions on, 9(2):1117 —1125, May 1994.

A. Semlyen. Fundamental Concepts of a Krylov Subspace Powerflow Methdology.
IEEE Trans. on Power Systems, 11:1528-1537, Aug. 1996.

J.W. Shu, W. Xue, and W.M. Zheng. A Parallel Transient Stability Simulation for
Power Systems. IEEFE Trans. on Power Systems, 20:1709-1717, 2005.

Jurjen Duintjer Tebbens and Miroslav Tuma. Efficient Preconditioning of Se-
quences of Nonsymmetric Linear Systems. SIAM Journal on Scientific Computing,
29(5):1918-1941, 2007.

[78] Vasily Volkov and James W. Demmel. Benchmarking gpus to tune dense linear

[79]

algebra. In Proceedings of the 2008 ACM/IEEE conference on Supercomputing, SC
08, pages 31:1-31:11, Piscataway, NJ, USA, 2008. IEEE Press.

Richard Wilson Vuduc. Automatic Performance Tuning of Sparse Matrixz Kernels.
PhD thesis, University of California, Berkeley, 2002.

136

[80]

[81]

[82]

[83]

[85]

[36]

[87]

[33]

[91]

[92]

BIBLIOGRAPHY

Ke Wang, Wei Xue, HaiXiang Lin, ShiMing Xu, and WeiMin Zheng. Updating
preconditioner for iterative method in time domain simulation of power systems.
SCIENCE CHINA Technological Sciences, 54(4):1024-1034, 2011.

Mingliang Wang, Hector Klie, Manish Parashar, and Hari Sudan. Solving Sparse
Linear Systems on NVIDIA Tesla GPUs. In proc. ICCS’09, pages 864-873, 2009.

Jeremiah Willcock and Andrew Lumsdaine. Accelerating sparse matrix computations
via data compression. In Proceedings of the 20th annual international conference on
Supercomputing, ICS 06, pages 307-316, New York, NY, USA, 2006. ACM.

Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, and
James Demmel. Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In Proceedings of the 2007 ACM/IEEE conference on Super-
computing, SC ’07, pages 38:1-38:12, New York, NY, USA, 2007. ACM.

H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. Demysti-
fying gpu microarchitecture through microbenchmarking. In Performance Analysis
of Systems Software (ISPASS), 2010 IEEE International Symposium on, pages 235
—246, 2010.

Shiming Xu, Hai Xiang Lin, Ke Wang, and Wei Xue. Fill-in Guided Multilevel
Preconditioner for Time-Domain Simulation of Large-Scale Power Systems. Proc.

of Intl. Symp. on Appl. Computing and Computational Sciences (ACCS’08), pages
114-122, Aug 2008.

Shiming Xu, Hai Xiang Lin, Wei Xue, and Ke Wang. Utilizing CUDA for Precondi-
tioned GMRES Solvers. In proc. DCABES’09, 2009.

Shiming Xu, Wei Xue, and Hai Xiang Lin. Fast Power Grid Simulation with Jacobian
Matrix based Spectra Deflation. submitted to IEEE Trans. on Power Systems.

Shiming Xu, Wei Xue, and Hai Xiang Lin. Sparse Matrix-Vector Multiplica-
tion Optimizations based on Matrix Bandwidth Reduction using NVIDIA CUDA.
In Distributed Computing and Applications to Business, Engineering and Science
(DCABES), 2010 9th International Symposium on, pages 609-614, 2010.

Shiming Xu, Wei Xue, and Hai Xiang Lin. Performance modeling and optimization
of sparse matrix-vector multiplication on NVIDIA CUDA platform. The Journal of
Supercomputing, pages 1-12, 2011. 10.1007/s11227-011-0626-0.

Shiming Xu, Wei Xue, Ke Wang, and Hai Xiang Lin. Fast Time Domain Simulation
of Power Systems using Multilevel Preconditioners with Adaptive Reconstruction
Strategies. accepted by Simulation Modelling Practice and Theory (SIMPRA).

Shiming Xu, Wei Xue, Ke Wang, and Hai Xiang Lin. Generating Approximate
Inverse Preconditioners for Sparse Matrices using CUDA and GPGPU. Journal of
Algorithms and Computational Technology, 5(3):475-501, 2011.

Boming Zhang, Gang Wang, and Hongbin Sun. Decomposition and Coordination
Modes for Transient Stability Simulation. Awutomation of Electric Power Systems,
(20):24-28, 2005.

BIBLIOGRAPHY 137

[93] Yi-Shan Zhang and Hsiao-Dong Chiang. Fast Newton-FGMRES Solver for Large-
Scale Power Flow Study. Power Systems, IEEE Transactions on, 25(2):769 —776,
May 2010.

138 BIBLIOGRAPHY

Acknowledgements

This thesis would not have been possible without the supports and contributions from
many people, both in Holland and in China. Here I would like to express my gratitude
to all these people who helped to make this work a reality.

First of all, I would like to thank my supervisor, Hai Xiang Lin, for offering me the
opportunity to carry out Ph.D. study in TU Delft, for his guidance in academic research,
for the freedom and openness he provided me for choosing research topics, and his patience
in allowing me to wandering around and taking detours academically in the long Ph.D.
years of mine. I would also like to express my gratitude to my promotor, professor Arnold
Heemink for his kindness, careful reading of the manuscript and support during the long
years of my Ph.D. study.

I would also like to thank my advisors and colleagues at Tsinghua University, whom
I have been working with since 2003. I would like to thank professor Weimin Zheng
for his long-term support and guidance in my academic career. I would like to thank
professor Wenguang Chen for his guidance in my master’s years and for setting me on
the track of Ph.D. study at TU Delft in the first place. Many thanks go to professor Wei
Xue for his help from all angles, including but not limited to: guidance in power grid
modeling, providing me with support, both academically and mentally. To Dr. Ke Wang
for sharing the rainy days in Delft with me and lots of discussion about mathematics. To
Ruini Xue, for his unique taste in Chinese poems and discussion about life. I would also
like to express my gratitude towards many friends since the early days I was in Tsinghua,
including Eddie Cao, Jidong Zhai, Yongjun Xu, Duo Li, Jianian Yan, Hongshan Jiang, Xi
Deng, and many many others, for their support and those unforgettable years we spent
together.

I've met many great people in Delft, without whom the life in Delft would not be
complete. I would like to thank my officemates in HB.05.270, Sajad and Morteza, for
constructing and sharing such a harmonious working place with me. I would also like
to express my gratitude to all the colleagues in the DIAM who have offered help and
invaluable discussions with me. A special word of thanks goes to Rohit Gupta for sharing
the discussion on GPU and CUDA, which is quite rare and invaluable for me. To Evelyn
Sharabi and Dorothee Engering, many thanks for their administrative assistance. Special
thanks go to those many Pakistani friends in Delft: Chinese and Pakistani have always
been friends, yet we've achieved even better friendship in Delft. Last but not the least,
I would like to thank Theda Olsder, for her support and professionalism in arranging all
the tedious yet important administrative issues.

I have made many great Chinese friends at Delft. Some have left Delft while a few
remains. Many thanks to Yizhi Zhao, Huiling Yang, Zuopeng Qu for the unforgettable
moments and meals of my first year in Delft and the ongoing support since then. To
Xiaoyu, thank you very much for all the mind-soothing hours with Chopin and traditional
Chinese piano songs. Many thanks go to the great Chinese guys I've met during my stay

139

140 ACKNOWLEDGEMENTS

in Delft, especially Jia Wei, Xin Liu, Hao Liu, Xiaohui Cheng and Yufei Dong. For friends
with whom I shared so many wonderful trips and gatherings together, especially Xin Ge,
Zheng Li, Xiaogang Yang and Dan Yang, I thank you and wish you all the best.

Lastly, I would like to thank my family. I'm deeply grateful to my parents, for their
endless love, unwavering support, and encouragements in my life. Special thanks go to
my wife Adele, for her kindness, patience, understanding, and sharing the life with me.

Curriculum Vitae

Shiming Xu was born on December 14, 1981 in Xinxiang of Henan Province, China. He
received his secondary education between 1993 and 1999 at No. 10 Middle School and No.
1 Middle School of Xinxiang. From 1999 to 2003 he studied at Department of Electronic
Engineering, Tsinghua University in Beijing, China. He received Bachelor’s Degree in
2003, and continued to study at Department of Computers Science and Technology. He
received his Master’s Degree in Computer Science from Tsinghua University in January,
2006.

In February, 2006, he joined Delft University of Technology to pursuit a Ph.D. degree,
working in the group of Mathematical Physics, Delft Institute of Applied Mathematics,
Faculty of Electrical Engineering, Mathematics and Computer Science. His research work
also includes close collaboration with High Performance Computing Institute of Tsinghua
University, where he spent one and a half years in total during his Ph.D. study. From
February, 2011 he has been working at Center of Earth System Science, Tsinghua Uni-
versity.

141

