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a b s t r a c t

We present a new discretization of the mono-energetic Fokker–Planck equation. We
build on previous work (Kópházi and Lathouwers, 2015) where we devised an angular
discretization for theBoltzmannequation, allowing for bothheterogeneous and anisotropic
angular refinement. The angular discretization is based on a discontinuous finite element
method on the unit sphere. Here we extend the methodology to include the effect of the
Fokker–Planck scatter operator describing small angle particle scatter. We describe the
construction of an interior penalty method on the sphere surface. Results are provided for
a variety of test cases, ranging from purely angular to fully three-dimensional. The results
show that the scheme can resolve highly forward-peaked flux distributions with forward-
peaked scatter.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Charged particle radiation occurs in fields such as radiotherapy, plasma physics, and material sciences. To consider the
effects of such radiation one needs an accurate description of how the particles interact with materials of interest such as
human tissue.

The interactions of charged particles with the nuclei and the electrons of the material cause a variety of processes that
are fundamentally different from those encountered with neutral particles such as photons and neutrons. Charged particle
interactions are much more frequent and therefore lead to very large cross sections. Many of these interactions lead to
either small deflections in the direction of the particle with a negligible energy loss, or a small energy loss and a negligible
deflection. Conversely, nuclear interactions can cause large deflections, transmutation or secondary particles to form [1].
Though the processes are quite different from neutral particles, the radiation field is accurately described by the linear
Boltzmann equationwith appropriate cross section data. The small deflection in Coulomb scattermeans that highly forward-
peaked scatter needs to be resolved. Inmany cases one can use the Fokker–Planck approximation, where the deflection angle
tends to zerowhile themomentum transfer stays constant [2]. In this work, wewill focus on the discretization of the angular
part of the Fokker–Planck equation.

There are two computational approaches to solving the Boltzmann (or Fokker–Planck) equation: theMonte Carlomethod
and the deterministic method [3]. The Monte Carlo method is highly accurate both with respect to geometry and in
simulating complex particle physics, butmay be slowwhen complete distributions are of interest. The deterministicmethod
is based on a discretization of the Boltzmann (Fokker–Planck) problem in space, angle and energy. Modern deterministic
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methods are well-equipped to handle complex geometries and are more efficient when one is interested in complete
distributions [4].

The most commonly applied angular discretization is the method of discrete ordinates or SN method. Morel [2] showed
that standard SN codes can perform charged particle transport calculations through carefulmanipulation of the cross sections
used, so that state of the art neutral-particle tools can also be used for charged particle transport. Another method to handle
highly forward-peaked scatter is the so-called extended-transport correction. There too the Legendre scatter cross sections
aremanipulated tomimic the physics of the problem [5]. The problemwith the SN method is that it cannot be anisotropically
refined in angle, which is required for efficient solution methods in many practical problems, such as radiotherapy. Product
quadratures (e.g. [6]) can focus on the solution close to a single direction (the pole of the sphere), but not on multiple
directions simultaneously. To achieve the best available accuracy with the SN method, one resorts to Galerkin quadratures
that obey certain favorable properties, but these cannot be anisotropically refined either [7]. Finally, standard discrete
ordinates codes use source iteration, which tends to break down for increasingly forward-peaked scatter functions. Turcksin
et al. [8] devised acceleration methods based on multigrid iteration to address this shortcoming at the price of considerable
complexity.

In the present work we investigate a discretization of the Fokker–Planck equation that is based on discontinuous finite
elements for the angular discretization. Kópházi and Lathouwers [9] introduced this earlier for neutral particle transport.
Here we additionally present the treatment of the Fokker–Planck continuous scatter term through an application of the
symmetric interior penalty (SIP) method to the unit sphere. Note that this discretization is also compatible with the use
of adaptive mesh refinement [10,11]. The angular discretization can be refined both anisotropically (focusing on certain
directions more than others) and heterogeneously (with different angular discretizations in various parts of the spatial
domain). Neither is addressed by the alternative space–angle DG method proposed recently by Aubin et al. [12]; it is
especially unclear how it could support heterogeneous refinement.

This paper is structured as follows. In Section 2 we describe the Fokker–Planck equation and its discretization in a single
energy group.We pay particular attention to the formulation of the basis functions, the spherical SIPmethod, and the spatial
streaming term. We briefly describe the solution algorithm used for solving the linear systems. Section 3 illustrates our
methodology with three examples of varying complexity, ranging from purely angular dependent to a three-dimensional
Fermi pencil-beam case related to radiotherapy applications. Finally, conclusions are drawn and a discussion is given in
Section 4.

2. Discretization of the Fokker–Planck transport equation

2.1. The Fokker–Planck equation

In this paper we study the time-independent, mono-energetic Fokker–Planck equation for particle transport, given by

Ωi
∂ϕ

∂xi
−

α

2
∆sϕ + Σaϕ = S, x ∈ E, Ω ∈ S2, (1)

where x is the position,Ω is the unit direction vector, ϕ = ϕ (x,Ω) is the angular flux and S = S (x,Ω) is an external source.
The summation over repeated indices is implied and we use Cartesian coordinates for both x andΩ. The spherical Laplacian
is ∆s := ∂ s

i ∂
s
i , where ∂ s is the spherical gradient operator with components

∂ s
i =

∂

∂Ωi
− ΩiΩj

∂

∂Ωj
. (2)

Note that ∂ s acts tangential to the unit sphere, i.e.:Ωi∂
s
i = 0. The diffusion constant α = α(x) ≥ 0 is called the (macroscopic)

transport cross section or momentum transfer, while Σa = Σa(x) ≥ 0 is the macroscopic absorption cross section.
Eq. (1) models cases where the direction vector undergoes a series of small deviations as the particle travels through

the medium. The angular diffusion term (α/2)∆sϕ approximates this randomwalk ofΩ over S2. The model is often used for
chargedparticles,whichhave a large number of Coulomb interactionswith nucleiwith small deflections in each collision. The
Fokker–Planck approximation is valid in the limit where the angular deflection tends to zero, while the product of angular
deflection and collision frequency is kept constant. See [13,14] for a detailed derivation of Eq. (1) and an examination of its
validity.

Ultimately, the quantity of interest is the scalar flux φ, which is the zeroth moment of ϕ:

φ := ⟨1, ϕ⟩S2 . (3)

Here

⟨a, b⟩H :=

∫
H
ab (4)

denotes the standard inner product over a domain H . The first moments,

ji := ⟨Ωi, ϕ⟩S2 , (5)
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are the components of the angular current density. An important property of the angular diffusion operator−(1/2)∆s is that
it preserves particles and the angular current density (see e.g. [6]). Specifically,

⟨1, −(1/2)∆sϕ⟩S2 = 0, (6)
⟨Ωi, −(1/2)∆sϕ⟩S2 = ji. (7)

Taking appropriate inner products of Eq. (1) and using the properties above yields

φ =
1

Σa

(
⟨1, S⟩S2 −

∂ ji
∂xi

)
, (8)

ji =
1

Σa + α

(
⟨Ωi, S⟩S2 −

∂

∂xm
⟨ΩiΩm, ϕ⟩S2

)
. (9)

Note that 1 and Ωi are spherical harmonics of order zero and one respectively. In general, one could consider an arbitrary
spherical harmonic Ylm of order l. The corresponding lth moment ⟨Ylm, ϕ⟩S2 can always be expressed in terms of the spatial
derivatives of the (l + 1)th moments.1 Ideally the conservative properties (6) and (7) also hold discretely.

2.2. Angular diffusion operator

In this section we focus on pure angular dependence, i.e. without spatial streaming. In this case, the transport equation
reduces to

−
α

2
∆su + Σau = f (Ω), (10)

where u = u (Ω) is the unknown and α ≥ 0, Σa > 0 are arbitrary constants. The boundary of a sphere is empty,
so the absorption term (Σau) is necessary to ensure that there is a unique solution for all f . This type of surface partial
differential equation occurs in several fields and there are many numerical approaches. Several authors (e.g.: [16,17]) have
suggested finite volume discretizations for the spherical Laplacian. There is also considerable experience with continuous
finite elements on general surfaces [18] and unit spheres in particular [19]. Due to their continuous nature, these approaches
are incompatible with our treatment of the spatial streaming term. We therefore employ discontinuous basis functions on
the sphere, which also simplifies anisotropic refinement. Section 2.2.1 describes how the discrete solution vector is mapped
to the solution space. The numerical weak formulation is discussed in Section 2.2.2.

2.2.1. The angular solution space
To construct the angular solution space, the sphere ismeshed into angular elements. To distinguish from the spatialmesh,

we refer to an angular element as a ‘patch’ and to an angular face as an ‘arc’. We choose a simple tessellation with spherical
triangles, so that each patch is bounded by three arcs. The initial coarsest mesh consists of the octants of the sphere. Each
patch can then be refined by bisecting the great circle segments that make up its boundary, and connecting the midpoints
with new great circle segments. Fig. 1 displays a possible mesh. A patch is said to be of level l if we need to refine l times to
obtain it. In a uniformly refinedmesh, the patches asymptotically attain the same shape and size as their level increases [20].

The angular solution space is spanned by a set of basis functions, each of which has support on a single element in the
mesh. Let Ψj(Ω) be the basis functions on a patch p. It is convenient to express them as

Ψi(Ω) = Cijbj(Ω), (11)

where C is a square nonsingular coefficient matrix. The span is determined by the choice of the functions bj(Ω). The
coefficients Cij must be chosen such that the local mass matrix

Mij := ⟨Ψi, Ψj⟩p (12)

is well-conditioned. This is desirable for DG basis functions in general [21, pp. 347–348]. Eqs. (33) through (35) explicitly
show thatM should be easy to invert.

There are no non-constant linear functions on S2, so the choice of basis functions is not obvious.We consider two options:

Ω-functions are linear in the components of Ω. That is,

b =

[
1
Ω

]
∈ R4. (13)

1 To show this explicitly, take an inner product of Eq. (1) with Ylm . Expand the angular flux into spherical harmonics. Recall that Ylm is an eigenfunction
of ∆s . Finally, note that ΩiYlm is a (linear combination of) spherical harmonic(s) of order l + 1 [15].
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Fig. 1. An example of an anisotropically refined spherical mesh.

The spherical gradient is

∂ s
i Ψj = (δim − ΩiΩm) Cjn

∂

∂Ωm
bn. (14)

Kópházi and Lathouwers [9] showed that Cij = δij leads to problematic rounding errors for the Ω-functions. Instead, we
set C such that

Ψi(V(j)) = δij, Ψi(ΩT ) = 0, for i = 1, 2, 3,
Ψ4(V(j)) = 0, Ψ4(ΩT ) = 1,

(15)

where {V(j)
}
3
j=1 are the vertices of p and

ΩT :=
V(1)

+ V(2)
+ V(3)⏐⏐⏐⏐V(1) + V(2) + V(3)

⏐⏐⏐⏐
2

. (16)

Eqs. (11) and (13) are substituted into Eqs. (15) to obtain a dense linear system that is solved for C .
octa-functions are linear on the octahedron. They are based on the parameterization in Appendix A.1. The basis is linear on

a reference triangle Kref
∈ R2 (Eq. (48)), and mapped to p via an intermediate flat triangle Z that lies on the octahedron.

Specifically, given a k ∈ Kref,

b =

[ k1
k2

1 − k1 − k2

]
∈ R3. (17)

The spherical gradient is derived in Appendix A.2 and given by Eq. (61). We place Z on the octahedron, as this is the only
choice for which the basis on p can be expressed as a linear combination of the bases on the daughters of p, creating a
hierarchic structure. This is a desirable property when spatial streaming is introduced in Section 2.3. In our experience,
setting Cij = δij yields well-conditioned local mass matrices (Eq. (12)) on all patches on all levels of angular refinement.

We note that both types of basis functions can be extended to higher orders in a simple manner, though we did not pursue
this possibility here.

2.2.2. A spherical SIP formulation
The combination of a discontinuous angular solution space and a spherical Laplace operator suggests an application of a

discontinuous Galerkin interior penaltymethod to the unit sphere. Fortunately, thoroughly analyzed finite elementmethods
for Euclidean spaces carry over naturally to the spherical domain. This is because integration by parts on a patch p is the same
as on a Euclidean element. That is, for sufficiently smooth functions v and w,

⟨v, ∂ s
i ∂

s
i w⟩p = ⟨v, n[p]i∂

s
i w⟩∂p − ⟨∂ s

i v, ∂ s
i w⟩p, (18)

where the outward unit normal n[p] is tangential to the sphere [18].
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Take an inner product of Eq. (10) with a test function v and integrate by parts to find the discrete weak
form

Find uℓ ∈ Sℓ, such that, for all v ∈ Sℓ,

α

2

⎛⎝∑
p∈Pℓ

⟨
∂ s
i uℓ, ∂

s
i v

⟩
p +

∑
a∈Aℓ

b[a](uℓ, v)

⎞⎠ + Σa⟨uℓ, v⟩S2 = ⟨f , v⟩S2 , (19)

where Sℓ is the angular solution space,Pℓ is the angularmeshwith characteristic length scale ℓ, andAℓ is the set of arcs inPℓ.
We consider only the symmetric interior penalty (SIP)method [21,22],where the bilinear operator b[a] : v, w ∈ (Sℓ×Sℓ) → R
is defined as follows. For all a ∈ Aℓ, define a characteristic length scale ℓa and choose an arbitrary but fixed ordering of its
neighboring patches p1 and p2. Denote by n[a] the normal vector that points from p1 to p2. Define the jump and averaging
operators by

[[·]]a := ·|p1 − ·|p2 and {·}a :=
1
2

(
·|p1 + ·|p2

)
(20)

respectively. Now

b[a](v, w) := −
⟨
[[w]]a, n[a]i

{
∂ s
i v

}
a

⟩
a
−

⟨
[[v]]a, n[a]i

{
∂ s
i w

}
a

⟩
a

+
η

ℓa
⟨[[v]]a, [[w]]a⟩a,

(21)

where η is the penalty parameter.
The penalty parameter should be large enough to ensure coercivity of the bilinear form, but high values degrade the

quality of the solution and increase the condition number of the linear system [21]. We follow Shahbazi [23] and Epshteyn
and Riviére [24], who recommend η = 3 for linear basis functions onmesheswith equilateral triangles. Note that our patches
asymptotically become flat as the angular refinement increases. We set ℓa equal to the length of a. We have successfully
tested the SIP method with these parameters extensively on various angular meshes, including randomly refined meshes
where adjacent patches can have a difference in angular refinement of up to 4 levels.

There are myriad other DG discretizations of the Poisson equation, including the local DG (LDG) method [25], various
interior penalty (IP) methods [26] and the cell-centered Galerkin (ccG) method [27]. The advantages of SIP method include
its compact stencil and optimal convergence rate for all orders of basis functions. The adjoint consistency of the SIP method
enables adaptive mesh refinement in future work.

An attractive property of the discretization is that it is locally conservative, as can be seen by substituting one of the basis
functions for v in Eq. (19) [21, p. 142]. This means that the numerical scheme satisfies the property in Eq. (6) if the solution
space contains a constant function, which is always the case. Eq. (7) also holds discretely ifΩ lies in the solution space, which
is true for every angular mesh with Ω-functions.

2.3. Spatial streaming

This section describes the DG method for the full space–angle problem given by Eq. (1) on a spatial domain E with two
types of boundary conditions:

Dirichlet: ϕ (x,Ω) = ϕD (x,Ω) for Ω · nE < 0, (22)

reflective: ϕ (x,Ω) = ϕ
(
x,Ωrefl) for Ω · nE < 0, (23)

where nE is the outward normal of E and Ωrefl
:= Ω − 2(Ω · nE)nE is the reflection of Ω in the boundary.

The solution space is constructed as follows. Let Th be the spatial mesh with characteristic length h. The set of faces that
border an element j ∈ Th isF[j]. Denote by n[f ] the normal of face f , pointing in an arbitrary but fixed direction. For simplicity,
every face is assumed flat: its normal is constant. On each element j we define spatial basis functions Φ[j]l = Φ[j]l(x), which
span all polynomials up to order p with support on j. Each element j is equipped with an angular mesh P(j). On each patch
q ∈ P(j), we define the angular basis functions Ψ[q]m = Ψ[q]m(Ω), as explained in Section 2.2.1. We use the same type of
angular basis functions on all patches in all angular meshes. The set of arcs that border patch q is A[q]. Within an element
k and patch p, the solution space is spanned by the products of spatial and angular basis functions. In other words, the
numerical solution is of the form

ϕh (x,Ω) =

∑
k∈Th

Φ[k]i(x)
∑

p∈P(k)

Ψ[p]d(Ω) c[k,p]id (24)

where c[k,p]id are the solution coefficients on a patch p in the angular mesh of element k. We emphasize that each element
can have its own angular mesh, and all elements and patches can be refined locally.
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To derive a weak form, we take an inner product of Eq. (1) with a basis function Φ[j]l(x)Ψ[q]m(Ω). Substituting the
continuous product solution ϕ(x,Ω) = R(x)Q (Ω), the angular diffusion term becomes⟨

−
α

2
∆sRQ , Φ[j]lΨ[q]m

⟩
E×S2

=

⟨α
2
R, Φ[j]l

⟩
j

⟨
−∆sQ , Ψ[q]m

⟩
q

=

⟨α
2
R, Φ[j]l

⟩
j

⎛⎝⟨
∂ s
ξQ , ∂ s

ξΨ[q]m
⟩
q
−

∑
a∈A[q]

⟨
n[q]ξ∂

s
ξQ , Ψ[q]m

⟩
a

⎞⎠ ,

(25)

where we integrated by parts in Ω in the last equality. To derive a discrete weak form we substitute ϕ = ϕh. On an element
j this means R(x)Q (Ω) = Φ[j]iχ[j]i, where

χ[j]i = χ[j]i(Ω) =

∑
p∈P(j)

Ψ[p]d(Ω) c[j,p]id (26)

is the angular flux on element j that corresponds to the spatial basis function Φ[j]i(x) (compare to Eq. (24)). We replace the
boundary term in Eq. (25) with the SIP boundary operator given by Eq. (21), ending up with the term⟨α

2
Φ[j]i, Φ[j]l

⟩
j

⎛⎝⟨
∂ s
ξΨ[q]d, ∂

s
ξΨ[q]m

⟩
q
c[j,q]id +

∑
a∈A[q]

b[a]
(
χ[j]i, Ψ[q]m

)⎞⎠ .

We proceed in a similar manner for the spatial streaming term in Eq. (1), integrating by parts in x (see also [9]). The result is

−

⟨
Φ[j]i,

∂

∂xξ

Φ[j]l

⟩
j

⟨
ΩξΨ[q]d, Ψ[q]m

⟩
qc[j,q]id +

∑
f∈F[j]

Υ[f ,j,q]lm

+

⟨α
2

Φ[j]i, Φ[j]l

⟩
j

⎛⎝⟨
∂ s
ξΨ[q]d, ∂

s
ξΨ[q]m

⟩
q
c[j,q]id +

∑
a∈A[q]

b[a]
(
χ[j]i, Ψ[q]m

)⎞⎠
+

⟨
ΣaΦ[j]i, Φ[j]l

⟩
j

⟨
Ψ[q]d, Ψ[q]m

⟩
qc[j,q]id

=
⟨
S, Φ[j]lΨ[q]m

⟩
j×q.

(27)

The boundary term Υ[f ,j,q] arose from integrating by parts in x and still needs to be discretized. It represents the effect of
spatial streaming though a face f on patch q ∈ P(j). It couples the patch q with all overlapping patches in the angular mesh
of the neighbor of j at face f . It therefore has the form

Υ[f ,j,q]lm =

∑
q′∈∧

(
q,P(j′f )

)
(

S−

[f ,j]liF
−

[f ,q,q′]md c[j′f ,q′]id

+ S+

[f ,j]liF
+

[f ,q,q′]md c[j,q]id
)
,

(28)

where

S−

[f ,j]li :=

⟨
Ψ[j]l, Ψ[j′f ]i

⟩
f
, (29)

S+

[f ,j]li :=
⟨
Ψ[j]l, Ψ[j]i

⟩
f , (30)

j′f is the neighbor of j at face f , and ∧
(
q,P(j′f )

)
is the set of all patches in P(j′f ) that overlap with q. From the perspective of

q, the terms involving F−

[f ,q,q′]
and F+

[f ,q,q′]
respectively represent inflow and outflow across face f .

We define F±

[f ,q,q′]
in accordance with the conservative upwinded numerical flux suggested by [9]. The term

A[f ,q]md :=
⟨
n[f ] · Ω Ψ[q]d, Ψ[q]m

⟩
q (31)

arises naturally from the partial integration that led to Eq. (27). For example, if there is only inflow (so F+

[f ,q,q′]
= 0), and the

patches q and q′ have the same level, then F−

[f ,q,q′]
= A[f ,q]md. To separate inflow and outflow in the general case, we perform

an eigenvalue decomposition of A[f ,q] where

M[q,p]md :=
⟨
Ψ[q]m, Ψ[p]d

⟩
q (32)

is the metric. That is, we determine the unique matrix P[f ,q] such that

A[f ,q] = M[q,q]
(
PGP−1)

[f ,q], (33)
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where G[f ,q] is a diagonal matrix. Let

A±

[f ,q] := M[q,q]
(
PG±P−1)

[f ,q], (34)

where G− (resp. G+) is constructed by replacing the positive (resp. negative) values in G with zeros, so that G = G−
+ G+

and A = A−
+ A+. We also introduce

L[q,q′] := M[q,q′]M−1
[q′,q′]

and H[q,q′] := M−1
[q,q]M[q,q′]. (35)

These operators are Galerkin projections, with L[q,q′] mapping from a coarse patch q to a finer patch q′, and H[q,q′] mapping
from a fine patch q to a coarser patch q′. Note that the Galerkin projections are exact if the basis on a patch can be expressed
as a linear combination of the bases on its daughters. For the definition of F±

[f ,q,q′]
, Kópházi and Lathouwers [9] considered

separate cases, depending on the difference in the levels of angular refinement of the patches q and q′. The results can be
summarized in an insightful way by rewriting Eq. (28) as

Υ[f ,j,q]lm =

∑
q′∈∧

(
q,P(j′f )

)
(

S−

[f ,j]li

(
L[q,s]A−

[f ,s]H[s,q′]

)
md

c[j′f ,q′]id

+ S+

[f ,j]li

(
L[q,s]A+

[f ,s]H[s,q]
)
md

c[j,q]id
)
s=min(q,q′)

.

(36)

Here s = min(q, q′) is the smaller of the two patches (that is, the one with the highest level of angular refinement). The
first term in the products (S±

[f ,j]) is the usual finite element term that arises from an integration of the governing equation.
The term L[q,s] translates the result from the angular basis on q to the angular basis on s, the smallest of the patches, where
A±

[f ,s] separates the incoming and outgoing flux. Finally, H[s,q′] maps back from s to q′. If the patch q is larger than the patches
from/to which the flux streams, then the upwinding scheme is performed by summing over the contributions in smaller
patches in ∧

(
q,P(j′f )

)
. This ensures a symmetry in the upwinding scheme between two patches that are not of equal size,

making the numerical method conservative.
The generalized eigenvalue decomposition in Eq. (33) can be avoided if n[f ] · Ω has a constant sign for all Ω ∈ q, because

then either G−

[f ,q] = 0 or G+

[f ,q] = 0. Specifically,

F−

[f ,q,q′]
= L[q,s]A[f ,s]H[s,q′], F+

[f ,q,q′]
= 0, if Ω · n[f ] < 0 for all Ω ∈ q, (37)

F+

[f ,q,q′]
= L[q,s]A[f ,s]H[s,q], F−

[f ,q,q′]
= 0, if Ω · n[f ] > 0 for all Ω ∈ q, (38)

where s = min(q, q′). Physically, these are cases where there is either no inflow or no outflow through q. As the
angular meshes are refined, the patches become flatter, and the percentage of patches that require an explicit eigenvalue
decomposition drops sharply.

A practical implementation of the weak form (Eq. (27)) is facilitated by the fact that the spatial and angular integrals are
split. If we store them as matrices, then all contributions to the global linear system are Kronecker products of the spatial
and angular integral matrices. The required memory is limited by storing the angular integrals on a ‘master sphere’, which
is an angular discretization that contains all patches in all angular meshes.

2.4. Solution strategy

In discrete ordinates discretizations of the Boltzmann equation, one traditionally uses source iteration to converge the
equations. In this method, the scatter source is based on the currently known solution and thereafter the angular solution
is updated by performing a transport sweep where the equations are inverted with the scatter source fixed. This procedure
is effective when the scatter-ratio is not too large. For highly diffusive media, there are acceleration methods such as DSA,
leading to unconditionally effective schemes when combined with Krylov subspace methods [28].

In the present angular discretization that is based on finite element basis functions on the sphere, the Riemann procedure
is used to determine the directionality of information crossing the element faces. The elements canbemutually dependent, so
there is no straightforward ordering of spatial elements that makes the linear system (block) triangular. In previous work [9]
we devised a solution strategy that is based on an approximate sweep that was found to be effective in the test problems.
The method constructs sweep orderings that correspond to an S2 direction set. Each direction is associated with an octant
of the sphere and the patches it contains. For each direction, the spatial elements are visited in the prescribed order. On
each spatial element, the angular patches corresponding to the direction (octant) are sequentially visited and the local linear
systems are solved for. This sweep-based method is compatible with the discretization where patches are locally decoupled
from other patches due to the use of discontinuous angular basis functions, contrary to other methods such as spherical
harmonics and wavelets. To a large extent this approach retains the high efficiency associated with sweep algorithms to our
angular finite element discretization. Details can be found in [9]. The sweep-based algorithm is used as a preconditioner to a
Krylov subspace method (BiCGSTAB) to construct a robust method. We iterate until the L2-norm of the residual of the linear
system is at most 10−12 times the L2-norm of the right hand side.

In the present work, the spherical diffusion operator is added to the equation, which adds coupling between patches. For
increasing values of the transport cross section, α, this deteriorates the efficiency of the algorithm. Improving the efficiency
by using a more suitable preconditioner that captures the diffusive coupling between patches is likely to perform better.
Here, we concentrate on the discretization and postpone solver improvements to future work.
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Table 1
Results of the spherical SIP method on uniformly refined meshesPℓ with the exact solution (39). The error eℓ is given by Eq. (40). The order of convergence
on Pℓ is estimated with a comparison with the result on P2ℓ . The last column lists the order of convergence of a component of the current.

card(Pℓ) Ω-functions Octa-functions

eℓ Order of eℓ eℓ Order of eℓ Order of |⟨Ω3, uℓ⟩S2 − j3|

8 · 40 2.288e−1 – 2.462e−1 – –
8 · 41 8.853e−2 1.37 1.271e−1 0.95 5.60
8 · 42 2.268e−2 1.96 3.528e−2 1.85 1.40
8 · 43 5.802e−3 1.97 9.100e−3 1.95 1.71
8 · 44 1.455e−3 2.00 2.305e−3 1.98 1.98
8 · 45 3.611e−4 2.01 5.818e−4 1.99 2.00

3. Numerical examples

To illustrate our Fokker–Planck discretization technique, we have applied the method to three problems: (i) a purely
angular manufactured solution without spatial streaming, (ii) a manufactured solution that depends on both space and
angle and (iii) a three-dimensional Fermi pencil beam problem.

3.1. A purely angular problem

We used the method outlined in Section 2.2 to obtain a numerical solution for Eq. (10), where the source term f was set
such that the exact solution is

u = Y00 − Y21 + Y30

=
1

√
4π

(
1 − 15Ω1Ω2 +

1
2

√
7
(
Ω1

(
2Ω1

2
− 3Ω2 − 3Ω3

2))) ,
(39)

where Ylm(Ω) are the normalized real spherical harmonics, i.e.: ⟨Ylm, Yl′m′⟩S2 = δll′δmm′ . We set Σa = 1/10 and α = 1/4. We
used a direct solver for the linear system. The relative global L2-error on a mesh Sℓ is defined by

eℓ :=
|uℓ − u|S2

|u|S2
. (40)

Here |·|H denotes the norm on a domain H that corresponds to the inner product in Eq. (4). Table 1 lists the errors for both
types of basis functions. We observe the expected second order convergence for both basis function sets. The two types of
basis functions have an approximately equal error per degree of freedom, with theΩ-functions being slightly more efficient.
The numerical angular current density (Eq. (5)) is exact for the Ω-functions and therefore not listed. For the octa-functions
it converges quadratically. In general, the convergence is slower on coarse meshes for two reasons. First, the solution is
insufficiently smooth within the patches. Second, the basis functions are approximately linear only on small patches. The
octa-functions in particular can have highly irregular shapes on large patches.

We performed several more tests with different positive values for α and Σa and various manufactured solutions. The
results were similar to those in Table 1.

3.2. A two-dimensional problem

To study the convergence of the numerical scheme with spatial streaming from Section 2.3, we performed a series of
simulations where the exact solution is known.We setΣa = 10, α = 1 and set the source and the boundary conditions such
that the solution is quadratic in both space and angle:

ϕ(x,Ω) = x1(1 − x1)x2(1 − x2)
(
4 + Ω1 + 2Ω2 + 3Ω1

2) . (41)

The spatial domain is E = (0, 1)2. The spatial mesh is unstructured and consists of triangles of approximately equal size and
shape with basis functions of order p = 1. We define the characteristic mesh length as h = card(Th)−1/2. We use the same
homogeneously refined angular mesh for all elements and vary the level of angular refinement. For an angular mesh Pℓ, the
relative L2-error of the angular flux is

eangh,ℓ :=
|ϕh − ϕ|E×S2

|ϕ|E×S2
(42)

and the relative L2-error of the scalar flux is

escalh,ℓ :=
|φh − φ|E

|φ|E
. (43)

We use the solution method described in Section 2.4.
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(a) Relative L2-error of angular flux (Eq. (42)).

(b) Relative L2-error of scalar flux (Eq. (43)).

Fig. 2. Convergence to exact solution (Eq. (41)) as the angular mesh is refined on various spatial meshes with characteristic length h. The triangles indicate
ideal second order convergence in the angular discretization.

Fig. 2 shows the relative L2-errors of the angular flux and the scalar flux for various angular refinement levels l. The orders
of convergence on the finest spatial mesh are tabulated in Table 2. We observe the same second order convergence in the
angular discretization as in the previous test case. The convergence clearly saturates at high angular refinements, where
the spatial discretization affects the errors significantly. The errors are roughly an order of magnitude lower for the scalar
flux than for the angular flux, and consequently saturation occurs much sooner for the scalar flux. The order of convergence
between levels 0 and 1 in Fig. 2a indicates that the angular flux is poorly resolved on these angularmeshes. Nevertheless, the
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Table 2
Orders of convergence for the 2D problem of Section 3.2 on the finest spatial mesh (h = 0.0038) as the angular mesh is refined. The order for an angular
mesh Pℓ is estimated with a comparison with the error on P2ℓ .

card(Pℓ) Ω-functions Octa-functions

Order of eangh,ℓ Order of escalh,ℓ Order of eangh,ℓ Order of escalh,ℓ

8 · 41 1.34 2.56 0.91 2.32
8 · 42 1.97 2.50 1.86 2.12
8 · 43 1.96 1.15 1.95 1.90

scalar flux (Fig. 2b) does show immediate second order convergence as the level increases from 0. Interestingly, the scalar
flux initially converges faster than with second order, especially for the Ω-functions.

3.3. Three-dimensional Fermi pencil beam

Our final problem is a three-dimensional Fermi pencil-beam calculation. In radiotherapy applications, physical pencil
beams are used to deliver the radiation. A frequently used model for treatment planning (optimization) is the use of the
Fermi pencil-beammodel which is an approximation to the Fokker–Planck model. The mathematical problem is as follows:
Consider the half-infinite domain x1 > 0, with

ϕ = δ(x2)δ(x3)
δ(1 − Ω1)

2π
, for x1 = 0 and Ω1 > 0, (44)

where δ(·) is the Dirac delta function. In the absence of absorption (i.e.: Σa = 0), the Fermi pencil beam approximation is

ϕ ≈ ϕF
=

3
π2α2x14

exp
(

−
2
α

(
Ω2

2
+ Ω3

2

x1
− 3

Ω2x2 + Ω3x3
x12

+ 3
x22 + x32

x13

))
. (45)

This approximation is derived under the assumption of small-angle scattering. Since ϕ is small everywhere except when
Ω2

2
+ Ω3

2
≪ 1, an approximate scalar flux can be found by extending the range of integration to Ω2, Ω3 ∈ R, yielding

φF
≈

∫
R2

ϕF d(Ω2, Ω3) =
3

2παx13
exp

(
−

3
2α

x22 + x32

x13

)
. (46)

The reader is referred to Börgers and Larsen [13] for a more in-depth discussion of the pencil-beam model and the Fermi
approximation.

In practical applications, the physical pencil beam has a finite width at the entrance, which can be modeled as a set of
mathematical pencil beams with varying weights. To avoid the singularity of the pencil-beam model in our calculation, we
exclude points close to x1 = 0 and limit the computational domain to

3/10 < x1 < 1; 0 < x2, x3 < 2/5. (47)

We employ Dirichlet boundary conditions ϕD
= ϕF on x1 = 3/10, reflective conditions on x2 = 0 and x3 = 0 and vacuum

conditions on all other boundary faces. We set Σa = 0 and α = 1/10.
Fig. 3 shows the numerical scalar flux in the domain. The unstructured tetrahedral mesh was generated by the Gmsh

software library [29]. The highest resolution is located near the central axis of the beam and near the inlet region. The
angular mesh is shown in Fig. 4; it is the same for all spatial elements. It is refined near the Ω1-pole to capture the forward
nature of the radiation problem.

Fig. 5 shows the numerical scalar flux along the axis x2 = x3 = 0. It is clearly in agreement with the Fermi prediction,
verifying the ability of the numerical scheme to capture forward-peaked solutions and scatter. The error is highest near the
inlet boundary (x1 = 3/10), suggesting that the error is due to the spatial mesh. Our mesh refinement studies confirm this:
increasing the angular refinement did not significantly impact the numerical solution.

Although the Fermi approximation is highly accurate near the axis, it incorrectly predicts that the integral of the scalar
flux over the lateral plane is constant. Specifically, the approximation in Eq. (46) implies

∫
R2 φF d(x2, x3) = 1, which we

would not have found, had we integrated the angular flux in Eq. (45) exactly. Fig. 6 shows the lateral integrals as a function
of penetration depth. Unlike the Fermi prediction, the lateral integrals for the numerical scalar flux increase with x1 due to
a nonzero scattering angle, as expected.

4. Conclusions and discussion

We have presented a new method for the discretization of the Fokker–Planck equation using discontinuous finite
elements in both space and angle. The novelty of the method lies in the use of the symmetric interior penalty method on the
spherical surface. With this choice we are able to refine the angular mesh both anisotropically and heterogeneously with a
hierarchical set of angular elements, focusing on the points in phase-space thatmattermost. This contrastswith the standard
discrete ordinates method, which cannot be refined hierarchically or anisotropically. Even a product quadrature set, which
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Fig. 3. Numerical scalar flux for the Fermi case of Section 3.3. The spatial mesh has 17,530 elements. Note the logarithmic scaling in the color map. Small
values are left out. There were negative values far from the axis. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 4. Angular mesh for the Fermi case of Section 3.3. It has 56 elements. In this image the arcs are drawn as straight lines instead of great circle segments.

can focus on a particular pole in the problem, does not have the flexibility of the present scheme. Ourmethod shows promise
for radiotherapy applications where multiple beam angles are used and need to be resolved. In this way we expect to obtain
(near) Monte Carlo quality dose distributions at reduced cost and without statistical uncertainty.

In the present work we focus on the discretization method and the rate of convergence of the obtained solution. We
used two types of angular basis functions, octa-functions and Ω-functions, both of which conserve particles exactly. The
example problems show the discretization to be second order accurate in angle, which is sufficient for practical application.
The results in Section 3.2 show that the order of convergence for the scalar flux is greater than 2, even when the angular flux
is not yet converged. The scalar flux seems to converge particularly fast for theΩ-functions, probably because they preserve
the angular current density exactly, unlike the octa-functions.

We plan to address the solution algorithm in future work. Source-iteration is known to be ineffective for the type of
forward-peaked scatter thatwe study [8]. Therefore our solutionmethodology is not themost effectivewhen themomentum
transfer is strong. In the caseswhere it is, the Fokker–Planck equation is dominated by the spherical Laplacian and the efficacy
of the sweep-based algorithm decreases. A multigrid method in angle should be effective for the angular diffusion. Such a
solution method is perfectly in line with our hierarchical tessellation of the sphere.

We will also investigate automated spatial and angular refinement and the use of higher order angular functions. Other
future work will focus on topics that are of interest for real-life radiotherapy applications. This includes an efficient energy
discretization. Also, it is not easy to deal with Dirichlet boundary conditions for highly peaked external beams. It would be
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Fig. 5. Comparison of Fermi prediction (φF) and numerical value (φh) of the scalar flux along the axis x2 = x3 = 0 for the case of Section 3.3.

Fig. 6. Integrals of the scalar flux over lateral planes in the domain for the Fermi case of Section 3.3. Due to the limited size of our domain, the values drop
at large penetration depths, where the scalar flux at the boundaries x2 = 2/5 and x3 = 2/5 is no longer negligible.

better to use a first collision source algorithm. Finally, we expect the same numerical scheme to be effective formore general
forward-peaked scatter kernels for charged particles, not just the Fokker–Planck approximation.

Appendix. Details of octa-functions

A.1. Parameterization of a spherical triangle

This section details a family of bijections between a reference element

Kref
:= {k ∈ R2

: k1 > 0, k2 > 0, k1 + k2 < 1} (48)

and an arbitrary spherical triangle V with vertices {V(p)
}
3
p=1, defined as the open set of all Ω ∈ S2 that satisfy

sign
(
V(m)

·
(
V(n)

× V(k)))
= sign

(
Ω ·

(
V(n)

× V(k)))
̸= 0 (49)

for all permutations of {m, n, k}. Note that this definition excludes singular spherical triangles: the vertices {V(p)
}
3
p=1 must

not lie on a single great circle. In words, V is the smallest subset of S2 whose boundary consists of the three great circle
segments that intersect V(1), V(2) and V(3). The bijection Kref

↔ V is via an intermediate flat triangle Z ∈ R3 with vertices
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Fig. 7. A flat triangle Z with a corresponding spherical triangle V .

{Z(p)
}
3
p=1. Specifically, the affine relation between a point k = [k1, k2]T ∈ Kref and a point z ∈ Z is

zi = Z (1)
i +

(
Z (2)
i − Z (1)

i

)
k1 +

(
Z (3)
i − Z (1)

i

)
k2

= Z (1)
i + Dijkj,

(50)

where D :=
((
Z(2)

− Z(1)) ,
(
Z(3)

− Z(1)))
∈ R3×2. The bijection between z and Ω ∈ V is

Ω =
1
z
z, (51)

where z := ||z||2 =
√
z · z, as illustrated in Fig. 7. Obviously the vertices of Z must satisfy V(i)

=
⏐⏐⏐⏐Z(i)

⏐⏐⏐⏐−1
2 Z(i). Such a

bijection between Kref and V allows one to define an angular basis function in terms of a local variable k ∈ Kref, such as for
the octa-functions in Eq. (17).

A.2. Spherical gradient of octa-functions

In this section we derive the spherical gradient of a function g = g(k) that is defined in terms of the local coordinate k.
We provide an explicit expression for ∂zj/∂Ωi and ∂kj/∂zi in the equation

∂ s
i g = (δim − ΩiΩm)

∂zn
∂Ωm

∂kq
∂zn

∂g
∂kq

. (52)

From Eq. (51),
∂Ωj

∂zi
=

1
z

(
δij − ΩiΩj

)
, (53)

and so (∂Ωj/∂zi)Ωj = 0, which implies that the matrix with coefficients ∂Ωj/∂zi is singular. Therefore the inverse Jacobian
∂zj/∂Ωi cannot be obtained in the usual manner. That is,

∂zm
∂Ωi

∂Ωj

∂zm
̸= δij ̸=

∂Ωm

∂zi

∂zj
∂Ωm

, (54)

which is a consequence of the fact that Ω and z are constrained. Eq. (51) is inverted instead. Let n be a normal of Z , so that
dist(Z, 0) = n · z = n · Z(i) is constant for all z ∈ Z . Take an inner product of Eq. (51) with n to obtain

zj =
dist(Z, 0)

Ω · n
Ωj. (55)

It follows that
∂zj
∂Ωi

=
dist(Z, 0)

Ω · n

(
δij −

1
Ω · n

niΩj

)
. (56)

Note that

Ωm
∂

∂Ωm
zi = 0, (57)

as one would expect geometrically.
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There are two degrees of freedom inKref and three equations in (50), so we can solve for k in several nonequivalent ways,
the most convenient of which is to left-multiply by (D⊺D)−1D⊺

∈ R2×3. (D⊺D is always invertible, because Z is nonsingular.)
This yields

kj =
(
(D⊺D)−1D⊺

)
ji

(
zi − Z (1)

i

)
. (58)

The advantage of this particular representation is that the derivative with respect to z becomes straightforward:
∂kj
∂zi

=
(
(D⊺D)−1D⊺

)
ji =

(
D(D⊺D)−1)

ij . (59)

Interestingly, this is not a unique solution: given a displacement dzi, there are infinitely many matrices ∂kj/∂zi with which
the resulting displacements dkj = (∂kj/∂zi) dzi can be computed correctly. This is because D does not have full row rank,
which in turn results from the fact that Eq. (50) is overdetermined if k is the unknown. The matrices ∂kj/∂zi give different
values for (∂kj/∂zi)ni, which, due to the constraint z ∈ Z ⇒ n · dz = 0, is inconsequential for the following results.

Substituting Eqs. (56), (57) and (59) in (52), we find

∂ s
i g =

dist(Z, 0)
Ω · n

(
δim −

1
Ω · n

niΩm

) (
D(D⊺D)−1)

mn

∂

∂kn
g. (60)

This can be simplified for the octa-functions described in Section 2.2.1. The vertices Z(i) are in the same octant and on the
octahedron, so that thenormal ofZ has componentsni = (1/

√
3) sign(zi) = (1/

√
3) sign(Ωi). This implies dist(Z, 0) = 1/

√
3

and n · Ω = ∥Ω∥1/
√
3. Also, ∥Ω∥1 = 1/z. The spherical gradient becomes

∂ s
i Ψj =

1
z

(δim − sign(zi)zm)
(
D(D⊺D)−1)

mn Cjq
∂bq
∂kn

, (61)

where we used Eq. (11).

References

[1] H. Paganetti (Ed.), Proton Therapy Physics, CRC Press, ISBN: 978-1439836446, 2011.
[2] J.E. Morel, Fokker-Planck calculations using standard discrete ordinates transport codes, Nucl. Sci. Eng. 79 (1981) 340–356.
[3] Elmer E. Lewis, Warren F. Miller, Computational Methods of Neutron Transport, first ed., American Nuclear Society, Illinois, ISBN: 978-0-89448-452-0,

1993, p. 400.
[4] Y. Azmy, E. sartori (Eds.), Nuclear Computational Science: A Century in Review, Springer, ISBN: 978-9048134106, 2010.
[5] Clifton R. Drumm, Wesley C. Fan, Leonard Lorence, Jennifer Liscum-powell, An analysis of the extended-transport correction with application to

electron beam transport, Nucl. Sci. Eng. 155 (2007) 355–366.
[6] J.E. Morel, A. Prinja, J.M. McGhee, T.A. Wareing, B.C. Franke, A discretization scheme for the three-dimensional angular Fokker-Planck operator, Nucl.

Sci. Eng. (ISSN: 00295639) 156 (2) (2007) 154–163.
[7] Richard Sanchez, Jean Ragusa, On the construction of Galerkin angular quadratures, Nucl. Sci. Eng. 169 (2011) 133–154.
[8] Bruno Turcksin, Jean C. Ragusa, Jim E. Morel, Angular multigrid preconditioner for Krylov-based solution techniques applied to the sn equations with

highly forward-peaked scattering, Transport Theory Statist. Phys. (ISSN: 0041-1450) 41 (1–2) (2012) 1–22. http://dx.doi.org/10.1080/00411450.2012.
672944.

[9] József Kópházi, Danny Lathouwers, A space-angle DGFEM approach for the Boltzmann radiation transport equation with local angular refinement, J.
Comput. Phys. (ISSN: 00219991) 297 (2015) 637–668. http://dx.doi.org/10.1016/j.jcp.2015.05.031.

[10] D. Lathouwers, Spatially adaptive eigenvalue estimation for the SN equations on unstructured triangularmeshes, Ann. Nucl. Energy (ISSN: 0306-4549)
38 (9) (2011) 1867–1876. http://dx.doi.org/10.1016/j.anucene.2011.05.013.

[11] D. Lathouwers, Goal-oriented spatial adaptivity for the SN equations on unstructured triangular meshes, Ann. Nucl. Energy (ISSN: 0306-4549) 38 (6)
(2011) 1373–1381. http://dx.doi.org/10.1016/j.anucene.2011.01.038.

[12] J. St. Aubin, A. Keyvanloo, B.G. Fallone, Discontinuous finite element space-angle treatment of the first order linear Boltzmann transport equation with
magnetic fields: Application to MRI-guided radiotherapy, Med. Phys. 43 (1) (2016) 195–204.

[13] Christoph Börgers, Edward W. Larsen, Asymptotic derivation of the Fermi Pencil-Beam approximation, Nucl. Sci. Eng. 123 (1995) 343–357.
[14] Christoph Börgers, Edward W. Larsen, On the accuracy of the Fokker–Planck and Fermi pencil beam equations for charged particle transport, Med.

Phys. 23 (10) (1996) 1749.
[15] Richar J. Mathar, Zernike basis to Cartesian transformations, Serb. Astron. J. 179 (179) (2009) 107–120. http://dx.doi.org/10.2298/SAJ0979107M.
[16] Guoliang Xu, Discrete Laplace-Beltrami operators and their convergence, Comput. Aided Geom. Design 21 (2004) 767–784. http://dx.doi.org/10.1016/

j.cagd.2004.07.007.
[17] Xinge Li, Guoliang Xu, Yongjie Jessica Zhang, Localized discrete Laplace-Beltrami operator over triangular mesh, Comput. Aided Geom. Design 39

(2015) 67–82.
[18] Gerhard Dziuk, Charles M. Elliott, Finite element methods for surface PDEs, Acta Numer. 22 (April 2013) (2013) 289–396.
[19] Q.T. Le Gia, Galerkin approximation for elliptic PDEs on spheres, J. Approx. Theory (ISSN: 00219045) 130 (2) (2004) 125–149. http://dx.doi.org/10.

1016/j.jat.2004.07.008.
[20] N. Boal, V. Domínguez, F.-J. Sayas, Asymptotic properties of some triangulations of the sphere, J. Comput. Appl. Math. (ISSN: 03770427) 211 (1) (2008)

11–22. http://dx.doi.org/10.1016/j.cam.2006.11.012.
[21] Daniele Antonio Di Pietro, Alexandre Ern, Mathematical Aspects of Discontinuous Galerkin Methods, Springer, Springer, ISBN: 9783642229800, 2012.

http://dx.doi.org/10.1007/978-3-642-22980-0.
[22] Andreas Dedner, PravinMadhavan, Björn Stinner, Analysis of the discontinuous Galerkinmethod for elliptic problems on surfaces, IMA J. Numer. Anal.

(2013). http://dx.doi.org/10.1093/imanum/drs033.
[23] Khosro Shahbazi, An explicit expression for the penalty parameter of the interior penalty method, J. Comput. Phys. (ISSN: 00219991) 205 (2) (2005)

401–407. http://dx.doi.org/10.1016/j.jcp.2004.11.017.

http://refhub.elsevier.com/S0377-0427(17)30408-9/sb1
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb2
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb3
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb3
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb3
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb4
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb5
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb5
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb5
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb6
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb6
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb6
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb7
http://dx.doi.org/10.1080/00411450.2012.672944
http://dx.doi.org/10.1080/00411450.2012.672944
http://dx.doi.org/10.1080/00411450.2012.672944
http://dx.doi.org/10.1016/j.jcp.2015.05.031
http://dx.doi.org/10.1016/j.anucene.2011.05.013
http://dx.doi.org/10.1016/j.anucene.2011.01.038
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb12
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb12
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb12
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb13
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb14
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb14
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb14
http://dx.doi.org/10.2298/SAJ0979107M
http://dx.doi.org/10.1016/j.cagd.2004.07.007
http://dx.doi.org/10.1016/j.cagd.2004.07.007
http://dx.doi.org/10.1016/j.cagd.2004.07.007
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb17
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb17
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb17
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb18
http://dx.doi.org/10.1016/j.jat.2004.07.008
http://dx.doi.org/10.1016/j.jat.2004.07.008
http://dx.doi.org/10.1016/j.jat.2004.07.008
http://dx.doi.org/10.1016/j.cam.2006.11.012
http://dx.doi.org/10.1007/978-3-642-22980-0
http://dx.doi.org/10.1093/imanum/drs033
http://dx.doi.org/10.1016/j.jcp.2004.11.017


A. Hennink, D. Lathouwers / Journal of Computational and Applied Mathematics 330 (2018) 253–267 267

[24] Yekaterina Epshteyn, Béatrice Rivière, Estimation of penalty parameters for symmetric interior penalty Galerkin methods, J. Comput. Appl.
Math. (ISSN: 03770427) 206 (2) (2007) 843–872. http://dx.doi.org/10.1016/j.cam.2006.08.029. URL http://linkinghub.elsevier.com/retrieve/pii/
S0377042706005279.

[25] Paul Castillo, A review of the Local Discontinuous Galerkin (LDG)method applied to elliptic problems, Appl. Numer.Math. (ISSN: 01689274) 56 (10–11)
(2006) 1307–1313. http://dx.doi.org/10.1016/j.apnum.2006.03.016.

[26] Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems,
SIAM J. Numer. Anal. (2001) 1749–1779.

[27] Daniele A. Di Pietro, Cell centered Galerkin methods for diffusive problems, ESAIM Math. Model. Numer. Anal. (ISSN: 0764-583X) 46 (1) (2012)
111–144. http://dx.doi.org/10.1051/m2an/2011016.

[28] James S. Warsa, Todd A. Wareing, Jim E. Morel, Krylov iterative methods and the degraded effectiveness of diffusion synthetic acceleration for
multidimensional Sn calculations in problemswithmaterial discontinuities, Nucl. Sci. Eng. 147 (2004) 218–248. http://dx.doi.org/10.13182/NSE02-14.

[29] Christophe Geuzaine, J.F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Internat. J. Numer.
Methods Engrg. (ISSN: 1097-0207) 79 (11) (2009) 1309–1331. http://dx.doi.org/10.1002/nme.

http://dx.doi.org/10.1016/j.cam.2006.08.029
http://linkinghub.elsevier.com/retrieve/pii/S0377042706005279
http://linkinghub.elsevier.com/retrieve/pii/S0377042706005279
http://linkinghub.elsevier.com/retrieve/pii/S0377042706005279
http://dx.doi.org/10.1016/j.apnum.2006.03.016
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb26
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb26
http://refhub.elsevier.com/S0377-0427(17)30408-9/sb26
http://dx.doi.org/10.1051/m2an/2011016
http://dx.doi.org/10.13182/NSE02-14
http://dx.doi.org/10.1002/nme

	A discontinuous Galerkin method for the mono-energetic Fokker–Planck equation based on a spherical interior penalty formulation
	Introduction
	Discretization of the Fokker–Planck transport equation
	The Fokker–Planck equation
	Angular diffusion operator
	The angular solution space
	A spherical SIP formulation

	Spatial streaming
	Solution strategy

	Numerical examples
	A purely angular problem
	A two-dimensional problem
	Three-dimensional Fermi pencil beam

	Conclusions and discussion
	Details of octa-functions
	Parameterization of a spherical triangle
	Spherical gradient of octa-functions

	References


